WO2018020848A1 - Gas detection device - Google Patents

Gas detection device Download PDF

Info

Publication number
WO2018020848A1
WO2018020848A1 PCT/JP2017/021070 JP2017021070W WO2018020848A1 WO 2018020848 A1 WO2018020848 A1 WO 2018020848A1 JP 2017021070 W JP2017021070 W JP 2017021070W WO 2018020848 A1 WO2018020848 A1 WO 2018020848A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection device
gas detection
gas
sensor unit
airflow
Prior art date
Application number
PCT/JP2017/021070
Other languages
French (fr)
Japanese (ja)
Inventor
魚住 哲生
晋一 松本
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2018020848A1 publication Critical patent/WO2018020848A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the present invention relates to a gas detection device.
  • a housing case for housing the SOFC is provided.
  • the storage case is provided with a partition.
  • One side of the partition is provided with an SOFC, and the other is provided with a passage.
  • a hole is formed in the partition, and the SOFC arrangement region and the passage communicate with each other through the hole. Therefore, even if the fuel gas leaks from the SOFC, the fuel gas is discharged from the passage to the outside without staying in the storage case.
  • a gas sensor in the passage, for example, when fuel gas leaks, the gas concentration measured by the gas sensor exceeds a predetermined value, so that the gas leak can be detected.
  • a gas sensor for measuring a gas concentration is arranged toward the upstream of an air flow.
  • a semiconductor gas sensor is used to detect the SOFC fuel gas.
  • a semiconductor gas sensor measures gas concentration in a state where it is kept at a measurement temperature by a heater or the like due to its characteristics.
  • the sensor unit including the gas sensor is arranged toward the upstream of the airflow, the airflow directly hits the gas sensor, and it becomes difficult to maintain the measurement temperature. For this reason, there is a risk that the measurement accuracy of the concentration of the gas is lowered.
  • An object of the present invention is to improve the gas detection accuracy by the gas detector.
  • the gas detection device includes a sensor unit that detects gas in the airflow in the passage, and a holding plate that fixes the sensor unit on one surface.
  • the holding plate is disposed so that the other surface is directed upstream of the airflow.
  • FIG. 1A is a sectional view in the axial direction of a passage in which a gas detection device is arranged according to the first embodiment.
  • FIG. 1B is an axial sectional view of a passage in which the gas detection device is arranged.
  • FIG. 1C is a sectional view in the axial direction of a passage in which the gas detection device is arranged.
  • FIG. 1D is a diagram illustrating another arrangement example of the gas detection device.
  • FIG. 2 is a schematic view of a fuel cell system according to the second embodiment.
  • FIG. 3 is an external view of the duct.
  • FIG. 4 is a perspective view of the sensor unit.
  • FIG. 5 is an enlarged view of the sensing element.
  • FIG. 6 is a schematic view of the airflow around the sensor unit.
  • FIG. 1A is a sectional view in the axial direction of a passage in which a gas detection device is arranged according to the first embodiment.
  • FIG. 1B is an axial sectional view of a passage
  • FIG. 7 is a sectional view of the duct.
  • FIG. 8 is a diagram showing the correlation between the gas concentration and the resistance value of the platinum wire.
  • FIG. 9 is a cross-sectional view of the duct of the third embodiment.
  • FIG. 10 is a perspective view of the sensor unit.
  • FIG. 11 is a cross-sectional view of the duct of the fourth embodiment.
  • FIG. 12 is a cross-sectional view of the duct of the fifth embodiment.
  • FIG. 1A is an axial cross-sectional view of a passage in which the gas detection device of the first embodiment is arranged.
  • FIG. 1B is a perspective view of a passage in which the gas detection device is arranged.
  • FIG. 1C is a radial cross-sectional view of a passage in which the gas detection device is arranged.
  • a sensor unit 3 for measuring a gas concentration fixed to a rectangular holding plate 2 is provided in a cylindrical passage 1 through which an airflow flows.
  • the holding plate 2 is attached to the passage 1 at its four corners using brackets 4.
  • the outer shape of the holding plate 2 is larger than the outer shape of the sensor unit 3.
  • the holding plate 2 for fixing the sensor unit 3 is provided so as to be substantially orthogonal to the airflow.
  • the sensor unit 3 is provided with a gas sensor 31 for detecting a gas concentration so as to be embedded in a surface opposite to the surface fixed to the holding plate 2.
  • a controller (not shown) is connected to the sensor unit 3 and, when the gas concentration measured by the gas sensor 31 exceeds the allowable value, notifies the user that gas leakage has been detected.
  • the gas sensor 31 is a semiconductor type, and measures the gas concentration while maintaining the measurement temperature (for example, 400 ° C.). However, if the air current directly blows on the gas sensor 31, it becomes difficult to maintain the gas sensor 31 at the measurement temperature, and thus the gas concentration cannot be measured accurately.
  • the airflow flowing through the passage 1 flows so as to bypass the holding plate 2 when hitting the back surface of the holding plate 2. And the gas sensor 31 detects the gas in the detoured airflow.
  • the gas sensor 31 can be easily maintained at the measurement temperature, so that it is possible to suppress a decrease in the measurement accuracy of the gas concentration. Further, when foreign matter is mixed in the airflow, it is prevented that the foreign matter hits the gas sensor 31, so that physical damage to the gas sensor 31 can be prevented.
  • FIG. 1D is a diagram illustrating another arrangement example of the sensor unit 3.
  • the holding plate 2 for fixing the sensor unit 3 is provided so as to be inclined with respect to the air current. Even if it arrange
  • the sensor unit 3 was fixed with the bracket 4, it is not restricted to this.
  • the sensor unit 3 may be fixed by a mesh-like member having a small hole.
  • the sensor unit 3 that detects gas in the airflow in the passage 1 and the holding plate 2 that fixes the sensor unit 3 to one surface (surface) on the downstream side are provided.
  • maintenance board 2 is arrange
  • the airflow is prevented from directly blowing on the gas sensor 31 provided in the sensor unit 3. Therefore, it becomes easy to maintain the gas sensor 31 at the measurement temperature, and the temperature change is suppressed, so that the gas detection accuracy can be improved. Further, when foreign matter is mixed in the airflow, it is prevented that the foreign matter hits the gas sensor 31, so that physical damage to the gas sensor 31 can be prevented.
  • the holding plate 2 is disposed so as to be substantially orthogonal to the airflow in the passage 1.
  • the airflow circulates around the holding plate 2 and the gas becomes more difficult to blow against the gas sensor 31, so that the gas detection accuracy can be improved.
  • FIG. 2 is a schematic diagram of the fuel cell system 100 of the second embodiment.
  • the fuel cell system 100 is also referred to as an APU (Auxiliary Power Unit), and a fuel cell stack 5 that generates power using fuel gas such as hydrogen and air is housed in a housing case 6.
  • APU Advanced Power Unit
  • a fuel cell stack 5 that generates power using fuel gas such as hydrogen and air is housed in a housing case 6.
  • the partition 61 is provided, so that two regions are formed on the upper and lower sides.
  • the fuel cell stack 5 is accommodated in one region, and the other region becomes the passage 1.
  • the partition 61 is provided with a plurality of holes 62, and the passage 1 and the accommodation area of the fuel cell stack 5 communicate with each other through the holes 62.
  • the fuel cell stack 5 is, for example, a solid oxide fuel cell (SOFC).
  • the passage 1 is provided with an intake port 11 for sucking air and an exhaust port 12 for discharging air.
  • a fan 7 is provided in the passage 1 in the vicinity of the exhaust port 12. As the fan 7 rotates, the air sucked from the intake port 11 is discharged from the exhaust port 12.
  • a duct 8 is provided on the outer surface of the housing case 6 so as to cover the exhaust port 12, and the duct 8 includes a duct discharge port 81 facing downward. Inside the duct 8, the holding unit 2 is fixed using the bracket 4 so as to straddle the exhaust port 12, and the sensor unit 3 capable of detecting gas is fixed to the holding unit 2.
  • FIG. 3 is an external view of the fuel cell system 100.
  • the controller 9 that controls the sensor unit 3 is provided outside the duct 8.
  • the controller 9 controls the sensor unit 3 by communication via the cable 10.
  • the controller 9 measures the gas concentration of the airflow in the passage 1 and, when the measured gas concentration exceeds the allowable value, notifies the user that gas leakage has been detected.
  • the cable 10 is wired so as to pass through the duct outlet 81. Therefore, it is not necessary to provide a hole or the like for passing the cable 10 in the duct 8.
  • FIG. 4 is a perspective view of the sensor unit 3.
  • a surface surface on the left back side of the drawing
  • a surface on the opposite side of the back surface surface on the right front side of the drawing. It shall be called the surface.
  • upstream of airflow is simply referred to as “upstream”
  • downstream of airflow is simply referred to as “downstream”.
  • the holding case 22 is fixed to the surface of the bracket 4 via the holding bracket 21.
  • the holding bracket 21 and the holding case 22 constitute the holding unit 2 corresponding to the holding plate in the first embodiment.
  • the sensor unit 3 is provided in the holding case 22.
  • the bracket 4 is a plate-like member provided so as to cover the exhaust port 12, and includes a leg 41 positioned at the upper and lower ends, a holding portion 2, and a plate 42 that fixes the sensor unit 3.
  • the leg 41 is inclined with respect to the plate 42 and is fixed to the outer surface of the housing case 6 so as to straddle the exhaust port 12.
  • the holding bracket 21 and the holding case 22 configured in a step shape are fixed to the surface of the plate 42, so that the entire sensor unit 3 accommodated in the holding case 22 is fixed. Therefore, the holding bracket 21 and the back surface of the holding case 22 are directed upstream. Then, the airflow discharged from the exhaust port 12 passes between the legs 41 provided in the vertical direction, wraps around the plate 42 and the holding unit 2 and reaches the sensor unit 3.
  • the sensor unit 3 is fixed in a holding case 22 fixed on the surface of the holding bracket 21.
  • the holding case 22 is a substantially rectangular parallelepiped opening on the surface side, and accommodates the cylindrical sensor unit 3 therein.
  • four sensor units 3 are provided. When each sensor unit 3 detects one type or a plurality of types of gas, many types of gas can be detected.
  • the sensor unit 3 is a semiconductor gas sensor including a cylindrical sensor casing 32 and a gas sensor 31 disposed in an opening 33 provided in the sensor casing 32.
  • the opening 33 provided in the sensor housing 32 is provided so as not to go upstream of the airflow from the exhaust port 12, that is, toward the downstream of the airflow.
  • the gas sensor 31 is connected to the cable 10.
  • the controller 9 is connected to the gas sensor 31 via the cable 10 to measure the gas concentration and detect that the gas has exceeded the allowable concentration.
  • FIG. 5 is an enlarged view of the gas sensor 31 of the sensor unit 3.
  • the gas sensor 31 includes a platinum wire 311, a semiconductor 312 covering the platinum wire 311, and a heater 313 for heating the platinum wire 311 and the semiconductor 312.
  • the resistance of the semiconductor 312 changes. Since the resistance of the semiconductor 312 changes depending on the temperature, the heater 313 is controlled so as to keep the semiconductor 312 at a measurement temperature (for example, 400 degrees Celsius).
  • the sensor unit 3 is provided with a temperature sensor (not shown) together with the gas sensor 31. Measurement of the resistance of the semiconductor 312, control of the heater 313, measurement of gas concentration, and the like are performed by the controller 9.
  • FIG. 6 is a schematic view of the airflow around the sensor unit 3.
  • the airflow from the exhaust port 12 blows against the back surface of the plate 42 of the bracket 4 and the back surface of the holding case 22. That is, the airflow blows to the surface where the sensor unit 3 is not fixed.
  • the airflow passes between the legs 41 provided in the vertical direction of the drawing, wraps around the plate 42, the holding bracket 21, and the holding case 22, and reaches the sensor units 3 aligned in the holding case 22.
  • the sensor housing 32 is provided with an opening 33 directed downstream, and the gas sensor 31 is provided in the opening 33. Due to such a configuration, the air current does not directly blow to the gas sensor 31.
  • FIG. 7 is a sectional view of the duct 8.
  • the airflow discharged from the exhaust port 12 hits the plate 42, it passes between the legs 41 and flows upward and downward of the duct 8.
  • the upward airflow flows along the upper surface 82 of the duct 8 and the side surface 83 facing the sensor unit 3, and is discharged from a duct outlet 81 provided below.
  • the downward airflow flows along the lower surface 84 of the duct 8 and is discharged from the duct discharge port 81.
  • FIG. 8 is a diagram showing a correlation between the gas concentration C around the gas sensor 31 and the resistance value R of the semiconductor 312 when the heater 313 is controlled so that the semiconductor 312 of the gas sensor 31 reaches the measured temperature.
  • the horizontal axis (x-axis) shows the gas concentration C
  • the vertical axis (y-axis) shows the resistance value R of the semiconductor 312.
  • the solid line in this figure shows the correlation in the case where the gas sensor 31 is not directly exposed to the airflow, that is, in this embodiment.
  • the temperature drop of the gas sensor 31 due to the airflow is suppressed. Therefore, the semiconductor 312 is easily maintained at the measurement temperature, and the correlation is not easily affected by the temperature change. Therefore, the controller 9 can measure the gas concentration C using the measured resistance value R and this correlation.
  • the broken line shows the correlation when the airflow directly hits the gas sensor 31 as a comparative example.
  • the correlation includes the influence of temperature change, and the correlation changes. Therefore, there is a possibility that the gas concentration C cannot be accurately calculated from the resistance value R.
  • the gas sensor 31 is not directly exposed to the airflow, so that the gas concentration measurement accuracy can be improved. Furthermore, physical damage to the gas sensor 31 can be prevented.
  • the sensor unit 3 that detects gas in the airflow in the passage 1 and the holding unit 2 that fixes the sensor unit 3 to one surface (surface) on the downstream side are provided.
  • maintenance part 2 is arrange
  • the air current blows against the back surface of the plate 42 of the bracket 4 and the back surface of the holding case 22 and bypasses the plate 42 and the holding case 22. Therefore, it is prevented that the airflow blows directly on the gas sensor 31 of the sensor unit 3. Therefore, the gas sensor 31 is easily maintained at the measurement temperature and the temperature change is suppressed, so that the gas detection accuracy can be improved. Further, when foreign matter is mixed in the airflow, it is prevented that the foreign matter hits the gas sensor 31, so that physical damage to the gas sensor 31 can be prevented.
  • the gas sensor 31 is disposed in the opening 33 formed in the sensor housing 32.
  • casing 32 has the opening 33 arrange
  • the bracket 4 includes the plate 42 that fixes the sensor unit 3 and the legs 41 that are connected to both ends of the plate 42.
  • the bracket 4 is fixed by the legs 41 so that the plate 42 faces the exhaust port 12.
  • the fan 7 is provided upstream of the sensor unit 3.
  • the airflow flowing out from the exhaust port 12 of the passage 1 is likely to blow against the plate 42. Therefore, turbulent flow is likely to occur around the sensor unit 3, and stagnation is suppressed, so that the gas detection accuracy can be improved.
  • the fuel cell stack 5 and the passage 1 are housed in the housing case 6. Further, the storage area of the fuel cell stack 5 and the passage 1 are separated by a partition 61 provided with a hole 62. The accommodation area of the fuel cell stack 5 and the passage 1 communicate with each other through the hole 62. With such a configuration, even when the fuel gas supplied to the fuel cell stack 5 leaks, the fuel gas does not stay in the housing case 6 and is discharged outside through the passage 1. Since the sensor unit 3 is provided in the airflow flowing through the passage 1, leakage of the fuel gas can be detected, so that safety can be improved.
  • the holding unit 2, the sensor unit 3, and the duct 8 that covers the bracket 4 are provided.
  • the airflow from the exhaust port 12 is discharged from the duct discharge port 81.
  • the airflow appropriately flows around the gas sensor 31 in the duct 8. Thereby, since the stagnation of the airflow is suppressed, the gas detection accuracy can be improved.
  • the cable 10 that connects the sensor unit 3 and the controller 9 is provided along the surfaces of the legs 41 and the plate 42 of the bracket 4.
  • the controller 9 is provided outside the housing case 6.
  • the heat resistance temperature of the sensor unit 3 is high, but the heat resistance temperature is low because the controller 9 is a precision instrument.
  • the inside of the APU 6 becomes high temperature, so that the airflow flowing through the passage 1 and the duct 8 also becomes high temperature.
  • the controller 9 can be used appropriately below the heat-resistant temperature.
  • FIG. 9 is a cross-sectional view of the duct 8 of the third embodiment.
  • the rectifying plate 13 is provided between the sensor unit 3 and the side face 83 of the duct 8 so as to be separated from the side face 83.
  • the current plate 13 is attached to the side surface 83 by a bracket (not shown). Since the air flow around the bracket 4 and the holding portion 2 is adjusted between the sensor unit 3 and the side surface 83 by the rectifying plate 13, the occurrence of stagnation is suppressed, and the gas detection accuracy can be improved. it can.
  • the rectifying plate 13 has been described by using an example in which the rectifying plate 13 is provided on the projection surface onto the side surface 83 so as to be disposed outside the plate 42 of the bracket 4 in the vertical direction. Not exclusively.
  • the rectifying plate 13 may be provided so as to be disposed on the inner side in the vertical direction of the plate 42 on the projection surface onto the side surface 83.
  • the rectifying plate 13 has been described using an example in which the rectifying plate 13 is parallel to the side surface 83, the present invention is not limited thereto.
  • the rectifying plate 13 may be inclined with respect to the side surface 83.
  • the rectifying plate 13 is provided on the downstream side of the bracket 4 and the holding unit 2. Since the airflow around the holding portion 2 is adjusted by the rectifying plate 13, stagnation of the airflow between the sensor unit 3 and the side surface 83 is suppressed, and the gas detection accuracy can be improved.
  • FIG. 10 is a perspective view of the sensor unit 3 of the fourth embodiment.
  • the notch 43 is provided in the vicinity of the center of the two sides of the bracket 4 in the vertical direction of the drawing, so that four legs 41A to 41D are formed. ing. Two legs 41A and 41B are fixed above the exhaust port 12, and two legs 41C and 41D are fixed below the exhaust port 12.
  • FIG. 11 is a cross-sectional view of the duct 8.
  • the airflow from the exhaust port 12 blows to the back surface of the plate 42.
  • the airflow passes through the side of the plate 42, that is, between the legs 41A and 41C provided in the vertical direction of the drawing and between the legs 41B and 41D. Further, the airflow passes through the notches 43 provided in the vertical direction of the plate 42, that is, between the legs 41A and 41B and between the legs 41C and 41D. Then, the airflow flows toward the upper surface 82 and the lower surface 84 of the duct 8.
  • the gas sensor 31 can detect the gas with high accuracy.
  • the leg 41 of the bracket 4 is provided with a notch 43 at a location fixed to the housing case 6.
  • the airflow blown against the plate 42 of the bracket 4 passes through the notch 43 and wraps around the surface of the plate 42.
  • the air flow is easily divided by the plate 42, so that turbulent flow is likely to occur in the duct 8, and gas retention is prevented. Therefore, the gas detection accuracy can be improved.
  • FIG. 12 is a cross-sectional view of the duct 8 of the fifth embodiment.
  • the lower leg 41 of the bracket 4 is fixed to the duct discharge port 81.
  • the cable 10 is routed along the plate 42 and the legs 41 so as to pass through the duct discharge port 81.
  • the sensor unit 3 and the controller 9 provided outside the duct 8 are connected via the cable 10.
  • the cable 10 is provided so as to pass through the duct discharge port 81. By doing in this way, it becomes unnecessary to provide the hole which lets the cable 10 pass separately. Further, since the airflow is not directly applied to the cable 10, it is prevented that the cable 10 becomes high temperature. Thereby, since the communication between the sensor unit 3 and the controller 9 is stabilized, the gas detection accuracy can be improved.
  • the gas detection apparatus which detects the gas in the channel
  • the fuel cell stack 5 may not be provided.
  • the detection accuracy of gas can be improved by using the structure of the gas detection apparatus of this embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

This gas detection device is provided with a sensor unit that detects a gas in an airflow inside a passage, and a retaining plate having one surface to which the sensor unit is fixed. The retaining plate is disposed so that the other surface thereof faces the upstream side of the airflow.

Description

ガス検知装置Gas detector
 本発明はガス検知装置に関する。 The present invention relates to a gas detection device.
 固体酸化物型燃料電池(SOFC)を電源の一部とする電動車両などにおいては、SOFCを収容する収容ケースが設けられている。収容ケースには、仕切りが設けられており、仕切りを挟んで一方にはSOFCが配置され、他方に通路が設けられている。仕切りには穴が形成されており、穴を介してSOFCの配置領域と通路とは連通している。そのため、SOFCから燃料ガスが漏れてしまっても、燃料ガスは、収容ケース内に滞留せずに、通路から外部へと排出される。 In an electric vehicle or the like that uses a solid oxide fuel cell (SOFC) as a part of a power source, a housing case for housing the SOFC is provided. The storage case is provided with a partition. One side of the partition is provided with an SOFC, and the other is provided with a passage. A hole is formed in the partition, and the SOFC arrangement region and the passage communicate with each other through the hole. Therefore, even if the fuel gas leaks from the SOFC, the fuel gas is discharged from the passage to the outside without staying in the storage case.
 通路内にガスセンサを設けることにより、例えば、燃料ガスが漏洩した場合には、ガスセンサにより測定されるガス濃度が所定の値を上回るので、ガスの漏洩を検知することができる。一般に、通路内に設けられるガスセンサを備えるセンサユニットは、ガス濃度を測定するガスセンサが気流の上流に向かって配置されている。(例えば、JP2008-26237A) By providing a gas sensor in the passage, for example, when fuel gas leaks, the gas concentration measured by the gas sensor exceeds a predetermined value, so that the gas leak can be detected. In general, in a sensor unit including a gas sensor provided in a passage, a gas sensor for measuring a gas concentration is arranged toward the upstream of an air flow. (For example, JP2008-26237A)
 SOFCの燃料ガスの検出には、例えば、半導体式のガスセンサが用いられる。半導体式のガスセンサは、その特性により、ヒータなどにより測定温度に保たれた状態で、ガス濃度の測定を行う。しかしながら、ガスセンサを備えるセンサユニットが気流の上流に向かって配置されると、ガスセンサに気流が直接あたってしまい、測定温度に保たれにくくなる。そのため、ガスの濃度の測定精度が低下してしまうおそれがある。 For example, a semiconductor gas sensor is used to detect the SOFC fuel gas. A semiconductor gas sensor measures gas concentration in a state where it is kept at a measurement temperature by a heater or the like due to its characteristics. However, when the sensor unit including the gas sensor is arranged toward the upstream of the airflow, the airflow directly hits the gas sensor, and it becomes difficult to maintain the measurement temperature. For this reason, there is a risk that the measurement accuracy of the concentration of the gas is lowered.
 本発明の目的は、ガス検知装置によるガスの検知精度を高めることである。 An object of the present invention is to improve the gas detection accuracy by the gas detector.
 本発明のある態様によれば、ガス検知装置は、通路内の気流におけるガスを検知するセンサユニットと、一方の面に前記センサユニットを固定する保持板と、を備える。保持板は、他方の面が気流の上流に向かうように配置される。 According to an aspect of the present invention, the gas detection device includes a sensor unit that detects gas in the airflow in the passage, and a holding plate that fixes the sensor unit on one surface. The holding plate is disposed so that the other surface is directed upstream of the airflow.
図1Aは、第1実施形態の、ガス検出装置が配置された通路の軸方向の断面図である。FIG. 1A is a sectional view in the axial direction of a passage in which a gas detection device is arranged according to the first embodiment. 図1Bは、ガス検出装置が配置された通路の軸方向の断面図である。FIG. 1B is an axial sectional view of a passage in which the gas detection device is arranged. 図1Cは、ガス検出装置が配置された通路の軸方向の断面図である。FIG. 1C is a sectional view in the axial direction of a passage in which the gas detection device is arranged. 図1Dは、ガス検出装置の他の配置例を示す図である。FIG. 1D is a diagram illustrating another arrangement example of the gas detection device. 図2は、第2実施形態の燃料電池システムの概略図である。FIG. 2 is a schematic view of a fuel cell system according to the second embodiment. 図3は、ダクトの外観図である。FIG. 3 is an external view of the duct. 図4は、センサユニットの斜視図である。FIG. 4 is a perspective view of the sensor unit. 図5は、センシング素子の拡大図である。FIG. 5 is an enlarged view of the sensing element. 図6は、センサユニットの周囲の気流の概略図である。FIG. 6 is a schematic view of the airflow around the sensor unit. 図7は、ダクトの断面図である。FIG. 7 is a sectional view of the duct. 図8は、ガス濃度と白金線の抵抗値との相関関係を示す図である。FIG. 8 is a diagram showing the correlation between the gas concentration and the resistance value of the platinum wire. 図9は、第3実施形態のダクトの断面図である。FIG. 9 is a cross-sectional view of the duct of the third embodiment. 図10は、センサユニットの斜視図である。FIG. 10 is a perspective view of the sensor unit. 図11は、第4実施形態のダクトの断面図である。FIG. 11 is a cross-sectional view of the duct of the fourth embodiment. 図12は、第5実施形態のダクトの断面図である。FIG. 12 is a cross-sectional view of the duct of the fifth embodiment.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 (第1実施形態)
 図1Aは、第1実施形態のガス検出装置が配置された通路の軸方向の断面図である。また、図1Bは、ガス検出装置が配置された通路の斜視図である。図1Cは、ガス検出装置が配置された通路の径方向の断面図である。
(First embodiment)
FIG. 1A is an axial cross-sectional view of a passage in which the gas detection device of the first embodiment is arranged. FIG. 1B is a perspective view of a passage in which the gas detection device is arranged. FIG. 1C is a radial cross-sectional view of a passage in which the gas detection device is arranged.
 これらの図によれば、気流が流れる円筒状の通路1の中に、矩形の保持板2に固定されたガス濃度を測定するセンサユニット3が設けられている。また、保持板2は、その四隅がブラケット4を用いて通路1に取り付けられている。なお、保持板2の外形は、センサユニット3の外形よりも大きくなっている。センサユニット3を固定する保持板2は、気流に対して略直交するように設けられている。 According to these drawings, a sensor unit 3 for measuring a gas concentration fixed to a rectangular holding plate 2 is provided in a cylindrical passage 1 through which an airflow flows. The holding plate 2 is attached to the passage 1 at its four corners using brackets 4. The outer shape of the holding plate 2 is larger than the outer shape of the sensor unit 3. The holding plate 2 for fixing the sensor unit 3 is provided so as to be substantially orthogonal to the airflow.
 センサユニット3には、保持板2に固定される面の反対側の面に埋め込まれるように、ガスの濃度を検知するガスセンサ31が設けられている。不図示のコントローラが、センサユニット3と接続されており、ガスセンサ31により測定されたガス濃度が許容値を超える場合には、ガスの漏洩を検知した旨をユーザに通報する。 The sensor unit 3 is provided with a gas sensor 31 for detecting a gas concentration so as to be embedded in a surface opposite to the surface fixed to the holding plate 2. A controller (not shown) is connected to the sensor unit 3 and, when the gas concentration measured by the gas sensor 31 exceeds the allowable value, notifies the user that gas leakage has been detected.
 一般に、ガスセンサ31は、半導体式であって、測定温度(例えば400℃)に保ちながらガス濃度を測定する。しかしながら、ガスセンサ31に気流が直接吹きあたってしまうと、ガスセンサ31を測定温度に維持しにくくなってしまうので、ガス濃度を正確に測定することができない。本実施形態では、通路1を流れる気流は、保持板2の裏面にあたると、保持板2を迂回するように流れる。そして、迂回した気流中のガスを、ガスセンサ31が検出する。 Generally, the gas sensor 31 is a semiconductor type, and measures the gas concentration while maintaining the measurement temperature (for example, 400 ° C.). However, if the air current directly blows on the gas sensor 31, it becomes difficult to maintain the gas sensor 31 at the measurement temperature, and thus the gas concentration cannot be measured accurately. In the present embodiment, the airflow flowing through the passage 1 flows so as to bypass the holding plate 2 when hitting the back surface of the holding plate 2. And the gas sensor 31 detects the gas in the detoured airflow.
 このようにガスセンサ31に直接気流が吹き当たらないようにすることにより、ガスセンサ31を測定温度に維持されやすくなるので、ガス濃度の測定精度の低下を抑制することができる。さらに、気流に異物が混入している場合には、異物がガスセンサ31にあたることが妨げられるので、ガスセンサ31の物理的な損傷を防ぐことができる。 By preventing the airflow from directly blowing on the gas sensor 31 in this way, the gas sensor 31 can be easily maintained at the measurement temperature, so that it is possible to suppress a decrease in the measurement accuracy of the gas concentration. Further, when foreign matter is mixed in the airflow, it is prevented that the foreign matter hits the gas sensor 31, so that physical damage to the gas sensor 31 can be prevented.
 図1Dは、センサユニット3の他の配置例を示す図である。この図によれば、センサユニット3を固定する保持板2は、気流に対して傾くように設けられている。このように配置しても、ガスセンサ31には直接気流が吹き当たらないため、ガスの測定濃度の低下を抑制することができる。なお、センサユニット3は、ブラケット4によって固定したが、これに限らない。センサユニット3は、小さな孔を備えるメッシュ状の部材により固定されてもよい。 FIG. 1D is a diagram illustrating another arrangement example of the sensor unit 3. According to this figure, the holding plate 2 for fixing the sensor unit 3 is provided so as to be inclined with respect to the air current. Even if it arrange | positions in this way, since a gas flow does not blow directly on the gas sensor 31, the fall of the measured density | concentration of gas can be suppressed. In addition, although the sensor unit 3 was fixed with the bracket 4, it is not restricted to this. The sensor unit 3 may be fixed by a mesh-like member having a small hole.
 第1実施形態によれば、以下の効果を得ることができる。 According to the first embodiment, the following effects can be obtained.
 第1実施形態のガス検知装置によれば、通路1内の気流におけるガスを検知するセンサユニット3と、下流側の一方の面(表面)にセンサユニット3を固定する保持板2と、を備える。そして、保持板2は、他方の面が気流の上流に向かうように配置される。 According to the gas detection device of the first embodiment, the sensor unit 3 that detects gas in the airflow in the passage 1 and the holding plate 2 that fixes the sensor unit 3 to one surface (surface) on the downstream side are provided. . And the holding | maintenance board 2 is arrange | positioned so that the other surface may go to the upstream of airflow.
 このような構成となるため、センサユニット3が備えるガスセンサ31に直接気流が吹きあたることが妨げられる。そのため、ガスセンサ31を測定温度に維持しやすくなり、温度の変化が抑制されるので、ガスの検知精度を向上させることができる。さらに、気流に異物が混入している場合には、異物がガスセンサ31にあたることが妨げられるので、ガスセンサ31の物理的な損傷を防ぐことができる。 Because of such a configuration, the airflow is prevented from directly blowing on the gas sensor 31 provided in the sensor unit 3. Therefore, it becomes easy to maintain the gas sensor 31 at the measurement temperature, and the temperature change is suppressed, so that the gas detection accuracy can be improved. Further, when foreign matter is mixed in the airflow, it is prevented that the foreign matter hits the gas sensor 31, so that physical damage to the gas sensor 31 can be prevented.
 第1実施形態のガス検知装置によれば、保持板2は、通路1内の気流に対して略直交するように配置される。このようになることで、気流が保持板2を回り込み、ガスセンサ31にガスがさらに吹き当たりにくくなるので、ガスの検知精度を向上させることができる。 According to the gas detection apparatus of the first embodiment, the holding plate 2 is disposed so as to be substantially orthogonal to the airflow in the passage 1. As a result, the airflow circulates around the holding plate 2 and the gas becomes more difficult to blow against the gas sensor 31, so that the gas detection accuracy can be improved.
 (第2実施形態)
 図2は、第2実施形態の燃料電池システム100の概略図である。
(Second Embodiment)
FIG. 2 is a schematic diagram of the fuel cell system 100 of the second embodiment.
 燃料電池システム100は、APU(Auxiliary Power Unit:補助電源装置)とも称されており、水素などの燃料ガスと空気とにより発電を行う燃料電池スタック5が収容ケース6に収容されている。収容ケース6においては、仕切り61が設けられることによって、上下に2つの領域が形成される。そして、一方の領域には燃料電池スタック5が収容され、他方の領域が通路1となる。 The fuel cell system 100 is also referred to as an APU (Auxiliary Power Unit), and a fuel cell stack 5 that generates power using fuel gas such as hydrogen and air is housed in a housing case 6. In the storage case 6, the partition 61 is provided, so that two regions are formed on the upper and lower sides. The fuel cell stack 5 is accommodated in one region, and the other region becomes the passage 1.
 仕切り61には複数の穴62が設けられており、これらの穴62を介して、通路1と燃料電池スタック5の収容領域とが連通している。燃料電池スタック5から燃料ガスが漏洩した場合には、漏れた燃料ガスは、これらの穴、及び、通路1を経て、燃料電池システム100の外に排気される。なお、燃料電池スタック5は、例えば、固体酸化物型燃料電池(SOFC)である。 The partition 61 is provided with a plurality of holes 62, and the passage 1 and the accommodation area of the fuel cell stack 5 communicate with each other through the holes 62. When fuel gas leaks from the fuel cell stack 5, the leaked fuel gas is exhausted out of the fuel cell system 100 through these holes and the passage 1. The fuel cell stack 5 is, for example, a solid oxide fuel cell (SOFC).
 通路1には、空気を吸い込む吸気口11、及び、空気が排出される排気口12が設けられている。また、通路1内には、排気口12の近傍に、ファン7が設けられている。ファン7が回転することにより、吸気口11から吸入される空気が、排気口12から排出される。排気口12を覆うように収容ケース6の外面にダクト8が設けられており、ダクト8は下方に向かってダクト排出口81を備えている。ダクト8の内部には、排気口12をまたぐように、ブラケット4を用いて、保持部2が固定されており、保持部2にはガスを検知可能なセンサユニット3が固定されている。 The passage 1 is provided with an intake port 11 for sucking air and an exhaust port 12 for discharging air. A fan 7 is provided in the passage 1 in the vicinity of the exhaust port 12. As the fan 7 rotates, the air sucked from the intake port 11 is discharged from the exhaust port 12. A duct 8 is provided on the outer surface of the housing case 6 so as to cover the exhaust port 12, and the duct 8 includes a duct discharge port 81 facing downward. Inside the duct 8, the holding unit 2 is fixed using the bracket 4 so as to straddle the exhaust port 12, and the sensor unit 3 capable of detecting gas is fixed to the holding unit 2.
 図3は、燃料電池システム100の外観図である。 FIG. 3 is an external view of the fuel cell system 100.
 センサユニット3を制御するコントローラ9は、ダクト8の外に設けられている。コントローラ9は、ケーブル10を介した通信によって、センサユニット3を制御する。コントローラ9は、通路1における気流のガス濃度を測定し、測定したガス濃度が許容値を超える場合には、ガスの漏洩を検知した旨をユーザに通報する。また、ケーブル10はダクト排出口81を通るように配線されている。したがって、ダクト8には、ケーブル10を通すための穴などを設ける必要がない。 The controller 9 that controls the sensor unit 3 is provided outside the duct 8. The controller 9 controls the sensor unit 3 by communication via the cable 10. The controller 9 measures the gas concentration of the airflow in the passage 1 and, when the measured gas concentration exceeds the allowable value, notifies the user that gas leakage has been detected. The cable 10 is wired so as to pass through the duct outlet 81. Therefore, it is not necessary to provide a hole or the like for passing the cable 10 in the duct 8.
 図4は、センサユニット3の斜視図である。なお、以下では説明の便宜上、各構成要素において、排気口12からの気流が吹きあたる面(図面左奥側の面)を裏面と称し、裏面の反対側の面(図面右手前側の面)を表面と称するものとする。また、「気流の上流」を単に、「上流」と称し、「気流の下流」を単に「下流」と称して説明する。 FIG. 4 is a perspective view of the sensor unit 3. In the following, for convenience of explanation, in each component, a surface (surface on the left back side of the drawing) on which the airflow from the exhaust port 12 blows is referred to as a back surface, and a surface on the opposite side of the back surface (surface on the right front side of the drawing). It shall be called the surface. Further, “upstream of airflow” is simply referred to as “upstream”, and “downstream of airflow” is simply referred to as “downstream”.
 ブラケット4は、表面に保持ブラケット21を介して、保持ケース22が固定されている。なお、保持ブラケット21、及び、保持ケース22は、第1実施形態における保持板に相当する保持部2を構成する。そして、保持ケース22の中にセンサユニット3が設けられている。ブラケット4は、排気口12を覆うように設けられた板状の部材であり、上下端に位置する脚41と、保持部2、及び、センサユニット3を固定する板42とにより構成される。脚41は、板42に対して傾斜しており、排気口12をまたぐように収容ケース6の外面に固定されている。 The holding case 22 is fixed to the surface of the bracket 4 via the holding bracket 21. The holding bracket 21 and the holding case 22 constitute the holding unit 2 corresponding to the holding plate in the first embodiment. The sensor unit 3 is provided in the holding case 22. The bracket 4 is a plate-like member provided so as to cover the exhaust port 12, and includes a leg 41 positioned at the upper and lower ends, a holding portion 2, and a plate 42 that fixes the sensor unit 3. The leg 41 is inclined with respect to the plate 42 and is fixed to the outer surface of the housing case 6 so as to straddle the exhaust port 12.
 ブラケット4においては、板42の表面に、段状に構成された保持ブラケット21、及び、保持ケース22が固定されることで、保持ケース22に収容されるセンサユニット3全体が固定されている。そのため、保持ブラケット21、及び、保持ケース22の裏面が、上流に向かうことになる。そして、排気口12から排出される気流は、上下方向に設けられた脚41の間をくぐり、板42、及び、保持部2を回りこんで、センサユニット3へと到達する。 In the bracket 4, the holding bracket 21 and the holding case 22 configured in a step shape are fixed to the surface of the plate 42, so that the entire sensor unit 3 accommodated in the holding case 22 is fixed. Therefore, the holding bracket 21 and the back surface of the holding case 22 are directed upstream. Then, the airflow discharged from the exhaust port 12 passes between the legs 41 provided in the vertical direction, wraps around the plate 42 and the holding unit 2 and reaches the sensor unit 3.
 センサユニット3は、保持ブラケット21の表面にて固定された保持ケース22内に固定されている。保持ケース22は、表面側か開口する略直方体であり、中に円筒状のセンサユニット3を収容する。本実施形態においては、4つのセンサユニット3が設けられている。それぞれのセンサユニット3が1種類または複数の種類のガスを検知することにより、多くの種類のガスを検知することができる。 The sensor unit 3 is fixed in a holding case 22 fixed on the surface of the holding bracket 21. The holding case 22 is a substantially rectangular parallelepiped opening on the surface side, and accommodates the cylindrical sensor unit 3 therein. In the present embodiment, four sensor units 3 are provided. When each sensor unit 3 detects one type or a plurality of types of gas, many types of gas can be detected.
 センサユニット3は、円筒形のセンサ筐体32と、センサ筐体32に設けられた開口33内に配置されるガスセンサ31とにより構成された半導体式のガスセンサである。センサ筐体32に設けられた開口33は、排気口12からの気流の上流に向かないように、すなわち、気流の下流に向かって設けられている。 The sensor unit 3 is a semiconductor gas sensor including a cylindrical sensor casing 32 and a gas sensor 31 disposed in an opening 33 provided in the sensor casing 32. The opening 33 provided in the sensor housing 32 is provided so as not to go upstream of the airflow from the exhaust port 12, that is, toward the downstream of the airflow.
 ガスセンサ31は、ケーブル10と接続されている。コントローラ9は、ケーブル10を介してガスセンサ31と接続されることにより、ガス濃度を測定し、ガスが許容濃度を上回ったことを検知することができる。 The gas sensor 31 is connected to the cable 10. The controller 9 is connected to the gas sensor 31 via the cable 10 to measure the gas concentration and detect that the gas has exceeded the allowable concentration.
 図5は、センサユニット3のガスセンサ31の拡大図である。 FIG. 5 is an enlarged view of the gas sensor 31 of the sensor unit 3.
 ガスセンサ31は、白金線311と、白金線311を覆う半導体312と、白金線311及び半導体312を加熱するためのヒータ313とを備える。このように構成されたガスセンサ31においては、半導体312の表面にガスが付着すると、半導体312の抵抗が変化する。半導体312の抵抗は温度に応じても変化するため、半導体312を測定温度(例えば、摂氏400度)に保つように、ヒータ313が制御される。なお、センサユニット3には、ガスセンサ31と共に、温度センサ(不図示)が設けられている。半導体312の抵抗の測定、ヒータ313の制御、及び、ガス濃度の測定などは、コントローラ9によって行われる。 The gas sensor 31 includes a platinum wire 311, a semiconductor 312 covering the platinum wire 311, and a heater 313 for heating the platinum wire 311 and the semiconductor 312. In the gas sensor 31 configured as described above, when the gas adheres to the surface of the semiconductor 312, the resistance of the semiconductor 312 changes. Since the resistance of the semiconductor 312 changes depending on the temperature, the heater 313 is controlled so as to keep the semiconductor 312 at a measurement temperature (for example, 400 degrees Celsius). The sensor unit 3 is provided with a temperature sensor (not shown) together with the gas sensor 31. Measurement of the resistance of the semiconductor 312, control of the heater 313, measurement of gas concentration, and the like are performed by the controller 9.
 図6は、センサユニット3の周囲の気流の概略図である。 FIG. 6 is a schematic view of the airflow around the sensor unit 3.
 この図によれば、排気口12からの気流は、ブラケット4の板42の裏面、及び、保持ケース22の裏面に吹き当たる。すなわち、気流は、センサユニット3が固定されていない面に吹きあたる。そして、気流は、図面上下方向に設けられた脚41の間を通り、板42、及び、保持ブラケット21、及び、保持ケース22を回り込み、保持ケース22内に整列されたセンサユニット3へと至る。センサユニット3においては、センサ筐体32に、下流に向かう開口33が設けられており、開口33内にガスセンサ31が設けられている。このような構成であるため、ガスセンサ31には気流が直接吹き当たらない。 According to this figure, the airflow from the exhaust port 12 blows against the back surface of the plate 42 of the bracket 4 and the back surface of the holding case 22. That is, the airflow blows to the surface where the sensor unit 3 is not fixed. The airflow passes between the legs 41 provided in the vertical direction of the drawing, wraps around the plate 42, the holding bracket 21, and the holding case 22, and reaches the sensor units 3 aligned in the holding case 22. . In the sensor unit 3, the sensor housing 32 is provided with an opening 33 directed downstream, and the gas sensor 31 is provided in the opening 33. Due to such a configuration, the air current does not directly blow to the gas sensor 31.
 図7は、ダクト8の断面図である。排気口12から排出される気流は、板42にあたると、脚41の間をくぐり、ダクト8の上方、及び、下方へと流れる。上方への気流は、ダクト8の上面82、及び、センサユニット3と対向する側面83に沿って流れ、下方に設けられるダクト排出口81から排出される。下方への気流は、ダクト8の下面84に沿って流れ、ダクト排出口81から排出される。 FIG. 7 is a sectional view of the duct 8. When the airflow discharged from the exhaust port 12 hits the plate 42, it passes between the legs 41 and flows upward and downward of the duct 8. The upward airflow flows along the upper surface 82 of the duct 8 and the side surface 83 facing the sensor unit 3, and is discharged from a duct outlet 81 provided below. The downward airflow flows along the lower surface 84 of the duct 8 and is discharged from the duct discharge port 81.
 このように、センサユニット3においては、ガスセンサ31に直接気流が吹きあたることが妨げられるので、ガスセンサ31を測定温度に維持しやすくなる。 As described above, in the sensor unit 3, since the airflow is directly blown to the gas sensor 31, it is easy to maintain the gas sensor 31 at the measurement temperature.
 図8は、ガスセンサ31の半導体312が測定温度となるようにヒータ313が制御された場合における、ガスセンサ31の周囲のガス濃度Cと、半導体312の抵抗値Rとの相関関係を示す図である。この図においては、横軸(x軸)にガス濃度Cが、縦軸(y軸)に半導体312の抵抗値Rが示されている。 FIG. 8 is a diagram showing a correlation between the gas concentration C around the gas sensor 31 and the resistance value R of the semiconductor 312 when the heater 313 is controlled so that the semiconductor 312 of the gas sensor 31 reaches the measured temperature. . In this figure, the horizontal axis (x-axis) shows the gas concentration C, and the vertical axis (y-axis) shows the resistance value R of the semiconductor 312.
 この図における実線は、ガスセンサ31に気流が直接当たらない場合、すなわち、本実施形態における相関関係を示している。このような場合には、気流によるガスセンサ31の温度低下が抑制される。そのため、半導体312を測定温度に保ちやすくなるので、相関関係は温度変化の影響を受けにくい。したがって、コントローラ9は、測定した抵抗値R、及び、この相関関係を用いて、ガス濃度Cを測定できる。 The solid line in this figure shows the correlation in the case where the gas sensor 31 is not directly exposed to the airflow, that is, in this embodiment. In such a case, the temperature drop of the gas sensor 31 due to the airflow is suppressed. Therefore, the semiconductor 312 is easily maintained at the measurement temperature, and the correlation is not easily affected by the temperature change. Therefore, the controller 9 can measure the gas concentration C using the measured resistance value R and this correlation.
 破線は、ガスセンサ31に気流が直接当たる場合の相関関係を、比較例として示している。このような場合には、気流による冷却量を補うようにヒータ313を制御しても、半導体312を測定温度に維持することが難しい。そのため、相関関係は、温度変化の影響を含んでしまい、相関関係が変化してしまう。そのため、抵抗値Rからガス濃度Cを正確に算出できないおそれがある。 The broken line shows the correlation when the airflow directly hits the gas sensor 31 as a comparative example. In such a case, it is difficult to maintain the semiconductor 312 at the measurement temperature even if the heater 313 is controlled so as to compensate for the cooling amount by the airflow. Therefore, the correlation includes the influence of temperature change, and the correlation changes. Therefore, there is a possibility that the gas concentration C cannot be accurately calculated from the resistance value R.
 したがって、本実施形態のように、ガスセンサ31に気流が直接あたらないので、ガス濃度の測定精度を向上させることができる。さらに、ガスセンサ31の物理的な損傷を、防ぐことができる。 Therefore, unlike the present embodiment, the gas sensor 31 is not directly exposed to the airflow, so that the gas concentration measurement accuracy can be improved. Furthermore, physical damage to the gas sensor 31 can be prevented.
 第2実施形態によれば、以下の効果を得ることができる。 According to the second embodiment, the following effects can be obtained.
 第2実施形態のガス検知装置によれば、通路1内の気流におけるガスを検知するセンサユニット3と、下流側の一方の面(表面)にセンサユニット3を固定する保持部2と、を備える。そして、保持部2は、他方の面が気流の上流に向かうように配置される。 According to the gas detection device of the second embodiment, the sensor unit 3 that detects gas in the airflow in the passage 1 and the holding unit 2 that fixes the sensor unit 3 to one surface (surface) on the downstream side are provided. . And the holding | maintenance part 2 is arrange | positioned so that the other surface may go to the upstream of airflow.
 このような構成となるため、気流は、ブラケット4の板42の裏面、及び、保持ケース22の裏面に吹き当たり、板42及び保持ケース22を迂回する。そのため、センサユニット3のガスセンサ31に直接気流が吹きあたることが妨げられる。そのため、ガスセンサ31は、測定温度に保たれやすくなり、温度の変化が抑制されるので、ガスの検知精度を向上させることができる。さらに、気流に異物が混入している場合には、異物がガスセンサ31にあたることが妨げられるので、ガスセンサ31の物理的な損傷を防ぐことができる。 Because of such a configuration, the air current blows against the back surface of the plate 42 of the bracket 4 and the back surface of the holding case 22 and bypasses the plate 42 and the holding case 22. Therefore, it is prevented that the airflow blows directly on the gas sensor 31 of the sensor unit 3. Therefore, the gas sensor 31 is easily maintained at the measurement temperature and the temperature change is suppressed, so that the gas detection accuracy can be improved. Further, when foreign matter is mixed in the airflow, it is prevented that the foreign matter hits the gas sensor 31, so that physical damage to the gas sensor 31 can be prevented.
 第2実施形態のガス検知装置によれば、センサユニット3においては、ガスセンサ31は、センサ筐体32に形成された開口33の中に配置されている。そして、センサ筐体32は、開口33が気流の下流に向かって配置される。このような構成により、ガスセンサ31には直接気流が確実にあたらないので、ガスの検知精度をより向上させることができる。さらに、ガスセンサ31の物理的な損傷を防ぐことができる。 According to the gas detection device of the second embodiment, in the sensor unit 3, the gas sensor 31 is disposed in the opening 33 formed in the sensor housing 32. And the sensor housing | casing 32 has the opening 33 arrange | positioned toward the downstream of an airflow. With such a configuration, the gas sensor 31 is not directly subjected to an air flow, so that the gas detection accuracy can be further improved. Furthermore, physical damage to the gas sensor 31 can be prevented.
 第2実施形態のガス検知装置によれば、ブラケット4は、センサユニット3を固定する板42と、板42の両端に接続される脚41とを備えている。そして、ブラケット4は、板42が排気口12と対向するように、脚41によって固定されている。このような構成により、排気口12からの気流は板42の裏面に吹き当たるので、板42の表面に設けられたセンサユニット3には直接気流があたらない。そのため、ガスの検知精度をより確実に向上させることができる。さらに、ガスセンサ31の物理的な損傷を防ぐことができる。 According to the gas detection apparatus of the second embodiment, the bracket 4 includes the plate 42 that fixes the sensor unit 3 and the legs 41 that are connected to both ends of the plate 42. The bracket 4 is fixed by the legs 41 so that the plate 42 faces the exhaust port 12. With such a configuration, since the airflow from the exhaust port 12 blows against the back surface of the plate 42, the airflow is not directly applied to the sensor unit 3 provided on the surface of the plate 42. Therefore, the gas detection accuracy can be improved more reliably. Furthermore, physical damage to the gas sensor 31 can be prevented.
 第2実施形態のガス検知装置によれば、センサユニット3の上流にファン7が設けられている。このようにすることで、通路1の排気口12から流れ出る気流は、板42に吹きあたりやすくなる。そのため、センサユニット3の周りに乱流が発生しやすくなり、よどみが抑制されるので、ガスの検知精度を向上させることができる。 According to the gas detection device of the second embodiment, the fan 7 is provided upstream of the sensor unit 3. By doing so, the airflow flowing out from the exhaust port 12 of the passage 1 is likely to blow against the plate 42. Therefore, turbulent flow is likely to occur around the sensor unit 3, and stagnation is suppressed, so that the gas detection accuracy can be improved.
 第2実施形態のガス検知装置によれば、燃料電池スタック5と通路1とは、収容ケース6に収容されている。また、燃料電池スタック5の収容領域と、通路1とは、穴62が設けられた仕切り61により隔てられている。そして、燃料電池スタック5の収容領域と、通路1とは、穴62を介して連通している。このような構成により、燃料電池スタック5に供給される燃料ガスが漏洩した場合でも、収容ケース6内に燃料ガス滞留することなく、通路1を通って外へ排出される。通路1を流れる気流の中に、センサユニット3を設けることで、燃料ガスの漏洩を検知できるので、安全性を向上させることができる。 According to the gas detector of the second embodiment, the fuel cell stack 5 and the passage 1 are housed in the housing case 6. Further, the storage area of the fuel cell stack 5 and the passage 1 are separated by a partition 61 provided with a hole 62. The accommodation area of the fuel cell stack 5 and the passage 1 communicate with each other through the hole 62. With such a configuration, even when the fuel gas supplied to the fuel cell stack 5 leaks, the fuel gas does not stay in the housing case 6 and is discharged outside through the passage 1. Since the sensor unit 3 is provided in the airflow flowing through the passage 1, leakage of the fuel gas can be detected, so that safety can be improved.
 第2実施形態のガス検知装置によれば、保持部2、センサユニット3、及び、ブラケット4を覆うダクト8を備える。ダクト8において、排気口12からの気流はダクト排出口81から排出される。図7に示したように、ダクト8内においては、気流が、ガスセンサ31の周囲に適切に回りこむことになる。これにより、気流のよどみが抑制されるので、ガスの検知精度を向上させることができる。 According to the gas detection device of the second embodiment, the holding unit 2, the sensor unit 3, and the duct 8 that covers the bracket 4 are provided. In the duct 8, the airflow from the exhaust port 12 is discharged from the duct discharge port 81. As shown in FIG. 7, the airflow appropriately flows around the gas sensor 31 in the duct 8. Thereby, since the stagnation of the airflow is suppressed, the gas detection accuracy can be improved.
 第2実施形態のガス検知装置によれば、センサユニット3と、コントローラ9とを接続するケーブル10は、ブラケット4の脚41及び板42の表面に沿って設けられる。このようにすることで、ケーブル10には気流が直接あたらないので、ケーブル10における通信は温度や気流による影響を受けにくくなり、センサユニット3とコントローラ9との間の通信の信頼性が安定する。したがって、ガスの検知精度を向上させることができる。 According to the gas detection device of the second embodiment, the cable 10 that connects the sensor unit 3 and the controller 9 is provided along the surfaces of the legs 41 and the plate 42 of the bracket 4. By doing in this way, since the airflow is not directly applied to the cable 10, the communication in the cable 10 is less affected by the temperature and the airflow, and the communication reliability between the sensor unit 3 and the controller 9 is stabilized. . Therefore, the gas detection accuracy can be improved.
 第2実施形態のガス検知装置によれば、コントローラ9は、収容ケース6の外に設けられる。一般に、センサユニット3の耐熱温度が高いが、コントローラ9は精密機器であるので耐熱温度が低い。燃料電池スタック5が運転中である場合にはAPU6内が高温になるので、通路1及びダクト8を流れる気流も高温となる。そのため、コントローラ9を気流の外に配置することにより、コントローラの温度上昇が妨げられるので、耐熱温度以下で適切に使用することができる。 According to the gas detection device of the second embodiment, the controller 9 is provided outside the housing case 6. In general, the heat resistance temperature of the sensor unit 3 is high, but the heat resistance temperature is low because the controller 9 is a precision instrument. When the fuel cell stack 5 is in operation, the inside of the APU 6 becomes high temperature, so that the airflow flowing through the passage 1 and the duct 8 also becomes high temperature. For this reason, by disposing the controller 9 outside the airflow, the temperature rise of the controller is hindered, so that the controller 9 can be used appropriately below the heat-resistant temperature.
 (第3実施形態)
 第1実施形態または第2実施形態においては、ダクト8内にブラケット4を用いてセンサユニット3が固定されている例について説明した。第3実施形態においては、ダクト8内に、さらに、整流板が設けられている例について説明する。
(Third embodiment)
In the first embodiment or the second embodiment, the example in which the sensor unit 3 is fixed using the bracket 4 in the duct 8 has been described. In the third embodiment, an example in which a rectifying plate is further provided in the duct 8 will be described.
 図9は、第3実施形態のダクト8の断面図である。 FIG. 9 is a cross-sectional view of the duct 8 of the third embodiment.
 この図によれば、ダクト8内において、センサユニット3とダクト8の側面83との間に、整流板13が側面83とは離間するように設けられている。例えば、整流板13は、不図示のブラケットによって、側面83に取り付けられている。整流板13によって、センサユニット3と側面83との間において、ブラケット4、及び、保持部2を迂回した気流が整えられるため、よどみの発生が抑制されて、ガスの検知精度を向上させることができる。 According to this figure, in the duct 8, the rectifying plate 13 is provided between the sensor unit 3 and the side face 83 of the duct 8 so as to be separated from the side face 83. For example, the current plate 13 is attached to the side surface 83 by a bracket (not shown). Since the air flow around the bracket 4 and the holding portion 2 is adjusted between the sensor unit 3 and the side surface 83 by the rectifying plate 13, the occurrence of stagnation is suppressed, and the gas detection accuracy can be improved. it can.
 なお、この例においては、整流板13が、側面83への投影面において、ブラケット4の板42の上下方向の外側にも配置されるように、設けられる例を用いて説明したが、これに限らない。整流板13は、側面83への投影面において、板42の上下方向の内側に配置されるように、設けられてもよい。また、整流板13が、側面83と平行になる例を用いて説明したが、これに限れない。整流板13は、側面83に対して傾いていてもよい。 In this example, the rectifying plate 13 has been described by using an example in which the rectifying plate 13 is provided on the projection surface onto the side surface 83 so as to be disposed outside the plate 42 of the bracket 4 in the vertical direction. Not exclusively. The rectifying plate 13 may be provided so as to be disposed on the inner side in the vertical direction of the plate 42 on the projection surface onto the side surface 83. Moreover, although the rectifying plate 13 has been described using an example in which the rectifying plate 13 is parallel to the side surface 83, the present invention is not limited thereto. The rectifying plate 13 may be inclined with respect to the side surface 83.
 第3実施形態によれば、以下の効果を得ることができる。 According to the third embodiment, the following effects can be obtained.
 第3実施形態のガス検知装置によれば、ブラケット4、及び、保持部2の下流側に、整流板13が設けられている。整流板13によって保持部2を回りこんだ気流が整えられるため、センサユニット3と側面83との間における気流によどみが抑制されて、ガスの検知精度を向上させることができる。 According to the gas detector of the third embodiment, the rectifying plate 13 is provided on the downstream side of the bracket 4 and the holding unit 2. Since the airflow around the holding portion 2 is adjusted by the rectifying plate 13, stagnation of the airflow between the sensor unit 3 and the side surface 83 is suppressed, and the gas detection accuracy can be improved.
 (第4実施形態)
 第1実施形態から第3実施形態においては、ブラケット4が、2つの板状の脚41を備える例について説明した。第4実施形態においては、ブラケット4が、4つの脚41を備える例について説明する。
(Fourth embodiment)
In the first to third embodiments, the example in which the bracket 4 includes the two plate-like legs 41 has been described. In the fourth embodiment, an example in which the bracket 4 includes four legs 41 will be described.
 図10は、第4実施形態のセンサユニット3の斜視図である。この図によれば、図3に示したブラケット4と比較すると、ブラケット4の図面上下方向の2つの辺の中央付近に、切り欠き43が設けられることにより、4つの脚41A~41Dが形成されている。排気口12の上方には、2つの脚41A、41Bが固定され、排気口12の下方には、2つの脚41C、41Dが固定されている。 FIG. 10 is a perspective view of the sensor unit 3 of the fourth embodiment. According to this figure, compared with the bracket 4 shown in FIG. 3, the notch 43 is provided in the vicinity of the center of the two sides of the bracket 4 in the vertical direction of the drawing, so that four legs 41A to 41D are formed. ing. Two legs 41A and 41B are fixed above the exhaust port 12, and two legs 41C and 41D are fixed below the exhaust port 12.
 図11は、ダクト8の断面図である。排気口12からの気流は、板42の裏面に吹きあたる。そして、気流は、板42の側方、すなわち、図面上下方向に設けられた脚41Aと脚41Cとの間、及び、脚41Bと脚41Dとの間を通る。さらに、気流は、板42の上下方向に設けられた切り欠き43すなわち、脚41Aと脚41Bとの間、及び、脚41Cと脚41Dとの間を通る。そして、気流は、ダクト8の上面82、及び、下面84へと向かって流れる。 FIG. 11 is a cross-sectional view of the duct 8. The airflow from the exhaust port 12 blows to the back surface of the plate 42. The airflow passes through the side of the plate 42, that is, between the legs 41A and 41C provided in the vertical direction of the drawing and between the legs 41B and 41D. Further, the airflow passes through the notches 43 provided in the vertical direction of the plate 42, that is, between the legs 41A and 41B and between the legs 41C and 41D. Then, the airflow flows toward the upper surface 82 and the lower surface 84 of the duct 8.
 このようにすることで、板42により気流が分断され、ダクト8内においては、乱流が発生しやすくなり、ガスの滞留が妨げられる。したがって、ガスセンサ31はガスを精度よく検知することができる。 In this way, the airflow is divided by the plate 42, and turbulent flow is likely to occur in the duct 8, thereby preventing gas from staying. Therefore, the gas sensor 31 can detect the gas with high accuracy.
 第4実施形態によれば、以下の効果を得ることができる。 According to the fourth embodiment, the following effects can be obtained.
 第4実施形態のガス検知装置によれば、ブラケット4の脚41には、収容ケース6に固定される箇所に切り欠き43が設けられている。ブラケット4の板42に吹き当たった気流は、切り欠き43を通り、板42の表面に回り込む。このようにすることで、板42により気流が分断されやすくなるので、ダクト8内においては、乱流が発生しやすくなり、ガスの滞留が妨げられる。そのため、ガスの検知精度を向上させることができる。 According to the gas detection device of the fourth embodiment, the leg 41 of the bracket 4 is provided with a notch 43 at a location fixed to the housing case 6. The airflow blown against the plate 42 of the bracket 4 passes through the notch 43 and wraps around the surface of the plate 42. By doing so, the air flow is easily divided by the plate 42, so that turbulent flow is likely to occur in the duct 8, and gas retention is prevented. Therefore, the gas detection accuracy can be improved.
 (第5実施形態)
 第1実施形態から第4実施形態までにおいては、ブラケット4の脚41が、排気口12が設けられている通路1を構成する収容ケース6に固定されている例について説明した。第5実施形態においては、脚41がダクト排出口81に固定されている例について説明する。
(Fifth embodiment)
In the first embodiment to the fourth embodiment, the example in which the leg 41 of the bracket 4 is fixed to the housing case 6 constituting the passage 1 in which the exhaust port 12 is provided has been described. In the fifth embodiment, an example in which the legs 41 are fixed to the duct discharge port 81 will be described.
 図12は、第5実施形態のダクト8の断面図である。 FIG. 12 is a cross-sectional view of the duct 8 of the fifth embodiment.
 この図によれば、ブラケット4の下方の脚41が、ダクト排出口81に固定されている。そして、ケーブル10は、板42、及び、脚41に沿って、ダクト排出口81を通るように配線されている。そして、ケーブル10を介して、センサユニット3と、ダクト8の外部に設けられたコントローラ9とが接続されている。 According to this figure, the lower leg 41 of the bracket 4 is fixed to the duct discharge port 81. The cable 10 is routed along the plate 42 and the legs 41 so as to pass through the duct discharge port 81. The sensor unit 3 and the controller 9 provided outside the duct 8 are connected via the cable 10.
 第5実施形態によれば、以下の効果を得ることができる。 According to the fifth embodiment, the following effects can be obtained.
 第5実施形態のガス検知装置によれば、ケーブル10は、ダクト排出口81を通るように設けられる。このようにすることで、ケーブル10を通す穴を別途設ける必要がなくなる。さらに、ケーブル10に気流が直接あたらないので、ケーブル10が高温になることが妨げられる。これにより、センサユニット3とコントローラ9との間の通信が安定するので、ガスの検知精度を向上させることができる。 According to the gas detection device of the fifth embodiment, the cable 10 is provided so as to pass through the duct discharge port 81. By doing in this way, it becomes unnecessary to provide the hole which lets the cable 10 pass separately. Further, since the airflow is not directly applied to the cable 10, it is prevented that the cable 10 becomes high temperature. Thereby, since the communication between the sensor unit 3 and the controller 9 is stabilized, the gas detection accuracy can be improved.
 なお、本実施形態においては、燃料電池スタック5を備える燃料電池システム100において通路1におけるガスを検知するガス検知装置について説明したがこれに限らない。燃料電池スタック5を備えていなくてもよい。通路を流れる気流のガスを検知する場合には、本実施形態のガス検知装置の構成を用いることにより、ガスの検知精度を向上させることができる。 In addition, in this embodiment, although the gas detection apparatus which detects the gas in the channel | path 1 in the fuel cell system 100 provided with the fuel cell stack 5 was demonstrated, it is not restricted to this. The fuel cell stack 5 may not be provided. When detecting the gas of the airflow which flows through a channel | path, the detection accuracy of gas can be improved by using the structure of the gas detection apparatus of this embodiment.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。また、上記実施形態は、適宜組み合わせ可能である。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent. Moreover, the said embodiment can be combined suitably.
 本国際出願は,2016年7月29日に日本国特許庁に出願された特願2016-149286に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This international application claims priority based on Japanese Patent Application No. 2016-149286 filed with the Japan Patent Office on July 29, 2016, the entire contents of which are incorporated herein by reference.

Claims (13)

  1.  通路内の気流におけるガスを検知するセンサユニットと、
     一方の面に前記センサユニットを固定する保持板と、を備え、
     前記保持板は、他方の面が前記気流の上流に向かうように配置される、
     ガス検知装置。
    A sensor unit for detecting gas in the airflow in the passage;
    A holding plate for fixing the sensor unit on one surface,
    The holding plate is disposed so that the other surface is directed upstream of the airflow.
    Gas detection device.
  2.  請求項1に記載のガス検知装置であって、
     前記保持板は、前記気流に対して略直交するように配置される、
     ガス検知装置。
    The gas detection device according to claim 1,
    The holding plate is disposed so as to be substantially orthogonal to the airflow.
    Gas detection device.
  3.  請求項1または2に記載のガス検知装置であって、
     前記センサユニットは、
      ガス濃度を測定するセンシング素子と、
      開口を備え、該開口の中に前記センシング素子が収容される筐体と、を備え、
     前記センサユニットは、前記開口が前記気流の下流に向かうように、前記保持板に固定される、
     ガス検知装置。
    The gas detection device according to claim 1 or 2,
    The sensor unit is
    A sensing element for measuring gas concentration;
    An opening, and a housing in which the sensing element is accommodated in the opening,
    The sensor unit is fixed to the holding plate such that the opening is directed downstream of the airflow.
    Gas detector.
  4.  請求項1から3のいずれか1項に記載のガス検知装置であって、
     前記保持板に吹き当たった後に、前記保持板を回り込む前記気流を整流する板を、さらに備える、
     ガス検知装置。
    The gas detection device according to any one of claims 1 to 3,
    A plate that rectifies the airflow that circulates around the holding plate after being blown against the holding plate;
    Gas detection device.
  5.  請求項1から4のいずれか1項に記載のガス検知装置であって、
     前記保持板は、ブラケットによって固定されており、
     前記ブラケットは、
      一方の面において前記センサユニットを固定する板部と、
      前記板の両端に接続される脚部と、を備え、
     前記ブラケットは、前記板部が前記通路の出口と対向するように、前記脚部によって固定される、
     ガス検知装置。
    The gas detection device according to any one of claims 1 to 4, wherein:
    The holding plate is fixed by a bracket,
    The bracket is
    A plate portion for fixing the sensor unit on one side;
    Leg portions connected to both ends of the plate,
    The bracket is fixed by the leg portion so that the plate portion faces the outlet of the passage.
    Gas detection device.
  6.  請求項5に記載のガス検知装置であって、
     前記脚部は、固定される箇所に切り欠きを備える、
     ガス検知装置。
    The gas detection device according to claim 5,
    The leg portion is provided with a notch at a fixed position,
    Gas detection device.
  7.  請求項1から6のいずれか1項に記載のガス検知装置であって、
     前記通路の内において前記センサユニットの上流に設けられるファンを、さらに備える、
     ガス検知装置。
    The gas detection device according to any one of claims 1 to 6,
    A fan provided upstream of the sensor unit in the passage;
    Gas detection device.
  8.  請求項1から7のいずれか1項に記載のガス検知装置であって、
     燃料ガスの供給を受けて発電する燃料電池スタックと、
     内部に仕切りが設けられ、該仕切りにより一方の空間に前記通路が設けられ、他方の空間に前記燃料電池スタックを収容する収容ケースと、をさらに備え、
     前記仕切りには穴が設けられており、該穴を介して、前記通路と前記燃料電池スタックとが連通する、
     ガス検知装置。
    The gas detection device according to any one of claims 1 to 7,
    A fuel cell stack that generates power by receiving fuel gas supply;
    A partition is provided inside, the passage is provided in one space by the partition, and a storage case for storing the fuel cell stack in the other space, and
    A hole is provided in the partition, and the passage and the fuel cell stack communicate with each other through the hole.
    Gas detection device.
  9.  請求項8に記載のガス検知装置であって、
     前記センサユニットは、前記通路の出口近傍に設けられ、
     前記センサユニット、及び、前記保持板を覆うように設けられ、前記収容ケースの外面に固定され、前記気流の方向を変化させるダクトを、さらに備える、
     ガス検知装置。
    The gas detection device according to claim 8, wherein
    The sensor unit is provided near the exit of the passage,
    A duct that is provided so as to cover the sensor unit and the holding plate, is fixed to an outer surface of the housing case, and changes a direction of the airflow;
    Gas detection device.
  10.  請求項9に記載のガス検知装置であって、
     前記保持板と前記ダクトとの間に、前記気流を整流する板を、さらに備える、
     ガス検知装置。
    The gas detection device according to claim 9,
    A plate that rectifies the airflow is further provided between the holding plate and the duct,
    Gas detection device.
  11.  請求項10に記載のガス検知装置であって、
     前記センサユニットに接続されるケーブルを、さらに備え、
     前記ケーブルは、前記ダクトの排出口を通る、
     ガス検知装置。
    The gas detection device according to claim 10,
    A cable connected to the sensor unit;
    The cable passes through the outlet of the duct;
    Gas detection device.
  12.  請求項11に記載のガス検知装置であって、
     前記ケーブルは、前記保持板の一方の面に沿って配線される、
     ガス検知装置。
    The gas detection device according to claim 11,
    The cable is wired along one surface of the holding plate.
    Gas detection device.
  13.  請求項9から12のいずれか1項に記載のガス検知装置であって、
     前記収容ケースの外側に、前記センサユニットを制御するコントローラを、さらに備える、
     ガス検知装置。
    The gas detection device according to any one of claims 9 to 12,
    A controller for controlling the sensor unit is further provided outside the housing case,
    Gas detection device.
PCT/JP2017/021070 2016-07-29 2017-06-07 Gas detection device WO2018020848A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016149286A JP2018017648A (en) 2016-07-29 2016-07-29 Gas detector
JP2016-149286 2016-07-29

Publications (1)

Publication Number Publication Date
WO2018020848A1 true WO2018020848A1 (en) 2018-02-01

Family

ID=61015924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021070 WO2018020848A1 (en) 2016-07-29 2017-06-07 Gas detection device

Country Status (2)

Country Link
JP (1) JP2018017648A (en)
WO (1) WO2018020848A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134181A (en) * 2002-10-09 2004-04-30 Nissan Motor Co Ltd Fuel cell container structure
JP2006302606A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Fuel cell housing case
JP2007071604A (en) * 2005-09-05 2007-03-22 Ngk Spark Plug Co Ltd Gas detector
JP2007309908A (en) * 2006-05-22 2007-11-29 Nissan Motor Co Ltd Hydrogen sensor
JP2009205825A (en) * 2008-02-26 2009-09-10 Kyocera Corp Fuel cell device
JP2012190811A (en) * 2012-06-05 2012-10-04 Panasonic Corp Fuel cell electric power generation system
JP2014222213A (en) * 2013-05-14 2014-11-27 ホシデン株式会社 Gas measurement device and gas detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004134181A (en) * 2002-10-09 2004-04-30 Nissan Motor Co Ltd Fuel cell container structure
JP2006302606A (en) * 2005-04-19 2006-11-02 Nissan Motor Co Ltd Fuel cell housing case
JP2007071604A (en) * 2005-09-05 2007-03-22 Ngk Spark Plug Co Ltd Gas detector
JP2007309908A (en) * 2006-05-22 2007-11-29 Nissan Motor Co Ltd Hydrogen sensor
JP2009205825A (en) * 2008-02-26 2009-09-10 Kyocera Corp Fuel cell device
JP2012190811A (en) * 2012-06-05 2012-10-04 Panasonic Corp Fuel cell electric power generation system
JP2014222213A (en) * 2013-05-14 2014-11-27 ホシデン株式会社 Gas measurement device and gas detector

Also Published As

Publication number Publication date
JP2018017648A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP5242580B2 (en) Suction type leak detector
ES2525111T3 (en) Sterilization apparatus and method for controlling a sterilization apparatus
ES2632942T3 (en) Procedure for the regulation of a heating equipment and heating equipment
JP4488030B2 (en) Air flow measurement device
JP2008309614A (en) Air flow rate measuring device
US8449743B2 (en) Gas sensor
KR20230053570A (en) Integrated ventilation and leak detection system and method of assembly
WO2018020848A1 (en) Gas detection device
JP4929736B2 (en) Dust-proof filter clogging detection device and display device using the same
JP4752472B2 (en) Air flow measurement device
JP2007218918A (en) Inspection apparatus for detecting steam emission of at least one leakage place favorably at sliding ring seal, particularly in automobile field
JP5223708B2 (en) Air flow measurement device
US11958302B2 (en) Ink printing device and method for monitoring a chamber for airtightness
KR102227028B1 (en) Apparatus for Measuring Fine Dust
JP5062657B2 (en) Abnormality detection device and abnormality detection method for sensor chip with heater
US8852069B2 (en) Centrifuge with vacuum pump configured of auxiliary vacuum pump and oil diffusion pump
KR100686015B1 (en) Apparatus for cooling of video device
KR20090017004A (en) Apparatus to protect ptc heater for a heat exchanger and control method thereof
JP6287356B2 (en) Combustion calorie measurement system
JP2004101369A (en) Moisture detecting apparatus
TWI650519B (en) Flame current detecting and analyzing method of hot-water heater, and hot-water heater having the same
JP2006156313A (en) Gas leakage detection device of fuel cell system
JP7380373B2 (en) Gas chromatograph
JP2009254114A (en) Fault detector for fan motor, method of detecting fault of fan motor, and housing cooling apparatus
JP2011163619A (en) Combustion heating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833858

Country of ref document: EP

Kind code of ref document: A1