WO2018008373A1 - Transmitting device, receiving device, transmitting method and receiving method - Google Patents

Transmitting device, receiving device, transmitting method and receiving method Download PDF

Info

Publication number
WO2018008373A1
WO2018008373A1 PCT/JP2017/022472 JP2017022472W WO2018008373A1 WO 2018008373 A1 WO2018008373 A1 WO 2018008373A1 JP 2017022472 W JP2017022472 W JP 2017022472W WO 2018008373 A1 WO2018008373 A1 WO 2018008373A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
channels
bits
channel group
carrier
Prior art date
Application number
PCT/JP2017/022472
Other languages
French (fr)
Japanese (ja)
Inventor
裕幸 本塚
亨宗 白方
坂本 剛憲
誠隆 入江
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN201780033328.5A priority Critical patent/CN109196832B/en
Publication of WO2018008373A1 publication Critical patent/WO2018008373A1/en
Priority to US16/163,674 priority patent/US10749625B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0031Multiple signaling transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0039Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver other detection of signalling, e.g. detection of TFCI explicit signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • H04L1/0058Block-coded modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the present disclosure relates to a transmission device, a reception device, a transmission method, and a reception method using millimeter wave communication.
  • IEEE 802.11 is one of the wireless LAN related standards.
  • IEEE 802.11 includes the IEEE802.11ac standard (hereinafter referred to as “11ac standard”), the IEEE802.11ad standard (hereinafter referred to as “11ad standard”), and the like (for example, refer to Non-Patent Documents 1 and 2).
  • the 11ac standard is compatible with 2.4GHz and 5GHz, and achieves high throughput exceeding 100Mbps in the MAC layer.
  • OFDM Orthogonal-Frequency-Division-Multiplexing
  • the 11ac standard is a channel that transmits data by arranging a data field (Payload) with a bandwidth of 40 MHz to 160 MHz over two or more adjacent channels having a bandwidth of 20 MHz in order to increase peak throughput. Bonding (CB) has been introduced.
  • the preamble part (including L-STF, L-LTF, L-SIG, and HT-SIG) is received for each channel so that it can be received even by a terminal that does not support channel bonding. Placed in.
  • the 11ad standard realizes high-speed communication of up to 7Gbps using multiple 60GHz band millimeter-wave channels.
  • single carrier transmission and OFDM transmission are respectively defined as secondary modulation schemes.
  • a communication standard using channel aggregation (CA) has been proposed as means for further increasing peak throughput as compared with the 11ad standard.
  • Channel aggregation may be referred to as carrier aggregation.
  • One aspect of the present disclosure can provide notification of a bonding channel in a different band, and thus contributes to provision of a transmission device, a reception device, a transmission method, and a reception method that can improve frequency utilization efficiency.
  • a transmission apparatus includes a first channel group that is n (n is an integer) channels having a first bandwidth in a predetermined band, and the first channel group in the predetermined band.
  • a second channel group which is m consecutive channels (m is an integer and a value smaller than n), which are two consecutive channels of the channel groups, and the predetermined band
  • a third channel group that is p (p is an integer, a value smaller than m) channels that are three consecutive channels of the first channel group and combined with non-overlapping channels; , First to r-th modulation circuits for modulating header information related to r (r is an integer of 1 or more) carriers to which one or more of them are assigned, and First to r th transmission circuits for transmitting adjusted header information, respectively, wherein the header information includes n bits indicating channel assignment of the first channel group, and the second channel group And m bits indicating the channel assignment, and the channel assignment of the third channel group is indicated by combining the n bits and the m bits.
  • a receiving device includes any one of first to r-th receiving circuits that respectively receive first to r-th (r is an integer of 1 or more) signals, and the first to r-th signals.
  • a decoding circuit that decodes header information from one channel, a control circuit that controls channels used in the first to r-th receiving circuits using the header information, and the channel-controlled first to r-th channels.
  • a payload decoding circuit that decodes the first to r-th signals output from the receiving circuit and outputs a payload, wherein the first to r-th signals have a first bandwidth in a predetermined band
  • P is an integer and a value smaller than m
  • one or more of the third channel groups that are channels are respectively assigned, and the header information indicates the channel assignment of the first channel group.
  • the transmission method includes a first channel group that is n (n is an integer) channels having a first bandwidth in a predetermined band, and the first channel group in the predetermined band.
  • a second channel group which is m consecutive channels (m is an integer and a value smaller than n), which are two consecutive channels of the channel groups, and the predetermined band
  • a third channel group that is p (p is an integer, a value smaller than m) channels that are three consecutive channels of the first channel group and combined with non-overlapping channels; ,
  • Each of the header information related to r (r is an integer of 1 or more) carriers to which one or more of them are assigned is modulated by the first to r-th modulation circuits.
  • Each of the modulated header information is transmitted by first to r-th transmission circuits, and the header information includes n bits indicating channel assignment of the first channel group, and the second channel. And m bits indicating the channel assignment of the group, and the channel assignment of the third channel group is indicated by combining the n bits and the m bits.
  • each of the first to r-th (r is an integer of 1 or more) signals is received by the first to r-th reception circuits, and the first to r-th signals are received.
  • the header information is decoded from any one of the above, and the channel used in the first to r-th receiving circuits is controlled using the header information, and the channel-controlled first to r-th receiving circuits
  • the first to r-th signals output from the terminal are decoded and a payload is output.
  • the first to r-th signals are n (n is an integer) channels having a first bandwidth in a predetermined band.
  • M (m is an integer and a value smaller than n), which is a combination of two consecutive channels of the first channel group in the predetermined band and non-overlapping channels in the predetermined band.
  • Channels P (p is an integer and a value smaller than m), which is a combination of non-overlapping channels of the second channel group and the three consecutive channels of the first channel group in the predetermined band.
  • a third channel group which is a number of channels, is allocated, and the header information includes n bits indicating channel allocation of the first channel group, and the second channel And m bits indicating the channel assignment of the group, and the channel assignment of the third channel group is indicated by combining the n bits and the m bits.
  • a combination of channels can be notified with a small number of bits and no limitation on the number of carriers.
  • the figure which shows the structure of the transmitter which performs a channel aggregation The figure which shows the structure of the receiver which performs channel aggregation Diagram showing channelization Diagram showing an example of Channel set
  • the figure which shows the example of the channel aggregation performed using a transmitter The figure which shows the example of the channel aggregation performed using a transmitter
  • the figure which shows the example of the channel aggregation performed using a transmitter The figure which shows the example of the channel aggregation performed using a transmitter
  • the figure which shows the format of a channel aggregation frame The figure which shows the format of a channel aggregation frame
  • the figure which shows the format of a channel aggregation frame The figure which shows the format of a channel aggregation frame
  • the figure which shows the format of a channel aggregation frame The figure explaining the method a transmission apparatus notifies channel selection information with respect to a reception apparatus
  • the figure explaining the method a transmission apparatus notifies channel selection information with respect to a reception apparatus
  • FIG. 1 is a diagram illustrating a configuration of a transmission apparatus 100 that performs channel aggregation.
  • the transmission device 100 generates PHY control data and payload data in an upper layer processing unit (not shown) (for example, a MAC layer).
  • an upper layer processing unit for example, a MAC layer.
  • the RF control unit 110 determines the center frequency (sometimes referred to as carrier frequency) of the channels used in the first to fourth carriers and the channel bandwidth, and determines the center frequency and the channel frequency. Information on the combination of bandwidths is notified to the modulators 104a to 104d, the broadband D / A 105a to 105d, and the broadband RFs 106a to 106d. Note that the RF control unit 110 may report information on the combination of the center frequency of the channel and the bandwidth of the channel as a channel number.
  • the center frequency sometimes referred to as carrier frequency
  • the header encoding unit 101 performs bit scrambling and LDPC encoding on the PHY control data to generate L-Header and EDMG-Header data.
  • the generated data is transferred to the modulation units 104a to 104d as the same data.
  • the payload encoding unit 102 performs bit scrambling and LDPC encoding of payload data.
  • the payload data division unit 103 divides the encoded payload data into a maximum of four and transfers the data to the modulation units 104a to 104d.
  • the number of divisions is referred to as the number of carriers.
  • Modulation section 104a modulates the first carrier data.
  • the modulation unit 104a first encodes the L-header and E-header output from the header coding unit 101. ⁇ / 2-BPSK may be used as the modulation method. Also, the modulation unit 104a duplicates L-Header and E-Header data according to the channel bandwidth notified from the RF control unit 110, and arranges the data in a plurality of channels. The details of the processing performed by the modulation unit 104a will be described later together with the description of the frame format.
  • the modulation unit 104a modulates one of the payload data divided by the payload data division unit 103.
  • the divided payload data is referred to as first carrier data.
  • the modulation unit 104a may use ⁇ / 2-BPSK, ⁇ / 2-QPSK, ⁇ / 2-16QAM, or ⁇ / 2-64QAM as a data modulation method.
  • Modulation section 104a may transmit the data-modulated symbol using a single carrier, or may transmit the data-modulated symbol using OFDM.
  • the broadband D / A 105a, the broadband RF 106a, and the antenna 107a transmit the data of the first carrier using the first carrier frequency and channel bandwidth specified by the RF control unit 110.
  • the RF control unit 110 may specify a wideband D / A sampling rate instead of the channel bandwidth.
  • the modulation unit 104b modulates data of the second carrier. First, L-Header and E-Header output from the header encoding unit 101 are encoded. Since the L-Header and E-Header data is the same as that used in the first carrier, the modulation unit 104b modulates the modulated L-Header and E-Header data instead of performing the modulation. You may acquire from 104a.
  • the modulated L-Header and E-Header data for the 2.16 GHz band are acquired from the modulation unit 104a, and the modulation unit 104b Then, in accordance with the channel bandwidth for the second carrier, duplication of the modulated L-Header and E-Header data and channel arrangement are performed.
  • one piece of payload data different from the first carrier among the payload data divided and output by the payload data division unit 103 is modulated.
  • This payload data is referred to as second carrier data.
  • the modulation units 104c and 104d modulate the remaining payload data (that is, the third carrier data and the fourth carrier data) in the same manner as the modulation unit 104b.
  • the wideband D / A 105b to 105d, the wideband RF 106b to 106d, and the antennas 107b to 107d are the second to fourth carrier frequencies and the second carrier frequencies specified by the RF control unit 110 for the modulated second to fourth carrier data. Transmission is performed using the second to fourth channel bandwidths.
  • Each of the antennas 107a to 107d may be an array antenna. That is, the antennas 107a to 107d are each composed of a plurality of antenna elements, and the antennas 107a to 107d are directed by controlling the phase and gain between the antenna elements. It is good also as a structure which controls property.
  • the RF control unit 110 may control the directivities of the antennas 107a to 107d according to the PHY control data.
  • FIG. 2 is a diagram illustrating a configuration of a reception device 200 that performs channel aggregation.
  • the RF control unit 210 first sets the first carrier so as to receive the L-Header and the E-Header based on the PHY control data.
  • the reception of the L-Header and the E-Header may be performed through a predetermined channel called a primary channel.
  • the center frequency and the bandwidth are set in accordance with one setting of the channel capable of receiving the primary channel for the demodulation unit 204a, the synchronization unit 208a, the broadband A / D 205a, and the broadband RF 206a of the first carrier.
  • the RF control unit 210 may set the second to fourth carriers and receive the L-Header and the E-Header with a plurality of carriers.
  • the broadband RF 206a converts a 60 GHz band RF signal and outputs a baseband signal.
  • the broadband A / D 205a performs A / D (analog / digital) conversion on the baseband signal.
  • the synchronization unit 208a detects the preamble from the digitally converted baseband signal, and estimates and corrects the carrier frequency offset for the digitally converted baseband signal using the detected preamble.
  • the demodulator 204a includes an equalizer (equalizer) and a data demodulator, and performs equalization, symbol synchronization shift estimation and correction, data demodulation, and the like on the signal output from the synchronization unit 208a.
  • the header decoding unit 201 extracts header information from the demodulated data output from the demodulation unit 204a, and uses the extracted header information to perform LDPC decoding (error correction), CRC check (error detection), and header format analysis. To obtain PHY header information.
  • the PHY header information includes channel information (information regarding the center frequency and bandwidth, or channel number) of the first to fourth carriers.
  • the RF control unit 210 After the header is decoded, the RF control unit 210 performs demodulation of the first to fourth carriers 204a to 204d, synchronization units 208a to 208d, broadband A / D 205a to 205d, based on the channel information of the first to fourth carriers.
  • the broadband RFs 206a to 206d are set.
  • the information to be set includes information on the center frequency and channel bandwidth of the channel used in each carrier. Note that channel numbers may be used instead of such information.
  • the values obtained from the header decoding unit 201 may be used as the channel information of the first to fourth carriers, and when notified in advance before receiving the header, input from a MAC processing unit (not shown) Channel information included in the PHY control data to be used may be used.
  • Demodulators 204a to 204d, synchronizers 208a to 208d, broadband A / Ds 205a to 205d, and broadband RFs 206a to 206d are set in accordance with the set center frequency and channel bandwidth, respectively, based on the decoded header information. Receive channel-aggregated frames.
  • the demodulated data output from the demodulation units 204a to 204d is collected in the payload decoding unit 202.
  • the payload decoding unit 202 performs LDPC decoding (error correction) and descrambling, and uses the obtained data as received payload data as a MAC processing unit. Forward to.
  • FIG. 3 is a diagram illustrating channelization.
  • ch1 to ch4 are used.
  • the respective center frequencies are 58.32 GHz, 60.48 GHz, 62.64 GHz, and 64.80 GHz.
  • the channel interval between ch1 to ch4 is 2.16 GHz.
  • the channel bandwidth is described as 2.16 GHz.
  • Each channel transmits a single carrier signal with a symbol rate of 1.76 Gs / s (samples / second) or an OFDM signal modulated with a sampling rate of 2.64 Gs / s (but limited to about 1.8 GHz). Can do.
  • Chch9 and ch11 are channels for channel bonding with a channel bandwidth of 4.32 GHz.
  • the center frequencies are 59.40 GHz and 63.72 GHz, respectively. That is, ch9 uses a band that combines ch1 and ch2, and ch11 uses a band that combines ch3 and ch4.
  • ch10 which is the combined band of ch2 and ch3, is a channel having a center frequency of 61.56 GHz and a channel bandwidth of 4.32 GHz, but is not used because it partially overlaps with the bands of ch9 and ch11.
  • Ch17 is a channel for channel bonding with a channel bandwidth of 6.48 GHz.
  • the center frequency is 60.48 GHz. That is, ch17 uses a band that combines ch1, ch2, and ch3.
  • ch18 which is the combined band of ch2, ch3, and ch4, and ch19, which is the combined band of ch3, ch4, and ch5, have center frequencies of 62.64 GHz and 64.80 GHz, respectively, and the channel bandwidth is 6.48 GHz. Although it is a certain channel, it is not used because it partially overlaps the ch17 band.
  • Ch25 is a channel for channel bonding with a channel bandwidth of 8.64 GHz.
  • the center frequency is 61.56 GHz. That is, ch25 uses a band that combines ch1, ch2, ch3, and ch4.
  • Ch5 to ch8 are not used in the IEEE802.11ad standard. This is the channel number to be used when the transmitter 100 can be used in a band other than 57 to 66 GHz in the future. Although the center frequency and channel bandwidth are undecided, for convenience of explanation, it is assumed that the width is 2.16 GHz like ch1 to ch4, and it is placed in a high frequency band adjacent to ch4, and the center frequency is 66.96 GHz respectively. 69.12 GHz, 71.28 GHz, 73.44 GHz.
  • ch1 to ch8 are continuously arranged at intervals of 2.16 GHz, but may be discontinuous bands.
  • ch5 and 6 may be continuous channels as shown, and ch7 and 8 may be separated bands (between ch6 and ch7 2.16 GHz or more).
  • bonding channels ch13, ch15, ch20, and ch29 are defined as shown by the dotted lines in FIG.
  • Equation 1 The correspondence between the channel center frequency and channel number shown in Fig. 3 is defined by the following equation 1 for ch1 to ch8 (bandwidth 2.16 GHz), and for ch9 to ch16 (bandwidth 4.32 GHz) Is defined by Equation 2 below, ch17 to ch24 (bandwidth is 6.48 GHz) is defined by Equation 3 below, and ch25 to ch31 (bandwidth is 8.64 GHz) is defined by Equation 4.
  • Channel center frequency Channel starting frequency + Channel spacing x Channel number ⁇ ⁇ ⁇ Formula 1
  • Channel center frequency Channel starting frequency + (Channel spacing / 2) x (Channel number mod 8) + 1.08GHz ...
  • Channel center frequency Channel starting frequency + (Channel spacing / 3) x (Channel number mod 16) + 2.16GHz ...
  • Channel center frequency Channel starting frequency + (Channel spacing / 4) x (Channel number mod 24) + 3.24GHz ...
  • channel number (1 to 8) is described in Channel set in FIG. 4 and determine that Channel spacing is 2160 MHz and Channel starting frequency is 56.16 GHz. Since the bandwidth is 2.16 GHz, channel number (1 to 8) corresponding to Channel ⁇ ⁇ ⁇ ⁇ number is substituted with reference to Equation 1, and Channel center frequency (channel center frequency) is calculated.
  • FIG. 5 is a diagram illustrating an example of channel aggregation performed using the transmission device 100.
  • ch1 is used for the first carrier
  • ch2 is used for the second carrier
  • ch3 is used for the third carrier
  • ch4 is used for the fourth carrier, both of which transmit at a 2.16 GHz channel width.
  • the first to fourth carriers correspond to the first to fourth carriers in FIG. 1 (transmitting apparatus).
  • the throughput can be quadrupled by aggregating up to four carriers. Since each carrier has a channel width of 2.16 GHz (symbol rate is 1.76 G symbol / second), it does not use high-speed D / A and A / D converters like channel bonding, and has the same speed as the 11ad standard. / A, A / D converters (eg 2.64 Gsample / s, 1.5 times the single carrier symbol rate) can be used for high-speed communication. Further, power consumption can be reduced by stopping transmission of some carriers according to the amount of data to be transmitted. In channel bonding, for example, when switching from ch9 to ch1, the center frequency is changed, so that a delay is required for switching.
  • channel bonding for example, when switching from ch9 to ch1, the center frequency is changed, so that a delay is required for switching.
  • channel bonding may be used for each carrier.
  • FIG. 5B by transmitting a bonding channel having a channel width of 4.32 GHz (single carrier symbol rate of 3.52 G samples / second) with three carriers, a throughput approximately six times that of the 11ad standard is realized.
  • a D / A and A / D converter that can receive a signal with a channel width of 12.96 GHz (for example, a single carrier symbol rate of 10.56 G symbols / second) is used. It is difficult to realize power consumption. Compared with this, a high throughput can be realized by using a D / A and A / D converter having a relatively low sampling rate, so that low power consumption can be achieved.
  • each carrier may use a different channel width (different symbol rate, different channel bonding level).
  • FIG. 5C shows a combination of ch17 (3-channel bonding), ch4, and ch13 (2-channel bonding).
  • the capability for each user (number of channels that can be bonded) and the data for each user According to the amount, the channel width of each carrier can be appropriately selected, the throughput can be increased, and the channel utilization efficiency can be increased.
  • carriers can be arranged avoiding a congested channel (for example, ch4), so that throughput can be increased and channel utilization efficiency can be increased.
  • a congested channel for example, ch4
  • FIG. 6A corresponds to FIG. 5A
  • FIG. 6B corresponds to FIG. 5B
  • FIG. 6C corresponds to FIG. 5C
  • FIG. 6D corresponds to FIG.
  • the Primary channel is any channel with a width of 2.16 GHz and is determined in advance. For example, in FIG. 6A, any one of ch1 to ch4. In FIG. 6B, any one of ch1 to ch6.
  • the transmitting device transmits the E-Header including the channel selection information. For example, in FIG. 6A, information indicating that ch1, 2, 3, and 4 are selected is included. Further, in FIG. 6B, information indicating that ch9, 11, and 13 are selected is included. In addition, Primary-Channel information may be included in the E-Header for an STA that is not associated with a transmitting apparatus. The details of the channel selection information notification method will be described later.
  • channel selection information may be included in the L-Header instead of the E-Header.
  • the header (L-Header, E-Header) and payload (from Payload1 to Payload4) are modulated with a single carrier with a symbol rate of 1.76 Gsps and transmitted with a 2.16 GHz bandwidth in the first to fourth carriers. Is done.
  • the payload (from Payload 1 to Payload 3) is modulated with a single carrier with a symbol rate of 3.52sGsps and transmitted with a bandwidth of 4.32 GHz.
  • the header is single-carrier modulated at 1.76 Gsps and transmitted in ch1 to ch6, which are 2.16 GHz channels corresponding to ch9, ch11, and ch13.
  • Payload1, Payload2, and Paylaod3 are modulated with single carriers of symbol rates 5.28 Gsps, 1.76 Gsps, 3.52 Gsps, respectively, for the first, second, and third carriers, and the bandwidths of 6.48 GHz, 2.16 GHz, and 4.32 GHz, respectively. Sent by.
  • the header is single-carrier modulated at 1.76 Gsps and transmitted in ch1 to ch6, which are 2.16 GHz channels corresponding to ch17, ch4, and ch13.
  • Payload 1 and Payload 2 are modulated with single carriers of symbol rates 5.28 Gsps and 3.52 Gsps, respectively, and transmitted with bandwidths of 6.48 GHz and 4.32 ⁇ ⁇ ⁇ ⁇ GHz, respectively.
  • the header is single-carrier modulated at 1.76 Gsps and transmitted in ch1, ch2, ch3, ch5, and ch6, which are 2.16 GHz channels corresponding to ch17 and ch13.
  • the header is transmitted with a 2.16 GHz bandwidth, so by receiving any one 2.16 ⁇ ⁇ ⁇ ⁇ GHz channel included in the carrier aggregation frame, Information can be obtained, and channel selection information in the channel aggregation frame can be obtained.
  • STF Short Training Field
  • CEF Channel Estimation Field
  • E-STF E-STF
  • E-CEF E-CEF
  • Method 1 As described above, the channel selection information is notified using the E-Header (or L-Header) of the data packet.
  • the receiving apparatus 200 receives and decodes the E-Header on the Primary-Channel and acquires channel selection information.
  • the A / D converter sampling rate is switched at the E-STF reception start timing according to the acquired channel selection information.
  • the A / D converter may be set in advance to 3.52 GSps or the maximum sampling rate supported by the receiving device (before receiving the header), and the digital filter and analog filter may be switched.
  • Method 2 Before transmitting the data packet, the used channel is notified by the preceding packet.
  • the transmission apparatus 100 adds a CT (Control Trailer) to an RTS (Request To Send) frame that conforms to the 11ad standard and transmits, as described in Non-Patent Document 1. .
  • CT Control Trailer
  • RTS Request To Send
  • information on the channel used for data packet transmission is included in the CT.
  • STA1 transmits the RTS frame with CT added to ch1 and ch2 in order to acquire the transmission right in ch1 and ch2.
  • STA2 receives the RTS frame and transmits a CTS with CT added to ch1 and ch2 in order to permit transmission from STA1 in ch1 and ch2.
  • Each CT includes information indicating that channel bonding is performed using ch1 and ch2. After receiving the CTS, STA1 performs channel bonding using ch1 and ch2, and transmits a Data packet.
  • the interval between RTS and CTS, CTS and Data packet (see FIG. 7A) is defined as SIFS (short interframe space), and it is stipulated that transmission is performed to be about 3 ⁇ s.
  • STA2 may switch the configuration and settings (sampling rate, etc.) of the receiving device in SIFS immediately after receiving the RTS. That is, STA2 normally waits on the primary channel (for example, ch2). RTS frame is received on ch2. The channel used is switched by SIFS immediately after RTS, and CTS is transmitted to ch1 and ch2. Data is received by ch1 and ch2. When the transmission right (TXOP) acquired by STA1 through RTS expires, STA2 returns to standby in the Primary channel.
  • TXOP transmission right
  • Transmitting apparatus 100 uses format 1 to notify information from the first carrier to the fourth carrier and information on the primary channel. Format 1 is transmitted as part of E-Header (or L-Header) and CT (Control Trailer).
  • the receiving apparatus 200 receives the format 1, and acquires information from the first carrier to the fourth carrier and information on the primary channel from the contents.
  • the Primary channel number field indicates the value of the primary channel number (from ch1 to ch8).
  • the value 0 may represent ch8. Also, when the usable channels are ch1 to ch4, the values 5 to 7 and 0 are reserved and may be used for future expansion.
  • the BW of 1st carrier field indicates the channel bandwidth (BW: Bandwidth) of the first carrier.
  • a value 0 represents 2.16 GHz
  • a value 1 represents 4.32 GHz
  • a value 2 represents 6.48 GHz
  • a value 3 represents 8.64 GHz.
  • values 4 to 7 are reserved and may be used for future expansion.
  • the channel number of the first carrier can be determined by combining the values of the Primary channel number field and the BW of 1st carrier field. For example, when the primary channel is 3 and the first carrier is ch11, the transmitting apparatus 100 sets 3 in the Primary channel number field and sets 1 in the BW of 1st carrier field for transmission. From the received value and the channelization information shown in FIG. 3, the receiving apparatus 200 determines that the first carrier is ch11 when the Primary channel number field is 3 and the BW of 1st carrier field is 1. . That is, the channel of the first carrier is determined so that the band of the primary channel is included as at least part of the band of the first carrier.
  • the “Channel number” of “2nd” carrier field indicates the channel number of the second carrier. Also, when transmission on the second carrier is not performed, the value of the Channel number of 2nd carrier field is 0.
  • the transmitting apparatus 100 is one of valid channel numbers (for example, ch1, ch2, ch3, ch4, ch9, ch11, ch17, ch25 (solid line portion) shown in FIG. 3). Set the value. Further, for future expansion, any value from 1 to 31 may be set to notify a channel number not included in FIG. For example, channel numbers ch30 and ch31 not shown in FIG. 3 may be newly determined.
  • the “channel number” of “3rd” carrier field and the “channel number” of “4th” carrier field indicate the channel numbers of the third and fourth carriers in the same manner as the “channel number” of “2nd” carrier field. If there is no third or fourth carrier, the corresponding field value is zero.
  • transmission apparatus 100 uses format 1, transmits the channel numbers of the second, third, and fourth carriers, and the channel numbers of the second, third, and fourth carriers are shown in FIG.
  • each carrier of channel aggregation can be configured by a bonding channel, so that the channel utilization efficiency can be improved and the data transfer rate can be improved.
  • the transmission apparatus 100 uses the format 1 to notify the primary channel number and the index indicating the channel bandwidth, it is not necessary to notify the channel number of the first carrier, and the bit of control information to be transmitted. The number can be reduced and the data transfer speed can be improved.
  • the transmitting apparatus 100 notifies the information from the first carrier to the fourth carrier and the information on the primary channel using the format 2 shown in FIG. Format 2 is transmitted as a part of E-Header (or L-Header) and CT (Control Trailer) in FIGS. 6A and 6B.
  • the Primary channel number field is a Primary channel number.
  • 2.16 GHz channel bitmap field set 1 when any of ch1 to ch8 is used for any of the first carrier to the fourth carrier. For example, when the first carrier uses ch1 and the second carrier uses ch3, the value of 2.16 GHz channel bitmap is set to 00000101 in binary notation. That is, LSB represents ch1 and MSB represents ch8.
  • the 4.32 GHz channel bitmap field is set to 1 when any of ch9, ch11, ch13, and ch15 is used from the first carrier to the fourth carrier. For example, when the first carrier uses ch15 and the second carrier uses ch11, the value of 4.32 GHz channel bitmap is set to 1010 in binary notation. That is, LSB represents ch9 and MSB represents ch15.
  • 1 is set for each of the 2.16 GHz channel bitmap and 4.32 GHz channel bitmap.
  • the first carrier uses ch13 and the second carrier uses ch2, 00000010 and 0100 are set.
  • the former is a 2.16 GHz channel bitmap and the latter is a 4.32 GHz channel bitmap.
  • the values of 2.16 GHz channel bitmap and 4.32 GHz channel bitmap of format 2 may be determined by correspondence between channel numbers and integer values as in the “ch” column and “index” column of FIG. 10A.
  • the integer value defined in FIG. 10A is called an index.
  • the “bitmap” column of FIG. 10A the value of the channel bitmap field of 2.16 GHz and 4.32 GHz is described with the left end as LSB and the right end as MSB.
  • the index value is obtained by combining the 2.16 GHz and 4.32 GHz channel bitmaps, and converting them to decimal numbers with the 4.32GHz side as the upper bit and the 2.16GHz side as the lower bit. For example, in the case of ch1, since the LSB of bitmap is 1, it can be regarded as an integer 1.
  • 6.4Hz GHz, 8.64 GHz channel bonding is notified as follows. That is, an invalid combination of the 2.16 GHz channel bitmap field and the 4.32 GHz channel bitmap field is predetermined as representing 6.48 GHz and 8.64 GHz channel bonding. For example, the combination of ch9 and ch1 is invalid because the ch1 bands overlap. Therefore, the combination of ch9 and ch1 is predetermined to indicate ch17. The value of the bitmap at this time is 00000001,0001.
  • FIG. 10B shows index values for the 6.48 GHz channel and the 8.64 GHz channel bitmaps.
  • the index of ch17 is 257. This is a value obtained by adding the indexes of ch1 and ch9. Since aggregation of ch1 and ch9 is invalid as described above, it is used as an index indicating ch17.
  • Channel aggregation using a plurality of the aforementioned channels (ch1 to ch29 shown in FIG. 3) including 6.48 6.GHz or 8.64 GHz channel bonding can be specified by adding the index values shown in FIGS. 10A and 10B. .
  • the index indicating the channel aggregation of ch1 (index value is 1) and ch3 (index value is 4) is 5 by adding each index.
  • index indicating the channel aggregation of ch4 (index value is 8) and ch13 (index value is 1024) is 1032 by adding each index.
  • the addition of the index may be an integer addition or a logical sum. This is because there is no duplication of bits and the same result is obtained.
  • An aggregation index combining the arbitrary channels in FIGS. 10A and 10B is determined by adding the indexes. For example, since the indexes of ch17 and ch4 are 257 and 8, respectively, the aggregation index of ch17 and ch4 is 265.
  • the receiving apparatus 200 receives 265 as an index value, it is an index that is not included in either FIG. 10A or FIG. 10B, and therefore it can be determined that 265 is an index representing aggregation.
  • the first bandwidth bitmap and the second bandwidth bitmap are notified, and the third bandwidth channel is notified in the above combination.
  • the transmission apparatus 100 has been shown as an example of a configuration that can transmit a maximum of 4 carriers, a transmission apparatus that can transmit 5 carriers or more may be used.
  • format 2 can notify channel aggregation of 5 carriers or more.
  • the index of channel aggregation of 8 carriers using all of ch1 to ch8 is 255.
  • the index of 7-carrier channel aggregation using ch1 to ch6 and ch15 is 2111.
  • ⁇ Effect> it is possible to notify a bonding channel of a different band, so that the frequency utilization efficiency can be improved. Further, high throughput can be realized by using D / A and A / D having a low sampling rate.
  • a combination of channels can be notified with a small number of bits and no limitation on the number of carriers.
  • the aggregation index of ch1 and ch3 is 5.
  • the index value is determined from the two bitmaps of 2.16 GHz and 4.32 GHz, and the index of channel aggregation is determined by adding the index value. Therefore, aggregation of wideband channels (bonding channels) is realized. The transmission speed can be increased.
  • the combination of overlapping bands in the two bitmaps of 2.16 GHz and 4.32 GHz is defined as an index that represents the 6.48 GHz and 8.64 GHz channels, so channel aggregation can be reported with a small bit width, and the transmission speed can be reduced. Can be increased.
  • index values are determined from two bitmaps of 2.16 GHz and 4.32 GHz, channel aggregation can be notified without restriction on the number of carriers, and the transmission speed can be increased.
  • the indexes shown in FIGS. 11A and 11B may be determined and used for future expansion.
  • the index value 261 represents the aggregation of ch17 and ch3.
  • ch17 and ch3 are invalid combinations because of overlapping bands. Therefore, the index value 261 is determined not as an aggregation of ch17 and ch3 but as an index representing another channel.
  • ch30 (not shown in FIG. 3) is added, and the index value is defined as 261.
  • An example of ch30 is shown in FIG.
  • ch30 has a channel bandwidth of 10.80 GHz, and the center frequency is the same as the center frequency of ch3.
  • the aggregation of ch30 and ch15 is defined as index 2309 by adding the respective indexes (261 and 2048).
  • the receiving apparatus 200 is an aggregation of ch30 and ch15 when this index is received. Can be determined.
  • 11A and 11B show combinations of ch17, ch20, ch25, and ch29, and 2.16 GHz channels with overlapping bands (except for those shown in FIG. 10B). Since these are invalid combinations, they may be reserved for future expansion (eg, new bandwidth channels).
  • the values shown in FIG. 11A and FIG. 11B may be used as an index indicating a single bonding channel (when channel aggregation is not performed).
  • any valid channel combination (that is, the bands do not overlap) is designated by adding the values of any index defined in FIGS. 10A, 10B, 11A, and 11B. be able to.
  • Format 3 uses bitmaps of 2.16 GHz and 4.32 GHz as in format 2.
  • FIG. 13A is the same as FIG. 10A.
  • FIG. 13B represents ch17, ch20, ch25, and ch29 using an index that represents an invalid combination set of aggregation, as in FIG. 10B. However, unlike FIG. 10B, all the bits corresponding to the 2.16 GHz channel occupying the band are set to 1.
  • ch17 occupies the bandwidth of ch1, ch2, and ch3, set the lower 3 bits of the 2.16 GHz channel bitmap field to 1.
  • the least significant bit (corresponding to ch9) of the 4.321GHz channel bitmap field is set to 1 to make an invalid combination index.
  • the value of the 4.32 GHz channel bitmap field is selected so that all of the band occupied by ch17 is included.
  • ch9 and ch11 overlap with Ch17, but ch11 uses a band not included in a part of ch17, so ch9 is selected instead of ch11.
  • the index value of ch17 is set to 263.
  • ch25 For ch25, set the value of the 2.16 GHz channel bitmap field corresponding to ch1 to ch4, which is the 2.16 GHz channel that ch25 occupies to 1, and ch11 that is a 4.32 GHz channel that includes everything in the band that ch25 occupies.
  • ch9 includes all of the band occupied by ch25, but in order to distinguish it from ch17, ch25 uses 1 corresponding to ch11.
  • the bits corresponding to ch4 to ch8 and ch15 are set to 1.
  • new bonding channels that are not included in the channelization of FIG. 3 can be added. For example, in ch30 shown in FIG. 12, the bits corresponding to ch1 to ch5, ch9, and ch11 may be set to 1.
  • 2.16 GHz channel bitmap is set to 1 for bits corresponding to all 2.16 GHz band channels occupied by channel aggregation frames, so the terminal receiving the frame does not support channel aggregation. Even so, it can be determined which channel is being used.
  • the channel selection information of the channel aggregation frame including the band exceeding 4.32 GHz can be transmitted, and high-speed transmission is realized. be able to.
  • transmitting apparatus 100 transmits a channel aggregation frame whose channel bandwidth is common among carriers. That is, the channel bandwidth is common to the first to fourth carriers. 5A and 5B are realized, and FIGS. 5C and 5D are not realized.
  • the transmission apparatus 100 notifies the channel selection information of the channel aggregation frame using the format 4 shown in FIG.
  • the BW field specifies a common channel bandwidth for the first to fourth carriers.
  • the Primary channel number field reports the channel number of the primary channel.
  • the primary channel is one of channels (ch1 to ch8) with a width of 2.16 GHz.
  • the first carrier includes a primary channel band. Thereby, receiving apparatus 200 can determine the channel number of the first carrier from the value of the BW field and the value of the Primary channel number field. For example, when the value of the BW field is 2 and the value of the Primary channel number field is 3, from the channelization of FIG. 3, the channel having these values is ch17. Can be determined.
  • the “Partial channel number” of “2nd” carrier field reports the lower 3 bits of the channel number of the second carrier. Based on the combination of this field and the value of the BW field, receiving apparatus 200 can specify the channel number of the second carrier.
  • the second carrier uses channel 25.
  • the “Partial channel number” of “3rd” carrier field reports the lower 3 bits of the channel number of the third carrier. Based on the combination of this field and the value of the BW field, receiving apparatus 200 can specify the channel number of the third carrier.
  • the “Partial channel number” of “4th” carrier field notifies the lower 3 bits of the channel number of the fourth carrier. Based on the combination of this field and the value of the BW field, receiving apparatus 200 can specify the channel number of the fourth carrier.
  • the value of the Partial channel number of the second channel field is set to the same value as the Primary channel number field.
  • transmission can be performed by arbitrarily selecting the number of carriers from 1 to 4 without adding a field for notifying the number of carriers.
  • the low order bits of the channel numbers of the second to fourth carriers are transmitted using the partial channel number, the second channel field, the partial channel number, the number of 3rd carrier field, and the partial channel number, number of 4th carrier field.
  • the number of bits used for transmission of channel selection information can be reduced, and the data transmission rate can be increased.
  • transmitting apparatus 100 transmits a channel aggregation frame whose channel bandwidth is common among carriers. That is, the channel bandwidth is common to the first to fourth carriers. 5A and 5B are realized, and FIGS. 5C and 5D are not realized.
  • FIG. 15A shows format 5.
  • the “Primary channel number” field indicates the channel number of the primary channel. Similar to the format 4, the first carrier uses a channel that partially includes the band of the primary channel.
  • the BW index field is an index representing a channel bandwidth, the number of carriers, and a combination of channels from the first carrier to the fourth carrier.
  • the relationship between the value of the BW index field, the channel bandwidth from the first carrier to the fourth carrier, and the number of carriers is determined as shown in FIG. 15B.
  • a value obtained by subtracting 1 from Primary channel number is represented by c1
  • a value obtained by subtracting 1 from Partial channel number of the second to fourth carriers is represented by c2 to c4.
  • c1 to c4 take values of 0 to 7.
  • BW index 0
  • the channel number of the first carrier is equal to the value of the Primary channel number field.
  • BW index 8-28
  • the BW index is 8 to 28.
  • Transmitting apparatus 100 determines BW_index as follows. (c2-c1-1) When mod8 is 2 or less (c2-c1-1) mod 8 + ((c3-c1-1) mod 8) * 3 + 8 Other than the above (5- (c2-c1-1)) mod 8 + (6- (c3-c1-1) mod 8) * 3 + 8
  • the receiving apparatus 200 calculates the values of c2 and c3 from the received BW index and Primary channel number values as follows.
  • t1 (BW_index-8) mod 3
  • t2 floor ((BW_index-8) / 3)
  • c2 (c1 + t1 + 1) mod 8
  • c3 (c1 + t2 + 1) mod 8
  • c2 (6 + c1-t1) mod 8
  • c3 (7 + c1-t2) mod 8
  • FIG. 16 is a diagram illustrating combinations of channels when BW index is 8.
  • the channel number of the first carrier (the bandwidth is 2.16 GHz, the same as the primary channel number) is ch1
  • the channel numbers of the second and third carriers are ch7 and ch8, respectively.
  • the channel numbers of the 2nd and 3rd carriers are ch8 and ch1, respectively.
  • the value of BW index is one (for example, 8)
  • the combination of channel numbers of different 2nd and 3rd carriers is represented according to the Primary ⁇ channel number. Combinations can be represented.
  • the primary channel number can take eight values
  • one value of BW_index can represent eight channel combinations.
  • BW_index 8
  • Primary channel ch7 or ch8
  • BW index 29-683
  • the BW index is 29 to 63.
  • Transmitting apparatus 100 determines the value of BW index as follows.
  • BW_index ((c4'-c2'-2) mod7) + (c2'-1) * 4 + 29
  • the value of BW index is 29-56.
  • receiving apparatus 200 calculates c2, c3, and c4 from BW_index as follows.
  • BW_index c2'-1 + 57
  • BW index 57-63.
  • receiving apparatus 200 calculates c2, c3, and c4 from BW_index and Primary channel number as follows.
  • c2 ' BW_index-57 + 1
  • c2 (c2' + c1) mod 8
  • c3 ' (c2' + 2) mod 7
  • c3 (c3 '+ c1) mod 8
  • c4 (c4 '+ c1) mod 8
  • BW index 64
  • BW index 65 ⁇ 67
  • BW index 68-70
  • c2, c3 is determined so that c1, c2, c3 are in a cyclic order. That is, c2 and c3 are switched so that (c2-c1) mod 8 ⁇ (c3-c1) mod 8.
  • BW_index ((c2'-c1'-1) mod 2) * 2 + (c3'-c2'-1) mod 2 + 68
  • BW index 71
  • the combination of channels is one of the combinations of ch9, ch11, ch13, and ch15.
  • receiving apparatus 200 calculates c2, c3, and c4 from the value of Primary channel number as follows. That is, c2 to c4 are determined so that c1 to c4 are in a cyclic order.
  • c1 ' floor (c1 / 2)
  • c2 (c1 '* 2 + 2)
  • mod8 c3 (c2 + 2)
  • mod8 c4 (c3 + 2) mod8
  • BW index 72
  • the channel bandwidth is 6.48 GHz and the number of carriers is 1, the BW index is 72.
  • the channel used is ch17 or ch20.
  • the receiving apparatus 200 can determine whether ch17 or ch20 is used from the value of Primary channel number. That is, if the primary channel is ch1 to ch3, the used channel is ch17, and if the primary channel is any of ch4 to ch6, the used channel is ch20.
  • BW index 73
  • BW index 74
  • the channel bandwidth is 8.64 GHz and the number of carriers is 1, the BW index is 74.
  • the channel used is ch25 or ch29.
  • the receiving device 200 can determine whether ch25 or ch29 is used from the value of Primary channel number. That is, if the primary channel is any one of ch1 to ch4, the use channel is ch25, and if the primary channel is any one of ch5 to ch8, the use channel is ch29.
  • BW index 75
  • the BW index 75.
  • the combination of channels used is one of ch25 and ch29.
  • Format 6 uses a 2.16 GHz bitmap as in format 2, but adds a Maximum bandwidth field instead of a 4.32 GHz bitmap.
  • FIG. 17 shows format 6.
  • the Maximum bandwidth field specify the maximum channel bandwidth used by the corresponding packet. For example, even if the transmission apparatus 100 can transmit a maximum 8.64 GHz bandwidth, when performing aggregation of 2.16 GHz and 4.32 GHz with the corresponding packet, the value 1 indicating 4.32 GHz is set in the Maximum bandwidth field. .
  • the bits corresponding to ch1 and ch2 are set to 1.
  • the transmitter 100 sets 0 in the Maximum bandwidth field when performing aggregation transmission of 2.16 GHz + 2.16GHz using ch1 and ch2, and sets the Maximum bandwidth field to 0 when using ch9 to perform channel bonding transmission of 4.32 GHz band. Set the bandwidth field to 1 and send.
  • 1 is set in the MaximumMaxbandwidth field, and 1 is set in the lower 3 bits (corresponding to ch1 to ch3) of the 2.16 GHz channel bitmap field.
  • the transmission apparatus 100 can specify a combination of channels with a small number of bits by performing transmission using the format 6, and can perform channel aggregation including a plurality of channel bandwidths. Transmission can be realized.
  • FIG. 18 shows another configuration of a transmission apparatus that performs channel aggregation.
  • the same parts as those of the transmission apparatus 100 are denoted by the same reference numerals and description thereof is omitted.
  • the transmission device 300 includes a payload division unit 303 having a function different from that of the payload division unit 103 of the transmission device 100, and divides the payload data and allocates it to the first to fourth carriers before encoding the payload.
  • the payload dividing unit 303 may perform CRC (error detection code) addition and bit scrambling before performing payload division.
  • Payload encoders 302a to 302d perform LDPC encoding of payload data of the first to fourth carriers. Note that the payload encoding units 302a to 302d may perform LDPC encoding at different encoding rates for each of the first to fourth carriers. Further, payload encoding sections 302a to 302d may perform LDPC encoding using different LDPC parity check matrices for the first to fourth carriers.
  • the modulation units 104a to 104d modulate the payload data of the first to fourth carriers.
  • the modulation units 104a to 104d may use different modulation schemes for the first to fourth carriers.
  • ⁇ / 2-BPSK, ⁇ / 2-QPSK, ⁇ / 2-16QAM, or ⁇ / 2-64QAM may be used.
  • the symbol after data modulation may be transmitted by a single carrier, and the symbol after data modulation may be transmitted by OFDM.
  • the PHY / RF control unit 310 Based on the PHY control data, the PHY / RF control unit 310 outputs an instruction signal indicating which coding rate LDPC encoding is to be performed on to the payload encoding units 302a to 302d. In addition, an instruction signal indicating which data modulation is performed in each of the modulation units 104a to 104d is output. That is, the PHY control data may include a different MCS (Modulation and Coding scheme) for each carrier, and the PHY / RF control unit 310 may apply a different MCS for each carrier.
  • MCS Modulation and Coding scheme
  • the header encoding unit 101 encodes the header by including MCS information for each carrier in the header (L-Header or E-Header) in addition to the channel selection information (any one of formats 1 to 6).
  • 20A, 20B, 21A, and 21B show a method of including MCS information for each carrier in the header. (See below)
  • FIG. 19 shows another configuration of a receiving apparatus that performs channel aggregation.
  • the same parts as those of the receiving apparatus 200 are denoted by the same reference numerals and description thereof is omitted.
  • the receiving apparatus 400 includes payload decoding units 402a to 402d for each carrier.
  • the payload decoding units 402a to 402d perform LDPC decoding (error correction).
  • Payload decoding sections 402a to 402d may perform LDPC decoding using different coding rates and different check matrices for each of payload decoding sections 402a to 402d in accordance with instructions from PHY / RF control section 410 described later.
  • the payload combining unit 403 combines the data output from the payload decoding units 402a to 402d for each carrier to generate received data.
  • the payload combining unit 403 may perform data descrambling and CRC check.
  • the PHY / RF control unit 410 is based on the PHY header information received by the header decoding unit 201 and the PHY control data notified from the MAC processing unit in advance, the center frequency for each carrier, the channel bandwidth for each carrier, and for each carrier. Determine the MCS.
  • transmitting apparatus 300 includes the MCS selection information of FIG. 20A in the header in addition to channel selection information (any one of formats 1 to 6).
  • the header has eight fields (Stream1 MCS to Stream8 MCS).
  • transmitting apparatus 300 sets the MCS number of the first carrier (that is, the MCS number used by payload encoder 302a and modulator 104a) in the Stream1StreamMCS field. include.
  • MIMO transmission of up to 8 streams is performed using the Stream2 MCS to Stream 8 MCS fields.
  • the payload encoding unit 302a, the modulation unit 104a, the wideband D / A 105a, the wideband RF 106a, and the antenna 107a which are the first carrier part of the transmission apparatus 300, may be multiplexed up to 8 at maximum to perform MIMO transmission of up to 8 streams. .
  • the configuration of the transmission apparatus 300 is different from that in FIG. 18, and in the transmission apparatus 300, the payload encoding unit 302a is changed from the payload encoding unit 302a1 to the payload code.
  • modulator 104a includes modulator 104a1 to modulator 104a8, broadband D / A 105a includes broadband D / A 105a1 to broadband D / A 105a8, and broadband RF 106a includes broadband RF 106a1 to broadband RF 106a8
  • the antenna 107a includes antennas 107a1 to 107a8.
  • the stream 1 is transmitted via the payload encoding unit 302a1, the modulation unit 104a1, the wideband D / A 105a1, the wideband RF 106a1, and the antenna 107a1.
  • the payload encoding unit 302a includes the MCS number used by the payload encoding unit 302a1 in the Stream1 MCS field, and the MCS number used by the payload encoding unit 302a8 in the Stream8 MCS field.
  • the data encoded by the payload encoding unit 302a1 to the payload encoding unit 302a8 are referred to as stream 1 to stream 8, respectively.
  • the broadband RF 106a uses a common channel number for the broadband RF 106a1 to the broadband RF 106a8. That is, the first carrier is transmitted using one channel.
  • the common channel number is notified using any one of format 1 to format 6 described above. That is, when performing MIMO transmission on the first carrier, streams 1 to 8 may use a common channel (one channel), while streams 1 to 8 may use different MCSs.
  • the first carrier can perform MIMO transmission of a maximum of 8 streams using 8 transmission branches.
  • the transmitting apparatus 300 includes the MCS number of the first carrier in the Stream1 MCS field and the MCS number of the second carrier in the Stream5 MCS field.
  • MIMO transmission of up to four streams is performed using the Stream1 MCS to Stream 4 MCS fields.
  • MIMO transmission of up to four streams is performed using the Stream5 MCS to Stream 8 MCS fields. That is, a maximum of 8 streams are transmitted together with the first carrier and the second carrier.
  • transmitting apparatus 300 includes the MCS number of the first carrier in the Stream1 MCS field, the MCS number of the second carrier in the Stream4 MCS field, and the MCS number of the third carrier in the Stream7 MCS field. .
  • MIMO transmission of a maximum of three streams is performed using the Stream1 MCS to Stream 3 MCS fields.
  • MIMO transmission of up to three streams is performed using the Stream4 MCS to Stream 6 MCS fields.
  • MIMO transmission of a maximum of two streams is performed using the Stream7 MCS to Stream 8 MCS fields. That is, a maximum of 8 streams are transmitted together with the first to third carriers.
  • the first carrier uses three transmission branches
  • the second carrier uses three transmission branches
  • the third carrier uses two transmission branches
  • a total of eight transmission branches Up to 8 streams of MIMO transmission can be performed.
  • the transmitting apparatus 300 includes the MCS numbers of the first to fourth carriers in the Stream1 MCS, Stream3 MCS, Stream5 MCS, and Stream 7 fields, respectively. Similarly, a maximum of 8 streams are transmitted together with the first to fourth carriers.
  • the first carrier has two transmission branches
  • the second carrier has two transmission branches
  • the third carrier has two transmission branches
  • the fourth carrier has two transmission branches.
  • a maximum of 8 streams of MIMO transmission can be performed using a total of 8 transmission branches.
  • FIG. 20B the field number to be used can be calculated by a mathematical formula as follows.
  • (Field No.) (carrier No.) + (The number of carriers) ⁇ (stream No.-1)
  • the MCS of the corresponding stream is notified using the Stream8 MCS field.
  • the transmission apparatus 300 can specify a different MCS for each carrier by using the header formats of FIGS. 20A and 20B, so that the transmission rate can be increased.
  • the transmission apparatus 300 uses the header formats of FIGS. 20A and 20B so that the maximum total number of MIMO streams is a predetermined value (for example, 8) regardless of the number of carriers. It is not necessary to add a field for notifying the MCS information for performing the aggregation. Therefore, the number of bits required for the header can be reduced, and the transmission rate can be increased.
  • the transmission apparatus 300 may transmit one channel aggregation packet to a plurality of users. That is, multi-user transmission may be performed. That is, the user may be changed for each carrier, or the user may be changed for each stream within the carrier.
  • the field shown in FIG. 21A is included in the header (E-Header).
  • the header has eight fields (Stream1 Address to Stream8 Address).
  • the transmission device 300 When the number of carriers is 2, the transmission device 300 includes the destination address of the first carrier in the Stream1 Address field and the destination address of the second carrier in the Stream5 Address field.
  • the destination address may be an AID (Association ID), or may be a MAC address or a part of the MAC address. Further, it may be a hash value calculated from the MAC address.
  • MIMO transmission of a maximum of 4 streams is performed using the Stream1 Address to Stream 4 Address fields.
  • MIMO transmission of a maximum of four streams is performed using the Stream5 Address to Stream 8 Address fields. That is, multi-user transmission addressed to a maximum of eight users is performed by combining the first carrier and the second carrier.
  • the address for each carrier is notified using either the Stream1 Address field to the Stream8 Address field.
  • multi-user transmission for a maximum of eight users is performed for all carriers.
  • FIG. 21A When the number of carriers is 1, when performing MU-MIMO transmission, the format of FIG. 21A is used. A maximum of 8 streams of MIMO transmission is performed on the first carrier using the Stream1 Address field to the Stream8 Address field. Note that the format of FIG. 21B may be used instead of FIG. 21A.
  • the transmission apparatus 300 can specify different addresses for each carrier using the header formats of FIGS. 21A and 21B, so that multi-user transmission is performed using channel aggregation packets, and there are a plurality of users. In this case, the transmission rate can be increased.
  • the transmission apparatus 300 uses the header formats of FIGS. 21A and 21B to set the maximum number of destination users to a predetermined value (for example, 8) regardless of the number of carriers. It is not necessary to add a field for notifying address information for performing multi-user transmission in aggregation. Therefore, the number of bits required for the header can be reduced, and the transmission rate can be increased.
  • a predetermined value for example, 8
  • Each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit having an input terminal and an output terminal.
  • the integrated circuit may control each functional block used in the description of the above embodiment, and may include an input and an output. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • One aspect of the present disclosure is suitable for a communication apparatus using millimeter wave communication.

Abstract

A header encoding unit subjects PHY control data to bit scrambling and LDPC encoding to generate L-Header and EDMG-Header data. A modulating unit encodes the L-Header and E-Header output by the header encoding unit. Further, the modulating unit replicates the L-Header and E-Header data in accordance with the bandwidth of a channel notified by an RF control unit, and disposes the replicated data in a plurality of channels. Further, the modulating unit modulates one item of payload data split by a payload data splitting unit.

Description

送信装置、受信装置、送信方法及び受信方法Transmission device, reception device, transmission method, and reception method
 本開示は、ミリ波通信を用いた送信装置、受信装置、送信方法及び受信方法に関する。 The present disclosure relates to a transmission device, a reception device, a transmission method, and a reception method using millimeter wave communication.
 IEEE 802.11は、無線LAN関連規格の一つである。IEEE 802.11には、IEEE802.11ac規格(以下、「11ac規格」という)や、IEEE802.11ad規格(以下、「11ad規格」という)等がある(例えば、非特許文献1,2を参照)。 IEEE 802.11 is one of the wireless LAN related standards. IEEE 802.11 includes the IEEE802.11ac standard (hereinafter referred to as “11ac standard”), the IEEE802.11ad standard (hereinafter referred to as “11ad standard”), and the like (for example, refer to Non-Patent Documents 1 and 2).
 11ac規格は、2.4GHzと5GHzに互換性を持ち、MAC層において100Mbpsを上回る高スループットを実現する。11n規格では、二次変調方式として、OFDM(Orthogonal Frequency Division Multiplexing)伝送が規定されている。 The 11ac standard is compatible with 2.4GHz and 5GHz, and achieves high throughput exceeding 100Mbps in the MAC layer. In the 11n standard, OFDM (Orthogonal-Frequency-Division-Multiplexing) transmission is defined as a secondary modulation scheme.
 また、11ac規格には、ピークスループットを高めるため、20MHzの帯域幅を持つ2つ以上の隣り合うチャネルに渡り、40MHz ~ 160MHzの帯域幅でデータフィールド(Payload)を配置してデータを送信するチャネルボンディング(CB)が導入されている。なお、11ac規格では、プリアンブル部分(L-STF, L-LTF, L-SIG, HT-SIG を含む)については、チャネルボンディングに対応していない端末においても受信することができるように、チャネル毎に配置される。 In addition, the 11ac standard is a channel that transmits data by arranging a data field (Payload) with a bandwidth of 40 MHz to 160 MHz over two or more adjacent channels having a bandwidth of 20 MHz in order to increase peak throughput. Bonding (CB) has been introduced. In the 11ac standard, the preamble part (including L-STF, L-LTF, L-SIG, and HT-SIG) is received for each channel so that it can be received even by a terminal that does not support channel bonding. Placed in.
 11ad規格は、60GHz帯ミリ波の複数のチャネルを用いて、最大7Gbpsの高速通信を実現する。11ad規格では、二次変調方式として、シングルキャリア伝送とOFDM伝送がそれぞれ規定されている。また、11ad規格に比べ更にピークスループットを高めるための手段として、チャネルボンディングの他に、チャネルアグリゲーション(CA)を用いた通信規格が提案されている。チャネルアグリゲーションは、キャリアアグリゲーションと呼ばれることがある。 The 11ad standard realizes high-speed communication of up to 7Gbps using multiple 60GHz band millimeter-wave channels. In the 11ad standard, single carrier transmission and OFDM transmission are respectively defined as secondary modulation schemes. In addition to channel bonding, a communication standard using channel aggregation (CA) has been proposed as means for further increasing peak throughput as compared with the 11ad standard. Channel aggregation may be referred to as carrier aggregation.
 しかしながら、従来は、異なる帯域のボンディングチャネルを通知することは困難であるため、周波数の利用効率を高めることが困難である。また、サンプリングレートが低いD/A,A/Dを用いて高いスループットを実現することは困難である。 However, conventionally, since it is difficult to notify bonding channels of different bands, it is difficult to improve the frequency utilization efficiency. Also, it is difficult to achieve high throughput using D / A and A / D with low sampling rates.
 本開示の一態様は、異なる帯域のボンディングチャネルを通知することができるので、周波数の利用効率を高めることができる送信装置、受信装置、送信方法及び受信方法の提供に資する。 One aspect of the present disclosure can provide notification of a bonding channel in a different band, and thus contributes to provision of a transmission device, a reception device, a transmission method, and a reception method that can improve frequency utilization efficiency.
 本開示の一態様に係る送信装置は、所定の帯域において、第1の帯域幅をもつn(nは整数)個のチャネルである第1のチャネルグループと、前記所定の帯域において、前記第1のチャネルグループのうちの連続する2つのチャネルであって、重複しないチャネルを組み合わせたm(mは整数であり、nより小さい値)個のチャネルである第2のチャネルグループと、前記所定の帯域において、前記第1のチャネルグループのうちの連続する3つのチャネルであって、重複しないチャネルを組み合わせたp(pは整数であり、mより小さい値)個のチャネルである第3のチャネルグループと、のうちの1つ以上が割り当てられたr(rは1以上の整数)個のキャリアに関するヘッダ情報をそれぞれ変調する第1から第rの変調回路と、前記変調されたヘッダ情報をそれぞれ送信する第1から第rの送信回路と、を含み、前記ヘッダ情報は、前記第1のチャネルグループのチャネル割り当てを示すn個のビットと、前記第2のチャネルグループのチャネル割り当てを示すm個のビットと、を含み、前記第3のチャネルグループのチャネル割り当ては、前記n個のビットと前記m個のビットとを組み合わせて示される。 A transmission apparatus according to an aspect of the present disclosure includes a first channel group that is n (n is an integer) channels having a first bandwidth in a predetermined band, and the first channel group in the predetermined band. A second channel group which is m consecutive channels (m is an integer and a value smaller than n), which are two consecutive channels of the channel groups, and the predetermined band A third channel group that is p (p is an integer, a value smaller than m) channels that are three consecutive channels of the first channel group and combined with non-overlapping channels; , First to r-th modulation circuits for modulating header information related to r (r is an integer of 1 or more) carriers to which one or more of them are assigned, and First to r th transmission circuits for transmitting adjusted header information, respectively, wherein the header information includes n bits indicating channel assignment of the first channel group, and the second channel group And m bits indicating the channel assignment, and the channel assignment of the third channel group is indicated by combining the n bits and the m bits.
 本開示の一態様に係る受信装置は、第1から第r(rは1以上の整数)信号をそれぞれ受信する第1から第rの受信回路と、前記第1から第r信号のいずれか1つからヘッダ情報を復号する復号回路と、前記ヘッダ情報を用いて、前記第1から第rの受信回路で使用するチャネルを制御する制御回路と、前記チャネル制御された前記第1から第rの受信回路から出力された前記第1から第r信号を復号してペイロードを出力するペイロード復号回路と、を含み、前記第1から第r信号は、所定の帯域において、第1の帯域幅をもつn(nは整数)個のチャネルの第1のチャネルグループと、前記所定の帯域において、前記第1のチャネルグループのうちの連続する2つのチャネルであって、重複しないチャネルを組み合わせたm(mは整数であり、nより小さい値)個のチャネルである第2のチャネルグループと、前記所定の帯域において、前記第1のチャネルグループのうちの連続する3つのチャネルであって、重複しないチャネルを組み合わせたp(pは整数であり、mより小さい値)個のチャネルである第3のチャネルグループと、のうちの1つ以上がそれぞれ割り当てられ、前記ヘッダ情報は、前記第1のチャネルグループのチャネル割り当てを示すn個のビットと、前記第2のチャネルグループのチャネル割り当てを示すm個のビットと、を含み、前記第3のチャネルグループのチャネル割り当ては、前記n個のビットと前記m個のビットとを組み合わせて示される。 A receiving device according to an aspect of the present disclosure includes any one of first to r-th receiving circuits that respectively receive first to r-th (r is an integer of 1 or more) signals, and the first to r-th signals. A decoding circuit that decodes header information from one channel, a control circuit that controls channels used in the first to r-th receiving circuits using the header information, and the channel-controlled first to r-th channels. A payload decoding circuit that decodes the first to r-th signals output from the receiving circuit and outputs a payload, wherein the first to r-th signals have a first bandwidth in a predetermined band A combination of a first channel group of n (n is an integer) channels and two consecutive channels of the first channel group in the predetermined band that are not overlapping, Is an integer P, which is a combination of a second channel group, which is smaller than n) channels, and three consecutive channels of the first channel group in the predetermined band that are not overlapping. (P is an integer and a value smaller than m) one or more of the third channel groups that are channels are respectively assigned, and the header information indicates the channel assignment of the first channel group. N bits to indicate and m bits to indicate channel assignment of the second channel group, wherein the channel assignment of the third channel group includes the n bits and the m bits. Is shown in combination.
 本開示の一態様に係る送信方法は、所定の帯域において、第1の帯域幅をもつn(nは整数)個のチャネルである第1のチャネルグループと、前記所定の帯域において、前記第1のチャネルグループのうちの連続する2つのチャネルであって、重複しないチャネルを組み合わせたm(mは整数であり、nより小さい値)個のチャネルである第2のチャネルグループと、前記所定の帯域において、前記第1のチャネルグループのうちの連続する3つのチャネルであって、重複しないチャネルを組み合わせたp(pは整数であり、mより小さい値)個のチャネルである第3のチャネルグループと、のうちの1つ以上が割り当てられたr(rは1以上の整数)個のキャリアに関するヘッダ情報のそれぞれを、第1から第rの変調回路によって変調し、前記変調されたヘッダ情報のそれぞれを、第1から第rの送信回路によって送信し、前記ヘッダ情報は、前記第1のチャネルグループのチャネル割り当てを示すn個のビットと、前記第2のチャネルグループのチャネル割り当てを示すm個のビットと、を含み、前記第3のチャネルグループのチャネル割り当ては、前記n個のビットと前記m個のビットとを組み合わせて示される。 The transmission method according to an aspect of the present disclosure includes a first channel group that is n (n is an integer) channels having a first bandwidth in a predetermined band, and the first channel group in the predetermined band. A second channel group which is m consecutive channels (m is an integer and a value smaller than n), which are two consecutive channels of the channel groups, and the predetermined band A third channel group that is p (p is an integer, a value smaller than m) channels that are three consecutive channels of the first channel group and combined with non-overlapping channels; , Each of the header information related to r (r is an integer of 1 or more) carriers to which one or more of them are assigned is modulated by the first to r-th modulation circuits. , Each of the modulated header information is transmitted by first to r-th transmission circuits, and the header information includes n bits indicating channel assignment of the first channel group, and the second channel. And m bits indicating the channel assignment of the group, and the channel assignment of the third channel group is indicated by combining the n bits and the m bits.
 本開示の一態様に係る受信方法は、第1から第r(rは1以上の整数)信号のそれぞれを、第1から第rの受信回路によって、受信し、前記第1から第r信号のいずれか1つからヘッダ情報を復号し、前記ヘッダ情報を用いて、前記第1から第rの受信回路で使用するチャネルを制御し、前記チャネル制御された前記第1から前記第rの受信回路から出力された前記第1から第r信号を復号してペイロードを出力し、前記第1から第r信号は、所定の帯域において、第1の帯域幅をもつn(nは整数)個のチャネルの第1のチャネルグループと、前記所定の帯域において、前記第1のチャネルグループのうちの連続する2つのチャネルであって、重複しないチャネルを組み合わせたm(mは整数であり、nより小さい値)個のチャネルである第2のチャネルグループと、前記所定の帯域において、前記第1のチャネルグループのうちの連続する3つのチャネルであって、重複しないチャネルを組み合わせたp(pは整数であり、mより小さい値)個のチャネルである第3のチャネルグループと、のうちの1つ以上がそれぞれ割り当てられ、前記ヘッダ情報は、前記第1のチャネルグループのチャネル割り当てを示すn個のビットと、前記第2のチャネルグループのチャネル割り当てを示すm個のビットと、を含み、前記第3のチャネルグループのチャネル割り当ては、前記n個のビットと前記m個のビットとを組み合わせて示される。 In the reception method according to an aspect of the present disclosure, each of the first to r-th (r is an integer of 1 or more) signals is received by the first to r-th reception circuits, and the first to r-th signals are received. The header information is decoded from any one of the above, and the channel used in the first to r-th receiving circuits is controlled using the header information, and the channel-controlled first to r-th receiving circuits The first to r-th signals output from the terminal are decoded and a payload is output. The first to r-th signals are n (n is an integer) channels having a first bandwidth in a predetermined band. M (m is an integer and a value smaller than n), which is a combination of two consecutive channels of the first channel group in the predetermined band and non-overlapping channels in the predetermined band. ) Channels P (p is an integer and a value smaller than m), which is a combination of non-overlapping channels of the second channel group and the three consecutive channels of the first channel group in the predetermined band One or more of a third channel group, which is a number of channels, is allocated, and the header information includes n bits indicating channel allocation of the first channel group, and the second channel And m bits indicating the channel assignment of the group, and the channel assignment of the third channel group is indicated by combining the n bits and the m bits.
 なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又は記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。 Note that these comprehensive or specific modes may be realized by a system, apparatus, method, integrated circuit, computer program, or recording medium. Any of the system, apparatus, method, integrated circuit, computer program, and recording medium may be used. It may be realized by various combinations.
 本開示の一態様によれば、異なる帯域のボンディングチャネルを通知することができるので、周波数の利用効率を高めることができる。また、サンプリングレートが低いD/A,A/Dを用いて高いスループットを実現することができる。 According to one aspect of the present disclosure, it is possible to notify a bonding channel of a different band, and thus it is possible to improve frequency use efficiency. Also, high throughput can be realized by using D / A and A / D having a low sampling rate.
 また、少ないビット数で、キャリア数の制限無くチャネルの組み合わせを通知することができる。 Also, a combination of channels can be notified with a small number of bits and no limitation on the number of carriers.
 本開示の一態様における更なる利点および効果は、明細書および図面から明らかにされる。かかる利点および/又は効果は、いくつかの実施形態並びに明細書および図面に記載された特徴によってそれぞれ提供されるが、1つ又はそれ以上の同一の特徴を得るために必ずしも全てが提供される必要はない。 Further advantages and effects of one aspect of the present disclosure will become apparent from the specification and drawings. Such advantages and / or effects are provided respectively by the features described in some embodiments and the specification and drawings, but all have to be provided in order to obtain one or more identical features. There is no.
チャネルアグリゲーションを行う送信装置の構成を示す図The figure which shows the structure of the transmitter which performs a channel aggregation チャネルアグリゲーションを行う受信装置の構成を示す図The figure which shows the structure of the receiver which performs channel aggregation チャネライゼーションを示す図Diagram showing channelization Channel setの例を示す図Diagram showing an example of Channel set 送信装置を用いて行うチャネルアグリゲーションの例を示す図The figure which shows the example of the channel aggregation performed using a transmitter 送信装置を用いて行うチャネルアグリゲーションの例を示す図The figure which shows the example of the channel aggregation performed using a transmitter 送信装置を用いて行うチャネルアグリゲーションの例を示す図The figure which shows the example of the channel aggregation performed using a transmitter 送信装置を用いて行うチャネルアグリゲーションの例を示す図The figure which shows the example of the channel aggregation performed using a transmitter チャネルアグリゲーションフレームのフォーマットを示す図The figure which shows the format of a channel aggregation frame チャネルアグリゲーションフレームのフォーマットを示す図The figure which shows the format of a channel aggregation frame チャネルアグリゲーションフレームのフォーマットを示す図The figure which shows the format of a channel aggregation frame チャネルアグリゲーションフレームのフォーマットを示す図The figure which shows the format of a channel aggregation frame 送信装置が受信装置に対してチャネル選択情報を通知する方法を説明する図The figure explaining the method a transmission apparatus notifies channel selection information with respect to a reception apparatus 送信装置が受信装置に対してチャネル選択情報を通知する方法を説明する図The figure explaining the method a transmission apparatus notifies channel selection information with respect to a reception apparatus フォーマット1の情報を示す図 Figure showing format 1 information フォーマット2の情報を示す図 Figure showing format 2 information 各チャネルのインデックス値及びビットマップ値を示す図The figure which shows the index value and bitmap value of each channel 各チャネルのインデックス値及びビットマップ値を示す図The figure which shows the index value and bitmap value of each channel 各チャネルのインデックス値及びビットマップ値を示す図The figure which shows the index value and bitmap value of each channel 各チャネルのインデックス値及びビットマップ値を示す図The figure which shows the index value and bitmap value of each channel チャネライゼーションを示す図(ch30の例)Diagram showing channelization (ch30 example) 各チャネルのインデックス値及びビットマップ値を示す図The figure which shows the index value and bitmap value of each channel 各チャネルのインデックス値及びビットマップ値を示す図The figure which shows the index value and bitmap value of each channel フォーマット4の情報を示す図 Figure showing format 4 information フォーマット5の情報を示す図 Figure showing format 5 information BW indexフィールドの値と、第1キャリアから第4キャリアまでのチャネル帯域幅及びキャリア数との関係を示す図The figure which shows the relationship between the value of a BW | index field, the channel bandwidth from the 1st carrier to the 4th carrier, and the number of carriers BW indexが8のときのチャネルの組み合わせを示す図Diagram showing channel combinations when BW index is 8 フォーマット6の情報を示す図 Figure showing format 6 information チャネルアグリゲーションを行う送信装置の別の構成を示す図The figure which shows another structure of the transmitter which performs a channel aggregation チャネルアグリゲーションを行う受信装置の別の構成を示す図The figure which shows another structure of the receiver which performs channel aggregation ヘッダフォーマットの例を示す図Figure showing an example of header format ヘッダフォーマットの例を示す図Figure showing an example of header format ヘッダフォーマットの例を示す図Figure showing an example of header format ヘッダフォーマットの例を示す図Figure showing an example of header format
 以下、図面を適宜参照して、本開示の一実施の形態について詳細に説明する。 Hereinafter, an embodiment of the present disclosure will be described in detail with reference to the drawings as appropriate.
 <送信装置の構成>
 図1は、チャネルアグリゲーションを行う送信装置100の構成を示す図である。送信装置100は、図示しない上位レイヤ処理部(例えばMACレイヤ)にてPHY制御データとペイロードデータを生成する。
<Configuration of transmitter>
FIG. 1 is a diagram illustrating a configuration of a transmission apparatus 100 that performs channel aggregation. The transmission device 100 generates PHY control data and payload data in an upper layer processing unit (not shown) (for example, a MAC layer).
 RF制御部110は、PHY制御データに基づき、第1~第4キャリアで使用するチャネルの中心周波数(キャリア周波数と呼ぶことがある)、及び、チャネルの帯域幅を決定し、中心周波数とチャネルの帯域幅の組み合わせの情報を変調部104a~104d、広帯域D/A105a~105d、広帯域RF106a~106dへ通知する。なお、RF制御部110は、チャネルの中心周波数とチャネルの帯域幅の組み合わせの情報を、チャネル番号として通知しても良い。 Based on the PHY control data, the RF control unit 110 determines the center frequency (sometimes referred to as carrier frequency) of the channels used in the first to fourth carriers and the channel bandwidth, and determines the center frequency and the channel frequency. Information on the combination of bandwidths is notified to the modulators 104a to 104d, the broadband D / A 105a to 105d, and the broadband RFs 106a to 106d. Note that the RF control unit 110 may report information on the combination of the center frequency of the channel and the bandwidth of the channel as a channel number.
 ヘッダ符号化部101は、PHY制御データに対しビットスクランブル及びLDPC符号化を行い、L-Header及びEDMG-Headerデータを生成する。生成されたデータは、変調部104a~104dにそれぞれ同一のデータとして転送される。 The header encoding unit 101 performs bit scrambling and LDPC encoding on the PHY control data to generate L-Header and EDMG-Header data. The generated data is transferred to the modulation units 104a to 104d as the same data.
 ペイロード符号化部102は、ペイロードデータのビットスクランブル及びLDPC符号化を行う。ペイロードデータ分割部103は、符号化されたペイロードデータを最大4つに分割し、変調部104a~104dへ転送する。以下、分割数を、キャリア数と呼ぶ。 The payload encoding unit 102 performs bit scrambling and LDPC encoding of payload data. The payload data division unit 103 divides the encoded payload data into a maximum of four and transfers the data to the modulation units 104a to 104d. Hereinafter, the number of divisions is referred to as the number of carriers.
 変調部104aは、第1キャリアのデータの変調を行う。変調部104aは、まず、ヘッダ符号化部101が出力したL-Header及びE-Headerの符号化を行う。変調方式として、π/2-BPSKを用いてもよい。また、変調部104aは、RF制御部110から通知されるチャネルの帯域幅に応じ、L-Header及びE-Headerのデータを複製し、複数のチャネルに配置する。なお、変調部104aが行う処理の詳細については、フレームフォーマットの説明とともに後述する。 Modulation section 104a modulates the first carrier data. The modulation unit 104a first encodes the L-header and E-header output from the header coding unit 101. Π / 2-BPSK may be used as the modulation method. Also, the modulation unit 104a duplicates L-Header and E-Header data according to the channel bandwidth notified from the RF control unit 110, and arranges the data in a plurality of channels. The details of the processing performed by the modulation unit 104a will be described later together with the description of the frame format.
 また、変調部104aは、ペイロードデータ分割部103が分割したペイロードデータの1つに対して変調を行う。分割されたペイロードデータを第1キャリアのデータと呼ぶ。変調部104aは、データ変調方式として、π/2-BPSK、π/2-QPSK、π/2-16QAM、π/2-64QAMを用いても良い。変調部104aは、データ変調後のシンボルをシングルキャリアで伝送してもよく、また、データ変調後のシンボルをOFDMで伝送しても良い。 Also, the modulation unit 104a modulates one of the payload data divided by the payload data division unit 103. The divided payload data is referred to as first carrier data. The modulation unit 104a may use π / 2-BPSK, π / 2-QPSK, π / 2-16QAM, or π / 2-64QAM as a data modulation method. Modulation section 104a may transmit the data-modulated symbol using a single carrier, or may transmit the data-modulated symbol using OFDM.
 広帯域D/A105a、広帯域RF106a、アンテナ107aは、第1キャリアのデータを、RF制御部110が指定する第1のキャリア周波数及びチャネル帯域幅により送信する。なお、RF制御部110は、チャネル帯域幅の代わりに広帯域D/Aのサンプリングレートを指定しても良い。 The broadband D / A 105a, the broadband RF 106a, and the antenna 107a transmit the data of the first carrier using the first carrier frequency and channel bandwidth specified by the RF control unit 110. Note that the RF control unit 110 may specify a wideband D / A sampling rate instead of the channel bandwidth.
 変調部104bは、第2キャリアのデータの変調を行う。まず、ヘッダ符号化部101が出力したL-Header及びE-Headerの符号化を行う。L-Header及びE-Headerのデータは第1キャリアで使用するものと同一のデータであるから、変調部104bは、変調を行う代わりに変調済みのL-Header及びE-Headerのデータを変調部104aから取得しても良い。 The modulation unit 104b modulates data of the second carrier. First, L-Header and E-Header output from the header encoding unit 101 are encoded. Since the L-Header and E-Header data is the same as that used in the first carrier, the modulation unit 104b modulates the modulated L-Header and E-Header data instead of performing the modulation. You may acquire from 104a.
 但し、第1キャリアと第2キャリアとでチャネル帯域幅が異なる場合には、まず、2.16GHz帯域用の変調済のL-Header及びE-Headerのデータを変調部104aから取得し、変調部104bでは、第2キャリア用のチャネル帯域幅に応じて、変調済のL-Header及びE-Headerのデータの複製とチャネル配置を行う。 However, when the channel bandwidth is different between the first carrier and the second carrier, first, the modulated L-Header and E-Header data for the 2.16 GHz band are acquired from the modulation unit 104a, and the modulation unit 104b Then, in accordance with the channel bandwidth for the second carrier, duplication of the modulated L-Header and E-Header data and channel arrangement are performed.
 また、ペイロードデータ分割部103が分割して出力したペイロードデータのうち、第1キャリアとは異なる1つのペイロードデータに対して変調を行う。このペイロードデータを第2キャリアのデータと呼ぶ。 Also, one piece of payload data different from the first carrier among the payload data divided and output by the payload data division unit 103 is modulated. This payload data is referred to as second carrier data.
 変調部104c、104dは、変調部104bと同様に、残りのペイロードデータ(すなわち第3キャリアのデータ、及び第4キャリアのデータ)に対して変調を行う。 The modulation units 104c and 104d modulate the remaining payload data (that is, the third carrier data and the fourth carrier data) in the same manner as the modulation unit 104b.
 また、広帯域D/A105b~105d、広帯域RF106b~106d、アンテナ107b~107dは、変調された第2~第4キャリアのデータを、RF制御部110が指定する第2~第4のキャリア周波数及び第2~第4のチャネル帯域幅によりそれぞれ送信する。 Also, the wideband D / A 105b to 105d, the wideband RF 106b to 106d, and the antennas 107b to 107d are the second to fourth carrier frequencies and the second carrier frequencies specified by the RF control unit 110 for the modulated second to fourth carrier data. Transmission is performed using the second to fourth channel bandwidths.
 アンテナ107a~107dはそれぞれアレイアンテナであってもよく、つまり、アンテナ107a~107dはそれぞれ複数のアンテナ素子から構成され、さらに、アンテナ素子間の位相やゲインを制御することでアンテナ107a~107dの指向性を制御する構成としても良い。 Each of the antennas 107a to 107d may be an array antenna. That is, the antennas 107a to 107d are each composed of a plurality of antenna elements, and the antennas 107a to 107d are directed by controlling the phase and gain between the antenna elements. It is good also as a structure which controls property.
 また、RF制御部110は、PHY制御データに従い、アンテナ107a~107dの指向性を制御しても良い。 Further, the RF control unit 110 may control the directivities of the antennas 107a to 107d according to the PHY control data.
 <受信装置の構成>
 図2は、チャネルアグリゲーションを行う受信装置200の構成を示す図である。
<Configuration of receiving device>
FIG. 2 is a diagram illustrating a configuration of a reception device 200 that performs channel aggregation.
 RF制御部210は、まず、PHY制御データに基づき、L-Header及びE-Headerを受信するように第1キャリアの設定を行う。L-Header及びE-Headerの受信は、プライマリチャネルと呼ばれるあらかじめ定められたチャネルで行ってもよい。この場合、第1キャリアの復調部204a、同期部208a、広帯域A/D205a、広帯域RF206aを、プライマリチャネルを受信できるチャネルの1つの設定にあわせ、中心周波数及び帯域幅を設定する。なお、RF制御部210は、第2~第4キャリアを設定して、複数のキャリアでL-Header及びE-Headerを受信しても良い。 The RF control unit 210 first sets the first carrier so as to receive the L-Header and the E-Header based on the PHY control data. The reception of the L-Header and the E-Header may be performed through a predetermined channel called a primary channel. In this case, the center frequency and the bandwidth are set in accordance with one setting of the channel capable of receiving the primary channel for the demodulation unit 204a, the synchronization unit 208a, the broadband A / D 205a, and the broadband RF 206a of the first carrier. Note that the RF control unit 210 may set the second to fourth carriers and receive the L-Header and the E-Header with a plurality of carriers.
 広帯域RF206aは、60GHz帯のRF信号を変換してベースバンド信号を出力する。広帯域A/D205aは、ベースバンド信号に対してA/D(アナログ/デジタル)変換を行う。同期部208aは、デジタル変換されたベースバンド信号からプリアンブルを検出し、検出したプリアンブルを用いて、デジタル変換されたベースバンド信号に対して、キャリア周波数オフセットの推定及び補正を行う。復調部204aは、イコライザ(等化器)、データ復調部を含み、同期部208aから出力された信号に対して、等化、シンボル同期ずれの推定及び補正、データ復調等を行う。 The broadband RF 206a converts a 60 GHz band RF signal and outputs a baseband signal. The broadband A / D 205a performs A / D (analog / digital) conversion on the baseband signal. The synchronization unit 208a detects the preamble from the digitally converted baseband signal, and estimates and corrects the carrier frequency offset for the digitally converted baseband signal using the detected preamble. The demodulator 204a includes an equalizer (equalizer) and a data demodulator, and performs equalization, symbol synchronization shift estimation and correction, data demodulation, and the like on the signal output from the synchronization unit 208a.
 ヘッダ復号部201は、復調部204aから出力される復調されたデータから、ヘッダ情報を取り出し、取り出したヘッダ情報を用いて、LDPC復号(誤り訂正)、CRCチェック(誤り検出)、ヘッダフォーマットの解析を行い、PHYヘッダ情報を取得する。PHYヘッダ情報には、第1~第4キャリアのチャネル情報(中心周波数及び帯域幅に関する情報、もしくは、チャネル番号)が含まれる。 The header decoding unit 201 extracts header information from the demodulated data output from the demodulation unit 204a, and uses the extracted header information to perform LDPC decoding (error correction), CRC check (error detection), and header format analysis. To obtain PHY header information. The PHY header information includes channel information (information regarding the center frequency and bandwidth, or channel number) of the first to fourth carriers.
 ヘッダが復号された後、RF制御部210は、第1~第4キャリアのチャネル情報に基づき第1~第4キャリアの復調部204a~204d、同期部208a~208d、広帯域A/D205a~205d、広帯域RF206a~206dの設定を行う。設定する情報は、各キャリアで使用するチャネルの中心周波数、及びチャネル帯域幅の情報を含む。なお、それらの情報の代わりにチャネル番号を用いても良い。なお、第1~第4キャリアのチャネル情報として、ヘッダ復号部201から得られた値を用いてもよく、また、ヘッダ受信前にあらかじめ通知されている場合には、図示しないMAC処理部より入力されるPHY制御データに含まれるチャネル情報を用いても良い。 After the header is decoded, the RF control unit 210 performs demodulation of the first to fourth carriers 204a to 204d, synchronization units 208a to 208d, broadband A / D 205a to 205d, based on the channel information of the first to fourth carriers. The broadband RFs 206a to 206d are set. The information to be set includes information on the center frequency and channel bandwidth of the channel used in each carrier. Note that channel numbers may be used instead of such information. Note that the values obtained from the header decoding unit 201 may be used as the channel information of the first to fourth carriers, and when notified in advance before receiving the header, input from a MAC processing unit (not shown) Channel information included in the PHY control data to be used may be used.
 復調部204a~204d、同期部208a~208d、広帯域A/D205a~205d、広帯域RF206a~206dは、復号されたヘッダ情報に基づいて、それぞれ設定されたチャネルの中心周波数、及びチャネル帯域幅に応じてチャネルアグリゲーションされたフレームを受信する。 Demodulators 204a to 204d, synchronizers 208a to 208d, broadband A / Ds 205a to 205d, and broadband RFs 206a to 206d are set in accordance with the set center frequency and channel bandwidth, respectively, based on the decoded header information. Receive channel-aggregated frames.
 復調部204a~204dから出力された復調データは、ペイロード復号部202に集められ、ペイロード復号部202はLDPC復号(誤り訂正)やデスクランブルを行い、得られたデータを受信ペイロードデータとしてMAC処理部に転送する。 The demodulated data output from the demodulation units 204a to 204d is collected in the payload decoding unit 202. The payload decoding unit 202 performs LDPC decoding (error correction) and descrambling, and uses the obtained data as received payload data as a MAC processing unit. Forward to.
 <チャネライゼーション>
 図3は、チャネライゼーションを示す図である。IEEE802.11ad-2012規格では、ch1~ch4が用いられる。それぞれの中心周波数は、58.32 GHz、60.48 GHz、62.64 GHz、64.80 GHzである。また、ch1~ch4のチャネル間隔は2.16GHzである。便宜上、それぞれ、チャネル帯域幅を2.16 GHzと記載する。それぞれのチャネルにおいて、シンボルレート1.76 Gs/s(サンプル/秒)のシングルキャリア信号、もしくはサンプリングレート2.64 Gs/sで変調されたOFDM信号(但し約1.8GHzに帯域制限されている)を伝送することができる。
<Channelization>
FIG. 3 is a diagram illustrating channelization. In the IEEE802.11ad-2012 standard, ch1 to ch4 are used. The respective center frequencies are 58.32 GHz, 60.48 GHz, 62.64 GHz, and 64.80 GHz. The channel interval between ch1 to ch4 is 2.16 GHz. For convenience, the channel bandwidth is described as 2.16 GHz. Each channel transmits a single carrier signal with a symbol rate of 1.76 Gs / s (samples / second) or an OFDM signal modulated with a sampling rate of 2.64 Gs / s (but limited to about 1.8 GHz). Can do.
 ch9, ch11は、チャネル帯域幅 4.32 GHzのチャネルボンディングを行うためのチャネルである。中心周波数は、それぞれ59.40 GHz、63.72 GHzである。すなわち、ch9は、ch1とch2をあわせた帯域を用い、ch11は、ch3とch4をあわせた帯域を使用する。また、ch2とch3をあわせた帯域であるch10は、中心周波数 61.56 GHz、チャネル帯域幅 4.32 GHzであるチャネルであるが、ch9及びch11の帯域と一部が重複するため、使用しない。 Chch9 and ch11 are channels for channel bonding with a channel bandwidth of 4.32 GHz. The center frequencies are 59.40 GHz and 63.72 GHz, respectively. That is, ch9 uses a band that combines ch1 and ch2, and ch11 uses a band that combines ch3 and ch4. In addition, ch10, which is the combined band of ch2 and ch3, is a channel having a center frequency of 61.56 GHz and a channel bandwidth of 4.32 GHz, but is not used because it partially overlaps with the bands of ch9 and ch11.
 ch17は、チャネル帯域幅 6.48 GHzのチャネルボンディングを行うためのチャネルである。中心周波数は、60.48 GHzである。すなわち、ch17は、ch1、ch2、ch3をあわせた帯域を用いる。また、ch2、ch3、ch4をあわせた帯域であるch18と、ch3、ch4、ch5をあわせた帯域であるch19とは、中心周波数がそれぞれ62.64 GHz、64.80 GHz、チャネル帯域幅はいずれも6.48 GHzであるチャネルであるが、ch17の帯域と一部が重複するため、使用しない。 Ch17 is a channel for channel bonding with a channel bandwidth of 6.48 GHz. The center frequency is 60.48 GHz. That is, ch17 uses a band that combines ch1, ch2, and ch3. In addition, ch18, which is the combined band of ch2, ch3, and ch4, and ch19, which is the combined band of ch3, ch4, and ch5, have center frequencies of 62.64 GHz and 64.80 GHz, respectively, and the channel bandwidth is 6.48 GHz. Although it is a certain channel, it is not used because it partially overlaps the ch17 band.
 ch25は、チャネル帯域幅8.64 GHzのチャネルボンディングを行うためのチャネルである。中心周波数は、61.56 GHzである。すなわち、ch25は、ch1、ch2、ch3,ch4をあわせた帯域を用いる。 Ch25 is a channel for channel bonding with a channel bandwidth of 8.64 GHz. The center frequency is 61.56 GHz. That is, ch25 uses a band that combines ch1, ch2, ch3, and ch4.
 ch5~ch8は、IEEE802.11ad規格では使われていない。将来、57~66GHz以外の帯域で送信装置100を使用可能な場合に、使用するチャネル番号である。中心周波数とチャネル帯域幅は未定であるが、説明の便宜上、ch1~ch4と同様に2.16 GHz幅であり、ch4に隣接した高い周波数帯に配置されるものと想定し、中心周波数をそれぞれ66.96 GHz、69.12 GHz、71.28 GHz、73.44 GHzと記載した。 Ch5 to ch8 are not used in the IEEE802.11ad standard. This is the channel number to be used when the transmitter 100 can be used in a band other than 57 to 66 GHz in the future. Although the center frequency and channel bandwidth are undecided, for convenience of explanation, it is assumed that the width is 2.16 GHz like ch1 to ch4, and it is placed in a high frequency band adjacent to ch4, and the center frequency is 66.96 GHz respectively. 69.12 GHz, 71.28 GHz, 73.44 GHz.
 すなわち、説明の便宜上、ch1~ch8は2.16 GHz間隔にて連続して配置したが、非連続の帯域であってもよい。例えば、ch5,6は図示したとおり連続チャネルであってもよく、ch7,8は離れた帯域(ch6とch7の間が2.16GHz以上)であってもよい。 That is, for convenience of explanation, ch1 to ch8 are continuously arranged at intervals of 2.16 GHz, but may be discontinuous bands. For example, ch5 and 6 may be continuous channels as shown, and ch7 and 8 may be separated bands (between ch6 and ch7 2.16 GHz or more).
 なお、ch5~8が存在したとき、ボンディングチャネルch13, ch15, ch20, ch29を図3に示す点線の通り定める。 When ch5 to 8 are present, bonding channels ch13, ch15, ch20, and ch29 are defined as shown by the dotted lines in FIG.
 図3に示したチャネルの中心周波数と、チャネル番号との対応は、ch1~ch8(帯域幅が2.16 GHz)については、以下の式1で定められ、ch9~ch16(帯域幅が4.32 GHz)については、以下の式2で定められ、ch17~ch24(帯域幅が6.48 GHz)については以下の式3で定められ、ch25~ch31(帯域幅が8.64 GHz)については式4で定められる。
Channel center frequency = Channel starting frequency
            + Channel spacing x Channel number      ・・・式1
Channel center frequency = Channel starting frequency
            + (Channel spacing/2) x (Channel number mod 8) + 1.08GHz
                                   ・・・式2
Channel center frequency = Channel starting frequency
            + (Channel spacing/3) x (Channel number mod 16) + 2.16GHz
                                   ・・・式3
Channel center frequency = Channel starting frequency
            + (Channel spacing/4) x (Channel number mod 24) + 3.24GHz
                                   ・・・式4
The correspondence between the channel center frequency and channel number shown in Fig. 3 is defined by the following equation 1 for ch1 to ch8 (bandwidth 2.16 GHz), and for ch9 to ch16 (bandwidth 4.32 GHz) Is defined by Equation 2 below, ch17 to ch24 (bandwidth is 6.48 GHz) is defined by Equation 3 below, and ch25 to ch31 (bandwidth is 8.64 GHz) is defined by Equation 4.
Channel center frequency = Channel starting frequency
+ Channel spacing x Channel number ・ ・ ・ Formula 1
Channel center frequency = Channel starting frequency
+ (Channel spacing / 2) x (Channel number mod 8) + 1.08GHz
... Formula 2
Channel center frequency = Channel starting frequency
+ (Channel spacing / 3) x (Channel number mod 16) + 2.16GHz
... Formula 3
Channel center frequency = Channel starting frequency
+ (Channel spacing / 4) x (Channel number mod 24) + 3.24GHz
... Formula 4
 例えば、ch1~ch8の場合、図4のChannel setにチャネル番号(1~8)の記載がある行を参照し、Channel spacingが2160 MHz、Channel starting frequencyが56.16 GHzと決定する。帯域幅が2.16 GHzであるから、式1を参照し、Channel numberに該当するチャネル番号(1~8)を代入して、Channel center frequency(チャネルの中心周波数)を算出する。 For example, in the case of ch1 to ch8, refer to the line where the channel number (1 to 8) is described in Channel set in FIG. 4 and determine that Channel spacing is 2160 MHz and Channel starting frequency is 56.16 GHz. Since the bandwidth is 2.16 GHz, channel number (1 to 8) corresponding to Channel チ ャ ネ ル number is substituted with reference to Equation 1, and Channel center frequency (channel center frequency) is calculated.
 <チャネルアグリゲーションの例>
 図5は、送信装置100を用いて行うチャネルアグリゲーションの例を示す図である。
<Example of channel aggregation>
FIG. 5 is a diagram illustrating an example of channel aggregation performed using the transmission device 100.
 図5Aでは、第1キャリアはch1、第2キャリアはch2、第3キャリアはch3、第4キャリアはch4を使用し、いずれも2.16GHzチャネル幅で送信を行う。第1~4キャリアは、図1(送信装置)の第1~4キャリアに対応する。 In FIG. 5A, ch1 is used for the first carrier, ch2 is used for the second carrier, ch3 is used for the third carrier, and ch4 is used for the fourth carrier, both of which transmit at a 2.16 GHz channel width. The first to fourth carriers correspond to the first to fourth carriers in FIG. 1 (transmitting apparatus).
 図5Aでは、最大4キャリアまでアグリゲーションすることにより、スループットを4倍にすることができる。各キャリアではチャネル幅は2.16GHz(シンボルレートは1.76Gシンボル/秒)であるから、チャネルボンディングのように高速のD/A、A/D変換器を用いることなく、11ad規格と同じ速度のD/A、A/D変換器(例えば2.64Gサンプル/秒、シングルキャリアのシンボルレートの1.5倍)を用いて、高速な通信を行うことができる。また、送信するデータ量に応じて、一部のキャリアの送信を停止することで、低消費電力化をはかることができる。なお、チャネルボンディングでは、例えばch9からch1に切り替えを行う場合には、中心周波数を変更するため、切り替えのために遅延を要する。 In FIG. 5A, the throughput can be quadrupled by aggregating up to four carriers. Since each carrier has a channel width of 2.16 GHz (symbol rate is 1.76 G symbol / second), it does not use high-speed D / A and A / D converters like channel bonding, and has the same speed as the 11ad standard. / A, A / D converters (eg 2.64 Gsample / s, 1.5 times the single carrier symbol rate) can be used for high-speed communication. Further, power consumption can be reduced by stopping transmission of some carriers according to the amount of data to be transmitted. In channel bonding, for example, when switching from ch9 to ch1, the center frequency is changed, so that a delay is required for switching.
 また、各キャリアでは、チャネルボンディングを利用してよい。図5Bではチャネル幅 4.32 GHz (シングルキャリアのシンボルレート 3.52 Gサンプル/秒)のボンディングチャネルを3キャリアで送信することにより、11ad規格の約6倍のスループットを実現する。なお、チャネルボンディングで実現する場合には、チャネル幅 12.96 GHz (例えば、シングルキャリアのシンボルレート 10.56 Gシンボル/秒)の信号を受信できるD/A、A/D変換器を用いるため、小型及び低消費電力を実現することが困難である。それに比べて相対的に低いサンプリングレートのD/A、A/D変換器を用いて高スループットが実現できるので、低消費電力化をはかることができる。 Also, channel bonding may be used for each carrier. In FIG. 5B, by transmitting a bonding channel having a channel width of 4.32 GHz (single carrier symbol rate of 3.52 G samples / second) with three carriers, a throughput approximately six times that of the 11ad standard is realized. In the case of realization by channel bonding, a D / A and A / D converter that can receive a signal with a channel width of 12.96 GHz (for example, a single carrier symbol rate of 10.56 G symbols / second) is used. It is difficult to realize power consumption. Compared with this, a high throughput can be realized by using a D / A and A / D converter having a relatively low sampling rate, so that low power consumption can be achieved.
 また、各キャリアは、異なるチャネル幅(異なるシンボルレート、異なるチャネルボンディングレベル)を用いても良い。図5Cでは、ch17(3チャネルボンディング)、ch4、ch13(2チャネルボンディング)の組み合わせを示す。 Also, each carrier may use a different channel width (different symbol rate, different channel bonding level). FIG. 5C shows a combination of ch17 (3-channel bonding), ch4, and ch13 (2-channel bonding).
 第1に、利用できる総チャネル数が例えば5チャネル(10.8GHz=2.16GHz ×5)のように奇数である場合に、4チャネル(8.64GHz)と1チャネル(2.16GHz)、もしくは、3チャネル(6.48GHz)と2チャネル(4.32GHz)のように組み合わせて、最大のスループットを得ることができる。 First, if the total number of channels that can be used is an odd number such as 5 channels (10.8 GHz = 2.16 GHz × 5), 4 channels (8.64 GHz) and 1 channel (2.16 GHz), or 3 channels ( 6.48GHz) and 2 channels (4.32GHz) can be combined to obtain the maximum throughput.
 第2に、各キャリアの信号を別のユーザに対して送信する場合(詳しくはマルチユーザ伝送のMCS通知で説明する)、ユーザ毎の対応能力(ボンディング可能なチャネル数)や、ユーザ毎のデータ量に応じて、適切に各キャリアのチャネル幅を選択し、スループットを高めることができ、チャネルの利用効率を高めることができる。 Second, when transmitting the signal of each carrier to another user (explained in detail in the MCS notification of multi-user transmission), the capability for each user (number of channels that can be bonded) and the data for each user According to the amount, the channel width of each carrier can be appropriately selected, the throughput can be increased, and the channel utilization efficiency can be increased.
 第3に、図5Dのように、混雑したチャネル(例えばch4)を避けてキャリアを配置することができるので、スループットを高めることができ、チャネルの利用効率を高めることができる。 Third, as shown in FIG. 5D, carriers can be arranged avoiding a congested channel (for example, ch4), so that throughput can be increased and channel utilization efficiency can be increased.
 <フレームフォーマット>
 送信装置100が行うチャネルアグリゲーションにおけるPHYフレーム(以下、「チャネルアグリゲーションフレーム」という)のフォーマットを図6に記載する。図6Aは図5Aに対応し、図6Bは図5Bに対応し、図6Cは図5Cに対応し、図6Dは図5Dに対応する。
<Frame format>
A format of a PHY frame (hereinafter referred to as “channel aggregation frame”) in channel aggregation performed by the transmission apparatus 100 is illustrated in FIG. 6. 6A corresponds to FIG. 5A, FIG. 6B corresponds to FIG. 5B, FIG. 6C corresponds to FIG. 5C, and FIG. 6D corresponds to FIG.
 STFからE-Headerまでは、チャネル毎に全て同じ信号、変調を用いて送信する。なお、受信装置は、Primary channel以外を受信しなくてもよい。ここで、Primary channelは、2.16GHz幅のいずれかのチャネルであり、あらかじめ定められている。例えば、図6Aでは、ch1からch4までのいずれかである。また、図6Bでは、ch1からch6までのいずれかである。 From STF to E-Header, all channels are transmitted using the same signal and modulation. Note that the receiving device does not have to receive anything other than the primary channel. Here, the Primary channel is any channel with a width of 2.16 GHz and is determined in advance. For example, in FIG. 6A, any one of ch1 to ch4. In FIG. 6B, any one of ch1 to ch6.
 送信装置は、E-Headerにチャネル選択情報を含めて送信する。例えば、図6Aでは、ch1,2,3,4を選択したことを示す情報を含める。また、図6Bでは、ch9,11,13を選択したことを示す情報を含める。また、送信装置とアソシエーションを行っていないSTAのために、E-HeaderにはPrimary Channel情報を含めてよい。なお、これらのチャネル選択情報の通知方法の詳細については後述する。 The transmitting device transmits the E-Header including the channel selection information. For example, in FIG. 6A, information indicating that ch1, 2, 3, and 4 are selected is included. Further, in FIG. 6B, information indicating that ch9, 11, and 13 are selected is included. In addition, Primary-Channel information may be included in the E-Header for an STA that is not associated with a transmitting apparatus. The details of the channel selection information notification method will be described later.
 なお、E-Headerの代わりに、L-Headerにチャネル選択情報を含めても良い。 Note that channel selection information may be included in the L-Header instead of the E-Header.
 図6Aでは、第1キャリアから第4キャリアにおいて、ヘッダ(L-Header, E-Header)及びペイロード(Payload1からPayload4まで)は、シンボルレート1.76 Gspsのシングルキャリアで変調され、2.16 GHz帯域幅で送信される。 In FIG. 6A, the header (L-Header, E-Header) and payload (from Payload1 to Payload4) are modulated with a single carrier with a symbol rate of 1.76 Gsps and transmitted with a 2.16 GHz bandwidth in the first to fourth carriers. Is done.
 図6Bでは、第1キャリアから第3キャリアにおいて、ペイロード(Payload1からPayload3まで)はシンボルレート3.52 Gspsのシングルキャリアで変調され、4.32 GHz帯域幅で送信される。ヘッダは、1.76Gspsでシングルキャリア変調され、ch9,ch11,ch13に対応する2.16 GHzチャネルであるch1からch6までにおいて送信される。 In FIG. 6B, in the first carrier to the third carrier, the payload (from Payload 1 to Payload 3) is modulated with a single carrier with a symbol rate of 3.52sGsps and transmitted with a bandwidth of 4.32 GHz. The header is single-carrier modulated at 1.76 Gsps and transmitted in ch1 to ch6, which are 2.16 GHz channels corresponding to ch9, ch11, and ch13.
 図6Cでは、第1,第2,第3キャリアにおいて、Payload1,Payload2,Paylaod3はそれぞれシンボルレート5.28 Gsps, 1.76 Gsps, 3.52 Gspsのシングルキャリアで変調され、それぞれ6.48 GHz, 2.16 GHz, 4.32 GHz帯域幅で送信される。ヘッダは、1.76Gspsでシングルキャリア変調され、ch17,ch4,ch13に対応する2.16 GHzチャネルであるch1からch6までにおいて送信される。 In FIG. 6C, Payload1, Payload2, and Paylaod3 are modulated with single carriers of symbol rates 5.28 Gsps, 1.76 Gsps, 3.52 Gsps, respectively, for the first, second, and third carriers, and the bandwidths of 6.48 GHz, 2.16 GHz, and 4.32 GHz, respectively. Sent by. The header is single-carrier modulated at 1.76 Gsps and transmitted in ch1 to ch6, which are 2.16 GHz channels corresponding to ch17, ch4, and ch13.
 図6Dでは、第1,第2キャリアにおいて、Payload1,Payload2はそれぞれシンボルレート5.28 Gsps, 3.52 Gspsのシングルキャリアで変調され、それぞれ6.48 GHz, 4.32 GHz帯域幅で送信される。ヘッダは、1.76Gspsでシングルキャリア変調され、ch17,ch13に対応する2.16 GHzチャネルであるch1, ch2, ch3, ch5, ch6 において送信される。 6D, in the first and second carriers, Payload 1 and Payload 2 are modulated with single carriers of symbol rates 5.28 Gsps and 3.52 Gsps, respectively, and transmitted with bandwidths of 6.48 GHz and 4.32 そ れ ぞ れ GHz, respectively. The header is single-carrier modulated at 1.76 Gsps and transmitted in ch1, ch2, ch3, ch5, and ch6, which are 2.16 GHz channels corresponding to ch17 and ch13.
 このように、各キャリアで異なる帯域幅を用いる場合でも、ヘッダは2.16 GHz帯域幅で送信されるため、キャリアアグリゲーションフレームに含まれるいずれか1つの2.16 GHz帯域のチャネルを受信することで、ヘッダの情報を得ることができ、チャネルアグリゲーションフレームにおけるチャネル選択情報を取得することができる。 In this way, even when different bandwidths are used for each carrier, the header is transmitted with a 2.16 GHz bandwidth, so by receiving any one 2.16 チ ャ ネ ル GHz channel included in the carrier aggregation frame, Information can be obtained, and channel selection information in the channel aggregation frame can be obtained.
 なお、STF(Short Training Field)、CEF(Channel Estimation Field)は、IEEE802.11ad規格に定められる信号と同等である。これらは、信号の同期や、L-Header、E-Headerの復調に用いられる。 Note that STF (Short Training Field) and CEF (Channel Estimation Field) are equivalent to signals defined in the IEEE 802.11ad standard. These are used for signal synchronization and L-header and E-header demodulation.
 E-STF(EDMG STF)、E-CEF(EDMG CEF)は、信号の同期や、ペイロードの復調(チャネル推定)に用いられ、ペイロードと同じ信号帯域幅で送信される。 E-STF (EDMGEDSTF) and E-CEF (EDMG CEF) are used for signal synchronization and payload demodulation (channel estimation), and are transmitted with the same signal bandwidth as the payload.
 <チャネル選択情報通知方法>
 次に、送信装置が、受信装置に対してチャネル選択情報を通知する方法について説明する。
<Channel selection information notification method>
Next, a method in which the transmission apparatus notifies channel selection information to the reception apparatus will be described.
 (方法1)
 前述の通り、チャネル選択情報は、データパケットのE-Header(もしくはL-Header)を用いて通知される。
(Method 1)
As described above, the channel selection information is notified using the E-Header (or L-Header) of the data packet.
 この場合、図7Aに示すように、受信装置200は、Primary Channel上のE-Headerを受信及び復号してチャネル選択情報を取得する。取得したチャネル選択情報に応じて、E-STF受信開始タイミングにおいてA/D変換器のサンプリングレートを切り替える。 In this case, as shown in FIG. 7A, the receiving apparatus 200 receives and decodes the E-Header on the Primary-Channel and acquires channel selection information. The A / D converter sampling rate is switched at the E-STF reception start timing according to the acquired channel selection information.
 なお、A/D変換器はあらかじめ(ヘッダ受信前から)3.52GSpsもしくは受信装置がサポートする最大のサンプリングレートに設定しておき、デジタルフィルタ及びアナログフィルタを切り替えても良い。 The A / D converter may be set in advance to 3.52 GSps or the maximum sampling rate supported by the receiving device (before receiving the header), and the digital filter and analog filter may be switched.
 (方法2)
 データパケットを送信する前に、先行するパケットで使用チャネルを通知する。
(Method 2)
Before transmitting the data packet, the used channel is notified by the preceding packet.
 この場合、送信装置100は、図7Bに示すように、非特許文献1に記載されている通り、11ad規格に準拠したRTS(Request To Send)フレームにCT(Control Trailer)を付加して送信する。このとき、CTにデータパケットの送信に使用するチャネルの情報を含める。STA1は、ch1,ch2における送信権を獲得するため、CTを付加したRTSフレームを、ch1とch2に送信する。STA2は、RTSフレームを受信し、ch1,ch2におけるSTA1からの送信を許可するため、ch1,ch2にCTを付加したCTSを送信する。CTにはそれぞれ、ch1,ch2を使ってチャネルボンディングを行うことを示す情報が含まれている。STA1は、CTSを受信した後、ch1,ch2を使ってチャネルボンディングを行い、Dataパケットを送信する。 In this case, as illustrated in Non-Patent Document 1, the transmission apparatus 100 adds a CT (Control Trailer) to an RTS (Request To Send) frame that conforms to the 11ad standard and transmits, as described in Non-Patent Document 1. . At this time, information on the channel used for data packet transmission is included in the CT. STA1 transmits the RTS frame with CT added to ch1 and ch2 in order to acquire the transmission right in ch1 and ch2. STA2 receives the RTS frame and transmits a CTS with CT added to ch1 and ch2 in order to permit transmission from STA1 in ch1 and ch2. Each CT includes information indicating that channel bonding is performed using ch1 and ch2. After receiving the CTS, STA1 performs channel bonding using ch1 and ch2, and transmits a Data packet.
 RTSとCTS, CTSとDataパケット(図7A参照)の間隔は、SIFS(short interframe space)として規定され、約3μsとなるように送信することが規定されている。 The interval between RTS and CTS, CTS and Data packet (see FIG. 7A) is defined as SIFS (short interframe space), and it is stipulated that transmission is performed to be about 3 μs.
 STA2は、RTSを受信した直後のSIFSにおいて受信装置の構成及び設定(サンプリングレートなど)を切り替えても良い。すなわち、STA2は通常Primary channel(例えばch2)で待ち受けを行う。RTSフレームをch2で受信する。RTS直後のSIFSで使用チャネルを切り替えて、CTSをch1及びch2に送信する。また、Dataをch1及びch2で受信する。STA1がRTSにより獲得した送信権(TXOP)が満了したら、STA2はPrimary channelでの待ち受けに戻る。 STA2 may switch the configuration and settings (sampling rate, etc.) of the receiving device in SIFS immediately after receiving the RTS. That is, STA2 normally waits on the primary channel (for example, ch2). RTS frame is received on ch2. The channel used is switched by SIFS immediately after RTS, and CTS is transmitted to ch1 and ch2. Data is received by ch1 and ch2. When the transmission right (TXOP) acquired by STA1 through RTS expires, STA2 returns to standby in the Primary channel.
 <チャネル選択情報を示すフォーマット1>
 図8に示す、5つのフィールド(Primary channel number、BW of 1st carrier、Channel number of 2nd carrier、Channel number of 3rd carrier、Channel number of 4ht carrier)により構成される情報を、フォーマット1と呼ぶ。送信装置100は、フォーマット1を用いて第1キャリアから第4キャリアまでの情報、及びプライマリチャネルの情報を通知する。フォーマット1は、E-Header(またはL-Header)およびCT(Control Trailer)の一部として送信される。
<Format 1 indicating channel selection information>
Information composed of five fields (Primary channel number, BW of 1st carrier, Channel number of 2nd carrier, Channel number of 3rd carrier, Channel number of 4ht carrier) shown in FIG. Transmitting apparatus 100 uses format 1 to notify information from the first carrier to the fourth carrier and information on the primary channel. Format 1 is transmitted as part of E-Header (or L-Header) and CT (Control Trailer).
 また、受信装置200は、フォーマット1を受信して、その内容から、第1キャリアから第4キャリアまでの情報、及びプライマリチャネルの情報を取得する。 Also, the receiving apparatus 200 receives the format 1, and acquires information from the first carrier to the fourth carrier and information on the primary channel from the contents.
 (各フィールドの説明)
 Primary channel numberフィールドには、プライマリチャネル番号(ch1からch8まで)の値を示す。なお、値0はch8を表してもよい。また、使用できるチャネルがch1からch4までであるとき、値5から7まで及び0は予約(reserved)であり、将来の拡張用に使用してよい。
(Description of each field)
The Primary channel number field indicates the value of the primary channel number (from ch1 to ch8). The value 0 may represent ch8. Also, when the usable channels are ch1 to ch4, the values 5 to 7 and 0 are reserved and may be used for future expansion.
 BW of 1st carrierフィールドは、第1キャリアのチャネル帯域幅(BW: Bandwidth)を示す。値0が2.16GHz、値1が4.32GHz、値2が6.48GHz、値3が8.64GHzを表す。また、値4から7まではreservedであり、将来の拡張に用いてよい。 The BW of 1st carrier field indicates the channel bandwidth (BW: Bandwidth) of the first carrier. A value 0 represents 2.16 GHz, a value 1 represents 4.32 GHz, a value 2 represents 6.48 GHz, and a value 3 represents 8.64 GHz. Further, values 4 to 7 are reserved and may be used for future expansion.
 Primary channel numberフィールドと、BW of 1st carrierフィールドの値の組み合わせにより、第1キャリアのチャネル番号を決定することができる。例えば、プライマリチャネルが3であり、第1キャリアがch11である場合、送信装置100は、Primary channel numberフィールドに3を設定し、BW of 1st carrierフィールドに1を設定して送信する。受信装置200は、受信した値と、図3のチャネライゼーションの情報から、Primary channel numberフィールドが3であり、BW of 1st carrierフィールドが1である場合は、第1キャリアはch11であると決定する。つまり、プライマリチャネルの帯域は、第1キャリアの帯域の少なくとも一部として含まれるように、第1キャリアのチャネルを定める。 The channel number of the first carrier can be determined by combining the values of the Primary channel number field and the BW of 1st carrier field. For example, when the primary channel is 3 and the first carrier is ch11, the transmitting apparatus 100 sets 3 in the Primary channel number field and sets 1 in the BW of 1st carrier field for transmission. From the received value and the channelization information shown in FIG. 3, the receiving apparatus 200 determines that the first carrier is ch11 when the Primary channel number field is 3 and the BW of 1st carrier field is 1. . That is, the channel of the first carrier is determined so that the band of the primary channel is included as at least part of the band of the first carrier.
 Channel number of 2nd carrierフィールドは、第2キャリアのチャネル番号を示す。また、第2キャリアでの送信を行わない場合、Channel number of 2nd carrierフィールドの値は0である。第2キャリアの送信を行う場合、送信装置100は、有効なチャネル番号(例えば、図3に示したch1, ch2, ch3, ch4, ch9, ch11, ch17, ch25(実線部分))のいずれかの値を設定する。また、将来の拡張のため、1から31のいずれかの値を設定して、図3に含まれないチャネル番号を通知してもよい。例えば、図3に記載しないチャネル番号ch30, ch31を新たに定めても良い。 The “Channel number” of “2nd” carrier field indicates the channel number of the second carrier. Also, when transmission on the second carrier is not performed, the value of the Channel number of 2nd carrier field is 0. When performing transmission of the second carrier, the transmitting apparatus 100 is one of valid channel numbers (for example, ch1, ch2, ch3, ch4, ch9, ch11, ch17, ch25 (solid line portion) shown in FIG. 3). Set the value. Further, for future expansion, any value from 1 to 31 may be set to notify a channel number not included in FIG. For example, channel numbers ch30 and ch31 not shown in FIG. 3 may be newly determined.
 Channel number of 3rd carrierフィールド、Channel number of 4th carrierフィールドは、Channel number of 2nd carrierフィールドと同様に、第3、第4キャリアのチャネル番号を示す。第3、第4キャリアが無い場合、対応するフィールドの値は0である。 The “channel number” of “3rd” carrier field and the “channel number” of “4th” carrier field indicate the channel numbers of the third and fourth carriers in the same manner as the “channel number” of “2nd” carrier field. If there is no third or fourth carrier, the corresponding field value is zero.
 フォーマット1を用いて、送信装置100は、第2,第3,第4キャリアのチャネル番号を含めて送信するようにし、また、第2、第3、第4キャリアのチャネル番号は、図3に示したチャネル番号を含むch1からch31までの番号を用いることで、チャネルアグリゲーションの各キャリアがボンディングチャネルにより構成できるようにしたので、チャネルの利用効率を高め、データ転送速度を向上させることができる。 Using format 1, transmission apparatus 100 transmits the channel numbers of the second, third, and fourth carriers, and the channel numbers of the second, third, and fourth carriers are shown in FIG. By using the numbers from ch1 to ch31 including the indicated channel numbers, each carrier of channel aggregation can be configured by a bonding channel, so that the channel utilization efficiency can be improved and the data transfer rate can be improved.
 また、フォーマット1を用いて、送信装置100は、Primary channel numberとチャネル帯域幅を表すインデックスを通知するようにしたので、第1キャリアのチャネル番号を通知しなくてよく、送信する制御情報のビット数を削減し、データ転送速度を向上させることができる。 Also, since the transmission apparatus 100 uses the format 1 to notify the primary channel number and the index indicating the channel bandwidth, it is not necessary to notify the channel number of the first carrier, and the bit of control information to be transmitted. The number can be reduced and the data transfer speed can be improved.
 <チャネル選択情報を示すフォーマット2>
 第1キャリアから第4キャリアまでの情報、及びプライマリチャネルの情報を通知する別の方法について説明する。送信装置100は、図9に示すフォーマット2を用いて、第1キャリアから第4キャリアまでの情報、及びプライマリチャネルの情報を通知する。フォーマット2は、図6A、図6BのE-Header(またはL-Header)およびCT(Control Trailer)の一部として送信される。Primary channel numberフィールドは、Primary channel番号である。
<Format 2 indicating channel selection information>
Another method for notifying information from the first carrier to the fourth carrier and information on the primary channel will be described. The transmitting apparatus 100 notifies the information from the first carrier to the fourth carrier and the information on the primary channel using the format 2 shown in FIG. Format 2 is transmitted as a part of E-Header (or L-Header) and CT (Control Trailer) in FIGS. 6A and 6B. The Primary channel number field is a Primary channel number.
 2.16 GHz channel bitmapフィールドは、ch1からch8までのいずれかを、第1キャリアから第4キャリアまでのいずれかで使用している場合に1を設定する。例えば、第1キャリアがch1を使用し、第2キャリアがch3を利用する場合、2.16 GHz channel bitmapの値を、2進数表現で00000101と設定する。つまり、LSBがch1を表し、MSBがch8を表す。 2. In the 2.16 GHz channel bitmap field, set 1 when any of ch1 to ch8 is used for any of the first carrier to the fourth carrier. For example, when the first carrier uses ch1 and the second carrier uses ch3, the value of 2.16 GHz channel bitmap is set to 00000101 in binary notation. That is, LSB represents ch1 and MSB represents ch8.
 4.32 GHz channel bitmapフィールドは、ch9,ch11,ch13,ch15のいずれかを、第1キャリアから第4キャリアまでのいずれかで使用している場合に1を設定する。例えば、第1キャリアがch15を使用し、第2キャリアがch11を利用する場合、4.32 GHz channel bitmapの値を、2進数表現で1010と設定する。つまり、LSBがch9を表し、MSBがch15を表す。 The 4.32 GHz channel bitmap field is set to 1 when any of ch9, ch11, ch13, and ch15 is used from the first carrier to the fourth carrier. For example, when the first carrier uses ch15 and the second carrier uses ch11, the value of 4.32 GHz channel bitmap is set to 1010 in binary notation. That is, LSB represents ch9 and MSB represents ch15.
 2.16GHzと4.32GHzの組み合わせによるチャネルアグリゲーションを行う場合、2.16 GHz channel bitmapと4.32 GHz channel bitmapのそれぞれに1を設定する。例えば、第1キャリアがch13, 第2キャリアがch2を使用するとき、00000010, 0100と設定する。前者が2.16 GHz channel bitmap, 後者が4.32 GHz channel bitmapである。 When channel aggregation is performed using a combination of 2.16 GHz and 4.32 GHz, 1 is set for each of the 2.16 GHz channel bitmap and 4.32 GHz channel bitmap. For example, when the first carrier uses ch13 and the second carrier uses ch2, 00000010 and 0100 are set. The former is a 2.16 GHz channel bitmap and the latter is a 4.32 GHz channel bitmap.
 フォーマット2の2.16 GHz channel bitmapと4.32 GHz channel bitmapの値は、図10Aの「ch」列と「index」列のように、チャネル番号と整数値の対応により定めても良い。図10Aに定める整数値をインデックス(index)と呼ぶ。なお、図10Aの「bitmap」列では左端をLSB, 右端をMSBとして2.16 GHzと4.32 GHzのchannel bitmapフィールドの値を記載した。インデックスの値は、2.16 GHzと4.32 GHzのchannel bitmapを結合し、4.32GHz側を上位ビット、2.16GHz側を下位ビットとして10進数換算したものである。例えば、ch1の場合、bitmapのLSBが1であるから、整数1とみなすことができる。 The values of 2.16 GHz channel bitmap and 4.32 GHz channel bitmap of format 2 may be determined by correspondence between channel numbers and integer values as in the “ch” column and “index” column of FIG. 10A. The integer value defined in FIG. 10A is called an index. In the “bitmap” column of FIG. 10A, the value of the channel bitmap field of 2.16 GHz and 4.32 GHz is described with the left end as LSB and the right end as MSB. The index value is obtained by combining the 2.16 GHz and 4.32 GHz channel bitmaps, and converting them to decimal numbers with the 4.32GHz side as the upper bit and the 2.16GHz side as the lower bit. For example, in the case of ch1, since the LSB of bitmap is 1, it can be regarded as an integer 1.
 6.48 GHz, 8.64 GHzチャネルボンディングは、次のように通知する。すなわち、2.16 GHz channel bitmapフィールドと、4.32 GHz channel bitmapフィールドとの組み合わせにおいて、無効な組み合わせを、6.48 GHz, 8.64 GHzチャネルボンディングを表すものとしてあらかじめ定めておく。例えば、ch9とch1の組み合わせは、ch1の帯域が重複するため、無効である。そこで、ch9とch1の組み合わせは、ch17を示すものとあらかじめ定める。このときのビットマップの値は、00000001,0001 である。 6.4Hz GHz, 8.64 GHz channel bonding is notified as follows. That is, an invalid combination of the 2.16 GHz channel bitmap field and the 4.32 GHz channel bitmap field is predetermined as representing 6.48 GHz and 8.64 GHz channel bonding. For example, the combination of ch9 and ch1 is invalid because the ch1 bands overlap. Therefore, the combination of ch9 and ch1 is predetermined to indicate ch17. The value of the bitmap at this time is 00000001,0001.
 同様に、ch20, ch25, ch29のビットマップの値を、図10Bの通り定める。図10Bは、6.48 GHzチャネルと8.64 GHzチャネルのビットマップに対するインデックスの値を示す。例えば、ch17のインデックスは257である。これは、ch1とch9のインデックスを加算した値であるが、前述の通りch1とch9のアグリゲーションは無効であるから、ch17を示すインデックスとして用いる。 Similarly, the bit map values of ch20, ch25, and ch29 are determined as shown in FIG. 10B. FIG. 10B shows index values for the 6.48 GHz channel and the 8.64 GHz channel bitmaps. For example, the index of ch17 is 257. This is a value obtained by adding the indexes of ch1 and ch9. Since aggregation of ch1 and ch9 is invalid as described above, it is used as an index indicating ch17.
 6.48 GHzまたは8.64 GHzチャネルボンディングを含む、前述のチャネル(図3に示すch1からch29)を複数用いたチャネルアグリゲーションは、図10A、図10Bに示すindexの値を加算することで指定することができる。 Channel aggregation using a plurality of the aforementioned channels (ch1 to ch29 shown in FIG. 3) including 6.48 6.GHz or 8.64 GHz channel bonding can be specified by adding the index values shown in FIGS. 10A and 10B. .
 例えば、ch1(indexの値は1)とch3(indexの値は4)のチャネルアグリゲーションを表すindexは、各indexを加算して、5となる。 For example, the index indicating the channel aggregation of ch1 (index value is 1) and ch3 (index value is 4) is 5 by adding each index.
 また、ch4(indexの値は8)とch13(indexの値は1024)のチャネルアグリゲーションを表すindexは、各indexを加算して、1032となる。 Also, the index indicating the channel aggregation of ch4 (index value is 8) and ch13 (index value is 1024) is 1032 by adding each index.
 また、ch25(index=516)とch13(index=1024)とch7(index=64)のチャネルアグリゲーションを表すindexは、1604(=516+1024+64)となる。 Also, the index indicating the channel aggregation of ch25 (index = 516), ch13 (index = 1024), and ch7 (index = 64) is 1604 (= 516 + 1024 + 64).
 indexの加算は、整数の加算でもよく、また、論理和でもよい。これは、ビットの重複がないので、同じ結果となるためである。 The addition of the index may be an integer addition or a logical sum. This is because there is no duplication of bits and the same result is obtained.
 図10A、図10Bの任意のチャネルの組み合わせたアグリゲーションのインデックスは、インデックスの加算により定める。例えば、ch17とch4のインデックスはそれぞれ257と8であるから、ch17とch4のアグリゲーションのインデックスは265である。ここで、受信装置200がインデックスの値として265を受信した場合、図10A、図10Bいずれにも含まれないインデックスであるから、265はアグリゲーションを表すインデックスであると判別することができる。 An aggregation index combining the arbitrary channels in FIGS. 10A and 10B is determined by adding the indexes. For example, since the indexes of ch17 and ch4 are 257 and 8, respectively, the aggregation index of ch17 and ch4 is 265. Here, when the receiving apparatus 200 receives 265 as an index value, it is an index that is not included in either FIG. 10A or FIG. 10B, and therefore it can be determined that 265 is an index representing aggregation.
 以上より、第1の帯域幅のビットマップと第2の帯域幅のビットマップを通知し、第3の帯域幅のチャネルは上記の組み合わせで通知するようにした。 As described above, the first bandwidth bitmap and the second bandwidth bitmap are notified, and the third bandwidth channel is notified in the above combination.
 なお、送信装置100は最大4キャリアの送信を行うことができる構成を例として示したが、5キャリア以上の送信を行える送信装置を用いても良い。フォーマット2は、フォーマット1と異なり、5キャリア以上のチャネルアグリゲーションを通知することができる。例えば、ch1~ch8を全て用いた8キャリアのチャネルアグリゲーションのインデックスは255である。また、ch1~ch6と、ch15を用いた7キャリアのチャネルアグリゲーションのインデックスは、2111である。 In addition, although the transmission apparatus 100 has been shown as an example of a configuration that can transmit a maximum of 4 carriers, a transmission apparatus that can transmit 5 carriers or more may be used. Unlike format 1, format 2 can notify channel aggregation of 5 carriers or more. For example, the index of channel aggregation of 8 carriers using all of ch1 to ch8 is 255. Also, the index of 7-carrier channel aggregation using ch1 to ch6 and ch15 is 2111.
 <効果>
 本実施の形態によれば、異なる帯域のボンディングチャネルを通知することができるので、周波数の利用効率を高めることができる。また、サンプリングレートが低いD/A、A/Dを用いて高いスループットを実現することができる。
<Effect>
According to the present embodiment, it is possible to notify a bonding channel of a different band, so that the frequency utilization efficiency can be improved. Further, high throughput can be realized by using D / A and A / D having a low sampling rate.
 また、少ないビット数で、キャリア数の制限無くチャネルの組み合わせを通知することができる。 Also, a combination of channels can be notified with a small number of bits and no limitation on the number of carriers.
 また、チャネルアグリゲーションを行う場合は、インデックスの値を加算もしくは論理和(OR)演算を行うことにより得られる。例えば、ch1とch3のインデックスはそれぞれ1,4であるから、ch1とch3のアグリゲーションのインデックスは5である。 Also, when performing channel aggregation, it is obtained by adding the index value or performing a logical sum (OR) operation. For example, since the indexes of ch1 and ch3 are 1 and 4, respectively, the aggregation index of ch1 and ch3 is 5.
 フォーマット2は、2.16GHzと4.32GHzの2つのビットマップからインデックスの値を定め、インデックスの値の加算によりチャネルアグリゲーションのインデックスを定めるようにしたので、広帯域のチャネル(ボンディングチャネル)のアグリゲーションを実現し、伝送速度を高めることができる。 In format 2, the index value is determined from the two bitmaps of 2.16 GHz and 4.32 GHz, and the index of channel aggregation is determined by adding the index value. Therefore, aggregation of wideband channels (bonding channels) is realized. The transmission speed can be increased.
 また、2.16GHzと4.32GHzの2つのビットマップにおいて帯域が重複する組み合わせを6.48GHzと8.64GHzのチャネルを表すインデックスと定めたため、少ないビット幅でチャネルアグリゲーションの通知を行うことができ、伝送速度を高めることができる。 In addition, the combination of overlapping bands in the two bitmaps of 2.16 GHz and 4.32 GHz is defined as an index that represents the 6.48 GHz and 8.64 GHz channels, so channel aggregation can be reported with a small bit width, and the transmission speed can be reduced. Can be increased.
 また、2.16GHzと4.32GHzの2つのビットマップからインデックスの値を定めるようにしたため、キャリア数の制限なくチャネルアグリゲーションの通知を行うことができ、伝送速度を高めることができる。 Also, since index values are determined from two bitmaps of 2.16 GHz and 4.32 GHz, channel aggregation can be notified without restriction on the number of carriers, and the transmission speed can be increased.
 フォーマット2では、図10A、図10Bに加え、図11A、図11Bに示すインデックスを定め、将来の拡張に用いても良い。 In format 2, in addition to FIGS. 10A and 10B, the indexes shown in FIGS. 11A and 11B may be determined and used for future expansion.
 次に、図11Aについて説明する。図10Bにおいて、インデックスの値257をch17と定めたので、例えばインデックスの値261は、ch17とch3のアグリゲーションを表す。しかし、ch17とch3は帯域が重複するため、無効な組み合わせである。そこで、インデックスの値261は、ch17とch3のアグリゲーションではなく、別のチャネルを表すインデックスと定める。例えば、図3に図示しないch30を追加し、そのインデックスの値を261と定める。ch30の例を、図12に示す。ch30は、例えば、チャネル帯域幅10.80 GHz、中心周波数はch3の中心周波数と同じである。 Next, FIG. 11A will be described. In FIG. 10B, since the index value 257 is set to ch17, for example, the index value 261 represents the aggregation of ch17 and ch3. However, ch17 and ch3 are invalid combinations because of overlapping bands. Therefore, the index value 261 is determined not as an aggregation of ch17 and ch3 but as an index representing another channel. For example, ch30 (not shown in FIG. 3) is added, and the index value is defined as 261. An example of ch30 is shown in FIG. For example, ch30 has a channel bandwidth of 10.80 GHz, and the center frequency is the same as the center frequency of ch3.
 フォーマット2を用いて、例えば、ch30とch15のアグリゲーションは、それぞれのインデックス(261と2048)を加算し、インデックス2309と定める。 Using format 2, for example, the aggregation of ch30 and ch15 is defined as index 2309 by adding the respective indexes (261 and 2048).
 このインデックスの値は、図10A、図10B、図11A、図11Bに定めた他のどのチャネルとも重複していないため、受信装置200は、このインデックスを受信したとき、ch30とch15のアグリゲーションであると判別することができる。 Since the value of this index does not overlap with any of the other channels defined in FIGS. 10A, 10B, 11A, and 11B, the receiving apparatus 200 is an aggregation of ch30 and ch15 when this index is received. Can be determined.
 図11A、図11Bに、ch17,ch20,ch25,ch29と、帯域が重複する2.16 GHzのチャネルの組み合わせ(但し、図10Bに示したものを除く)を示す。これらは、無効な組み合わせであるから、reservedとして将来の拡張(例えば、新しい帯域幅のチャネル)に用いてよい。 11A and 11B show combinations of ch17, ch20, ch25, and ch29, and 2.16 GHz channels with overlapping bands (except for those shown in FIG. 10B). Since these are invalid combinations, they may be reserved for future expansion (eg, new bandwidth channels).
 つまり、図11A、図11Bに示す値は単一のボンディングチャネル(チャネルアグリゲーションを行わない場合)を示すインデックスとして用いてよい。チャネルアグリゲーションを行う場合には、図10A、図10B、図11A、図11Bに定めた任意のindexの値を加算することで、任意の有効な(すなわち帯域が重複しない)チャネルの組み合わせを指定することができる。 That is, the values shown in FIG. 11A and FIG. 11B may be used as an index indicating a single bonding channel (when channel aggregation is not performed). When performing channel aggregation, any valid channel combination (that is, the bands do not overlap) is designated by adding the values of any index defined in FIGS. 10A, 10B, 11A, and 11B. be able to.
 <チャネル選択情報を示すフォーマット3>
 フォーマット3では、フォーマット2と同様に、2.16 GHzと4.32GHzのビットマップを用いる。図13Aは、図10Aと同じである。
<Format 3 indicating channel selection information>
Format 3 uses bitmaps of 2.16 GHz and 4.32 GHz as in format 2. FIG. 13A is the same as FIG. 10A.
 図13Bは、図10Bと同様に、無効なアグリゲーションの組み組み合わせを表すインデックスを用いてch17,ch20,ch25,ch29を表す。しかし、図10Bと異なり、帯域を占有している2.16 GHzチャネルに対応するビットを全て1に設定する。 FIG. 13B represents ch17, ch20, ch25, and ch29 using an index that represents an invalid combination set of aggregation, as in FIG. 10B. However, unlike FIG. 10B, all the bits corresponding to the 2.16 GHz channel occupying the band are set to 1.
 例えば、ch17は、ch1,ch2,ch3の帯域を占有するので、2.16 GHz channel bitmapフィールドの下位3ビットを1に設定する。その上で、無効な組み合わせのインデックスとするため、4.32 GHz channel bitmapフィールドの最下位ビット(ch9に対応する)を1に設定する。このとき、ch17が占有する帯域に、全てが含まれるように4.32 GHz channel bitmapフィールドの値を選択する。つまり、Ch17と重複するのは、ch9とch11であるが、ch11はch17の一部に含まれない帯域も用いるため、ch11ではなく、ch9を選択する。これにより、ch17のインデックスの値を263とする。 For example, since ch17 occupies the bandwidth of ch1, ch2, and ch3, set the lower 3 bits of the 2.16 GHz channel bitmap field to 1. In addition, the least significant bit (corresponding to ch9) of the 4.321GHz channel bitmap field is set to 1 to make an invalid combination index. At this time, the value of the 4.32 GHz channel bitmap field is selected so that all of the band occupied by ch17 is included. In other words, ch9 and ch11 overlap with Ch17, but ch11 uses a band not included in a part of ch17, so ch9 is selected instead of ch11. Thus, the index value of ch17 is set to 263.
 ch20も同様に、ch20が帯域を占有する2.16 GHzチャネルであるch4,ch5,ch6に対応する2.16 GHz channel bitmapフィールドの値を1に設定し、ch20が占有する帯域に、全てが含まれる4.32 GHzチャネルであるch13に対応する4.32 GHz channel bitmapフィールドを1に設定する。 Similarly for ch20, set the value of the 2.16 GHz channel bitmap field corresponding to ch4, ch5, and ch6, which are 2.16 GHz channels that ch20 occupies to 1, and all the band occupied by ch20 is 4.32 GHz Set the 4.32 GHz channel bitmap field corresponding to channel ch13 to 1.
 ch25では、ch25が帯域を占有する2.16 GHzチャネルであるch1~ch4に対応する2.16 GHz channel bitmapフィールドの値を1に設定し、ch25が占有する帯域に、全てが含まれる4.32 GHzチャネルであるch11に対応する4.32 GHz channel bitmapフィールドを1に設定する。ここで、ch9もch25が占有する帯域に全てが含まれるが、ch17と区別するため、ch25では、ch11に対応するビットを1にして使用する。ch29も同様に、ch4~ch8, ch15に対応するビットを1に設定する。同様に、図3のチャネライゼーションに含まれない新たなボンディングチャネルを追加することもできる。例えば、図12に示したch30は、ch1~ch5, ch9,ch11に対応するビットを1に設定すればよい。 For ch25, set the value of the 2.16 GHz channel bitmap field corresponding to ch1 to ch4, which is the 2.16 GHz channel that ch25 occupies to 1, and ch11 that is a 4.32 GHz channel that includes everything in the band that ch25 occupies. Set the 4.32 GHz channel bitmap field corresponding to 1 to 1. Here, ch9 includes all of the band occupied by ch25, but in order to distinguish it from ch17, ch25 uses 1 corresponding to ch11. Similarly for ch29, the bits corresponding to ch4 to ch8 and ch15 are set to 1. Similarly, new bonding channels that are not included in the channelization of FIG. 3 can be added. For example, in ch30 shown in FIG. 12, the bits corresponding to ch1 to ch5, ch9, and ch11 may be set to 1.
 フォーマット3によれば、2.16 GHz channel bitmapには、チャネルアグリゲーションフレームが占有する全ての2.16 GHz帯域のチャネルに対応するビットが1に設定されるため、フレームを受信した端末は、チャネルアグリゲーションに非対応であっても、どのチャネルが使用されているかを判定することができる。 According to Format 3, 2.16 GHz channel bitmap is set to 1 for bits corresponding to all 2.16 GHz band channels occupied by channel aggregation frames, so the terminal receiving the frame does not support channel aggregation. Even so, it can be determined which channel is being used.
 将来の拡張により、新しく追加されたインデックスを未知である端末がチャネルアグリゲーションフレームを受信した場合であっても、2.16 GHz channel bitmapフィールドを参照することにより、どのチャネルが占有されているかを判断することができる。 To determine which channel is occupied by referring to the 2.16 GHz channel bitmap field even when a terminal whose newly added index is unknown will receive a channel aggregation frame due to future expansion. Can do.
 さらに、2.16 GHz channel bitmapと、4.32 GHz channel bitmapとを組み合わせて送信するようにしたので、4.32 GHzを超える帯域を含むチャネルアグリゲーションフレームのチャネル選択情報を送信することができ、高速な伝送を実現することができる。 In addition, since 2.16 GHz channel bitmap and 4.32 GHz channel bitmap are transmitted in combination, the channel selection information of the channel aggregation frame including the band exceeding 4.32 GHz can be transmitted, and high-speed transmission is realized. be able to.
 <チャネル選択情報を示すフォーマット4>
 本実施の形態では、送信装置100は、チャネル帯域幅がキャリア間で共通となるチャネルアグリゲーションフレームを送信する。すなわち、第1~第4キャリアで共通のチャネル帯域幅である。図5A、図5Bを実現し、図5C、図5Dは実現しない。
<Format 4 indicating channel selection information>
In the present embodiment, transmitting apparatus 100 transmits a channel aggregation frame whose channel bandwidth is common among carriers. That is, the channel bandwidth is common to the first to fourth carriers. 5A and 5B are realized, and FIGS. 5C and 5D are not realized.
 送信装置100は、図14に示すフォーマット4を用いて、チャネルアグリゲーションフレームのチャネル選択情報を通知する。 The transmission apparatus 100 notifies the channel selection information of the channel aggregation frame using the format 4 shown in FIG.
 BWフィールドは、第1~第4キャリアに共通のチャネル帯域幅を指定する。 The BW field specifies a common channel bandwidth for the first to fourth carriers.
 Primary channel numberフィールドは、プライマリチャネルのチャネル番号を通知する。プライマリチャネルは、2.16 GHz幅のチャネル(ch1~ch8)のいずれかである。また、第1キャリアは、プライマリチャネルの帯域を含む。これにより、受信装置200は、BWフィールドの値と、Primary channel numberフィールドの値から、第1キャリアのチャネル番号を決定することができる。例えば、BWフィールドの値が2で、Primary channel numberフィールドの値が3であるとき、図3のチャネライゼーションから、これらの値となるチャネルはch17であるから、受信装置は、第1キャリアはch17であると決定できる。 The Primary channel number field reports the channel number of the primary channel. The primary channel is one of channels (ch1 to ch8) with a width of 2.16 GHz. The first carrier includes a primary channel band. Thereby, receiving apparatus 200 can determine the channel number of the first carrier from the value of the BW field and the value of the Primary channel number field. For example, when the value of the BW field is 2 and the value of the Primary channel number field is 3, from the channelization of FIG. 3, the channel having these values is ch17. Can be determined.
 Partial channel number of 2nd carrierフィールドは、第2キャリアのチャネル番号の下位3bitを通知する。本フィールドと、BWフィールドの値との組み合わせにより、受信装置200は、第2キャリアのチャネル番号を特定できる。 The “Partial channel number” of “2nd” carrier field reports the lower 3 bits of the channel number of the second carrier. Based on the combination of this field and the value of the BW field, receiving apparatus 200 can specify the channel number of the second carrier.
 例えば、BWフィールドの値が3、Partial Channel number of 2nd carrierフィールドの値が1であれば、第2キャリアはチャネル25を使用することを示す。 For example, if the value of the BW field is 3 and the value of the Partial Channel number of 2nd carrier field is 1, it indicates that the second carrier uses channel 25.
 Partial channel number of 3rd carrierフィールドは、同様に、第3キャリアのチャネル番号の下位3bitを通知する。本フィールドと、BWフィールドの値との組み合わせにより、受信装置200は、第3キャリアのチャネル番号を特定できる。 Similarly, the “Partial channel number” of “3rd” carrier field reports the lower 3 bits of the channel number of the third carrier. Based on the combination of this field and the value of the BW field, receiving apparatus 200 can specify the channel number of the third carrier.
 Partial channel number of 4th carrierフィールドは、同様に、第4キャリアのチャネル番号の下位3bitを通知する。本フィールドと、BWフィールドの値との組み合わせにより、受信装置200は、第4キャリアのチャネル番号を特定できる。 Similarly, the “Partial channel number” of “4th” carrier field notifies the lower 3 bits of the channel number of the fourth carrier. Based on the combination of this field and the value of the BW field, receiving apparatus 200 can specify the channel number of the fourth carrier.
 なお、第2キャリアを用いた送信を行わない場合、Partial channel number of 2nd carrierフィールドの値を、Primary channel numberフィールドと同じ値に設定する。これにより、キャリア数を通知するフィールドを追加することなく、キャリア数を1~4の中から任意に選択して送信を行うことができる。 When transmission using the second carrier is not performed, the value of the Partial channel number of the second channel field is set to the same value as the Primary channel number field. Thus, transmission can be performed by arbitrarily selecting the number of carriers from 1 to 4 without adding a field for notifying the number of carriers.
 フォーマット4では、Partial channel number of 2nd carrierフィールド、Partial channel number of 3rd carrierフィールド、Partial channel number of 4th carrierフィールドを用いて、第2~第4キャリアのチャネル番号の下位ビットを送信するようにしたので、チャネル選択情報の送信に用いるビット数を少なくすることができ、データ伝送速度を高めることができる。 In format 4, the low order bits of the channel numbers of the second to fourth carriers are transmitted using the partial channel number, the second channel field, the partial channel number, the number of 3rd carrier field, and the partial channel number, number of 4th carrier field. The number of bits used for transmission of channel selection information can be reduced, and the data transmission rate can be increased.
 <チャネル選択情報を示すフォーマット5>
 本実施の形態では、図14のフォーマット4と同様に、送信装置100は、チャネル帯域幅がキャリア間で共通となるチャネルアグリゲーションフレームを送信する。すなわち、第1から第4キャリアで共通のチャネル帯域幅である。図5A、図5Bを実現し、図5C、図5Dは実現しない。図15Aにフォーマット5を示す。
<Format 5 indicating channel selection information>
In the present embodiment, as in format 4 in FIG. 14, transmitting apparatus 100 transmits a channel aggregation frame whose channel bandwidth is common among carriers. That is, the channel bandwidth is common to the first to fourth carriers. 5A and 5B are realized, and FIGS. 5C and 5D are not realized. FIG. 15A shows format 5.
 Primary channel numberフィールドは、プライマリチャネルのチャネル番号を示す。フォーマット4と同様に、第1キャリアは、プライマリチャネルの帯域を一部に含むチャネルを使用する。 The “Primary channel number” field indicates the channel number of the primary channel. Similar to the format 4, the first carrier uses a channel that partially includes the band of the primary channel.
 BW indexフィールドは、第1キャリアから第4キャリアまでのチャネル帯域幅、キャリア数、チャネルの組み合わせを表すインデックスである。 The BW index field is an index representing a channel bandwidth, the number of carriers, and a combination of channels from the first carrier to the fourth carrier.
 BW indexフィールドの値と、第1キャリアから第4キャリアまでのチャネル帯域幅及びキャリア数との関係は、図15Bのように定める。 The relationship between the value of the BW index field, the channel bandwidth from the first carrier to the fourth carrier, and the number of carriers is determined as shown in FIG. 15B.
 次に、チャネルの組み合わせに対するBW indexの定め方について説明する。なお、以下の説明では、Primary channel numberから1を減じた値をc1、第2~第4キャリアのPartial channel numberから1を減じた値をc2~c4と表す。ここで、c1~c4は0~7の値をとる。 Next, how to determine the BW index for the combination of channels will be explained. In the following description, a value obtained by subtracting 1 from Primary channel number is represented by c1, and a value obtained by subtracting 1 from Partial channel number of the second to fourth carriers is represented by c2 to c4. Here, c1 to c4 take values of 0 to 7.
 (BW index=0)
 チャネル帯域幅2.16 GHz、キャリア数1の場合、BW indexは0である。第1キャリアのチャネル番号は、Primary channel numberフィールドの値と等しい。
(BW index = 0)
When the channel bandwidth is 2.16 GHz and the number of carriers is 1, the BW index is 0. The channel number of the first carrier is equal to the value of the Primary channel number field.
 (BW index=1~7)
 チャネル帯域幅2.16 GHz、キャリア数2の場合、BW indexは1~7のいずれかである。送信装置100は、BW indexの値を、次の式により定める。
 BW_index = (c2-c1) mod 8
(BW index = 1-7)
When the channel bandwidth is 2.16 GHz and the number of carriers is 2, the BW index is one of 1 to 7. Transmitting apparatus 100 determines the value of BW index by the following equation.
BW_index = (c2-c1) mod 8
 一方、受信装置200は、受信したBW indexとPrimary channel numberの値から、c1,c2の値を次のように算出する。
 c2 = (c1 + BW_index) mod 8
On the other hand, the receiving apparatus 200 calculates the values of c1 and c2 from the received BW index and Primary channel number values as follows.
c2 = (c1 + BW_index) mod 8
 (BW index=8~28)
 チャネル帯域幅2.16 GHz、キャリア数3のとき、BW indexは8~28である。送信装置100は、BW_indexを、次のように定める。
 (c2-c1-1)mod8が2以下のとき
 (c2-c1-1)mod 8 + ((c3-c1-1)mod 8)*3 + 8
 上記以外のとき
 (5-(c2-c1-1))mod 8 + (6-(c3-c1-1)mod 8)*3 + 8
(BW index = 8-28)
When the channel bandwidth is 2.16 GHz and the number of carriers is 3, the BW index is 8 to 28. Transmitting apparatus 100 determines BW_index as follows.
(c2-c1-1) When mod8 is 2 or less (c2-c1-1) mod 8 + ((c3-c1-1) mod 8) * 3 + 8
Other than the above (5- (c2-c1-1)) mod 8 + (6- (c3-c1-1) mod 8) * 3 + 8
 受信装置200は、受信したBW indexとPrimary channel numberの値から、c2, c3の値を次のように算出する。
 t1 = (BW_index-8)mod 3, t2 = floor((BW_index-8)/3)
 t1<t2のとき
 c2 = (c1+t1+1)mod 8, c3 = (c1+t2+1)mod 8
 上記以外のとき
 c2 = (6+c1-t1)mod 8, c3 = (7+c1-t2)mod 8
The receiving apparatus 200 calculates the values of c2 and c3 from the received BW index and Primary channel number values as follows.
t1 = (BW_index-8) mod 3, t2 = floor ((BW_index-8) / 3)
When t1 <t2, c2 = (c1 + t1 + 1) mod 8, c3 = (c1 + t2 + 1) mod 8
Otherwise c2 = (6 + c1-t1) mod 8, c3 = (7 + c1-t2) mod 8
 以下、BW index=8~28の場合について詳しく説明する。図16は、BW indexが8のときのチャネルの組み合わせを示す図である。 Hereinafter, the case where BW index = 8 to 28 will be described in detail. FIG. 16 is a diagram illustrating combinations of channels when BW index is 8.
 第1キャリアのチャネル番号(帯域幅が2.16GHzなので、Primary channel番号と同じ)がch1の場合、2nd,3rdキャリアのチャネル番号はそれぞれch7, ch8である。また、第1キャリアがチャネル2のとき、2nd,3rdキャリアのチャネル番号はそれぞれch8, ch1である。このように、BW indexの値が1つ(例えば 8)であっても、Primary channel番号に応じて、異なる2nd,3rdキャリアのチャネル番号の組み合わせを表すようにしたので、少ないビット数で多くの組み合わせを表すことができる。本実施の形態では、Primary channel番号は8通りの値をとりうるので、BW_indexの1つの値で8通りのチャネルの組み合わせを表すことができる。 If the channel number of the first carrier (the bandwidth is 2.16 GHz, the same as the primary channel number) is ch1, the channel numbers of the second and third carriers are ch7 and ch8, respectively. When the first carrier is channel 2, the channel numbers of the 2nd and 3rd carriers are ch8 and ch1, respectively. In this way, even if the value of BW index is one (for example, 8), the combination of channel numbers of different 2nd and 3rd carriers is represented according to the Primary 番号 channel number. Combinations can be represented. In the present embodiment, since the primary channel number can take eight values, one value of BW_index can represent eight channel combinations.
 例えば、BW_indexが8のとき、仮に第2キャリアはch7、第3キャリアはch8を表すと固定的に決めた場合、BW_index=8とPrimary channel= ch7またはch8という組み合わせは無効になり、BW_indexが8のときに表すことができるチャネルの組み合わせは6通りである。 For example, when BW_index is 8, if it is fixedly determined that the second carrier represents ch7 and the third carrier represents ch8, the combination of BW_index = 8 and Primary channel = ch7 or ch8 becomes invalid, and BW_index is 8 There are six combinations of channels that can be represented at
 (BW index=29~63)
 チャネル帯域幅2.16 GHz、キャリア数4の場合、BW indexは29~63である。送信装置100は、次のようにBW indexの値を定める。
(BW index = 29-63)
When the channel bandwidth is 2.16 GHz and the number of carriers is 4, the BW index is 29 to 63. Transmitting apparatus 100 determines the value of BW index as follows.
 まず、計算のため、c2', c3', c4'の値を次のように計算する。
 c2'=(c2-c1)mod 8, c3'=(c3-c1)mod 8, c4'=(c4-c1)mod 8
First, for the calculation, the values of c2 ′, c3 ′, and c4 ′ are calculated as follows.
c2 '= (c2-c1) mod 8, c3' = (c3-c1) mod 8, c4 '= (c4-c1) mod 8
 (1)Primary channelを除いた3つのチャネルのうち、少なくとも2つが隣接している場合
 この場合は、Primary channelを跨ぎ隣接している場合を含む。また、ch8とch1は隣接しているとみなす。つまり、例えばch8がPrimary channelの場合、ch7とch1は隣接しているとみなす。
(1) In the case where at least two of the three channels excluding the primary channel are adjacent to each other. In this case, the case where the adjacent channels straddle the primary channel is included. Also, ch8 and ch1 are considered to be adjacent. That is, for example, when ch8 is a primary channel, ch7 and ch1 are considered to be adjacent.
 隣接している2つのチャネルをc2,c3、残りをc4となるようにc2,c3,c4の値を決定する。ここで、(c3'-c2')mod7=1となるように、c2,c3を選ぶ。すなわち、隣接している左側のチャネルに対応してc2の値を決め、右側のチャネルに対応してc3の値を決定する。また、3つのチャネルが隣接している場合、c2'とc4'が隣接しないようにc2,c3,c4を選ぶ。 Determine the values of c2, c3, and c4 so that the two adjacent channels are c2, c3 and the rest are c4. Here, c2 and c3 are selected so that (c3′−c2 ′) mod7 = 1. That is, the value of c2 is determined corresponding to the adjacent left channel, and the value of c3 is determined corresponding to the right channel. When three channels are adjacent, c2, c3, and c4 are selected so that c2 ′ and c4 ′ are not adjacent.
 例えば、Primary channelがch3, 他のチャネルがch2, ch4, ch5の場合、c1=2, c2=1, c3=3, c4=4のように選ぶ。このとき、c2'=7, c3'=1, c4'=2である。 For example, when Primary channel is ch3, and other channels are ch2, ch4, ch5, select c1 = 2, c2 = 1, c3 = 3, c4 = 4. At this time, c2 ′ = 7, c3 ′ = 1, and c4 ′ = 2.
 BW_indexの値は、次のように定める。
 BW_index = ((c4'-c2'-2)mod7) + (c2'-1)*4 + 29
 ここで、BW indexの値は29~56である。
The value of BW_index is determined as follows.
BW_index = ((c4'-c2'-2) mod7) + (c2'-1) * 4 + 29
Here, the value of BW index is 29-56.
 受信装置200は、BW indexの値が29~56のとき、BW_indexからc2,c3,c4を次のように算出する。
 c2' = floor((BW_index-29)/4)+1, c2 = (c2'+c1) mod 8
 c3' = (c2'+1)mod 7, c3 = (c3'+c1) mod 8
 c4' = ((BW_index-29)mod 4+c2'+2) mod 7, c4 = (c4'+c1) mod 8
When the value of BW index is 29 to 56, receiving apparatus 200 calculates c2, c3, and c4 from BW_index as follows.
c2 '= floor ((BW_index-29) / 4) +1, c2 = (c2' + c1) mod 8
c3 '= (c2' + 1) mod 7, c3 = (c3 '+ c1) mod 8
c4 '= ((BW_index-29) mod 4 + c2' + 2) mod 7, c4 = (c4 '+ c1) mod 8
 (2)Primary channelを除いた3つのチャネルのうち、いずれの2つも隣接していない場合
 この場合、c3'=(c2'+2)mod7, c4'=(c3'+2)mod7 という関係になるようにc2,c3,c4を決定する。
(2) When none of the three channels except the primary channel are adjacent to each other. In this case, the relationship is c3 '= (c2' + 2) mod7, c4 '= (c3' + 2) mod7 C2, c3, and c4 are determined as follows.
 例えば、Primary channelがch7, 他のチャネルがch2, ch5, ch8の場合、c1=6, c2=4, c3=7, c4=1である。このとき、c2'=6, c3'=1, c4'=3であり、c3'=(c2'+2)mod7, c4'=(c3'+2)mod7が成り立つ。
 BW_indexの値は、次のように定める。
 BW_index = c2'-1 + 57
 ここで、BW indexの値は、57~63である。
For example, when the primary channel is ch7 and the other channels are ch2, ch5, and ch8, c1 = 6, c2 = 4, c3 = 7, and c4 = 1. At this time, c2 ′ = 6, c3 ′ = 1, c4 ′ = 3, and c3 ′ = (c2 ′ + 2) mod7 and c4 ′ = (c3 ′ + 2) mod7 hold.
The value of BW_index is determined as follows.
BW_index = c2'-1 + 57
Here, the value of BW index is 57-63.
 受信装置200は、BW indexの値が57~63のとき、BW_indexとPrimary channel numberからc2,c3,c4を次のように算出する。
 c2' = BW_index-57+1, c2 = (c2'+c1) mod 8
 c3' = (c2'+2)mod 7, c3 = (c3'+c1) mod 8
 c4' = (c3'+2)mod 7, c4 = (c4'+c1) mod 8
When the value of BW index is 57 to 63, receiving apparatus 200 calculates c2, c3, and c4 from BW_index and Primary channel number as follows.
c2 '= BW_index-57 + 1, c2 = (c2' + c1) mod 8
c3 '= (c2' + 2) mod 7, c3 = (c3 '+ c1) mod 8
c4 '= (c3' + 2) mod 7, c4 = (c4 '+ c1) mod 8
 (BW index=64)
 チャネル帯域幅が4.32 GHz、キャリア数が1の場合、BW indexは64である。
(BW index = 64)
When the channel bandwidth is 4.32 GHz and the number of carriers is 1, the BW index is 64.
 (BW index=65~67)
 チャネル帯域幅が4.32 GHz、キャリア数が2の場合、BW indexは65~67である。
(BW index = 65 ~ 67)
When the channel bandwidth is 4.32 GHz and the number of carriers is 2, the BW index is 65 to 67.
 送信装置100は、BW indexの値を次のように定める。
 c1'=floor(c1/2), c2'=floor(c2/2)とおく。
 BW_index = (c2'-c1') mod 8 + 64
Transmitting apparatus 100 determines the value of BW index as follows.
Set c1 '= floor (c1 / 2) and c2' = floor (c2 / 2).
BW_index = (c2'-c1 ') mod 8 + 64
 受信装置200は、BW indexの値が65~67のとき、BW indexとPrimary channel numberの値から、c2を次のように算出する。
 c1'=floor(c1/2)
 c2 = c1'*2+(BW_index-64)*2
When the value of BW index is 65 to 67, receiving apparatus 200 calculates c2 from the values of BW index and Primary channel number as follows.
c1 '= floor (c1 / 2)
c2 = c1 '* 2 + (BW_index-64) * 2
 (BW index=68~70)
 チャネル帯域幅が4.32 GHz、キャリア数が3の場合、BW indexは68~70である。
(BW index = 68-70)
When the channel bandwidth is 4.32 GHz and the number of carriers is 3, the BW index is 68-70.
 送信装置100は、BW indexの値を次のように定める。
 c1'=floor(c1/2), c2'=floor(c2/2), c3'=floor(c3/2)とおく。
Transmitting apparatus 100 determines the value of BW index as follows.
Let c1 '= floor (c1 / 2), c2' = floor (c2 / 2), c3 '= floor (c3 / 2).
 ただし、c1,c2,c3はサイクリックな順となるように、c2,c3の順序を定める。すなわち、(c2-c1)mod 8 < (c3-c1)mod 8となるように、c2,c3を入れ替える。 However, the order of c2, c3 is determined so that c1, c2, c3 are in a cyclic order. That is, c2 and c3 are switched so that (c2-c1) mod 8 <(c3-c1) mod 8.
 このとき、BW indexは次のように算出する。
 BW_index = ((c2'-c1'-1) mod 2) * 2 + (c3'-c2'-1) mod 2 + 68
At this time, the BW index is calculated as follows.
BW_index = ((c2'-c1'-1) mod 2) * 2 + (c3'-c2'-1) mod 2 + 68
 受信装置200は、BW indexの値が68~70のとき、BW indexとPrimary channel numberの値から、c2,c3を次のように算出する。
 c1'=floor(c1/2)
 c2' = ((c1'+floor(BW_index-68)/2) mod 4)
 c3'  = (c2'+floor(BW_index-68) mod 2)
 c2 = c2’*2
 c3 = c3’*2
When the value of BW index is 68 to 70, receiving apparatus 200 calculates c2 and c3 from the values of BW index and Primary channel number as follows.
c1 '= floor (c1 / 2)
c2 '= ((c1' + floor (BW_index-68) / 2) mod 4)
c3 '= (c2' + floor (BW_index-68) mod 2)
c2 = c2 '* 2
c3 = c3 '* 2
 (BW index=71)
 チャネル帯域幅が4.32 GHz、キャリア数が4の場合、BW indexは71である。チャネルの組み合わせは、ch9,ch11,ch13,ch15の組み合わせの1通りである。
(BW index = 71)
When the channel bandwidth is 4.32 GHz and the number of carriers is 4, the BW index is 71. The combination of channels is one of the combinations of ch9, ch11, ch13, and ch15.
 受信装置200は、BW indexの値が71のとき、Primary channel numberの値から、c2,c3,c4を次のように算出する。すなわち、c1~c4がサイクリックな順となるようにc2~c4を定める。
 c1'=floor(c1/2)
 c2 = (c1'*2+2)mod8
 c3 = (c2+2)mod8
 c4 = (c3+2)mod8
When the value of BW index is 71, receiving apparatus 200 calculates c2, c3, and c4 from the value of Primary channel number as follows. That is, c2 to c4 are determined so that c1 to c4 are in a cyclic order.
c1 '= floor (c1 / 2)
c2 = (c1 '* 2 + 2) mod8
c3 = (c2 + 2) mod8
c4 = (c3 + 2) mod8
 (BW index=72)
 チャネル帯域幅6.48 GHz、キャリア数1の場合、BW indexは72である。使用されるチャネルは、ch17またはch20である。
(BW index = 72)
When the channel bandwidth is 6.48 GHz and the number of carriers is 1, the BW index is 72. The channel used is ch17 or ch20.
 受信装置200は、Primary channel numberの値から、ch17またはch20のいずれが使用されているかを判別できる。すなわち、プライマリチャネルがch1~ch3のいずれかであれば、使用チャネルはch17であり、プライマリチャネルがch4~ch6のいずれかであれば、使用チャネルはch20である。 The receiving apparatus 200 can determine whether ch17 or ch20 is used from the value of Primary channel number. That is, if the primary channel is ch1 to ch3, the used channel is ch17, and if the primary channel is any of ch4 to ch6, the used channel is ch20.
 (BW index=73)
 チャネル帯域幅6.48 GHz、キャリア数2の場合、BW indexは73である。使用されるチャネルの組み合わせは、ch17とch20の1通りである。
(BW index = 73)
When the channel bandwidth is 6.48 GHz and the number of carriers is 2, the BW index is 73. The combination of channels used is one of ch17 and ch20.
 (BW index=74)
 チャネル帯域幅8.64 GHz、キャリア数1の場合、BW indexは74である。使用されるチャネルは、ch25またはch29である。
(BW index = 74)
When the channel bandwidth is 8.64 GHz and the number of carriers is 1, the BW index is 74. The channel used is ch25 or ch29.
 受信装置200は、Primary channel numberの値から、ch25またはch29のいずれが使用されているかを判別できる。すなわち、プライマリチャネルがch1~ch4のいずれかであれば、使用チャネルはch25であり、プライマリチャネルがch5~ch8のいずれかであれば、使用チャネルはch29である。 The receiving device 200 can determine whether ch25 or ch29 is used from the value of Primary channel number. That is, if the primary channel is any one of ch1 to ch4, the use channel is ch25, and if the primary channel is any one of ch5 to ch8, the use channel is ch29.
 (BW index=75)
 チャネル帯域幅8.64 GHz、キャリア数2の場合、BW indexは75である。使用されるチャネルの組み合わせは、ch25とch29の1通りである。
(BW index = 75)
When the channel bandwidth is 8.64 GHz and the number of carriers is 2, the BW index is 75. The combination of channels used is one of ch25 and ch29.
 (BW index=76~127)
 BW indexの値が76から127は、reservedである。将来の拡張において、新たなチャネル帯域幅を追加する場合、もしくはキャリア数5以上を設定する場合に使用する。
(BW index = 76-127)
A BW index value of 76 to 127 is reserved. In future expansion, it is used when adding a new channel bandwidth or when setting the number of carriers to 5 or more.
 <チャネル選択情報を示すフォーマット6>
 フォーマット6では、フォーマット2と同様に、2.16 GHzのビットマップを用いるが、4.32 GHzのビットマップの代わりに、Maximum bandwidthフィールドを追加する。図17に、フォーマット6を示す。
<Format 6 indicating channel selection information>
Format 6 uses a 2.16 GHz bitmap as in format 2, but adds a Maximum bandwidth field instead of a 4.32 GHz bitmap. FIG. 17 shows format 6.
 Maximum bandwidthフィールドには、該当するパケットが使用する最大のチャネル帯域幅を指定する。例えば、送信装置100は最大8.64 GHz帯域幅の送信が可能であっても、該当するパケットで2.16 GHzと4.32 GHzのアグリゲーションを行う場合、Maximum bandwidthフィールドには、4.32 GHzを示す値1を設定する。 In the Maximum bandwidth field, specify the maximum channel bandwidth used by the corresponding packet. For example, even if the transmission apparatus 100 can transmit a maximum 8.64 GHz bandwidth, when performing aggregation of 2.16 GHz and 4.32 GHz with the corresponding packet, the value 1 indicating 4.32 GHz is set in the Maximum bandwidth field. .
 2.16 GHz channel bitmapフィールドは、2.16 GHzから8.64 GHzまでの帯域幅のチャネルが占有している帯域に相当するチャネル番号に1を設定する。例えば、ch9を使用しているとき、ch1,ch2に対応するビット(2.16 GHz channel bitmapフィールドの下位2ビット)を1に設定する。 In the 2.16 GHz channel bitmap field, set 1 to the channel number corresponding to the band occupied by the channel with the bandwidth from 2.16 GHz to 8.64 GHz. For example, when ch9 is used, the bits corresponding to ch1 and ch2 (the lower 2 bits of the 2.16 GHz channel bitmap field) are set to 1.
 送信装置100は、ch1,ch2を使い2.16 GHz+2.16GHzのアグリゲーション送信を行う場合には、Maximum bandwidthフィールドに0を設定し、ch9を使い4.32 GHz帯域のチャネルボンディング送信を行う場合には、Maximum bandwidthフィールドに1を設定して送信する。また、ch9とch3のアグリゲーション送信を行う場合には、Maximum bandwidthフィールドに1を設定し、2.16 GHz channel bitmapフィールドの下位3ビット(ch1~ch3に対応する)に1を設定して送信する。 The transmitter 100 sets 0 in the Maximum bandwidth field when performing aggregation transmission of 2.16 GHz + 2.16GHz using ch1 and ch2, and sets the Maximum bandwidth field to 0 when using ch9 to perform channel bonding transmission of 4.32 GHz band. Set the bandwidth field to 1 and send. When performing aggregation transmission of ch9 and ch3, 1 is set in the MaximumMaxbandwidth field, and 1 is set in the lower 3 bits (corresponding to ch1 to ch3) of the 2.16 GHz channel bitmap field.
 このように、送信装置100は、フォーマット6を用いて送信することで、少ないビット数でチャネルの組み合わせを指定することができ、複数のチャネル帯域幅を含むチャネルアグリゲーションを行うことができるので、高速な伝送を実現することができる。 As described above, the transmission apparatus 100 can specify a combination of channels with a small number of bits by performing transmission using the format 6, and can perform channel aggregation including a plurality of channel bandwidths. Transmission can be realized.
 また、フォーマット6では、2.16 GHz channel bitmapが帯域の使用状況を示すため、受信装置200は、未知のチャネルの組み合わせを受信した場合であっても、どの帯域が使用されているかを知ることができる。 In format 6, since 2.16 GHz channel bitmap indicates the usage status of the band, the receiving apparatus 200 can know which band is used even when an unknown channel combination is received. .
 <送信装置300と受信装置400の説明>
 図18は、チャネルアグリゲーションを行う送信装置の別の構成を示す。送信装置300は、送信装置100と同じ部分は同じ番号を付し説明を省略する。
<Description of Transmitting Device 300 and Receiving Device 400>
FIG. 18 shows another configuration of a transmission apparatus that performs channel aggregation. In the transmission apparatus 300, the same parts as those of the transmission apparatus 100 are denoted by the same reference numerals and description thereof is omitted.
 送信装置300は、送信装置100のペイロード分割部103と異なる機能を持つ、ペイロード分割部303を含み、ペイロードを符号化する前に、ペイロードデータを分割して、第1~第4キャリアへ振り分ける。尚、ペイロード分割部303は、ペイロード分割を行う前に、CRC(誤り検出符号)の付加、ビットスクランブルを行ってもよい。 The transmission device 300 includes a payload division unit 303 having a function different from that of the payload division unit 103 of the transmission device 100, and divides the payload data and allocates it to the first to fourth carriers before encoding the payload. Note that the payload dividing unit 303 may perform CRC (error detection code) addition and bit scrambling before performing payload division.
 ペイロード符号化部302a~302dは、第1~第4キャリアのペイロードデータのLDPC符号化を行う。なお、ペイロード符号化部302a~302dは、第1~第4キャリアのそれぞれに対して異なる符号化率のLDPC符号化を行ってもよい。また、ペイロード符号化部302a~302dは、第1~第4キャリアのそれぞれに対して異なるLDPC検査行列を用いてLDPC符号化を行ってもよい。 Payload encoders 302a to 302d perform LDPC encoding of payload data of the first to fourth carriers. Note that the payload encoding units 302a to 302d may perform LDPC encoding at different encoding rates for each of the first to fourth carriers. Further, payload encoding sections 302a to 302d may perform LDPC encoding using different LDPC parity check matrices for the first to fourth carriers.
 変調部104a~104dは、第1~第4キャリアのペイロードデータの変調を行う。なお、変調部104a~104dは、第1~第4キャリアのそれぞれに対して異なる変調方式を用いても良い。データ変調方式として、π/2-BPSK、π/2-QPSK、π/2-16QAM、π/2-64QAMを用いても良い。データ変調後のシンボルをシングルキャリアで伝送してもよく、また、データ変調後のシンボルをOFDMで伝送しても良い。 The modulation units 104a to 104d modulate the payload data of the first to fourth carriers. Note that the modulation units 104a to 104d may use different modulation schemes for the first to fourth carriers. As a data modulation method, π / 2-BPSK, π / 2-QPSK, π / 2-16QAM, or π / 2-64QAM may be used. The symbol after data modulation may be transmitted by a single carrier, and the symbol after data modulation may be transmitted by OFDM.
 PHY/RF制御部310は、PHY制御データに基づき、ペイロード符号化部302a~302dに対し、それぞれにおいて何れの符号化率のLDPC符号化を行うかを示す指示信号を出力する。また、変調部104a~104dに対し、それぞれにおいて何れのデータ変調を行うかを示す指示信号を出力する。すなわち、PHY制御データは、キャリア毎に異なるMCS(Modulation and Coding Scheme)を含んでも良く、PHY/RF制御部310は、キャリア毎に異なるMCSを適用しても良い。 Based on the PHY control data, the PHY / RF control unit 310 outputs an instruction signal indicating which coding rate LDPC encoding is to be performed on to the payload encoding units 302a to 302d. In addition, an instruction signal indicating which data modulation is performed in each of the modulation units 104a to 104d is output. That is, the PHY control data may include a different MCS (Modulation and Coding scheme) for each carrier, and the PHY / RF control unit 310 may apply a different MCS for each carrier.
 ヘッダ符号化部101は、チャネル選択情報(フォーマット1から6のいずれか)に加え、キャリア毎のMCSの情報をヘッダ(L-Header又はE-Header)に含めてヘッダを符号化する。図20A、図20B、図21A、図21Bに、キャリア毎のMCSの情報をヘッダに含める方法を示す。(後述) The header encoding unit 101 encodes the header by including MCS information for each carrier in the header (L-Header or E-Header) in addition to the channel selection information (any one of formats 1 to 6). 20A, 20B, 21A, and 21B show a method of including MCS information for each carrier in the header. (See below)
 図19は、チャネルアグリゲーションを行う受信装置の別の構成を示す。受信装置400は、受信装置200と同じ部分は同じ番号を付し説明を省略する。 FIG. 19 shows another configuration of a receiving apparatus that performs channel aggregation. In the receiving apparatus 400, the same parts as those of the receiving apparatus 200 are denoted by the same reference numerals and description thereof is omitted.
 受信装置400は、受信装置200と異なり、キャリア毎にペイロード復号部402a~402dを備える。ペイロード復号部402a~402dは、LDPC復号(誤り訂正)を行う。ペイロード復号部402a~402dは、後述するPHY/RF制御部410の指示に従い、ペイロード復号部402a~402d毎に異なる符号化率及び異なる検査行列を用いてLDPC復号を行ってもよい。 Unlike the receiving apparatus 200, the receiving apparatus 400 includes payload decoding units 402a to 402d for each carrier. The payload decoding units 402a to 402d perform LDPC decoding (error correction). Payload decoding sections 402a to 402d may perform LDPC decoding using different coding rates and different check matrices for each of payload decoding sections 402a to 402d in accordance with instructions from PHY / RF control section 410 described later.
 ペイロード結合部403は、キャリア毎にペイロード復号部402a~402dが出力するデータを結合し、受信データを生成する。なお、ペイロード結合部403は、データのデスクランブル、及びCRCチェックを行ってもよい。 The payload combining unit 403 combines the data output from the payload decoding units 402a to 402d for each carrier to generate received data. The payload combining unit 403 may perform data descrambling and CRC check.
 PHY/RF制御部410は、ヘッダ復号部201が受信したPHYヘッダ情報、及びあらかじめMAC処理部から通知されたPHY制御データに基づき、キャリア毎の中心周波数、キャリア毎のチャネル帯域幅、キャリア毎のMCSを決定する。 The PHY / RF control unit 410 is based on the PHY header information received by the header decoding unit 201 and the PHY control data notified from the MAC processing unit in advance, the center frequency for each carrier, the channel bandwidth for each carrier, and for each carrier. Determine the MCS.
 (シングルユーザ(SU:single user)伝送におけるMCS通知)
 シングルユーザ伝送の場合、送信装置300は、チャネル選択情報(フォーマット1から6のいずれか)に加え、図20AのMCS選択情報をヘッダに含める。
(Notice of MCS in single user (SU) transmission)
In the case of single user transmission, transmitting apparatus 300 includes the MCS selection information of FIG. 20A in the header in addition to channel selection information (any one of formats 1 to 6).
 図20Aでは、ヘッダは8つのフィールド(Stream1 MCS~Stream8 MCS)を持つ。キャリア数が1の場合(すなわち、キャリアアグリゲーションを行わない場合)送信装置300は、第1キャリアのMCS番号(つまり、ペイロード符号化部302aと変調部104aが使用するMCS番号)をStream1 MCSフィールドに含める。第1キャリアでMIMO伝送を行う場合、Stream2 MCS~Stream 8 MCSフィールドを用いて、最大8ストリームのMIMO伝送を行う。つまり、送信装置300の第1キャリア部分であるペイロード符号化部302a、変調部104a、広帯域D/A105a、広帯域RF106a、アンテナ107aをそれぞれ最大8多重化して、最大8ストリームのMIMO伝送を行ってよい。 In FIG. 20A, the header has eight fields (Stream1 MCS to Stream8 MCS). When the number of carriers is 1 (that is, when carrier aggregation is not performed), transmitting apparatus 300 sets the MCS number of the first carrier (that is, the MCS number used by payload encoder 302a and modulator 104a) in the Stream1StreamMCS field. include. When performing MIMO transmission on the first carrier, MIMO transmission of up to 8 streams is performed using the Stream2 MCS to Stream 8 MCS fields. That is, the payload encoding unit 302a, the modulation unit 104a, the wideband D / A 105a, the wideband RF 106a, and the antenna 107a, which are the first carrier part of the transmission apparatus 300, may be multiplexed up to 8 at maximum to perform MIMO transmission of up to 8 streams. .
 つまり、1つのチャネルに対して、最大8ストリームをMIMO伝送するので、送信装置300の構成は、図18とは異なり、送信装置300は、ペイロード符号化部302aがペイロード符号化部302a1からペイロード符号化部302a8を含み、変調部104aが、変調部104a1から変調部104a8を含み、広帯域D/A105aが、広帯域D/A105a1から広帯域D/A105a8を含み、広帯域RF106aが、広帯域RF106a1から広帯域RF106a8を含み、アンテナ107aは、アンテナ107a1からアンテナ107a8を含む。例えば、ストリーム1は、ペイロード符号化部302a1、変調部104a1、広帯域D/A105a1、広帯域RF106a1、アンテナ107a1を介して、送信される。 That is, since a maximum of 8 streams are MIMO-transmitted for one channel, the configuration of the transmission apparatus 300 is different from that in FIG. 18, and in the transmission apparatus 300, the payload encoding unit 302a is changed from the payload encoding unit 302a1 to the payload code. 302a8, modulator 104a includes modulator 104a1 to modulator 104a8, broadband D / A 105a includes broadband D / A 105a1 to broadband D / A 105a8, and broadband RF 106a includes broadband RF 106a1 to broadband RF 106a8 The antenna 107a includes antennas 107a1 to 107a8. For example, the stream 1 is transmitted via the payload encoding unit 302a1, the modulation unit 104a1, the wideband D / A 105a1, the wideband RF 106a1, and the antenna 107a1.
 ペイロード符号化部302aは、ペイロード符号化部302a1が用いるMCS番号をStream1 MCSフィールドに含め、ペイロード符号化部302a8が用いるMCS番号をStream8 MCSフィールドに含める。なお、ペイロード符号化部302a1からペイロード符号化部302a8が符号化したデータを、それぞれストリーム1からストリーム8と呼ぶ。 The payload encoding unit 302a includes the MCS number used by the payload encoding unit 302a1 in the Stream1 MCS field, and the MCS number used by the payload encoding unit 302a8 in the Stream8 MCS field. The data encoded by the payload encoding unit 302a1 to the payload encoding unit 302a8 are referred to as stream 1 to stream 8, respectively.
 また、広帯域RF106aは、広帯域RF106a1から広帯域RF106a8はすべて共通のチャネル番号を用いる。つまり、第1キャリアは、1つのチャネルを用いて送信される。共通のチャネル番号は、前述のフォーマット1からフォーマット6のいずれかを用いて通知する。つまり、第1キャリアにおいてMIMO送信を行う場合は、ストリーム1から8は共通のチャネル(1つのチャネル)を用い、一方、ストリーム1から8は異なるMCSを用いてよい。 Also, the broadband RF 106a uses a common channel number for the broadband RF 106a1 to the broadband RF 106a8. That is, the first carrier is transmitted using one channel. The common channel number is notified using any one of format 1 to format 6 described above. That is, when performing MIMO transmission on the first carrier, streams 1 to 8 may use a common channel (one channel), while streams 1 to 8 may use different MCSs.
 つまり、キャリア数が1の場合、第1キャリアは、8系統の送信ブランチを用いて、最大8ストリームのMIMO伝送を行うことができる。 That is, when the number of carriers is 1, the first carrier can perform MIMO transmission of a maximum of 8 streams using 8 transmission branches.
 キャリア数が2の場合、送信装置300は、第1キャリアのMCS番号をStream1 MCSフィールドに含め、第2キャリアのMCS番号をStream5 MCSフィールドに含める。第1キャリアでMIMO伝送を行う場合、Stream1 MCS~Stream 4 MCSフィールドを用いて、最大4ストリームのMIMO伝送を行う。また、第2キャリアでMIMO伝送を行う場合、Stream5 MCS~Stream 8 MCSフィールドを用いて、最大4ストリームのMIMO伝送を行う。つまり、第1キャリアと第2キャリアをあわせて最大8ストリームの伝送を行う。 When the number of carriers is 2, the transmitting apparatus 300 includes the MCS number of the first carrier in the Stream1 MCS field and the MCS number of the second carrier in the Stream5 MCS field. When performing MIMO transmission on the first carrier, MIMO transmission of up to four streams is performed using the Stream1 MCS to Stream 4 MCS fields. Also, when performing MIMO transmission on the second carrier, MIMO transmission of up to four streams is performed using the Stream5 MCS to Stream 8 MCS fields. That is, a maximum of 8 streams are transmitted together with the first carrier and the second carrier.
 つまり、キャリア数が2の場合、第1キャリアは4系統の送信ブランチ、第2キャリアは4系統の送信ブランチ、の合計8系統の送信ブランチを用いて、最大8ストリームのMIMO伝送を行うことができる。 In other words, when the number of carriers is 2, it is possible to perform MIMO transmission of a maximum of 8 streams using a total of 8 transmission branches including 4 transmission branches for the first carrier and 4 transmission branches for the second carrier. it can.
 キャリア数が3の場合、送信装置300は、第1キャリアのMCS番号をStream1 MCSフィールドに含め、第2キャリアのMCS番号をStream4 MCSフィールドに含め、第3キャリアのMCS番号をStream7 MCSフィールドに含める。第1キャリアでMIMO伝送を行う場合、Stream1 MCS~Stream 3 MCSフィールドを用いて、最大3ストリームのMIMO伝送を行う。また、第2キャリアでMIMO伝送を行う場合、Stream4 MCS~Stream 6 MCSフィールドを用いて、最大3ストリームのMIMO伝送を行う。また、第3キャリアでMIMO伝送を行う場合、Stream7 MCS~Stream 8 MCSフィールドを用いて、最大2ストリームのMIMO伝送を行う。つまり、第1キャリア~第3キャリアをあわせて最大8ストリームの伝送を行う。 When the number of carriers is 3, transmitting apparatus 300 includes the MCS number of the first carrier in the Stream1 MCS field, the MCS number of the second carrier in the Stream4 MCS field, and the MCS number of the third carrier in the Stream7 MCS field. . When performing MIMO transmission on the first carrier, MIMO transmission of a maximum of three streams is performed using the Stream1 MCS to Stream 3 MCS fields. Also, when performing MIMO transmission on the second carrier, MIMO transmission of up to three streams is performed using the Stream4 MCS to Stream 6 MCS fields. Also, when performing MIMO transmission on the third carrier, MIMO transmission of a maximum of two streams is performed using the Stream7 MCS to Stream 8 MCS fields. That is, a maximum of 8 streams are transmitted together with the first to third carriers.
 つまり、キャリア数が3の場合、第1キャリアは3系統の送信ブランチ、第2キャリアは3系統の送信ブランチ、第3キャリアは2系統の送信ブランチ、の合計8系統の送信ブランチを用いて、最大8ストリームのMIMO伝送を行うことができる。 That is, when the number of carriers is 3, the first carrier uses three transmission branches, the second carrier uses three transmission branches, the third carrier uses two transmission branches, and a total of eight transmission branches. Up to 8 streams of MIMO transmission can be performed.
 キャリア数が4の場合、同様に、送信装置300は、第1キャリア~第4キャリアのMCS番号をそれぞれStream1 MCS、Stream3 MCS、Stream5 MCS、Stream 7フィールドに含める。また同様に、第1キャリア~第4キャリアをあわせて最大8ストリームの伝送を行う。 When the number of carriers is 4, similarly, the transmitting apparatus 300 includes the MCS numbers of the first to fourth carriers in the Stream1 MCS, Stream3 MCS, Stream5 MCS, and Stream 7 fields, respectively. Similarly, a maximum of 8 streams are transmitted together with the first to fourth carriers.
 つまり、キャリア数が4の場合、第1キャリアは2系統の送信ブランチ、第2キャリアは2系統の送信ブランチ、第3キャリアは2系統の送信ブランチ、第4キャリアは2系統の送信ブランチ、の合計8系統の送信ブランチを用いて、最大8ストリームのMIMO伝送を行うことができる。 That is, when the number of carriers is 4, the first carrier has two transmission branches, the second carrier has two transmission branches, the third carrier has two transmission branches, and the fourth carrier has two transmission branches. A maximum of 8 streams of MIMO transmission can be performed using a total of 8 transmission branches.
 なお、図20Aの代わりに、図20Bのフォーマットを用いても良い。図20Bでは、使用するフィールド番号を、以下のように、数式で算出することができる。
(Field No.) = (carrier No.) + (The number of carriers) × (stream No. - 1)
Note that the format of FIG. 20B may be used instead of FIG. 20A. In FIG. 20B, the field number to be used can be calculated by a mathematical formula as follows.
(Field No.) = (carrier No.) + (The number of carriers) × (stream No.-1)
 例えば、キャリア番号2、キャリア数3、ストリーム番号3の場合、フィールド番号は8である。したがって、Stream8 MCSフィールドを用いて、該当のストリームのMCSを通知する。 For example, in the case of carrier number 2, carrier number 3, stream number 3, the field number is 8. Therefore, the MCS of the corresponding stream is notified using the Stream8 MCS field.
 このように、送信装置300は、図20A、図20Bのヘッダフォーマットを用いて、キャリア毎に異なるMCSを指定できるようにしたので、伝送レートを高めることができる。 As described above, the transmission apparatus 300 can specify a different MCS for each carrier by using the header formats of FIGS. 20A and 20B, so that the transmission rate can be increased.
 また、送信装置300は、図20A、図20Bのヘッダフォーマットを用いて、キャリア数に関わらずMIMOストリーム数の合計の最大数をあらかじめ定められた値(例えば8)であるようにしたので、キャリアアグリゲーションを行うためのMCS情報を通知するフィールドを追加しなくてもよい。したがって、ヘッダに要するビット数を削減することができ、伝送レートを高めることができる。 In addition, the transmission apparatus 300 uses the header formats of FIGS. 20A and 20B so that the maximum total number of MIMO streams is a predetermined value (for example, 8) regardless of the number of carriers. It is not necessary to add a field for notifying the MCS information for performing the aggregation. Therefore, the number of bits required for the header can be reduced, and the transmission rate can be increased.
 (マルチユーザ(MU:multi user)伝送のMCS通知)
 送信装置300は、1つのチャネルアグリゲーションパケットを、複数のユーザ宛に送信してもよい。すなわち、マルチユーザ伝送を行ってもよい。つまり、キャリア毎にユーザ変更してもよいし、キャリア内でもストリーム毎にユーザ変更してもよい。
(MCS notification of multi-user (MU) transmission)
The transmission apparatus 300 may transmit one channel aggregation packet to a plurality of users. That is, multi-user transmission may be performed. That is, the user may be changed for each carrier, or the user may be changed for each stream within the carrier.
 マルチユーザ伝送の場合、チャネル選択情報(フォーマット1から6のいずれか)に加え、図21Aに示すフィールドをヘッダ(E-Header)に含める。 In the case of multi-user transmission, in addition to channel selection information (any one of formats 1 to 6), the field shown in FIG. 21A is included in the header (E-Header).
 図21Aでは、ヘッダは8つのフィールド(Stream1 Address~Stream8 Address)を持つ。 In FIG. 21A, the header has eight fields (Stream1 Address to Stream8 Address).
 キャリア数が2の場合、送信装置300は、第1キャリアの宛先アドレスをStream1 Addressフィールドに含め、第2キャリアの宛先アドレスをStream5 Addressフィールドに含める。宛先アドレスは、AID(Association ID)であってもよく、また、MACアドレスまたはMACアドレスの一部であっても良い。また、MACアドレスから算出したハッシュ値であっても良い。第1キャリアでMU-MIMO(マルチユーザMIMO)伝送を行う場合、Stream1 Address~Stream 4 Addressフィールドを用いて、最大4ストリームのMIMO伝送を行う。また、第2キャリアでMU-MIMO伝送を行う場合、Stream5 Address~Stream 8 Addressフィールドを用いて、最大4ストリームのMIMO伝送を行う。つまり、第1キャリアと第2キャリアをあわせて最大8ユーザ宛のマルチユーザ伝送を行う。 When the number of carriers is 2, the transmission device 300 includes the destination address of the first carrier in the Stream1 Address field and the destination address of the second carrier in the Stream5 Address field. The destination address may be an AID (Association ID), or may be a MAC address or a part of the MAC address. Further, it may be a hash value calculated from the MAC address. When performing MU-MIMO (multi-user MIMO) transmission on the first carrier, MIMO transmission of a maximum of 4 streams is performed using the Stream1 Address to Stream 4 Address fields. In addition, when performing MU-MIMO transmission on the second carrier, MIMO transmission of a maximum of four streams is performed using the Stream5 Address to Stream 8 Address fields. That is, multi-user transmission addressed to a maximum of eight users is performed by combining the first carrier and the second carrier.
 キャリア数が3、4の場合も同様に、キャリア毎のアドレスをStream1 AddressフィールドからStream8 Addressフィールドまでのいずれかを用いて通知する。また、MU-MIMO伝送を行う場合には、全てのキャリアを合わせて最大8ユーザ宛のマルチユーザ伝送を行う。 Similarly, when the number of carriers is 3 or 4, the address for each carrier is notified using either the Stream1 Address field to the Stream8 Address field. When performing MU-MIMO transmission, multi-user transmission for a maximum of eight users is performed for all carriers.
 キャリア数が1の場合、MU-MIMO伝送を行う場合、図21Aのフォーマットを用いる。Stream1 AddressフィールドからStream8 Addressフィールドまでを用いて、第1キャリアで、最大8ストリームのMIMO伝送を行う。なお、図21Aの代わりに、図21Bのフォーマットを用いても良い。 When the number of carriers is 1, when performing MU-MIMO transmission, the format of FIG. 21A is used. A maximum of 8 streams of MIMO transmission is performed on the first carrier using the Stream1 Address field to the Stream8 Address field. Note that the format of FIG. 21B may be used instead of FIG. 21A.
 このように、送信装置300は、図21A、図21Bのヘッダフォーマットを用いて、キャリア毎に異なるアドレスを指定できるようにしたので、チャネルアグリゲーションパケットを用いてマルチユーザ伝送行い、複数ユーザが存在する場合の伝送レートを高めることができる。 As described above, the transmission apparatus 300 can specify different addresses for each carrier using the header formats of FIGS. 21A and 21B, so that multi-user transmission is performed using channel aggregation packets, and there are a plurality of users. In this case, the transmission rate can be increased.
 また、送信装置300は、図21A、図21Bのヘッダフォーマットを用いて、キャリア数に関わらず宛先ユーザ数の合計の最大数をあらかじめ定められた値(例えば8)であるようにしたので、チャネルアグリゲーションにおいてマルチユーザ伝送を行うためのアドレス情報を通知するフィールドを追加しなくてもよい。したがって、ヘッダに要するビット数を削減することができ、伝送レートを高めることができる。 Further, the transmission apparatus 300 uses the header formats of FIGS. 21A and 21B to set the maximum number of destination users to a predetermined value (for example, 8) regardless of the number of carriers. It is not necessary to add a field for notifying address information for performing multi-user transmission in aggregation. Therefore, the number of bits required for the header can be reduced, and the transmission rate can be increased.
 (他の実施の形態)
 上記実施の形態では、本開示の一態様をハードウェアで構成する場合を例にとって説明したが、本開示はハードウェアとの連携においてソフトウェアで実現することも可能である。
(Other embodiments)
Although cases have been described with the above embodiment as examples where one aspect of the present disclosure is configured by hardware, the present disclosure can also be realized by software in cooperation with hardware.
 また、上記実施の形態の説明に用いた各機能ブロックは、典型的には入力端子、出力端子を有する集積回路であるLSIとして実現される。集積回路は、上記実施の形態の説明に用いた各機能ブロックを制御し、入力と出力を備えてもよい。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 Each functional block used in the description of the above embodiment is typically realized as an LSI which is an integrated circuit having an input terminal and an output terminal. The integrated circuit may control each functional block used in the description of the above embodiment, and may include an input and an output. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them. The name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Also, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 本開示の一態様は、ミリ波通信を用いた通信装置に用いるに好適である。 One aspect of the present disclosure is suitable for a communication apparatus using millimeter wave communication.
 100,300 送信装置
 101 ヘッダ符号化部
 102,302 ペイロード符号化部
 103 ペイロードデータ分割部
 104 変調部
 105 広帯域D/A
 106,206 広帯域RF
 107,207 アンテナ
 110,210 RF制御部
 200,400 受信装置
 201 ヘッダ復号部
 202,402 ペイロード復号部
 204 復調部
 205 広帯域A/D
 208 同期部
 303 ペイロードデータ分割部
 310,410 PHY/RF制御部
 403 ペイロード結合部
100, 300 Transmission device 101 Header encoding unit 102, 302 Payload encoding unit 103 Payload data division unit 104 Modulation unit 105 Wideband D / A
106,206 Broadband RF
107, 207 Antenna 110, 210 RF control unit 200, 400 Receiver 201 Header decoding unit 202, 402 Payload decoding unit 204 Demodulation unit 205 Broadband A / D
208 Synchronizing unit 303 Payload data dividing unit 310, 410 PHY / RF control unit 403 Payload combining unit

Claims (13)

  1.  所定の帯域において、第1の帯域幅をもつn(nは整数)個のチャネルである第1のチャネルグループと、
     前記所定の帯域において、前記第1のチャネルグループのうちの連続する2つのチャネルであって、重複しないチャネルを組み合わせたm(mは整数であり、nより小さい値)個のチャネルである第2のチャネルグループと、
     前記所定の帯域において、前記第1のチャネルグループのうちの連続する3つのチャネルであって、重複しないチャネルを組み合わせたp(pは整数であり、mより小さい値)個のチャネルである第3のチャネルグループと、
     のうちの1つ以上が割り当てられたr(rは1以上の整数)個のキャリアに関するヘッダ情報をそれぞれ変調する第1から第rの変調回路と、
     前記変調されたヘッダ情報をそれぞれ送信する第1から第rの送信回路と、
     を含み、
     前記ヘッダ情報は、
     前記第1のチャネルグループのチャネル割り当てを示すn個のビットと、
     前記第2のチャネルグループのチャネル割り当てを示すm個のビットと、
     を含み、
     前記第3のチャネルグループのチャネル割り当ては、
     前記n個のビットと前記m個のビットとを組み合わせて示される、
     送信装置。
    A first channel group of n (n is an integer) channels having a first bandwidth in a predetermined band;
    A second channel that is two consecutive channels of the first channel group in the predetermined band and is a combination of non-overlapping channels (m is an integer and a value smaller than n). Channel groups,
    In the predetermined band, there are three consecutive channels in the first channel group, which are p channels (p is an integer, a value smaller than m) that combines non-overlapping channels. Channel groups,
    First to r-th modulation circuits that respectively modulate header information related to r (r is an integer of 1 or more) carriers to which one or more of them are assigned;
    First to r-th transmitter circuits for transmitting the modulated header information, respectively.
    Including
    The header information is
    N bits indicating the channel assignment of the first channel group;
    M bits indicating the channel assignment of the second channel group;
    Including
    The channel assignment of the third channel group is
    The n bits and the m bits are shown in combination.
    Transmitter device.
  2.  前記第1のチャネルグループのチャネル割り当ては、前記n個のビットのうち、1ビットを用いて1つのチャネルを割り当て、
     前記第2のチャネルグループのチャネル割り当ては、前記m個のビットのうち、1ビットを用いて1つのチャネルを割り当てる、
     請求項1に記載の送信装置。
    In the channel assignment of the first channel group, one channel is assigned using one bit among the n bits,
    In the channel assignment of the second channel group, one channel is assigned using one bit among the m bits.
    The transmission device according to claim 1.
  3.  前記第3のチャネルグループのそれぞれのチャネルは、
     前記n個のビットのうち、前記第3のチャネルグループのそれぞれのチャネルの帯域と重複する前記第1のチャネルグループのチャネルに割り当てられたビットと、
     前記m個のビットのうち、前記第3のチャネルグループのそれぞれのチャネルの帯域と重複する前記第2のチャネルグループのチャネルに割り当てられたビットと、
     が割り当てられる、
     請求項2に記載の送信装置。
    Each channel of the third channel group is
    Of the n bits, the bits assigned to the channels of the first channel group that overlap the band of the respective channels of the third channel group;
    Of the m bits, the bits allocated to the channels of the second channel group that overlap the respective channel bands of the third channel group;
    Is assigned,
    The transmission device according to claim 2.
  4.  前記第3のチャネルグループのそれぞれのチャネルに割り当てられたビットが示す、前記第2のチャネルグループのチャネルの帯域と前記第1のチャネルグループのチャネルの帯域とは、重複する帯域を含む、
     請求項3に記載の送信装置。
    The band of the channel of the second channel group and the band of the channel of the first channel group indicated by the bits allocated to the respective channels of the third channel group include overlapping bands.
    The transmission device according to claim 3.
  5.  前記ヘッダ情報は、
     前記所定の帯域において、前記第1のチャネルグループのうちの連続する4つのチャネルであって、重複しないチャネルを組み合わせたq(qは整数であり、mより小さい値)個のチャネルである第4のチャネルグループの前記r個のキャリアへの割り当てを含み、
     前記第4のチャネルグループのチャネル割り当ては、
     前記n個のビットと前記m個のビットとを組み合わせて示される、
     請求項1記載の送信装置。
    The header information is
    In the predetermined band, there are four consecutive channels in the first channel group, which are q channels (q is an integer and a value smaller than m) combining non-overlapping channels. Assignment of the channel groups to the r carriers,
    The channel assignment of the fourth channel group is
    The n bits and the m bits are shown in combination.
    The transmission device according to claim 1.
  6.  前記送信回路は、
     前記ヘッダ情報を、各キャリアに割り当てた前記第2及び前記第3のチャネルグループのチャネルと帯域が重複する前記第1のチャネルグループのチャネルによって、送信する、
     請求項1記載の送信装置。
    The transmission circuit includes:
    Transmitting the header information by the channel of the first channel group whose band overlaps with the channel of the second and third channel groups allocated to each carrier;
    The transmission device according to claim 1.
  7.  第1から第r(rは1以上の整数)信号をそれぞれ受信する第1から第rの受信回路と、
     前記第1から第r信号のいずれか1つからヘッダ情報を復号する復号回路と、
     前記ヘッダ情報を用いて、前記第1から第rの受信回路で使用するチャネルを制御する制御回路と、
     前記チャネル制御された前記第1から第rの受信回路から出力された前記第1から第r信号を復号してペイロードを出力するペイロード復号回路と、
     を含み、
     前記第1から第r信号は、
     所定の帯域において、第1の帯域幅をもつn(nは整数)個のチャネルの第1のチャネルグループと、
     前記所定の帯域において、前記第1のチャネルグループのうちの連続する2つのチャネルであって、重複しないチャネルを組み合わせたm(mは整数であり、nより小さい値)個のチャネルである第2のチャネルグループと、
     前記所定の帯域において、前記第1のチャネルグループのうちの連続する3つのチャネルであって、重複しないチャネルを組み合わせたp(pは整数であり、mより小さい値)個のチャネルである第3のチャネルグループと、
     のうちの1つ以上がそれぞれ割り当てられ、
     前記ヘッダ情報は、
     前記第1のチャネルグループのチャネル割り当てを示すn個のビットと、
     前記第2のチャネルグループのチャネル割り当てを示すm個のビットと、
     を含み、
     前記第3のチャネルグループのチャネル割り当ては、
     前記n個のビットと前記m個のビットとを組み合わせて示される、
     受信装置。
    First to r-th receiving circuits for respectively receiving first to r-th (r is an integer of 1 or more) signals;
    A decoding circuit for decoding header information from any one of the first to r-th signals;
    A control circuit for controlling a channel used in the first to r-th receiving circuits using the header information;
    A payload decoding circuit for decoding the first to r-th signals output from the first to r-th receiving circuits controlled by the channel and outputting a payload;
    Including
    The first to r-th signals are:
    A first channel group of n (n is an integer) channels having a first bandwidth in a given band;
    A second channel that is two consecutive channels of the first channel group in the predetermined band and is a combination of non-overlapping channels (m is an integer and a value smaller than n). Channel groups,
    In the predetermined band, there are three consecutive channels in the first channel group, which are p channels (p is an integer, a value smaller than m) that combines non-overlapping channels. Channel groups,
    One or more of each is assigned,
    The header information is
    N bits indicating the channel assignment of the first channel group;
    M bits indicating the channel assignment of the second channel group;
    Including
    The channel assignment of the third channel group is
    The n bits and the m bits are shown in combination.
    Receiver device.
  8.  前記第1のチャネルグループのチャネル割り当ては、前記n個のビットのうち、1ビットを用いて1つのチャネルを割り当て、
     前記第2のチャネルグループのチャネル割り当ては、前記m個のビットのうち、1ビットを用いて1つのチャネルを割り当てる、
     請求項7に記載の受信装置。
    In the channel assignment of the first channel group, one channel is assigned using one bit among the n bits,
    In the channel assignment of the second channel group, one channel is assigned using one bit among the m bits.
    The receiving device according to claim 7.
  9.  前記第3のチャネルグループのそれぞれのチャネルは、
     前記n個のビットのうち、前記第3のチャネルグループのそれぞれのチャネルの帯域と重複する前記第1のチャネルグループのチャネルに割り当てられたビットと、
     前記m個のビットのうち、前記第3のチャネルグループのそれぞれのチャネルの帯域と重複する前記第2のチャネルグループのチャネルに割り当てられたビットと、
     が割り当てられる、
     請求項8に記載の受信装置。
    Each channel of the third channel group is
    Of the n bits, the bits assigned to the channels of the first channel group that overlap the band of the respective channels of the third channel group;
    Of the m bits, the bits allocated to the channels of the second channel group that overlap the respective channel bands of the third channel group;
    Is assigned,
    The receiving device according to claim 8.
  10.  前記第3のチャネルグループのそれぞれのチャネルに割り当てられたビットが示す、前記第2のチャネルグループのチャネルの帯域と前記第1のチャネルグループのチャネルの帯域とは、重複する帯域を含む、
     請求項8に記載の受信装置。
    The band of the channel of the second channel group and the band of the channel of the first channel group indicated by the bits allocated to the respective channels of the third channel group include overlapping bands.
    The receiving device according to claim 8.
  11.  前記第1から第rの受信回路は、
     割り当てられたチャネルグループのチャネルと帯域が重複する前記第1のチャネルグループのチャネルのそれぞれにおいて、前記ヘッダ情報を、受信する、
     請求項7記載の受信装置。
    The first to r-th receiving circuits are:
    Receiving the header information in each of the channels of the first channel group whose bandwidth overlaps with the channel of the allocated channel group;
    The receiving device according to claim 7.
  12.  所定の帯域において、第1の帯域幅をもつn(nは整数)個のチャネルである第1のチャネルグループと、
     前記所定の帯域において、前記第1のチャネルグループのうちの連続する2つのチャネルであって、重複しないチャネルを組み合わせたm(mは整数であり、nより小さい値)個のチャネルである第2のチャネルグループと、
     前記所定の帯域において、前記第1のチャネルグループのうちの連続する3つのチャネルであって、重複しないチャネルを組み合わせたp(pは整数であり、mより小さい値)個のチャネルである第3のチャネルグループと、
     のうちの1つ以上が割り当てられたr(rは1以上の整数)個のキャリアに関するヘッダ情報のそれぞれを、第1から第rの変調回路によって変調し、
     前記変調されたヘッダ情報のそれぞれを、第1から第rの送信回路によって送信し、
     前記ヘッダ情報は、
     前記第1のチャネルグループのチャネル割り当てを示すn個のビットと、
     前記第2のチャネルグループのチャネル割り当てを示すm個のビットと、
     を含み、
     前記第3のチャネルグループのチャネル割り当ては、
     前記n個のビットと前記m個のビットとを組み合わせて示される、
     送信方法。
    A first channel group of n (n is an integer) channels having a first bandwidth in a predetermined band;
    A second channel that is two consecutive channels of the first channel group in the predetermined band and is a combination of non-overlapping channels (m is an integer and a value smaller than n). Channel groups,
    In the predetermined band, there are three consecutive channels in the first channel group, which are p channels (p is an integer, a value smaller than m) that combines non-overlapping channels. Channel groups,
    Each of the header information related to r (r is an integer of 1 or more) carriers to which one or more of them are assigned is modulated by first to r-th modulation circuits,
    Each of the modulated header information is transmitted by first to r-th transmitter circuits;
    The header information is
    N bits indicating the channel assignment of the first channel group;
    M bits indicating the channel assignment of the second channel group;
    Including
    The channel assignment of the third channel group is
    The n bits and the m bits are shown in combination.
    Transmission method.
  13.  第1から第r(rは1以上の整数)信号のそれぞれを、第1から第rの受信回路によって、受信し、
     前記第1から第r信号のいずれか1つからヘッダ情報を復号し、
     前記ヘッダ情報を用いて、前記第1から第rの受信回路で使用するチャネルを制御し、
     前記チャネル制御された前記第1から前記第rの受信回路から出力された前記第1から第r信号を復号してペイロードを出力し、
     前記第1から第r信号は、
     所定の帯域において、第1の帯域幅をもつn(nは整数)個のチャネルの第1のチャネルグループと、
     前記所定の帯域において、前記第1のチャネルグループのうちの連続する2つのチャネルであって、重複しないチャネルを組み合わせたm(mは整数であり、nより小さい値)個のチャネルである第2のチャネルグループと、
     前記所定の帯域において、前記第1のチャネルグループのうちの連続する3つのチャネルであって、重複しないチャネルを組み合わせたp(pは整数であり、mより小さい値)個のチャネルである第3のチャネルグループと、
     のうちの1つ以上がそれぞれ割り当てられ、
     前記ヘッダ情報は、
     前記第1のチャネルグループのチャネル割り当てを示すn個のビットと、
     前記第2のチャネルグループのチャネル割り当てを示すm個のビットと、
     を含み、
     前記第3のチャネルグループのチャネル割り当ては、
     前記n個のビットと前記m個のビットとを組み合わせて示される、
     受信方法。
    Each of the first to r-th (r is an integer equal to or greater than 1) signals is received by the first to r-th receiving circuits,
    Decoding header information from any one of the first to r-th signals;
    Using the header information to control channels used in the first to r-th receiving circuits;
    Decoding the first to r-th signals output from the first to r-th receiving circuits controlled by the channel and outputting a payload;
    The first to r-th signals are:
    A first channel group of n (n is an integer) channels having a first bandwidth in a given band;
    A second channel that is two consecutive channels of the first channel group in the predetermined band and is a combination of non-overlapping channels (m is an integer and a value smaller than n). Channel groups,
    In the predetermined band, there are three consecutive channels in the first channel group, which are p channels (p is an integer, a value smaller than m) that combines non-overlapping channels. Channel groups,
    One or more of each is assigned,
    The header information is
    N bits indicating the channel assignment of the first channel group;
    M bits indicating the channel assignment of the second channel group;
    Including
    The channel assignment of the third channel group is
    The n bits and the m bits are shown in combination.
    Reception method.
PCT/JP2017/022472 2016-07-07 2017-06-19 Transmitting device, receiving device, transmitting method and receiving method WO2018008373A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780033328.5A CN109196832B (en) 2016-07-07 2017-06-19 Transmission device, reception device, transmission method, and reception method
US16/163,674 US10749625B2 (en) 2016-07-07 2018-10-18 Transmission device, reception device, transmission method, and reception method of header information on channel aggregation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662359601P 2016-07-07 2016-07-07
US62/359601 2016-07-07
JP2017-110961 2017-06-05
JP2017110961A JP6989296B2 (en) 2016-07-07 2017-06-05 Transmitter, receiver, transmitter and receiver

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/163,674 Continuation US10749625B2 (en) 2016-07-07 2018-10-18 Transmission device, reception device, transmission method, and reception method of header information on channel aggregation

Publications (1)

Publication Number Publication Date
WO2018008373A1 true WO2018008373A1 (en) 2018-01-11

Family

ID=60912703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022472 WO2018008373A1 (en) 2016-07-07 2017-06-19 Transmitting device, receiving device, transmitting method and receiving method

Country Status (2)

Country Link
JP (1) JP6989296B2 (en)
WO (1) WO2018008373A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069764A1 (en) * 2022-09-27 2024-04-04 日本電信電話株式会社 Wireless communication system, wireless terminal, wireless base station, wireless communication method, and wireless communication program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041417A1 (en) * 2006-09-29 2008-04-10 Mitsubishi Electric Corporation Channel assignment notifying method, communication method and communication apparatus
JP2013507822A (en) * 2009-10-15 2013-03-04 サムスン エレクトロニクス カンパニー リミテッド Channel aggregation and guard channel display apparatus and method for visible light communication
US20150373587A1 (en) * 2014-06-19 2015-12-24 Samsung Electronics Co., Ltd. Methods for bandwidth efficient operations in wireless local area networks
US20160323890A1 (en) * 2015-04-30 2016-11-03 Intel IP Corporation Apparatus, system and method of wireless communication according to a band plan and channelization

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112018001998B1 (en) * 2015-09-10 2023-12-19 Apple Inc TRANSMISSION APPARATUS, TRANSMISSION METHOD, RECEIVING APPARATUS AND RECEIVING METHOD

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041417A1 (en) * 2006-09-29 2008-04-10 Mitsubishi Electric Corporation Channel assignment notifying method, communication method and communication apparatus
JP2013507822A (en) * 2009-10-15 2013-03-04 サムスン エレクトロニクス カンパニー リミテッド Channel aggregation and guard channel display apparatus and method for visible light communication
US20150373587A1 (en) * 2014-06-19 2015-12-24 Samsung Electronics Co., Ltd. Methods for bandwidth efficient operations in wireless local area networks
US20160323890A1 (en) * 2015-04-30 2016-11-03 Intel IP Corporation Apparatus, system and method of wireless communication according to a band plan and channelization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIROYUKI MOTOZUKA ET AL.: "Aggregation based channel bonding", IEEE 802.11-16/0074R0, 18 January 2016 (2016-01-18), pages 1 - 10, XP055450413, Retrieved from the Internet <URL:https://mentor.ieee.org/802.11/dcn/16/11-16-0074-00-00ay-aggregation-based-channel-bonding.ppt> [retrieved on 20170817] *

Also Published As

Publication number Publication date
JP6989296B2 (en) 2022-01-05
JP2018007241A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US10749625B2 (en) Transmission device, reception device, transmission method, and reception method of header information on channel aggregation
US10123341B2 (en) Method and apparatus for transmitting data in very high throughput wireless local area network system
KR101367489B1 (en) Method and apparatus for communication in a wireless lan system
KR101341269B1 (en) Method and Apparatus of transmitting Training Signal In Wireless Local Area Network System
AU2016216286B2 (en) Methods and apparatus for transmitting/receiving HE-SIG B
JP6310081B2 (en) Method and apparatus for transmitting data to a plurality of STAs in a wireless LAN
KR101317570B1 (en) Method and Apparatus for transmitting control information in WLAN system
US20210289500A1 (en) Physical layer (phy) packet design for power spectral density (psd) limits
EP3228041A1 (en) Trigger frame format for orthogonal frequency division multiple access (ofdma) communication
KR20210110403A (en) Signaling method for multi-user transmission, and wireless communication termianl and wireless communication method using same
TW202147800A (en) Multi-generation communication in a wireless local area network (wlan)
KR20130059391A (en) Method and apparatus for transmitting control information in wireless local area network using multi-channel
KR102130019B1 (en) Signal transmission and reception method in wireless LAN system and apparatus therefor
TW202207657A (en) Wireless transmissions using distributed tones
KR102208398B1 (en) Method for supporting beamforming in wireless LAN system and apparatus therefor
TW202249520A (en) Distributed resource unit transmission
TW202304168A (en) Forward-compatible puncturing indications
KR102138759B1 (en) Signal transmission and reception method in wireless LAN system and apparatus therefor
KR102348962B1 (en) Signal transmission/reception method in wireless LAN system and apparatus therefor
WO2018008373A1 (en) Transmitting device, receiving device, transmitting method and receiving method
CN110999199B (en) Method for transmitting and receiving signal in wireless LAN system and apparatus for the same
WO2016088956A1 (en) Method and device for transmitting data unit
TW202301825A (en) Multi-user duplicate transmission
TW202402031A (en) 60 ghz physical layer convergence protocol (plcp) protocol data unit (ppdu) formats
TW202412498A (en) Antenna switching in frequency bands with power spectral density (psd) limits

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823980

Country of ref document: EP

Kind code of ref document: A1