WO2018021121A1 - Impurity diffusion composition and semiconductor element production method using impurity diffusion composition - Google Patents

Impurity diffusion composition and semiconductor element production method using impurity diffusion composition Download PDF

Info

Publication number
WO2018021121A1
WO2018021121A1 PCT/JP2017/026150 JP2017026150W WO2018021121A1 WO 2018021121 A1 WO2018021121 A1 WO 2018021121A1 JP 2017026150 W JP2017026150 W JP 2017026150W WO 2018021121 A1 WO2018021121 A1 WO 2018021121A1
Authority
WO
WIPO (PCT)
Prior art keywords
impurity diffusion
group
diffusion composition
carbon atoms
film
Prior art date
Application number
PCT/JP2017/026150
Other languages
French (fr)
Japanese (ja)
Inventor
剛 北田
由洋 池上
新井 名奈
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2017538732A priority Critical patent/JPWO2018021121A1/en
Publication of WO2018021121A1 publication Critical patent/WO2018021121A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an impurity diffusion composition for diffusing an impurity diffusion component in a semiconductor substrate, and a method for manufacturing a semiconductor element using the same.
  • an impurity diffusion source is formed on the semiconductor substrate, and thermal diffusion is performed in the semiconductor substrate.
  • a method of diffusing impurity diffusion components is employed.
  • the impurity diffusion source is formed by a CVD method or a solution coating method of a liquid impurity diffusion composition.
  • a thermal oxide film is first formed on the surface of the semiconductor substrate, and then a resist having a predetermined pattern is laminated on the thermal oxide film by photolithography. Then, using the resist as a mask, the portion of the thermal oxide film not masked with the resist is etched with acid or alkali, and then the resist is removed to form a mask with the thermal oxide film. Subsequently, an n-type or p-type impurity diffusion composition is applied, and the impurity diffusion composition is adhered to the portion where the mask is opened. Thereafter, the impurity diffusion component in the composition is thermally diffused into the semiconductor substrate at 600 ° C. to 1250 ° C. to form an n-type or p-type impurity diffusion layer.
  • the conventional impurity diffusion composition is not irradiated with laser light when the impurity diffusion component is locally diffused from the impurity diffusion composition film into the semiconductor substrate using laser light or the like.
  • the “dry film of the impurity diffusion composition” is a portion of the impurity diffusion composition film formed by coating on a semiconductor substrate that is not irradiated with laser light, that is, a portion not irradiated with laser.
  • the present invention has been made in view of the above circumstances, and has an excellent impurity diffusibility to a semiconductor substrate and cleans a dry film (a laser-irradiated portion) of the impurity diffusion composition remaining on the semiconductor substrate.
  • An object of the present invention is to provide an impurity diffusion composition having excellent properties and a method for producing a semiconductor device using the same.
  • the impurity diffusion composition according to the present invention contains polysiloxane (A) and an impurity diffusion component (B), and the polysiloxane (A) It contains at least one of a carboxyl group and a dicarboxylic anhydride structure.
  • the impurity diffusion composition according to the present invention is characterized in that, in the above invention, the polysiloxane (A) is a polysiloxane represented by the following general formula (1).
  • R 1 represents a substituent containing at least one of a carboxyl group and a dicarboxylic anhydride structure, and a plurality of R 1 may be the same or different from each other.
  • R 1 in the general formula (1) includes a group represented by any one of the following general formulas (2) to (6). It is characterized by.
  • R 5 , R 7 , R 8 and R 9 represent a divalent organic group having 1 to 20 carbon atoms.
  • R 6 represents a hydrogen atom or 1 to Represents an alkyl group of 3.
  • R 10 , R 11 and R 12 each represents a single bond, a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms, or a carbon number Represents a 2-6 alkylcarbonyloxy group, a carbonyl group, an ether group, an ester group, an amide group, an aromatic group having 6 to 16 carbon atoms, or a divalent group having any one of these.
  • the atom is an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 16 carbon atoms, an alkylcarbonyloxy group having 2 to 6 carbon atoms, a hydroxy group, an amino group, a carboxyl group, or Optionally substituted with a thiol group, h, j, k and And l represents an integer of 0 to 3.
  • the impurity diffusion composition according to the present invention is characterized in that, in the above invention, the content of the impurity diffusion component (B) is from 0.1% by mass to 20% by mass.
  • the impurity diffusion component (B) is phosphoric acid, diphosphorus pentoxide, polyphosphoric acid, phosphoric acid ester, boron oxide, boric acid, boric acid ester. 1 or more types selected from boronic acid and boronic acid ester.
  • the impurity diffusion component (B) contains one or more selected from boric acid, boronic acid, boric acid ester, and boronic acid ester, And water and a water-soluble binder.
  • the impurity diffusion composition according to the present invention is characterized in that, in the above invention, the water-soluble binder is polyvinyl alcohol.
  • a method for manufacturing a semiconductor device includes a film forming step of forming an impurity diffusion composition film by applying the impurity diffusion composition according to any of the above inventions on a semiconductor substrate, and the impurity And a layer forming step of diffusing an impurity diffusion component from the diffusion composition film into the semiconductor substrate to form an impurity diffusion layer.
  • a method for manufacturing a semiconductor device includes a film forming step of forming an impurity diffusion composition film by applying the impurity diffusion composition according to any of the above inventions on a semiconductor substrate, and the impurity And a layer forming step of irradiating the diffusion composition film with laser light to diffuse an impurity diffusion component from the impurity diffusion composition film into the semiconductor substrate to form an impurity diffusion layer.
  • a method for manufacturing a semiconductor device includes a film forming step of forming an impurity diffusion composition film by applying the impurity diffusion composition according to any of the above inventions on a semiconductor substrate, and the impurity A layer forming step of irradiating a part of the diffusion composition film with laser light to diffuse an impurity diffusion component from the part of the impurity diffusion composition film into the semiconductor substrate to form an impurity diffusion layer; and the impurity diffusion composition And a removal step of removing, by an acid or an alkali, an unirradiated portion of the material film that has not been irradiated with the laser beam.
  • the impurity diffusion composition which has the outstanding impurity diffusivity to a semiconductor substrate, and was excellent in the cleaning property of the dry film of the impurity diffusion composition which remain
  • the production method can be provided.
  • FIG. 1A is a diagram illustrating an example of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 1B is a diagram showing an example of a method for manufacturing a solar cell using a semiconductor element according to an embodiment of the present invention.
  • the impurity diffusion composition according to the present invention is a composition for forming an impurity diffusion layer of a desired conductivity type (n-type, p-type) on a semiconductor substrate when manufacturing a semiconductor element such as a solar cell, Polysiloxane (A) and an impurity diffusion component (B) are contained.
  • polysiloxane (A) contains at least one of a carboxyl group and a dicarboxylic anhydride structure.
  • the polysiloxane (A) in the present invention is a polysiloxane containing at least one of a carboxyl group and a dicarboxylic anhydride structure.
  • the polysiloxane (A) can impart excellent impurity diffusibility to the semiconductor substrate when contained in the impurity diffusion composition.
  • the polysiloxane (A) can improve the detergency of the dry film of the impurity diffusion composition remaining on the semiconductor substrate after the diffusion of the impurity diffusion component into the semiconductor substrate with an acid or alkali.
  • the polysiloxane (A) contains at least one of a carboxyl group and a dicarboxylic acid anhydride structure, so that at least one of the carboxyl group and the dicarboxylic acid anhydride structure in the polysiloxane (A) is acidic or alkaline. Affinity with the cleaning solution is improved. That is, when the dry film of the impurity diffusion composition containing the polysiloxane (A) in the present invention is cleaned, the solubility of the dry film in the cleaning liquid is improved by the polysiloxane (A). The detergency of the dry film can be improved.
  • the polysiloxane (A) containing at least one of a carboxyl group and a dicarboxylic anhydride structure is preferably a polysiloxane represented by the following general formula (1).
  • R 1 represents a substituent containing at least one of a carboxyl group and a dicarboxylic anhydride structure.
  • the plurality of R 1 may be the same or different.
  • R 2 , R 3 and R 4 are a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, or a carbon number Represents any of 6 to 15 aryl groups;
  • a plurality of R 2 , R 3 and R 4 may be the same or different.
  • the polysiloxane (A) represented by the general formula (1) may be a block copolymer or a random copolymer.
  • the content of the carboxyl group in the polysiloxane (A) is measured, for example, by measuring the 29 Si-NMR spectrum of the polysiloxane (A), and the peak area of the Si atom to which the carboxyl group is bonded and the carboxyl group is not bonded. It can obtain
  • the content of the dicarboxylic acid anhydride structure in the polysiloxane (A) can be determined by, for example, measuring the 29 Si-NMR spectrum of the polysiloxane (A), the peak area of the Si atom bonded with the dicarboxylic acid anhydride structure, and the dicarboxylic acid anhydride structure. It can be determined from the ratio to the peak area of Si atoms to which the acid anhydride structure is not bonded. In addition, when the Si atom and the dicarboxylic acid anhydride structure are not directly bonded, the integral ratio between the peak derived from the dicarboxylic acid anhydride structure and the other peaks excluding the silanol group is determined using the 1 H-NMR spectrum.
  • the content of dicarboxylic acid anhydride structure in the whole polysiloxane (A) is calculated, and the result of this calculation and the result of the 29 Si-NMR spectrum described above are combined to obtain the dicarboxylic acid indirectly bonded to the Si atom.
  • the content of the acid anhydride structure can be calculated.
  • R 1 in the general formula (1) preferably contains a group represented by any one of the following general formulas (2) to (6).
  • R 5 , R 7 , R 8 and R 9 represent a divalent organic group having 1 to 20 carbon atoms.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 10 , R 11 and R 12 are each a single bond, a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms, or an alkylcarbonyloxy group having 2 to 6 carbon atoms.
  • the hydrogen atoms of these groups are alkyl groups having 1 to 10 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 6 to 16 carbon atoms, alkylcarbonyloxy groups having 2 to 6 carbon atoms, hydroxy groups, amino groups It may be substituted with a group, a carboxyl group or a thiol group.
  • h, j, k, and l represent an integer of 0 to 3.
  • This organosilane compound is a raw material of polysiloxane (A) containing at least one of a carboxyl group and a dicarboxylic anhydride structure.
  • the polysiloxane (A) represented by the general formula (1) can be obtained by appropriately selecting and hydrolyzing and condensing an organosilane compound described below.
  • organosilane compound having a carboxyl group examples include a urea group-containing organosilane compound represented by the following general formula (7) or a urethane group-containing organosilane compound represented by the following general formula (8). Can be mentioned. As the organosilane compound having a carboxyl group, two or more of these may be used.
  • R 13 , R 15 and R 19 represent a divalent organic group having 1 to 20 carbon atoms.
  • R 14 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 16 , R 17 and R 18 are each an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, Represents any of 15 aryl groups.
  • R 16 , R 17 and R 18 may be the same or different. However, at least one of R 16 , R 17 and R 18 is an alkoxy group having 1 to 6 carbon atoms.
  • R 13 and R 19 in the general formulas (7) and (8) include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, a phenylene group, —CH 2 —C 6 H 4 —CH.
  • examples thereof include hydrocarbon groups such as 2 — and —CH 2 —C 6 H 4 —.
  • carbon atoms having an aromatic ring such as a phenylene group, —CH 2 —C 6 H 4 —CH 2 —, —CH 2 —C 6 H 4 — as R 13 and R 19
  • a hydrogen group is preferred.
  • R 14 in the general formula (7) is preferably hydrogen or a methyl group from the viewpoint of reactivity.
  • R 15 in the general formulas (7) and (8) include hydrocarbon groups such as a methylene group, an ethylene group, an n-propylene group, an n-butylene group and an n-pentylene group, and an oxymethylene group. Oxyethylene group, oxy n-propylene group, oxy n-butylene group, oxy n-pentylene group and the like.
  • R 15 represents methylene group, ethylene group, n-propylene group, n-butylene group, oxymethylene group, oxyethylene group, oxy n-propylene group, oxy n-butylene. Groups are preferred.
  • R 16 , R 17 and R 18 in the general formulas (7) and (8) specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group and an isopropyl group. Among these, a methyl group or an ethyl group is preferable as the alkyl group for R 16 , R 17 and R 18 from the viewpoint of ease of synthesis.
  • specific examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group.
  • a methoxy group or an ethoxy group is preferable as the alkoxy group for R 16 , R 17, and R 18 from the viewpoint of ease of synthesis.
  • substituent of the substituent of R 16 , R 17 and R 18 include a methoxy group and an ethoxy group. Specific examples include a 1-methoxypropyl group and a methoxyethoxy group.
  • the urea group-containing organosilane compound represented by the general formula (7) includes an aminocarboxylic acid compound represented by the following general formula (9) and an isocyanate group-containing organosilane represented by the following general formula (11). It can be obtained from a compound by a known urea formation reaction.
  • the urethane group-containing organosilane compound represented by the general formula (8) includes a hydroxycarboxylic acid compound represented by the following general formula (10) and an isocyanate group-containing compound represented by the following general formula (11). It can be obtained from an organosilane compound by a known urethanization reaction.
  • R 13 , R 15 and R 19 represent a divalent organic group having 1 to 20 carbon atoms.
  • R 14 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms.
  • R 16 , R 17 and R 18 are each an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, Represents any of 15 aryl groups.
  • Preferred examples of these R 13 ⁇ R 19 of the general formula (7) is as described above for R 13 ⁇ R 19 in (8).
  • organosilane compound having a carboxyl group examples include a compound represented by the general formula (12).
  • R 20 represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, or 6 carbon atoms. Represents any of ⁇ 15 aryl groups.
  • the plurality of R 20 may be the same or different.
  • q represents an integer of 1 to 3.
  • r represents an integer of 2 to 20.
  • organosilane compound having a dicarboxylic acid anhydride structure examples include organosilane compounds represented by any one of the following general formulas (13) to (15).
  • organosilane compound having a dicarboxylic acid anhydride structure two or more of these may be used.
  • R 22 , R 23 and R 24 are each an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, It represents either an acyl group having 2 to 6 or an aryl group having 6 to 15 carbon atoms. However, at least one of R 22 , R 23 and R 24 is an alkoxy group having 1 to 6 carbon atoms.
  • R 21 , R 25 and R 26 are each a single bond or a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms, or an alkylcarbonyloxy group having 2 to 6 carbon atoms.
  • the hydrogen atoms of these groups are alkyl groups having 1 to 10 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 6 to 16 carbon atoms, alkylcarbonyloxy groups having 2 to 6 carbon atoms, hydroxy groups, amino groups It may be substituted with a group, a carboxyl group or a thiol group.
  • h, j, k, and l represent an integer of 0 to 3.
  • R 21 , R 25 and R 26 include —C 2 H 4 —, —C 3 H 6 —, —C 4 H 8 —, —O—, —C 3 H 6 OCH 2 CH (OH). Examples thereof include CH 2 O 2 C—, —CO—, —CO 2 —, —CONH—, and organic groups listed below.
  • organosilane compound represented by the general formula (13) include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride, 3-triphenoxysilylpropyl succinic anhydride.
  • Etc Specific examples of the organosilane compound represented by the general formula (14) include 3-trimethoxysilylsilylpropylcyclohexyl dicarboxylic acid anhydride.
  • organosilane compound represented by the general formula (15) include 3-trimethoxysilylsilylpropylphthalic anhydride.
  • an organosilane compound other than an organosilane compound containing at least one of a carboxyl group and a dicarboxylic anhydride structure is used in combination. It is also possible.
  • organosilane compounds include tetrafunctional silane, trifunctional silane, bifunctional silane, and monofunctional silane.
  • examples of the tetrafunctional silane include tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, and tetraphenoxysilane.
  • examples of trifunctional silanes include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltrin-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltrin-butoxy.
  • Examples of the bifunctional silane include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiacetoxysilane, di-n-butyldimethoxysilane, diphenyldimethoxysilane, (3-glycidoxypropyl) methyldimethoxysilane, (3-glycidide) And xylpropyl) methyldiethoxysilane, di (1-naphthyl) dimethoxysilane, and di (1-naphthyl) diethoxysilane.
  • Examples of monofunctional silanes include trimethylmethoxysilane, tri-n-butylethoxysilane, (3-glycidoxypropyl) dimethylmethoxysilane, and (3-glycidoxypropyl) dimethylethoxysilane. Two or more of these organosilanes may be used.
  • the production method of polysiloxane (A) containing at least one of a carboxyl group and a dicarboxylic anhydride structure is not particularly limited, and a known method such as partial condensation of an organosilane compound can be used.
  • Examples of this production method include a method of adding a reaction solvent, water and, if necessary, a catalyst to an organosilane mixture and heating and stirring at 50 to 150 ° C. for about 0.5 to 100 hours.
  • hydrolysis by-products alcohols such as methanol
  • condensation by-products water
  • the partial condensation means that Si—OH remains in a part of the resulting polysiloxane (A) rather than condensing all of the hydrolyzed Si—OH.
  • Si—OH is generally partially left, and in the present invention, the amount of Si—OH to be left is not limited.
  • the reaction solvent is not particularly limited, but usually the same solvent as described below can be used.
  • the addition amount of such a reaction solvent is preferably 10 parts by weight or more and 1500 parts by weight or less with respect to 100 parts by weight of a monomer such as organosilane.
  • the addition amount of the water used for a hydrolysis reaction is 0.5 mol or more and 5 mol or less with respect to 1 mol of a hydrolysable group.
  • the catalyst added as necessary is not particularly limited, but an acid catalyst is preferably used.
  • the acid catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, acetic acid, trifluoroacetic acid, formic acid, polyvalent carboxylic acid or anhydride thereof, and ion exchange resin.
  • the addition amount of such a catalyst is preferably 0.01 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of a monomer such as organosilane.
  • the catalyst can be removed from the polysiloxane solution after hydrolysis and partial condensation as necessary.
  • the water washing is a method of diluting a polysiloxane solution with a suitable hydrophobic solvent and then concentrating the organic layer obtained by washing several times with water with an evaporator or the like.
  • the treatment with an ion exchange resin is a method in which a polysiloxane solution is brought into contact with an appropriate ion exchange resin.
  • the content of the polysiloxane (A) containing at least one of a carboxyl group and a dicarboxylic anhydride structure in the impurity diffusion composition in the present invention is 0.1% by mass or more and 90% by mass in the impurity diffusion composition. % Or less, more preferably 0.1% by mass or more and 50% by mass or less.
  • the content of the polysiloxane (A) is within the above range, excellent impurity diffusibility and cleanability of the impurity diffusion composition can be obtained.
  • carbon number represents the total number of carbon atoms including a group further substituted on the group.
  • an alkyl group having 1 to 10 carbon atoms means that the total number of carbon atoms in the alkyl group (including the substituent, if any) is 1 or more and 10 or less.
  • the impurity diffusion component (B) is a component for forming an impurity diffusion layer of a desired conductivity type (n-type or p-type) in the semiconductor substrate.
  • the impurity diffusion component (B) is preferably a compound containing a Group 13 or Group 15 element.
  • group 13 element boron, aluminum and gallium are preferable, and boron is particularly preferable.
  • group 15 element phosphorus, arsenic, antimony and bismuth are preferable, and phosphorus is particularly preferable.
  • Examples of phosphorus compounds include phosphate esters and phosphites.
  • Examples of phosphate esters include diphosphorus pentoxide, phosphoric acid, polyphosphoric acid, methyl phosphate, dimethyl phosphate, trimethyl phosphate, ethyl phosphate, diethyl phosphate, triethyl phosphate, propyl phosphate, and dipropyl phosphate. , Tripropyl phosphate, butyl phosphate, dibutyl phosphate, tributyl phosphate, phenyl phosphate, diphenyl phosphate, triphenyl phosphate, and the like.
  • Examples of the phosphite ester include methyl phosphite, dimethyl phosphite, trimethyl phosphite, ethyl phosphite, diethyl phosphite, triethyl phosphite, propyl phosphite, dipropyl phosphite, Examples include tripropyl phosphate, butyl phosphite, dibutyl phosphite, tributyl phosphite, phenyl phosphite, diphenyl phosphite, triphenyl phosphite and the like. Of these, phosphoric acid, diphosphorus pentoxide or polyphosphoric acid is preferable from the viewpoint of doping.
  • Examples of the boron compound include boric acids, borates, halides, boronic acids, boric acid esters, and boronic acid esters.
  • examples of boric acids include boric acid and boron oxide.
  • examples of borates include ammonium borate.
  • Examples of the halide include boron trifluoride, boron trichloride, boron tribromide, boron triiodide and the like.
  • Examples of boronic acids include methyl boronic acid and phenyl boronic acid.
  • Examples of borate esters include trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, trioctyl borate, triphenyl borate, and the like.
  • boronic acid esters examples include 2-phenyl-1,3,2-dioxaborinane and diisopropylmethylborane.
  • boric acids, boronic acids, boric acid esters, and boronic acid esters are preferable.
  • the content of the impurity diffusion component (B) in the impurity diffusion composition according to the present invention can be arbitrarily determined according to the resistance value required for the semiconductor substrate, and is 0.01% by mass or more and 50% by mass or less. Is preferable, and it is more preferable that it is 0.1 mass% or more and 20 mass% or less. When the content of the impurity diffusion component (B) is within the above range, sufficient diffusibility of the impurity diffusion component (B) with respect to the semiconductor substrate can be obtained.
  • the impurity diffusion component (B) preferably contains a binder resin.
  • the impurity diffusion component (B) preferably contains at least one selected from boric acid, boronic acid, boric acid ester and boronic acid ester, and further contains water and a water-soluble binder.
  • the water-soluble binder refers to a binder having a solubility of 10% by weight or more with respect to water at 25 ° C.
  • examples of the binder resin such as the above water-soluble binder include the following.
  • the binder resin in the impurity diffusion component (B) is not limited to these.
  • the above “(meth) acrylic acid” means “acrylic acid
  • the binder resin can be used alone or in combination of two or more.
  • the binder resin has a 1,2-diol structure or 1,3-diol from the viewpoint of the formation of a complex with the boron compound and the stability of the formed complex.
  • Those having a structure are preferable, and polyvinyl alcohol is particularly preferable.
  • the polymerization degree of the binder resin in the impurity diffusion component (B) is not particularly limited, but a preferable polymerization degree range is 1000 or less, and particularly preferably 800 or less. As a result, excellent solubility of a hydroxyl group-containing polymer such as polyvinyl alcohol in an organic solvent is exhibited.
  • the lower limit of the degree of polymerization is not particularly limited, but is preferably 100 or more from the viewpoint of easy handling of the binder resin.
  • the degree of polymerization of the binder resin is determined as the number average degree of polymerization in terms of polystyrene in GPC (gel permeation chromatography) analysis.
  • the impurity diffusion composition according to the present invention preferably contains a solvent.
  • This solvent can be used without particular limitation, but is appropriately selected depending on a coating method such as a spin coating method, an ink jet method, a screen printing method or a roll coating printing method.
  • solvents include ketone solvents, ether solvents, ester solvents, ether acetate solvents, aprotic polar solvents, alcohol solvents, glycol monoether solvents, terpene solvents, water, and the like. . One of these may be used alone, or two or more of these may be used in combination.
  • ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-propyl ketone, methyl-n-butyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, and methyl-n-hexyl.
  • Ketone diethyl ketone, dipropyl ketone, di-iso-butyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, ⁇ -butyrolactone, ⁇ -valerolactone, etc. It is done.
  • ether solvents include diethyl ether, methyl ethyl ether, methyl-n-propyl ether, di-iso-propyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol Di-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di- n-Butyl Ete , Diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tri
  • ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, and acetic acid.
  • ether acetate solvents include ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol methyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol-n. -Butyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, dipropylene glycol methyl ether acetate, dipropylene glycol ethyl ether acetate and the like.
  • aprotic polar solvent examples include acetonitrile, N-methylpyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N , N-dimethylacetamide, N, N-dimethylsulfoxide and the like.
  • alcohol solvents examples include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, and 2-methylbutanol.
  • glycol monoether solvent examples include ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono-n-hexyl ether, Examples include ethoxy triglycol, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, and tripropylene glycol monomethyl ether.
  • terpene solvent examples include ⁇ -terpinene, ⁇ -terpineol, myrcene, alloocimene, limonene, dipentene, ⁇ -pinene, ⁇ -pinene, terpineol, carvone, osymene, and ferrandolene.
  • the content of the solvent in the impurity diffusion composition according to the present invention can be arbitrarily determined according to the viscosity of the impurity diffusion composition, but is preferably in the range of 1% by mass to 90% by mass.
  • the impurity diffusion composition according to the present invention may contain a surfactant.
  • a surfactant When the impurity diffusion composition contains a surfactant, uneven coating when the impurity diffusion composition is applied to the semiconductor substrate is improved, and as a result, a uniform coating film of the impurity diffusion composition film is obtained.
  • a fluorine-based surfactant or a silicone-based surfactant is preferably used.
  • the fluorosurfactant include a fluorosurfactant composed of a compound having a fluoroalkyl or fluoroalkylene group in at least one of the terminal, main chain and side chain.
  • a fluorosurfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctyl.
  • silicone surfactants examples include, for example, SH28PA, SH7PA, SH21PA, SH30PA, ST94PA (all manufactured by Toray Dow Corning Silicone), BYK067A, BYK310, BYK322, BYK331, BYK333, BYK355 (BIC Chemie Japan) Etc.).
  • the content of the surfactant in the impurity diffusion composition is preferably 0.0001 mass% or more and 1 mass% or less.
  • the impurity diffusion composition according to the present invention may contain a thickener for viscosity adjustment.
  • the thickener include organic type and inorganic type.
  • organic thickeners include cellulose, cellulose derivatives, starch, starch derivatives, polyvinyl pyrrolidone, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyurethane resins, polyurea resins, polyimide resins, polyamide resins, epoxy resins, polystyrene.
  • polyester resin synthetic rubber, natural rubber, polyacrylic acid, various acrylic resins, polyethylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide, silicone oil, sodium alginate, xanthan gum polysaccharide, gellan gum polysaccharide, guar gum Polysaccharides, carrageenan polysaccharides, locust bean gum polysaccharides, carboxyvinyl polymers, hydrogenated castor oil, hydrogenated castor oil and fatty acid flax
  • a mixture with a wax, a special fatty acid, a polyethylene oxide, a mixture of a polyethylene oxide and an amide, a fatty acid polyvalent carboxylic acid, a phosphate ester surfactant, a salt of a long-chain polyaminoamide and phosphoric acid, Specially modified polyamide system is exemplified.
  • Inorganic thickeners include, for example, bentonite, montmorillonite, magnesia montmorillonite, tetsu montmorillonite, tectum magnesia montmorillonite, beidellite, aluminiderite, sapphire, aluminian support stone, laponite, Examples thereof include aluminum silicate, aluminum magnesium silicate, organic hectorite, fine particle silicon oxide, colloidal alumina, and calcium carbonate. You may use these in combination of multiple types.
  • thixotropic agents that impart thixotropic properties include cellulose, cellulose derivatives, sodium alginate, xanthan gum polysaccharides, gellan gum polysaccharides, guar gum polysaccharides, carrageenan polysaccharides, locust beans.
  • a cellulose thickener there exist 11110, 1120, 1130, 1140, 1150, 1160, 1170, 1180, 1190, 2200, 2260, 2280, 2450, etc. by Daicel Finechem.
  • Commercially available polysaccharide thickeners include Viscalin PC209, Viscarin PC389, SeaKemXP8012, manufactured by FM Chemicals, CAM-H, GJ-182, SV-300, LS-20, LS-30, manufactured by Mitsubishi Corporation.
  • Hydroated castor oil thickener Commercially available products of hydrogenated castor oil thickener include Disparon 308 and NAMLONT-206 manufactured by Enomoto Kasei Co., Ltd., and T-20SF and T-75F manufactured by Ito Oil Co., Ltd.
  • commercially available products of polyethylene oxide thickeners include D-10A, D-120, D-120-10, D-1100, DS-525, DS-313 manufactured by Ito Oil Co., Ltd., and Disparon 4200 manufactured by Enomoto Kasei Co., Ltd.
  • amide type thickeners include T-250F, T-550F, T-850F, T-1700, T-1800, T-2000 manufactured by Ito Oil Co., Ltd., Dispalon 6500, 6300 manufactured by Enomoto Kasei Co., Ltd.
  • bentonite-based thickener Commercially available products of bentonite-based thickener include Hojun's Bengel, Bengel HV, HVP, F, FW, Bright 11, A, W-100, W-100U, W-300U. SH, Multiven, Esben, Esben C, E, W, P, WX, Organite, Organite D, and the like.
  • fine particle silicon oxide-based thickeners Nippon Aerosil Co., Ltd.
  • AEROSILR972, R974, NY50 RY200S, RY200, RX50, NAX50, RX200, RX300, VPNKC130, R805, R104, R711, OX50, 50, 90G, 130, 200, 300, 380, WACKER HDK S13, V15, N20, N20P, T30, T40, manufactured by Asahi Kasei Corporation H15, H18, H20, H30, etc.
  • polyethylene glycol polyethylene oxide, polypropylene glycol, polypropylene oxide, and various acrylic ester resins are preferable from the viewpoint of degradability.
  • polyethylene oxide, polypropylene oxide, or acrylic ester resin is more preferable, and polyethylene oxide is particularly preferable.
  • acrylic ester resins include polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polypropyl acrylate, polybutyl acrylate, Examples thereof include polyacrylic acid esters such as polyhydroxyethyl methacrylate, polybenzyl methacrylate, and polyglycidyl methacrylate, and copolymers thereof.
  • the acrylic ester resin is a copolymer
  • the acrylic ester component may be 60 mol% or more as a polymerization ratio, and other copolymerizable components such as polyacrylic acid and polystyrene can be polymerized with vinyl.
  • the components may be copolymerized.
  • polyethylene oxide and polypropylene oxide these two types of copolymers are also preferred. Any of acrylic ester resins, polyethylene oxide, and polypropylene oxide having a weight average molecular weight of 100,000 or more is preferable because the thickening effect is high.
  • the content of the thickener in the impurity diffusion composition is preferably in the range of 1% by mass to 20% by mass.
  • the viscosity of the impurity diffusion composition according to the present invention is not particularly limited, and can be appropriately changed according to the application method or film thickness of the impurity diffusion composition.
  • the viscosity of the impurity diffusion composition is preferably 100 [mPa ⁇ s] or less.
  • the viscosity of an impurity diffusion composition is 5,000 [mPa * s] or more and 100,000 [mPa * s] or less.
  • the viscosity when the viscosity is less than 1,000 [mPa ⁇ s], it is a value measured at a rotation speed of 20 rpm using an E-type digital viscometer based on JIS Z8803 (1991) “Solution Viscosity—Measurement Method”.
  • the viscosity is 1,000 [mPa ⁇ s] or more, the viscosity is a value measured at a rotational speed of 20 rpm using a B-type digital viscometer based on JIS Z8803 (1991) “Solution Viscosity—Measurement Method”.
  • the solid content concentration of the impurity diffusion composition according to the present invention is not particularly limited, but is preferably 1% by mass or more and 90% by mass or less. When the solid content concentration of the impurity diffusion composition is in the above range, the diffusibility and storage stability of the impurity diffusion composition are good.
  • a method for manufacturing a semiconductor device using the impurity diffusion composition according to the present invention uses a method for forming an impurity diffusion layer using an impurity diffusion composition containing polysiloxane (A) and an impurity diffusion component (B). is there.
  • a manufacturing method of such a semiconductor element includes a film forming step of forming the impurity diffusion composition film on the semiconductor substrate by applying the impurity diffusion composition described above, and the impurity diffusion composition film into the semiconductor substrate. And a layer forming step of diffusing the impurity diffusion component (B) to form an impurity diffusion layer.
  • a semiconductor device manufacturing method includes the above-described film formation step, and the impurity diffusion composition film on the semiconductor substrate is irradiated with laser light, and the impurity diffusion composition film is used. And a layer forming step of diffusing the impurity diffusion component (B) in the semiconductor substrate to form an impurity diffusion layer.
  • a part of the impurity diffusion composition film is formed by irradiating a part of the impurity diffusion composition film formed on the semiconductor substrate with the above film formation step.
  • FIG. 1A is a diagram showing an example of a method for manufacturing a semiconductor element according to an embodiment of the present invention.
  • the manufacturing method applied when manufacturing the semiconductor element for back junction type solar cells is illustrated.
  • a semiconductor element for a back junction solar cell a p-type impurity diffusion layer and an n-type impurity diffusion layer are formed on the back surface that is the surface opposite to the light receiving surface of the solar cell.
  • a first film forming step (step ST101) is performed.
  • the first conductivity type impurity diffusion composition in the present invention is applied onto a predetermined surface of the semiconductor substrate 1 (the back surface in the solar cell).
  • the impurity diffusion composition film 2 is formed on the predetermined surface of the semiconductor substrate 1.
  • the impurity diffusion composition film 2 is a first conductivity type impurity diffusion composition film having a predetermined conductivity type (n-type or p-type).
  • the first conductivity type impurity diffusion composition is an impurity diffusion composition containing the above-described polysiloxane (A) and the first conductivity type impurity diffusion component (B-1).
  • the first conductivity type impurity diffusion component (B-1) is an embodiment of the impurity diffusion component (B) described above (for example, a compound containing a group 13 element or a group 15 element), and the second conductivity type impurity described later. It has a conductivity type different from that of the diffusion component (B-2).
  • the semiconductor substrate 1 for example, n-type single crystal silicon having an impurity concentration of 10 15 to 10 16 [atoms / cm 3 ], polycrystalline silicon, and other elements such as germanium and carbon are mixed.
  • An example is a crystalline silicon substrate.
  • p-type crystalline silicon or a semiconductor substrate other than silicon can be used.
  • the semiconductor substrate 1 preferably has a thickness of 50 [ ⁇ m] to 300 [ ⁇ m] and an outer shape of a substantially square shape with sides of 100 [ ⁇ m] to 250 [ ⁇ m]. Further, in order to remove slice damage and natural oxide film on each surface of the semiconductor substrate 1, it is preferable to etch each surface of the semiconductor substrate 1 with a hydrofluoric acid solution or an alkaline solution.
  • a protective film may be formed on the light receiving surface of the semiconductor substrate 1 (the surface opposite to the surface on which the impurity diffusion composition film 2 is formed).
  • This protective film can be formed by a technique such as CVD (chemical vapor deposition) or spin-on-glass (SOG).
  • CVD chemical vapor deposition
  • SOG spin-on-glass
  • a known protective film such as silicon oxide or silicon nitride can be applied as the protective film.
  • the coating method of the first conductivity type impurity diffusion composition applied to the step ST101 examples include spin coating, screen printing, ink jet printing, slit coating, letterpress printing, and intaglio printing.
  • the impurity diffusion composition film 2 is in the range of 50 ° C. to 200 ° C. with a hot plate, oven, IR heater or the like. It is preferable to dry for 1 second to 30 minutes.
  • the film thickness of the impurity diffusion composition film 2 after drying is preferably 200 [nm] or more and 5 [ ⁇ m] or less in consideration of the diffusibility of the impurity diffusion component (B-1) into the semiconductor substrate 1. .
  • a first layer forming step (step ST102) is performed as shown in FIG. 1A.
  • the impurity diffusion component (B-1) is diffused from the impurity diffusion composition film 2 into the semiconductor substrate 1, thereby forming the impurity diffusion layer 3 in the semiconductor substrate 1.
  • the impurity diffusion layer 3 is a first conductivity type impurity diffusion layer having the same conductivity type as the impurity diffusion composition film 2.
  • the impurity diffusion composition film 2 is irradiated with the laser beam 10 to diffuse the impurity diffusion component (B-1) from the impurity diffusion composition film 2 into the semiconductor substrate 1.
  • a target portion for example, a portion forming a desired pattern
  • the impurity diffusion component (B-1) in the impurity diffusion composition film 2 is partially diffused (in a desired pattern) into the semiconductor substrate 1 by heating by the irradiation of the laser beam 10 (hereinafter referred to as “laser heating”).
  • laser heating the impurity diffusion layer 3 is formed in a desired pattern in the semiconductor substrate 1.
  • the portion where the impurity diffusion layer 3 is formed by laser heating may be lost by ablation or remains without being lost. May be.
  • the laser beam 10 used for the laser heating is not particularly limited, and a known one can be used.
  • a fundamental wave (1064 [nm]), a second harmonic (532 [nm]), a third harmonic (355 [nm]), or a XeCl excimer of an Nd: YAG laser or an Nd: YVO 4 laser is used.
  • Laser light such as laser (308 [nm]), KrF excimer laser (248 [nm]), ArF excimer laser (198 [nm]) can be used.
  • the energy density of the laser beam 10 is preferably 0.25 [J / cm 2 ] or more and 25 [J / cm 2 ] or less.
  • the diffusion time of the impurity diffusion component (impurity diffusion component (B-1) in step ST102) by laser heating is appropriately set so as to obtain desired diffusion characteristics such as the concentration and diffusion depth of the target impurity diffusion component. be able to.
  • the concentration of the impurity diffusion component on the semiconductor substrate surface is preferably such that an impurity diffusion layer of 10 19 to 10 21 [atoms / cm 3 ] can be formed.
  • the diffusion atmosphere of the impurity diffusion component by laser heating is not particularly limited and may be the same atmosphere as the atmosphere, or an atmosphere in which the amount of oxygen in the atmosphere is appropriately controlled using an inert gas such as nitrogen or argon It may be.
  • a first removal step (step ST103) is performed as shown in FIG. 1A.
  • the impurity diffusion composition film 2 remaining on the semiconductor substrate 1 is removed using a cleaning liquid.
  • a portion of the impurity diffusion composition film 2 that has not been irradiated with the laser beam 10 remains on the semiconductor substrate 1.
  • a cleaning liquid for example, a known acid or alkali cleaning solution such as hydrochloric acid, hydrofluoric acid, nitric acid, sulfuric acid, TMAH or KOH can be used.
  • an alkaline cleaning liquid such as TMAH or KOH.
  • step ST104 a second film formation step is performed as shown in FIG. 1A.
  • the second conductivity type impurity diffusion composition according to the present invention is applied onto a predetermined surface of the semiconductor substrate 1.
  • the impurity diffusion composition film 4 is formed on the predetermined surface of the semiconductor substrate 1.
  • the application method of the second conductivity type impurity diffusion composition is not particularly limited, and a known application method similar to the method of applying the first conductivity type impurity diffusion composition in step ST101 described above may be used. it can.
  • the impurity diffusion composition film 4 is a second conductivity type impurity diffusion composition film having a conductivity type different from the conductivity type (first conductivity type) of the impurity diffusion composition film 2 described above.
  • the second conductivity type impurity diffusion composition is an impurity diffusion composition containing the above-described polysiloxane (A) and the second conductivity type impurity diffusion component (B-2).
  • the second conductivity type impurity diffusion component (B-2) is an embodiment of the impurity diffusion component (B) described above (for example, a compound containing a group 13 element or a group 15 element). It has a conductivity type different from that of the diffusion component (B-1).
  • the impurity diffusion composition film 4 after forming the impurity diffusion composition film 4 as in the above-described step ST101.
  • the film thickness of the impurity diffusion composition film 4 after drying is set in consideration of, for example, the diffusibility of the impurity diffusion component (B-2) into the semiconductor substrate 1.
  • a second layer forming step (step ST105) is performed as shown in FIG. 1A.
  • the impurity diffusion component (B-2) is diffused from the impurity diffusion composition film 4 into the semiconductor substrate 1, thereby forming the impurity diffusion layer 5 in the semiconductor substrate 1.
  • the impurity diffusion layer 5 is a second conductivity type impurity diffusion layer having the same conductivity type as the impurity diffusion composition film 4. That is, the conductivity type (second conductivity type) of the impurity diffusion layer 5 is different from the conductivity type (first conductivity type) of the impurity diffusion layer 3 already formed.
  • the impurity diffusion composition film 4 is irradiated with laser light 10 to diffuse the impurity diffusion component (B-2) from the impurity diffusion composition film 4 into the semiconductor substrate 1.
  • a target portion of the impurity diffusion composition film 4 (for example, a portion other than the impurity diffusion layer 3 and forming a desired pattern) is irradiated with the laser beam 10, and the target portion is Heat with laser.
  • the impurity diffusion component (B-2) in the impurity diffusion composition film 4 is partially diffused (in a desired pattern) into the semiconductor substrate 1.
  • the impurity diffusion layer 5 is formed in a desired pattern in the semiconductor substrate 1.
  • the portion where the impurity diffusion layer 5 is formed by laser heating may be lost by ablation or remains without being lost. May be.
  • the laser beam 10 used for the laser heating is not particularly limited, and is a known method similar to the method of laser heating the first conductivity type impurity diffusion composition (impurity diffusion composition film 2) in the above-described step ST102. Things can be used.
  • the diffusion time of the impurity diffusion component by laser heating is appropriately set so as to obtain desired diffusion characteristics such as the concentration and diffusion depth of the target impurity diffusion component. be able to.
  • the concentration of the impurity diffusion component on the semiconductor substrate surface is preferably such that an impurity diffusion layer of 10 19 to 10 21 [atoms / cm 3 ] can be formed.
  • the diffusion atmosphere of the impurity diffusion component by laser heating is not particularly limited and may be the same atmosphere as the atmosphere, or an atmosphere in which the amount of oxygen in the atmosphere is appropriately controlled using an inert gas such as nitrogen or argon It may be.
  • a second removal step is performed as shown in FIG. 1A.
  • the impurity diffusion composition film 4 remaining on the semiconductor substrate 1 is removed using a cleaning liquid.
  • the laser non-irradiated portion of the impurity diffusion composition film 4 remains on the semiconductor substrate 1.
  • a cleaning liquid for example, a known acid or alkali cleaning solution such as hydrochloric acid, hydrofluoric acid, nitric acid, sulfuric acid, TMAH or KOH can be used.
  • an alkaline cleaning liquid such as TMAH or KOH.
  • the semiconductor element 15 according to this embodiment is manufactured by sequentially performing the above-described steps ST101 to ST106.
  • the semiconductor element 15 is suitable as a semiconductor element for a back junction solar cell.
  • FIG. 1B is a diagram showing an example of a method for manufacturing a solar cell using a semiconductor element according to an embodiment of the present invention.
  • FIG. 1B illustrates a process after the manufacture of the semiconductor element 15 (see FIG. 1A) used for manufacturing the solar cell according to the present embodiment.
  • the method for manufacturing a solar cell according to this embodiment includes the method for manufacturing the semiconductor element 15 shown in FIG. 1A. That is, after manufacturing the semiconductor element 15 as described above, the solar cell (back junction solar cell) in the present embodiment can be manufactured using a known method.
  • a protective film forming step is performed as shown in FIG. 1B following the manufacturing step of the semiconductor element 15 shown in FIG. 1A.
  • the protective film 6 is formed on the back surface of the semiconductor substrate 1.
  • the back surface of the semiconductor substrate 1 is the surface opposite to the light receiving surface of the semiconductor element 15 (the lower surface in FIG. 1B), and is the surface on which the impurity diffusion layers 3 and 5 having different conductivity types are formed. It is.
  • the protective film 6 is formed on the entire back surface of the semiconductor substrate 1.
  • the protective film 6 include a laminate of a thermal oxide layer, an aluminum oxide layer, a SiNx layer, and an amorphous silicon layer.
  • vapor deposition methods such as a plasma CVD method and ALD (atomic layer deposition) method, or the apply
  • step ST202 a pattern processing step is performed as shown in FIG. 1B.
  • the protective film 6 on the back surface of the semiconductor substrate 1 is processed into a desired pattern (pattern processing) by an etching method or the like.
  • a plurality of openings 6 a are formed in the protective film 6.
  • Each of the plurality of openings 6 a is for exposing the impurity diffusion layers 3 and 5 formed in the semiconductor substrate 1 in a discrete manner.
  • step ST203 an electrode formation step (step ST203) is performed as shown in FIG. 1B.
  • an electrode paste is applied in a pattern to each region including the opening 6a of the protective film 6 on the back surface of the semiconductor substrate 1 by a method such as a stripe coating method or a screen printing method, and the applied electrode paste is applied. Bake.
  • contact electrodes 7 and 8 are formed in the respective regions of the semiconductor substrate 1.
  • one contact electrode 7 is a first conductivity type contact electrode connected to the first conductivity type impurity diffusion layer 3.
  • the other contact electrode 8 is a second conductivity type contact electrode connected to the second conductivity type impurity diffusion layer 5.
  • first conductivity type and “second conductivity type” are different conductivity types, one representing p-type and the other representing n-type.
  • first conductivity type is p-type
  • second conductivity type is n-type.
  • the impurity diffusion composition according to the present invention and the method for manufacturing a semiconductor device using the same are not limited to the above-described embodiments, and various modifications such as design changes may be added based on the knowledge of those skilled in the art. An embodiment to which such a modification is possible is also included in the scope of the present invention.
  • the impurity diffusion composition according to the present invention is a photovoltaic device such as a solar cell, or a semiconductor device in which an impurity diffusion layer is patterned on the surface of a semiconductor substrate, such as a transistor array, a diode array, a photodiode array, or a transducer. Etc.
  • the sheet resistance value evaluation is for evaluating the sheet resistance value (also referred to as surface resistivity) of the impurity diffusion layer in the semiconductor substrate.
  • the semiconductor substrate for evaluation was an n-type silicon wafer (Ferrotech Silicon Co., Ltd., surface resistivity 410 [ ⁇ / ⁇ ]) cut to 3 cm ⁇ 3 cm. This silicon wafer was immersed in a 1% hydrofluoric acid aqueous solution for 5 minutes, washed with water, air blown, and then heat treated at 100 ° C. for 5 minutes with a hot plate.
  • the impurity diffusion composition to be measured is applied to a silicon wafer for evaluation by a known spin coating method so that the prebaked film thickness is about 400 nm, and the impurity diffusion to be measured is spread on the silicon wafer surface.
  • a coating film of the composition (that is, an impurity diffusion composition film) was formed.
  • this silicon wafer was pre-baked at 140 ° C. for 3 minutes.
  • the pre-baked film thickness (film thickness after pre-baking) of the impurity diffusion composition film on the silicon wafer surface was measured with a surface shape measuring device (Surfcom 1400, manufactured by Tokyo Seimitsu Co., Ltd.).
  • each silicon wafer on which the impurity diffusion composition film is formed by the above-described method is irradiated with a predetermined laser beam in a range of 1 cm ⁇ 1 cm to diffuse the impurities in the impurity diffusion composition film into each silicon wafer.
  • Component (B) was thermally diffused.
  • the laser beam was an Nd: YVO 4 laser.
  • the wavelength was 355 [nm]
  • the pulse width was 25 [ns]
  • the frequency was 20 [kHz].
  • the laser output was 1 [W].
  • the spot shape was a rectangle of 40 [ ⁇ m].
  • the scan speed was 3000 [mm / s].
  • each silicon wafer was immersed in a 1% by mass TMAH aqueous solution at 23 ° C. for 10 minutes. Thereby, the impurity diffusion composition film (diffusion agent) cured by the laser beam irradiation was peeled off.
  • Each silicon wafer after the film is peeled is subjected to p / n determination using a p / n determiner, and the surface resistance of the diffusion portion of the impurity diffusion component (B) in each silicon wafer is determined by four probes.
  • a sheet resistance value was measured using a type surface resistance measuring device (RT-70V, manufactured by Napson Corporation). The sheet resistance value is an index of the diffusibility of the impurity diffusion component (B) in the semiconductor substrate.
  • a smaller sheet resistance value means a larger diffusion amount of the impurity diffusion component (B).
  • Detergent evaluation of the dry film evaluates the detergency of the impurity diffusion composition film (dry film) remaining in a dry state on the semiconductor substrate surface after the thermal diffusion of the impurity diffusion component (B) by laser light irradiation. It is.
  • the semiconductor substrate for evaluation was an n-type silicon wafer (Ferrotech Silicon Co., Ltd., surface resistivity 410 [ ⁇ / ⁇ ]) cut to 3 cm ⁇ 3 cm. This silicon wafer was immersed in a 1% hydrofluoric acid aqueous solution for 5 minutes, washed with water, air blown, and then heat treated at 100 ° C. for 5 minutes with a hot plate.
  • the impurity diffusion composition to be measured is applied to a silicon wafer for evaluation by a known spin coating method so that the prebaked film thickness is about 400 nm, and the impurity diffusion to be measured is spread on the silicon wafer surface. A composition film was formed. Subsequently, this silicon wafer was pre-baked at 140 ° C. for 3 minutes. Thereby, the impurity diffusion composition film to be measured was used as the dry film (pre-baked film). Thereafter, the silicon wafer was immersed in a cleaning solution, and the time until the prebaked film on the silicon wafer surface was dissolved was measured.
  • Example 1 the polysiloxane (A) was synthesized as follows, and the impurity diffusion composition containing the obtained polysiloxane (A) was evaluated for sheet resistance and dry film detergency. .
  • polysiloxane (A) of Example 1 15.73 g (0.06 mol) of 3-trimethoxysilylpropyl succinic acid and 155.29 g (1.14 mol) of methyltrimethoxy were added to a 500 mL three-necked flask. Silane and 192.29 g of propylene glycol monomethyl ether were charged, and an aqueous phosphoric acid solution prepared by dissolving 0.5 g of formic acid in 64.0 g of water was added over 30 minutes while stirring at 40 ° C. After completion of dropping, the resulting solution was stirred at 40 ° C. for 1 hour, then heated to 70 ° C. and stirred for 30 minutes.
  • the temperature of the oil bath was raised to 115 ° C.
  • the internal temperature of this solution reached 100 ° C., and from this time, this solution was heated and stirred (internal temperature was 100 ° C. to 110 ° C.).
  • the solution thus obtained was cooled in an ice bath to obtain a polysiloxane solution.
  • the obtained polysiloxane solution had a solid content concentration of 42.0% by mass. From this polysiloxane solution, the polysiloxane (A) of Example 1 was obtained.
  • the impurity diffusion composition of Example 1 was adjusted with the composition ratio, molar ratio, and content of each composition described in Table 1 described later. Evaluation of the sheet resistance value of Example 1 and evaluation of the cleaning property of the dry film were performed on the impurity diffusion composition of Example 1. As a result, as shown in Table 2 described later, a good value (that is, good diffusibility of the impurity diffusion component (B) (hereinafter referred to as “impurity diffusibility”)) is obtained in the sheet resistance value evaluation, and the detergency evaluation It was excellent.
  • impurity diffusibility good diffusibility of the impurity diffusion component
  • Example 2 to 8 In Examples 2 to 8, as in Example 1 described above, polysiloxane (A) was synthesized at the ratio of the organosilane compound described in Table 1, and the composition ratio, molar ratio, and ratio of each composition described in Table 1 were synthesized.
  • the impurity diffusion compositions of Examples 2 to 8 were adjusted according to the content.
  • sheet resistance value evaluation and dry film detergency evaluation were performed. As a result, as shown in Table 2, in each of Examples 2 to 8, both the sheet resistance value (impurity diffusibility) and the cleaning property evaluation were good.
  • the content ratio (molar ratio) of the organosilane having at least one of a carboxyl group and a dicarboxylic anhydride structure in the polysiloxane (A) is a Si atom mole of the entire polysiloxane (A) derived from the organosilane.
  • the impurity diffusibility was good and the detergency evaluation was excellent.
  • Example 9 In Example 9, “X-22-3701E” (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the polysiloxane (A) having a carboxyl group. The polysiloxane (A) (8 g), phosphoric acid (6 g), BYK333 (0.03 g), and propylene glycol monomethyl ether (85.97 g) were mixed to obtain the impurity diffusion composition of Example 9. It was adjusted. In Example 9, with respect to the impurity diffusion composition thus obtained, sheet resistance evaluation and dry film detergency evaluation were performed. As a result, as shown in Table 2, a good value (good impurity diffusibility) was obtained in the sheet resistance value evaluation, and the detergency evaluation was good.
  • the content ratio of the component derived from the organosilane having a carboxyl group in the polysiloxane “X-22-3701E” of Example 9 is the entire polysiloxane derived from the organosilane.
  • the Si atom mole ratio relative to the number of moles of Si atoms is less than 5 mol%.
  • Comparative Example 1 In Comparative Example 1, in the same manner as in Example 1 described above, polysiloxane was synthesized at the ratio of the organosilane compound described in Table 1, and the composition ratio, molar ratio, and content of each composition described in Table 1 were compared. 1 impurity diffusion composition was prepared. The sheet resistance value evaluation of Comparative Example 1 and the cleaning property evaluation of the dried film were performed on the impurity diffusion composition of Comparative Example 1 obtained as described above. As a result, as shown in Table 2, the sheet resistance value (impurity diffusibility) was good, but the detergency evaluation was bad.
  • the impurity diffusion composition according to the present invention and the method for manufacturing a semiconductor device using the same are as follows. Impurity diffusibility with respect to a semiconductor substrate and cleaning performance of an impurity diffusion composition film remaining on the semiconductor substrate after impurity diffusion. It is suitable for improving both.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

An impurity diffusion composition according to one embodiment is for diffusing a desired conductive impurity-diffused component into a semiconductor substrate. The impurity diffusion composition contains a polysiloxane (A) and an impurity-diffused component (B). The polysiloxane (A) contains a carboxyl group and/or a dicarboxylic acid anhydride structure. The impurity diffusion composition is for use in a semiconductor element production method and is particularly suitable for use in the production of solar cells.

Description

不純物拡散組成物およびこれを用いた半導体素子の製造方法Impurity diffusion composition and method for manufacturing semiconductor device using the same
 本発明は、半導体基板中に不純物拡散成分を拡散させるための不純物拡散組成物、およびこれを用いた半導体素子の製造方法に関する。 The present invention relates to an impurity diffusion composition for diffusing an impurity diffusion component in a semiconductor substrate, and a method for manufacturing a semiconductor element using the same.
 現在、太陽電池等の半導体素子の製造において、半導体基板中にn型またはp型の不純物拡散層を形成する場合には、半導体基板上に不純物拡散源を形成して熱拡散により半導体基板中に不純物拡散成分を拡散させる方法が採られている。不純物拡散源は、CVD法や液状の不純物拡散組成物の溶液塗布法により形成される。 Currently, in the manufacture of a semiconductor element such as a solar cell, when an n-type or p-type impurity diffusion layer is formed in a semiconductor substrate, an impurity diffusion source is formed on the semiconductor substrate, and thermal diffusion is performed in the semiconductor substrate. A method of diffusing impurity diffusion components is employed. The impurity diffusion source is formed by a CVD method or a solution coating method of a liquid impurity diffusion composition.
 例えば、液状の不純物拡散組成物を使用する場合、まず半導体基板表面に熱酸化膜を形成し、続いて、フォトリソグラフィー法により所定のパターンを有するレジストを熱酸化膜上に積層する。そして、当該レジストをマスクとして、酸またはアルカリにより、当該レジストでマスクされていない熱酸化膜部分をエッチングし、その後、当該レジストを剥離して熱酸化膜によるマスクを形成する。続いて、n型またはp型の不純物拡散組成物を塗布して、マスクが開口している部分に不純物拡散組成物を付着させる。その後、この組成物中の不純物拡散成分を600℃~1250℃で半導体基板中に熱拡散させて、n型またはp型の不純物拡散層を形成している。 For example, when using a liquid impurity diffusion composition, a thermal oxide film is first formed on the surface of the semiconductor substrate, and then a resist having a predetermined pattern is laminated on the thermal oxide film by photolithography. Then, using the resist as a mask, the portion of the thermal oxide film not masked with the resist is etched with acid or alkali, and then the resist is removed to form a mask with the thermal oxide film. Subsequently, an n-type or p-type impurity diffusion composition is applied, and the impurity diffusion composition is adhered to the portion where the mask is opened. Thereafter, the impurity diffusion component in the composition is thermally diffused into the semiconductor substrate at 600 ° C. to 1250 ° C. to form an n-type or p-type impurity diffusion layer.
 このような太陽電池等の半導体素子の製造に関して、近年では、従来の高度で複雑なフォトリソグラフィー技術を用いず、簡易的に半導体基板の所望部分に対して不純物拡散層を形成する方法が強く望まれている。そのような方法としては、半導体基板上に不純物拡散組成物を塗布し、この塗布膜(すなわち不純物拡散組成物膜)に対して部分的にレーザー光を照射することによって加熱して、選択的に不純物拡散層を形成する方法が検討されている(例えば、特許文献1、2参照)。 In recent years, with respect to the manufacture of such semiconductor elements such as solar cells, there has been a strong demand for a method of easily forming an impurity diffusion layer on a desired portion of a semiconductor substrate without using conventional and complicated photolithography technology. It is rare. As such a method, an impurity diffusion composition is applied on a semiconductor substrate, and this coating film (that is, the impurity diffusion composition film) is heated by partially irradiating a laser beam, and selectively. A method for forming an impurity diffusion layer has been studied (see, for example, Patent Documents 1 and 2).
特開2012-114298号公報JP 2012-114298 A 特開2009-238824号公報JP 2009-238824 A
 しかしながら、従来の不純物拡散組成物では、レーザー光等を用いて局所的に不純物拡散組成物膜から半導体基板中への不純物拡散成分の熱拡散を行う場合に、レーザー光が照射されていないことに起因して半導体基板に残存する不純物拡散組成物の乾燥膜の洗浄性に問題があった。上記「不純物拡散組成物の乾燥膜」は、半導体基板に塗布して形成した不純物拡散組成物膜のうち、レーザー光が照射されていない部分、すなわち、レーザー未照射部分である。 However, the conventional impurity diffusion composition is not irradiated with laser light when the impurity diffusion component is locally diffused from the impurity diffusion composition film into the semiconductor substrate using laser light or the like. As a result, there has been a problem in the cleanability of the dry film of the impurity diffusion composition remaining on the semiconductor substrate. The “dry film of the impurity diffusion composition” is a portion of the impurity diffusion composition film formed by coating on a semiconductor substrate that is not irradiated with laser light, that is, a portion not irradiated with laser.
 本発明は、上記事情に鑑みてなされたものであって、半導体基板への優れた不純物拡散性を有し、かつ半導体基板に残存する不純物拡散組成物の乾燥膜(レーザー未照射部分)の洗浄性に優れた不純物拡散組成物、およびこれを用いた半導体素子の製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has an excellent impurity diffusibility to a semiconductor substrate and cleans a dry film (a laser-irradiated portion) of the impurity diffusion composition remaining on the semiconductor substrate. An object of the present invention is to provide an impurity diffusion composition having excellent properties and a method for producing a semiconductor device using the same.
 上記課題を解決し、目的を達成するために、本発明に係る不純物拡散組成物は、ポリシロキサン(A)と、不純物拡散成分(B)と、を含有し、前記ポリシロキサン(A)は、カルボキシル基およびジカルボン酸無水物構造のうち少なくとも一つを含有することを特徴とする。 In order to solve the above problems and achieve the object, the impurity diffusion composition according to the present invention contains polysiloxane (A) and an impurity diffusion component (B), and the polysiloxane (A) It contains at least one of a carboxyl group and a dicarboxylic anhydride structure.
 また、本発明に係る不純物拡散組成物は、上記の発明において、前記ポリシロキサン(A)は、下記一般式(1)で表されるポリシロキサンであることを特徴とする。 The impurity diffusion composition according to the present invention is characterized in that, in the above invention, the polysiloxane (A) is a polysiloxane represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、R1は、カルボキシル基およびジカルボン酸無水物構造のうち少なくとも一つを含有する置換基を表し、複数のR1は、それぞれ同じでも異なっていてもよい。R2、R3およびR4は、水酸基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~10のアルケニル基、炭素数2~6のアシル基または炭素数6~15のアリール基のいずれかを表し、複数のR2、R3およびR4は、それぞれ同じでも異なっていてもよい。nおよびmは、各括弧内の成分の構成比率(%)を示し、n+m=100であり、n:m=5:95~30:70である。)
Figure JPOXMLDOC01-appb-C000003
(In the general formula (1), R 1 represents a substituent containing at least one of a carboxyl group and a dicarboxylic anhydride structure, and a plurality of R 1 may be the same or different from each other. R 2 , R 3 and R 4 are a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, or 6 to 6 carbon atoms Any one of 15 aryl groups, and a plurality of R 2 , R 3 and R 4 may be the same or different from each other, n and m each represent a constituent ratio (%) of each component in parentheses; n + m = 100, and n: m = 5: 95 to 30:70.)
 また、本発明に係る不純物拡散組成物は、上記の発明において、前記一般式(1)中のR1は、下記一般式(2)~(6)のいずれかで表される基を含むことを特徴とする。 In the impurity diffusion composition according to the present invention, in the above invention, R 1 in the general formula (1) includes a group represented by any one of the following general formulas (2) to (6). It is characterized by.
Figure JPOXMLDOC01-appb-C000004
(一般式(2)~(6)中、R5、R7、R8およびR9は、炭素数1~20の2価の有機基を表す。R6は、水素原子または炭素数1~3のアルキル基を表す。R10、R11およびR12は、単結合、または炭素数1~10の鎖状脂肪族炭化水素基、炭素数3~16の環状脂肪族炭化水素基、炭素数2~6のアルキルカルボニルオキシ基、カルボニル基、エーテル基、エステル基、アミド基、炭素数6~16の芳香族基、もしくはこれらのいずれかを有する2価の基を表す。これらの基の水素原子は、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~16のアリール基、炭素数2~6のアルキルカルボニルオキシ基、ヒドロキシ基、アミノ基、カルボキシル基またはチオール基で置換されていてもよい。h、j、kおよびlは、0~3の整数を表す。)
Figure JPOXMLDOC01-appb-C000004
(In the general formulas (2) to (6), R 5 , R 7 , R 8 and R 9 represent a divalent organic group having 1 to 20 carbon atoms. R 6 represents a hydrogen atom or 1 to Represents an alkyl group of 3. R 10 , R 11 and R 12 each represents a single bond, a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms, or a carbon number Represents a 2-6 alkylcarbonyloxy group, a carbonyl group, an ether group, an ester group, an amide group, an aromatic group having 6 to 16 carbon atoms, or a divalent group having any one of these. The atom is an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 16 carbon atoms, an alkylcarbonyloxy group having 2 to 6 carbon atoms, a hydroxy group, an amino group, a carboxyl group, or Optionally substituted with a thiol group, h, j, k and And l represents an integer of 0 to 3.)
 また、本発明に係る不純物拡散組成物は、上記の発明において、前記不純物拡散成分(B)の含有量は、0.1質量%以上20質量%以下であることを特徴とする。 The impurity diffusion composition according to the present invention is characterized in that, in the above invention, the content of the impurity diffusion component (B) is from 0.1% by mass to 20% by mass.
 また、本発明に係る不純物拡散組成物は、上記の発明において、前記不純物拡散成分(B)は、リン酸、五酸化二リン、ポリリン酸、リン酸エステル、酸化ホウ素、ホウ酸、ホウ酸エステル、ボロン酸、ボロン酸エステルから選ばれる1種類以上を含有することを特徴とする。 In the impurity diffusion composition according to the present invention, the impurity diffusion component (B) is phosphoric acid, diphosphorus pentoxide, polyphosphoric acid, phosphoric acid ester, boron oxide, boric acid, boric acid ester. 1 or more types selected from boronic acid and boronic acid ester.
 また、本発明に係る不純物拡散組成物は、上記の発明において、前記不純物拡散成分(B)は、ホウ酸、ボロン酸、ホウ酸エステル、ボロン酸エステルから選ばれる1種類以上を含有し、さらに、水および水溶性のバインダーを含有することを特徴とする。 In the impurity diffusion composition according to the present invention, in the above invention, the impurity diffusion component (B) contains one or more selected from boric acid, boronic acid, boric acid ester, and boronic acid ester, And water and a water-soluble binder.
 また、本発明に係る不純物拡散組成物は、上記の発明において、前記水溶性のバインダーは、ポリビニルアルコールであることを特徴とする。 The impurity diffusion composition according to the present invention is characterized in that, in the above invention, the water-soluble binder is polyvinyl alcohol.
 また、本発明に係る半導体素子の製造方法は、半導体基板上に、上記の発明のいずれかに記載の不純物拡散組成物を塗布して不純物拡散組成物膜を形成する膜形成工程と、前記不純物拡散組成物膜から前記半導体基板中に不純物拡散成分を拡散させて不純物拡散層を形成する層形成工程と、を含むことを特徴とする。 In addition, a method for manufacturing a semiconductor device according to the present invention includes a film forming step of forming an impurity diffusion composition film by applying the impurity diffusion composition according to any of the above inventions on a semiconductor substrate, and the impurity And a layer forming step of diffusing an impurity diffusion component from the diffusion composition film into the semiconductor substrate to form an impurity diffusion layer.
 また、本発明に係る半導体素子の製造方法は、半導体基板上に、上記の発明のいずれかに記載の不純物拡散組成物を塗布して不純物拡散組成物膜を形成する膜形成工程と、前記不純物拡散組成物膜にレーザー光を照射して、前記不純物拡散組成物膜から前記半導体基板中に不純物拡散成分を拡散させて不純物拡散層を形成する層形成工程と、を含むことを特徴とする。 In addition, a method for manufacturing a semiconductor device according to the present invention includes a film forming step of forming an impurity diffusion composition film by applying the impurity diffusion composition according to any of the above inventions on a semiconductor substrate, and the impurity And a layer forming step of irradiating the diffusion composition film with laser light to diffuse an impurity diffusion component from the impurity diffusion composition film into the semiconductor substrate to form an impurity diffusion layer.
 また、本発明に係る半導体素子の製造方法は、半導体基板上に、上記の発明のいずれかに記載の不純物拡散組成物を塗布して不純物拡散組成物膜を形成する膜形成工程と、前記不純物拡散組成物膜の一部分にレーザー光を照射して、前記不純物拡散組成物膜の一部分から前記半導体基板中に不純物拡散成分を拡散させて不純物拡散層を形成する層形成工程と、前記不純物拡散組成物膜のうち前記レーザー光が照射されていないレーザー未照射部分を酸またはアルカリによって除去する除去工程と、を含むことを特徴とする。 In addition, a method for manufacturing a semiconductor device according to the present invention includes a film forming step of forming an impurity diffusion composition film by applying the impurity diffusion composition according to any of the above inventions on a semiconductor substrate, and the impurity A layer forming step of irradiating a part of the diffusion composition film with laser light to diffuse an impurity diffusion component from the part of the impurity diffusion composition film into the semiconductor substrate to form an impurity diffusion layer; and the impurity diffusion composition And a removal step of removing, by an acid or an alkali, an unirradiated portion of the material film that has not been irradiated with the laser beam.
 本発明によれば、半導体基板への優れた不純物拡散性を有し、かつ半導体基板に残存する不純物拡散組成物の乾燥膜の洗浄性に優れた不純物拡散組成物、およびこれを用いた半導体素子の製造方法を提供することができるという効果を奏する。 ADVANTAGE OF THE INVENTION According to this invention, the impurity diffusion composition which has the outstanding impurity diffusivity to a semiconductor substrate, and was excellent in the cleaning property of the dry film of the impurity diffusion composition which remain | survives in a semiconductor substrate, and a semiconductor element using the same The production method can be provided.
図1Aは、本発明の実施形態に係る半導体素子の製造方法の一例を示す図である。FIG. 1A is a diagram illustrating an example of a method for manufacturing a semiconductor device according to an embodiment of the present invention. 図1Bは、本発明の実施形態に係る半導体素子を用いた太陽電池の製造方法の一例を示す図である。FIG. 1B is a diagram showing an example of a method for manufacturing a solar cell using a semiconductor element according to an embodiment of the present invention.
 以下、本発明に係る不純物拡散組成物およびこれを用いた半導体素子の製造方法の好適な実施形態を、必要に応じて図面を参照しながら詳細に説明する。なお、本発明は、これらの実施形態により限定されるものではない。 Hereinafter, preferred embodiments of an impurity diffusion composition according to the present invention and a semiconductor device manufacturing method using the same will be described in detail with reference to the drawings as necessary. Note that the present invention is not limited to these embodiments.
 本発明に係る不純物拡散組成物は、太陽電池などの半導体素子を製造する際に、所望の導電型(n型、p型)の不純物拡散層を半導体基板に形成するための組成物であり、ポリシロキサン(A)と、不純物拡散成分(B)と、を含有する。この不純物拡散組成物において、ポリシロキサン(A)は、カルボキシル基およびジカルボン酸無水物構造のうち少なくとも一つを含有する。以下、本発明に係る不純物拡散組成物に含まれる各成分について詳述する。 The impurity diffusion composition according to the present invention is a composition for forming an impurity diffusion layer of a desired conductivity type (n-type, p-type) on a semiconductor substrate when manufacturing a semiconductor element such as a solar cell, Polysiloxane (A) and an impurity diffusion component (B) are contained. In this impurity diffusion composition, polysiloxane (A) contains at least one of a carboxyl group and a dicarboxylic anhydride structure. Hereinafter, each component contained in the impurity diffusion composition according to the present invention will be described in detail.
(ポリシロキサン(A))
 本発明におけるポリシロキサン(A)は、カルボキシル基およびジカルボン酸無水物構造のうち少なくとも一つを含有するポリシロキサンである。ポリシロキサン(A)は、このような構成を有することにより、不純物拡散組成物に含有された場合、この不純物拡散組成物に、半導体基板への優れた不純物拡散性を持たせることができる。かつ、ポリシロキサン(A)は、半導体基板への不純物拡散成分の拡散後に当該半導体基板に残存する不純物拡散組成物の乾燥膜の、酸またはアルカリによる洗浄性を向上させることができる。
(Polysiloxane (A))
The polysiloxane (A) in the present invention is a polysiloxane containing at least one of a carboxyl group and a dicarboxylic anhydride structure. By having such a configuration, the polysiloxane (A) can impart excellent impurity diffusibility to the semiconductor substrate when contained in the impurity diffusion composition. In addition, the polysiloxane (A) can improve the detergency of the dry film of the impurity diffusion composition remaining on the semiconductor substrate after the diffusion of the impurity diffusion component into the semiconductor substrate with an acid or alkali.
 ポリシロキサン(A)がカルボキシル基およびジカルボン酸無水物構造のうち少なくとも一つを含有することで、ポリシロキサン(A)中のカルボキシル基およびジカルボン酸無水物構造のうち少なくとも一つと、酸性またはアルカリ性の洗浄液と、の親和性が向上する。つまり、本発明におけるポリシロキサン(A)を含有する不純物拡散組成物の乾燥膜を洗浄する際に、上記洗浄液に対する当該乾燥膜の溶解性がポリシロキサン(A)によって向上するので、酸またはアルカリによる当該乾燥膜の洗浄性を高めることができる。 The polysiloxane (A) contains at least one of a carboxyl group and a dicarboxylic acid anhydride structure, so that at least one of the carboxyl group and the dicarboxylic acid anhydride structure in the polysiloxane (A) is acidic or alkaline. Affinity with the cleaning solution is improved. That is, when the dry film of the impurity diffusion composition containing the polysiloxane (A) in the present invention is cleaned, the solubility of the dry film in the cleaning liquid is improved by the polysiloxane (A). The detergency of the dry film can be improved.
 上記のようにカルボキシル基およびジカルボン酸無水物構造のうち少なくとも一つを含有するポリシロキサン(A)は、下記一般式(1)で表されるポリシロキサンであることが好ましい。 As described above, the polysiloxane (A) containing at least one of a carboxyl group and a dicarboxylic anhydride structure is preferably a polysiloxane represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記一般式(1)中、R1は、カルボキシル基およびジカルボン酸無水物構造のうち少なくとも一つを含有する置換基を表す。複数のR1は、それぞれ同じでも異なっていてもよい。R2、R3およびR4は、水酸基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~10のアルケニル基、炭素数2~6のアシル基または炭素数6~15のアリール基のいずれかを表す。複数のR2、R3およびR4は、それぞれ同じでも異なっていてもよい。nおよびmは、各括弧内の成分の構成比率(%)を示す。これらのnおよびmは、n+m=100であり、n:m=5:95~30:70である。 In the general formula (1), R 1 represents a substituent containing at least one of a carboxyl group and a dicarboxylic anhydride structure. The plurality of R 1 may be the same or different. R 2 , R 3 and R 4 are a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, or a carbon number Represents any of 6 to 15 aryl groups; A plurality of R 2 , R 3 and R 4 may be the same or different. n and m show the component ratio (%) of the component in each parenthesis. These n and m are n + m = 100, and n: m = 5: 95 to 30:70.
 これらのnおよびmが「n:m=5:95~30:70である」とは、ポリシロキサン(A)中のカルボキシル基を有するオルガノシランに由来する成分の含有比が、オルガノシランに由来するポリシロキサン(A)全体のSi原子モル数に対するSi原子モル比で、5モル%以上30モル%以下であること、を意味する。 These n and m are “n: m = 5: 95 to 30:70” means that the content ratio of the component derived from the organosilane having a carboxyl group in the polysiloxane (A) is derived from the organosilane. This means that the Si atom mole ratio relative to the number of moles of Si atoms in the entire polysiloxane (A) is 5 mol% or more and 30 mol% or less.
 nが5以上であることにより、酸またはアルカリによる不純物拡散組成物の乾燥膜の洗浄性を向上させることができる。この結果、不純物拡散組成物の乾燥膜を半導体基板から除去する洗浄処理を、より短い時間で行うことができる。また、nが30以下であることにより、不純物拡散組成物膜から半導体基板への不純物拡散性を向上させることができる。一般式(1)で表されるポリシロキサン(A)は、ブロック共重合体であってもよいし、ランダム共重合体であってもよい。 When n is 5 or more, the detergency of the dry film of the impurity diffusion composition by acid or alkali can be improved. As a result, the cleaning process for removing the dry film of the impurity diffusion composition from the semiconductor substrate can be performed in a shorter time. Moreover, when n is 30 or less, the impurity diffusibility from the impurity diffusion composition film to the semiconductor substrate can be improved. The polysiloxane (A) represented by the general formula (1) may be a block copolymer or a random copolymer.
 ポリシロキサン(A)中のカルボキシル基の含有量は、例えば、ポリシロキサン(A)の29Si-NMRスペクトルを測定し、カルボキシル基が結合したSi原子のピーク面積と、カルボキシル基が結合していないSi原子のピーク面積との比から求めることができる。また、Si原子とカルボキシル基とが直接結合していない場合、1H-NMRスペクトルを用いて、カルボキシル基由来のピークと、シラノール基を除くその他のピークとの積分比から、ポリシロキサン(A)全体におけるカルボキシル基の含有量を算出し、この算出結果と前述の29Si-NMRスペクトルの結果とを合わせることにより、Si原子と間接的に結合しているカルボキシル基の含有量を算出することができる。 The content of the carboxyl group in the polysiloxane (A) is measured, for example, by measuring the 29 Si-NMR spectrum of the polysiloxane (A), and the peak area of the Si atom to which the carboxyl group is bonded and the carboxyl group is not bonded. It can obtain | require from ratio with the peak area of Si atom. Further, when the Si atom and the carboxyl group are not directly bonded, the polysiloxane (A) is obtained from the integration ratio between the peak derived from the carboxyl group and the other peaks excluding the silanol group using 1 H-NMR spectrum. It is possible to calculate the content of carboxyl groups indirectly bonded to Si atoms by calculating the total content of carboxyl groups and combining this calculation result with the results of the 29 Si-NMR spectrum described above. it can.
 ポリシロキサン(A)中のジカルボン酸無水物構造の含有量は、例えば、ポリシロキサン(A)の29Si-NMRスペクトルを測定し、ジカルボン酸無水物構造が結合したSi原子のピーク面積と、ジカルボン酸無水物構造が結合していないSi原子のピーク面積との比から求めることができる。また、Si原子とジカルボン酸無水物構造とが直接結合していない場合、1H-NMRスペクトルを用いて、ジカルボン酸無水物構造由来のピークと、シラノール基を除くその他のピークとの積分比から、ポリシロキサン(A)全体におけるジカルボン酸無水物構造の含有量を算出し、この算出結果と前述の29Si-NMRスペクトルの結果とを合わせることにより、Si原子と間接的に結合しているジカルボン酸無水物構造の含有量を算出することができる。 The content of the dicarboxylic acid anhydride structure in the polysiloxane (A) can be determined by, for example, measuring the 29 Si-NMR spectrum of the polysiloxane (A), the peak area of the Si atom bonded with the dicarboxylic acid anhydride structure, and the dicarboxylic acid anhydride structure. It can be determined from the ratio to the peak area of Si atoms to which the acid anhydride structure is not bonded. In addition, when the Si atom and the dicarboxylic acid anhydride structure are not directly bonded, the integral ratio between the peak derived from the dicarboxylic acid anhydride structure and the other peaks excluding the silanol group is determined using the 1 H-NMR spectrum. Then, the content of dicarboxylic acid anhydride structure in the whole polysiloxane (A) is calculated, and the result of this calculation and the result of the 29 Si-NMR spectrum described above are combined to obtain the dicarboxylic acid indirectly bonded to the Si atom. The content of the acid anhydride structure can be calculated.
 特に、一般式(1)中のR1は、下記一般式(2)~(6)のいずれかで表される基を含むことが好ましい。これにより、上記不純物拡散組成物の乾燥膜の、酸またはアルカリによる一層良好な洗浄性が得られる。 In particular, R 1 in the general formula (1) preferably contains a group represented by any one of the following general formulas (2) to (6). Thereby, the better washing | cleaning property by the acid or alkali of the dry film | membrane of the said impurity diffusion composition is obtained.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(2)~(6)中、R5、R7、R8およびR9は、炭素数1~20の2価の有機基を表す。R6は、水素原子または炭素数1~3のアルキル基を表す。R10、R11およびR12は、単結合、または炭素数1~10の鎖状脂肪族炭化水素基、炭素数3~16の環状脂肪族炭化水素基、炭素数2~6のアルキルカルボニルオキシ基、カルボニル基、エーテル基、エステル基、アミド基、炭素数6~16の芳香族基、もしくはこれらのいずれかを有する2価の基を表す。これらの基の水素原子は、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~16のアリール基、炭素数2~6のアルキルカルボニルオキシ基、ヒドロキシ基、アミノ基、カルボキシル基またはチオール基で置換されていてもよい。h、j、kおよびlは、0~3の整数を表す。 In the general formulas (2) to (6), R 5 , R 7 , R 8 and R 9 represent a divalent organic group having 1 to 20 carbon atoms. R 6 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 10 , R 11 and R 12 are each a single bond, a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms, or an alkylcarbonyloxy group having 2 to 6 carbon atoms. A group, a carbonyl group, an ether group, an ester group, an amide group, an aromatic group having 6 to 16 carbon atoms, or a divalent group having any one of them. The hydrogen atoms of these groups are alkyl groups having 1 to 10 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 6 to 16 carbon atoms, alkylcarbonyloxy groups having 2 to 6 carbon atoms, hydroxy groups, amino groups It may be substituted with a group, a carboxyl group or a thiol group. h, j, k, and l represent an integer of 0 to 3.
 つぎに、カルボキシル基およびジカルボン酸無水物構造の少なくとも一つを含有するオルガノシラン化合物について、具体的に説明する。このオルガノシラン化合物は、カルボキシル基およびジカルボン酸無水物構造の少なくとも一つを含有するポリシロキサン(A)の原料である。一般式(1)で表されるポリシロキサン(A)は、以下に説明するオルガノシラン化合物を適宜選択して加水分解および縮合させることで得ることができる。 Next, the organosilane compound containing at least one of a carboxyl group and a dicarboxylic anhydride structure will be specifically described. This organosilane compound is a raw material of polysiloxane (A) containing at least one of a carboxyl group and a dicarboxylic anhydride structure. The polysiloxane (A) represented by the general formula (1) can be obtained by appropriately selecting and hydrolyzing and condensing an organosilane compound described below.
 カルボキシル基を有するオルガノシラン化合物としては、例えば、下記一般式(7)で表されるウレア基含有のオルガノシラン化合物、または、下記一般式(8)で表されるウレタン基含有のオルガノシラン化合物が挙げられる。カルボキシル基を有するオルガノシラン化合物としては、これらを2種類以上用いたものであってもよい。 Examples of the organosilane compound having a carboxyl group include a urea group-containing organosilane compound represented by the following general formula (7) or a urethane group-containing organosilane compound represented by the following general formula (8). Can be mentioned. As the organosilane compound having a carboxyl group, two or more of these may be used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(7)、(8)中、R13、R15およびR19は、炭素数1~20の2価の有機基を表す。R14は、水素原子または炭素数1~3のアルキル基を表す。R16、R17およびR18は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~10のアルケニル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表す。これらのR16、R17およびR18は、それぞれ同一であっても異なっていてもよい。ただし、R16、R17およびR18の少なくとも一つは、炭素数1~6のアルコキシ基である。 In the general formulas (7) and (8), R 13 , R 15 and R 19 represent a divalent organic group having 1 to 20 carbon atoms. R 14 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 16 , R 17 and R 18 are each an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, Represents any of 15 aryl groups. R 16 , R 17 and R 18 may be the same or different. However, at least one of R 16 , R 17 and R 18 is an alkoxy group having 1 to 6 carbon atoms.
 一般式(7)、(8)におけるR13およびR19の好ましい例としては、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、フェニレン基、-CH2-C64-CH2-、-CH2-C64-などの炭化水素基が挙げられる。これらの中でも、耐熱性の観点から、R13およびR19として、フェニレン基、-CH2-C64-CH2-、-CH2-C64-などの芳香族環を有する炭化水素基が好ましい。 Preferred examples of R 13 and R 19 in the general formulas (7) and (8) include a methylene group, an ethylene group, an n-propylene group, an n-butylene group, a phenylene group, —CH 2 —C 6 H 4 —CH. Examples thereof include hydrocarbon groups such as 2 — and —CH 2 —C 6 H 4 —. Among these, from the viewpoint of heat resistance, carbon atoms having an aromatic ring such as a phenylene group, —CH 2 —C 6 H 4 —CH 2 —, —CH 2 —C 6 H 4 — as R 13 and R 19 A hydrogen group is preferred.
 一般式(7)におけるR14は、反応性の観点から、水素またはメチル基であることが好ましい。また、一般式(7)、(8)におけるR15の具体例としては、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基などの炭化水素基や、オキシメチレン基、オキシエチレン基、オキシn-プロピレン基、オキシn-ブチレン基、オキシn-ペンチレン基などが挙げられる。これらの中でも、合成の容易性の観点から、R15として、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、オキシメチレン基、オキシエチレン基、オキシn-プロピレン基、オキシn-ブチレン基が好ましい。 R 14 in the general formula (7) is preferably hydrogen or a methyl group from the viewpoint of reactivity. Specific examples of R 15 in the general formulas (7) and (8) include hydrocarbon groups such as a methylene group, an ethylene group, an n-propylene group, an n-butylene group and an n-pentylene group, and an oxymethylene group. Oxyethylene group, oxy n-propylene group, oxy n-butylene group, oxy n-pentylene group and the like. Among these, from the viewpoint of ease of synthesis, R 15 represents methylene group, ethylene group, n-propylene group, n-butylene group, oxymethylene group, oxyethylene group, oxy n-propylene group, oxy n-butylene. Groups are preferred.
 一般式(7)、(8)におけるR16、R17およびR18のうち、アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基などが挙げられる。これらの中でも、合成の容易性の観点から、R16、R17およびR18のアルキル基として、メチル基またはエチル基が好ましい。また、これらのR16、R17およびR18のうち、アルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基などが挙げられる。これらの中でも、合成の容易性の観点から、R16、R17およびR18のアルコキシ基として、メトキシ基またはエトキシ基が好ましい。また、R16、R17およびR18の置換体の置換基としては、メトキシ基、エトキシ基などが挙げられる。具体的には、1-メトキシプロピル基、メトキシエトキシ基などが挙げられる。 Of R 16 , R 17 and R 18 in the general formulas (7) and (8), specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group and an isopropyl group. Among these, a methyl group or an ethyl group is preferable as the alkyl group for R 16 , R 17 and R 18 from the viewpoint of ease of synthesis. Of these R 16 , R 17 and R 18 , specific examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group. Among these, a methoxy group or an ethoxy group is preferable as the alkoxy group for R 16 , R 17, and R 18 from the viewpoint of ease of synthesis. In addition, examples of the substituent of the substituent of R 16 , R 17 and R 18 include a methoxy group and an ethoxy group. Specific examples include a 1-methoxypropyl group and a methoxyethoxy group.
 一般式(7)で表されるウレア基含有のオルガノシラン化合物は、下記一般式(9)で表されるアミノカルボン酸化合物と、下記一般式(11)で表されるイソシアネート基含有のオルガノシラン化合物とから、公知のウレア化反応により得ることができる。また、一般式(8)で表されるウレタン基含有のオルガノシラン化合物は、下記一般式(10)で表されるヒドロキシカルボン酸化合物と、下記一般式(11)で表されるイソシアネート基含有のオルガノシラン化合物とから、公知のウレタン化反応により得ることができる。 The urea group-containing organosilane compound represented by the general formula (7) includes an aminocarboxylic acid compound represented by the following general formula (9) and an isocyanate group-containing organosilane represented by the following general formula (11). It can be obtained from a compound by a known urea formation reaction. Further, the urethane group-containing organosilane compound represented by the general formula (8) includes a hydroxycarboxylic acid compound represented by the following general formula (10) and an isocyanate group-containing compound represented by the following general formula (11). It can be obtained from an organosilane compound by a known urethanization reaction.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(9)~(11)中、R13、R15およびR19は、炭素数1~20の2価の有機基を表す。R14は、水素原子または炭素数1~3のアルキル基を表す。R16、R17およびR18は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~10のアルケニル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表す。これらのR13~R19の好ましい例は、一般式(7)、(8)におけるR13~R19について先に説明したとおりである。 In the general formulas (9) to (11), R 13 , R 15 and R 19 represent a divalent organic group having 1 to 20 carbon atoms. R 14 represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 16 , R 17 and R 18 are each an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, Represents any of 15 aryl groups. Preferred examples of these R 13 ~ R 19 of the general formula (7) is as described above for R 13 ~ R 19 in (8).
 カルボキシル基を有するオルガノシラン化合物のその他の具体例としては、一般式(12)で表される化合物が挙げられる。 Other specific examples of the organosilane compound having a carboxyl group include a compound represented by the general formula (12).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(12)中、R20は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~10のアルケニル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表す。複数のR20は、それぞれ同じでも異なっていてもよい。qは、1~3の整数を表す。rは、2~20の整数を表す。 In the general formula (12), R 20 represents an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, or 6 carbon atoms. Represents any of ˜15 aryl groups. The plurality of R 20 may be the same or different. q represents an integer of 1 to 3. r represents an integer of 2 to 20.
 ジカルボン酸無水物構造を有するオルガノシラン化合物の具体例としては、下記一般式(13)~(15)のいずれかで表されるオルガノシラン化合物が挙げられる。ジカルボン酸無水物構造を有するオルガノシラン化合物としては、これらを2種類以上用いたものであってもよい。 Specific examples of the organosilane compound having a dicarboxylic acid anhydride structure include organosilane compounds represented by any one of the following general formulas (13) to (15). As an organosilane compound having a dicarboxylic acid anhydride structure, two or more of these may be used.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(13)~(15)中、R22、R23およびR24は、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~10のアルケニル基、炭素数2~6のアシル基、炭素数6~15のアリール基のいずれかを表す。ただし、R22、R23およびR24の少なくとも1つは、炭素数1~6のアルコキシ基である。 In the general formulas (13) to (15), R 22 , R 23 and R 24 are each an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, It represents either an acyl group having 2 to 6 or an aryl group having 6 to 15 carbon atoms. However, at least one of R 22 , R 23 and R 24 is an alkoxy group having 1 to 6 carbon atoms.
 R21、R25およびR26は、単結合、または炭素数1~10の鎖状脂肪族炭化水素基、炭素数3~16の環状脂肪族炭化水素基、炭素数2~6のアルキルカルボニルオキシ基、カルボニル基、エーテル基、エステル基、アミド基、炭素数6~16の芳香族基、もしくはこれらのいずれかを有する2価の基を表す。これらの基の水素原子は、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~16のアリール基、炭素数2~6のアルキルカルボニルオキシ基、ヒドロキシ基、アミノ基、カルボキシル基またはチオール基で置換されていてもよい。h、j、kおよびlは、0~3の整数を表す。 R 21 , R 25 and R 26 are each a single bond or a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms, or an alkylcarbonyloxy group having 2 to 6 carbon atoms. A group, a carbonyl group, an ether group, an ester group, an amide group, an aromatic group having 6 to 16 carbon atoms, or a divalent group having any one of them. The hydrogen atoms of these groups are alkyl groups having 1 to 10 carbon atoms, alkenyl groups having 2 to 10 carbon atoms, aryl groups having 6 to 16 carbon atoms, alkylcarbonyloxy groups having 2 to 6 carbon atoms, hydroxy groups, amino groups It may be substituted with a group, a carboxyl group or a thiol group. h, j, k, and l represent an integer of 0 to 3.
 R21、R25およびR26の具体例としては、-C24-、-C36-、-C48-、-O-、-C36OCH2CH(OH)CH22C-、-CO-、-CO2-、-CONH-、および以下にあげる有機基などが挙げられる。 Specific examples of R 21 , R 25 and R 26 include —C 2 H 4 —, —C 3 H 6 —, —C 4 H 8 —, —O—, —C 3 H 6 OCH 2 CH (OH). Examples thereof include CH 2 O 2 C—, —CO—, —CO 2 —, —CONH—, and organic groups listed below.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(13)で表されるオルガノシラン化合物の具体例としては、3-トリメトキシシリルプロピルコハク酸無水物、3-トリエトキシシリルプロピルコハク酸無水物、3-トリフェノキシシリルプロピルコハク酸無水物などが挙げられる。一般式(14)で表されるオルガノシラン化合物の具体例としては、3-トリメトキシシシリルプロピルシクロヘキシルジカルボン酸無水物などが挙げられる。一般式(15)で表されるオルガノシラン化合物の具体例としては、3-トリメトキシシシリルプロピルフタル酸無水物などが挙げられる。 Specific examples of the organosilane compound represented by the general formula (13) include 3-trimethoxysilylpropyl succinic anhydride, 3-triethoxysilylpropyl succinic anhydride, 3-triphenoxysilylpropyl succinic anhydride. Etc. Specific examples of the organosilane compound represented by the general formula (14) include 3-trimethoxysilylsilylpropylcyclohexyl dicarboxylic acid anhydride. Specific examples of the organosilane compound represented by the general formula (15) include 3-trimethoxysilylsilylpropylphthalic anhydride.
 カルボキシル基およびジカルボン酸無水物構造の少なくとも一つを含有するポリシロキサン(A)の原料として、カルボキシル基およびジカルボン酸無水物構造の少なくとも一つを含有するオルガノシラン化合物以外のオルガノシラン化合物を併用することも可能である。 As a raw material for the polysiloxane (A) containing at least one of a carboxyl group and a dicarboxylic anhydride structure, an organosilane compound other than an organosilane compound containing at least one of a carboxyl group and a dicarboxylic anhydride structure is used in combination. It is also possible.
 このようなオルガノシラン化合物として、例えば、4官能性シラン、3官能性シラン、2官能性シラン、1官能性シランが挙げられる。4官能性シランとして、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシランなどが挙げられる。3官能性シランとして、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリn-ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリn-ブトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-ブチルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-ヒドロキシフェニルトリメトキシシラン、1-(p-ヒドロキシフェニル)エチルトリメトキシシラン、2-(p-ヒドロキシフェニル)エチルトリメトキシシラン、4-ヒドロキシ-5-(p-ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリメトキシシラン、〔(3-エチル-3-オキセタニル)メトキシ〕プロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、1-ナフチルトリメトキシシラン、1-ナフチルトリエトキシシラン、1-ナフチルトリ-n-プロポキシシラン、2-ナフチルトリメトキシシラン、1-アントラセニルトリメトキシシラン、9-アントラセニルトリメトキシシラン、9-フェナントレニルトリメトキシシラン、9-フルオレニルトリメトキシシラン、2-フルオレニルトリメトキシシラン、1-ピレニルトリメトキシシラン、2-インデニルトリメトキシシラン、5-アセナフテニルトリメトキシシランなどが挙げられる。2官能性シランとして、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジアセトキシシラン、ジn-ブチルジメトキシシラン、ジフェニルジメトキシシラン、(3-グリシドキシプロピル)メチルジメトキシシラン、(3-グリシドキシプロピル)メチルジエトキシシラン、ジ(1-ナフチル)ジメトキシシラン、ジ(1-ナフチル)ジエトキシシランなどが挙げられる。1官能性シランとして、例えば、トリメチルメトキシシラン、トリn-ブチルエトキシシラン、(3-グリシドキシプロピル)ジメチルメトキシシラン、(3-グリシドキシプロピル)ジメチルエトキシシランなどが挙げられる。これらのオルガノシランは、2種類以上用いてもよい。 Examples of such organosilane compounds include tetrafunctional silane, trifunctional silane, bifunctional silane, and monofunctional silane. Examples of the tetrafunctional silane include tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, and tetraphenoxysilane. Examples of trifunctional silanes include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, methyltrin-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltrin-butoxy. Silane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, decyltrimethoxysilane, vinyl Trimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-acryloxypropyltrimethoxysilane, pheny Trimethoxysilane, phenyltriethoxysilane, p-hydroxyphenyltrimethoxysilane, 1- (p-hydroxyphenyl) ethyltrimethoxysilane, 2- (p-hydroxyphenyl) ethyltrimethoxysilane, 4-hydroxy-5- ( p-hydroxyphenylcarbonyloxy) pentyltrimethoxysilane, trifluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-amino Propyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-ethylene Xylcyclohexyl) ethyltriethoxysilane, [(3-ethyl-3-oxetanyl) methoxy] propyltrimethoxysilane, [(3-ethyl-3-oxetanyl) methoxy] propyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 1-naphthyltrimethoxysilane, 1-naphthyltriethoxysilane, 1-naphthyltrimethoxy-n-propoxysilane, 2-naphthyltrimethoxysilane, 1-anthracenyltrimethoxysilane, 9-anthracenyltrimethoxysilane, 9-phenant Examples include lenyltrimethoxysilane, 9-fluorenyltrimethoxysilane, 2-fluorenyltrimethoxysilane, 1-pyrenyltrimethoxysilane, 2-indenyltrimethoxysilane, and 5-acenaphthenyltrimethoxysilane. I can get lost. Examples of the bifunctional silane include dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiacetoxysilane, di-n-butyldimethoxysilane, diphenyldimethoxysilane, (3-glycidoxypropyl) methyldimethoxysilane, (3-glycidide) And xylpropyl) methyldiethoxysilane, di (1-naphthyl) dimethoxysilane, and di (1-naphthyl) diethoxysilane. Examples of monofunctional silanes include trimethylmethoxysilane, tri-n-butylethoxysilane, (3-glycidoxypropyl) dimethylmethoxysilane, and (3-glycidoxypropyl) dimethylethoxysilane. Two or more of these organosilanes may be used.
 カルボキシル基およびジカルボン酸無水物構造の少なくとも一つを含有するポリシロキサン(A)の製造方法は、特に限定されるものではなく、オルガノシラン化合物を部分縮合するなどの公知の方法を用いることができる。この製造方法として、例えば、オルガノシラン混合物に反応溶剤、水、必要に応じて触媒を添加し、50℃~150℃で0.5時間~100時間程度、加熱撹拌する方法などが挙げられる。この製造方法において、上記の加熱撹拌中、必要に応じて、加水分解副生物(メタノールなどのアルコール)や縮合副生物(水)を蒸留により留去してもよい。ここで、部分縮合とは、加水分解物のSi-OHを全て縮合させるのではなく、得られるポリシロキサン(A)の一部にSi-OHを残存させることを指す。後述する一般的な縮合条件であれば、Si-OHが部分的に残存することが一般的であり、本発明において、残存させるSi-OH量は制限されない。 The production method of polysiloxane (A) containing at least one of a carboxyl group and a dicarboxylic anhydride structure is not particularly limited, and a known method such as partial condensation of an organosilane compound can be used. . Examples of this production method include a method of adding a reaction solvent, water and, if necessary, a catalyst to an organosilane mixture and heating and stirring at 50 to 150 ° C. for about 0.5 to 100 hours. In this production method, during the heating and stirring, if necessary, hydrolysis by-products (alcohols such as methanol) and condensation by-products (water) may be distilled off by distillation. Here, the partial condensation means that Si—OH remains in a part of the resulting polysiloxane (A) rather than condensing all of the hydrolyzed Si—OH. In general condensation conditions described later, Si—OH is generally partially left, and in the present invention, the amount of Si—OH to be left is not limited.
 上記の反応溶媒としては、特に制限は無いが、通常は後述の溶剤と同様のものを用いることができる。このような反応溶媒の添加量は、オルガノシランなどのモノマーの100重量部に対して10重量部以上1500重量部以下であることが好ましい。また、加水分解反応に用いる水の添加量は、加水分解性基の1モルに対して0.5モル以上5モル以下であることが好ましい。 The reaction solvent is not particularly limited, but usually the same solvent as described below can be used. The addition amount of such a reaction solvent is preferably 10 parts by weight or more and 1500 parts by weight or less with respect to 100 parts by weight of a monomer such as organosilane. Moreover, it is preferable that the addition amount of the water used for a hydrolysis reaction is 0.5 mol or more and 5 mol or less with respect to 1 mol of a hydrolysable group.
 必要に応じて添加される触媒としては、特に制限はないが、酸触媒が好ましく用いられる。この酸触媒の具体例としては、塩酸、硝酸、硫酸、フッ酸、リン酸、酢酸、トリフルオロ酢酸、ギ酸、多価カルボン酸あるいはその無水物、イオン交換樹脂が挙げられる。このような触媒の添加量は、オルガノシランなどのモノマーの100重量部に対して0.01重量部以上10重量部以下であることが好ましい。 The catalyst added as necessary is not particularly limited, but an acid catalyst is preferably used. Specific examples of the acid catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, acetic acid, trifluoroacetic acid, formic acid, polyvalent carboxylic acid or anhydride thereof, and ion exchange resin. The addition amount of such a catalyst is preferably 0.01 parts by weight or more and 10 parts by weight or less with respect to 100 parts by weight of a monomer such as organosilane.
 また、不純物拡散組成物の貯蔵安定性の観点から、加水分解、部分縮合後のポリシロキサン溶液から必要に応じて触媒の除去を行うことができる。この触媒の除去方法としては、特に制限は無いが、操作の簡便さと除去性の観点から、水洗浄およびイオン交換樹脂での処理の少なくとも一つを行うものが好ましい。水洗浄とは、ポリシロキサン溶液を適当な疎水性溶剤で希釈した後、水で数回洗浄して得られた有機層をエバポレーターなどで濃縮する、という方法である。イオン交換樹脂での処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる、という方法である。 Further, from the viewpoint of storage stability of the impurity diffusion composition, the catalyst can be removed from the polysiloxane solution after hydrolysis and partial condensation as necessary. Although there is no restriction | limiting in particular as this catalyst removal method, From the viewpoint of the ease of operation and a removability, what performs at least one of water washing and the process by ion exchange resin is preferable. The water washing is a method of diluting a polysiloxane solution with a suitable hydrophobic solvent and then concentrating the organic layer obtained by washing several times with water with an evaporator or the like. The treatment with an ion exchange resin is a method in which a polysiloxane solution is brought into contact with an appropriate ion exchange resin.
 本発明における不純物拡散組成物中の、カルボキシル基およびジカルボン酸無水物構造の少なくとも一つを含有するポリシロキサン(A)の含有量は、不純物拡散組成物中において、0.1質量%以上90質量%以下であることが好ましく、0.1質量%以上50質量%以下であることがより好ましい。ポリシロキサン(A)の含有量が上記範囲内のものであることにより、不純物拡散組成物の優れた不純物拡散性と洗浄性とを得ることができる。 The content of the polysiloxane (A) containing at least one of a carboxyl group and a dicarboxylic anhydride structure in the impurity diffusion composition in the present invention is 0.1% by mass or more and 90% by mass in the impurity diffusion composition. % Or less, more preferably 0.1% by mass or more and 50% by mass or less. When the content of the polysiloxane (A) is within the above range, excellent impurity diffusibility and cleanability of the impurity diffusion composition can be obtained.
 本発明における「基」において、「炭素数」とは、当該基にさらに置換される基も含めた合計の炭素数を表す。例えば、炭素数1~10のアルキル基は、当該アルキル基(置換基がある場合は、その置換基を含む)における合計の炭素数が1以上10以下であることを意味する。 In the “group” in the present invention, “carbon number” represents the total number of carbon atoms including a group further substituted on the group. For example, an alkyl group having 1 to 10 carbon atoms means that the total number of carbon atoms in the alkyl group (including the substituent, if any) is 1 or more and 10 or less.
(不純物拡散成分(B))
 不純物拡散成分(B)は、半導体基板中に所望の導電型(n型、p型)の不純物拡散層を形成するための成分である。不純物拡散成分(B)としては、13族または15族の元素を含む化合物であることが好ましい。13族元素としては、ホウ素、アルミニウムおよびガリウムが好ましく、ホウ素が特に好ましい。15族元素としては、リン、ヒ素、アンチモンおよびビスマスが好ましく、リンが特に好ましい。
(Impurity diffusion component (B))
The impurity diffusion component (B) is a component for forming an impurity diffusion layer of a desired conductivity type (n-type or p-type) in the semiconductor substrate. The impurity diffusion component (B) is preferably a compound containing a Group 13 or Group 15 element. As the group 13 element, boron, aluminum and gallium are preferable, and boron is particularly preferable. As the group 15 element, phosphorus, arsenic, antimony and bismuth are preferable, and phosphorus is particularly preferable.
 リン化合物としては、例えば、リン酸エステルや亜リン酸エステルなどが例示される。リン酸エステルとしては、例えば、五酸化二リン、リン酸、ポリリン酸、リン酸メチル、リン酸ジメチル、リン酸トリメチル、リン酸エチル、リン酸ジエチル、リン酸トリエチル、リン酸プロピル、リン酸ジプロピル、リン酸トリプロピル、リン酸ブチル、リン酸ジブチル、リン酸トリブチル、リン酸フェニル、リン酸ジフェニル、リン酸トリフェニルなどが挙げられる。亜リン酸エステルとしては、例えば、亜リン酸メチル、亜リン酸ジメチル、亜リン酸トリメチル、亜リン酸エチル、亜リン酸ジエチル、亜リン酸トリエチル、亜リン酸プロピル、亜リン酸ジプロピル、亜リン酸トリプロピル、亜リン酸ブチル、亜リン酸ジブチル、亜リン酸トリブチル、亜リン酸フェニル、亜リン酸ジフェニル、亜リン酸トリフェニルなどが挙げられる。なかでも、ドーピング性の点から、リン酸、五酸化二リンまたはポリリン酸が好ましい。 Examples of phosphorus compounds include phosphate esters and phosphites. Examples of phosphate esters include diphosphorus pentoxide, phosphoric acid, polyphosphoric acid, methyl phosphate, dimethyl phosphate, trimethyl phosphate, ethyl phosphate, diethyl phosphate, triethyl phosphate, propyl phosphate, and dipropyl phosphate. , Tripropyl phosphate, butyl phosphate, dibutyl phosphate, tributyl phosphate, phenyl phosphate, diphenyl phosphate, triphenyl phosphate, and the like. Examples of the phosphite ester include methyl phosphite, dimethyl phosphite, trimethyl phosphite, ethyl phosphite, diethyl phosphite, triethyl phosphite, propyl phosphite, dipropyl phosphite, Examples include tripropyl phosphate, butyl phosphite, dibutyl phosphite, tributyl phosphite, phenyl phosphite, diphenyl phosphite, triphenyl phosphite and the like. Of these, phosphoric acid, diphosphorus pentoxide or polyphosphoric acid is preferable from the viewpoint of doping.
 ホウ素化合物としては、例えば、ホウ酸類、ホウ酸塩類、ハロゲン化物、ボロン酸類、ホウ酸エステル類、ボロン酸エステル類が挙げられる。具体的には、ホウ酸類として、ホウ酸、酸化ホウ素などを挙げることができる。ホウ酸塩類として、ホウ酸アンモニウムなどを挙げることができる。ハロゲン化物として、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、三ヨウ化ホウ素などを挙げることができる。ボロン酸類として、メチルボロン酸、フェニルボロン酸などを挙げることができる。ホウ酸エステル類として、ホウ酸トリメチル、ホウ酸トリエチル、ホウ酸トリプロピル、ホウ酸トリブチル、ホウ酸トリオクチル、ホウ酸トリフェニルなどを挙げることができる。ボロン酸エステル類として、2-フェニル-1,3,2-ジオキサボリナン、ジイソプロピルメチルボランなどを挙げることができる。これらの中でも、拡散性の観点から、ホウ酸類、ボロン酸類、ホウ酸エステル類、およびボロン酸エステル類が好ましい。 Examples of the boron compound include boric acids, borates, halides, boronic acids, boric acid esters, and boronic acid esters. Specifically, examples of boric acids include boric acid and boron oxide. Examples of borates include ammonium borate. Examples of the halide include boron trifluoride, boron trichloride, boron tribromide, boron triiodide and the like. Examples of boronic acids include methyl boronic acid and phenyl boronic acid. Examples of borate esters include trimethyl borate, triethyl borate, tripropyl borate, tributyl borate, trioctyl borate, triphenyl borate, and the like. Examples of boronic acid esters include 2-phenyl-1,3,2-dioxaborinane and diisopropylmethylborane. Among these, from the viewpoint of diffusibility, boric acids, boronic acids, boric acid esters, and boronic acid esters are preferable.
 本発明に係る不純物拡散組成物中の不純物拡散成分(B)の含有量は、半導体基板に求められる抵抗値により任意に決めることができるが、0.01質量%以上50質量%以下であることが好ましく、0.1質量%以上20質量%以下であることがより好ましい。不純物拡散成分(B)の含有量が上記範囲内のものであることにより、半導体基板に対する不純物拡散成分(B)の十分な拡散性が得られる。 The content of the impurity diffusion component (B) in the impurity diffusion composition according to the present invention can be arbitrarily determined according to the resistance value required for the semiconductor substrate, and is 0.01% by mass or more and 50% by mass or less. Is preferable, and it is more preferable that it is 0.1 mass% or more and 20 mass% or less. When the content of the impurity diffusion component (B) is within the above range, sufficient diffusibility of the impurity diffusion component (B) with respect to the semiconductor substrate can be obtained.
 また、不純物拡散成分(B)としてホウ素化合物を用いる場合、不純物拡散成分(B)は、バインダー樹脂を含有することが好ましい。特に、不純物拡散成分(B)は、ホウ酸、ボロン酸、ホウ酸エステルおよびボロン酸エステルの中から選ばれる1種類以上を含有し、さらに、水と水溶性のバインダーとを含有することが好ましい。ここで、水溶性のバインダーとは、25℃において水に対して10重量%以上の溶解度を示すものを言う。 Further, when a boron compound is used as the impurity diffusion component (B), the impurity diffusion component (B) preferably contains a binder resin. In particular, the impurity diffusion component (B) preferably contains at least one selected from boric acid, boronic acid, boric acid ester and boronic acid ester, and further contains water and a water-soluble binder. . Here, the water-soluble binder refers to a binder having a solubility of 10% by weight or more with respect to water at 25 ° C.
 具体的には、上記水溶性のバインダーなどのバインダー樹脂として、次のものが例示される。例えば、ポリビニルアルコール、ポリビニルアセタール、ポリビニルブチラール、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂、ポリエチレンオキサイド樹脂、アクリルアミドアルキルスルホン樹脂、セルロース誘導体、ゼラチン、ゼラチン誘導体、澱粉、澱粉誘導体、アルギン酸ナトリウム化合物、キサンタン、グアーガム、グアーガム誘導体、スクレログルカン、スクレログルカン誘導体、トラガカント、トラガカント誘導体、デキストリン、デキストリン誘導体、水溶性(メタ)アクリル酸エステル樹脂、水溶性ポリブタジエン樹脂、水溶性スチレン樹脂、ブチラール樹脂、これらの共重合体などが挙げられる。しかし、不純物拡散成分(B)におけるバインダー樹脂は、これらに限定されるものではない。また、上記の「(メタ)アクリル酸」とは、「アクリル酸またはメタクリル酸」を意味する。 Specifically, examples of the binder resin such as the above water-soluble binder include the following. For example, polyvinyl alcohol, polyvinyl acetal, polyvinyl butyral, polyacrylamide resin, polyvinyl pyrrolidone resin, polyethylene oxide resin, acrylamide alkyl sulfone resin, cellulose derivative, gelatin, gelatin derivative, starch, starch derivative, sodium alginate compound, xanthan, guar gum, guar gum Derivatives, scleroglucan, scleroglucan derivatives, tragacanth, tragacanth derivatives, dextrin, dextrin derivatives, water-soluble (meth) acrylate resins, water-soluble polybutadiene resins, water-soluble styrene resins, butyral resins, copolymers thereof Is mentioned. However, the binder resin in the impurity diffusion component (B) is not limited to these. The above “(meth) acrylic acid” means “acrylic acid or methacrylic acid”.
 不純物拡散成分(B)において、バインダー樹脂は、単独でも2種類以上の組合せでも使用できる。中でも、不純物拡散成分(B)がホウ素化合物である場合、バインダー樹脂は、ホウ素化合物との錯体の形成性および形成した錯体の安定性の観点から、1,2-ジオール構造または1,3-ジオール構造をもつものが好ましく、特に、ポリビニルアルコールが好ましい。 In the impurity diffusion component (B), the binder resin can be used alone or in combination of two or more. In particular, when the impurity diffusion component (B) is a boron compound, the binder resin has a 1,2-diol structure or 1,3-diol from the viewpoint of the formation of a complex with the boron compound and the stability of the formed complex. Those having a structure are preferable, and polyvinyl alcohol is particularly preferable.
 また、不純物拡散成分(B)におけるバインダー樹脂の重合度については、特に制限はないが、好ましい重合度の範囲としては1000以下であり、特に、800以下であることが好ましい。これによって、ポリビニルアルコールなどの水酸基含有高分子の有機溶剤への優れた溶解性が示されるようになる。一方、この重合度の下限値は、特に制限されないが、バインダー樹脂の扱いやすさの観点から、100以上であることが好ましい。なお、本発明において、バインダー樹脂の重合度は、GPC(ゲルパーミエーションクロマトグラフィ)分析におけるポリスチレン換算の数平均重合度として求められる。 Further, the polymerization degree of the binder resin in the impurity diffusion component (B) is not particularly limited, but a preferable polymerization degree range is 1000 or less, and particularly preferably 800 or less. As a result, excellent solubility of a hydroxyl group-containing polymer such as polyvinyl alcohol in an organic solvent is exhibited. On the other hand, the lower limit of the degree of polymerization is not particularly limited, but is preferably 100 or more from the viewpoint of easy handling of the binder resin. In the present invention, the degree of polymerization of the binder resin is determined as the number average degree of polymerization in terms of polystyrene in GPC (gel permeation chromatography) analysis.
(溶媒)
 本発明に係る不純物拡散組成物は、溶媒を含むことが好ましい。この溶媒は、特に制限なく用いることができるが、スピンコート法、インクジェット法、スクリーン印刷法やロールコート印刷法などの塗布方法により適宜選択される。このような溶媒として、例えば、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、エーテルアセテート系溶剤、非プロトン性極性溶剤、アルコール系溶剤、グリコールモノエーテル系溶剤、テルペン系溶剤、水などが挙げられる。これらは、1種類を単独で使用されてもよいし、2種類以上を組み合わせて使用されてもよい。
(solvent)
The impurity diffusion composition according to the present invention preferably contains a solvent. This solvent can be used without particular limitation, but is appropriately selected depending on a coating method such as a spin coating method, an ink jet method, a screen printing method or a roll coating printing method. Examples of such solvents include ketone solvents, ether solvents, ester solvents, ether acetate solvents, aprotic polar solvents, alcohol solvents, glycol monoether solvents, terpene solvents, water, and the like. . One of these may be used alone, or two or more of these may be used in combination.
 ケトン系溶剤としては、例えば、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-iso-プロピルケトン、メチル-n-ブチルケトン、メチル-iso-ブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジ-iso-ブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン、γ-ブチロラクトン、γ-バレロラクトンなどが挙げられる。 Examples of ketone solvents include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-propyl ketone, methyl-n-butyl ketone, methyl-iso-butyl ketone, methyl-n-pentyl ketone, and methyl-n-hexyl. Ketone, diethyl ketone, dipropyl ketone, di-iso-butyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentanedione, acetonylacetone, γ-butyrolactone, γ-valerolactone, etc. It is done.
 エーテル系溶剤としては、例えば、ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジ-iso-プロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラジエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラジプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジ-n-ブチルエーテルなどが挙げられる。 Examples of ether solvents include diethyl ether, methyl ethyl ether, methyl-n-propyl ether, di-iso-propyl ether, tetrahydrofuran, methyltetrahydrofuran, dioxane, dimethyldioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol Di-n-propyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol methyl n-propyl ether, diethylene glycol methyl n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di- n-Butyl Ete , Diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, triethylene glycol methyl ethyl ether, triethylene glycol methyl n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol methyl n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetradiethylene glycol methyl ethyl ether, tetraethylene glycol methyl-n-butyl ether, diethylene glycol di-n-butyl ether, tetraethylene glycol methyl-n-hexyl ether, tetraethylene Glycol di-n-butyl ether, propylene Recall dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol dibutyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether, dipropylene glycol methyl n-butyl ether, di Propylene glycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl -N-butyl ether, tripropylene rubber Recall di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetradipropylene glycol methyl ethyl ether, tetrapropylene glycol methyl-n-butyl ether, dipropylene glycol di-n -Butyl ether, tetrapropylene glycol methyl-n-hexyl ether, tetrapropylene glycol di-n-butyl ether and the like.
 エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリグリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸i-アミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミルなどが挙げられる。 Examples of ester solvents include methyl acetate, ethyl acetate, n-propyl acetate, i-propyl acetate, n-butyl acetate, i-butyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, and acetic acid. 3-methoxybutyl, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2- (2-butoxyethoxy) ethyl acetate, benzyl acetate, cyclohexyl acetate, methyl cyclohexyl acetate, nonyl acetate, methyl acetoacetate, ethyl acetoacetate , Diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-n-butyl ether acetate, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, diacetic acid glyco Methoxytriglycol acetate, ethyl propionate, n-butyl propionate, i-amyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n-amyl lactate Etc.
 エーテルアセテート系溶剤としては、例えば、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、ジエチレングリコールメチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコール-n-ブチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、ジプロピレングリコールエチルエーテルアセテートなどが挙げられる。 Examples of ether acetate solvents include ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol methyl ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol-n. -Butyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, dipropylene glycol methyl ether acetate, dipropylene glycol ethyl ether acetate and the like.
 非プロトン性極性溶剤としては、例えば、アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルスルホキシドなどが挙げられる。 Examples of the aprotic polar solvent include acetonitrile, N-methylpyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N , N-dimethylacetamide, N, N-dimethylsulfoxide and the like.
 アルコール系溶剤としては、例えば、メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、i-ペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、フェノール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコールなどが挙げられる。 Examples of alcohol solvents include methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, sec-butanol, t-butanol, n-pentanol, i-pentanol, and 2-methylbutanol. , Sec-pentanol, t-pentanol, 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec- Octanol, n-nonyl alcohol, n-decanol, sec-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, phenol, cyclohexanol, methylcyclohex Nord, benzyl alcohol, ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol.
 グリコールモノエーテル系溶剤としては、例えば、エチレングリコールメチルエーテル、エチレングリコールエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、エトキシトリグリコール、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテルなどが挙げられる。 Examples of the glycol monoether solvent include ethylene glycol methyl ether, ethylene glycol ethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono-n-hexyl ether, Examples include ethoxy triglycol, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, and tripropylene glycol monomethyl ether.
 テルペン系溶剤としては、例えば、α-テルピネン、α-テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、α-ピネン、β-ピネン、ターピネオール、カルボン、オシメン、フェランドレンなどが挙げられる。 Examples of the terpene solvent include α-terpinene, α-terpineol, myrcene, alloocimene, limonene, dipentene, α-pinene, β-pinene, terpineol, carvone, osymene, and ferrandolene.
 本発明に係る不純物拡散組成物中の溶剤の含有量は、不純物拡散組成物の粘度により任意に決めることができるが、1質量%以上90質量%以下の範囲内であることが好ましい。 The content of the solvent in the impurity diffusion composition according to the present invention can be arbitrarily determined according to the viscosity of the impurity diffusion composition, but is preferably in the range of 1% by mass to 90% by mass.
(界面活性剤)
 本発明に係る不純物拡散組成物は、界面活性剤を含有してもよい。不純物拡散組成物が界面活性剤を含有することで、半導体基板に不純物拡散組成物を塗布した際の塗布ムラが改善し、この結果、不純物拡散組成膜の均一な塗布膜が得られる。界面活性剤としては、フッ素系界面活性剤や、シリコーン系界面活性剤が好ましく用いられる。
(Surfactant)
The impurity diffusion composition according to the present invention may contain a surfactant. When the impurity diffusion composition contains a surfactant, uneven coating when the impurity diffusion composition is applied to the semiconductor substrate is improved, and as a result, a uniform coating film of the impurity diffusion composition film is obtained. As the surfactant, a fluorine-based surfactant or a silicone-based surfactant is preferably used.
 フッ素系界面活性剤の具体的な例としては、末端、主鎖および側鎖の少なくとも何れかの部位にフルオロアルキルまたはフルオロアルキレン基を有する化合物からなるフッ素系界面活性剤を挙げることができる。このようなフッ素系界面活性剤としては、例えば、1,1,2,2-テトラフルオロオクチル(1,1,2,2-テトラフルオロプロピル)エーテル、1,1,2,2-テトラフルオロオクチルヘキシルエーテル、オクタエチレングリコールジ(1,1,2,2-テトラフルオロブチル)エーテル、ヘキサエチレングリコール(1,1,2,2,3,3-ヘキサフルオロペンチル)エーテル、オクタプロピレングリコールジ(1,1,2,2-テトラフルオロブチル)エーテル、ヘキサプロピレングリコールジ(1,1,2,2,3,3-ヘキサフルオロペンチル)エーテル、パーフルオロドデシルスルホン酸ナトリウム、1,1,2,2,8,8,9,9,10,10-デカフルオロドデカン、1,1,2,2,3,3-ヘキサフルオロデカン、N-[3-(パーフルオロオクタンスルホンアミド)プロピル]-N,N′-ジメチル-N-カルボキシメチレンアンモニウムベタイン、パーフルオロアルキルスルホンアミドプロピルトリメチルアンモニウム塩、パーフルオロアルキル-N-エチルスルホニルグリシン塩、リン酸ビス(N-パーフルオロオクチルスルホニル-N-エチルアミノエチル)、モノパーフルオロアルキルエチルリン酸エステルなどが挙げられる。 Specific examples of the fluorosurfactant include a fluorosurfactant composed of a compound having a fluoroalkyl or fluoroalkylene group in at least one of the terminal, main chain and side chain. Examples of such a fluorosurfactant include 1,1,2,2-tetrafluorooctyl (1,1,2,2-tetrafluoropropyl) ether, 1,1,2,2-tetrafluorooctyl. Hexyl ether, octaethylene glycol di (1,1,2,2-tetrafluorobutyl) ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl) ether, octapropylene glycol di (1 , 1,2,2-tetrafluorobutyl) ether, hexapropylene glycol di (1,1,2,2,3,3-hexafluoropentyl) ether, sodium perfluorododecylsulfonate, 1,1,2,2 , 8,8,9,9,10,10-decafluorododecane, 1,1,2,2,3,3-hexafluorode N- [3- (perfluorooctanesulfonamido) propyl] -N, N'-dimethyl-N-carboxymethyleneammonium betaine, perfluoroalkylsulfonamidopropyltrimethylammonium salt, perfluoroalkyl-N-ethylsulfonylglycine Salt, bis (N-perfluorooctylsulfonyl-N-ethylaminoethyl) phosphate, monoperfluoroalkylethyl phosphate, and the like.
 また、市販品としては、メガファックF142D、同F172、同F173、同F183、同F444、同F475、同F477(以上、大日本インキ化学工業社製)、エフトップEF301、同303、同352(新秋田化成社製)、フロラードFC-430、同FC-431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、同SC-101、同SC-102、同SC-103、同SC-104、同SC-105、同SC-106(旭硝子社製)、BM-1000、BM-1100(裕商社製)、NBX-15、FTX-218、DFX-218(ネオス社製)などのフッ素系界面活性剤がある。 In addition, commercially available products include MegaFuck F142D, F172, F173, F183, F183, F444, F475, F477 (above, manufactured by Dainippon Ink & Chemicals, Inc.), Ftop EF301, 303, 352 ( Shin-Akita Kasei), Florard FC-430, FC-431 (Sumitomo 3M), Asahi Guard AG710, Surflon S-382, SC-101, SC-102, SC-103, SC- 104, SC-105, SC-106 (Asahi Glass Co., Ltd.), BM-1000, BM-1100 (Yusho Co., Ltd.), NBX-15, FTX-218, DFX-218 (Neos Co.) There is a surfactant.
 シリコーン系界面活性剤の市販品としては、例えば、SH28PA、SH7PA、SH21PA、SH30PA、ST94PA(いずれも東レ・ダウコーニング・シリコーン社製)、BYK067A、BYK310、BYK322、BYK331、BYK333、BYK355(ビックケミー・ジャパン社製)などが挙げられる。 Examples of commercially available silicone surfactants include, for example, SH28PA, SH7PA, SH21PA, SH30PA, ST94PA (all manufactured by Toray Dow Corning Silicone), BYK067A, BYK310, BYK322, BYK331, BYK333, BYK355 (BIC Chemie Japan) Etc.).
 不純物拡散組成物に界面活性剤を添加する場合、この不純物拡散組成物中における界面活性剤の含有量は、0.0001質量%以上1質量%以下とすることが好ましい。界面活性剤の含有量を上記範囲内とすることにより、半導体基板に対する不純物拡散組成物の優れた塗布性を得ることができる。 When a surfactant is added to the impurity diffusion composition, the content of the surfactant in the impurity diffusion composition is preferably 0.0001 mass% or more and 1 mass% or less. By setting the content of the surfactant within the above range, excellent application properties of the impurity diffusion composition to the semiconductor substrate can be obtained.
(増粘剤)
 本発明に係る不純物拡散組成物は、粘度調整のために増粘剤を含有してもよい。増粘剤としては、有機系のものと無機系のものとが挙げられる。有機系の増粘剤としては、例えば、セルロース、セルロース誘導体、デンプン、デンプン誘導体、ポリビニルピロリドン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルブチラール、ポリウレタン樹脂、ポリウレア樹脂、ポリイミド樹脂、ポリアミド樹脂、エポキシ樹脂、ポリスチレン系樹脂、ポリエステル樹脂、合成ゴム、天然ゴム、ポリアクリル酸、各種アクリル系樹脂、ポリエチレングリコール、ポリエチレンオキシド、ポリプロピレングリコール、ポリプロピレンオキシド、シリコーンオイル、アルギン酸ナトリウム、キサンタンガム系多糖類、ジェランガム系多糖類、グァーガム系多糖類、カラギーナン系多糖類、ローカストビーンガム系多糖類、カルボキシビニルポリマー、水添ひまし油系、水添ひまし油系と脂肪酸アマイドワックス系との混合物、特殊脂肪酸系、酸化ポリエチレン系、酸化ポリエチレン系とアマイド系との混合物、脂肪酸系多価カルボン酸、リン酸エステル系界面活性剤、長鎖ポリアミノアマイドとリン酸との塩、特殊変性ポリアマイド系などが挙げられる。無機系の増粘剤としては、例えば、ベントナイト、モンモリロン石、マグネシアンモンモリロン石、テツモンモリロン石、テツマグネシアンモンモリロン石、バイデライト、アルミンバイデライト、サポー石、アルミニアンサポー石、ラポナイト、ケイ酸アルミニウム、ケイ酸アルミニウムマグネシウム、有機ヘクトライト、微粒子酸化ケイ素、コロイダルアルミナ、炭酸カルシウムなどが挙げられる。これらは、複数種類のものを組み合わせて使用してもよい。
(Thickener)
The impurity diffusion composition according to the present invention may contain a thickener for viscosity adjustment. Examples of the thickener include organic type and inorganic type. Examples of organic thickeners include cellulose, cellulose derivatives, starch, starch derivatives, polyvinyl pyrrolidone, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyurethane resins, polyurea resins, polyimide resins, polyamide resins, epoxy resins, polystyrene. Resin, polyester resin, synthetic rubber, natural rubber, polyacrylic acid, various acrylic resins, polyethylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide, silicone oil, sodium alginate, xanthan gum polysaccharide, gellan gum polysaccharide, guar gum Polysaccharides, carrageenan polysaccharides, locust bean gum polysaccharides, carboxyvinyl polymers, hydrogenated castor oil, hydrogenated castor oil and fatty acid flax A mixture with a wax, a special fatty acid, a polyethylene oxide, a mixture of a polyethylene oxide and an amide, a fatty acid polyvalent carboxylic acid, a phosphate ester surfactant, a salt of a long-chain polyaminoamide and phosphoric acid, Specially modified polyamide system is exemplified. Inorganic thickeners include, for example, bentonite, montmorillonite, magnesia montmorillonite, tetsu montmorillonite, tectum magnesia montmorillonite, beidellite, aluminiderite, sapphire, aluminian support stone, laponite, Examples thereof include aluminum silicate, aluminum magnesium silicate, organic hectorite, fine particle silicon oxide, colloidal alumina, and calcium carbonate. You may use these in combination of multiple types.
 これらの増粘剤の中でチクソ性を付与するチクソ剤にあたるものとしては、セルロース、セルロース誘導体、アルギン酸ナトリウム、キサンタンガム系多糖類、ジェランガム系多糖類、グァーガム系多糖類、カラギーナン系多糖類、ローカストビーンガム系多糖類、カルボキシビニルポリマー、水添ひまし油系、水添ひまし油系と脂肪酸アマイドワックス系との混合物、特殊脂肪酸系、酸化ポリエチレン系、酸化ポリエチレン系とアマイド系との混合物、脂肪酸系多価カルボン酸、リン酸エステル系界面活性剤、長鎖ポリアミノアマイドとリン酸との塩、特殊変性ポリアマイド系、ベントナイト、モンモリロン石、マグネシアンモンモリロン石、テツモンモリロン石、テツマグネシアンモンモリロン石、バイデライト、アルミンバイデライト、サポー石、アルミニアンサポー石、ラポナイト、ケイ酸アルミニウム、ケイ酸アルミニウムマグネシウム、有機ヘクトライト、微粒子酸化ケイ素、コロイダルアルミナ、炭酸カルシウムなどを例示できる。 Among these thickeners, thixotropic agents that impart thixotropic properties include cellulose, cellulose derivatives, sodium alginate, xanthan gum polysaccharides, gellan gum polysaccharides, guar gum polysaccharides, carrageenan polysaccharides, locust beans. Gum-based polysaccharide, carboxyvinyl polymer, hydrogenated castor oil, hydrogenated castor oil and fatty acid amide wax, special fatty acid, polyethylene oxide, polyethylene oxide and amide, fatty acid polyvalent carboxyl Acid, phosphate ester surfactant, salt of long-chain polyaminoamide and phosphoric acid, specially modified polyamide, bentonite, montmorillonite, magnesia montmorillonite, tetsumonmorillonite, tetsumagnesium montmorillonite, beidellite , Almin Baiderai , It can be exemplified supported stone, Arumini Ann support stone, laponite, aluminum silicate, aluminum magnesium silicate, organic hectorite, particulate silicon oxide, colloidal alumina, and calcium carbonate.
 また、セルロース系増粘剤の市販品としては、ダイセルファインケム社製の1110、1120、1130、1140、1150、1160、1170、1180、1190、2200、2260、2280、2450などがある。多糖類系増粘剤の市販品としては、エフエムシー・ケミカルズ社製のViscarinPC209、ViscarinPC389、SeaKemXP8012、三菱商事社製のCAM-H、GJ-182、SV-300、LS-20、LS-30、XGT、XGK-D、G-100、LG-10などがある。 Moreover, as a commercial item of a cellulose thickener, there exist 11110, 1120, 1130, 1140, 1150, 1160, 1170, 1180, 1190, 2200, 2260, 2280, 2450, etc. by Daicel Finechem. Commercially available polysaccharide thickeners include Viscalin PC209, Viscarin PC389, SeaKemXP8012, manufactured by FM Chemicals, CAM-H, GJ-182, SV-300, LS-20, LS-30, manufactured by Mitsubishi Corporation. XGT, XGK-D, G-100, LG-10 and the like.
 水添ひまし油系増粘剤の市販品としては、楠本化成社製のディスパロン308、NAMLONT-206、伊藤製油社製のT-20SF、T-75Fなどがある。酸化ポリエチレン系増粘剤の市販品としては、伊藤製油社製のD-10A、D-120、D-120-10、D-1100、DS-525、DS-313、楠本化成社製のディスパロン4200-20、同PF-911、同PF-930、同4401-25X、同NS-30、同NS-5010、同NS-5025、同NS-5810、同NS-5210、同NS-5310、共栄社化学社製のフローノンSA-300、同SA-300Hなどがある。アマイド系増粘剤の市販品としては、伊藤製油社製のT-250F、T-550F、T-850F、T-1700、T-1800、T-2000、楠本化成社製のディスパロン6500、同6300、同6650、同6700、同3900EF、共栄社化学社製のターレン7200、同7500、同8200、同8300、同8700、同8900、同KY-2000、同KU-700、同M-1020、同VA-780、同VA-750B、同2450、フローノンSD-700、同SDR-80などがある。 Commercially available products of hydrogenated castor oil thickener include Disparon 308 and NAMLONT-206 manufactured by Enomoto Kasei Co., Ltd., and T-20SF and T-75F manufactured by Ito Oil Co., Ltd. Commercially available products of polyethylene oxide thickeners include D-10A, D-120, D-120-10, D-1100, DS-525, DS-313 manufactured by Ito Oil Co., Ltd., and Disparon 4200 manufactured by Enomoto Kasei Co., Ltd. -20, PF-911, PF-930, 4401-25X, NS-30, NS-5010, NS-5025, NS-5810, NS-5210, NS-5310, NS-5310, Kyoeisha Chemical There are Flownon SA-300 and SA-300H manufactured by the same company. Commercially available amide type thickeners include T-250F, T-550F, T-850F, T-1700, T-1800, T-2000 manufactured by Ito Oil Co., Ltd., Dispalon 6500, 6300 manufactured by Enomoto Kasei Co., Ltd. , 6650, 6700, 3900EF, Tallen 7200, 7500, 8200, 8300, 8700, 8900, KY-2000, KU-700, M-1020, VA manufactured by Kyoeisha Chemical Co., Ltd. -780, VA-750B, 2450, Flownon SD-700, SDR-80, etc.
 ベントナイト系増粘剤の市販品としては、ホージュン社製のベンゲル、ベンゲルHV、同HVP、同F、同FW、同ブライト11、同A、同W-100、同W-100U、同W-300U、同SH、マルチベン、エスベン、エスベンC、同E、同W、同P、同WX、オルガナイト、オルガナイトDなどがある。微粒子酸化ケイ素系増粘剤の市販品としては、日本アエロジル社製のAEROSILR972、同R974、同NY50、同RY200S、同RY200、同RX50、同NAX50、同RX200、同RX300、同VPNKC130、同R805、同R104、同R711、同OX50、同50、同90G、同130、同200、同300、同380、旭化成社製のWACKER HDK S13、同V15、同N20、同N20P、同T30、同T40、同H15、同H18、同H20、同H30などがある。 Commercially available products of bentonite-based thickener include Hojun's Bengel, Bengel HV, HVP, F, FW, Bright 11, A, W-100, W-100U, W-300U. SH, Multiven, Esben, Esben C, E, W, P, WX, Organite, Organite D, and the like. As commercial products of fine particle silicon oxide-based thickeners, Nippon Aerosil Co., Ltd. AEROSILR972, R974, NY50, RY200S, RY200, RX50, NAX50, RX200, RX300, VPNKC130, R805, R104, R711, OX50, 50, 90G, 130, 200, 300, 380, WACKER HDK S13, V15, N20, N20P, T30, T40, manufactured by Asahi Kasei Corporation H15, H18, H20, H30, etc.
 増粘剤としては、その分解性の観点から、ポリエチレングリコール、ポリエチレンオキシド、ポリプロピレングリコール、ポリプロピレンオキシド、各種アクリル酸エステル系樹脂が好ましい。これらの中でも、ポリエチレンオキシド、ポリプロピレンオキシドまたはアクリル酸エステル系樹脂がより好ましく、ポリエチレンオキシドが特に好ましい。 As the thickener, polyethylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide, and various acrylic ester resins are preferable from the viewpoint of degradability. Among these, polyethylene oxide, polypropylene oxide, or acrylic ester resin is more preferable, and polyethylene oxide is particularly preferable.
 アクリル酸エステル系樹脂としては、例えば、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸プロピル、ポリメタクリル酸ブチル、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸プロピル、ポリアクリル酸ブチル、ポリヒドロキシエチルメタクリレート、ポリベンジルメタクリレート、ポリグリシジルメタクリレートなどのポリアクリル酸エステルおよびこれらの共重合体が挙げられる。アクリル酸エステル系樹脂が共重合体である場合、上記アクリル酸エステル成分は、重合比率として60モル%以上であればよく、他の共重合成分として、ポリアクリル酸、ポリスチレンなどのビニル重合可能な成分を共重合していても構わない。 Examples of acrylic ester resins include polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polypropyl acrylate, polybutyl acrylate, Examples thereof include polyacrylic acid esters such as polyhydroxyethyl methacrylate, polybenzyl methacrylate, and polyglycidyl methacrylate, and copolymers thereof. When the acrylic ester resin is a copolymer, the acrylic ester component may be 60 mol% or more as a polymerization ratio, and other copolymerizable components such as polyacrylic acid and polystyrene can be polymerized with vinyl. The components may be copolymerized.
 また、ポリエチレンオキサイド、ポリプロピレンオキサイドについては、これら2種類の共重合体も好ましい。アクリル酸エステル系樹脂、ポリエチレンオキサイド、ポリプロピレンオキサイドのいずれも、重量平均分子量が10万以上であるものが、増粘効果が高いので、好ましい。不純物拡散組成物中における増粘剤の含有量は、1質量%以上20質量%以下の範囲内であることが好ましい。 Also, for polyethylene oxide and polypropylene oxide, these two types of copolymers are also preferred. Any of acrylic ester resins, polyethylene oxide, and polypropylene oxide having a weight average molecular weight of 100,000 or more is preferable because the thickening effect is high. The content of the thickener in the impurity diffusion composition is preferably in the range of 1% by mass to 20% by mass.
 本発明に係る不純物拡散組成物の粘度は、特に制限されず、不純物拡散組成物の塗布法または膜厚に応じて適宜変更することができる。例えば、不純物拡散組成物の塗布法がスピンコート法である場合、不純物拡散組成物の粘度は、100[mPa・s]以下であることが好ましい。また、不純物拡散組成物の塗布法がスクリーン印刷法である場合、不純物拡散組成物の粘度は、5,000[mPa・s]以上100,000[mPa・s]以下であることが好ましい。 The viscosity of the impurity diffusion composition according to the present invention is not particularly limited, and can be appropriately changed according to the application method or film thickness of the impurity diffusion composition. For example, when the application method of the impurity diffusion composition is a spin coating method, the viscosity of the impurity diffusion composition is preferably 100 [mPa · s] or less. Moreover, when the application | coating method of an impurity diffusion composition is a screen printing method, it is preferable that the viscosity of an impurity diffusion composition is 5,000 [mPa * s] or more and 100,000 [mPa * s] or less.
 ここで、粘度は、1,000[mPa・s]未満の場合、JIS Z8803(1991)「溶液粘度-測定方法」に基づきE型デジタル粘度計を用いて回転数20rpmで測定された値である。また、粘度は、1,000[mPa・s]以上の場合、JIS Z8803(1991)「溶液粘度-測定方法」に基づきB型デジタル粘度計を用いて回転数20rpmで測定された値である。 Here, when the viscosity is less than 1,000 [mPa · s], it is a value measured at a rotation speed of 20 rpm using an E-type digital viscometer based on JIS Z8803 (1991) “Solution Viscosity—Measurement Method”. . When the viscosity is 1,000 [mPa · s] or more, the viscosity is a value measured at a rotational speed of 20 rpm using a B-type digital viscometer based on JIS Z8803 (1991) “Solution Viscosity—Measurement Method”.
 本発明に係る不純物拡散組成物の固形分濃度は、特に制限されないが、1質量%以上90質量%以下であることが好ましい。不純物拡散組成物の固形分濃度が上記範囲であれば、不純物拡散組成物の拡散性、保存安定性が良好となる。 The solid content concentration of the impurity diffusion composition according to the present invention is not particularly limited, but is preferably 1% by mass or more and 90% by mass or less. When the solid content concentration of the impurity diffusion composition is in the above range, the diffusibility and storage stability of the impurity diffusion composition are good.
(半導体素子の製造方法)
 つぎに、本発明に係る不純物拡散組成物を用いた半導体素子の製造方法について説明する。本発明の実施形態に係る半導体素子の製造方法は、上述したポリシロキサン(A)と不純物拡散成分(B)とを含有する不純物拡散組成物を用いた不純物拡散層の形成方法を利用するものである。このような半導体素子の製造方法は、半導体基板上に、上述の不純物拡散組成物を塗布して不純物拡散組成物膜を形成する膜形成工程と、この不純物拡散組成物膜から当該半導体基板中に不純物拡散成分(B)を拡散させて不純物拡散層を形成する層形成工程と、を含む。
(Semiconductor element manufacturing method)
Next, a method for manufacturing a semiconductor device using the impurity diffusion composition according to the present invention will be described. A method for manufacturing a semiconductor device according to an embodiment of the present invention uses a method for forming an impurity diffusion layer using an impurity diffusion composition containing polysiloxane (A) and an impurity diffusion component (B). is there. A manufacturing method of such a semiconductor element includes a film forming step of forming the impurity diffusion composition film on the semiconductor substrate by applying the impurity diffusion composition described above, and the impurity diffusion composition film into the semiconductor substrate. And a layer forming step of diffusing the impurity diffusion component (B) to form an impurity diffusion layer.
 また、本発明の好適な一実施形態として、半導体素子の製造方法は、上記の膜形成工程と、半導体基板上の不純物拡散組成物膜にレーザー光を照射して、この不純物拡散組成物膜から当該半導体基板中に不純物拡散成分(B)を拡散させて不純物拡散層を形成する層形成工程と、を含む。特に、本実施形態に係る半導体素子の製造方法は、上記の膜形成工程と、半導体基板上に形成した不純物拡散組成物膜の一部分にレーザー光を照射して、この不純物拡散組成物膜の一部分から当該半導体基板中に不純物拡散成分(B)を拡散させて不純物拡散層を形成する層形成工程と、この不純物拡散組成物膜のうちレーザー光が照射されていないレーザー未照射部分を酸またはアルカリによって除去する除去工程と、を含む。 Further, as a preferred embodiment of the present invention, a semiconductor device manufacturing method includes the above-described film formation step, and the impurity diffusion composition film on the semiconductor substrate is irradiated with laser light, and the impurity diffusion composition film is used. And a layer forming step of diffusing the impurity diffusion component (B) in the semiconductor substrate to form an impurity diffusion layer. In particular, in the method of manufacturing a semiconductor device according to the present embodiment, a part of the impurity diffusion composition film is formed by irradiating a part of the impurity diffusion composition film formed on the semiconductor substrate with the above film formation step. A step of forming an impurity diffusion layer by diffusing the impurity diffusion component (B) into the semiconductor substrate, and a portion of the impurity diffusion composition film that has not been irradiated with laser light is treated with an acid or alkali. And a removing step of removing by.
 図1Aは、本発明の実施形態に係る半導体素子の製造方法の一例を示す図である。本実施形態では、裏面接合型の太陽電池用の半導体素子を製造する場合に適用される製造方法が例示される。裏面接合型の太陽電池用の半導体素子においては、この太陽電池における受光面の反対側の面である裏面に、p型の不純物拡散層およびn型の不純物拡散層が形成される。 FIG. 1A is a diagram showing an example of a method for manufacturing a semiconductor element according to an embodiment of the present invention. In this embodiment, the manufacturing method applied when manufacturing the semiconductor element for back junction type solar cells is illustrated. In a semiconductor element for a back junction solar cell, a p-type impurity diffusion layer and an n-type impurity diffusion layer are formed on the back surface that is the surface opposite to the light receiving surface of the solar cell.
 具体的には、図1Aに示すように、この半導体素子の製造方法では、まず、第一の膜形成工程(工程ST101)が行われる。この工程ST101では、半導体基板1の所定面(太陽電池における裏面)上に、本発明における第一導電型の不純物拡散組成物を塗布する。これにより、半導体基板1の所定面上に不純物拡散組成物膜2が形成される。不純物拡散組成物膜2は、所定の導電型(n型またはp型)を有する第一導電型の不純物拡散組成物膜である。 Specifically, as shown in FIG. 1A, in the method for manufacturing a semiconductor element, first, a first film forming step (step ST101) is performed. In this step ST101, the first conductivity type impurity diffusion composition in the present invention is applied onto a predetermined surface of the semiconductor substrate 1 (the back surface in the solar cell). Thereby, the impurity diffusion composition film 2 is formed on the predetermined surface of the semiconductor substrate 1. The impurity diffusion composition film 2 is a first conductivity type impurity diffusion composition film having a predetermined conductivity type (n-type or p-type).
 本実施形態において、第一導電型の不純物拡散組成物は、上述したポリシロキサン(A)と第一導電型の不純物拡散成分(B-1)とを含有する不純物拡散組成物である。第一導電型の不純物拡散成分(B-1)は、上述した不純物拡散成分(B)の一態様(例えば13族元素または15族元素を含む化合物)であり、後述する第二導電型の不純物拡散成分(B-2)とは異なる導電型を有する。 In the present embodiment, the first conductivity type impurity diffusion composition is an impurity diffusion composition containing the above-described polysiloxane (A) and the first conductivity type impurity diffusion component (B-1). The first conductivity type impurity diffusion component (B-1) is an embodiment of the impurity diffusion component (B) described above (for example, a compound containing a group 13 element or a group 15 element), and the second conductivity type impurity described later. It has a conductivity type different from that of the diffusion component (B-2).
 半導体基板1としては、例えば、不純物濃度が1015~1016[atoms/cm3]であるn型単結晶シリコン、多結晶シリコン、およびゲルマニウム、炭素などのような他の元素が混合されている結晶シリコン基板が挙げられる。あるいは、p型結晶シリコンやシリコン以外の半導体基板を用いることも可能である。半導体基板1は、厚さが50[μm]~300[μm]であり、外形が一辺100[μm]~250[μm]の概略四角形であることが好ましい。また、半導体基板1の各面のスライスダメージや自然酸化膜を除去するために、フッ酸溶液やアルカリ溶液などで、半導体基板1の各面をエッチングしておくことが好ましい。 As the semiconductor substrate 1, for example, n-type single crystal silicon having an impurity concentration of 10 15 to 10 16 [atoms / cm 3 ], polycrystalline silicon, and other elements such as germanium and carbon are mixed. An example is a crystalline silicon substrate. Alternatively, p-type crystalline silicon or a semiconductor substrate other than silicon can be used. The semiconductor substrate 1 preferably has a thickness of 50 [μm] to 300 [μm] and an outer shape of a substantially square shape with sides of 100 [μm] to 250 [μm]. Further, in order to remove slice damage and natural oxide film on each surface of the semiconductor substrate 1, it is preferable to etch each surface of the semiconductor substrate 1 with a hydrofluoric acid solution or an alkaline solution.
 また、半導体基板1の受光面(不純物拡散組成物膜2が形成される面とは反対側の面)には、保護膜を形成してもよい。この保護膜は、CVD(化学気相成長)法やスピンオングラス(SOG)法などの手法によって製膜することができる。例えば、この保護膜として、酸化シリコンや窒化シリコンなどの公知の保護膜を適用することができる。 Further, a protective film may be formed on the light receiving surface of the semiconductor substrate 1 (the surface opposite to the surface on which the impurity diffusion composition film 2 is formed). This protective film can be formed by a technique such as CVD (chemical vapor deposition) or spin-on-glass (SOG). For example, a known protective film such as silicon oxide or silicon nitride can be applied as the protective film.
 工程ST101に適用される第一導電型の不純物拡散組成物の塗布方法としては、例えば、スピンコート法、スクリーン印刷法、インクジェット印刷法、スリット塗布法、凸版印刷法、凹版印刷法などが挙げられる。工程ST101においては、これらの塗布方法のうちのいずれかによって不純物拡散組成物膜2を形成後、この不純物拡散組成物膜2をホットプレート、オーブン、IRヒーターなどで、50℃~200℃の範囲で1秒~30分間乾燥することが好ましい。乾燥後の不純物拡散組成物膜2の膜厚は、半導体基板1中への不純物拡散成分(B-1)の拡散性を考慮すると、200[nm]以上5[μm]以下であることが好ましい。 Examples of the coating method of the first conductivity type impurity diffusion composition applied to the step ST101 include spin coating, screen printing, ink jet printing, slit coating, letterpress printing, and intaglio printing. . In step ST101, after forming the impurity diffusion composition film 2 by any of these coating methods, the impurity diffusion composition film 2 is in the range of 50 ° C. to 200 ° C. with a hot plate, oven, IR heater or the like. It is preferable to dry for 1 second to 30 minutes. The film thickness of the impurity diffusion composition film 2 after drying is preferably 200 [nm] or more and 5 [μm] or less in consideration of the diffusibility of the impurity diffusion component (B-1) into the semiconductor substrate 1. .
 上述した工程ST101が完了した後、図1Aに示すように、第一の層形成工程(工程ST102)が行われる。この工程ST102では、不純物拡散組成物膜2から半導体基板1中に不純物拡散成分(B-1)を拡散させ、これにより、半導体基板1中に不純物拡散層3を形成する。不純物拡散層3は、不純物拡散組成物膜2と同じ導電型を有する第一導電型の不純物拡散層である。 After the above-described step ST101 is completed, a first layer forming step (step ST102) is performed as shown in FIG. 1A. In this step ST102, the impurity diffusion component (B-1) is diffused from the impurity diffusion composition film 2 into the semiconductor substrate 1, thereby forming the impurity diffusion layer 3 in the semiconductor substrate 1. The impurity diffusion layer 3 is a first conductivity type impurity diffusion layer having the same conductivity type as the impurity diffusion composition film 2.
 本実施形態では、不純物拡散組成物膜2にレーザー光10を照射して、この不純物拡散組成物膜2から半導体基板1中に不純物拡散成分(B-1)を拡散させる。具体的には、不純物拡散組成物膜2のうち目的とする部分(例えば所望パターンをなす一部分)にレーザー光10を照射する。このレーザー光10の照射による加熱(以下、「レーザー加熱」という)により、不純物拡散組成物膜2中の不純物拡散成分(B-1)を半導体基板1中へ部分的(所望パターン状)に拡散させる。この結果、図1Aに示すように、半導体基板1中に不純物拡散層3が所望のパターン状に形成される。このとき、不純物拡散組成物膜2全体のうち、レーザー加熱によって不純物拡散層3が形成された部分(図1A中の破線部分)は、アブレーションにより消失させてもよいし、消失させずに残っていてもよい。 In this embodiment, the impurity diffusion composition film 2 is irradiated with the laser beam 10 to diffuse the impurity diffusion component (B-1) from the impurity diffusion composition film 2 into the semiconductor substrate 1. Specifically, a target portion (for example, a portion forming a desired pattern) of the impurity diffusion composition film 2 is irradiated with the laser beam 10. The impurity diffusion component (B-1) in the impurity diffusion composition film 2 is partially diffused (in a desired pattern) into the semiconductor substrate 1 by heating by the irradiation of the laser beam 10 (hereinafter referred to as “laser heating”). Let As a result, as shown in FIG. 1A, the impurity diffusion layer 3 is formed in a desired pattern in the semiconductor substrate 1. At this time, in the entire impurity diffusion composition film 2, the portion where the impurity diffusion layer 3 is formed by laser heating (the broken line portion in FIG. 1A) may be lost by ablation or remains without being lost. May be.
 また、上記のレーザー加熱に用いるレーザー光10は、特に制限は無く、公知のものを使用することができる。例えば、レーザー光10として、Nd:YAGレーザーまたはNd:YVO4レーザーの基本波(1064[nm])や2倍波(532[nm])や3倍波(355[nm])、或いはXeClエキシマレーザー(308[nm])、KrFエキシマレーザー(248[nm])、ArFエキシマレーザー(198[nm])などのレーザー光を用いることができる。 Further, the laser beam 10 used for the laser heating is not particularly limited, and a known one can be used. For example, as the laser beam 10, a fundamental wave (1064 [nm]), a second harmonic (532 [nm]), a third harmonic (355 [nm]), or a XeCl excimer of an Nd: YAG laser or an Nd: YVO 4 laser is used. Laser light such as laser (308 [nm]), KrF excimer laser (248 [nm]), ArF excimer laser (198 [nm]) can be used.
 レーザー光10のエネルギー密度は、0.25[J/cm2]以上25[J/cm2]以下であることが好ましい。レーザー加熱による不純物拡散成分(工程ST102では不純物拡散成分(B-1))の拡散時間は、対象とする不純物拡散成分の濃度、拡散深さなどの所望の拡散特性が得られるように適宜設定することができる。例えば、半導体基板面における不純物拡散成分の濃度は、1019~1021[atoms/cm3]の不純物拡散層を形成し得る程度であることが好ましい。レーザー加熱による不純物拡散成分の拡散雰囲気は、特に限定されず、大気と同じ雰囲気であってもよいし、窒素、アルゴンなどの不活性ガスを用いて雰囲気中の酸素量などが適宜コントロールされた雰囲気であってもよい。 The energy density of the laser beam 10 is preferably 0.25 [J / cm 2 ] or more and 25 [J / cm 2 ] or less. The diffusion time of the impurity diffusion component (impurity diffusion component (B-1) in step ST102) by laser heating is appropriately set so as to obtain desired diffusion characteristics such as the concentration and diffusion depth of the target impurity diffusion component. be able to. For example, the concentration of the impurity diffusion component on the semiconductor substrate surface is preferably such that an impurity diffusion layer of 10 19 to 10 21 [atoms / cm 3 ] can be formed. The diffusion atmosphere of the impurity diffusion component by laser heating is not particularly limited and may be the same atmosphere as the atmosphere, or an atmosphere in which the amount of oxygen in the atmosphere is appropriately controlled using an inert gas such as nitrogen or argon It may be.
 上述した工程ST102が完了した後、図1Aに示すように、第一の除去工程(工程ST103)が行われる。この工程ST103では、半導体基板1上に残存する不純物拡散組成物膜2を、洗浄液を用いて除去する。本実施形態では、不純物拡散組成物膜2のうち、レーザー光10が照射されていないレーザー未照射部分が、半導体基板1上に残存している。工程ST103では、このようなレーザー未照射部分を洗浄液によって除去する。この洗浄液としては、例えば、塩酸、フッ酸、硝酸、硫酸、TMAHやKOHなど、公知の酸またはアルカリの洗浄液を用いることができる。中でも、半導体基板1に形成された保護膜へのダメージを抑制できるという観点から、TMAHやKOHなどのアルカリの洗浄液を用いることが好ましい。 After the above-described step ST102 is completed, a first removal step (step ST103) is performed as shown in FIG. 1A. In this step ST103, the impurity diffusion composition film 2 remaining on the semiconductor substrate 1 is removed using a cleaning liquid. In the present embodiment, a portion of the impurity diffusion composition film 2 that has not been irradiated with the laser beam 10 remains on the semiconductor substrate 1. In step ST103, such a laser-irradiated portion is removed with a cleaning liquid. As this cleaning solution, for example, a known acid or alkali cleaning solution such as hydrochloric acid, hydrofluoric acid, nitric acid, sulfuric acid, TMAH or KOH can be used. Among these, from the viewpoint that damage to the protective film formed on the semiconductor substrate 1 can be suppressed, it is preferable to use an alkaline cleaning liquid such as TMAH or KOH.
 上述した工程ST103が完了した後、図1Aに示すように、第二の膜形成工程(工程ST104)が行われる。この工程ST104では、半導体基板1の所定面上に、本発明における第二導電型の不純物拡散組成物を塗布する。これにより、半導体基板1の所定面上に不純物拡散組成物膜4が形成される。この第二導電型の不純物拡散組成物の塗布方法としては、特に限定されず、上述した工程ST101において第一導電型の不純物拡散組成物を塗布する方法と同様の公知の塗布方法を用いることができる。 After the above-described step ST103 is completed, a second film formation step (step ST104) is performed as shown in FIG. 1A. In this step ST104, the second conductivity type impurity diffusion composition according to the present invention is applied onto a predetermined surface of the semiconductor substrate 1. Thereby, the impurity diffusion composition film 4 is formed on the predetermined surface of the semiconductor substrate 1. The application method of the second conductivity type impurity diffusion composition is not particularly limited, and a known application method similar to the method of applying the first conductivity type impurity diffusion composition in step ST101 described above may be used. it can.
 本実施形態において、不純物拡散組成物膜4は、上述した不純物拡散組成物膜2の導電型(第一導電型)とは異なる導電型を有する第二導電型の不純物拡散組成物膜である。第二導電型の不純物拡散組成物は、上述したポリシロキサン(A)と第二導電型の不純物拡散成分(B-2)とを含有する不純物拡散組成物である。第二導電型の不純物拡散成分(B-2)は、上述した不純物拡散成分(B)の一態様(例えば13族元素または15族元素を含む化合物)であり、上述した第一導電型の不純物拡散成分(B-1)とは異なる導電型を有する。 In this embodiment, the impurity diffusion composition film 4 is a second conductivity type impurity diffusion composition film having a conductivity type different from the conductivity type (first conductivity type) of the impurity diffusion composition film 2 described above. The second conductivity type impurity diffusion composition is an impurity diffusion composition containing the above-described polysiloxane (A) and the second conductivity type impurity diffusion component (B-2). The second conductivity type impurity diffusion component (B-2) is an embodiment of the impurity diffusion component (B) described above (for example, a compound containing a group 13 element or a group 15 element). It has a conductivity type different from that of the diffusion component (B-1).
 また、工程ST104においても、上述した工程ST101と同様に、不純物拡散組成物膜4を形成後、この不純物拡散組成物膜4を乾燥することが好ましい。乾燥後の不純物拡散組成物膜4の膜厚は、例えば、半導体基板1中への不純物拡散成分(B-2)の拡散性を考慮して設定される。 Also in the step ST104, it is preferable to dry the impurity diffusion composition film 4 after forming the impurity diffusion composition film 4 as in the above-described step ST101. The film thickness of the impurity diffusion composition film 4 after drying is set in consideration of, for example, the diffusibility of the impurity diffusion component (B-2) into the semiconductor substrate 1.
 上述した工程ST104が完了した後、図1Aに示すように、第二の層形成工程(工程ST105)が行われる。この工程ST105では、不純物拡散組成物膜4から半導体基板1中に不純物拡散成分(B-2)を拡散させ、これにより、半導体基板1中に不純物拡散層5を形成する。不純物拡散層5は、不純物拡散組成物膜4と同じ導電型を有する第二導電型の不純物拡散層である。すなわち、不純物拡散層5の導電型(第二導電型)は、既に形成されている不純物拡散層3の導電型(第一導電型)とは異なる。 After the above-described step ST104 is completed, a second layer forming step (step ST105) is performed as shown in FIG. 1A. In this step ST105, the impurity diffusion component (B-2) is diffused from the impurity diffusion composition film 4 into the semiconductor substrate 1, thereby forming the impurity diffusion layer 5 in the semiconductor substrate 1. The impurity diffusion layer 5 is a second conductivity type impurity diffusion layer having the same conductivity type as the impurity diffusion composition film 4. That is, the conductivity type (second conductivity type) of the impurity diffusion layer 5 is different from the conductivity type (first conductivity type) of the impurity diffusion layer 3 already formed.
 本実施形態では、不純物拡散組成物膜4にレーザー光10を照射して、この不純物拡散組成物膜4から半導体基板1中に不純物拡散成分(B-2)を拡散させる。具体的には、不純物拡散組成物膜4のうち目的とする部分(例えば不純物拡散層3以外の部分であって所望パターンをなす一部分)にレーザー光10を照射して、この目的とする部分をレーザー加熱する。このレーザー加熱により、不純物拡散組成物膜4中の不純物拡散成分(B-2)を半導体基板1中へ部分的(所望パターン状)に拡散させる。この結果、図1Aに示すように、半導体基板1中に不純物拡散層5が所望のパターン状に形成される。このとき、不純物拡散組成物膜4全体のうち、レーザー加熱によって不純物拡散層5が形成された部分(図1A中の破線部分)は、アブレーションにより消失させてもよいし、消失させずに残っていてもよい。 In this embodiment, the impurity diffusion composition film 4 is irradiated with laser light 10 to diffuse the impurity diffusion component (B-2) from the impurity diffusion composition film 4 into the semiconductor substrate 1. Specifically, a target portion of the impurity diffusion composition film 4 (for example, a portion other than the impurity diffusion layer 3 and forming a desired pattern) is irradiated with the laser beam 10, and the target portion is Heat with laser. By this laser heating, the impurity diffusion component (B-2) in the impurity diffusion composition film 4 is partially diffused (in a desired pattern) into the semiconductor substrate 1. As a result, as shown in FIG. 1A, the impurity diffusion layer 5 is formed in a desired pattern in the semiconductor substrate 1. At this time, in the entire impurity diffusion composition film 4, the portion where the impurity diffusion layer 5 is formed by laser heating (the broken line portion in FIG. 1A) may be lost by ablation or remains without being lost. May be.
 また、上記のレーザー加熱に用いるレーザー光10は、特に制限は無く、上述した工程ST102において第一導電型の不純物拡散組成物(不純物拡散組成物膜2)をレーザー加熱する方法と同様の公知のものを使用することができる。レーザー加熱による不純物拡散成分(工程ST105では不純物拡散成分(B-2))の拡散時間は、対象とする不純物拡散成分の濃度、拡散深さなどの所望の拡散特性が得られるように適宜設定することができる。例えば、半導体基板面における不純物拡散成分の濃度は、1019~1021[atoms/cm3]の不純物拡散層を形成し得る程度であることが好ましい。レーザー加熱による不純物拡散成分の拡散雰囲気は、特に限定されず、大気と同じ雰囲気であってもよいし、窒素、アルゴンなどの不活性ガスを用いて雰囲気中の酸素量などが適宜コントロールされた雰囲気であってもよい。 The laser beam 10 used for the laser heating is not particularly limited, and is a known method similar to the method of laser heating the first conductivity type impurity diffusion composition (impurity diffusion composition film 2) in the above-described step ST102. Things can be used. The diffusion time of the impurity diffusion component by laser heating (impurity diffusion component (B-2) in step ST105) is appropriately set so as to obtain desired diffusion characteristics such as the concentration and diffusion depth of the target impurity diffusion component. be able to. For example, the concentration of the impurity diffusion component on the semiconductor substrate surface is preferably such that an impurity diffusion layer of 10 19 to 10 21 [atoms / cm 3 ] can be formed. The diffusion atmosphere of the impurity diffusion component by laser heating is not particularly limited and may be the same atmosphere as the atmosphere, or an atmosphere in which the amount of oxygen in the atmosphere is appropriately controlled using an inert gas such as nitrogen or argon It may be.
 上述した工程ST105が完了した後、図1Aに示すように、第二の除去工程(工程ST106)が行われる。この工程ST106では、半導体基板1上に残存する不純物拡散組成物膜4を、洗浄液を用いて除去する。本実施形態では、不純物拡散組成物膜4のうちのレーザー未照射部分が、半導体基板1上に残存している。工程ST106では、このようなレーザー未照射部分を洗浄液によって除去する。この洗浄液としては、例えば、塩酸、フッ酸、硝酸、硫酸、TMAHやKOHなど、公知の酸またはアルカリの洗浄液を用いることができる。中でも、半導体基板1に形成された保護膜へのダメージを抑制できるという観点から、TMAHやKOHなどのアルカリの洗浄液を用いることが好ましい。 After the above-described step ST105 is completed, a second removal step (step ST106) is performed as shown in FIG. 1A. In this step ST106, the impurity diffusion composition film 4 remaining on the semiconductor substrate 1 is removed using a cleaning liquid. In the present embodiment, the laser non-irradiated portion of the impurity diffusion composition film 4 remains on the semiconductor substrate 1. In step ST106, such a laser-irradiated portion is removed with a cleaning liquid. As this cleaning solution, for example, a known acid or alkali cleaning solution such as hydrochloric acid, hydrofluoric acid, nitric acid, sulfuric acid, TMAH or KOH can be used. Among these, from the viewpoint that damage to the protective film formed on the semiconductor substrate 1 can be suppressed, it is preferable to use an alkaline cleaning liquid such as TMAH or KOH.
 上述した工程ST101~ST106を順次行うことにより、本実施形態に係る半導体素子15が製造される。この半導体素子15は、裏面接合型の太陽電池用の半導体素子として適している。 The semiconductor element 15 according to this embodiment is manufactured by sequentially performing the above-described steps ST101 to ST106. The semiconductor element 15 is suitable as a semiconductor element for a back junction solar cell.
 つぎに、本発明の実施形態に係る半導体素子を用いた太陽電池の製造方法について説明する。図1Bは、本発明の実施形態に係る半導体素子を用いた太陽電池の製造方法の一例を示す図である。図1Bには、本実施形態に係る太陽電池の製造に用いられる半導体素子15の製造(図1A参照)が行われた後の工程が図示されている。 Next, a method for manufacturing a solar cell using the semiconductor element according to the embodiment of the present invention will be described. FIG. 1B is a diagram showing an example of a method for manufacturing a solar cell using a semiconductor element according to an embodiment of the present invention. FIG. 1B illustrates a process after the manufacture of the semiconductor element 15 (see FIG. 1A) used for manufacturing the solar cell according to the present embodiment.
 本実施形態に係る太陽電池の製造方法は、図1Aに示した半導体素子15の製造方法を含むものである。すなわち、上述したように半導体素子15を製造した後、公知の方法を用いて、本実施形態における太陽電池(裏面接合型の太陽電池)を製造することができる。 The method for manufacturing a solar cell according to this embodiment includes the method for manufacturing the semiconductor element 15 shown in FIG. 1A. That is, after manufacturing the semiconductor element 15 as described above, the solar cell (back junction solar cell) in the present embodiment can be manufactured using a known method.
 例えば、本実施形態に係る太陽電池の製造方法では、図1Aに示した半導体素子15の製造工程に続いて、図1Bに示すように、保護膜形成工程(工程ST201)が行われる。この工程ST201では、半導体基板1の裏面に、保護膜6を形成する。半導体基板1の裏面は、半導体素子15の受光面(図1Bでは紙面下側の面)とは反対側の面であり、導電型が互いに異なる不純物拡散層3、5が形成された側の面である。本実施形態では、このような半導体基板1の裏面上の全面に、保護膜6が形成される。保護膜6としては、例えば、熱酸化層、酸化アルミニウム層、SiNx層、アモルファスシリコン層を積層したものなどが挙げられる。また、保護膜6の形成方法としては、例えば、プラズマCVD法、ALD(原子層堆積)法などの蒸着法、または塗布法が挙げられる。 For example, in the method for manufacturing a solar cell according to this embodiment, a protective film forming step (step ST201) is performed as shown in FIG. 1B following the manufacturing step of the semiconductor element 15 shown in FIG. 1A. In this step ST201, the protective film 6 is formed on the back surface of the semiconductor substrate 1. The back surface of the semiconductor substrate 1 is the surface opposite to the light receiving surface of the semiconductor element 15 (the lower surface in FIG. 1B), and is the surface on which the impurity diffusion layers 3 and 5 having different conductivity types are formed. It is. In the present embodiment, the protective film 6 is formed on the entire back surface of the semiconductor substrate 1. Examples of the protective film 6 include a laminate of a thermal oxide layer, an aluminum oxide layer, a SiNx layer, and an amorphous silicon layer. Moreover, as a formation method of the protective film 6, vapor deposition methods, such as a plasma CVD method and ALD (atomic layer deposition) method, or the apply | coating method is mentioned, for example.
 上述した工程ST201が完了した後、図1Bに示すように、パターン加工工程(工程ST202)が行われる。この工程ST202では、半導体基板1の裏面上の保護膜6を、エッチング法などにより、所望のパターン状に加工(パターン加工)する。これにより、保護膜6に複数の開口部6aが形成される。これら複数の開口部6aは、各々、半導体基板1に形成された状態の不純物拡散層3、5を離散的に露出させるものである。 After the above-described step ST201 is completed, a pattern processing step (step ST202) is performed as shown in FIG. 1B. In this step ST202, the protective film 6 on the back surface of the semiconductor substrate 1 is processed into a desired pattern (pattern processing) by an etching method or the like. Thereby, a plurality of openings 6 a are formed in the protective film 6. Each of the plurality of openings 6 a is for exposing the impurity diffusion layers 3 and 5 formed in the semiconductor substrate 1 in a discrete manner.
 上述した工程ST202が完了した後、図1Bに示すように、電極形成工程(工程ST203)が行われる。この工程ST203では、半導体基板1の裏面のうち保護膜6の開口部6aを含む各領域に、ストライプ塗布法やスクリーン印刷法などの手法によって電極ペーストをパターン状に塗布し、塗布した電極ペーストを焼成する。これにより、半導体基板1の上記各領域に、コンタクト電極7、8が各々形成される。これらのうち、一方のコンタクト電極7は、第一導電型の不純物拡散層3と接続される第一導電型のコンタクト電極である。他方のコンタクト電極8は、第二導電型の不純物拡散層5と接続される第二導電型のコンタクト電極である。以上の各工程により、本実施形態に係る裏面接合型の太陽電池9が製造される。 After the above-described step ST202 is completed, an electrode formation step (step ST203) is performed as shown in FIG. 1B. In this step ST203, an electrode paste is applied in a pattern to each region including the opening 6a of the protective film 6 on the back surface of the semiconductor substrate 1 by a method such as a stripe coating method or a screen printing method, and the applied electrode paste is applied. Bake. As a result, contact electrodes 7 and 8 are formed in the respective regions of the semiconductor substrate 1. Among these, one contact electrode 7 is a first conductivity type contact electrode connected to the first conductivity type impurity diffusion layer 3. The other contact electrode 8 is a second conductivity type contact electrode connected to the second conductivity type impurity diffusion layer 5. Through the above steps, the back junction solar cell 9 according to this embodiment is manufactured.
 上述した半導体素子15および太陽電池9の各製造方法において、「第一導電型」および「第二導電型」は、互いに異なる導電型であって、一方がp型を表し、他方がn型を表す。例えば、第一導電型がp型であれば、第二導電型はn型である。 In each manufacturing method of the semiconductor element 15 and the solar cell 9 described above, “first conductivity type” and “second conductivity type” are different conductivity types, one representing p-type and the other representing n-type. To express. For example, if the first conductivity type is p-type, the second conductivity type is n-type.
 また、本発明に係る不純物拡散組成物を用いた半導体素子の製造方法の別の例については、両面発電型の太陽電池、PERC型の太陽電池、PERT型の太陽電池などの各種太陽電池の選択エミッタ層の形成に適用することもできる。 In addition, regarding another example of a method for manufacturing a semiconductor element using the impurity diffusion composition according to the present invention, selection of various solar cells such as a double-sided power generation type solar cell, a PERC type solar cell, and a PERT type solar cell is possible. It can also be applied to the formation of an emitter layer.
 本発明に係る不純物拡散組成物およびこれを用いた半導体素子の製造方法は、上述の実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更などの変形を加えることも可能であり、そのような変形が加えられた実施形態も本発明の範疇に含まれるものである。 The impurity diffusion composition according to the present invention and the method for manufacturing a semiconductor device using the same are not limited to the above-described embodiments, and various modifications such as design changes may be added based on the knowledge of those skilled in the art. An embodiment to which such a modification is possible is also included in the scope of the present invention.
 また、本発明に係る不純物拡散組成物は、太陽電池などの光起電力素子や、半導体基板面に不純物拡散層をパターン形成する半導体デバイス、例えば、トランジスターアレイやダイオードアレイ、フォトダイオードアレイ、トランスデューサーなどにも展開することができる。 Further, the impurity diffusion composition according to the present invention is a photovoltaic device such as a solar cell, or a semiconductor device in which an impurity diffusion layer is patterned on the surface of a semiconductor substrate, such as a transistor array, a diode array, a photodiode array, or a transducer. Etc.
 以下、実施例を挙げて、本発明をさらに具体的に説明する。なお、本発明は、下記の実施例に限定されない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to the following examples.
(シート抵抗値評価)
 シート抵抗値評価は、半導体基板における不純物拡散層のシート抵抗値(表面抵抗率ともいう)を評価するものである。シート抵抗値評価において、評価用の半導体基板は、3cm×3cmにカットしたn型シリコンウェハ(フェローテックシリコン社製、表面抵抗率410[Ω/□])とした。このシリコンウェハを、1%のフッ酸水溶液に5分間浸漬した後に水洗し、エアブローした後、ホットプレートにより100℃で5分間、熱処理した。
(Evaluation of sheet resistance)
The sheet resistance value evaluation is for evaluating the sheet resistance value (also referred to as surface resistivity) of the impurity diffusion layer in the semiconductor substrate. In the evaluation of the sheet resistance value, the semiconductor substrate for evaluation was an n-type silicon wafer (Ferrotech Silicon Co., Ltd., surface resistivity 410 [Ω / □]) cut to 3 cm × 3 cm. This silicon wafer was immersed in a 1% hydrofluoric acid aqueous solution for 5 minutes, washed with water, air blown, and then heat treated at 100 ° C. for 5 minutes with a hot plate.
 つぎに、測定対象の不純物拡散組成物を、プリベーク膜厚が400nm程度になるように、公知のスピンコート法で評価用のシリコンウェハに塗布して、このシリコンウェハ面上に測定対象の不純物拡散組成物の塗布膜(すなわち不純物拡散組成物膜)を形成した。ついで、このシリコンウェハを140℃で3分間プリベークした。その後、このシリコンウェハ面上の不純物拡散組成物膜のプリベーク膜厚(プリベーク後の膜厚)を、表面形状測定装置(サーフコム1400 東京精密社製)によって測定した。 Next, the impurity diffusion composition to be measured is applied to a silicon wafer for evaluation by a known spin coating method so that the prebaked film thickness is about 400 nm, and the impurity diffusion to be measured is spread on the silicon wafer surface. A coating film of the composition (that is, an impurity diffusion composition film) was formed. Subsequently, this silicon wafer was pre-baked at 140 ° C. for 3 minutes. Thereafter, the pre-baked film thickness (film thickness after pre-baking) of the impurity diffusion composition film on the silicon wafer surface was measured with a surface shape measuring device (Surfcom 1400, manufactured by Tokyo Seimitsu Co., Ltd.).
 続いて、上述の手法によって不純物拡散組成物膜を形成した各シリコンウェハに対し、所定のレーザー光を1cm×1cmの範囲に照射して、各シリコンウェハ中へ不純物拡散組成物膜内の不純物拡散成分(B)を熱拡散させた。この際、レーザー光は、Nd:YVO4レーザーとした。このレーザー光において、波長は355[nm]とし、パルス幅は25[ns]とし、周波数は20[kHz]とした。また、レーザー出力は1[W]とした。スポット形状は40[μm]の矩形とした。スキャンスピードは3000[mm/s]とした。 Subsequently, each silicon wafer on which the impurity diffusion composition film is formed by the above-described method is irradiated with a predetermined laser beam in a range of 1 cm × 1 cm to diffuse the impurities in the impurity diffusion composition film into each silicon wafer. Component (B) was thermally diffused. At this time, the laser beam was an Nd: YVO 4 laser. In this laser beam, the wavelength was 355 [nm], the pulse width was 25 [ns], and the frequency was 20 [kHz]. The laser output was 1 [W]. The spot shape was a rectangle of 40 [μm]. The scan speed was 3000 [mm / s].
 不純物拡散成分(B)の熱拡散後、各シリコンウェハを、1質量%のTMAH水溶液に23℃で10分間浸漬した。これにより、上記のレーザー光照射によって硬化した不純物拡散組成物膜(拡散剤)を剥離した。上記膜を剥離した後の各シリコンウェハに対して、p/n判定機を用いてp/n判定を行い、各シリコンウェハにおける不純物拡散成分(B)の拡散部分の表面抵抗を、四探針式表面抵抗測定装置(RT-70V ナプソン社製)を用いて測定し、得られた測定値をシート抵抗値とした。シート抵抗値は、半導体基板中に対する不純物拡散成分(B)の拡散性の指標となるものである。シート抵抗値が小さい方が、不純物拡散成分(B)の拡散量が大きいことを意味する。 After thermal diffusion of the impurity diffusion component (B), each silicon wafer was immersed in a 1% by mass TMAH aqueous solution at 23 ° C. for 10 minutes. Thereby, the impurity diffusion composition film (diffusion agent) cured by the laser beam irradiation was peeled off. Each silicon wafer after the film is peeled is subjected to p / n determination using a p / n determiner, and the surface resistance of the diffusion portion of the impurity diffusion component (B) in each silicon wafer is determined by four probes. A sheet resistance value was measured using a type surface resistance measuring device (RT-70V, manufactured by Napson Corporation). The sheet resistance value is an index of the diffusibility of the impurity diffusion component (B) in the semiconductor substrate. A smaller sheet resistance value means a larger diffusion amount of the impurity diffusion component (B).
(乾燥膜の洗浄性評価)
 乾燥膜の洗浄性評価は、レーザー光の照射による不純物拡散成分(B)の熱拡散後に半導体基板面上に乾燥した状態で残存する不純物拡散組成物膜(乾燥膜)の洗浄性を評価するものである。乾燥膜の洗浄性評価において、評価用の半導体基板は、3cm×3cmにカットしたn型シリコンウェハ(フェローテックシリコン社製、表面抵抗率410[Ω/□])とした。このシリコンウェハを、1%のフッ酸水溶液に5分間浸漬した後に水洗し、エアブローした後、ホットプレートにより100℃で5分間、熱処理した。
(Evaluation of cleanability of dry film)
Detergent evaluation of the dry film evaluates the detergency of the impurity diffusion composition film (dry film) remaining in a dry state on the semiconductor substrate surface after the thermal diffusion of the impurity diffusion component (B) by laser light irradiation. It is. In the evaluation of the detergency of the dried film, the semiconductor substrate for evaluation was an n-type silicon wafer (Ferrotech Silicon Co., Ltd., surface resistivity 410 [Ω / □]) cut to 3 cm × 3 cm. This silicon wafer was immersed in a 1% hydrofluoric acid aqueous solution for 5 minutes, washed with water, air blown, and then heat treated at 100 ° C. for 5 minutes with a hot plate.
 つぎに、測定対象の不純物拡散組成物を、プリベーク膜厚が400nm程度になるように、公知のスピンコート法で評価用のシリコンウェハに塗布して、このシリコンウェハ面上に測定対象の不純物拡散組成物膜を形成した。ついで、このシリコンウェハを140℃で3分間プリベークした。これにより、測定対象の不純物拡散組成物膜を、その乾燥膜(プリベーク膜)とした。その後、このシリコンウェハを洗浄液に浸漬して、このシリコンウェハ面上のプリベーク膜が溶解するまでの時間を計測した。本洗浄性評価では、プリベーク膜が1分以内で溶解した場合をexcellentと判定し、プリベーク膜が3分以内で溶解した場合をgoodと判定し、プリベーク膜の溶解に5分以上かかった場合をbadと判定した。 Next, the impurity diffusion composition to be measured is applied to a silicon wafer for evaluation by a known spin coating method so that the prebaked film thickness is about 400 nm, and the impurity diffusion to be measured is spread on the silicon wafer surface. A composition film was formed. Subsequently, this silicon wafer was pre-baked at 140 ° C. for 3 minutes. Thereby, the impurity diffusion composition film to be measured was used as the dry film (pre-baked film). Thereafter, the silicon wafer was immersed in a cleaning solution, and the time until the prebaked film on the silicon wafer surface was dissolved was measured. In this cleaning performance evaluation, the case where the pre-baked film is dissolved within 1 minute is judged as excellent, the case where the pre-baked film is dissolved within 3 minutes is judged as good, and the case where it takes 5 minutes or more to dissolve the pre-baked film. Judged as bad.
(実施例1)
 実施例1では、以下のようにしてポリシロキサン(A)を合成し、得られたポリシロキサン(A)を含有する不純物拡散組成物について、シート抵抗値評価および乾燥膜の洗浄性評価を行った。
Example 1
In Example 1, the polysiloxane (A) was synthesized as follows, and the impurity diffusion composition containing the obtained polysiloxane (A) was evaluated for sheet resistance and dry film detergency. .
 実施例1のポリシロキサン(A)の合成では、500mLの三口フラスコに、15.73g(0.06mol)の3-トリメトキシシリルプロピルコハク酸と、155.29g(1.14mol)のメチルトリメトキシシランと、192.29gのプロピレングリコールモノメチルエーテルとを仕込み、40℃で攪拌しながら、64.0gの水に0.5gのギ酸を溶かしたリン酸水溶液を、30分間かけて添加した。滴下終了後、得られた溶液を、40℃で1時間撹拌した後、70℃に昇温し、30分間撹拌した。その後、オイルバスを115℃まで昇温した。昇温開始の1時間後に、この溶液の内温が100℃に到達し、そこから1時間、この溶液を加熱攪拌した(内温は100℃~110℃)。これによって得られた溶液を氷浴にて冷却し、ポリシロキサン溶液を得た。得られたポリシロキサン溶液の固形分濃度は42.0質量%であった。このポリシロキサン溶液から、実施例1のポリシロキサン(A)が得られた。 In the synthesis of polysiloxane (A) of Example 1, 15.73 g (0.06 mol) of 3-trimethoxysilylpropyl succinic acid and 155.29 g (1.14 mol) of methyltrimethoxy were added to a 500 mL three-necked flask. Silane and 192.29 g of propylene glycol monomethyl ether were charged, and an aqueous phosphoric acid solution prepared by dissolving 0.5 g of formic acid in 64.0 g of water was added over 30 minutes while stirring at 40 ° C. After completion of dropping, the resulting solution was stirred at 40 ° C. for 1 hour, then heated to 70 ° C. and stirred for 30 minutes. Thereafter, the temperature of the oil bath was raised to 115 ° C. One hour after the start of temperature increase, the internal temperature of this solution reached 100 ° C., and from this time, this solution was heated and stirred (internal temperature was 100 ° C. to 110 ° C.). The solution thus obtained was cooled in an ice bath to obtain a polysiloxane solution. The obtained polysiloxane solution had a solid content concentration of 42.0% by mass. From this polysiloxane solution, the polysiloxane (A) of Example 1 was obtained.
 上記のように合成したポリシロキサン(A)を用いて、後述の表1に記載の各組成の構成比、モル比および含有量で実施例1の不純物拡散組成物を調整した。実施例1のシート抵抗値評価および乾燥膜の洗浄性評価は、実施例1の不純物拡散組成物について行った。この結果、後述の表2に示すとおり、シート抵抗値評価では良好な値(すなわち不純物拡散成分(B)の良好な拡散性(以下、「不純物拡散性」という))が得られ、洗浄性評価ではexcellentであった。 Using the polysiloxane (A) synthesized as described above, the impurity diffusion composition of Example 1 was adjusted with the composition ratio, molar ratio, and content of each composition described in Table 1 described later. Evaluation of the sheet resistance value of Example 1 and evaluation of the cleaning property of the dry film were performed on the impurity diffusion composition of Example 1. As a result, as shown in Table 2 described later, a good value (that is, good diffusibility of the impurity diffusion component (B) (hereinafter referred to as “impurity diffusibility”)) is obtained in the sheet resistance value evaluation, and the detergency evaluation It was excellent.
(実施例2~8)
 実施例2~8では、上述した実施例1と同様に、表1に記載のオルガノシラン化合物の比率でポリシロキサン(A)を合成し、表1に記載の各組成の構成比、モル比および含有量で実施例2~8の各不純物拡散組成物を調整した。実施例2~8では、実施例毎に得られた不純物拡散組成物について、シート抵抗値評価および乾燥膜の洗浄性評価を行った。この結果、表2に示すとおり、実施例2~8のいずれについても、シート抵抗値(不純物拡散性)および洗浄性評価の双方とも良好であった。特に、ポリシロキサン(A)中の、カルボキシル基およびジカルボン酸無水物構造の少なくとも一つを有するオルガノシランの含有比(モル比)が、オルガノシランに由来するポリシロキサン(A)全体のSi原子モル数に対するSi原子モル比で、5モル%以上30モル%以下である実施例2~5、8は、不純物拡散性が良好であり且つ洗浄性評価がexcellentであった。
(Examples 2 to 8)
In Examples 2 to 8, as in Example 1 described above, polysiloxane (A) was synthesized at the ratio of the organosilane compound described in Table 1, and the composition ratio, molar ratio, and ratio of each composition described in Table 1 were synthesized. The impurity diffusion compositions of Examples 2 to 8 were adjusted according to the content. In Examples 2 to 8, for the impurity diffusion compositions obtained in each Example, sheet resistance value evaluation and dry film detergency evaluation were performed. As a result, as shown in Table 2, in each of Examples 2 to 8, both the sheet resistance value (impurity diffusibility) and the cleaning property evaluation were good. In particular, the content ratio (molar ratio) of the organosilane having at least one of a carboxyl group and a dicarboxylic anhydride structure in the polysiloxane (A) is a Si atom mole of the entire polysiloxane (A) derived from the organosilane. In Examples 2 to 5 and 8, in which the molar ratio of Si atoms to the number was 5 mol% or more and 30 mol% or less, the impurity diffusibility was good and the detergency evaluation was excellent.
(実施例9)
 実施例9では、カルボキシル基を有するポリシロキサン(A)として“X-22-3701E”(商品名、信越化学工業社製)を用いた。このポリシロキサン(A)(8g)と、リン酸(6g)と、BYK333(0.03g)と、プロピレングリコールモノメチルエーテル(85.97g)とを混合して、実施例9の不純物拡散組成物を調整した。実施例9では、このように得られた不純物拡散組成物について、シート抵抗値評価および乾燥膜の洗浄性評価を行った。この結果、表2に示すとおり、シート抵抗値評価では良好な値(良好な不純物拡散性)が得られ、洗浄性評価ではgoodであった。
Example 9
In Example 9, “X-22-3701E” (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the polysiloxane (A) having a carboxyl group. The polysiloxane (A) (8 g), phosphoric acid (6 g), BYK333 (0.03 g), and propylene glycol monomethyl ether (85.97 g) were mixed to obtain the impurity diffusion composition of Example 9. It was adjusted. In Example 9, with respect to the impurity diffusion composition thus obtained, sheet resistance evaluation and dry film detergency evaluation were performed. As a result, as shown in Table 2, a good value (good impurity diffusibility) was obtained in the sheet resistance value evaluation, and the detergency evaluation was good.
 なお、表1には示していないが、実施例9のポリシロキサン“X-22-3701E”中の、カルボキシル基を有するオルガノシランに由来する成分の含有比は、オルガノシランに由来するポリシロキサン全体のSi原子モル数に対するSi原子モル比で、5モル%未満である。 Although not shown in Table 1, the content ratio of the component derived from the organosilane having a carboxyl group in the polysiloxane “X-22-3701E” of Example 9 is the entire polysiloxane derived from the organosilane. The Si atom mole ratio relative to the number of moles of Si atoms is less than 5 mol%.
(比較例1)
 比較例1では、上述した実施例1と同様に、表1に記載のオルガノシラン化合物の比率でポリシロキサンを合成し、表1に記載の各組成の構成比、モル比および含有量で比較例1の不純物拡散組成物を調整した。比較例1のシート抵抗値評価および乾燥膜の洗浄性評価は、上記のようにして得られた比較例1の不純物拡散組成物について行った。この結果、表2に示すとおり、シート抵抗値(不純物拡散性)は良好であったが、洗浄性評価はbadであった。
(Comparative Example 1)
In Comparative Example 1, in the same manner as in Example 1 described above, polysiloxane was synthesized at the ratio of the organosilane compound described in Table 1, and the composition ratio, molar ratio, and content of each composition described in Table 1 were compared. 1 impurity diffusion composition was prepared. The sheet resistance value evaluation of Comparative Example 1 and the cleaning property evaluation of the dried film were performed on the impurity diffusion composition of Comparative Example 1 obtained as described above. As a result, as shown in Table 2, the sheet resistance value (impurity diffusibility) was good, but the detergency evaluation was bad.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 以上のように、本発明に係る不純物拡散組成物およびこれを用いた半導体素子の製造方法は、半導体基板に対する不純物拡散性と、不純物拡散後の半導体基板に残存する不純物拡散組成物膜の洗浄性との双方を向上させることに適している。 As described above, the impurity diffusion composition according to the present invention and the method for manufacturing a semiconductor device using the same are as follows. Impurity diffusibility with respect to a semiconductor substrate and cleaning performance of an impurity diffusion composition film remaining on the semiconductor substrate after impurity diffusion. It is suitable for improving both.
 1 半導体基板
 2、4 不純物拡散組成物膜
 3、5 不純物拡散層
 6 保護膜
 6a 開口部
 7、8 コンタクト電極
 9 太陽電池
 10 レーザー光
 15 半導体素子
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2, 4 Impurity diffusion composition film 3, 5 Impurity diffusion layer 6 Protective film 6a Opening part 7, 8 Contact electrode 9 Solar cell 10 Laser beam 15 Semiconductor element

Claims (10)

  1.  ポリシロキサン(A)と、
     不純物拡散成分(B)と、
     を含有し、前記ポリシロキサン(A)は、カルボキシル基およびジカルボン酸無水物構造のうち少なくとも一つを含有することを特徴とする不純物拡散組成物。
    Polysiloxane (A),
    An impurity diffusion component (B);
    And the polysiloxane (A) contains at least one of a carboxyl group and a dicarboxylic anhydride structure.
  2.  前記ポリシロキサン(A)は、下記一般式(1)で表されるポリシロキサンであることを特徴とする請求項1に記載の不純物拡散組成物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、R1は、カルボキシル基およびジカルボン酸無水物構造のうち少なくとも一つを含有する置換基を表し、複数のR1は、それぞれ同じでも異なっていてもよい。R2、R3およびR4は、水酸基、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数2~10のアルケニル基、炭素数2~6のアシル基または炭素数6~15のアリール基のいずれかを表し、複数のR2、R3およびR4は、それぞれ同じでも異なっていてもよい。nおよびmは、各括弧内の成分の構成比率(%)を示し、n+m=100であり、n:m=5:95~30:70である。)
    The impurity diffusion composition according to claim 1, wherein the polysiloxane (A) is a polysiloxane represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formula (1), R 1 represents a substituent containing at least one of a carboxyl group and a dicarboxylic anhydride structure, and a plurality of R 1 may be the same or different from each other. R 2 , R 3 and R 4 are a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an acyl group having 2 to 6 carbon atoms, or 6 to 6 carbon atoms Any one of 15 aryl groups, and a plurality of R 2 , R 3 and R 4 may be the same or different from each other, n and m each represent a constituent ratio (%) of each component in parentheses; n + m = 100, and n: m = 5: 95 to 30:70.)
  3.  前記一般式(1)中のR1は、下記一般式(2)~(6)のいずれかで表される基を含むことを特徴とする請求項2に記載の不純物拡散組成物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)~(6)中、R5、R7、R8およびR9は、炭素数1~20の2価の有機基を表す。R6は、水素原子または炭素数1~3のアルキル基を表す。R10、R11およびR12は、単結合、または炭素数1~10の鎖状脂肪族炭化水素基、炭素数3~16の環状脂肪族炭化水素基、炭素数2~6のアルキルカルボニルオキシ基、カルボニル基、エーテル基、エステル基、アミド基、炭素数6~16の芳香族基、もしくはこれらのいずれかを有する2価の基を表す。これらの基の水素原子は、炭素数1~10のアルキル基、炭素数2~10のアルケニル基、炭素数6~16のアリール基、炭素数2~6のアルキルカルボニルオキシ基、ヒドロキシ基、アミノ基、カルボキシル基またはチオール基で置換されていてもよい。h、j、kおよびlは、0~3の整数を表す。)
    3. The impurity diffusion composition according to claim 2, wherein R 1 in the general formula (1) includes a group represented by any one of the following general formulas (2) to (6).
    Figure JPOXMLDOC01-appb-C000002
    (In the general formulas (2) to (6), R 5 , R 7 , R 8 and R 9 represent a divalent organic group having 1 to 20 carbon atoms. R 6 represents a hydrogen atom or 1 to Represents an alkyl group of 3. R 10 , R 11 and R 12 each represents a single bond, a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, a cyclic aliphatic hydrocarbon group having 3 to 16 carbon atoms, or a carbon number Represents a 2-6 alkylcarbonyloxy group, a carbonyl group, an ether group, an ester group, an amide group, an aromatic group having 6 to 16 carbon atoms, or a divalent group having any one of these. The atom is an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an aryl group having 6 to 16 carbon atoms, an alkylcarbonyloxy group having 2 to 6 carbon atoms, a hydroxy group, an amino group, a carboxyl group, or Optionally substituted with a thiol group, h, j, k and And l represents an integer of 0 to 3.)
  4.  前記不純物拡散成分(B)の含有量は、0.1質量%以上20質量%以下であることを特徴とする請求項1~3のいずれか一つに記載の不純物拡散組成物。 The impurity diffusion composition according to any one of claims 1 to 3, wherein the content of the impurity diffusion component (B) is 0.1 mass% or more and 20 mass% or less.
  5.  前記不純物拡散成分(B)は、リン酸、五酸化二リン、ポリリン酸、リン酸エステル、酸化ホウ素、ホウ酸、ホウ酸エステル、ボロン酸、ボロン酸エステルから選ばれる1種類以上を含有することを特徴とする請求項1~4のいずれか一つに記載の不純物拡散組成物。 The impurity diffusion component (B) contains at least one selected from phosphoric acid, diphosphorus pentoxide, polyphosphoric acid, phosphoric acid ester, boron oxide, boric acid, boric acid ester, boronic acid, and boronic acid ester. The impurity diffusion composition according to any one of claims 1 to 4, wherein:
  6.  前記不純物拡散成分(B)は、ホウ酸、ボロン酸、ホウ酸エステル、ボロン酸エステルから選ばれる1種類以上を含有し、さらに、水および水溶性のバインダーを含有することを特徴とする請求項1~4のいずれか一つに記載の不純物拡散組成物。 The impurity diffusion component (B) contains at least one selected from boric acid, boronic acid, boric acid ester, and boronic acid ester, and further contains water and a water-soluble binder. 5. The impurity diffusion composition according to any one of 1 to 4.
  7.  前記水溶性のバインダーは、ポリビニルアルコールであることを特徴とする請求項6に記載の不純物拡散組成物。 The impurity diffusion composition according to claim 6, wherein the water-soluble binder is polyvinyl alcohol.
  8.  半導体基板上に、請求項1~7のいずれか一つに記載の不純物拡散組成物を塗布して不純物拡散組成物膜を形成する膜形成工程と、
     前記不純物拡散組成物膜から前記半導体基板中に不純物拡散成分を拡散させて不純物拡散層を形成する層形成工程と、
     を含むことを特徴とする半導体素子の製造方法。
    A film forming step of forming an impurity diffusion composition film by applying the impurity diffusion composition according to any one of claims 1 to 7 on a semiconductor substrate;
    A layer forming step of diffusing an impurity diffusion component from the impurity diffusion composition film into the semiconductor substrate to form an impurity diffusion layer;
    The manufacturing method of the semiconductor element characterized by the above-mentioned.
  9.  半導体基板上に、請求項1~7のいずれか一つに記載の不純物拡散組成物を塗布して不純物拡散組成物膜を形成する膜形成工程と、
     前記不純物拡散組成物膜にレーザー光を照射して、前記不純物拡散組成物膜から前記半導体基板中に不純物拡散成分を拡散させて不純物拡散層を形成する層形成工程と、
     を含むことを特徴とする半導体素子の製造方法。
    A film forming step of forming an impurity diffusion composition film by applying the impurity diffusion composition according to any one of claims 1 to 7 on a semiconductor substrate;
    A layer forming step of irradiating the impurity diffusion composition film with laser light to diffuse an impurity diffusion component from the impurity diffusion composition film into the semiconductor substrate to form an impurity diffusion layer;
    The manufacturing method of the semiconductor element characterized by the above-mentioned.
  10.  半導体基板上に、請求項1~7のいずれか一つに記載の不純物拡散組成物を塗布して不純物拡散組成物膜を形成する膜形成工程と、
     前記不純物拡散組成物膜の一部分にレーザー光を照射して、前記不純物拡散組成物膜の一部分から前記半導体基板中に不純物拡散成分を拡散させて不純物拡散層を形成する層形成工程と、
     前記不純物拡散組成物膜のうち前記レーザー光が照射されていないレーザー未照射部分を酸またはアルカリによって除去する除去工程と、
     を含むことを特徴とする半導体素子の製造方法。
    A film forming step of forming an impurity diffusion composition film by applying the impurity diffusion composition according to any one of claims 1 to 7 on a semiconductor substrate;
    A layer forming step of forming an impurity diffusion layer by irradiating a part of the impurity diffusion composition film with laser light to diffuse an impurity diffusion component from the part of the impurity diffusion composition film into the semiconductor substrate;
    A removal step of removing the non-laser irradiated portion of the impurity diffusion composition film that has not been irradiated with the laser light with an acid or alkali,
    The manufacturing method of the semiconductor element characterized by the above-mentioned.
PCT/JP2017/026150 2016-07-29 2017-07-19 Impurity diffusion composition and semiconductor element production method using impurity diffusion composition WO2018021121A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017538732A JPWO2018021121A1 (en) 2016-07-29 2017-07-19 Impurity diffusion composition and method of manufacturing semiconductor device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-149356 2016-07-29
JP2016149356 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018021121A1 true WO2018021121A1 (en) 2018-02-01

Family

ID=61016188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026150 WO2018021121A1 (en) 2016-07-29 2017-07-19 Impurity diffusion composition and semiconductor element production method using impurity diffusion composition

Country Status (3)

Country Link
JP (1) JPWO2018021121A1 (en)
TW (1) TW201829625A (en)
WO (1) WO2018021121A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539615A (en) * 1999-03-11 2002-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Dopant paste for forming p, p + and n, n + regions in a semiconductor
JP2009238824A (en) * 2008-03-26 2009-10-15 Tokyo Ohka Kogyo Co Ltd Manufacturing method of electrode for semiconductor, and solar cell using the same
JP2014168026A (en) * 2012-03-07 2014-09-11 Toray Ind Inc Mask paste composition, semiconductor device arranged by use thereof, and method for manufacturing semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539615A (en) * 1999-03-11 2002-11-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Dopant paste for forming p, p + and n, n + regions in a semiconductor
JP2009238824A (en) * 2008-03-26 2009-10-15 Tokyo Ohka Kogyo Co Ltd Manufacturing method of electrode for semiconductor, and solar cell using the same
JP2014168026A (en) * 2012-03-07 2014-09-11 Toray Ind Inc Mask paste composition, semiconductor device arranged by use thereof, and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
TW201829625A (en) 2018-08-16
JPWO2018021121A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
JP3821165B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
KR100698391B1 (en) Radiation curable composition, storing method thereof, forming method of cured film, patterning method, use of pattern, electronic components and optical waveguide
JP6361505B2 (en) Impurity diffusion composition and method for manufacturing semiconductor device
JP7459511B2 (en) Method for manufacturing semiconductor device and method for manufacturing solar cell
JP2016195203A (en) P-type impurity diffusion composition, method of manufacturing semiconductor element using the same, and solar cell
JP2017103379A (en) Impurity diffusing composition and manufacturing method of semiconductor device using the same
WO2018021121A1 (en) Impurity diffusion composition and semiconductor element production method using impurity diffusion composition
WO2016121641A1 (en) Impurity diffusion composition, method for manufacturing semiconductor element using same, and solar cell
JP3788475B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP4600090B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP3818307B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP3801192B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
WO2018021117A1 (en) Semiconductor element production method and solar cell production method
JP6772836B2 (en) A p-type impurity diffusion composition, a method for manufacturing a semiconductor device using the composition, and a method for manufacturing a solar cell.
JP3781049B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP4655633B2 (en) Radiation curable composition, storage method thereof, cured film forming method, pattern forming method, pattern using method, electronic component and optical waveguide
JP2006091806A (en) Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide
JP2006257437A (en) Radiation-curable composition and its cured film, and electronic part and optical wave guide
JP2006091827A (en) Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide
JP2012242483A (en) Silica-based photosensitive resin composition, method for forming silica-based insulating coating film having pattern, and electronic component having the coating film
JP2006091805A (en) Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide
JP2012222104A (en) Method for forming silica-based coating film, and electronic component
JP2006091818A (en) Cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide
JP2006195175A (en) Radiation-curing composition, method for storing the same, method for forming cured film, pattern forming method, pattern using method, electronic component, and optical waveguide
JP2006091817A (en) Radiation curable composition, its storing method, cured film forming method, pattern forming method, pattern usage, electronic component, and optical waveguide

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017538732

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834129

Country of ref document: EP

Kind code of ref document: A1