WO2018025454A1 - Method for continuously producing resin-metal composite pipe, and resin-metal composite pipe resulting from said production method - Google Patents

Method for continuously producing resin-metal composite pipe, and resin-metal composite pipe resulting from said production method Download PDF

Info

Publication number
WO2018025454A1
WO2018025454A1 PCT/JP2017/015400 JP2017015400W WO2018025454A1 WO 2018025454 A1 WO2018025454 A1 WO 2018025454A1 JP 2017015400 W JP2017015400 W JP 2017015400W WO 2018025454 A1 WO2018025454 A1 WO 2018025454A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
metal composite
reinforcing plate
strip
resin layer
Prior art date
Application number
PCT/JP2017/015400
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 波谷
史和 松下
智裕 小川
泰 坂根
智士 丸山
山本 耕平
Original Assignee
東拓工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東拓工業株式会社 filed Critical 東拓工業株式会社
Publication of WO2018025454A1 publication Critical patent/WO2018025454A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C53/00Shaping by bending, folding, twisting, straightening or flattening; Apparatus therefor
    • B29C53/56Winding and joining, e.g. winding spirally
    • B29C53/58Winding and joining, e.g. winding spirally helically
    • B29C53/60Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels
    • B29C53/62Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis
    • B29C53/64Winding and joining, e.g. winding spirally helically using internal forming surfaces, e.g. mandrels rotatable about the winding axis and moving axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • F16L9/147Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups comprising only layers of metal and plastics with or without reinforcement

Definitions

  • the present invention relates to a continuous production method of a resin / metal composite pipe mainly used for a culvert drain pipe, a cable protection pipe, and an existing pipeline rehabilitation pipe, and a resin / metal composite pipe obtained by the production method.
  • a resin-metal composite tube in which a steel plate is embedded in resin is disclosed in Patent Document 1, for example.
  • the resin-metal composite tube having the above configuration is formed by spirally winding a resin strip around the molding machine to form an inner layer (lower resin layer), and spirally winding a strip steel plate around the inner layer, Next, the outer periphery (upper resin layer) is formed by spirally winding a resin strip around the outer periphery of the strip steel plate.
  • the steel sheet and the resin may have poor adhesion. Therefore, in Patent Document 1, the surface of the strip steel plate is previously coated with an adhesive resin (binder), and when the strip steel plate is wound around the inner layer, the binder steel is heated and melted to melt the strip steel plate and the inner and outer layers. The adhesion is improved.
  • an adhesive resin binder
  • the strip steel plate cannot be welded and added. Therefore, continuous molding cannot be performed, and the product length is limited to a certain dimension. Although it may be added in advance before the resin coating, it is still limited to a certain size, and if the strip-like steel plate remains in a half-length, it cannot be used elsewhere, resulting in a loss. Moreover, in order to coat
  • the strip coating process of the strip steel plate and the pipe making process using the strip coated steel strip are separate processes, but there are still problems in the efficient operation of the factory site.
  • pipe manufacturing costs such as quality check at the time of production, and waste is generated at the start and end of manufacturing in each process, which causes an increase in pipe manufacturing cost.
  • an object of the present invention is to provide a continuous production method of a resin / metal composite tube and a resin / metal composite tube obtained by the production method.
  • the step of forming a coil-like strip reinforcing plate 2 having a predetermined cross-sectional shape by rolling a metal strip, and the base resin 31a and the binder resin 4 by the joining die 13 A step of forming the two-layered resin strip B1, a step of spirally winding the semi-molten resin strip B1 around the inner peripheral side of the coiled strip reinforcing plate 2, and forming the lower resin layer 31; a binder; And a step of closely fixing the resin 4 and the coiled belt-like reinforcing plate 2.
  • the joining die 13 is provided immediately above the winding part.
  • the upper resin layer 32 has a two-layer structure including the base resin 32a and the binder resin 4 and includes a step of closely fixing the binder resin 4 and the coiled belt-like reinforcing plate 2.
  • the entire circumference in the longitudinal direction of the coiled strip-shaped reinforcing plate 2 is covered with the upper resin layer 32 and the lower resin layer 31.
  • the entire circumference in the longitudinal direction of the coiled strip-shaped reinforcing plate 2 is covered with the binder resin 4 of the upper resin layer 32 and the lower resin layer 31.
  • the base resin 32a, 31a of the upper resin layer 32 or / and the lower resin layer 31 is made of an olefin resin, and the binder resin 4 of the lower resin layer 31 or / and the upper resin layer 32 is modified with a polar group. It is preferable that the resin is composed of an olefin resin containing a resin derivative.
  • the thickness of the rolled portion is 88% or more and less than 100% of the original steel sheet thickness. It is preferable that
  • the inner peripheral surface or / and the outer peripheral surface of the pipe have a spiral wave shape.
  • the resin-metal composite tube of the present invention is manufactured by the above continuous manufacturing method.
  • the use is a culvert drain pipe.
  • the use is preferably a cable protection tube.
  • the use is an existing pipe rehabilitation pipe.
  • the step of forming a coil-like strip-shaped reinforcing plate having a predetermined cross-sectional shape by rolling a metal strip, and the base resin and the binder resin have a two-layer structure using a joining die
  • the metal strips can be joined together by welding, and continuous molding of the resin-metal composite tube is possible.
  • a dedicated line for coating the metal strip with a binder is no longer necessary, and no storage place or equipment for the metal strip after coating is required, so that the manufacturing cost can be reduced.
  • An efficient production line arrangement is also possible.
  • the junction die is provided immediately above the winding portion, the shape of the resin band can be easily maintained, and the collapse of the two-layer structure can be suppressed.
  • the binder resin covers the outer periphery of the base resin in the course of conveyance due to the difference in viscosity between the base resin and the binder resin, and the desired two-layer It becomes difficult to obtain the structure.
  • the upper resin layer prevents the steel plate from being lifted while securing the fixing to the steel plate with the binder resin of the lower resin layer.
  • a resin-metal composite tube capable of maintaining a laminated state can be manufactured.
  • the upper resin layer has a two-layer structure consisting of a base resin and a binder resin, and the binder resin and the coiled belt-like reinforcing plate are closely fixed, the upper resin layer and the lower resin layer are both firmly fixed to the steel plate.
  • a resin-metal composite tube that can be secured and can maintain a further laminated state can be manufactured.
  • the entire length of the longitudinal cross section of the coiled strip reinforcing plate is covered with the upper resin layer and the lower resin layer, the entire steel material is covered with the resin, and the resin-metal composite enables long-term rust prevention of the steel plate.
  • the entire circumference in the longitudinal direction of the coiled strip reinforcing plate is covered with the binder resin of the upper resin layer and lower resin layer, the entire steel plate is covered with the binder resin, enabling long-term rust prevention of the steel plate.
  • a resin-metal composite tube having the strongest laminated structure of tubes can be manufactured.
  • An olefin resin containing an olefin resin derivative in which the base resin of the upper resin layer or / and the lower resin layer is composed of an olefin resin, and the binder resin of the lower resin layer or / and the upper resin layer is modified with a polar group If it consists of resin, the resin metal composite pipe
  • a galvanized steel sheet as a metal strip, rolling the steel sheet to form a coiled strip reinforcing plate, and the thickness of the rolled part is 88% or more and less than 100% of the thickness of the original steel sheet Then, the coiled belt-like reinforcing plate can be formed while maintaining the laminated structure of the galvanized steel sheet itself.
  • the effect of metal species on resin degradation is much greater than that of zinc. Therefore, the zinc layer of the galvanized steel sheet can be prevented from peeling off, and the iron layer can be prevented from coming into direct contact with the resin. Resin-metal composite tubes that can maintain the properties for a longer period can be manufactured.
  • the tube can be made highly flexible.
  • FIG. 1 A is the schematic which shows the manufacturing apparatus of a resin metal composite pipe
  • (b) is the end elevation which showed the inner side of the molding machine. It is sectional drawing which showed the manufacturing process of the resin metal composite pipe. It is sectional drawing which showed the other resin metal composite pipe
  • a resin-metal composite tube 1 embeds a coiled strip-shaped reinforcing plate 2 formed by forming a metal strip into a predetermined cross-sectional shape in the tube wall of the resin tube. In other words, it is formed by covering the coiled belt-like reinforcing plate 2 with the resin 3.
  • Applications are various such as for underdrain drainage pipes, cable protection pipes, and existing pipe rehabilitation pipes. Therefore, in FIG. 1, the inner and outer peripheral surfaces are formed as a substantially smooth tube, but either or both of the inner peripheral surface and the outer peripheral surface may be formed in a spiral wave shape according to the application.
  • the coiled strip-shaped reinforcing plate 2 is formed by rolling and forming a metal strip into a coil shape in the longitudinal direction while forming a substantially cross-section with a flat upper end surface. And it has the convex part 2a which continues in a longitudinal direction, and the recessed part 2b formed in the back surface in connection with formation of the convex part 2a. Specifically, it has a top surface 2c, leg portions 2d and 2d extending downward from both ends of the top surface 2c, and a base portion 2e extending outward from the lower end of the leg portion 2d.
  • the coiled strip-shaped reinforcing plate 2 is spirally wound in the tube wall, and is embedded at substantially equal intervals with a gap (interval) S in the tube axis direction without contacting each other.
  • the material is galvanized steel that is not coated with resin (not coated with a binder), but various metals such as steel, stainless steel, and aluminum can also be used.
  • Resin 3 is continuous over the entire length from one end to the other end of the tube, and it can be said that only resin 3 forms a tube shape.
  • the resin 3 is also filled in the recess 2 b of the coiled belt-like reinforcing plate 2. There are almost no voids in the cross section (no intentional voids are formed).
  • the resin 3 is roughly divided into a resin (lower resin layer) 31 on the inner peripheral side of the tube and a resin (upper resin layer) 32 on the outer peripheral side of the tube.
  • the lower resin layer 31 and the outer resin layer 32 have a two-layer structure of base resins 31 a and 32 a and a binder resin 4.
  • the base resin 32a, 31a of the upper resin layer 32 and / or the lower resin layer 31 is an olefin resin.
  • the binder resin 4 of the lower resin layer 31 and / or the upper resin layer 32 is preferably an olefin resin containing an olefin resin derivative modified with a polar group.
  • the binder resin 4 is provided between the base resin 31a and the coiled strip reinforcing plate 2, between the base resin 32a and the coiled strip reinforcing plate 2, and between the base resin 31a and the base resin 32a in the range of the gap S.
  • the base resin 31a, 32a and the coiled belt-like reinforcing plate 2 are not in direct contact with each other. In this state, it can be said that the coiled belt-shaped reinforcing plate 2 is covered with the binder resin 4 and the base resin 31a and the base resin 32a are separated vertically (inside and outside) by the binder resin 4.
  • the resin-metal composite tube 1 having the above structure is manufactured as follows. First, as shown in FIG. 2 a, a metal strip having a flat cross-sectional shape drawn from the coil R is passed through a rolling mill 10.
  • the rolling mill 10 has a pair of upper and lower rolling rolls.
  • the metal strip passing through is finally formed (roll-rolled) into a spiral coil shape having a substantially cross-sectional shape having a convex portion 2a on the outer diameter side and a concave portion 2b on the inner diameter side. Rolling is performed so that the thickness of the rolled portion is 88% or more and less than 100% of the thickness of the non-rolled portion. By rolling in this way, peeling of the galvanized layer from the steel can be suppressed, and adhesion to the resin 3 performed later can be performed stably.
  • the metal strip of the coil R is gradually pulled out by the rolling mill 10 and eventually disappears. In that case, a new coil R is prepared, and the tip of the new metal strip is added to the rear end of the original metal strip.
  • the ends of the metal strips are welded together (butt welding) with a welding machine 11 provided on the front side of the rolling mill 10. Although welding is usually performed while the line is operating, the line may be temporarily stopped.
  • the metal strip that is, the coiled strip reinforcing plate 2 formed from the rolling mill 10 and formed into a coil having a predetermined cross-sectional shape is transferred to the molding section 12a of the molding machine 12.
  • the coil-shaped belt-like reinforcing plate 2 is suspended from a rod-shaped guide roll E provided from the rolling mill 10 to the molding portion 12a of the molding machine 12, and the rear side of the molding machine 12 (power to be described later) From the portion 12c side) to the forming portion 12a.
  • the forming portion 12a is configured by arranging a plurality of elongated rod-shaped forming rolls 12b having a circular cross section in the circumferential direction at a predetermined interval, and is substantially cylindrical as a whole.
  • the coil-shaped belt-shaped reinforcing plate 2 is wound around the outer periphery of the substantially cylindrical forming portion 12a.
  • Each forming roll 12b of the forming portion 12a is supported so as to be rotatable around its axis, and is rotated at the same speed in the same direction (clockwise) by the power from the power portion 12c. Therefore, the coil-shaped belt-shaped reinforcing plate 2 spirally wound around the forming portion 12a sequentially advances toward the front (opposite side of the power portion 12c).
  • an upper roller is provided on the outer peripheral side of the molded part 12a. 15.
  • a lower roller 19 is provided.
  • a contact-preventing bar (not shown) may be provided between the coiled belt-like reinforcing plates 2 and 2.
  • the coiled belt-like reinforcing plate 2 may be preheated by a heater (not shown) provided on the outer peripheral side of the molded part 12a. .
  • a central axis C having a hollow portion is provided on the inner peripheral side of the molding portion 12a, and the molding roll 12b is arranged around the central axis C coaxially or at a predetermined angle.
  • a first junction die 13 is provided in the hollow portion of the central axis C.
  • the first joining die 13 communicates with a first base resin extruder 14A and a first binder resin extruder 14B provided at the rear of the molding machine 12, and is sent from the first base resin extruder 14A.
  • the semi-molten base resin 31a and the semi-molten binder resin 4 sent from the first binder resin extruder 14B are co-extruded to form the first resin band B1.
  • the first joining die 13 is provided immediately above the winding portion of the first resin strip B1 around the molding portion 12a, and the co-extrusion immediately before the transition from the central axis C to the molding roll 12b on the molding portion 12a. Is done.
  • the first resin strip B1 coextruded from the first joining die 13 has a two-layer structure of a base resin 31a and a binder resin 4 as shown in FIG. 3a. Moreover, it has the embedding part 31b substantially the same shape as the recessed part 2b of the coil-shaped strip
  • the first resin strip B1 having the above-described configuration is extended to the outside of the molding portion 12a through the gap between the molding rolls 12b and 12b, and is the outer periphery (on the molding portion 12a) of the molding portion 12a. It winds around the part (winding part) located just under 13 spirally. At this time, since the coiled belt-shaped reinforcing plate 2 is already positioned on the outer periphery of the molded part 12a with a gap between the molded part 12a, the first resin belt-shaped body B1 is connected to the molded part 12a.
  • the pitch of the coiled strip reinforcing plate 2 already positioned on the first resin strip B1 is adjusted by the upper roller 15 and is fixed to the first resin strip B1.
  • the lower roller 19 ensures the adhesion between the first resin strip B1 and the coiled strip reinforcing plate 2 immediately after being extruded.
  • the end portions of the first resin strips B1 and B1 are firmly fused to form the lower resin layer 31 having no gap in the tube axis direction.
  • the base resin 31a and the coiled belt-like reinforcing plate 2 are bonded (fixed and fixed) via the binder resin 4. At this time, as shown in FIG.
  • the embedded portion 31 b of the first resin strip B 1 fills the recess 2 b of the coil-shaped strip reinforcing plate 2.
  • the upper roller 15 and the lower roller 19 are not limited to the present embodiment, and the roller shape can be changed as appropriate according to the pipe structure to be manufactured, and the number of rollers installed can be changed.
  • the upper resin layer 32 is then formed.
  • a second joining die 16 is provided on the outer peripheral side of the forming portion 12a.
  • the second joining die 16 communicates with the second base resin extruder 17A and the second binder resin extruder 17B, respectively, and a semi-molten base resin 32a sent from the second base resin extruder 17A.
  • the semi-molten binder resin 4 sent from the second binder resin extruder 17B is coextruded.
  • the second resin strip B2 coextruded from the second joining die 16 has a two-layer structure of the base resin 32a and the binder resin 4 as shown in FIG. 3c. Moreover, it has the embedding part 32b for filling the ditch
  • the second resin strip B2 having the above configuration is spirally wound around the outer periphery of the coiled strip reinforcing plate 2 (on the coiled strip reinforcing plate 2) so as to cover the coiled strip reinforcing plate 2.
  • the binder resin 4 is wound on the inner peripheral side and the base resin 32a is wound on the outer peripheral side so that the binder resin 4 is positioned on the belt-like reinforcing plate 2 side.
  • the second resin strip B2 is pressed against the coiled strip reinforcing plate 2 side by the pressing roller 18 of FIG. 2a.
  • the end portions of the second resin strips B2 and B2 adjacent on the coiled strip reinforcing plate 2 are firmly fused to form the upper resin layer 32 having no gap in the tube axis direction.
  • the base resin 32a and the coiled belt-like reinforcing plate 2 are bonded (tightly fixed) via the binder resin 4, and the embedded portion 32b of the second resin belt-like body B2 is provided between the coiled belt-like reinforcing plates 2 and 2
  • the groove 5 is filled.
  • the entire circumference in the longitudinal direction of the coiled belt-shaped reinforcing plate 2 is covered with the binder resin 4 of the upper resin layer 32 and the lower resin layer 31. This completes the production of the resin-metal composite tube 1.
  • the first and second resin strips B1 and B2 have the binder resin 4, it is not necessary to previously coat the coil-shaped strip reinforcing plate 2 with the binder resin 4. For this reason, a coating process step that has been conventionally required is unnecessary, and a significant cost reduction can be achieved.
  • FIG. 4 shows another resin-metal composite tube 1A.
  • the binder resin 4 does not cover the entire surface of the coiled belt-like reinforcing plate 2, and part of the upper and lower surfaces of the coiled belt-like reinforcing plate 2, specifically, the coiled belt-like reinforcing plate 2 is characterized in that the binder resin 4 is provided only in the vicinity of the central portion in the tube axis direction.
  • the binder resin 4 could not be selectively provided in this way. However, according to this manufacturing method, the binder resin 4 is partially applied. It is also possible to provide it at a reduced cost.
  • FIG. 5 shows still another resin-metal composite tube 1B.
  • the resin-metal composite tube 1B is characterized in that a gap P is provided in the base resin 31a of the lower resin layer 31.
  • the gap P is continuously provided along the spiral direction of the coiled belt-like reinforcing plate 2.
  • Such a gap P is formed by connecting a compressed air line to the first joining die and feeding compressed air into the base resin 31a.
  • the second resin strip B2 is coextruded, but the base resin 32a and the binder resin 4 are separately extruded and formed on the molded portion 12a (or the coiled strip reinforcing plate 2).
  • the second resin band B2 may be formed by superimposing the two.
  • the binder resin 4 may be applied by spraying or brushing in addition to extrusion.
  • the shape of the coiled belt-like reinforcing plate 2 may be a shape in which the top surface 2c and the leg 2d, and the leg 2d and the base 2e are connected by a gentle curve, and further, a steep shape in which corners are formed. It may be a shape that is connected by a simple curve.
  • the shape formed by the top surface 2c and the leg 2d may be an arc shape, a waveform, or a substantially triangular shape.
  • the base 2e is not provided, and an arc shape, a substantially triangular shape, or a substantially trapezoidal shape may be used. Moreover, it may be flat without having the convex part 2a. Furthermore, it may be substantially W-shaped.
  • the resin strips B1 and B2 are integrally provided with the embedded portions 31b and 32b and the flat portions 31c and 32c. However, the resin strips B1 and B2 may be integrally extruded and overlapped to obtain a predetermined shape. good. Different types of resins may be used for the base resin 31a of the lower resin layer 31 and the base resin 32a of the upper resin layer 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

Provided are a method for continuously producing a resin-metal composite pipe, and a resin-metal composite pipe resulting from said production method. This method is provided with a step for forming a coiled strip-shaped reinforcing plate 2 having a prescribed cross-sectional shape by rolling a metal strip, a step for forming a base resin 31a and a binder resin 4 into a resin strip B1 having a two-layered structure by using a joining die 13, a step for winding the semi-molten resin strip B1 in a spiral on the inner peripheral side of the coiled strip-shaped reinforcing plate 2 and forming a lower resin layer 31, and a step for tightly fixing the binder resin 4 and the coiled strip-shaped reinforcing plate 2.

Description

樹脂金属複合管の連続製造方法及び当該製造方法によって得られる樹脂金属複合管Resin-metal composite tube continuous production method and resin-metal composite tube obtained by the production method
 この発明は、主として暗渠排水管用、ケーブル保護管用、既成管路更生管用に用いられる樹脂金属複合管の連続製造方法及び当該製造方法によって得られる樹脂金属複合管に関する。 The present invention relates to a continuous production method of a resin / metal composite pipe mainly used for a culvert drain pipe, a cable protection pipe, and an existing pipeline rehabilitation pipe, and a resin / metal composite pipe obtained by the production method.
 樹脂内に鋼板を埋設してなる樹脂金属複合管は、例えば特許文献1に開示されている。上記構成の樹脂金属複合管は、成形機の周囲に、樹脂帯状体を螺旋状に巻回して内層(下側樹脂層)を形成し、その内層の周囲に帯状鋼板を螺旋状に巻回し、ついで帯状鋼板の外周に樹脂帯状体を螺旋状に巻回して外層(上側樹脂層)を形成することで製造される。 A resin-metal composite tube in which a steel plate is embedded in resin is disclosed in Patent Document 1, for example. The resin-metal composite tube having the above configuration is formed by spirally winding a resin strip around the molding machine to form an inner layer (lower resin layer), and spirally winding a strip steel plate around the inner layer, Next, the outer periphery (upper resin layer) is formed by spirally winding a resin strip around the outer periphery of the strip steel plate.
 ところで、鋼板と樹脂とは接着性に乏しい場合がある。そこで、特許文献1では、予め帯状鋼板の表面を接着性の樹脂(バインダー)で被覆しておき、帯状鋼板を内層に巻回する際に、バインダーを加熱溶融することで帯状鋼板と内外層との接着性を高めている。 By the way, the steel sheet and the resin may have poor adhesion. Therefore, in Patent Document 1, the surface of the strip steel plate is previously coated with an adhesive resin (binder), and when the strip steel plate is wound around the inner layer, the binder steel is heated and melted to melt the strip steel plate and the inner and outer layers. The adhesion is improved.
特開平6-126827号公報Japanese Patent Application Laid-Open No. 6-126827
 ところが、帯状鋼板の表面がバインダーで被覆されていると、帯状鋼板を溶接して継ぎ足すことができない。そのため、連続成形をすることができず、製品長さが一定寸法に限られていた。樹脂被覆する前に予め継ぎ足しておくこともなされるが、それでも一定寸法に限られることに変わりは無く、さらに帯状鋼板が半端な長さで残ってしまうと他では使えないため、ロスとなる。
 また、帯状鋼板をバインダーで被覆するためには専用のラインが必要であり、加えて被覆後の帯状鋼板の保管場所や設備も必要になることから、製造コストの増大を招く。現に本件出願人の製造拠点では、帯状鋼板のバインダーの被覆工程と、バインダー被覆した帯状鋼板を用いた製管工程を別工程としているが、工場敷地の効率的な運用に問題が残り、各工程での品質チェックなど管製造時の煩雑さを招き、各工程での製造立上時や終了時に廃棄物が出るといった問題もあり、管製造コストの上昇要因になっている。
However, if the surface of the strip steel plate is coated with a binder, the strip steel plate cannot be welded and added. Therefore, continuous molding cannot be performed, and the product length is limited to a certain dimension. Although it may be added in advance before the resin coating, it is still limited to a certain size, and if the strip-like steel plate remains in a half-length, it cannot be used elsewhere, resulting in a loss.
Moreover, in order to coat | cover a strip steel plate with a binder, a dedicated line is required, and also the storage place and equipment of the strip | belt steel plate after coating | cover are also required, and it causes an increase in manufacturing cost. In fact, at the applicant's manufacturing base, the strip coating process of the strip steel plate and the pipe making process using the strip coated steel strip are separate processes, but there are still problems in the efficient operation of the factory site. In addition, there is a problem that pipe manufacturing costs such as quality check at the time of production, and waste is generated at the start and end of manufacturing in each process, which causes an increase in pipe manufacturing cost.
 そこで、この発明は、樹脂金属複合管の連続製造方法及び当該製造方法によって得られる樹脂金属複合管の提供を目的とする。 Therefore, an object of the present invention is to provide a continuous production method of a resin / metal composite tube and a resin / metal composite tube obtained by the production method.
 この発明の樹脂金属複合管の連続製造方法は、金属帯状体を圧延加工することで所定断面形状のコイル状帯状補強板2に形成する工程と、基体樹脂31aとバインダー樹脂4を合流ダイ13によって二層構造の樹脂帯状体B1に形成する工程と、半溶融の樹脂帯状体B1をコイル状帯状補強板2の内周側に螺旋状に巻き付け、下側樹脂層31を形成する工程と、バインダー樹脂4とコイル状帯状補強板2とを密着固定する工程と、を備えることを特徴とする。 In the continuous manufacturing method of the resin-metal composite pipe of the present invention, the step of forming a coil-like strip reinforcing plate 2 having a predetermined cross-sectional shape by rolling a metal strip, and the base resin 31a and the binder resin 4 by the joining die 13 A step of forming the two-layered resin strip B1, a step of spirally winding the semi-molten resin strip B1 around the inner peripheral side of the coiled strip reinforcing plate 2, and forming the lower resin layer 31; a binder; And a step of closely fixing the resin 4 and the coiled belt-like reinforcing plate 2.
 合流ダイ13が巻き付け部の直上に設けられていることが好ましい。 It is preferable that the joining die 13 is provided immediately above the winding part.
 コイル状帯状補強板2上に上側樹脂層32を形成する工程を備えることが好ましい。そして、この場合、上側樹脂層32が基体樹脂32aとバインダー樹脂4からなる二層構造であり、バインダー樹脂4とコイル状帯状補強板2とを密着固定する工程を備えることが好ましい。 It is preferable to include a step of forming the upper resin layer 32 on the coiled belt-like reinforcing plate 2. In this case, it is preferable that the upper resin layer 32 has a two-layer structure including the base resin 32a and the binder resin 4 and includes a step of closely fixing the binder resin 4 and the coiled belt-like reinforcing plate 2.
 また、コイル状帯状補強板2の長手方向断面全周を上側樹脂層32と下側樹脂層31により被覆することが好ましい。 In addition, it is preferable that the entire circumference in the longitudinal direction of the coiled strip-shaped reinforcing plate 2 is covered with the upper resin layer 32 and the lower resin layer 31.
 若しくは、コイル状帯状補強板2の長手方向断面全周を上側樹脂層32及び下側樹脂層31のバインダー樹脂4により被覆することが好ましい。 Alternatively, it is preferable that the entire circumference in the longitudinal direction of the coiled strip-shaped reinforcing plate 2 is covered with the binder resin 4 of the upper resin layer 32 and the lower resin layer 31.
 上側樹脂層32或いは/及び下側樹脂層31の基体樹脂32a、31aをオレフィン系樹脂で構成し、下側樹脂層31或いは/及び上側樹脂層32のバインダー樹脂4を極性基により変性処理したオレフィン系樹脂誘導体を含有するオレフィン系樹脂で構成することが好ましい。 The base resin 32a, 31a of the upper resin layer 32 or / and the lower resin layer 31 is made of an olefin resin, and the binder resin 4 of the lower resin layer 31 or / and the upper resin layer 32 is modified with a polar group. It is preferable that the resin is composed of an olefin resin containing a resin derivative.
 金属帯状体として亜鉛メッキ鋼板を用い、この鋼板を圧延加工して、コイル状帯状補強板2を成形するとともに、圧延された部分の肉厚が、元の鋼板の厚みの88%以上100%未満とすることが好ましい。 Using a galvanized steel sheet as a metal strip, rolling the steel sheet to form a coiled strip reinforcing plate 2, the thickness of the rolled portion is 88% or more and less than 100% of the original steel sheet thickness. It is preferable that
 管の内外周面を平滑状にすることが好ましい。 It is preferable to make the inner and outer peripheral surfaces of the pipe smooth.
 管の内周面或いは/及び外周面を螺旋波形状にすることが好ましい。 It is preferable that the inner peripheral surface or / and the outer peripheral surface of the pipe have a spiral wave shape.
 下側樹脂層31内に空隙Pを形成することが好ましい。 It is preferable to form voids P in the lower resin layer 31.
 合流ダイ13に圧縮空気ラインを設け、基体樹脂31a内に圧縮空気を送り込むことで、空隙Pを形成することが好ましい。 It is preferable to form the air gap P by providing a compressed air line in the joining die 13 and feeding the compressed air into the base resin 31a.
 本発明の樹脂金属複合管は、上記連続製造方法で製造される。 The resin-metal composite tube of the present invention is manufactured by the above continuous manufacturing method.
 その用途が暗渠排水管であることが好ましい。 It is preferable that the use is a culvert drain pipe.
 その用途がケーブル保護管であることが好ましい。 The use is preferably a cable protection tube.
 その用途が既成管路更生管であることが好ましい。 It is preferable that the use is an existing pipe rehabilitation pipe.
 この発明の樹脂金属複合管の連続製造方法では、金属帯状体を圧延加工することで所定断面形状のコイル状帯状補強板に形成する工程と、基体樹脂とバインダー樹脂を合流ダイによって二層構造の樹脂帯状体に成形する工程と、半溶融の樹脂帯状体をコイル状帯状補強板の内周側に螺旋状に巻き付け、下側樹脂層を形成する工程と、バインダー樹脂とコイル状帯状補強板とを密着固定する工程とを備えているため、予め帯状補強板の表面をバインダーで被覆しておく必要が無い。そのため、金属帯状体同士を溶接により継ぎ足すことが可能となり、樹脂金属複合管の連続成形が可能となる。また、金属帯状体をバインダーで被覆するための専用のラインも必要なくなり、被覆後の金属帯状体の保管場所や設備も必要ないことから、製造コストの削減を図ることができ、また、工場の効率的な製造ライン配置も可能となる。 In the continuous manufacturing method of the resin-metal composite pipe of the present invention, the step of forming a coil-like strip-shaped reinforcing plate having a predetermined cross-sectional shape by rolling a metal strip, and the base resin and the binder resin have a two-layer structure using a joining die A step of forming a resin strip, a step of forming a lower resin layer by spirally winding a semi-molten resin strip on the inner peripheral side of the coiled strip reinforcing plate, a binder resin and a coiled strip reinforcing plate, It is not necessary to previously coat the surface of the belt-shaped reinforcing plate with a binder. Therefore, the metal strips can be joined together by welding, and continuous molding of the resin-metal composite tube is possible. In addition, a dedicated line for coating the metal strip with a binder is no longer necessary, and no storage place or equipment for the metal strip after coating is required, so that the manufacturing cost can be reduced. An efficient production line arrangement is also possible.
 合流ダイが巻き付け部の直上に設けられていれば、樹脂帯状体の形状を維持し易くなり、二層構造の崩れを抑制することができる。
 なお、巻き付け部から離れた位置で樹脂帯状体を成形した場合、基体樹脂とバインダー樹脂の粘度の違い等により、搬送の過程で、バインダー樹脂が基体樹脂の外周を覆ってしまい、所望の二層構造を得難くなる。
If the junction die is provided immediately above the winding portion, the shape of the resin band can be easily maintained, and the collapse of the two-layer structure can be suppressed.
In addition, when the resin strip is molded at a position away from the winding part, the binder resin covers the outer periphery of the base resin in the course of conveyance due to the difference in viscosity between the base resin and the binder resin, and the desired two-layer It becomes difficult to obtain the structure.
 コイル状帯状補強板上に上側樹脂層を形成する工程を備えていれば、下側樹脂層のバインダー樹脂で鋼板への固着を確保しつつ、上側樹脂層により鋼板の浮き上がりを防止し、管の積層状態を維持できる樹脂金属複合管を製造できる。 If the step of forming the upper resin layer on the coiled belt-like reinforcing plate is provided, the upper resin layer prevents the steel plate from being lifted while securing the fixing to the steel plate with the binder resin of the lower resin layer. A resin-metal composite tube capable of maintaining a laminated state can be manufactured.
 上側樹脂層を基体樹脂とバインダー樹脂からなる二層構造とし、バインダー樹脂とコイル状帯状補強板とを密着固定するようにすれば、上側樹脂層と下側樹脂層の双方と鋼板との固着を確保してより一層の積層状態を維持できる樹脂金属複合管を製造できる。 If the upper resin layer has a two-layer structure consisting of a base resin and a binder resin, and the binder resin and the coiled belt-like reinforcing plate are closely fixed, the upper resin layer and the lower resin layer are both firmly fixed to the steel plate. A resin-metal composite tube that can be secured and can maintain a further laminated state can be manufactured.
 コイル状帯状補強板の長手方向断面全周が上側樹脂層と下側樹脂層により被覆されていれば、鋼材の全体が樹脂により被覆される構造となり、鋼板の長期防錆が可能な樹脂金属複合管を製造できる。 If the entire length of the longitudinal cross section of the coiled strip reinforcing plate is covered with the upper resin layer and the lower resin layer, the entire steel material is covered with the resin, and the resin-metal composite enables long-term rust prevention of the steel plate. Can manufacture tubes.
 コイル状帯状補強板の長手方向断面全周が上側樹脂層及び下側樹脂層のバインダー樹脂により被覆されていれば、鋼板の全体がバインダー樹脂に被覆される構造となり、鋼板の長期防錆が可能となり、管の積層構造が最も強固な樹脂金属複合管を製造できる。 If the entire circumference in the longitudinal direction of the coiled strip reinforcing plate is covered with the binder resin of the upper resin layer and lower resin layer, the entire steel plate is covered with the binder resin, enabling long-term rust prevention of the steel plate. Thus, a resin-metal composite tube having the strongest laminated structure of tubes can be manufactured.
 上側樹脂層或いは/及び下側樹脂層の基体樹脂をオレフィン系樹脂で構成し、下側樹脂層或いは/及び上側樹脂層のバインダー樹脂を極性基により変性処理したオレフィン系樹脂誘導体を含有するオレフィン系樹脂で構成すれば、粗度係数が低く耐候性に優れるポリエチレン等のオレフィン系樹脂を用いる樹脂金属複合管を製造できる。 An olefin resin containing an olefin resin derivative in which the base resin of the upper resin layer or / and the lower resin layer is composed of an olefin resin, and the binder resin of the lower resin layer or / and the upper resin layer is modified with a polar group If it consists of resin, the resin metal composite pipe | tube which uses olefin resin, such as polyethylene with a low roughness coefficient and excellent weather resistance, can be manufactured.
 金属帯状体として亜鉛メッキ鋼板を用い、この鋼板を圧延加工して、コイル状帯状補強板を成形するとともに、圧延された部分の肉厚が、元の鋼板の厚みの88%以上100%未満とすれば、亜鉛メッキ鋼板自体の積層構造を堅持しつつ、コイル状帯状補強板を成形できる。また、樹脂劣化に対する金属種の影響は鉄が亜鉛よりはるかに大きいため、亜鉛メッキ鋼板の亜鉛層が剥がれて、鉄層が樹脂に直接接触することを避けることができ、管の積層状態の健常性をより長期に亘り保てる樹脂金属複合管を製造できる。 Using a galvanized steel sheet as a metal strip, rolling the steel sheet to form a coiled strip reinforcing plate, and the thickness of the rolled part is 88% or more and less than 100% of the thickness of the original steel sheet Then, the coiled belt-like reinforcing plate can be formed while maintaining the laminated structure of the galvanized steel sheet itself. In addition, the effect of metal species on resin degradation is much greater than that of zinc. Therefore, the zinc layer of the galvanized steel sheet can be prevented from peeling off, and the iron layer can be prevented from coming into direct contact with the resin. Resin-metal composite tubes that can maintain the properties for a longer period can be manufactured.
 管の内外周面が平滑状であれば、流体を内部に流す用途や、既設管に挿入する用途に適する。また、管の内周面或いは/及び外周面が螺旋波形状であれば、屈曲性に富んだ管とすることができる。 If the inner and outer peripheral surfaces of the pipe are smooth, it is suitable for applications that allow fluid to flow inside and for insertion into existing pipes. In addition, if the inner peripheral surface and / or outer peripheral surface of the tube is a spiral wave shape, the tube can be made highly flexible.
 下側樹脂層内に空隙を形成すれば、管の軽量化を図れると想定される。 It is assumed that if the void is formed in the lower resin layer, the weight of the tube can be reduced.
 合流ダイに圧縮空気ラインを設け、基体樹脂内に圧縮空気を送り込むことで、空隙を形成すれば、効率よく空隙を形成することも可能と考えられる。 It is considered possible to efficiently form voids by providing compressed air lines in the confluence die and feeding compressed air into the base resin to form voids.
この発明の一実施形態に係る樹脂金属複合管を示す部分断面図である。It is a fragmentary sectional view showing the resin metal composite pipe concerning one embodiment of this invention. (a)は樹脂金属複合管の製造装置を示す概略図であって、(b)は成形機の内側を示した端面図である。(A) is the schematic which shows the manufacturing apparatus of a resin metal composite pipe | tube, (b) is the end elevation which showed the inner side of the molding machine. 樹脂金属複合管の製造過程を示した断面図である。It is sectional drawing which showed the manufacturing process of the resin metal composite pipe. 他の樹脂金属複合管を示した断面図である。It is sectional drawing which showed the other resin metal composite pipe | tube. さらに他の樹脂金属複合管を示した断面図である。It is sectional drawing which showed other resin metal composite pipe | tube.
 次に、この発明の実施の形態について、図面を参照しつつ詳細に説明する。この発明の一実施形態に係る樹脂金属複合管1は、図1に示すように、樹脂管の管壁内に、金属帯状体を所定断面形状に形成してなるコイル状帯状補強板2を埋設することにより、換言すれば、コイル状帯状補強板2を樹脂3によって被覆することにより形成されている。用途は、暗渠排水管用、ケーブル保護管用、既成管路更生管用など種々である。従って、図1においては、内外周面が略平滑な管とされているが、用途に合わせて、内周面と外周面のいずれか一方、若しくは双方を螺旋波形状に形成しても良い。 Next, embodiments of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, a resin-metal composite tube 1 according to an embodiment of the present invention embeds a coiled strip-shaped reinforcing plate 2 formed by forming a metal strip into a predetermined cross-sectional shape in the tube wall of the resin tube. In other words, it is formed by covering the coiled belt-like reinforcing plate 2 with the resin 3. Applications are various such as for underdrain drainage pipes, cable protection pipes, and existing pipe rehabilitation pipes. Therefore, in FIG. 1, the inner and outer peripheral surfaces are formed as a substantially smooth tube, but either or both of the inner peripheral surface and the outer peripheral surface may be formed in a spiral wave shape according to the application.
 コイル状帯状補強板2は、図1に示すように、金属帯状体を、上端面が平坦とされた断面略ひ字状に形成しつつ、長手方向にコイル状となるように圧延成形したものであって、長手方向に連続する凸部2aと、凸部2aの形成に伴ってその裏面に形成される凹部2bとを備えている。詳しくは、天面2cと、その天面2cの両端から拡がりながら下方に延びる脚部2d、2dと、脚部2dの下端から外向きに延びる基部2eとを有している。 As shown in FIG. 1, the coiled strip-shaped reinforcing plate 2 is formed by rolling and forming a metal strip into a coil shape in the longitudinal direction while forming a substantially cross-section with a flat upper end surface. And it has the convex part 2a which continues in a longitudinal direction, and the recessed part 2b formed in the back surface in connection with formation of the convex part 2a. Specifically, it has a top surface 2c, leg portions 2d and 2d extending downward from both ends of the top surface 2c, and a base portion 2e extending outward from the lower end of the leg portion 2d.
 このコイル状帯状補強板2は管壁内に螺旋状に巻かれており、互いに接することなく管軸方向に隙間(間隔)Sを開けて略等間隔に埋設されている。材質は、樹脂未被覆(バインダーで被覆されていない)の亜鉛メッキ鋼であるが、他にも鋼、ステンレスやアルミ等種々の金属も使用可能である。 The coiled strip-shaped reinforcing plate 2 is spirally wound in the tube wall, and is embedded at substantially equal intervals with a gap (interval) S in the tube axis direction without contacting each other. The material is galvanized steel that is not coated with resin (not coated with a binder), but various metals such as steel, stainless steel, and aluminum can also be used.
 樹脂3は、管の一方端部から他方端部の全長に渡って連続しており、樹脂3のみで管形状を構成しているといえる。また、コイル状帯状補強板2の凹部2b内にも樹脂3が満たされている。その断面にほぼ空隙を有しない(意図的に空隙を形成しない)。なお、樹脂3は、管の内周側の樹脂(下側樹脂層)31と、管の外周側の樹脂(上側樹脂層)32とに大別される。また、下側樹脂層31や外側樹脂層32は、基体樹脂31a、32aとバインダー樹脂4の2層構造とされている。上側樹脂層32或いは/及び下側樹脂層31の基体樹脂32a、31aはオレフィン系樹脂である。また、下側樹脂層31或いは/及び上側樹脂層32のバインダー樹脂4は、極性基により変性処理したオレフィン系樹脂誘導体を含有するオレフィン系樹脂が好ましい。 Resin 3 is continuous over the entire length from one end to the other end of the tube, and it can be said that only resin 3 forms a tube shape. The resin 3 is also filled in the recess 2 b of the coiled belt-like reinforcing plate 2. There are almost no voids in the cross section (no intentional voids are formed). The resin 3 is roughly divided into a resin (lower resin layer) 31 on the inner peripheral side of the tube and a resin (upper resin layer) 32 on the outer peripheral side of the tube. The lower resin layer 31 and the outer resin layer 32 have a two-layer structure of base resins 31 a and 32 a and a binder resin 4. The base resin 32a, 31a of the upper resin layer 32 and / or the lower resin layer 31 is an olefin resin. The binder resin 4 of the lower resin layer 31 and / or the upper resin layer 32 is preferably an olefin resin containing an olefin resin derivative modified with a polar group.
 基体樹脂31aとコイル状帯状補強板2との間、基体樹脂32aとコイル状帯状補強板2との間、隙間Sの範囲における基体樹脂31aと基体樹脂32aとの間には、それぞれバインダー樹脂4が介在しており、基体樹脂31a、32aとコイル状帯状補強板2とは直接接してはいない。なお、この状態は、バインダー樹脂4によってコイル状帯状補強板2が被覆され、また、バインダー樹脂4によって基体樹脂31aと基体樹脂32aとが上下(内外)に隔てられているともいえる。 Between the base resin 31a and the coiled strip reinforcing plate 2, between the base resin 32a and the coiled strip reinforcing plate 2, and between the base resin 31a and the base resin 32a in the range of the gap S, the binder resin 4 is provided. The base resin 31a, 32a and the coiled belt-like reinforcing plate 2 are not in direct contact with each other. In this state, it can be said that the coiled belt-shaped reinforcing plate 2 is covered with the binder resin 4 and the base resin 31a and the base resin 32a are separated vertically (inside and outside) by the binder resin 4.
 上記構成の樹脂金属複合管1は、以下のようにして製造する。まず、図2aに示すように、コイルRから引き出した断面平板状の金属帯状体を圧延機10に通していく。圧延機10は、上下一対の圧延ロールを有している。そして、通過する金属帯状体は最終的に、径外側に凸部2a、径内側に凹部2bを有する断面略ひ字状の螺旋コイル状に成形(ロール圧延)される。圧延は、圧延部の肉厚が、非圧延部の肉厚の88%以上100%未満となるように行う。このように圧延することで、亜鉛メッキ層の鋼からの剥がれを抑制することができ、後に行われる、樹脂3との接着を安定して行うことができる。 The resin-metal composite tube 1 having the above structure is manufactured as follows. First, as shown in FIG. 2 a, a metal strip having a flat cross-sectional shape drawn from the coil R is passed through a rolling mill 10. The rolling mill 10 has a pair of upper and lower rolling rolls. The metal strip passing through is finally formed (roll-rolled) into a spiral coil shape having a substantially cross-sectional shape having a convex portion 2a on the outer diameter side and a concave portion 2b on the inner diameter side. Rolling is performed so that the thickness of the rolled portion is 88% or more and less than 100% of the thickness of the non-rolled portion. By rolling in this way, peeling of the galvanized layer from the steel can be suppressed, and adhesion to the resin 3 performed later can be performed stably.
 なお、コイルRの金属帯状体は、圧延機10によって徐々に引き出されていき、やがて無くなる。その場合、新たなコイルRを用意し、新たな金属帯状体の先端をもとの金属帯状体の後端に継ぎ足す。金属帯状体を継ぎ足すには、圧延機10の手前側に設けられた溶接機11で、金属帯状体の端同士を溶接(突合せ溶接)する。溶接に際しては、通常、ラインを稼動させたままで行うが、ラインを一旦停止させても良い。 Note that the metal strip of the coil R is gradually pulled out by the rolling mill 10 and eventually disappears. In that case, a new coil R is prepared, and the tip of the new metal strip is added to the rear end of the original metal strip. In order to add the metal strips, the ends of the metal strips are welded together (butt welding) with a welding machine 11 provided on the front side of the rolling mill 10. Although welding is usually performed while the line is operating, the line may be temporarily stopped.
 次に、圧延機10から出てきた所定断面形状のコイル状に形成された金属帯状体(すなわち、コイル状帯状補強板2)を成形機12の成形部12aに移し替える。具体的には、圧延機10から成形機12の成形部12aにかけて設けられた棒状のガイドロールEに、コイル状帯状補強板2を吊り下げた状態で、成形機12の後側(後述する動力部12c側)から成形部12aへと送っていく。成形部12aは、断面円形の細長棒状の成形ロール12bを円周方向に複数本、所定の間隔を空けて配設することで構成されており、全体としては略円筒状である。コイル状帯状補強板2は、この略円筒状とされた成形部12aの外周に巻回される。成形部12aの各成形ロール12bは、それぞれ軸周りに回転可能に支持されており、動力部12cからの動力によって同一方向(時計回り)に同一速度で回転している。そのため、成形部12aに螺旋状に巻回されたコイル状帯状補強板2は、前方(動力部12cの反対側)に向かって順次進んでいくことになる。なお、コイル状帯状補強板2の螺旋ピッチや外径を揃えるため、また、下側樹脂層31とコイル状帯状補強板2との固着を確実にするため、成形部12aの外周側に上側ローラー15、下側ローラー19を設けている。なお、コイル状帯状補強板2、2同士の接触を防止するため、接触防止用の棒材(図示しない)をコイル状帯状補強板2、2間に設けても良い。また、下側樹脂層31や上側樹脂層32との接着性を向上させるため、成形部12aの外周側に設けた加熱機(図示せず)によってコイル状帯状補強板2を予熱しても良い。 Next, the metal strip (that is, the coiled strip reinforcing plate 2) formed from the rolling mill 10 and formed into a coil having a predetermined cross-sectional shape is transferred to the molding section 12a of the molding machine 12. Specifically, the coil-shaped belt-like reinforcing plate 2 is suspended from a rod-shaped guide roll E provided from the rolling mill 10 to the molding portion 12a of the molding machine 12, and the rear side of the molding machine 12 (power to be described later) From the portion 12c side) to the forming portion 12a. The forming portion 12a is configured by arranging a plurality of elongated rod-shaped forming rolls 12b having a circular cross section in the circumferential direction at a predetermined interval, and is substantially cylindrical as a whole. The coil-shaped belt-shaped reinforcing plate 2 is wound around the outer periphery of the substantially cylindrical forming portion 12a. Each forming roll 12b of the forming portion 12a is supported so as to be rotatable around its axis, and is rotated at the same speed in the same direction (clockwise) by the power from the power portion 12c. Therefore, the coil-shaped belt-shaped reinforcing plate 2 spirally wound around the forming portion 12a sequentially advances toward the front (opposite side of the power portion 12c). In addition, in order to make the helical pitch and outer diameter of the coiled belt-like reinforcing plate 2 uniform, and to ensure the adhesion between the lower resin layer 31 and the coiled belt-like reinforcing plate 2, an upper roller is provided on the outer peripheral side of the molded part 12a. 15. A lower roller 19 is provided. In order to prevent contact between the coiled belt-like reinforcing plates 2 and 2, a contact-preventing bar (not shown) may be provided between the coiled belt-like reinforcing plates 2 and 2. Moreover, in order to improve the adhesiveness with the lower resin layer 31 and the upper resin layer 32, the coiled belt-like reinforcing plate 2 may be preheated by a heater (not shown) provided on the outer peripheral side of the molded part 12a. .
 ところで、図2bに示すように、成形部12aの内周側には、中空部を有する中心軸Cが設けられており、成形ロール12bはこの中心軸C周りに、同軸に又は所定角度をもって配置されている。中心軸Cの中空部内には、第1合流ダイ13が設けられている。この第1合流ダイ13は、成形機12の後方に設けられた第1基体樹脂押出機14Aと第1バインダー樹脂押出機14Bとにそれぞれ連通しており、第1基体樹脂押出機14Aから送られてくる半溶融の基体樹脂31aと、第1バインダー樹脂押出機14Bから送られてくる半溶融のバインダー樹脂4とを共押出しすることで、第1樹脂帯状体B1を形成する。第1合流ダイ13は、第1樹脂帯状体B1の成形部12aへの巻き付け部の直上に設けられており、共押出しは、中心軸Cから成形部12a上の成形ロール12b側に移行する直前で行なわれる。 Incidentally, as shown in FIG. 2b, a central axis C having a hollow portion is provided on the inner peripheral side of the molding portion 12a, and the molding roll 12b is arranged around the central axis C coaxially or at a predetermined angle. Has been. A first junction die 13 is provided in the hollow portion of the central axis C. The first joining die 13 communicates with a first base resin extruder 14A and a first binder resin extruder 14B provided at the rear of the molding machine 12, and is sent from the first base resin extruder 14A. The semi-molten base resin 31a and the semi-molten binder resin 4 sent from the first binder resin extruder 14B are co-extruded to form the first resin band B1. The first joining die 13 is provided immediately above the winding portion of the first resin strip B1 around the molding portion 12a, and the co-extrusion immediately before the transition from the central axis C to the molding roll 12b on the molding portion 12a. Is done.
 第1合流ダイ13から共押出しされた第1樹脂帯状体B1は、図3aに示すように、基体樹脂31aとバインダー樹脂4との2層構造になっている。また、コイル状帯状補強板2の凹部2bと略同形状の埋め込み部31bと、その下端から左右に拡がる平坦部31c、31cとを有している。 The first resin strip B1 coextruded from the first joining die 13 has a two-layer structure of a base resin 31a and a binder resin 4 as shown in FIG. 3a. Moreover, it has the embedding part 31b substantially the same shape as the recessed part 2b of the coil-shaped strip | belt-shaped reinforcement board 2, and the flat parts 31c and 31c which spread right and left from the lower end.
 上記構成の第1樹脂帯状体B1を、成形ロール12b、12b間の隙間を通して成形部12aの外側に延出させるとともに、成形部12aの外周(成形部12a上)であって、第1合流ダイ13の直下に位置する部分(巻き付け部)に螺旋巻回する。この際、既に成形部12aの外周には、成形部12aとの間に隙間を有した状態でコイル状帯状補強板2が位置しているため、第1樹脂帯状体B1を、成形部12aとコイル状帯状補強板2の間の隙間(コイル状帯状補強板2の内周側)に滑り込ませるようにして成形部12aの外周に巻回する。また、バインダー樹脂4がコイル状帯状補強板2側に位置するように、基体樹脂31aを成形部12a側に、バインダー樹脂4を外周側に向けて巻回する。なお、この状態は、成形部12aに巻回された基体樹脂31aの外周面をバインダー樹脂4で覆っているともいえる。また、先行する第1樹脂帯状体B1の後端と、後続の第1樹脂帯状体B1の先端とを重ねるように螺旋巻回する。 The first resin strip B1 having the above-described configuration is extended to the outside of the molding portion 12a through the gap between the molding rolls 12b and 12b, and is the outer periphery (on the molding portion 12a) of the molding portion 12a. It winds around the part (winding part) located just under 13 spirally. At this time, since the coiled belt-shaped reinforcing plate 2 is already positioned on the outer periphery of the molded part 12a with a gap between the molded part 12a, the first resin belt-shaped body B1 is connected to the molded part 12a. It winds around the outer periphery of the molding part 12a so as to be slid into the gap between the coiled belt-shaped reinforcing plates 2 (the inner peripheral side of the coiled belt-shaped reinforcing plate 2). In addition, the base resin 31a is wound toward the molding portion 12a side and the binder resin 4 is wound toward the outer peripheral side so that the binder resin 4 is positioned on the coiled belt-like reinforcing plate 2 side. In this state, it can also be said that the outer peripheral surface of the base resin 31a wound around the molding portion 12a is covered with the binder resin 4. Moreover, it spirally winds so that the rear end of the preceding first resin strip B1 and the tip of the subsequent first resin strip B1 may overlap.
 その後、既に第1樹脂帯状体B1上に位置しているコイル状帯状補強板2については、上側ローラー15によってピッチが調整され、第1樹脂帯状体B1と固着される。下側ローラー19は、押し出された直後の第1樹脂帯状体B1とコイル状帯状補強板2との固着を確実ならしめる。このように、両ローラー15、19の協働により、第1樹脂帯状体B1、B1の端部同士がしっかりと融着し、管軸方向に隙間のない下側樹脂層31が形成される。また、基体樹脂31aとコイル状帯状補強板2とがバインダー樹脂4を介して接着(密着固定)される。この際、図3bに示すように、第1樹脂帯状体B1の埋め込み部31bが、コイル状帯状補強板2の凹部2bを満たすことになる。なお、これら上側ローラー15、下側ローラー19は本実施例に限らず、製造する管構造に応じて、適宜ローラー形状を変更し、ローラーの設置数を変更することも可能である。 After that, the pitch of the coiled strip reinforcing plate 2 already positioned on the first resin strip B1 is adjusted by the upper roller 15 and is fixed to the first resin strip B1. The lower roller 19 ensures the adhesion between the first resin strip B1 and the coiled strip reinforcing plate 2 immediately after being extruded. Thus, by cooperation of both rollers 15 and 19, the end portions of the first resin strips B1 and B1 are firmly fused to form the lower resin layer 31 having no gap in the tube axis direction. Further, the base resin 31a and the coiled belt-like reinforcing plate 2 are bonded (fixed and fixed) via the binder resin 4. At this time, as shown in FIG. 3 b, the embedded portion 31 b of the first resin strip B 1 fills the recess 2 b of the coil-shaped strip reinforcing plate 2. Note that the upper roller 15 and the lower roller 19 are not limited to the present embodiment, and the roller shape can be changed as appropriate according to the pipe structure to be manufactured, and the number of rollers installed can be changed.
 第1樹脂帯状体B1とコイル状帯状補強板2とを重ね合わせて一体に成形した後、次に、上側樹脂層32を形成していく。図2bに示すように、成形部12aの外周側には、第2合流ダイ16が設けられている。この第2合流ダイ16は、第2基体樹脂押出機17Aと第2バインダー樹脂押出機17Bとにそれぞれ連通しており、第2基体樹脂押出機17Aから送られてくる半溶融の基体樹脂32aと、第2バインダー樹脂押出機17Bから送られてくる半溶融のバインダー樹脂4を共押出しする。 After the first resin strip B1 and the coiled strip reinforcing plate 2 are overlaid and integrally molded, the upper resin layer 32 is then formed. As shown in FIG. 2b, a second joining die 16 is provided on the outer peripheral side of the forming portion 12a. The second joining die 16 communicates with the second base resin extruder 17A and the second binder resin extruder 17B, respectively, and a semi-molten base resin 32a sent from the second base resin extruder 17A. The semi-molten binder resin 4 sent from the second binder resin extruder 17B is coextruded.
 第2合流ダイ16から共押出しされた第2樹脂帯状体B2は、図3cに示すように、基体樹脂32aとバインダー樹脂4との2層構造になっている。また、帯状補強板2の凸部2a、2a間に形成される凹溝5を埋めるための埋め込み部32bと、その上端から左右に拡がる平坦部32cとを有している。 The second resin strip B2 coextruded from the second joining die 16 has a two-layer structure of the base resin 32a and the binder resin 4 as shown in FIG. 3c. Moreover, it has the embedding part 32b for filling the ditch | groove 5 formed between the convex parts 2a and 2a of the strip | belt-shaped reinforcement board 2, and the flat part 32c extended from the upper end to right and left.
 上記構成の第2樹脂帯状体B2を、コイル状帯状補強板2を覆うようにして、コイル状帯状補強板2の外周(コイル状帯状補強板2上)に螺旋巻回する。この際、バインダー樹脂4が帯状補強板2側に位置するように、バインダー樹脂4を内周側に、基体樹脂32aを外周側に向けて巻回する。また、先行する第2樹脂帯状体B2の後端と、後続の第2樹脂帯状体B2の先端とを重ねるように螺旋巻回する。 The second resin strip B2 having the above configuration is spirally wound around the outer periphery of the coiled strip reinforcing plate 2 (on the coiled strip reinforcing plate 2) so as to cover the coiled strip reinforcing plate 2. At this time, the binder resin 4 is wound on the inner peripheral side and the base resin 32a is wound on the outer peripheral side so that the binder resin 4 is positioned on the belt-like reinforcing plate 2 side. Moreover, it spirally winds so that the rear end of the preceding second resin strip B2 and the tip of the subsequent second resin strip B2 overlap.
 その後、第2樹脂帯状体B2を図2aの押圧ローラー18によってコイル状帯状補強板2側に押し付ける。これにより、コイル状帯状補強板2上で隣接する第2樹脂帯状体B2、B2の端部同士がしっかりと融着し、管軸方向に隙間の無い上側樹脂層32が形成される。また、基体樹脂32aとコイル状帯状補強板2とがバインダー樹脂4を介して接着(密着固定)されるとともに、第2樹脂帯状体B2の埋め込み部32bが、コイル状帯状補強板2、2間の凹溝5を満たすことなる。また、コイル状帯状補強板2の長手方向断面全周が上側樹脂層32及び下側樹脂層31のバインダー樹脂4によって被覆されることになる。以上で、樹脂金属複合管1の製造を完了する。 Thereafter, the second resin strip B2 is pressed against the coiled strip reinforcing plate 2 side by the pressing roller 18 of FIG. 2a. As a result, the end portions of the second resin strips B2 and B2 adjacent on the coiled strip reinforcing plate 2 are firmly fused to form the upper resin layer 32 having no gap in the tube axis direction. In addition, the base resin 32a and the coiled belt-like reinforcing plate 2 are bonded (tightly fixed) via the binder resin 4, and the embedded portion 32b of the second resin belt-like body B2 is provided between the coiled belt-like reinforcing plates 2 and 2 The groove 5 is filled. Further, the entire circumference in the longitudinal direction of the coiled belt-shaped reinforcing plate 2 is covered with the binder resin 4 of the upper resin layer 32 and the lower resin layer 31. This completes the production of the resin-metal composite tube 1.
 上記製造方法によれば、第1、第2樹脂帯状体B1、B2がバインダー樹脂4を有しているため、予めコイル状帯状補強板2をバインダー樹脂4で被覆しておく必要が無い。そのため、従来、別途必要であった被覆処理工程が不必要となり、大幅なコスト削減を図ることができる。 According to the above manufacturing method, since the first and second resin strips B1 and B2 have the binder resin 4, it is not necessary to previously coat the coil-shaped strip reinforcing plate 2 with the binder resin 4. For this reason, a coating process step that has been conventionally required is unnecessary, and a significant cost reduction can be achieved.
 図4は、別の樹脂金属複合管1Aを示している。この樹脂金属複合管1Aでは、バインダー樹脂4がコイル状帯状補強板2の表面全てを覆ってはおらず、コイル状帯状補強板2の上下面の一部、具体的には、コイル状帯状補強板2の管軸方向の中央部近傍にのみバインダー樹脂4を設けている点に特徴を有する。 FIG. 4 shows another resin-metal composite tube 1A. In this resin-metal composite tube 1A, the binder resin 4 does not cover the entire surface of the coiled belt-like reinforcing plate 2, and part of the upper and lower surfaces of the coiled belt-like reinforcing plate 2, specifically, the coiled belt-like reinforcing plate 2 is characterized in that the binder resin 4 is provided only in the vicinity of the central portion in the tube axis direction.
 従来、コイル状帯状補強板2の表面をバインダー樹脂4で覆っていたため、このように選択的にバインダー樹脂4を設けることができなかったが、本製造方法によれば、バインダー樹脂4を部分的に設けることも可能となり、コスト削減を図ることもできる。 Conventionally, since the surface of the coiled belt-shaped reinforcing plate 2 was covered with the binder resin 4, the binder resin 4 could not be selectively provided in this way. However, according to this manufacturing method, the binder resin 4 is partially applied. It is also possible to provide it at a reduced cost.
 図5は、さらに別の樹脂金属複合管1Bを示している。この樹脂金属複合管1Bは、下側樹脂層31の基体樹脂31a内に空隙Pを備えている点に特徴を有する。この空隙Pは、コイル状帯状補強板2の螺旋方向に沿って連続して設けられている。 FIG. 5 shows still another resin-metal composite tube 1B. The resin-metal composite tube 1B is characterized in that a gap P is provided in the base resin 31a of the lower resin layer 31. The gap P is continuously provided along the spiral direction of the coiled belt-like reinforcing plate 2.
 このような空隙Pは、第1合流ダイに圧縮空気ラインを接続し、基体樹脂31a内に圧縮空気を送り込むことで形成する。 Such a gap P is formed by connecting a compressed air line to the first joining die and feeding compressed air into the base resin 31a.
 以上に、この発明の代表的な実施形態について説明したが、この発明は上記実施形態に限定されるものではなく、この発明の範囲内で種々変更して実施することが可能である。 The representative embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
 例えば、上記実施形態では、第2樹脂帯状体B2が共押出しされていたが、基体樹脂32aとバインダー樹脂4とを別々に押出成形し、成形部12a(又はコイル状帯状補強板2)上などで重ね合わせて、第2樹脂帯状体B2を形成するようにしても良い。また、バインダー樹脂4については、押出成形のほか、スプレーや刷毛による塗布でも良い。 For example, in the above-described embodiment, the second resin strip B2 is coextruded, but the base resin 32a and the binder resin 4 are separately extruded and formed on the molded portion 12a (or the coiled strip reinforcing plate 2). The second resin band B2 may be formed by superimposing the two. The binder resin 4 may be applied by spraying or brushing in addition to extrusion.
 コイル状帯状補強板2の形状は、天面2cと脚部2d、脚部2dと基部2eとが緩やかなカーブで接続されているような形状でも良く、さらに、角が形成されるような急なカーブで接続されているような形状でも良い。また、天面2cと脚部2dとからなる形状が円弧状や波形、略三角形状であっても良い。また、基部2eを設けず、円弧状や略三角形状、略台形状としても良い。また、凸部2aを有さず平坦なものであっても良い。さらに、略W字状としても良い。 The shape of the coiled belt-like reinforcing plate 2 may be a shape in which the top surface 2c and the leg 2d, and the leg 2d and the base 2e are connected by a gentle curve, and further, a steep shape in which corners are formed. It may be a shape that is connected by a simple curve. The shape formed by the top surface 2c and the leg 2d may be an arc shape, a waveform, or a substantially triangular shape. Further, the base 2e is not provided, and an arc shape, a substantially triangular shape, or a substantially trapezoidal shape may be used. Moreover, it may be flat without having the convex part 2a. Furthermore, it may be substantially W-shaped.
 また、樹脂帯状体B1、B2が埋め込み部31b、32bと平坦部31c、32cを一体的に備えていたが、これらを別々に押出成形し重ね合わせることで、所定の形状を得るようにしても良い。また、下側樹脂層31の基体樹脂31aと上側樹脂層32の基体樹脂32aとで異なる種類の樹脂を用いても良い。 Further, the resin strips B1 and B2 are integrally provided with the embedded portions 31b and 32b and the flat portions 31c and 32c. However, the resin strips B1 and B2 may be integrally extruded and overlapped to obtain a predetermined shape. good. Different types of resins may be used for the base resin 31a of the lower resin layer 31 and the base resin 32a of the upper resin layer 32.
1、1A、1B・・樹脂金属複合管
2・・コイル状帯状補強板
2a・・凸部
2b・・凹部
2c・・天面
2d・・脚部
2e・・基部
3・・樹脂
31・・下側樹脂層
B1・・第1樹脂帯状体
31a・・下側樹脂層の基体樹脂
31b・・埋め込み部
31c・・平坦部
32・・上側樹脂層
B2・・第2樹脂帯状体
32a・・上側樹脂層の基体樹脂
32b・・埋め込み部
32c・・平坦部
4・・バインダー樹脂
5・・凹溝
10・・圧延機
11・・溶接機
12・・成形機
12a・・成形部
12b・・成形ロール
12c・・動力部
13・・第1合流ダイ
14A・・第1基体樹脂押出機
14B・・第1バインダー樹脂押出機
15・・上側ローラー
16・・第2合流ダイ
17A・・第2基体樹脂押出機
17B・・第2バインダー樹脂押出機
18・・押圧ローラー
19・・下側ローラー
C・・中心軸
E・・ガイドロール
P・・空隙
S・・コイル状帯状補強板間の隙間
R・・コイル
1, 1A, 1B ··· Resin metal composite tube 2 ·· Coiled strip-shaped reinforcing plate 2a ·· Convex portion 2b ·· Concavity 2c ·· Top surface 2d ·· Leg 2e ··············· Side resin layer B1 .. First resin strip 31a .. Base resin 31b of lower resin layer .. Embedded portion 31c.. Flat portion 32 .. Upper resin layer B2 .. Second resin strip 32a. Base resin 32b of layer ·· Embedded portion 32c · · Flat portion 4 · · Binder resin 5 · · Groove 10 · · Rolling machine 11 · Welding machine 12 · · Molding machine 12a · · Molding portion 12b · · Forming roll 12c · · Power unit 13 · · First joining die 14A · · First base resin extruder 14B · · First binder resin extruder 15 · · Upper roller 16 · · Second joining die 17A · · Second base resin extruder 17B ·· Second binder resin extruder 18 ·· Pressing roller 9 ... lower roller C ... central axis E ... guide roll P .. gap S · coiled strip reinforcing plates of the gap R ... coil

Claims (16)

  1. 金属帯状体を圧延加工することで所定断面形状のコイル状帯状補強板(2)に形成する工程と、
    基体樹脂(31a)とバインダー樹脂(4)を合流ダイ(13)によって二層構造の樹脂帯状体(B1)に形成する工程と、
    半溶融の樹脂帯状体(B1)をコイル状帯状補強板(2)の内周側に螺旋状に巻き付け、下側樹脂層(31)を形成する工程と、
    バインダー樹脂(4)とコイル状帯状補強板(2)とを密着固定する工程と、
    を備えることを特徴とする樹脂金属複合管の連続製造方法。
    A step of forming the coil-like band-shaped reinforcing plate (2) having a predetermined cross-sectional shape by rolling the metal band-like body;
    Forming a base resin (31a) and a binder resin (4) into a two-layered resin band (B1) by means of a converging die (13);
    A step of forming a lower resin layer (31) by spirally winding the semi-molten resin strip (B1) around the inner peripheral side of the coil-shaped strip reinforcing plate (2);
    A step of closely fixing the binder resin (4) and the coiled strip reinforcing plate (2);
    A continuous method for producing a resin-metal composite tube, comprising:
  2.  請求項1において、合流ダイ(13)が巻き付け部の直上に設けられている、樹脂金属複合管の連続製造方法。 The continuous production method for a resin-metal composite pipe according to claim 1, wherein the converging die (13) is provided immediately above the winding portion.
  3.  請求項1又は2において、コイル状帯状補強板(2)上に上側樹脂層(32)を形成する工程を備える、樹脂金属複合管の連続成形方法。 The method for continuously forming a resin-metal composite tube according to claim 1 or 2, comprising a step of forming an upper resin layer (32) on the coiled belt-like reinforcing plate (2).
  4.  請求項3において、上側樹脂層(32)が基体樹脂(32a)とバインダー樹脂(4)からなる二層構造であり、バインダー樹脂(4)とコイル状帯状補強板(2)とを密着固定する工程を備える、樹脂金属複合管の連続製造方法。 4. The upper resin layer (32) according to claim 3, wherein the upper resin layer (32) has a two-layer structure composed of a base resin (32a) and a binder resin (4), and the binder resin (4) and the coiled belt-like reinforcing plate (2) are closely fixed. A method for continuously producing a resin-metal composite pipe, comprising a step.
  5.  請求項3又は4において、コイル状帯状補強板(2)の長手方向断面全周を上側樹脂層(32)と下側樹脂層(31)により被覆する、樹脂金属複合管の連続製造方法。 5. The method for continuously producing a resin-metal composite tube according to claim 3, wherein the entire circumference in the longitudinal direction of the coiled belt-like reinforcing plate (2) is covered with the upper resin layer (32) and the lower resin layer (31).
  6.  請求項4において、コイル状帯状補強板(2)の長手方向断面全周を上側樹脂層(32)及び下側樹脂層(31)のバインダー樹脂(4)により被覆する、樹脂金属複合管の連続製造方法。 5. A continuous resin-metal composite tube according to claim 4, wherein the entire circumference of the longitudinal cross section of the coiled strip reinforcing plate (2) is covered with the binder resin (4) of the upper resin layer (32) and the lower resin layer (31). Production method.
  7.  請求項1から6のいずれかにおいて、上側樹脂層(32)或いは/及び下側樹脂層(31)の基体樹脂(32a、31a)をオレフィン系樹脂で構成し、下側樹脂層(31)或いは/及び上側樹脂層(32)のバインダー樹脂(4)を極性基により変性処理したオレフィン系樹脂誘導体を含有するオレフィン系樹脂で構成する樹脂金属複合管の連続製造方法。 The base resin (32a, 31a) of the upper resin layer (32) and / or the lower resin layer (31) is made of an olefin resin, and the lower resin layer (31) or / And the continuous manufacturing method of the resin metal composite pipe | tube comprised with the olefin resin containing the olefin resin derivative which modified | denatured the binder resin (4) of the upper side resin layer (32) by the polar group.
  8.  請求項1から6のいずれかにおいて、金属帯状体として亜鉛メッキ鋼板を用い、この鋼板を圧延加工して、コイル状帯状補強板(2)を成形するとともに、圧延された部分の肉厚が、元の鋼板の厚みの88%以上100%未満とする樹脂金属複合管の連続製造方法。 In any one of Claim 1 to 6, while using a galvanized steel plate as a metal strip and rolling this steel plate to form a coiled strip reinforcing plate (2), the thickness of the rolled portion is: A method for continuously producing a resin-metal composite tube having a thickness of 88% or more and less than 100% of the thickness of the original steel plate.
  9.  請求項1から8のいずれかにおいて、管の内外周面を平滑状にする樹脂金属複合管の連続製造方法。 9. The method for continuously producing a resin-metal composite tube according to claim 1, wherein the inner and outer peripheral surfaces of the tube are made smooth.
  10.  請求項1から8のいずれかにおいて、管の内周面或いは/及び外周面を螺旋波形状にする樹脂金属複合管の連続製造方法。 9. The method for continuously producing a resin-metal composite tube according to claim 1, wherein the inner peripheral surface and / or the outer peripheral surface of the tube is formed into a spiral wave shape.
  11.  請求項1から10のいずれかにおいて、下側樹脂層(31)内に空隙(P)を形成する樹脂金属複合管の連続製造方法。 The method for continuously producing a resin-metal composite pipe according to any one of claims 1 to 10, wherein a void (P) is formed in the lower resin layer (31).
  12.  請求項11において、合流ダイ(13)に圧縮空気ラインを設け、基体樹脂(31a)内に圧縮空気を送り込むことで、前記空隙(P)を形成する樹脂金属複合管の連続製造方法。 12. The method for continuously producing a resin-metal composite tube according to claim 11, wherein the converging die (13) is provided with a compressed air line and the compressed air is fed into the base resin (31a) to form the void (P).
  13.  請求項1から12のいずれかに記載の連続製造方法で製造される樹脂金属複合管。 Resin metal composite pipe manufactured by the continuous manufacturing method according to any one of claims 1 to 12.
  14.  その用途が暗渠排水管である請求項13の樹脂金属複合管。 The resin-metal composite pipe according to claim 13, wherein the use is a culvert drain pipe.
  15.  その用途がケーブル保護管である請求項13の樹脂金属複合管。 The resin-metal composite tube according to claim 13, wherein the use is a cable protection tube.
  16.  その用途が既成管路更生管である請求項13の樹脂金属複合管。 The resin-metal composite pipe according to claim 13, wherein the use is an existing pipe rehabilitation pipe.
PCT/JP2017/015400 2016-08-05 2017-04-14 Method for continuously producing resin-metal composite pipe, and resin-metal composite pipe resulting from said production method WO2018025454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016154216A JP6084743B1 (en) 2016-08-05 2016-08-05 Continuous production method of resin metal composite pipe
JP2016-154216 2016-08-05

Publications (1)

Publication Number Publication Date
WO2018025454A1 true WO2018025454A1 (en) 2018-02-08

Family

ID=58095296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015400 WO2018025454A1 (en) 2016-08-05 2017-04-14 Method for continuously producing resin-metal composite pipe, and resin-metal composite pipe resulting from said production method

Country Status (2)

Country Link
JP (1) JP6084743B1 (en)
WO (1) WO2018025454A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109895426B (en) * 2019-03-18 2021-04-06 苏州星倍德管道设备有限公司 Production method of perforated steel belt reinforced composite pipe
CN113601175B (en) * 2021-09-14 2022-02-22 中国科学院空间应用工程与技术中心 Space structure member on-orbit forming device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126827A (en) * 1991-09-06 1994-05-10 Shiro Kanao Manufacture of pressure resistant synthetic resin tube and its apparatus
JPH07299881A (en) * 1994-05-02 1995-11-14 Hakko:Kk Tube for drink and its production
JPH08230101A (en) * 1995-02-28 1996-09-10 Ube Ind Ltd Metal foil-laminated polyimide film
JP2003340931A (en) * 2002-05-31 2003-12-02 Kanaflex Corporation Device and method for producing synthetic resin tube having metal reinforcing material therein
JP2004216665A (en) * 2003-01-14 2004-08-05 Bridgestone Corp High pressure low-gas-permeable hose
JP2005180609A (en) * 2003-12-19 2005-07-07 Totaku Industries Inc Pressure-resistant composite pipe
JP2006508509A (en) * 2002-12-02 2006-03-09 アヴェスター リミティッド パートナーシップ Thin film electrochemical cell coextrusion manufacturing process for lithium polymer batteries and apparatus therefor
JP2011027196A (en) * 2009-07-27 2011-02-10 Kanaflex Corporation Ground-buried pressure resistant synthetic resin pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002327865A (en) * 2001-04-27 2002-11-15 Tokyo Electric Power Co Inc:The Metal composite plastic tube

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126827A (en) * 1991-09-06 1994-05-10 Shiro Kanao Manufacture of pressure resistant synthetic resin tube and its apparatus
JPH07299881A (en) * 1994-05-02 1995-11-14 Hakko:Kk Tube for drink and its production
JPH08230101A (en) * 1995-02-28 1996-09-10 Ube Ind Ltd Metal foil-laminated polyimide film
JP2003340931A (en) * 2002-05-31 2003-12-02 Kanaflex Corporation Device and method for producing synthetic resin tube having metal reinforcing material therein
JP2006508509A (en) * 2002-12-02 2006-03-09 アヴェスター リミティッド パートナーシップ Thin film electrochemical cell coextrusion manufacturing process for lithium polymer batteries and apparatus therefor
JP2004216665A (en) * 2003-01-14 2004-08-05 Bridgestone Corp High pressure low-gas-permeable hose
JP2005180609A (en) * 2003-12-19 2005-07-07 Totaku Industries Inc Pressure-resistant composite pipe
JP2011027196A (en) * 2009-07-27 2011-02-10 Kanaflex Corporation Ground-buried pressure resistant synthetic resin pipe

Also Published As

Publication number Publication date
JP6084743B1 (en) 2017-02-22
JP2018020515A (en) 2018-02-08

Similar Documents

Publication Publication Date Title
CN101718375B (en) Steel belt reinforced composite strip for spiral corrugated plastic steel winding pipe
US6009912A (en) Steel pipe with integrally formed liner and method of fabricating the same
CN104019295A (en) Steel frame steel-plastic composite pipe and manufacturing method and production line of steel frame steel-plastic composite pipe
US10077857B2 (en) Pipe with an outer wrap
KR20140023905A (en) Making multilayer composite pipe for liquid conveyance
JP6084743B1 (en) Continuous production method of resin metal composite pipe
WO2011072562A1 (en) Reinforcing method for plastic-steel-wound tube and steel-belt-reinforced composite strip
DE69905619D1 (en) SPIRAL-WRAPPED TUBE AND METHOD FOR THE PRODUCTION THEREOF
US5480505A (en) Method of fabricating a steel pipe with integrally formed liner
CN105333241A (en) Steel-clamping rib-stiffened hollow plastic outer corrugated pipe and manufacturing method thereof
KR100533366B1 (en) Connecting pipe embeded with heating coil for plastic pipes and method for producing the same
JP2009023296A (en) Manufacturing method of reinforcing member of band-like article, long band-like article and regeneration method of existing pipe
JP4832251B2 (en) Manufacturing method of synthetic resin hose
EP2658701B1 (en) Method of manufacturing a pipe from thermoplastic material
JP6485762B1 (en) Method for producing thermoplastic tube of metal or synthetic fiber reinforced wire rod
CN103851277A (en) Production method for steel-plastic warping and soldering pipe
CN219236229U (en) Reinforced composite pipe and manufacturing equipment thereof
JPH04282220A (en) Composite pipe and manufacture thereof
AU6501896A (en) Steel pipe with integrally formed liner and method of fabricating the same
JPS62104735A (en) Manufacture of synthetic resin helical tube
EP0754112B1 (en) Fabricating steel pipe with an integrally formed liner
CN115816885A (en) Reinforced composite pipe and manufacturing equipment and manufacturing method thereof
JP7016254B2 (en) Vacuum cleaner hose and its manufacturing method
JP6369679B2 (en) Coated cable manufacturing method and coated cable manufacturing apparatus
JP2016164456A (en) Pipe for renovation of pipe conduit, manufacturing method thereof and pipe conduit structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17836561

Country of ref document: EP

Kind code of ref document: A1