WO2018021782A1 - Method for recovering sugar solution prepared by saccharification of biomass - Google Patents

Method for recovering sugar solution prepared by saccharification of biomass Download PDF

Info

Publication number
WO2018021782A1
WO2018021782A1 PCT/KR2017/007965 KR2017007965W WO2018021782A1 WO 2018021782 A1 WO2018021782 A1 WO 2018021782A1 KR 2017007965 W KR2017007965 W KR 2017007965W WO 2018021782 A1 WO2018021782 A1 WO 2018021782A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar solution
biomass
saccharification
protein
recovering
Prior art date
Application number
PCT/KR2017/007965
Other languages
French (fr)
Korean (ko)
Inventor
유주현
엄인용
홍경식
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160140275A external-priority patent/KR101909738B1/en
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to US16/319,167 priority Critical patent/US10704110B2/en
Publication of WO2018021782A1 publication Critical patent/WO2018021782A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D25/00Filters formed by clamping together several filtering elements or parts of such elements
    • B01D25/12Filter presses, i.e. of the plate or plate and frame type
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • C13K1/04Purifying

Definitions

  • the present invention relates to a method for efficiently recovering a sugar solution from a sugar solution containing glucose and a saccharified residue after saccharification using an acid or a saccharifying enzyme of woody or algal biomass, and more particularly, to an apparatus for implementing the method.
  • Biomass glycosylation step of glycosylation by adding an enzyme or acid to the biomass pretreatment A fine particle aggregation step of preparing a slurry in which fine particles are aggregated by adding and stirring a glycated residue protein additive for biomass saccharification; And a sugar solution recovery step of separating and recovering a sugar solution by centrifugation or filtration of the slurry in which the fine particles are aggregated, and a method for recovering a sugar solution prepared by saccharification of biomass, which can be implemented.
  • a fine particle aggregation step of preparing a slurry in which fine particles are aggregated by adding and stirring a glycated residue protein additive for biomass saccharification And a sugar solution recovery step of separating and recovering a sugar solution by centrifugation or filtration of the slurry in which the fine particles are aggregated, and a method for recovering a sugar solution prepared by saccharification of biomass, which can be implemented.
  • lignocellulosic biomass As a substitute for fossil fuels such as petroleum and coal, lignocellulosic biomass is a biobased economy through the conversion of bioalcohol, a transportation fuel, and lignocellulosic sugar, an industrial fermentation sugar. It is being evaluated as a major means of transition. Already, commercial production of bioethanol from woody biomass has already begun in several developed countries, including the United States. Recent reports indicate that Renmatix and Sweetwater in the United States have It is said that commercial production of industrial fermented sugar is started from biomass.
  • the wood-based biomass resources used here are wood and corn refinery by-products, and cellulose, which is a structural component of biomass, is a direct source of bioalcohol or industrial fermented sugar.
  • algal biomass such as green algae and diatoms
  • carbohydrates such as starch and cellulose, as well as proteins and oils. It is also promising as a biofuel and food raw material such as bioethanol and biodiesel.
  • Green algae and diatoms mainly containing starch or cellulose in algae biomass do not have lignin in the sieve, unlike wood based biomass, and thus do not require high temperature and high pressure pretreatment applied to wood based biomass.
  • Carbohydrates such as and cellulose are easily converted to monosaccharides by acid or starch degrading enzymes and fibrinase.
  • an acid or glycosylase is added to the pretreatment of the cellulose main component obtained by the pretreatment of the biomass and saccharified for a predetermined time at a specific temperature.
  • the glycosylated in this way is in a state in which a sugar solution in which glucose or wood sugar such as glucose or wood sugar produced by hydrolysis of cellulose or hemicellulose is dissolved is mixed with glycosylated residues such as lignin, which are not hydrolyzed and remain in a solid state. Since the glycosylated residue of the lignin main component has a hydrophobic surface, enzyme hydrolysis causes a decrease in enzyme activity due to irreversible adsorption of enzymes. As a result, glycation time increases and yields decrease.
  • US Patent No. US 8,728,320B reduces the adsorption inactivation of enzymes by adsorbing lignin on the surface of lignin by adding proteins from the outside into the reaction system and adsorbing and removing water-soluble lignin on proteins.
  • this technique does not yet provide a technical solution for effective solid-liquid separation to prepare a high concentration of sugar solution, but also considers a method for reusing a considerable amount of active enzyme remaining after enzymatic saccharification. I can't.
  • bioethanol When bioethanol is produced from biomass as a raw material, monosaccharides such as glucose are converted to ethanol by adding nutrients for culturing various microorganisms, including nitrogen sources such as ammonia, and incubating for a predetermined time after inoculating microorganisms. do. Thereafter, the desired ethanol can be selectively recovered by heating all or part of the fermentation medium to evaporate the ethanol and then condensing the ethanol in the gaseous state again.
  • nutrients for culturing various microorganisms including nitrogen sources such as ammonia
  • a centrifuge such as a decanter
  • a specific gravity greater than that of water and at the same time as a fine particle it can be operated for a long time even at high speed (for example, 60 at 1,776 ⁇ g per minute). Minutes), so the energy cost is not small, so it is not practical.
  • the filtration is not easy due to the rapid rise in pressure due to the fine particles blocking the membrane or the filter cloth pores, and it is inevitable that further processing such as microfiltration is inevitable because it contains fine particles after filtration. Do.
  • a mineral additive called a filtration aid.
  • the polymer flocculant used is a synthetic chemical substance having an ionic or nonionic molecular weight of several hundred thousand or more, and the amount of particles to be aggregated increases the amount of usage. Therefore, when the sugars prepared from wood-based biomass as raw materials contain high concentrations of sugars and insoluble saccharified residues up to several%, the required amount of polymer flocculant increases, which inevitably increases the manufacturing cost of the resulting sugar solution. . In addition, it is not possible to exclude the possibility of contamination of the sugar solution by the remaining polymer compound and the restriction of its use.
  • the saccharification may be performed by heating the saccharification after enzyme saccharification to denature the enzymes already contained, and then perform solid-liquid separation (US Patent Publication No. US 2015 / 0354017A1).
  • glycosylated glycosylated enzymes of woody biomass pre-treated products still contain inexpensive glycosylase (fibrin hydrolase), and these enzymes maintain enzymatic activity even after saccharification.
  • Known Novozymes' Product Sheet, Special Food / 2001-08524-03.pdf). Therefore, as described in the US Patent Publication No.
  • the present inventors easily prepare a high concentration of sugar solution by separating the biomass saccharification without using the cohesion by denaturation enzyme, and recovers the sugar solution containing the enzyme by such an effective solid-liquid separation to remain after the enzyme saccharification After much effort has been made to develop a technology that can reuse a significant amount of active enzymes, the present invention has been completed.
  • the present inventors have therefore used a small number of processes and minimal energy to separate biomass sacchalytes containing high concentrations of monosaccharides and several percent insoluble particles into clear sugar solutions and insoluble saccharification residues containing little microparticles. We wanted to develop a method that can be used and how to use the device to implement this method.
  • the present invention by adding a water solution or suspension which can be suspended in water or a protein solution for agglutination of the glycosylated residues to the saccharification and inducing mutual coagulation of the microparticles to produce macroparticles
  • the present invention provides a method for centrifugation or filtration and an apparatus for implementing the same.
  • the present invention comprises the steps of inducing agglomeration of microparticles and converting them into macroparticles by adding and stirring an aqueous solution or suspension of a vegetable or animal protein having a hydrophobic surface to a biomass saccharide;
  • the present invention provides a method for efficiently recovering a sugar solution containing an enzyme as it is from a biomass saccharose comprising the step of recovering the remaining sugar solution by high-speed centrifugation or pressure filtration of the residue hydrolyzate.
  • the present invention is added to an aqueous solution or suspension having a hydrophobic surface in the sugar solution and stirred and then continuously centrifuged using a decanter, added to the water while transferring the discharged solid content, stirred and increased by a filter
  • a sugar solution recovery apparatus which is injected into a press and filtered under pressure.
  • a sugar solution containing an enzyme is recovered from a suspension containing glucose and saccharified residue produced by saccharification of biomass by solid-liquid separation using minimal equipment and water, thereby maximizing the recovery of sugar and using it.
  • FIG. 1 is a conceptual diagram of a flowchart and a process of a method for efficiently recovering a sugar solution from a biomass saccharide according to an embodiment of the present invention.
  • FIG. 2 is a standard curve diagram of an enzyme activity in a sugar solution of a biomass saccharin according to an embodiment of the present invention instead of the glycosylation rate.
  • FIG. 2 is a standard curve diagram of an enzyme activity in a sugar solution of a biomass saccharin according to an embodiment of the present invention instead of the glycosylation rate.
  • biomass glycosylated means a slurry in which monosaccharides and insoluble solid particles obtained by hydrolyzing wood-based biomass or algal biomass with saccharifying enzyme or acid are dispersed in water.
  • glycosylated residue is a solid insoluble in water in which the components such as lignin, which cannot be hydrolyzed any more after the biomass is hydrolyzed by enzymes or acids and converted to monosaccharides. Means.
  • the glycosylated residue aggregation protein additive (hereinafter, weakly referred to as protein additive) added for solid-liquid separation of the glycosylated biomass includes a general protein except the fibrin hydrolase used for enzymatic glycosylation of biomass.
  • the main component is a protein having a hydrophobic surface, and at least some of the polypeptides are not particularly limited.
  • the most effective protein additives for solid-liquid separation of the glycosylated compounds of the present invention are globular proteins as the main constituents and are denatured by applying heat or changing pH (pH) to expose the hydrophobic surface to the surface, It is desirable to have the property of being adsorbed on a hydrophobic surface.
  • protein additives examples include soy protein, egg albumin, ovalbumin, human serum albumin, bovine serum albumin and globulin. Etc. can be mentioned.
  • Another protein additive that can be used for the solid-liquid separation of the present invention is one having fibrous protein or scleroprotein as a main component and having a hydrophobic surface in the protein, thereby having the property of aggregation with each other.
  • Such protein additives include additives containing keratin, collagen, fibroin, elastin, gluten, which is one of the storage proteins, and the like.
  • the biomass sacchalate preparation step of glycosylation by adding acid or glycosylase to the biomass pretreatment A fine particle aggregation step of preparing a slurry in which fine particles are aggregated by adding and stirring a glycated residue protein additive for biomass saccharification; And a sugar solution recovery step of separating the sugar solution by centrifugation or filtration of the slurry in which the fine particles are aggregated, thereby providing a recovery method of the sugar solution prepared by saccharification of biomass.
  • the fine particle aggregation step may add a protein additive for aggregation of glycated residues in an aqueous solution or suspension.
  • the protein additive for aggregating glycated residues has a hydrophobic surface at least in the molecular structure of the protein, so that the acidity (pH) of the aqueous solution is dissolved after dissolving in water. It may be to form a suspension when adjusted or heated.
  • a method of preparing a protein additive added to a saccharide for solid-liquid separation of biomass saccharide is to first dissolve or suspend the protein in water. And prior to addition to the cargo per heating the protein solution or suspension at 80 to 121 o C suspension was made to induce thermal denaturation it is more effective.
  • a method of controlling the acidity (pH) of a sugar solution containing an aqueous protein solution or suspension or agglutinating protein may be used for effective denaturation of the protein.
  • the protein concentration in the aqueous protein solution or suspension is preferably 100 mg / L to 100 g / L, more preferably 500 mg / L to 50 g / L.
  • the total amount of protein added to the saccharin is preferably increased according to the amount of saccharified residue, which is a water insoluble solid in the saccharified substance, and the amount may be used in an amount of 0.01 g to 100 g per 1 kg of saccharified residue, and 0.1 per kg of saccharified residue. It is preferable to use it in the ratio of g-10g.
  • the method of agglomerating microparticles in the sugars most effectively while minimizing the loss of saccharase by using an aqueous solution or a suspension, which is a protein additive prepared for solid-liquid separation of biomass glycosylated sugars, has a sugar at a rate such that precipitation does not occur. Slowly adding an aqueous protein solution or suspension while stirring the cargo and maintaining the stirring state for a certain time.
  • the sugar solution recovery step may use any one of a centrifuge, a filter press or a decanter.
  • the present invention further provides a method for recovering a sugar solution from the biomass saccharide with a minimum loss of sugar even with a minimum process.
  • the sugar solution is transferred to a centrifuge or a filter, and the sugar solution is recovered by centrifugation at a low rotational speed for a short time or filtered without being pressurized at a high pressure.
  • the glycosylated to separate the solid and the liquid, respectively is produced by hydrolyzing fibrin such as cellulose and hemicellulose using fibrin hydrolase, and the sugar solution contains a large amount of saccharified residue, for example, corn.
  • Agricultural byproducts such as stems, sunflower stems, palm fruits and palm trees, energy crops such as silver grass and reeds, enzymatic hydrolysates of woody biomass including woody biomass such as eucalyptus, acacia, willow, poplar hybrids, chlorella, etc.
  • Enzyme hydrolyzate of algae biomass containing diatoms such as green algae and diatoms.
  • the method for recovering the sugar solution from the biomass enzyme hydrolyzate of the present invention is to solidify the glycosylated residue microparticles containing lignin as a major component and to convert the glycosylated solution into the macroparticles in a solid-liquid manner.
  • the rate at which solid particles settle in a liquid is proportional to the density difference between the solid particles and the medium, and is proportional to the cube of the particle size. Solid-liquid separation is completed within.
  • the larger particles make it possible to obtain a relatively clear sugar solution even in filtration using a filter cloth.
  • a method for recovering a sugar solution prepared by saccharification of biomass according to the present invention comprising: diluting and increasing a sugar solution in a saccharified residue by mixing and stirring a saccharified residue with water after the sugar solution recovery step; And recovering the increased sugar solution that separates the diluted and extended sugar solution from the saccharified residue.
  • the solid solution is separated by solid-liquid separation in order to further recover the sugar solution from the saccharified residue containing a part of the sugar solution left in the first solid-liquid separation.
  • the resulting saccharified residue should be mixed with water and homogenized.
  • the amount of water to be added is added or subtracted according to the target recovery rate of the sugar solution calculated from the water retention rate in the solid content when the solid-liquid separation is performed in a subsequent process.
  • the method such as stirring and shaking
  • the new suspension thus prepared still retains a large particle state that can be easily settled or filtered.
  • the method for recovering the sugar solution from the hydrolyzate of the biomass acid or glycosylation enzyme of the present invention further recovers the sugar solution by centrifuging or filtering the suspension prepared with fresh water in the above process.
  • intensive centrifugation or filtration can be used under violent conditions such that the residual amount of sugar solution remains in the residue.
  • the centrifugation time is increased along with the rotational speed.
  • the pressure is increased.
  • the diluting increase of the sugar solution may be performed using a batch or continuous dispersion stirrer. That is, in step 3) for efficient solid-liquid separation of the biomass saccharide of the present invention, a slurry may be prepared by adding water to the saccharified residue and stirring it for further recovery of the sugar solution from the saccharified residue discharged after the first solid-liquid separation.
  • Stirrers can be used, and either batch or continuous dispersion agitators can be used.
  • the step of recovering the extended sugars may be any one of a filter press or a decanter. That is, step 4) for the efficient solid-liquid separation of the biomass enzyme glycosylated compound of the present invention can be seen as a repetition of step 2), when the decanter is used for solid-liquid separation, only by increasing the number of revolutions of the decanter or lengthening the time. Increasing the recovery of sugar solution may differ.
  • the filter press when used for the solid-liquid separation, it may be different to reduce the volume of the sugar solution remaining in the saccharified residue by increasing the compressive force.
  • the method for recovering the sugar solution from the hydrolyzate of the biomass saccharase of the present invention further provides a type of equipment suitable for maximizing the recovery rate of the sugar solution containing the glycosylase and minimizing the amount of water used and an optimal method of use.
  • step 1) for efficient solid-liquid separation of the biomass saccharide a batch or continuous saccharification group that has been saccharified may be used as a reactor for agglomeration of microparticles by adding protein as it is.
  • a batch or continuous saccharification group that has been saccharified may be used as a reactor for agglomeration of microparticles by adding protein as it is.
  • a saccharifier with sufficient spare volume is preferable to further inject water to increase the recovery rate of the sugar solution in the solid-liquid separation of the next step.
  • the sugar particles may be transferred to a batch stirrer capable of stirring after saccharification, and then fine particle aggregation reaction may be performed by protein addition.
  • a stirrer with sufficient spare volume is preferable to further inject water in order to increase the recovery rate of the sugar solution in the solid-liquid separation of the next step.
  • a continuous reactor capable of inducing fine particle aggregation by stirring while adding a solution of a protein or a suspension during the transfer of the saccharified substance from the saccharifier to the solid-liquid separator may be used. In this case, the recovery rate of the sugar solution in the solid-liquid separation of the next step may be used.
  • a continuous stirrer with sufficient free volume to inject additional water is preferred.
  • a decanter capable of continuously discharging the clear sugar solution and the precipitate may be used.
  • Such a decanter is preferably capable of high speed rotation so as to reduce the power consumption by shortening the operating time.
  • the high speed rotation speed is preferably 250 ⁇ g to 5,000 ⁇ g equivalent rotation speed
  • the residence time of the sugar is preferably within 30 minutes.
  • the decanter discharges the clear sugar solution, but at the same time, by adding water and stirring to discharge the soft precipitate, the slurry can be easily prepared again.
  • the decanter has a rotational force of 500 ⁇ g to 4,000 ⁇ g, and a residence time of the sugars is more preferably within 10 minutes. This is because, in most cases, even when solid-liquid separation is performed by a decanter rotating at a high speed, a considerable amount of sugar solution remains in the discharged precipitate, and thus, all of the sugar solution in the precipitate cannot be recovered by only one decanting.
  • a filter press equipped with a filter cloth having fine pores may be used.
  • the filter press can be freely selected from less than 1 micron to several tens of microns in consideration of the turbidity of the sugar solution to be obtained since the size of the particles to be passed varies depending on the pore size of the filter cloth.
  • the solid-liquid separation principle of the biomass enzyme saccharide is to agglomerate microparticles of hydrophobic lignin main ingredient by the addition of a protein having a hydrophobic surface, the average particle diameter of the saccharified residue in the saccharide is increased.
  • the filter cloth to be mounted can not be largely limited because the size of the pore can be freely adjusted, but is preferably 0.1 micron to 50 microns, in order to prepare a clear sugar solution. More preferred are 1 micron to 15 microns.
  • the increased sugar solution may be reused for dilution increase of a slurry in which fine particles are aggregated through an enzyme saccharification step and a fine particle aggregation step.
  • the sugar solution recovered from the increased sugar solution of step 4 may be reused for dilution increase of the slurry in which the fine particles are aggregated in the step of protein addition and fine particle aggregation.
  • a filter press for the second solid-liquid separation, although the use of a decanter to obtain a clear sugar solution for the first solid-liquid separation is inevitable. It is most preferable to obtain a clear sugar solution while reducing the amount of water used by using a slightly turbid and significantly low sugar concentration obtained from the second solid-liquid separation for the dilution increase of the sugars before the first solid-liquid separation.
  • soy protein isolated Soy protein isolated, MP Biomedicals, LLC, France
  • 5 liters of non-ionized water was added and sterilized at 105 o C for 20 minutes.
  • a sterilized soy protein solution was added to a plastic container (for 50 liters), and 45 liters of non-ionized water was added to prepare a protein additive for aggregation of glycated residues.
  • soy protein extract Soy protein isolated, MP Biomedicals, LLC, France
  • water 1 liter of water was added, followed by stirring to dissolve. This was sterilized and warm denatured at 121 ° C. for 20 minutes to prepare protein additives for aggregation of glycated residues.
  • soybean flour Soyma flour, Sigma S-9633, USA
  • 1 g of soybean flour Soyma flour, Sigma S-9633, USA
  • a high-speed rotary stirrer Goi Bak, Buwon Household Appliances, Korea
  • bovine serum albumin (Sigma A3059, USA) was added to a 1 liter culture bottle, and 1 liter of water was added and stirred to dissolve. This was sterilized and warm denatured at 121 ° C. for 20 minutes to prepare protein additives for aggregation of glycated residues.
  • the sample was centrifuged at 845 ⁇ g for 5 minutes with a control sample containing only 4 ml of water and mixed with glycosylated water (Hanil Science, Korea), and then turbidity was measured using a turbidimeter (HACH 2100AN turbidimeter, USA). Indicated.
  • the glucose concentration of the glycosylated product produced by the enzymatic saccharification of the palm fruit and vegetable pretreatment of Example A was 2.6% (weight / weight), the specific gravity was 1.02, and the insoluble residue contained in the sugars was about 2.0%.
  • the sugar solution obtained by centrifuging the saccharides at 845 ⁇ g for 5 minutes was very turbid as in Comparative Example 1 of Table 1, and further solid-liquid separation was inevitable.
  • the turbidity of the supernatant obtained by adding 4 ml (4 mg of protein) per 40 g of saccharified residue (0.8 g of saccharified residue) and stirring after adding the protein additive for agglutination of saccharified residue was measured. It was slightly different depending on the type of protein, but it was very low, and all of them produced a clear sugar solution.
  • glycosylation substrate 48,210 g in a total volume of 70 liters of saccharification machine (Hanil Science, Korea) was divided into 12 parts and injected one by one, and the saccharification machine was maintained at 50 ⁇ 1 ° C., pH 5.0 ⁇ 0.05, and a stirring speed of 200 rpm. To this was added 65.8 ml of glycosylase CelicCec3 (Cellic CTec3, Novozymes Korea, Seoul) every hour. Glycosylated was prepared by adding saccharification substrate and saccharase for a total of 12 hours, and saccharifying for 72 hours from the time of initial substrate addition.
  • the disaccharide solution was injected into a filter press (Taeyoung Filtration, Korea) attached with a 5 micron filter cloth and filtered under pressure so that the water content of the saccharified residue discharged by adjusting the pressure of the filter press was about 50%.
  • the sugar solution discharged here was re-injected into the decanter, programmed to stay at 1,902 ⁇ g for 5 minutes, and centrifuged, and then the sugar solution discharged was added to the sugar solution obtained from the decanter.
  • a small amount of the sugar solution in the tank was taken to measure the glucose concentration and multiplied by the total amount of the sugar solution to calculate the sugar recovery rate.
  • Table 2 shows the average sugar yield and the turbidity average of the final sugar solution obtained by repeating the above process three times.
  • the sugar compound was prepared in the same manner as in Example B. While stirring this glycoside at 60 rpm per minute, 50 liters of the protein additive for aggregation of the saccharified residue of Preparation Example 2 were added and further stirred for 5 minutes. The sample was transferred to a decanter (Fine Products, Korea) and programmed to stay at 1,902 ⁇ g for 5 minutes and centrifuged. The sugar solution discharged from this process was collected in a 300 liter tank. The solids discharged from the decanter were added continuously to a small mixer with 74 liters of non-ionized water. The disaccharide solution was solid-liquid separated with the same decanter as above. This operation was repeated once more to recover the sugar solution.
  • a decanter Feine Products, Korea
  • Table 2 shows the average sugar yield and the turbidity average of the final sugar solution obtained by repeating the above process three times.
  • Table 2 shows that the glycosylated solution has a high specific gravity and a lot of fine particles, so that even after centrifugation for 5 minutes with a force of 1,902 ⁇ g, some of the glycosylated residues do not sink and the turbidity is high enough to be impossible to measure.
  • the sugar solution recovered by adding 0.026 g per 2 g of glycosylated residue (2 g per kg of saccharified sugar) to the soy protein extract of Preparation Example 2, which is the protein additive for aggregation of glycated residues of the present invention was three times the amount. Increasing above and the glucose concentration was lowered to about one third, but it can be seen that the solid solution was effectively separated as a clear solution.
  • the yield of sugar obtained from the above example was found to reach 98.5%, it can be seen that the sugar solution recovery technique of the present invention can obtain a very high sugar yield even with a simple process.
  • the sugar solution prepared using the decanter of Example C also had a final volume of four times that of the original sugar solution, but the sugar recovery rate was 98%.
  • the glycosylator was maintained at 50 ⁇ 1 ° C., pH 5.5 ⁇ 0.05, and agitation speed of 200 rpm. To this was added 24 ml of the glycosylating enzyme Celic Cec3 (Cellic CTec3, manufactured by Novozymes Korea, Seoul). Glycosylated was prepared by saccharification for a total of 144 hours. 200 g each was added while homogenizing the glycosylated solution and placed in four 500 ml centrifuge tubes and two culture bottles, respectively. Two centrifuge tubes containing saccharin were added with 200 ml of the soy protein extract suspension of Preparation Example 2 while stirring with a magnetic stirrer and the stirring was continued for 5 minutes.
  • the enzyme activity of the sugar solution was measured after different treatments of the sugars, the high-speed centrifugation supernatant showed that the enzyme was contained by converting 11.4% of the glycosylation substrate to glucose under given conditions.
  • the enzyme activity of the sugar solution on the newly added glycosylation substrate is not seen at all.
  • the sugar solution obtained using the method of the present invention shows a higher enzyme glycosylation rate than the untreated sugar solution, showing that at least it does not inactivate or eliminate the enzyme in the sugar solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Emergency Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to a method for effectively recovering a sugar solution containing glucose and saccharogenic residues after saccharification using an acid or a saccharogenic enzyme of a wood-based or algae biomass, and a device for implementing the method. More specifically, the present invention relates to a method capable of recovering a sugar solution using minimal equipment and water after aggregating fine particles by adding a protein suspension to a suspension of glucose and saccharogenic residues which are produced by saccharifying cellulose by adding an acid or saccharogenic enzyme to the biomass, while capable of minimizing an amount of saccharide lost in the residues, and a device for implementing the method.

Description

바이오매스의 당화로 제조한 당용액의 회수 방법Recovery method of sugar solution prepared by saccharification of biomass
본 발명은 목질계 혹은 조류 바이오매스의 산 또는 당화효소 이용한 당화 후 포도당과 당화잔사를 함유하는 당화물로부터 당용액을 효율적으로 회수하는 방법 및 그 방법을 구현하기 위한 장치에 관한 것으로, 보다 상세하게는 바이오매스 전처리물에 효소 혹은 산을 가하여 당화하는 바이오매스 당화물 제조단계; 상기 바이오매스 당화물에 당화잔사 응집용 단백질 첨가제를 첨가하고 교반하여 미세입자가 응집된 슬러리를 제조하는 미세입자 응집단계; 및 상기 미세입자가 응집된 슬러리를 원심분리 혹은 여과하여 당용액을 분리하여 회수하는 당용액 회수단계를 포함하는 것을 특징으로 하는, 바이오매스의 당화로 제조한 당용액의 회수방법과 이를 구현할 수 있는 장치에 대한 것이다.The present invention relates to a method for efficiently recovering a sugar solution from a sugar solution containing glucose and a saccharified residue after saccharification using an acid or a saccharifying enzyme of woody or algal biomass, and more particularly, to an apparatus for implementing the method. Biomass glycosylation step of glycosylation by adding an enzyme or acid to the biomass pretreatment; A fine particle aggregation step of preparing a slurry in which fine particles are aggregated by adding and stirring a glycated residue protein additive for biomass saccharification; And a sugar solution recovery step of separating and recovering a sugar solution by centrifugation or filtration of the slurry in which the fine particles are aggregated, and a method for recovering a sugar solution prepared by saccharification of biomass, which can be implemented. For the device.
본 출원은 2016년 7월 27일에 출원된 한국 특허출원 제10-2016-0095286호 및 2016년 10월 26일에 출원된 한국 특허출원 제10-2016-0140275에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2016-0095286 filed on July 27, 2016 and Korean Patent Application No. 10-2016-0140275 filed on October 26, 2016, and the application. All content disclosed in the specification and drawings of the present invention is integrated in this application.
석유와 석탄 등 화석연료의 대체 자원으로서 재생 가능한 자원인 목질계 바이오매스(lignocellulosic biomass)는 수송용 연료인 바이오알콜과 산업용 발효당인 목질계 슈가(lignocellulosic sugar)로의 전환을 통하여 바이오경제(biobased economy)로 이행하는데 주요한 수단으로 평가되고 있다. 이미 미국을 비롯한 몇 개의 선진국에서 목질계 바이오매스를 원료로 하는 바이오에탄올의 상업적 생산이 이미 시작되었으며, 최근의 보도에 따르면, 미국의 렌마틱스(Renmatix)와 스위트워터(Sweetwater)는 2017년부터 목질계 바이오매스로부터 산업용 발효당의 상업적 생산을 시작한다고 한다. 여기에 사용되는 목질계 바이오매스 자원은 나무와 옥수수 리파이너리 부산물 등이며, 이 바이오매스가 구조적 성분으로 가지고 있는 셀룰로오스가 바이오알콜 혹은 산업용 발효당의 직접적인 원료가 된다. As a substitute for fossil fuels such as petroleum and coal, lignocellulosic biomass is a biobased economy through the conversion of bioalcohol, a transportation fuel, and lignocellulosic sugar, an industrial fermentation sugar. It is being evaluated as a major means of transition. Already, commercial production of bioethanol from woody biomass has already begun in several developed countries, including the United States. Recent reports indicate that Renmatix and Sweetwater in the United States have It is said that commercial production of industrial fermented sugar is started from biomass. The wood-based biomass resources used here are wood and corn refinery by-products, and cellulose, which is a structural component of biomass, is a direct source of bioalcohol or industrial fermented sugar.
또한, 제 3세대 바이오매스로 주목 받으며 실용화를 향하여 부단한 연구 개발이 이루어지고 있는 녹조류와 규조류 등의 조류 바이오매스(algal biomass)는 체 내에 전분과 셀룰로오스 등의 탄수화물을 함유하고 있을 뿐만 아니라 단백질과 기름도 가지고 있으므로 바이오에탄올과 바이오디젤 등 바이오연료와 식품원료 자원으로 유망하다. 이 조류 바이오매스 중 전분 혹은 셀룰로오스를 주로 함유하는 녹조류와 규조류는 목질계 바이오매스와는 달리 체 내에 리그닌을 가지고 있지 않아서 목질계 바이오매스에 적용하는 고온 고압의 전처리가 필요치 않으며, 체 내에 존재하는 전분과 셀룰로오스 등 탄수화물은 산 혹은 전분 분해효소와 섬유소 가수분해효소에 의해 쉽게 단당류로 전환된다.In addition, algal biomass such as green algae and diatoms, which are attracting attention as the third generation biomass and steadily being developed for practical use, contain carbohydrates such as starch and cellulose, as well as proteins and oils. It is also promising as a biofuel and food raw material such as bioethanol and biodiesel. Green algae and diatoms mainly containing starch or cellulose in algae biomass do not have lignin in the sieve, unlike wood based biomass, and thus do not require high temperature and high pressure pretreatment applied to wood based biomass. Carbohydrates such as and cellulose are easily converted to monosaccharides by acid or starch degrading enzymes and fibrinase.
이러한 바이오매스가 함유하는 셀룰로오스를 포도당으로 전환하기 위해서 바이오매스의 전처리에 의해 얻은 셀룰로오스 주성분의 전처리물에 산 또는 당화효소를 가하여 특정한 온도에서 일정 시간 동안 당화한다. 이렇게 만든 당화물은 셀룰로오스 혹은 헤미셀룰로오스의 가수분해로 생성된 포도당 혹은 목당 등의 단당류가 녹아 있는 당용액에 가수분해되지 않고 고체 상태로 남아 있는 리그닌 등의 당화잔사가 섞여 있는 상태가 된다. 이 리그닌 주성분의 당화잔사는 소수성 표면을 가지고 있어서 효소 가수분해의 경우 효소의 비가역적 흡착에 의한 효소 활성 저하의 원인이 되며, 이로 인하여 당화 시간이 길어지고 수율이 저하되는 현상도 알려져 있다.In order to convert the cellulose contained in such biomass into glucose, an acid or glycosylase is added to the pretreatment of the cellulose main component obtained by the pretreatment of the biomass and saccharified for a predetermined time at a specific temperature. The glycosylated in this way is in a state in which a sugar solution in which glucose or wood sugar such as glucose or wood sugar produced by hydrolysis of cellulose or hemicellulose is dissolved is mixed with glycosylated residues such as lignin, which are not hydrolyzed and remain in a solid state. Since the glycosylated residue of the lignin main component has a hydrophobic surface, enzyme hydrolysis causes a decrease in enzyme activity due to irreversible adsorption of enzymes. As a result, glycation time increases and yields decrease.
이러한 문제점을 해결하기 위한 기술로 미국 등록특허공보 US8,728,320B에서는 반응계 내로 외부에서 단백질 등을 첨가하여 리그닌의 표면에 흡착시킴으로써 효소의 흡착 불활성화를 경감시키고 수용성 리그닌을 단백질에 흡착시켜서 제거하는 기술을 개시하고 있으나, 이러한 기술은 아직까지는 고농도의 당용액을 제조하기 위한 효과적인 고액 분리를 위한 기술적 해결책은 제시하지 못하고 있을 뿐만 아니라 효소당화 후에도 남아있는 상당량의 활성효소를 재이용할 수 있는 방법에 대하여는 고려하지 못하고 있다.As a technique for solving this problem, US Patent No. US 8,728,320B reduces the adsorption inactivation of enzymes by adsorbing lignin on the surface of lignin by adding proteins from the outside into the reaction system and adsorbing and removing water-soluble lignin on proteins. However, this technique does not yet provide a technical solution for effective solid-liquid separation to prepare a high concentration of sugar solution, but also considers a method for reusing a considerable amount of active enzyme remaining after enzymatic saccharification. I can't.
바이오매스를 원료로 하여 바이오에탄올을 제조할 경우에는 이 당화물에 암모니아 등의 질소원을 포함한 여러 가지 미생물 배양용 영양분을 가하고 미생물을 접종한 후 일정한 시간 동안 배양함으로써 포도당 등의 단당류를 에탄올로 전환하게 된다. 이후에는 발효 배지 전체 혹은 일부를 가열하여 에탄올을 증발시킨 다음 기체 상태의 에탄올을 다시 응축시킴으로써 원하는 에탄올을 선택적으로 회수할 수 있다. When bioethanol is produced from biomass as a raw material, monosaccharides such as glucose are converted to ethanol by adding nutrients for culturing various microorganisms, including nitrogen sources such as ammonia, and incubating for a predetermined time after inoculating microorganisms. do. Thereafter, the desired ethanol can be selectively recovered by heating all or part of the fermentation medium to evaporate the ethanol and then condensing the ethanol in the gaseous state again.
반면에 바이오매스를 원료로 하여 미생물 배양용 발효당(바이오슈가)을 제조할 경우에는 상기 당화물로부터 당용액을 회수하고, 당 이외의 불순물을 제거하기 위한 정제와 보다 고농도의 당용액으로 제조하기 위한 농축 공정을 추가로 수행하게 된다. 당용액의 회수를 위해서는 상기 당화물로부터 불용성 고체입자를 제거해야 하므로 여과 혹은 원심분리를 하는 것이 일반적이다. 예를 들어, 미국 공개특허공보 US2015/0344921A1은 당화 후 효소의 재활용을 위해서 당화물을 그대로 원심분리하거나 여과하는 기술을 담고 있다. 이 기술은 이에 더하여 여액으로부터 효소를 회수하여 재이용하는 기술도 함께 보여주고 있다. On the other hand, when manufacturing fermented sugar (bio sugar) for culturing microorganisms using biomass as a raw material, recovering the sugar solution from the sugars, and preparing a high-density sugar solution for purification to remove impurities other than sugars. A further enrichment process is carried out. In order to recover the sugar solution, insoluble solid particles must be removed from the saccharide, so filtration or centrifugation is common. For example, U.S. Patent Application Publication No. US2015 / 0344921A1 includes a technique of centrifuging or filtering a saccharite as it is for recycling of enzymes after saccharification. The technique also demonstrates the recovery and reuse of enzymes from filtrates.
그러나 다량의 당을 함유하여 비중이 물보다 크고 동시에 미립자까지 함유하는 당화물에서 당용액을 회수하기 위해 디캔터 등 원심분리기를 사용할 경우 고속의 회전으로도 오랜 시간의 운전(예컨대 분당 1,776 × g에서 60분 이상)이 필요하므로 에너지 비용이 적지 않아 실용적이지 않다. 이와 달리 맑은 당용액을 제조하기 위해 여과하는 것은 미립자가 분리막 혹은 여과포 구멍을 막아서 압력이 급격히 상승하여 여과 자체가 쉽지 않을 뿐만 아니라, 여과 후에도 미립자를 함유하므로 정밀여과(microfiltration) 등의 추가 처리가 불가피하다. 또한, 미립자를 함유하는 슬러리를 여과하여 고액분리 하고자 할 경우에는 여과조제라는 광물성 첨가제를 사용하는 경우가 일반적인 것으로 알려져 있다. However, when a centrifuge such as a decanter is used to recover a sugar solution from a sugar that contains a large amount of sugar and has a specific gravity greater than that of water and at the same time as a fine particle, it can be operated for a long time even at high speed (for example, 60 at 1,776 × g per minute). Minutes), so the energy cost is not small, so it is not practical. On the other hand, in order to prepare a clear sugar solution, the filtration is not easy due to the rapid rise in pressure due to the fine particles blocking the membrane or the filter cloth pores, and it is inevitable that further processing such as microfiltration is inevitable because it contains fine particles after filtration. Do. In addition, in the case where the slurry containing fine particles is to be separated by filtration, it is known to use a mineral additive called a filtration aid.
이러한 이유로 종종 고분자 응집제를 첨가하여 미립자를 응집시킨 후 여과 혹은 원심분리하기도 한다. 이때 사용하는 고분자 응집제는 이온성 혹은 비이온성의 분자량 수십만 이상의 합성 화학물질이며, 응집시킬 입자의 양이 많을수록 사용량이 많아지는 특징이 있다. 따라서 목질계 바이오매스를 원료로 하여 제조한 당화물이 높은 농도의 당과 함께 불용성 당화잔사를 수 %까지 함유하고 있을 때는 고분자 응집제의 필요량이 많아져서 결과물인 당용액의 제조비용 증가를 피할 수 없다. 또한, 잔류하는 고분자 화합물에 의한 당용액의 오염 가능성과 이에 따른 용도의 제한을 배제할 수 없다.For this reason, polymer coagulants are often added to agglomerate the fine particles and then filtered or centrifuged. In this case, the polymer flocculant used is a synthetic chemical substance having an ionic or nonionic molecular weight of several hundred thousand or more, and the amount of particles to be aggregated increases the amount of usage. Therefore, when the sugars prepared from wood-based biomass as raw materials contain high concentrations of sugars and insoluble saccharified residues up to several%, the required amount of polymer flocculant increases, which inevitably increases the manufacturing cost of the resulting sugar solution. . In addition, it is not possible to exclude the possibility of contamination of the sugar solution by the remaining polymer compound and the restriction of its use.
한편, 바이오매스를 효소로 당화한 경우 효소당화 후 당화물을 가열하여 이미 함유되어 있는 효소를 변성시킴으로써 자체적으로 응집력을 가지게 한 후 고액분리를 수행할 수도 있다(미국 공개특허공보 US2015/0354017A1). 그러나 목질계 바이오매스 전처리물을 효소당화하여 제조한 당화물에는 값이 결코 싸지 않은 당화효소(섬유소 가수분해효소 복합제제)가 아직 함유되어 있고, 이 효소들은 당화 후에도 상당 부분 효소활성을 유지하고 있다고 알려져 있다(Novozymes의 Product Sheet, Special Food/2001-08524-03.pdf). 따라서 상기 미국 공개특허공보 US2015/0344921A1과 같이 목질계 바이오매스 원료 발효당의 제조 공정에서 한외여과(ultrafiltration)에 의해 효소를 분리 회수하고 이를 재활용하는 기술도 이미 많은 사람들에 의해 제시된 바 있는 것처럼 바이오매스 효소당화물을 가열하여 당화효소를 열변성시키고, 이 변성된 단백질의 응집력을 고액분리에 이용하는 것은 효소당화 후에도 남아있는 상당량의 활성효소 이용 기회를 포기하는 결과를 초래하므로 바람직하지 않다. On the other hand, when the biomass is glycosylated by enzymes, the saccharification may be performed by heating the saccharification after enzyme saccharification to denature the enzymes already contained, and then perform solid-liquid separation (US Patent Publication No. US 2015 / 0354017A1). However, glycosylated glycosylated enzymes of woody biomass pre-treated products still contain inexpensive glycosylase (fibrin hydrolase), and these enzymes maintain enzymatic activity even after saccharification. Known (Novozymes' Product Sheet, Special Food / 2001-08524-03.pdf). Therefore, as described in the US Patent Publication No. US2015 / 0344921A1, the technique for separating and recovering enzymes by ultrafiltration and recycling them in the manufacturing process of the wood-based biomass raw material fermented sugars has already been proposed by many people. It is not preferable to heat the glycosylation to thermally denature the glycosylase and to use the cohesive force of the denatured protein for solid-liquid separation, resulting in abandonment of the considerable amount of active enzyme use remaining after enzyme glycosylation.
따라서 본 발명자는 변성효소에 의한 응집력을 이용하지 않고도 바이오매스 당화물을 용이하게 고액분리하여 고농도의 당용액을 제조하며, 이러한 효과적인 고액분리에 의해 효소를 함유하는 당용액을 회수하여 효소당화 후에도 남아있는 상당량의 활성효소를 재이용할 수 있는 기술을 개발하기에 많은 노력을 기울인 끝에 본 발명을 완성하였다.Therefore, the present inventors easily prepare a high concentration of sugar solution by separating the biomass saccharification without using the cohesion by denaturation enzyme, and recovers the sugar solution containing the enzyme by such an effective solid-liquid separation to remain after the enzyme saccharification After much effort has been made to develop a technology that can reuse a significant amount of active enzymes, the present invention has been completed.
이에 본 발명자들은 적은 수의 공정과 최소한의 에너지만을 사용하여 높은 농도의 단당류와 수 퍼센트의 불용성 입자를 포함하는 바이오매스 당화물을 미세입자를 거의 함유하지 않는 맑은 당용액과 불용성 당화잔사로 분리할 수 있는 방법과 이 방법을 구현하기 위한 기기의 사용법을 개발하고자 하였다.The present inventors have therefore used a small number of processes and minimal energy to separate biomass sacchalytes containing high concentrations of monosaccharides and several percent insoluble particles into clear sugar solutions and insoluble saccharification residues containing little microparticles. We wanted to develop a method that can be used and how to use the device to implement this method.
또한, 이러한 효과적인 고액분리에 의해 당화효소를 함유하는 당용액을 회수하여 효소당화 후에도 남아있는 상당량의 활성효소를 재이용할 수 있는 기술을 개발하고자 하였다.In addition, by the effective solid-liquid separation to recover the sugar solution containing glycosylase to develop a technique that can reuse a significant amount of the active enzyme remaining after the enzyme saccharification.
상기 과제를 해결하기 위하여, 본 발명은 당화물에 당화잔사 응집용 단백질 첨가제인 수용성 혹은 물에 현탁될 수 있는 단백질 수용액 혹은 현탁액을 첨가하고 교반함으로써 미세입자들의 상호 응집을 유도하여 거대입자를 생성케 한 후 원심분리 혹은 여과하는 방법과, 이를 구현하기 위한 장치를 제공한다.In order to solve the above problems, the present invention by adding a water solution or suspension which can be suspended in water or a protein solution for agglutination of the glycosylated residues to the saccharification and inducing mutual coagulation of the microparticles to produce macroparticles The present invention provides a method for centrifugation or filtration and an apparatus for implementing the same.
보다 구체적으로 본 발명은 바이오매스의 당화물에 소수성 표면을 가지고 있는 식물성 혹은 동물성 단백질 수용액 혹은 현탁액을 첨가하고 교반함으로써 미세입자의 응집을 유도하여 거대입자로 전환하는 단계; 상기 거대입자로 전환된 슬러리를 작은 회전 속도로 단시간 원심분리하거나 여과하여 당용액을 회수하는 1차 고액분리 단계; 1차 고액분리 잔류물, 즉, 원심분리에 의해 가라앉은 침전물 혹은 여과 후 여과포에 남은 고형분을 회수하여 물을 넣고 가볍게 교반하여 잔류물 가수 슬러리를 조제하는 단계; 잔류물 가수 슬러리를 고속원심분리하거나 가압 여과하여 나머지 당용액을 회수하는 단계를 포함하는 바이오매스 당화물로부터 효소를 그대로 함유하는 당용액을 효율적으로 회수하는 방법을 제공한다.More specifically, the present invention comprises the steps of inducing agglomeration of microparticles and converting them into macroparticles by adding and stirring an aqueous solution or suspension of a vegetable or animal protein having a hydrophobic surface to a biomass saccharide; A first solid-liquid separation step of recovering the sugar solution by centrifuging or filtering the slurry converted into the macroparticles at a low rotational speed for a short time; Recovering the first solid-liquid residue, ie, the precipitate that has been settled by centrifugation or the remaining solid content in the filter cloth after filtration, and adding water to gently stir to prepare a residue hydrous slurry; The present invention provides a method for efficiently recovering a sugar solution containing an enzyme as it is from a biomass saccharose comprising the step of recovering the remaining sugar solution by high-speed centrifugation or pressure filtration of the residue hydrolyzate.
또한, 본 발명은 당화물에 소수성 표면을 가지고 있는 단백질 수용액 혹은 현탁액을 가하고 교반한 후 디캔터(decanter)를 사용하여 연속원심분리하고, 배출된 고형분을 이송하면서 물을 가하고 교반하여 증량한 다음, 필터 프레스(filter press)에 주입하여 가압 여과하는 당용액 회수장치를 제공한다.In addition, the present invention is added to an aqueous solution or suspension having a hydrophobic surface in the sugar solution and stirred and then continuously centrifuged using a decanter, added to the water while transferring the discharged solid content, stirred and increased by a filter Provided is a sugar solution recovery apparatus which is injected into a press and filtered under pressure.
본 발명에 따르면 바이오매스의 당화에 의해 생성된 포도당과 당화잔사를 함유하는 현탁액으로부터 최소한의 장비와 물을 사용하는 고액분리에 의해 효소를 함유하는 당용액을 회수함으로써 당회수율을 극대화하는 동시에, 사용기기의 수와 가동 시간을 획기적으로 저감함으로써 설비비와 운영비를 절감할 수 있다.According to the present invention, a sugar solution containing an enzyme is recovered from a suspension containing glucose and saccharified residue produced by saccharification of biomass by solid-liquid separation using minimal equipment and water, thereby maximizing the recovery of sugar and using it. By drastically reducing the number of devices and uptime, equipment and operating costs can be reduced.
또한, 효소당화 후에도 남아있는 상당량의 활성효소를 재이용할 수 있게 되므로 적은 비용으로 보다 높은 농도의 당용액을 제조할 수 있다.In addition, it is possible to reuse a significant amount of the active enzyme remaining after the enzyme saccharification, it is possible to produce a higher concentration of sugar solution at a lower cost.
도 1은 본 발명의 일 구현예에 따른 바이오매스 당화물로부터 당용액을 효율적으로 회수하는 방법의 순서도 및 공정의 개념도이다.1 is a conceptual diagram of a flowchart and a process of a method for efficiently recovering a sugar solution from a biomass saccharide according to an embodiment of the present invention.
도 2는 본 발명의 일 구현예에 따른 바이오매스 당화물의 당용액 중의 효소활성을 당화율로 대신하여 그린 표준 곡선도이다.FIG. 2 is a standard curve diagram of an enzyme activity in a sugar solution of a biomass saccharin according to an embodiment of the present invention instead of the glycosylation rate. FIG.
이하, 본 발명에 대해 상세하게 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 명세서의 전반에 걸쳐 사용되는 용어인 "바이오매스 당화물은 목질계 바이오매스 혹은 조류 바이오매스를 당화효소 혹은 산으로 가수분해함으로써 얻어지는 단당류와 불용성 고체입자가 물에 분산되어 있는 슬러리를 의미한다. 또한, "당화잔사"는 상기 바이오매스가 효소 혹은 산에 의해 셀룰로오스나 헤미셀룰로오스가 가수분해되어 단당류로 전환되고 난 후 더 이상 가수분해될 수 없는 리그닌 등과 같은 성분이 주성분으로 남아있는 물에 불용성인 고형물을 의미한다.As used throughout this specification, the term "biomass glycosylated means a slurry in which monosaccharides and insoluble solid particles obtained by hydrolyzing wood-based biomass or algal biomass with saccharifying enzyme or acid are dispersed in water. In addition, the "glycosylated residue" is a solid insoluble in water in which the components such as lignin, which cannot be hydrolyzed any more after the biomass is hydrolyzed by enzymes or acids and converted to monosaccharides. Means.
본 발명에서 바이오매스의 당화물의 고액분리를 위해 첨가하는 당화잔사 응집용 단백질 첨가제(이하 단백질 첨가제로 약함)은 바이오매스의 효소당화를 위해 사용하는 섬유소 가수분해효소를 제외한 일반적인 단백질을 주성분으로 하는 첨가제를 의미한다. 소수성 표면을 가지고 있는 단백질을 주성분으로 하며 일부분이라도 폴리펩타이드를 주요 구성성분으로 가지고 있다면 크게 제한되지 않는다. 본 발명의 당화물의 고액분리에 가장 효과적인 단백질 첨가제는 구형 단백질(globular protein)을 주요 구성성분으로 하고 열을 가하거나 산도(pH)의 변화에 의하여 변성되어 소수성 표면이 표면에 노출됨으로써 상호 응집하거나 소수성 표면에 흡착되는 특성을 가지는 것이 바람직하다. 그 예로는 콩 단백질(soy protein), 계란 알부민(egg albumin), 난백알부민(ovalbumin), 인체 혈청 알부민(human serum albumin), 소혈청알부민(bovine serum albumin) 및 글로불린(globulin)을 주성분으로 하는 첨가제 등을 들 수 있다. 본 발명의 고액분리에 사용할 수 있는 또 다른 단백질 첨가제는 섬유상 단백질(fibrous protein) 또는 경단백질(scleroprotein)을 주성분으로 하고 단백질 내에 소수성 표면을 일부 가지고 있어서 서로 응집하는 성질을 가지는 것을 들 수 있다. 이러한 단백질 첨가제로는 케라틴(keratin), 콜라겐(collagen), 피브로인(fibroin), 엘라스틴(elastin) 및 저장 단백질의 하나인 글루텐(gluten) 등을 주요성분으로 하는 첨가제를 들 수 있다.In the present invention, the glycosylated residue aggregation protein additive (hereinafter, weakly referred to as protein additive) added for solid-liquid separation of the glycosylated biomass includes a general protein except the fibrin hydrolase used for enzymatic glycosylation of biomass. Means an additive. The main component is a protein having a hydrophobic surface, and at least some of the polypeptides are not particularly limited. The most effective protein additives for solid-liquid separation of the glycosylated compounds of the present invention are globular proteins as the main constituents and are denatured by applying heat or changing pH (pH) to expose the hydrophobic surface to the surface, It is desirable to have the property of being adsorbed on a hydrophobic surface. Examples include soy protein, egg albumin, ovalbumin, human serum albumin, bovine serum albumin and globulin. Etc. can be mentioned. Another protein additive that can be used for the solid-liquid separation of the present invention is one having fibrous protein or scleroprotein as a main component and having a hydrophobic surface in the protein, thereby having the property of aggregation with each other. Such protein additives include additives containing keratin, collagen, fibroin, elastin, gluten, which is one of the storage proteins, and the like.
본 발명에서는 바이오매스 전처리물에 산 또는 당화효소를 가하여 당화하는 바이오매스 당화물 제조단계; 상기 바이오매스 당화물에 당화잔사 응집용 단백질 첨가제를 첨가하고 교반하여 미세입자가 응집된 슬러리를 제조하는 미세입자 응집단계; 및 상기 미세입자가 응집된 슬러리를 원심분리 혹은 여과하여 당용액을 분리하는 당용액 회수단계를 포함하는 바이오매스의 당화로 제조한 당용액의 회수방법을 제공한다.In the present invention, the biomass sacchalate preparation step of glycosylation by adding acid or glycosylase to the biomass pretreatment; A fine particle aggregation step of preparing a slurry in which fine particles are aggregated by adding and stirring a glycated residue protein additive for biomass saccharification; And a sugar solution recovery step of separating the sugar solution by centrifugation or filtration of the slurry in which the fine particles are aggregated, thereby providing a recovery method of the sugar solution prepared by saccharification of biomass.
본 발명에 따른 바이오매스의 당화로 제조한 당용액의 회수방법에 있어서, 상기 미세입자 응집단계는 당화잔사 응집용 단백질 첨가제를 수용액 또는 현탁액으로 첨가할 수 있다.In the method for recovering the sugar solution prepared by saccharification of the biomass according to the present invention, the fine particle aggregation step may add a protein additive for aggregation of glycated residues in an aqueous solution or suspension.
본 발명에 따른 바이오매스의 당화로 제조한 당용액의 회수방법에 있어서, 상기 당화잔사 응집용 단백질 첨가제는 단백질의 분자구조 내에 소수성 표면을 일부라도 가지고 있어서 물에 녹인 후 수용액의 산도(pH)를 조정하거나 가열하였을 때 현탁액을 형성하는 것일 수 있다.In the method for recovering a sugar solution prepared by saccharification of biomass according to the present invention, the protein additive for aggregating glycated residues has a hydrophobic surface at least in the molecular structure of the protein, so that the acidity (pH) of the aqueous solution is dissolved after dissolving in water. It may be to form a suspension when adjusted or heated.
본 발명에서 바이오매스 당화물의 고액분리를 위해 당화물에 첨가하는 단백질 첨가제를 조제하는 방법은 먼저 단백질을 물에 녹이거나 현탁시키는 것이다. 당화물에 첨가하기 전에 단백질 수용액 혹은 현탁액을 80 내지 121 oC로 가열하여 열변성을 유도하여 만든 현탁액은 더욱 효과적이다. 이때 단백질의 효과적인 변성을 위해 단백질 수용액 혹은 현탁액, 응집용 단백질을 포함하는 당화물의 산도(pH)를 조절하는 방법도 사용 가능하다. 단백질 수용액 혹은 현탁액 중의 단백질 농도는 100 mg/L 내지 100 g/L가 바람직하며, 500 mg/L 내지 50 g/L가 더욱 바람직하다. 당화물에 첨가되는 단백질의 총량은 당화물 중 수 불용성 고형분인 당화잔사의 양에 따라 증대하는 것이 바람직하며, 그 양은 당화잔사 1 kg 당 0.01 g 내지 100 g 사용될 수 있으며, 당화잔사 1 kg 당 0.1 g 내지 10 g의 비율로 사용하는 것이 바람직하다.In the present invention, a method of preparing a protein additive added to a saccharide for solid-liquid separation of biomass saccharide is to first dissolve or suspend the protein in water. And prior to addition to the cargo per heating the protein solution or suspension at 80 to 121 o C suspension was made to induce thermal denaturation it is more effective. In this case, a method of controlling the acidity (pH) of a sugar solution containing an aqueous protein solution or suspension or agglutinating protein may be used for effective denaturation of the protein. The protein concentration in the aqueous protein solution or suspension is preferably 100 mg / L to 100 g / L, more preferably 500 mg / L to 50 g / L. The total amount of protein added to the saccharin is preferably increased according to the amount of saccharified residue, which is a water insoluble solid in the saccharified substance, and the amount may be used in an amount of 0.01 g to 100 g per 1 kg of saccharified residue, and 0.1 per kg of saccharified residue. It is preferable to use it in the ratio of g-10g.
본 발명에서 바이오매스 당화물의 고액분리를 위해 조제한 단백질 첨가제인 수용액 혹은 현탁액을 이용하여 당화효소의 손실을 최소화하면서 당화물 중 미세입자를 가장 효과적으로 응집시키는 방법은 침전이 일어나지 않을 정도의 속도로 당화물을 교반하면서 단백질 수용액 혹은 현탁액을 서서히 가하고 일정 시간 동안 교반 상태를 유지하는 것이다. In the present invention, the method of agglomerating microparticles in the sugars most effectively while minimizing the loss of saccharase by using an aqueous solution or a suspension, which is a protein additive prepared for solid-liquid separation of biomass glycosylated sugars, has a sugar at a rate such that precipitation does not occur. Slowly adding an aqueous protein solution or suspension while stirring the cargo and maintaining the stirring state for a certain time.
본 발명에 따른 바이오매스의 당화로 제조한 당용액의 회수방법에 있어서, 상기 당용액 회수단계는 원심분리기, 필터프레스 또는 디캔터 중 어느 하나를 이용할 수 있다. In the method for recovering the sugar solution prepared by saccharification of the biomass according to the present invention, the sugar solution recovery step may use any one of a centrifuge, a filter press or a decanter.
본 발명은 바이오매스 당화물로부터 최소한의 공정으로도 당의 손실율을 최소화하면서 당용액을 회수하는 방법을 추가로 제공한다. 이를 위해 1) 당화잔사를 포함하는 당화물에 수용성 혹은 물에 현탁될 수 있는 단백질 수용액 혹은 현탁액을 가하고 교반함으로써 당화물 중의 미세입자를 응집시켜 거대입자로 전환하고, 2) 상기 거대입자로 전환된 당화물을 원심분리기나 여과기로 이송하여 작은 회전 속도로 단시간 원심분리하거나 높은 압력으로 가압하지 않고 여과하여 당용액을 회수하고, 3) 원심분리에 의해 가라앉은 당화잔사 혹은 여과 후 여과포에 남은 당화잔사를 회수하여 물을 가하면서 교반하여 당화잔사 중의 당용액을 희석 증량하고, 4) 증량된 당용액을 원심분리기나 여과기에 이송하고 고속원심분리하거나 가압 여과하여 나머지 당용액을 회수하는 것을 특징으로 한다. The present invention further provides a method for recovering a sugar solution from the biomass saccharide with a minimum loss of sugar even with a minimum process. To this end, 1) by adding an aqueous solution or suspension of water soluble or suspended in water to the glycosylated residue containing the saccharified residue and agglomerated into fine particles by agglomerating the fine particles in the saccharification, and 2) converted to the macroparticles The sugar solution is transferred to a centrifuge or a filter, and the sugar solution is recovered by centrifugation at a low rotational speed for a short time or filtered without being pressurized at a high pressure. 3) The saccharified residue that has been settled by centrifugation or the remaining saccharification residue on the filter cloth after filtration. And dilute and increase the sugar solution in the saccharified residue by stirring with water, and 4) transfer the increased sugar solution to a centrifuge or filter, and centrifuge or filter to recover the remaining sugar solution. .
본 발명에서 고체와 액체를 각각 분리하고자 하는 당화물은 섬유소 가수분해효소를 이용하여 셀룰로오스, 헤미셀룰로오스 등의 섬유소를 가수분해함으로써 생성된, 당용액 중에 당화잔사가 다량 함유되어 있는 것으로서, 예를 들면 옥수수 줄기, 해바라기 줄기, 팜 공과방과 팜 수간 등 농업 부산물, 억새와 갈대 등 에너지 작물, 유칼리, 아카시아, 버드나무, 포플라 교잡종 등의 목본계 바이오매스를 포함하는 목질계 바이오매스의 효소 가수분해물, 클로렐라 등의 녹조류, 규조 등의 규조류를 포함하는 조류 바이오매스의 효소 가수분해물이다. In the present invention, the glycosylated to separate the solid and the liquid, respectively, is produced by hydrolyzing fibrin such as cellulose and hemicellulose using fibrin hydrolase, and the sugar solution contains a large amount of saccharified residue, for example, corn. Agricultural byproducts such as stems, sunflower stems, palm fruits and palm trees, energy crops such as silver grass and reeds, enzymatic hydrolysates of woody biomass including woody biomass such as eucalyptus, acacia, willow, poplar hybrids, chlorella, etc. Enzyme hydrolyzate of algae biomass containing diatoms such as green algae and diatoms.
본 발명의 바이오매스 효소 가수분해물로부터 당용액을 회수하는 방법은 리그닌을 주성분으로 하는 당화잔사 미세입자를 응집시켜 거대입자로 전환한 당화물을 고액분리하여 투명한 당용액과 당용액이 일부 남아있는 당화잔사를 얻는 것이다. 스톡스의 침강 법칙(Stock's law)에 의하면 고체입자가 액체 중에서 침강하는 속도는 고체입자와 매질의 밀도차에 비례하고 입자의 크기의 세제곱에 비례하므로 거대입자화된 당화물은 저속의 원심분리에서도 단시간 내에 고액분리가 완결된다. 또한, 커진 입자는 여과포를 사용한 여과에서도 비교적 맑은 당용액을 얻을 수 있게 한다. 하지만, 이러한 고액분리에서도 침전물 혹은 여과잔사에 당용액의 일부가 남아 있으므로 추가로 당용액의 회수를 위한 후속 공정이 필요하지만, 후속 공정에서 물을 가하면서 침전물 혹은 여과잔사를 쉽게 해체하기 위해서는 고속의 원심분리 혹은 고압의 가압여과는 바람직하지 않다. 또한, 당류의 회수율을 높이기 위해 원심분리 혹은 여과 전에 일정량의 물을 넣고 교반하여 혼합한 후 고액분리를 수행하는 것도 가능하다.The method for recovering the sugar solution from the biomass enzyme hydrolyzate of the present invention is to solidify the glycosylated residue microparticles containing lignin as a major component and to convert the glycosylated solution into the macroparticles in a solid-liquid manner. To get a residue. According to Stock's law, the rate at which solid particles settle in a liquid is proportional to the density difference between the solid particles and the medium, and is proportional to the cube of the particle size. Solid-liquid separation is completed within. In addition, the larger particles make it possible to obtain a relatively clear sugar solution even in filtration using a filter cloth. However, even in such solid-liquid separation, some of the sugar solution remains in the precipitate or the filtrate residue, which requires an additional process for recovering the sugar solution.However, in order to easily dismantle the precipitate or the filtrate residue while adding water in the subsequent process, Centrifugation or high pressure press filtration are not preferred. In addition, it is also possible to perform a solid-liquid separation after mixing and stirring a certain amount of water before centrifugation or filtration in order to increase the recovery of sugars.
본 발명에 따른 바이오매스의 당화로 제조한 당용액의 회수방법에 있어서, 상기 당용액 회수단계 이후에는 당화잔사를 물과 혼합하며 교반하여 당화잔사 중 당용액을 희석 증량하는 단계; 및 희석 증량된 당용액을 당화잔사와 분리하는 증량된 당용액을 회수하는 단계를 더 포함할 수 있다.A method for recovering a sugar solution prepared by saccharification of biomass according to the present invention, comprising: diluting and increasing a sugar solution in a saccharified residue by mixing and stirring a saccharified residue with water after the sugar solution recovery step; And recovering the increased sugar solution that separates the diluted and extended sugar solution from the saccharified residue.
즉, 본 발명의 바이오매스 산 또는 당화효소의 가수분해물로부터 당용액을 회수하는 방법에서 상기 1차 고액분리로 남은, 당용액을 일부 함유하는 당화잔사로부터 당용액을 추가로 회수하기 위해서 고액분리로 발생한 당화잔사를 물과 혼합하고 균질화해야 한다. 이때 가하는 물의 양은 후속 공정에서 고액분리하였을 때 고형분 중의 수분 잔류율로부터 산출한 당용액의 목표 회수율에 따라 가감하며, 덩어리진 당화잔사를 물과 혼합하는 데 지장이 없는 한 교반, 진탕 등 그 방법에 특별히 한정은 없다. 이렇게 조제한 새로운 현탁액은 쉽게 침강 혹은 여과될 수 있을 만큼 여전히 큰 입자 상태를 유지한다. That is, in the method for recovering the sugar solution from the hydrolyzate of the biomass acid or glycosylation enzyme of the present invention, the solid solution is separated by solid-liquid separation in order to further recover the sugar solution from the saccharified residue containing a part of the sugar solution left in the first solid-liquid separation. The resulting saccharified residue should be mixed with water and homogenized. At this time, the amount of water to be added is added or subtracted according to the target recovery rate of the sugar solution calculated from the water retention rate in the solid content when the solid-liquid separation is performed in a subsequent process.As long as there is no problem in mixing the lumped saccharified residue with water, the method such as stirring and shaking There is no limitation in particular. The new suspension thus prepared still retains a large particle state that can be easily settled or filtered.
이 단계에서 본 발명의 바이오매스 산 또는 당화효소의 가수분해물로부터 당용액을 회수하는 방법은 상기 공정에서 새로운 물로 조제된 현탁액을 다시 원심분리 혹은 여과하여 당용액을 추가로 회수한다. 이 작업으로 당용액 회수 작업을 마칠 경우 원심분리 혹은 여과는 잔사에 당용액의 잔류량이 최소가 되도록 격렬한 조건을 사용할 수 있는데, 예를 들면 원심분리의 경우 회전수 증대와 함께 원심분리 시간을 길게 하고, 여과의 경우 압력을 높이는 것이다. 하지만, 당용액의 회수율을 더욱 높이고자 한다면 상기 과정을 반복하는 것도 가능하다. 이는 단백질의 응집력에 의해 생성된 거대입자는 비교적 내구성이 좋을 뿐만 아니라 변성 단백질의 접착력은 그대로 유지되므로 물과 혼합하는 과정에서 분리된 입자는 다시 응집하여 거대입자를 형성할 수 있기 때문이다.In this step, the method for recovering the sugar solution from the hydrolyzate of the biomass acid or glycosylation enzyme of the present invention further recovers the sugar solution by centrifuging or filtering the suspension prepared with fresh water in the above process. When the sugar solution is recovered by this operation, intensive centrifugation or filtration can be used under violent conditions such that the residual amount of sugar solution remains in the residue.For example, in the case of centrifugation, the centrifugation time is increased along with the rotational speed. In the case of filtration, the pressure is increased. However, it is also possible to repeat the above process if you want to further increase the recovery of the sugar solution. This is because the macroparticles produced by the cohesion of the protein are not only relatively durable, but also maintain the adhesion of the denatured protein, so that the particles separated in the process of mixing with water can again aggregate to form the macroparticles.
본 발명에 따른 바이오매스의 당화로 제조한 당용액의 회수방법에 있어서, 상기 당용액을 희석 증량하는 단계는 회분식 또는 연속식 분산교반기를 사용하는 것일 수 있다. 즉, 본 발명의 바이오매스 당화물의 효율적 고액분리를 위한 단계 3)에는 1차 고액분리 후 배출되는 당화잔사로부터 당용액의 추가 회수를 위해 당화잔사에 물을 가하고 교반하여 슬러리를 제조할 수 있는 교반기가 사용될 수 있으며, 회분식 혹은 연속식 분산교반기가 모두 사용 가능하다.In the method for recovering the sugar solution prepared by saccharification of the biomass according to the present invention, the diluting increase of the sugar solution may be performed using a batch or continuous dispersion stirrer. That is, in step 3) for efficient solid-liquid separation of the biomass saccharide of the present invention, a slurry may be prepared by adding water to the saccharified residue and stirring it for further recovery of the sugar solution from the saccharified residue discharged after the first solid-liquid separation. Stirrers can be used, and either batch or continuous dispersion agitators can be used.
본 발명에 따른 바이오매스의 당화로 제조한 당용액의 회수방법에 있어서, 상기 증량된 당화물을 회수하는 단계는 필터프레스 또는 디캔터 중 어느 하나를 이용하는 것일 수 있다. 즉, 본 발명의 바이오매스 효소당화물의 효율적 고액분리를 위한 단계 4)는 단계 2)의 반복으로 볼 수 있으며, 고액분리에 디캔터를 사용하는 경우 단지 디캔터의 회전수를 높이거나 시간을 길게 하여 당용액의 회수율을 높이는 것이 다를 수 있다. 또한, 고액분리에 필터프레스를 사용하는 경우에는 압축력을 높여서 당화잔사에 남게 되는 당용액의 부피를 줄이는 것이 다를 수 있다. In the method for recovering the sugar solution prepared by saccharification of the biomass according to the present invention, the step of recovering the extended sugars may be any one of a filter press or a decanter. That is, step 4) for the efficient solid-liquid separation of the biomass enzyme glycosylated compound of the present invention can be seen as a repetition of step 2), when the decanter is used for solid-liquid separation, only by increasing the number of revolutions of the decanter or lengthening the time. Increasing the recovery of sugar solution may differ. In addition, when the filter press is used for the solid-liquid separation, it may be different to reduce the volume of the sugar solution remaining in the saccharified residue by increasing the compressive force.
본 발명의 바이오매스 당화효소의 가수분해물로부터 당용액을 회수하는 방법은 당화효소를 그대로 함유하고 있는 당용액의 회수율을 극대화하면서 물의 사용량을 최소화하기 적합한 기기의 종류와 최적 사용 방법을 추가로 제공한다. 상기 바이오매스 당화물의 효율적 고액분리를 위한 단계 1)에서는 당화를 수행한 회분식 혹은 연속식 당화기를 그대로 단백질 첨가에 의한 미세입자 응집용 반응기로 사용할 수 있다. 즉, 당화 후 당화기 내에 미리 조제하여 둔 단백질 수용액 혹은 현탁액을 주입하고 일정한 시간 동안 교반 상태를 유지함으로써 단백질에 의한 미세입자 응집을 유도할 수 있다. 이 경우 다음 단계의 고액분리에서 당용액의 회수율을 높이기 위해 추가로 물을 주입할 수 있도록 여유 용적이 충분한 당화기가 바람직하다. 혹은 당화 후 교반이 가능한 회분식 교반기로 당화물을 이송한 후 단백질 첨가에 의한 미세입자 응집 반응을 수행할 수 있다. 이 경우에도 다음 단계의 고액분리에서 당용액의 회수율을 높이기 위해 추가로 물을 주입할 수 있도록 여유 용적이 충분한 교반기가 바람직하다. 또한, 당화물을 당화기로부터 고액분리기로 이송하는 도중에 단백질 수용액 혹은 현탁액을 가하면서 교반하여 미세입자 응집을 유도할 수 있는 연속반응기를 사용할 수 있으며, 이 경우에도 다음 단계의 고액분리에서 당용액의 회수율을 높이기 위해 추가로 물을 주입할 수 있도록 여유 용적이 충분한 연속식 교반기가 바람직하다. The method for recovering the sugar solution from the hydrolyzate of the biomass saccharase of the present invention further provides a type of equipment suitable for maximizing the recovery rate of the sugar solution containing the glycosylase and minimizing the amount of water used and an optimal method of use. . In step 1) for efficient solid-liquid separation of the biomass saccharide, a batch or continuous saccharification group that has been saccharified may be used as a reactor for agglomeration of microparticles by adding protein as it is. In other words, by injecting the aqueous solution or suspension prepared in advance in the saccharification device after glycosylation and maintaining the stirring state for a predetermined time, it is possible to induce fine particle aggregation by the protein. In this case, a saccharifier with sufficient spare volume is preferable to further inject water to increase the recovery rate of the sugar solution in the solid-liquid separation of the next step. Alternatively, the sugar particles may be transferred to a batch stirrer capable of stirring after saccharification, and then fine particle aggregation reaction may be performed by protein addition. Also in this case, a stirrer with sufficient spare volume is preferable to further inject water in order to increase the recovery rate of the sugar solution in the solid-liquid separation of the next step. In addition, a continuous reactor capable of inducing fine particle aggregation by stirring while adding a solution of a protein or a suspension during the transfer of the saccharified substance from the saccharifier to the solid-liquid separator may be used. In this case, the recovery rate of the sugar solution in the solid-liquid separation of the next step may be used. A continuous stirrer with sufficient free volume to inject additional water is preferred.
즉, 본 발명의 바이오매스 당화물의 효율적 고액분리를 위한 단계 2)의 1차 고액분리에는 연속적으로 당화물을 공급하여 맑은 당용액과 침전물을 연속적으로 배출할 수 있는 디캔터가 사용될 수 있다. 이러한 디캔터는 운전시간을 짧게 하여 소모 전력을 줄일 수 있도록 고속회전이 가능한 것이 바람직하다. 이때 고속회전수는 250 × g 내지 5,000 × g 상당 회전수가 바람직하며, 당화물의 체류시간은 30분 이내가 바람직하다. 침전물 중의 당용액을 추가로 회수하는 본 발명의 방법 단계 3)을 고려할 때 단계 2)에서 상기 디캔터는 맑은 당용액을 배출하지만 동시에 무른 침전물을 배출함으로써 물을 가하고 교반하여 슬러리를 쉽게 다시 제조할 수 있도록 운전하는 것이 바람직하며, 이를 위해 디캔터의 회전력은 500 × g 내지 4,000 × g, 당화물의 체류시간은 10분 이내가 더욱 바람직하다. 이는 대부분의 경우 고속으로 회전하는 디캔터에 의해 고액분리를 수행하여도 배출되는 침전물에 상당량의 당용액이 남아 있어서 단 한 번의 디캔팅으로 침전물 내의 당용액을 모두 회수할 수 없기 때문이다. That is, in the first solid-liquid separation of step 2) for the efficient solid-liquid separation of the biomass saccharide of the present invention, a decanter capable of continuously discharging the clear sugar solution and the precipitate may be used. Such a decanter is preferably capable of high speed rotation so as to reduce the power consumption by shortening the operating time. At this time, the high speed rotation speed is preferably 250 × g to 5,000 × g equivalent rotation speed, the residence time of the sugar is preferably within 30 minutes. Considering the method step 3) of the present invention, which further recovers the sugar solution in the precipitate, in the step 2), the decanter discharges the clear sugar solution, but at the same time, by adding water and stirring to discharge the soft precipitate, the slurry can be easily prepared again. It is preferable to operate so that the decanter has a rotational force of 500 × g to 4,000 × g, and a residence time of the sugars is more preferably within 10 minutes. This is because, in most cases, even when solid-liquid separation is performed by a decanter rotating at a high speed, a considerable amount of sugar solution remains in the discharged precipitate, and thus, all of the sugar solution in the precipitate cannot be recovered by only one decanting.
또한, 이 단계의 고액분리에서는 미세 구멍을 가진 여과포가 장착된 필터프레스가 사용될 수 있다. 필터프레스는 여과포의 공극크기에 따라서 통과시키는 입자의 크기가 다르므로 얻고자 하는 당용액의 탁도를 고려하여 1 미크론 이하부터 수십 미크론까지 자유로운 선택이 가능하다. 그러나 본 발명에서 바이오매스 효소당화물의 고액분리 원리가 소수성 표면을 가지고 있는 단백질 첨가로 소수성 리그닌 주성분의 미세입자를 응집시킴으로써 당화물 내 당화잔사의 평균입경을 증대하는 것이지만, 평균입경의 증대가 원심분리에 의한 침강속도를 높이는데 더욱 효과적인데 반하여 생성된 거대입자가 단단하지 않아 여과포 사이에서 압착되면 다시 깨져서 일부 미세입자가 여과포를 통과할 수 있기 때문이다. 그러나 여과포를 통과하는 입자의 수가 현저히 적어서 얻어지는 당용액은 비교적 맑으므로 후속공정에서 정밀여과 등의 추가 분리로 맑은 당용액을 제조할 수 있게 한다. 본 발명에서 바이오매스 당화물의 고액분리에 필터프레스를 사용할 경우 장착하는 여과포는 공극의 크기를 자유로이 조절할 수 있으므로 크게 한정할 수 없으나, 0.1미크론 내지 50미크론이 바람직하며, 맑은 당용액의 제조를 위해서는 1미크론 내지 15미크론이 더욱 바람직하다.In addition, in the liquid-liquid separation at this stage, a filter press equipped with a filter cloth having fine pores may be used. The filter press can be freely selected from less than 1 micron to several tens of microns in consideration of the turbidity of the sugar solution to be obtained since the size of the particles to be passed varies depending on the pore size of the filter cloth. However, in the present invention, although the solid-liquid separation principle of the biomass enzyme saccharide is to agglomerate microparticles of hydrophobic lignin main ingredient by the addition of a protein having a hydrophobic surface, the average particle diameter of the saccharified residue in the saccharide is increased. It is more effective in increasing the sedimentation rate by separation, whereas the produced macroparticles are not hard and can be cracked again when pressed between the filter cloths so that some fine particles can pass through the filter cloth. However, since the number of particles passing through the filter cloth is significantly smaller, the sugar solution obtained is relatively clear, so that a clear sugar solution can be prepared by further separation such as microfiltration in a subsequent process. In the present invention, when the filter press is used for the solid-liquid separation of the biomass saccharide, the filter cloth to be mounted can not be largely limited because the size of the pore can be freely adjusted, but is preferably 0.1 micron to 50 microns, in order to prepare a clear sugar solution. More preferred are 1 micron to 15 microns.
본 발명에 따른 바이오매스의 당화로 제조한 당용액의 회수방법에 있어서, 상기 증량된 당용액을 효소당화물 제조단계 및 미세입자 응집단계를 거친 미세입자가 응집된 슬러리의 희석 증량에 재사용할 수 있다.In the method for recovering a sugar solution prepared by saccharification of biomass according to the present invention, the increased sugar solution may be reused for dilution increase of a slurry in which fine particles are aggregated through an enzyme saccharification step and a fine particle aggregation step. have.
즉, 단계 4의 증량된 당용액으로부터 회수한 당용액을 단백질 첨가 및 미세입자 응집단계에서 미세입자가 응집된 슬러리의 희석 증량에 재사용할 수 있다. 본 발명의 바이오매스 당화물의 효율적 분리를 위해서는 1차 고액분리에 맑은 당용액을 얻을 수 있는 디캔터를 사용한 후 일부 불용성 입자의 투과가 불가피하더라도 2차 고액분리에 필터프레스를 사용하는 것이 바람직하며, 2차 고액분리로부터 얻은 약간 탁하고 당농도가 현저히 낮은 당용액을 1차 고액분리 전 당화물의 희석 증량에 사용함으로써 물의 사용량을 줄이는 동시에 맑은 당용액을 얻는 방법이 가장 바람직하다.That is, the sugar solution recovered from the increased sugar solution of step 4 may be reused for dilution increase of the slurry in which the fine particles are aggregated in the step of protein addition and fine particle aggregation. For efficient separation of the biomass glycosylated compound of the present invention, it is preferable to use a filter press for the second solid-liquid separation, although the use of a decanter to obtain a clear sugar solution for the first solid-liquid separation is inevitable. It is most preferable to obtain a clear sugar solution while reducing the amount of water used by using a slightly turbid and significantly low sugar concentration obtained from the second solid-liquid separation for the dilution increase of the sugars before the first solid-liquid separation.
이하, 본 발명의 제조예 및 실시예에 의거하여 더욱 상세하게 설명하고자 한다. 단, 하기 제조예 및 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다. Hereinafter, on the basis of the production examples and examples of the present invention will be described in more detail. However, the following Preparation Examples and Examples are only for illustrating the present invention, and the scope of the present invention is not limited thereto.
제조예 1. 콩 단백질을 주성분으로 하는 당화잔사 응집용 단백질 첨가제(무변성)Preparation Example 1 Protein additive for aggregation of glycated residues containing soy protein as a main ingredient (unmodified)
콩 단백질 추출물(Soy protein isolated, MP Biomedicals, LLC, 프랑스) 100 g을 10 리터 찜통에 넣고 비이온수 5 리터를 가한 다음 105 oC에서 20분간 멸균하였다. 플라스틱 용기(50 리터용)에 멸균된 콩 단백질 수용액을 넣고 비이온수를 45리터 더 가하여 당화잔사 응집용 단백질 첨가제를 조제하였다.100 g of soy protein isolated (Soy protein isolated, MP Biomedicals, LLC, France) was added to a 10 liter steamer, and 5 liters of non-ionized water was added and sterilized at 105 o C for 20 minutes. A sterilized soy protein solution was added to a plastic container (for 50 liters), and 45 liters of non-ionized water was added to prepare a protein additive for aggregation of glycated residues.
제조예 2. 콩 단백질을 주성분으로 하는 당화잔사 응집용 단백질 첨가제(가온 변성)Preparation Example 2 Protein additive for agglutination of glycation residues containing soy protein as a main component (heating denaturation)
콩 단백질 추출물(Soy protein isolated, MP Biomedicals, LLC, 프랑스) 1 g을 1 리터 배양병에 넣고 1 리터의 물을 가한 다음 교반하여 녹였다. 이것을 121 oC에서 20분간 멸균 및 가온 변성하여 당화잔사 응집용 단백질 첨가제를 조제하였다. 1 g of soy protein extract (Soy protein isolated, MP Biomedicals, LLC, France) was added to a 1 liter culture bottle, and 1 liter of water was added, followed by stirring to dissolve. This was sterilized and warm denatured at 121 ° C. for 20 minutes to prepare protein additives for aggregation of glycated residues.
제조예 3. 콩 분말을 주성분으로 하는 당화잔사 응집용 단백질 첨가제(가온 변성)Preparation Example 3 Protein additive for agglutination of glycation residues containing soybean powder as a main component (heating denaturation)
콩 분말(Soybean flour, 시그마 S-9633, 미국) 1 g을 1 리터 배양병에 넣고 1 리터의 물을 넣은 다음 교반하여 녹였다. 이것을 121 oC에서 20분간 멸균 및 가온 변성한 후 고속회전 교반기(도깨비 방망이, (주)부원생활가전 제품, 한국)로 1분간 재분산시켜서 당화잔사 응집용 단백질 첨가제를 조제하였다. 1 g of soybean flour (Soyma flour, Sigma S-9633, USA) was placed in a 1 liter culture bottle, and 1 liter of water was added thereto, followed by stirring to dissolve. This was sterilized and warm-modified at 121 ° C. for 20 minutes, and then redispersed for 1 minute with a high-speed rotary stirrer (Goi Bak, Buwon Household Appliances, Korea) to prepare a glycosylated residue protein additive.
제조예 4. 소 혈청 단백질을 주성분으로 하는 당화잔사 응집용 단백질 첨가제(가온 변성)Preparation Example 4 Protein additive for agglutination of glycated residues containing bovine serum protein as a main component (heat denatured)
소 혈청 단백질(Bovine serum albumin, 시그마 A3059, 미국) 1 g을 1 리터 배양병에 넣고 1 리터의 물을 가한 다음 교반하여 녹였다. 이것을 121 oC에서 20분간 멸균 및 가온 변성하여 당화잔사 응집용 단백질 첨가제를 조제하였다. 1 g of bovine serum albumin (Sigma A3059, USA) was added to a 1 liter culture bottle, and 1 liter of water was added and stirred to dissolve. This was sterilized and warm denatured at 121 ° C. for 20 minutes to prepare protein additives for aggregation of glycated residues.
제조예 5. 계란 단백질을 주성분으로 하는 당화잔사 응집용 단백질 첨가제(가온 변성)Preparation Example 5 Protein additive for agglutination of glycated residues containing egg protein as a main ingredient (heating degeneration)
계란 단백질(egg albumin, 시그마 A5503, 미국) 1 g을 1 리터 배양병에 넣고 1 리터의 물을 가한 다음 교반하여 녹였다. 이것을 121 oC에서 20분간 멸균 및 가온 변성한 후 고속회전 교반기(도깨비 방망이, (주)부원생활가전 제품, 한국)로 1분간 재분산시켜서 당화잔사 응집용 단백질 첨가제를 조제하였다. 1 g of egg protein (egg albumin, Sigma A5503, USA) was added to a 1 liter culture bottle and 1 liter of water was added, followed by stirring to dissolve. This was sterilized and warm-modified at 121 ° C. for 20 minutes, and then redispersed for 1 minute with a high-speed rotary stirrer (Goi Bak, Buwon Household Appliances, Korea) to prepare a glycosylated residue protein additive.
<실시예 A: 팜 공과방 효소당화물로부터 당용액의 회수>Example A Recovery of Sugar Solution from Palm Fruit Enzyme Glycosaccharide
습윤 상태의 팜공과방(empty fruit bunch of oil palm, 수분 65%) 분쇄물(20 메시 이하, 인도네시아 산, 코린도 그룹 제공)을 연속고압반응기(SuPR2G, Advancebio 제품, 미국)에 주입하여 191 oC에서 20분간 열수전처리 하였다. 전처리물에 원시료 건조중의 10배의 수분함량이 되도록 물을 가하여 혼합한 후 필터프레스(태영필트레이션, 한국)에 주입하여 고액분리하였다. 얻어진 고형물을 커팅밀(한국분체기계 제품, 한국)로 분산분쇄한 후 물을 가하고 혼합하였다. 이것을 디스크밀(laboratory disc mill, Andritz 제품, 미국)에 주입하여 마찰 분쇄하여 함으로써 수분함량 75.6%인 효소당화용 기질을 준비하였다. 미리 무게를 측정하여둔 총 부피 7 리터의 당화조에 상기 당화기질 1,043 g, 비이온수 4,006 g 및 당화효소 셀릭씨텍3(Cellic CTec3, 노보자임스 코리아 제품, 서울) 11 ml를 가하였다. 당화기를 50±1 oC, pH 5.45±0.05, 교반속도 200rpm을 유지하면서 72시간 동안 당화하여 당화물을 제조하였다. 먼저, 당화조 내용물의 무게를 측정한 후 당화물을 50 ml 취하여 원심분리하고 상징액을 고속액체크로마토그래프(HPLC, Waters 제품, 미국)로 포도당 농도를 분석하였다. 또한, 잔사를 비이온수로 여러 번 세척하고 동결건조하여 당화잔사 잔류율을 산출하였다. Empty wet bunch of oil palm (65% moisture) ground powder (less than 20 mesh, provided by Corindo Group, Indonesia) was injected into a continuous high-pressure reactor (SuPR2G, Advancebio, USA) at 191 o C. The hydrothermal treatment was performed for 20 minutes at. Water was added to the pretreatment so that the water content was 10 times that of the raw material drying, followed by injection into a filter press (Taeyoung Filtration, Korea) to separate the liquid. The obtained solid was dispersed and ground by a cutting mill (Korea Powder Machinery Co., Ltd., Korea), and then water was added and mixed. This was injected into a disc mill (laboratory disc mill, manufactured by Andritz, USA) and triturated to prepare an enzyme glycosylation substrate having a water content of 75.6%. A total of 7 liters of saccharification tank weighed in advance was added 1,043 g of the saccharification substrate, 4,006 g of non-ionized water, and 11 ml of the glycosylase Selicctec 3 (Cellic CTec3, manufactured by Novozymes Korea, Seoul). The glycosylated compound was prepared by saccharifying for 72 hours while maintaining a saccharification device at 50 ± 1 ° C., pH 5.45 ± 0.05, and a stirring speed of 200 rpm. First, after weighing the contents of the saccharification tank, 50 ml of the saccharin was taken and centrifuged, and the supernatant was analyzed for glucose concentration by high performance liquid chromatography (HPLC, Waters, USA). In addition, the residue was washed several times with non-ionized water and lyophilized to calculate the residual ratio of glycated residue.
삼각플라스크(125 ml용)에 효소당화물을 40 ml 씩 옮기고 스터바를 넣은 다음 멀티스터러(코닝 제품 미국)에 올려놓고 300 rpm으로 교반하였다. 이 효소당화물에 상기 제조예 1 내지 제조예 5의 당화잔사 응집용 단백질 첨가제 4 ml를 넣고 5분간 교반한 다음 50 ml용 팔콘튜브에 옮겼다. 이 시료를 당화물에 물만 4 ml 첨가하여 혼합한 대조구 시료와 함께 845 × g에서 5분간 원심분리(한일과학 제품, 한국)한 후 탁도계(HACH 2100AN turbidimeter, 미국)로 탁도를 측정하여 표 1에 표시하였다. 40 ml of enzyme saccharine was transferred to a Erlenmeyer flask (for 125 ml), a stub was placed, and then placed on a multisterer (Corning Products USA) and stirred at 300 rpm. 4 ml of the glycosylated residue aggregation protein additives of Preparation Examples 1 to 5 were added to the enzyme saccharified, stirred for 5 minutes, and then transferred to a 50 ml falcon tube. The sample was centrifuged at 845 × g for 5 minutes with a control sample containing only 4 ml of water and mixed with glycosylated water (Hanil Science, Korea), and then turbidity was measured using a turbidimeter (HACH 2100AN turbidimeter, USA). Indicated.
첨가제의 주성분Main ingredient of the additive 첨가제 제조 방법Additive manufacturing method 원심분리 상징액 탁도(NTU)Centrifuge Supernatant Turbidity (NTU)
비교예 1Comparative Example 1 당화물 대조구(첨가제 없음)Saccharide Control (No Additives) -- 측정한도 초과Measurement limit exceeded
실시예 1Example 1 제조예 1의 콩 단백질 추출물Soy protein extract of Preparation Example 1 무 변성No denaturation 71±3571 ± 35
실시예 2Example 2 제조예 2의 콩 단백질 추출물Soy Protein Extract of Preparation Example 2 가온 변성Gaon Degeneration 30.8±0.630.8 ± 0.6
실시예 3Example 3 제조예 3의 콩 분말Soybean powder of Preparation Example 3 가온 변성Gaon Degeneration 80.4±7.180.4 ± 7.1
실시예 4Example 4 제조예 4의 소 혈청 단백질Bovine Serum Protein of Preparation Example 4 가온 변성Gaon Degeneration 40.0±0.640.0 ± 0.6
실시예 5Example 5 제조예 5의 계란 단백질Egg protein of Preparation Example 5 가온 변성Gaon Degeneration 69.1±1.669.1 ± 1.6
상기 실시예 A의 팜 공과방 전처리물의 효소당화에 의해 생성된 당화물의 포도당 농도는 2.6%(무게/무게), 비중은 1.02, 당화물이 함유하는 불용성 잔사율은 약 2.0%였다. 이 당화물을 845 × g에서 5분간 원심분리하여 얻은 당용액은 표 1의 비교예 1과 같이 매우 탁하여 추가적인 고액분리가 불가피하였다. 반면에 여기에 당화잔사 응집용 단백질 첨가제를 당화물 40 g(당화잔사 0.8 g)당 4 ml(단백질 4 mg)씩 첨가하고 교반한 후 원심분리하여 얻은 상징액의 탁도는 당화잔사 응집용 단백질 첨가제 중 단백질의 종류에 따라서 조금씩 달랐지만 매우 낮아서 모두 맑은 당용액을 생성하는 것을 알 수 있다. The glucose concentration of the glycosylated product produced by the enzymatic saccharification of the palm fruit and vegetable pretreatment of Example A was 2.6% (weight / weight), the specific gravity was 1.02, and the insoluble residue contained in the sugars was about 2.0%. The sugar solution obtained by centrifuging the saccharides at 845 × g for 5 minutes was very turbid as in Comparative Example 1 of Table 1, and further solid-liquid separation was inevitable. On the other hand, the turbidity of the supernatant obtained by adding 4 ml (4 mg of protein) per 40 g of saccharified residue (0.8 g of saccharified residue) and stirring after adding the protein additive for agglutination of saccharified residue was measured. It was slightly different depending on the type of protein, but it was very low, and all of them produced a clear sugar solution.
<실시예 B: 디캔터와 필터프레스를 이용한 거대억새 효소당화물로부터 당용액의 회수>Example B Recovery of Sugar Solution from Giant Suspension Enzyme Glycosaccharide Using Decanter and Filter Press
습윤 상태의 거대억새 분쇄물(수분 65%, 20 메시 이하, 한국산)을 연속고압반응기(SuPR2G, Advancebio 제품, 미국)에 주입하여 191 oC에서 20분간 열수전처리 하였다. 전처리물에 원시료 건조중의 10배의 수분함량이 되도록 물을 가하여 혼합한 후 필터프레스(태영필트레이션, 한국)에 주입하여 고액분리하였다. 얻어진 고형물을 커팅밀(한국분체기계 제품, 한국)로 분산분쇄한 후 물을 가하고 혼합하였다. 이것을 디스크밀(laboratory disc mill, Andritz 제품, 미국)에 주입하여 마찰 분쇄하여 수분함량 80.7%인 효소당화용 기질을 준비하였다. 총 부피 70 리터의 당화기(한일과학 제품, 한국)에 상기 당화기질 48,210 g을 12등분하여 1 시간에 하나씩 주입하고 당화기를 50±1 oC, pH 5.0±0.05, 교반속도 200rpm을 유지하였다. 여기에 당화효소 셀릭씨텍3(Cellic CTec3, 노보자임스 코리아 제품, 서울)를 매 시간 65.8 ml 가하였다. 총 12 시간 동안 당화 기질과 당화효소를 가하고 최초 기질 투입시점부터 72시간 동안 당화하여 당화물을 제조하였다. 당화물을 소량 취하여 원심분리하고 상징액을 고속액체크로마토그래프(HPLC, Waters 제품, 미국)로 포도당 농도를 분석하였다. 잔사를 물로 씻은 다음 건조하고 무게를 측정하여 당화물 중 불용성 당화잔사 비율을 산출하였다. 당화물을 모두 100 리터 용량의 혼합기(한일과학 제품, 한국)에 옮기면서 당화물의 무게를 평량하고 이 양과 포도당 농도를 이용하여 총 포도당량을 산출하였다. Wet macromolecular crushed water (65% moisture, 20 mesh or less, Korea) was injected into a continuous high pressure reactor (SuPR2G, Advancebio, USA), and hydrothermally treated at 191 o C for 20 minutes. Water was added to the pretreatment so that the water content was 10 times that of the raw material drying, followed by injection into a filter press (Taeyoung Filtration, Korea) to separate the liquid. The obtained solid was dispersed and ground by a cutting mill (Korea Powder Machinery Co., Ltd., Korea), and then water was added and mixed. This was injected into a disc mill (laboratory disc mill, manufactured by Andritz, USA) and triturated to prepare an enzyme glycosylation substrate having a water content of 80.7%. The total amount of glycosylation substrate 48,210 g in a total volume of 70 liters of saccharification machine (Hanil Science, Korea) was divided into 12 parts and injected one by one, and the saccharification machine was maintained at 50 ± 1 ° C., pH 5.0 ± 0.05, and a stirring speed of 200 rpm. To this was added 65.8 ml of glycosylase CelicCec3 (Cellic CTec3, Novozymes Korea, Seoul) every hour. Glycosylated was prepared by adding saccharification substrate and saccharase for a total of 12 hours, and saccharifying for 72 hours from the time of initial substrate addition. A small amount of the saccharide was centrifuged and the supernatant was analyzed for glucose concentration by high-performance liquid chromatography (HPLC, Waters, USA). The residue was washed with water, dried and weighed to calculate the ratio of insoluble glycated residue in the saccharified product. All of the sugars were transferred to a 100-liter mixer (Hanil Science, Korea) to weigh the sugars and calculate the total glucose using this amount and the glucose concentration.
상기 당화물을 분당 60 rpm으로 교반하면서 상기 제조예 2의 당화잔사 응집용 단백질 첨가제 50 리터를 가하고 5분간 추가로 교반하였다. 이 시료를 디캔터((주)화인 제품, 한국)로 이송하여 1,902 × g에서 5분간 머물도록 프로그램하여 원심분리하였다. 이 과정에서 배출되는 당용액은 200 리터 수조에 모았다. 디캔터에서 배출되는 고형분은 소형혼합기에 연속적으로 주입하면서 비이온수 72.8 리터를 첨가하였다. 당화물 희석액을 5 미크론 여과포가 부착된 필터프레스(태영필트레이션, 한국)에 주입하고 필터프레스의 압력을 조절하여 배출되는 당화잔사 중 수분함량이 50% 내외가 되도록 가압여과하였다. 여기에서 배출되는 당용액을 상기 디캔터에 다시 주입하여 1,902 × g에서 5분간 머물도록 프로그램하여 원심분리한 후 배출되는 당용액을 상기 디캔터에서 얻은 당용액에 더하였다. 수조 내의 당용액을 소량 취하여 포도당 농도를 측정하고 당용액의 총량에 곱하여 당 회수율을 산출하였다. 이상과 같은 과정을 3회 반복하여 구한 평균 당회수율과 최종 당용액의 탁도 평균치를 표 2에 표시하였다. While stirring the glycosylated at 60 rpm per minute, 50 liters of the protein additive for aggregation of glycated residues of Preparation Example 2 was added and further stirred for 5 minutes. The sample was transferred to a decanter (Fine Products, Korea) and programmed to stay at 1,902 × g for 5 minutes and centrifuged. The sugar solution from this process was collected in a 200 liter tank. The solids discharged from the decanter were added to 72.8 liters of non-ionized water while continuously being injected into a small mixer. The disaccharide solution was injected into a filter press (Taeyoung Filtration, Korea) attached with a 5 micron filter cloth and filtered under pressure so that the water content of the saccharified residue discharged by adjusting the pressure of the filter press was about 50%. The sugar solution discharged here was re-injected into the decanter, programmed to stay at 1,902 × g for 5 minutes, and centrifuged, and then the sugar solution discharged was added to the sugar solution obtained from the decanter. A small amount of the sugar solution in the tank was taken to measure the glucose concentration and multiplied by the total amount of the sugar solution to calculate the sugar recovery rate. Table 2 shows the average sugar yield and the turbidity average of the final sugar solution obtained by repeating the above process three times.
<실시예 C: 디캔터를 이용한 거대억새 효소당화물로부터 당용액의 회수>Example C Recovery of Sugar Solution from Giant Suspension Enzyme Glycosaccharide Using Decanter
상기 실시예 B와 같은 방법으로 당화물을 제조하였다. 이 당화물을 분당 60 rpm으로 교반하면서 상기 제조예 2의 당화잔사 응집용 단백질 첨가제 50 리터를 가하고 5분간 추가로 교반하였다. 이 시료를 디캔터((주)화인 제품, 한국)로 이송하여 1,902 × g에서 5분간 머물도록 프로그램하여 원심분리하였다. 이 과정에서 배출되는 당용액은 300 리터 수조에 모았다. 디캔터에서 배출되는 고형분은 소형혼합기에 연속적으로 주입하면서 비이온수 74 리터를 첨가하였다. 당화물 희석액을 상기와 동일한 디캔터로 고액분리하였다. 이 조작을 한번 더 반복하여 당용액을 회수하였다. 수조 내의 당용액을 소량 취하여 포도당 농도를 측정하고 당용액의 총량에 곱하여 당 회수율을 산출하였다. 이상과 같은 과정을 3회 반복하여 구한 평균 당회수율과 최종 당용액의 탁도 평균치를 표 2에 표시하였다. The sugar compound was prepared in the same manner as in Example B. While stirring this glycoside at 60 rpm per minute, 50 liters of the protein additive for aggregation of the saccharified residue of Preparation Example 2 were added and further stirred for 5 minutes. The sample was transferred to a decanter (Fine Products, Korea) and programmed to stay at 1,902 × g for 5 minutes and centrifuged. The sugar solution discharged from this process was collected in a 300 liter tank. The solids discharged from the decanter were added continuously to a small mixer with 74 liters of non-ionized water. The disaccharide solution was solid-liquid separated with the same decanter as above. This operation was repeated once more to recover the sugar solution. A small amount of the sugar solution in the tank was taken to measure the glucose concentration and multiplied by the total amount of the sugar solution to calculate the sugar recovery rate. Table 2 shows the average sugar yield and the turbidity average of the final sugar solution obtained by repeating the above process three times.
구분division 실시예 6 측정 결과Example 6 Measurement Results
총량(g)Gross weight (g) 포도당 농도(%)Glucose Concentration (%) 총 포도당(g)Total glucose (g) 비중importance 잔사율(%)% Residual 당회수율(%)Yield rate (%) 탁도(NTU)Turbidity (NTU)
당화물Sugar 50,45050,450 11.111.1 5,1745,174 1.081.08 7.67.6 -- 측정한도초과Measurement limit exceeded
실시예 B 회수 당용액Example B Recovery Sugar Solution 165,200165,200 3.083.08 5,0965,096 1.021.02 0.00.0 98.598.5 21.821.8
실시예 C 회수 당용액Example C Recovery Sugar Solution 222,000222,000 2.292.29 5,0755,075 1.021.02 0.00.0 98.198.1 20.220.2
표 2는 당화물은 당농도가 높아 비중이 크고 미립자를 많이 가지고 있어서 1,902 × g의 힘으로 5분 원심분리하여도 당화잔사 중 일부가 가라앉지 않아 탁도가 측정이 불가능할 만큼 높게 나타나는 것을 보여준다. 반면에 본 발명의 당화잔사 응집용 단백질 첨가제인 제조예 2의 콩 단백질 추출물을 당화잔사 1 g 당 0.026 g(당화물 1 kg 당 2 g 단백질)을 첨가하여 회수한 당용액은 비록 양이 3배 이상으로 증가하고 포도당 농도는 약 1/3로 낮아졌지만 맑은 용액이 되어 고액분리가 효율적으로 이루어졌다는 것을 알 수 있다. 또한, 상기 실시예로부터 얻은 당회수율은 98.5%에 달하는 것으로 나타나 본 발명의 당용액 회수기술은 단순한 공정으로도 매우 높은 당회수율을 얻을 수 있다는 것을 알 수 있다.Table 2 shows that the glycosylated solution has a high specific gravity and a lot of fine particles, so that even after centrifugation for 5 minutes with a force of 1,902 × g, some of the glycosylated residues do not sink and the turbidity is high enough to be impossible to measure. On the other hand, the sugar solution recovered by adding 0.026 g per 2 g of glycosylated residue (2 g per kg of saccharified sugar) to the soy protein extract of Preparation Example 2, which is the protein additive for aggregation of glycated residues of the present invention, was three times the amount. Increasing above and the glucose concentration was lowered to about one third, but it can be seen that the solid solution was effectively separated as a clear solution. In addition, the yield of sugar obtained from the above example was found to reach 98.5%, it can be seen that the sugar solution recovery technique of the present invention can obtain a very high sugar yield even with a simple process.
실시예 C의 디캔터를 이용하여 제조한 당용액도 최종 부피가 원 당용액의 네 배에 달했지만 당 회수율이 98%로 매우 높고 또한 맑아서 당회수 기술로 바람직하였다.The sugar solution prepared using the decanter of Example C also had a final volume of four times that of the original sugar solution, but the sugar recovery rate was 98%.
<시험예 1: 거대억새 효소당화물로부터 회수한 당용액의 효소 함유량 확인>Test Example 1: Confirmation of Enzyme Content of Sugar Solution Recovered from Giant Suspense Enzyme Sulfate
습윤 상태의 거대억새 분쇄물(수분 65%, 20 메시 이하, 한국산)을 연속고압반응기(SuPR2G, Advancebio 제품, 미국)에 주입하여 200 oC에서 10분간 열수전처리 하였다. 전처리물에 원시료 건조중의 10배의 수분함량이 되도록 물을 가하여 혼합한 후 필터프레스(태영필트레이션, 한국)에 주입하여 고액분리한 후 커팅밀에 주입하여 가볍게 분쇄함으로써 당화용 기질을 준비하였다. 총 부피 7 리터의 당화기(한일과학 제품, 한국)에 비이온수 4061 g을 먼저 넣고 상기 당화기질 1190 g을 가하였다. 당화기를 50±1 oC, pH 5.5±0.05, 교반속도 200rpm을 유지하였다. 여기에 당화효소 셀릭씨텍3(Cellic CTec3, 노보자임스 코리아 제품, 서울)를 24 ml 가하였다. 총 144시간 동안 당화하여 당화물을 제조하였다. 당화물을 저어주어 균질화하면서 200 g 씩 취하여 각각 네 개의 500 ml용 원심분리 튜브와 두 개의 배양병에 담았다. 당화물이 담긴 두 개의 원심분리 튜브에는 마그네틱 스터러로 저어주면서 상기 제조예 2의 콩 단백질 추출물 현탁액 200 ml를 넣고 5분간 교반을 지속하였다. 이후 1,902 × g에서 5분간 원심분리하여 맑은 상징액을 얻었다. 당화물이 담긴 두 개의 원심분리 튜브에는 비이온수 200 ml를 가하고 혼합한 후 1,902 × g에서 90분간 원심분리하여 맑은 상징액을 얻었다. 당화물이 담긴 두 개의 배양병에는 비이온수 200 ml를 가하고 고온멸균기(autoclave)에 넣어 121 oC에서 20분간 변성시켰다. 원심분리 튜브에 내용물을 옮기고 1,902 × g에서 5분간 원심분리하여 맑은 상징액을 얻었다. 상기 당화용 기질 3.17 g을 125 ml용 삼각플라스크에 달아넣고 시트르산 완충액(1 M, pH 5.5, 시그마알드리치 제품, 미국) 8 ml, 소디움 아자이드(1%, 무게/무게, 시그마알드리치 제품, 미국) 1.3 ml, 상기 각 당용액 24 ml를 가한 다음 산도를 pH 5.5로 조절하였다. 플라스크 내용물의 무게가 40 g이 되도록 비이온수를 가하고 밀봉하였다. 효소 표준 시험구로는 상기와 같이 당화용 기질, 시트르산 완충액, 소디움 아자이드 및 비이온수로 이루어진 당화계에 당화효소로서 Cellic CTec3 를 희석하여 용량별로 첨가하되 그 양이 각각 효소 원액으로 0.01, 0.02, 0.03, 0.04 및 0.05 ml가 되도록 하였다. 상기 시료를 회전교반기(orbit shaker, 가온과학 제품, 한국)에 넣고 50±1 oC에서 교반속도 200rpm으로 72시간 당화하였다. 당화 후 당화물 1 ml를 취하여 원심분리(11,000rpm, 20분)한 후 고속액체크로마토그래프(HPLC, Waters 제품, 미국)로 상징액 중의 포도당 농도를 분석하였다. 효소 표준 시험구의 당화율로 그린 표준 곡선도 2를 사용하여 시료 당용액 중의 효소 활성을 당화율로 대신하여 표기한 결과는 표 3에 정리하였다. Wet giant pampas grass (65% moisture, 20 mesh or less, Korea) was injected into a continuous high pressure reactor (SuPR2G, Advancebio, USA), and hydrothermally treated at 200 ° C. for 10 minutes. Prepare the saccharification substrate by adding water to the pretreatment so that the water content is 10 times that of the raw material drying and then injecting it into the filter press (Taeyoung filtration, Korea) to separate the solid and liquid and then injecting it into the cutting mill to lightly grind it. It was. Into a total volume of 7 liter of saccharification machine (Hanil Science, Korea), 4061 g of non-ionized water was added first, and 1190 g of the saccharification substrate was added thereto. The glycosylator was maintained at 50 ± 1 ° C., pH 5.5 ± 0.05, and agitation speed of 200 rpm. To this was added 24 ml of the glycosylating enzyme Celic Cec3 (Cellic CTec3, manufactured by Novozymes Korea, Seoul). Glycosylated was prepared by saccharification for a total of 144 hours. 200 g each was added while homogenizing the glycosylated solution and placed in four 500 ml centrifuge tubes and two culture bottles, respectively. Two centrifuge tubes containing saccharin were added with 200 ml of the soy protein extract suspension of Preparation Example 2 while stirring with a magnetic stirrer and the stirring was continued for 5 minutes. After centrifugation for 5 minutes at 1,902 × g to obtain a clear supernatant. Two centrifuge tubes containing saccharin were added with 200 ml of non-ionized water, mixed, and centrifuged at 1,902 × g for 90 minutes to obtain a clear supernatant. Two bottles containing the culture per cargo is added to the non-water 200 ml was denatured for 20 minutes at 121 o C into the high-temperature sterilizer (autoclave). The contents were transferred to a centrifuge tube and centrifuged at 1,902 × g for 5 minutes to obtain a clear supernatant. 3.17 g of the glycosylation substrate was placed in a 125 ml Erlenmeyer flask, and 8 ml of citric acid buffer (1 M, pH 5.5, Sigma Aldrich, USA), sodium azide (1%, weight / weight, Sigma Aldrich, USA) 1.3 ml, 24 ml of each sugar solution was added, and the acidity was adjusted to pH 5.5. Non-ionized water was added and sealed so that the flask contents weighed 40 g. As the standard enzyme test, Cellic CTec3 as a glycosylase was added to the saccharification system composed of saccharification substrate, citric acid buffer, sodium azide and non-ionized water as described above, and the amount was added in 0.01, 0.02, 0.03, respectively. , 0.04 and 0.05 ml. The sample was placed in a stirrer (orbit shaker, Gaon Scientific, Korea) and glycosylated at 50 ± 1 ° C. at a stirring speed of 200 rpm for 72 hours. After saccharification, 1 ml of the saccharin was taken and centrifuged (11,000 rpm, 20 minutes), and the glucose concentration in the supernatant was analyzed by high performance liquid chromatography (HPLC, Waters, USA). Table 3 shows the results of the enzyme activity in the sample sugar solution instead of the glycosylation rate drawn using the saccharification rate of the enzyme standard test plot.
구분division 당화율 측정 결과(%)Glycation rate measurement result (%)
당화물 가온처리 후 원심분리Centrifugation after Carbohydrate Warming 00
무처리 당화물 원심분리Untreated Sugars Centrifugation 11.4±1.111.4 ± 1.1
단백질 첨가제 응집 후 원심분리Centrifugation after protein additive aggregation 15.9±0.115.9 ± 0.1
당화물의 각기 다른 처리 후 당용액의 효소활성을 측정하였을 때 표 3과 같이 고속원심분리 상징액은 주어진 조건에서 당화기질의 11.4%를 포도당으로 전환함으로써 효소가 함유되어 있다는 것을 보여준다. 반면에 당화물이 함유하고 있는 효소를 변성시켜 미세입자의 응집을 유도하는 경우 새로 첨가된 당화기질에 대한 당용액의 효소 활성은 전혀 볼 수 없다. 이와는 대조적으로 본 발명의 방법을 사용하여 얻은 당용액은 오히려 무처리 당용액보다 더 높은 효소 당화율을 보여주어 최소한 당용액 중의 효소를 불활성화하거나 없애지는 않는다는 것을 보여준다.When the enzyme activity of the sugar solution was measured after different treatments of the sugars, the high-speed centrifugation supernatant showed that the enzyme was contained by converting 11.4% of the glycosylation substrate to glucose under given conditions. On the other hand, in the case of inducing the aggregation of microparticles by denaturing the enzyme containing the saccharin, the enzyme activity of the sugar solution on the newly added glycosylation substrate is not seen at all. In contrast, the sugar solution obtained using the method of the present invention shows a higher enzyme glycosylation rate than the untreated sugar solution, showing that at least it does not inactivate or eliminate the enzyme in the sugar solution.

Claims (10)

  1. 바이오매스 전처리물에 산 또는 당화효소를 가하여 당화하는 바이오매스 당화물 제조단계;Biomass sacchalyse preparation step of saccharifying by adding acid or glycosylase to the biomass pretreatment;
    상기 바이오매스 당화물에 당화잔사 응집용 단백질 첨가제를 첨가하고 교반하여 미세입자가 응집된 슬러리를 제조하는 미세입자 응집단계; 및A fine particle aggregation step of preparing a slurry in which fine particles are aggregated by adding and stirring a glycated residue protein additive for biomass saccharification; And
    상기 미세입자가 응집된 슬러리를 원심분리 혹은 여과하여 당용액을 분리하는 당용액 회수단계를 포함하는 것을 특징으로 하는 바이오매스의 당화로 제조한 당용액의 회수방법.And a sugar solution recovery step of separating the sugar solution by centrifuging or filtering the slurry in which the fine particles are aggregated.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 미세입자 응집단계는 당화잔사 응집용 단백질 첨가제를 수용액 또는 현탁액으로 첨가하는 것을 특징으로 하는 바이오매스의 당화로 제조한 당용액의 회수방법.The fine particle aggregation step is a method for recovering the sugar solution prepared by saccharification of biomass, characterized in that the addition of the glycosylated residue protein additive for aggregation.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 당화잔사 응집용 단백질 첨가제는 단백질의 분자구조 내에 소수성 표면을 일부라도 가지고 있어서 물에 녹인 후 수용액의 산도(pH)를 조정하거나 가열하였을 때 현탁액을 형성하는 것을 특징으로 하는 바이오매스의 당화로 제조한 당용액의 회수방법.The protein additive for aggregation of glycated residues has a part of hydrophobic surface in the molecular structure of the protein, so that it is dissolved in water to form a suspension when the acidity (pH) of the aqueous solution is adjusted or heated to form a saccharification of biomass. How to recover a sugar solution.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 당화잔사 응집용 단백질 첨가제는 구형 단백질(globular protein), 섬유상 단백질(fibrous protein) 또는 경단백질(scleroprotein)로 이루어진 군에서 선택되는 하나 이상의 단백질을 포함하는 것을 특징으로 하는 바이오매스의 당화로 제조한 당용액의 회수방법.The glycosylated residue aggregation protein additive is prepared by glycosylation of biomass, characterized in that it comprises one or more proteins selected from the group consisting of globular protein, fibrous protein or light protein. Recovery method of sugar solution.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 당화잔사 응집용 단백질 첨가제는 콩 단백질 추출물(soy protein isolated), 콩 단백질(soy protein concentrate), 콩 분쇄물(soy flour), 알부민(egg albumin), 난백알부민(ovalbumin), 소혈청알부민(bovine serum albumin), 글로불린(globulin), 케라틴(keratin), 콜라겐(collagen), 피브로인(fibroin), 엘라스틴(elastin) 및 글루텐(gluten)으로 이루어진 군에서 선택되는 적어도 하나 이상을 포함하는 것을 특징으로 하는 바이오매스의 당화로 제조한 당용액의 회수방법.The protein additive for aggregation of glycated residues is soy protein isolated, soy protein concentrate, soy flour, albumin, egg albumin, ovalbumin, bovine serum albumin Serum albumin, globulin (globulin), keratin (keratin), collagen (collagen), fibroin (fibroin), elastin and at least one selected from the group consisting of gluten (gluten) A method for recovering sugar solution prepared by saccharification of mass.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 당용액 회수단계는 원심분리기, 필터프레스 또는 디캔터 중 어느 하나를 이용하는 것을 특징으로 하는 바이오매스의 당화로 제조한 당용액의 회수방법.The sugar solution recovery step is a method for recovering the sugar solution prepared by saccharification of biomass, characterized in that using any one of a centrifuge, filter press or decanter.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 당용액 회수단계 이후에 당화잔사를 물과 혼합하며 교반하여 당화잔사 중 당용액을 희석 증량하는 단계; 및Diluting and increasing the sugar solution in the saccharified residue by mixing and stirring the saccharified residue with water after the sugar solution recovery step; And
    희석 증량된 당용액을 당화잔사와 분리하는 증량된 당용액을 회수하는 단계를 더 포함하는 것을 특징으로 하는 바이오매스의 당화로 제조한 당용액의 회수방법.Recovering the sugar solution prepared by saccharification of biomass, characterized in that it further comprises the step of recovering the increased sugar solution for separating the dilute extended sugar solution from the saccharified residue.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 당용액을 희석 증량하는 단계는 회분식 또는 연속식 분산교반기를 사용하는 것을 특징으로 하는 바이오매스의 당화로 제조한 당용액의 회수방법.Diluting and increasing the sugar solution is a method of recovering the sugar solution prepared by saccharification of biomass, characterized in that using a batch or continuous dispersion stirrer.
  9. 청구항 7에 있어서,The method according to claim 7,
    상기 증량된 당용액을 회수하는 단계는 필터프레스 또는 디캔터 중 어느 하나를 이용하는 것을 특징으로 하는 바이오매스의 당화로 제조한 당용액의 회수방법.Recovering the increased sugar solution is a method of recovering the sugar solution prepared by saccharification of biomass, characterized in that using any one of a filter press or a decanter.
  10. 청구항 7에 있어서,The method according to claim 7,
    상기 증량된 당용액을 바이오매스 당화물 제조단계 및 미세입자 응집단계를 거친 미세입자가 응집된 슬러리의 희석 증량에 재사용하는 것을 특징으로 하는 바이오매스의 당화로 제조한 당용액의 회수방법.The method of recovering the sugar solution prepared by saccharification of biomass, characterized in that to reuse the increased sugar solution in the dilution increase of the slurry in which the fine particles, which have undergone the biomass glycosylation step and the fine particle aggregation step.
PCT/KR2017/007965 2016-07-27 2017-07-24 Method for recovering sugar solution prepared by saccharification of biomass WO2018021782A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/319,167 US10704110B2 (en) 2016-07-27 2017-07-24 Method for recovering sugar solution prepared by saccharification of biomass

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160095286 2016-07-27
KR10-2016-0095286 2016-07-27
KR10-2016-0140275 2016-10-26
KR1020160140275A KR101909738B1 (en) 2016-07-27 2016-10-26 Recovery method for sugar solution prepared by enzymatic hydrolysis of biomass and an apparatus therefor

Publications (1)

Publication Number Publication Date
WO2018021782A1 true WO2018021782A1 (en) 2018-02-01

Family

ID=61016266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/007965 WO2018021782A1 (en) 2016-07-27 2017-07-24 Method for recovering sugar solution prepared by saccharification of biomass

Country Status (1)

Country Link
WO (1) WO2018021782A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090111037A (en) * 2008-04-21 2009-10-26 지에스칼텍스 주식회사 Method for pretreating lignocellulosic biomass and method for manufacturing bio-fuel using the same
US20130266991A1 (en) * 2010-12-09 2013-10-10 Toray Industries, Inc. Method for producing concentrated aqueous sugar solution
WO2015107415A1 (en) * 2014-01-16 2015-07-23 Arvind Mallinath Lali A process for production of soluble sugars from biomass
US9328365B2 (en) * 2012-08-09 2016-05-03 Honda Motor Co., Ltd. Process for producing saccharified solution

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090111037A (en) * 2008-04-21 2009-10-26 지에스칼텍스 주식회사 Method for pretreating lignocellulosic biomass and method for manufacturing bio-fuel using the same
US20130266991A1 (en) * 2010-12-09 2013-10-10 Toray Industries, Inc. Method for producing concentrated aqueous sugar solution
US9328365B2 (en) * 2012-08-09 2016-05-03 Honda Motor Co., Ltd. Process for producing saccharified solution
WO2015107415A1 (en) * 2014-01-16 2015-07-23 Arvind Mallinath Lali A process for production of soluble sugars from biomass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PIAZZA, GEORGE J. ET AL.: "Flocculation of Kaolin and Lignin by Bovine Blood and Hemoglobin", JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, vol. 90, 3 July 2014 (2014-07-03), pages 1419 - 1425, XP055459111 *

Similar Documents

Publication Publication Date Title
DK2548966T3 (en) Process for preparing a sugar solution
JP6597311B2 (en) Production method of sugar solution and xylooligosaccharide
KR101778111B1 (en) Manufacturing method for sugar solution and device for same
US9963728B2 (en) Method of manufacturing filter aid
WO2014007189A1 (en) Method for producing sugar solution
JP6458498B2 (en) Method for producing sugar solution
CN101003823A (en) Method for preparing oligo xylose in high purity by using stalk as raw material, and using technique of enzyme and membrane
WO2011065449A1 (en) Process for production of monosaccharide
CN108149506B (en) Method for producing high-purity cellulose, hemicellulose and lignin by using vinasse
JP2010036058A (en) Saccharification system, method of manufacturing saccharified liquid, fermentation system, and method of manufacturing fermented liquid
WO2014129489A1 (en) Sugar-solution production method
KR101909738B1 (en) Recovery method for sugar solution prepared by enzymatic hydrolysis of biomass and an apparatus therefor
CN114457132A (en) Method for preparing starch and non-thermal denatured protein powder by using rice as raw material
WO2018021782A1 (en) Method for recovering sugar solution prepared by saccharification of biomass
CN109536553A (en) A kind of preparation method of glycopeptide nano selenium sol
US11957138B2 (en) Protein product from plants and yeasts and production process for same
WO2021075882A1 (en) Sccharified biomass residue coagulant and method for using same
CN113481259B (en) Method for extracting starch syrup and rice protein isolate by using broken rice
WO2015013506A1 (en) Polymers in biomass saccharification bioprocess
CN114478191A (en) Refining treatment system and method for xylitol fermentation liquor
WO2019231025A1 (en) Membrane-filterable, physically pretreated biomass composition
JP5910427B2 (en) Method for producing ethanol from lignocellulose-containing biomass
KR102062715B1 (en) Method for enhancing the reactivity of lignocellulosic biomass to hydrolytic enzyme
CN107616509A (en) A kind of walnut meal dietary fiber preparation method and walnut meal dietary fiber
JP2022126959A (en) Enzyme composition containing lignin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834724

Country of ref document: EP

Kind code of ref document: A1