WO2017213274A1 - Method for terminal communication in mmwave communication system and terminal - Google Patents

Method for terminal communication in mmwave communication system and terminal Download PDF

Info

Publication number
WO2017213274A1
WO2017213274A1 PCT/KR2016/006063 KR2016006063W WO2017213274A1 WO 2017213274 A1 WO2017213274 A1 WO 2017213274A1 KR 2016006063 W KR2016006063 W KR 2016006063W WO 2017213274 A1 WO2017213274 A1 WO 2017213274A1
Authority
WO
WIPO (PCT)
Prior art keywords
search space
control channel
mmwave
tti
indicator
Prior art date
Application number
PCT/KR2016/006063
Other languages
French (fr)
Korean (ko)
Inventor
최국헌
고현수
노광석
김동규
이상림
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to PCT/KR2016/006063 priority Critical patent/WO2017213274A1/en
Publication of WO2017213274A1 publication Critical patent/WO2017213274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the following description relates to a wireless communication system, and more particularly, to a communication method and a terminal of a terminal in an mmWave communication system.
  • a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described in brief.
  • E-UMTS Evolved Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • an E-UMTS is located at an end of a user equipment (UE) and a base station (eNode B, eNB, network (E-UTRAN)) and connects an access gateway (AG) connected to an external network.
  • the base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
  • the cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20 MHz to provide a downlink or uplink transmission service to the terminal. Different cells may be configured to provide different bandwidths.
  • the base station controls data transmission and reception for a plurality of terminals.
  • For downlink (DL) data the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information.
  • the base station transmits uplink scheduling information to the terminal for uplink (UL) data, and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use.
  • DL downlink
  • HARQ Hybrid Automatic Repeat and reQuest
  • the core network may be composed of a network node for the user registration of the AG and the terminal.
  • the AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
  • TA tracking area
  • Wireless communication technology has been developed up to LTE-A based on WCDMA, but the needs and expectations of users and operators are continuously increasing.
  • new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
  • An object of the present invention is to propose a stable communication mechanism between a terminal and a base station in an mmWave communication system using an ultra-high frequency band.
  • Another object of the present invention is to mmWave base station to stably transmit a downlink control channel to the terminal.
  • Still another object of the present invention is to implement various methods for ensuring stable reception of a downlink control channel.
  • the communication method may include receiving information indicating that two search spaces for detecting a control channel are set in one mmWave TTI, and a first search space for detecting the control channel. ) And receiving, from the mmWave base station, an indicator indicating a location within the mmWave TTI of the second search space, performing blind decoding for the first search space and the second search space indicated by the indicator, respectively; Detecting a downlink control channel from at least one of the search space and the second search space, and decoding the downlink data indicated by the downlink control channel.
  • the indicator may be received every TTI.
  • the indicator may be received only in the TTI where the settings of the first search space and the second search space are changed by the mmWave base station.
  • the blind decoding may be performed semi-persistent according to the recently received indicator until a new indicator is received.
  • the first search space is arranged in n OFDM symbols from the first Orthogonal Frequency Division Multiplexing (OFDM) symbol of the TTI, and the second search space is arranged in m OFDM symbols from the last OFDM symbol of the TTI, where n and m are natural numbers. Can be.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the blind decoding may be performed at a predetermined position with respect to the number of search spaces.
  • the terminal for solving the technical problem includes a transmitter, a receiver, and a processor connected to the transmitter and the receiver to operate, wherein the processor informs that two search spaces for detecting a control channel in one mmWave TTI are set.
  • Control the receiving unit to receive information control the receiving unit to receive from the mmWave base station an indicator indicating a position within the mmWave TTI of the first search space and the second search space for detecting the control channel, and indicated by the indicator Performing blind decoding on the first search space and the second search space, respectively, detecting a downlink control channel from at least one of the first search space and the second search space, and downlink data indicated by the downlink control channel Decode
  • the terminal supporting the mmWave communication system can stably receive the downlink control channel from the mmWave base station.
  • FIG. 1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
  • FIG. 2 illustrates a structure of a control plane and a user plane of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • 3 illustrates physical channels used in a 3GPP system and a general signal transmission method using the same.
  • FIG. 4 illustrates a structure of a radio frame used in an LTE / LTE-A system.
  • 5 illustrates a resource grid for a downlink slot.
  • FIG. 6 illustrates a structure of a downlink subframe.
  • FIG. 7 is a diagram illustrating an EPDCCH and a PDSCH scheduled by an EPDCCH.
  • FIG. 8 is a diagram illustrating the influence of communication connection by obstacles in the mmWave communication system.
  • TTI transmission time interval
  • FIG. 10 illustrates a frame structure according to the first example of the resource structure in the mmWave system.
  • FIG 11 shows a resource grid according to the first example of the resource structure in the mmWave system.
  • SAW Stop And Wait
  • HAQ Hybrid Automatic Repeat reQuest
  • FIG. 13 illustrates a SAW HARQ procedure according to a third example of a resource structure in an mmWave system.
  • FIG. 14 is a diagram illustrating a process in which data decoding fails due to a decoding failure of a terminal of a control channel.
  • 16 is a diagram illustrating a control channel transmission method according to another exemplary embodiment.
  • 17 is a diagram illustrating a control channel transmission method according to another exemplary embodiment.
  • FIG. 18 is a diagram illustrating a control channel transmission method according to another exemplary embodiment.
  • 19 is a flowchart illustrating a process of performing a control channel transmission method according to an exemplary embodiment.
  • FIG. 20 is a diagram illustrating a process of determining, by the base station, transmission power of a control channel with reference to FIG. 19.
  • 21 is a diagram illustrating a configuration of a terminal and a base station related to the proposed embodiment.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some of the components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents.
  • FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a trans-antenna port channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer at the transmitting side and the physical layer at the receiving side.
  • the physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the PDCP (Packet Data Convergence Protocol) layer of the second layer provides unnecessary control for efficiently transmitting IP packets such as IPv4 or IPv6 over a narrow bandwidth air interface. It performs header compression function that reduces information.
  • the Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transport channels, and physical channels in association with configuration, reconfiguration, and release of radio bearers (RBs).
  • RB means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • One cell constituting an eNB is set to one of bandwidths such as 1.4, 3, 5, 10, 15, and 20 MHz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 3 is a diagram for explaining physical channels used in a 3GPP LTE / LTE-A system and a general signal transmission method using the same.
  • the user equipment that is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S301.
  • the user equipment receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID.
  • P-SCH primary synchronization channel
  • S-SCH secondary synchronization channel
  • the user equipment may receive a physical broadcast channel from the base station to obtain broadcast information in a cell.
  • the user equipment may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the user equipment receives the physical downlink control channel (PDCCH) and the physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S302. Specific system information can be obtained.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the user equipment may perform a random access procedure such as step S303 to step S306 to complete the access to the base station.
  • the user equipment transmits a preamble through a physical random access channel (PRACH) (S303), and responds to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • the message may be received (S304).
  • contention resolution procedures such as transmission of an additional physical random access channel (S305) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S306) may be performed. .
  • UCI uplink control information
  • HARQ ACK / NACK Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK
  • SR Scheduling Request
  • CSI Channel State Information
  • HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N).
  • HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX.
  • the CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
  • FIG. 4 is a diagram illustrating a structure of a radio frame used in an LTE / LTE-A system.
  • uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols.
  • the 3GPP LTE / LTE-A standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain.
  • RBs resource blocks
  • a resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
  • the number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP).
  • CPs include extended CPs and normal CPs.
  • the number of OFDM symbols included in one slot may be seven.
  • the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP.
  • the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the user equipment moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
  • one subframe includes 14 OFDM symbols.
  • the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • Type 2 radio frames consist of two half frames, each half frame comprising four general subframes including two slots, a downlink pilot time slot (DwPTS), a guard period (GP) and It consists of a special subframe including an Uplink Pilot Time Slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS Uplink Pilot Time Slot
  • DwPTS is used for initial cell search, synchronization or channel estimation at the user equipment.
  • UpPTS is used for channel estimation at base station and synchronization of uplink transmission of user equipment. That is, DwPTS is used for downlink transmission and UpPTS is used for uplink transmission.
  • UpPTS is used for PRACH preamble or SRS transmission.
  • the guard period is a period for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • the current 3GPP standard document defines a configuration as shown in Table 1 below.
  • Table 1 In the case of DwPTS and UpPTS, the remaining area is set as a protection interval.
  • the structure of the type 2 radio frame that is, UL / DL configuration (UL / DL configuration) in the TDD system is shown in Table 2 below.
  • D denotes a downlink subframe
  • U denotes an uplink subframe
  • S denotes the special subframe.
  • Table 2 also shows the downlink-uplink switching period in the uplink / downlink subframe configuration in each system.
  • the structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
  • 5 illustrates a resource grid for a downlink slot.
  • the downlink slot is in the time domain Contains OFDM symbols and in the frequency domain Contains resource blocks.
  • Each resource block Downlink slots in the frequency domain because they include subcarriers Includes subcarriers 5 illustrates that the downlink slot includes 7 OFDM symbols and the resource block includes 12 subcarriers, but is not necessarily limited thereto.
  • the number of OFDM symbols included in the downlink slot may be modified according to the length of a cyclic prefix (CP).
  • CP cyclic prefix
  • Each element on the resource grid is called a Resource Element (RE), and one resource element is indicated by one OFDM symbol index and one subcarrier index.
  • One RB It consists of resource elements.
  • the number of resource blocks included in the downlink slot ( ) depends on the downlink transmission bandwidth set in the cell.
  • FIG. 6 illustrates a structure of a downlink subframe.
  • up to three (4) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • the remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared Channel (PDSCH) is allocated.
  • Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
  • DCI downlink control information
  • the DCI includes resource allocation information and other control information for the user device or user device group.
  • the DCI includes uplink / downlink scheduling information, uplink transmission (Tx) power control command, and the like.
  • the PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual user devices in a group of user devices, Tx power It carries control commands and activation instruction information of Voice over IP (VoIP).
  • a plurality of PDCCHs may be transmitted in the control region.
  • the user equipment may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the user equipment, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH.
  • RNTI radio network temporary identifier
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-RNTI paging-RNTI
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 7 is a diagram illustrating an EPDCCH and a PDSCH scheduled by an EPDCCH.
  • an EPDCCH may generally define and use a portion of a PDSCH region for transmitting data, and the UE should perform a blind decoding process for detecting the presence or absence of its own EPDCCH.
  • the EPDCCH performs the same scheduling operation as the legacy legacy PDCCH (ie PDSCH and PUSCH control), but when the number of UEs connected to the same node as the RRH increases, a larger number of EPDCCHs are allocated in the PDSCH region and thus should be performed by the UE.
  • the complexity may be increased by increasing the number of blind decoding to be performed.
  • FIG. 8 is a diagram illustrating the influence of communication connection by obstacles in the mmWave communication system.
  • 8 (a) shows the conditions for measuring the influence of the communication connection by the obstacle in the mmWave communication system.
  • 8 (b) and 8 (c) are diagrams visualizing and showing the influence of the communication connection measured according to the conditions of FIG. 8 (a), respectively.
  • FIG. 8 (a) is a graph showing the density of obstacles along a path when a person is an obstacle.
  • 8 (c) shows the network throughput as the communication connection is blocked. From (b) and (c) it can be seen that the mmWave communication connection is greatly affected by the density of obstacles located on the communication path.
  • the difference in power loss between Line of Sight and NLoS is about 15 dB within 5 meters. Based on this, the difference in power loss between LoS and NLoS is about 45dB at a distance of 100m.
  • TTI transmission time interval
  • the TTI of the mmWave system using the ultra-high frequency band is designed according to the system requirements, which is relatively shorter than the legacy system. This is because the mmWave system has a large performance impact due to LoS / NLoS transition. Accordingly, although a closed-loop system may be configured to increase the transmit power to withstand the LoS / NLoS transition state through feedback, the performance of the mmWave control channel transmitted in the LoS / NLoS transition period may be degraded. Problems may also arise.
  • Table 4 below shows the requirements for the design of a frame (or TTI) in the mmWave system, and Table 4 below is an example of an implementation of the mmWave system.
  • the first example is to limit the memory size
  • the second example is to limit the processing time of the UE (with the HARQ process maintained)
  • a third example is how to limit the processing time of the UE (increasing HARQ process).
  • FIG. 10 shows a frame structure according to a first example of a resource structure in an mmWave system
  • FIG. 11 shows a resource grid according to a first example of a resource structure in an mmWave system
  • FIG. 12 shows a resource structure in an mmWave system.
  • a Stop And Wait (SAW) HARQ (Hybrid Automatic Repeat reQuest) procedure according to a first example and a second example is shown.
  • SAW Stop And Wait
  • HARQ Hybrid Automatic Repeat reQuest
  • FIG. 10 illustrates a frame structure according to the first scheme described above, that is, a method of limiting a memory size (buffer size limitation).
  • the memory size (buffer size) is configured to be the same as the maximum buffer size of the conventional LTE as shown in Table 5.
  • RTT round trip time
  • the TTI is determined to be 222us, which is the last 22 OFDM symbols.
  • a time base resource structure and a resource grid according to the first scheme are shown in FIGS. 10 and 11, respectively, and the HARQ process according to the first scheme is illustrated as in FIG. 12.
  • Table 6 shows a code bit size based on the buffer size of LTE in the first proposal
  • Table 7 shows parameters defining the TTI of the first proposal described above.
  • Table 8 shows parameters related to a maximum transport block (TB) size according to the first proposal.
  • the method of limiting the processing time of the UE is to limit the processing time of the MAC or PHY layer of the UE.
  • the number of HARQ processes remains 8, the same as the LTE system, and the assumption that the system coverage is less than 1km and the RTT is 6.67us is the same as the first proposal described above.
  • the second proposal assumes that the processing time of the UE is 2.3ms.
  • the TTI is determined as 767.6us, which is the last 76 OFDM symbols, and the HARQ process of the second eye is shown in FIG. 12.
  • the HARQ process of the second eye there is a difference that one TTI is composed of 767.6 us, so that the final TB size is also increased by about 3.45 times compared to the first eye.
  • FIG. 13 illustrates a SAW HARQ procedure according to a third example of a resource structure in an mmWave system.
  • the third scheme also limits the processing time of the UE. Unlike the second scheme, the third scheme increases the number of HARQ processes. Assuming a single CW, assuming that the system coverage is less than 1km, the RTT is 6.67 us, the processing time of the UE is 2.3ms and one TTI is 222us which is 22 OFDM symbols.
  • the OFDM symbol length itself of one TTI is the same as the third eye and the first eye, but in the third eye, the number of HARQ processes is increased to 24.
  • the link budget based on the mmWave frame structure described above may be shown in Table 9 below.
  • Table 9 it is assumed that in the mmWave system, the service coverage is reduced to less than 1 km, while the wavelength is shortened due to the increase in the center frequency, so that it is easy to increase the signal to noise ratio (SNR) using a massive antenna. . Therefore, the mmWave system can provide higher SNR performance than the conventional LTE, and it is assumed that the maximum modulation scheme is increased from 64 quadrature amplitude modulation (QAM) to 256 QAM. Based on these assumptions, it is possible to meet the basic system requirements while achieving a high data rate of 10 Gbps.
  • QAM quadrature amplitude modulation
  • FIG. 14 is a diagram illustrating a process in which data decoding fails due to a decoding failure of a terminal of a control channel.
  • the effects of the body, obstacles, etc. on the connection in the mmWave system can be expressed as a stochastic value, but it is not known exactly when and how to degrade the communication connection. If the communication connection becomes unstable at the time of transmitting the control channel in mmWave communication and the reception performance is deteriorated, decoding failure of the control channel may occur. As shown in FIG. 14A, when a control channel is erroneously decoded, a corresponding data channel may be erroneously decoded.
  • FIGS. 15 to 17 are diagrams illustrating a control channel transmission method according to an exemplary embodiment.
  • a search space in which a control channel is located in a mmWave TTI (or subframe) is configured differently from a conventional communication system.
  • the location of the search space according to the proposed embodiment may be configured as shown in FIGS. 15 (a), 15 (b) and 15 (c).
  • the location of the search space according to the embodiment proposed in the mmWave system may be known to the UE by a separate channel indicating the location of the control channel, such as a physical control format indicator channel (PCFICH) in the LTE / LTE-A system.
  • PCFICH physical control format indicator channel
  • the control channel proposed in the mmWave system may be arranged in the first n OFDM symbols and the last m OFDM symbols in the mmWave TTI (or subframe), as shown in FIG. 15 (b). May be the same or different).
  • FIG. 15 (b) shows a resource structure in which a control channel of the mmWave system is arranged in the first three OFDM symbols and the last two OFDM symbols in the mmWave TTI.
  • the position of the control channel and the position of the search space configured in a manner different from the conventional communication system may be indicated by the 'PCFICH' shown in FIG. 15 (a).
  • the UE decodes data of 'control channel 1' and 'control channel 2' separately.
  • the channel can be decoded. Accordingly, the UE can obtain a decoding opportunity for 'control channel 2' in addition to the general 'control channel 1', so that the control channel can be stably decoded even in a bad communication environment.
  • the channel of mmWave TTI described above as 'PCFICH' is merely an example for convenience of description, and a separate channel may be defined to indicate the position of a control channel defined in the mmWave system.
  • FIG. 15C illustrates an example of setting a control format indicator (CFI) indicating a position of a control channel defined in the mmWave system.
  • CFI control format indicator
  • FIG. 15 (c) the CFI values '1', '2', and '3' representing the first three OFDM symbols of FIG. 15 (b) to indicate the position of the control channel within the mmWave TTI.
  • it additionally includes '4' and '5' values representing the last two OFDM symbols.
  • the UE can recognize that the control channel is located in the last two OFDM symbols in the mmWave TTI by recognizing the codewords for the values '4' and '5' included in the CFI. Accordingly, the UE may additionally detect 'control channel 2' by performing blind decoding on the search space located in the last two OFDM symbols.
  • the position of the control channel in the mmWave TTI corresponding to '4' and '5' in the CFI may be a position other than the last OFDM symbol, and is illustrated in FIGS. 15 (a) and 15 (b). Is just an example.
  • the position of the new control channel may be any position within the mmWave TTI and may be preset in the mmWave RRC layer.
  • the UE may be known to the UE in advance by the mmWave system that two search spaces are set at heterogeneous positions within the mmWave TTI.
  • information indicating that a new search space (control channel 2 described above) is set up in addition to the conventional search space may be carried in the mmWave System Information Block (SIB) and known to the UE.
  • SIB mmWave System Information Block
  • the UE recognizing that two or more search spaces are set in different locations, transmits a reference signal (RS) or a preamble in uplink in an RRC-connected state and receives the received signal.
  • RS reference signal
  • One mmWave base station sets up a search space for the PDCCH in the mmWave TTI.
  • the diversity of the control information can be obtained as the search spaces are set at different positions.
  • FIG. 16 is a modified embodiment of the embodiment shown in FIG. 15.
  • the UE could know the search space of the control channel defined in the mmWave system through a channel indicating the position of the control channel, such as the PCFICH of the LTE system.
  • the UE may determine the search space location of the control channel from a channel serving as a PBCH (Physical Broadcast Channel) of the LTE system.
  • PBCH Physical Broadcast Channel
  • the position of the mmWave control channel is broadcast to the UE semi-persistent.
  • the UE continues to transmit the new control channel 'control channel 2' without additional signaling to the corresponding position in the mmWave TTI. (E.g., the last two OFDM symbols).
  • the UE no longer has a 'control channel'. No blind decoding to detect 2 'is performed within the mmWave TTI.
  • the base station indicates to the UE the position where the mmWave control channel is allocated through a channel such as PCFICH.
  • the mmWave control channel is semi-halted until a new indication is received. It is permanently assigned to the location and transmitted.
  • FIG. 17 illustrates an embodiment in which the embodiments described with reference to FIGS. 15 and 16 are combined. Unlike the embodiments described with reference to FIG. 16, only information on the number of control channels defined in the mmWave system may be defined in the same channel as the PBCH of the mmWave system. If the control channel of the mmWave system and the position of the PCFICH corresponding thereto is preset by the RRC layer, the UE blindly decodes the new control channel through the preset PCFICH even if only the position of the control channel is indicated in the PBCH as shown in FIG. can do.
  • the PCFICH is pre-set to the first OFDM symbol and the last OFDM symbol in the TTI, and the position of the control channel is the first two OFDM symbols (control channel 1) and the last three symbols. It may be preset to an OFDM symbol (control channel 2).
  • the UE decodes the positions of the two preset PCFICHs to decode the search space for the control channel 1 and the control channel 2. After that, the control channel 1 and the control channel 2 may be detected by performing blind decoding on the corresponding search space.
  • 18 to 20 are diagrams illustrating a control channel transmission method according to another exemplary embodiment. 15 to 17 have been described with reference to an embodiment of improving transmission diversity of a control channel. 18 to 20 illustrate a second embodiment in which the overhead of the control channel is maintained within the TTI, but the decoding reliability of the control channel is improved.
  • an mmWave control channel enabler is defined.
  • the mmWave control channel enabler is information indicating the transmission status of the mmWave control channel, and a position in the control channel is fixedly assigned.
  • the UE can grasp information on the transmission performance of the entire control channel by decoding the mmWave control channel enabler received from the base station.
  • the mmWave control channel enabler is allocated to a predetermined region in the mmWave control channel.
  • UEs located within mmWave base station coverage know in advance where such control channel enablers are located.
  • the mmWave control channel enabler may be distributed in the control channel.
  • the mmWave control channel enabler is transmitted with a code previously promised between the base station and the UE, and the UE determines only whether it is decoded after receiving the mmWave control channel enabler.
  • the mmWave control channel enabler is transmitted only to determine whether the UE is decoded by the UE so as to represent the transmission status over the control channel, rather than to obtain specific information.
  • the UE checks the power and link stability of the downlink control channel by receiving and decoding the mmWave control channel enabler. Subsequently, the UE transmits ACKnowledgement / Negative ACKnowledgement (ACK / NACK) for the mmWave control channel enabler to the base station.
  • ACK / NACK ACKnowledgement / Negative ACKnowledgement
  • the ACK / NACK for the mmWave control channel enabler may be transmitted to the base station together with the ACK / NACK for the data in the corresponding TTI. That is, since the ACK / NACK for each of the enabler and the data are transmitted only once per TTI, the overhead of uplink signaling can be reduced by the UE transmitting both ACK / NACKs during uplink transmission.
  • 19 is a flowchart illustrating a signaling process according to the introduction of the mmWave control channel enabler described above.
  • the mmWave base station transmits an mmWave control channel enabler in a control channel in a subframe (or TTI) to the UE.
  • the UE decodes the enabler and transmits ACK / NACK for the enabler and ACK / NACK for the data together to the base station in uplink.
  • the base station receiving the ACK / NACK for the mmWave control channel enabler transmits a new downlink control channel to the UE by adjusting the transmission power.
  • the UE successfully decodes the enabler when an ACK is received
  • the transmission state of the previous downlink control channel transmission is determined to be good, so that the base station maintains or relatively transmits the next downlink control channel transmission power. Transmit uplink by a small value.
  • the base station may transmit the next downlink control channel transmit power by adjusting a relatively large value.
  • FIG. 20 exemplarily illustrates the process described with reference to FIG. 19.
  • 20 shows that the PCFICH may be used instead of the mmWave control channel enabler. That is, the PCFICH may be implemented to replace the role of the mmWave control channel enabler.
  • the base station If the base station receives an ACK for the Enabler / PCFICH and an ACK for data (that is, receives an '11' bit), the base station knows that both the mmWave control channel and the mmWave data channel have good transmission. Can be. Therefore, the base station may use the same transmission power as the next downlink transmission.
  • the base station when the NACK for the enabler / PCFICH is received ('01'), the base station can know that the transmission state of the control channel is not good. If the transmission state of the control channel is not good, the decoding of the data channel is likely to fail as the decoding of the control channel fails, so that the base station considers that the correct decoding of the data channel has failed even if an ACK for the data channel is received. . Subsequently, the base station increases and transmits the transmission power for the control channel during the next downlink transmission.
  • the base station retransmits only the data channel because the control channel itself is well transmitted but the decoding of the data channel fails.
  • the base station determines that the transmission state of the data channel and the control channel are both poor and transmit power of the control channel in the next downlink transmission. Send it up.
  • the base station fails to receive the ACK / NACK of the response to the enabler / PCFICH and the response to the data, because the uplink transmission from the UE is poor, the base station can not determine whether the downlink transmission was successful . Therefore, the base station increases and transmits the transmission power of the control channel during the next downlink transmission.
  • the terminal 100 and the base station 200 may include radio frequency (RF) units 110 and 210, processors 120 and 220, and memories 130 and 230, respectively.
  • RF radio frequency
  • FIG. 21 only a 1: 1 communication environment between the terminal 100 and the base station 200 is illustrated, but a communication environment may be established between a plurality of terminals and a plurality of base stations.
  • the base station 200 illustrated in FIG. 21 may be applied to both the macro cell base station and the small cell base station.
  • Each RF unit 110, 210 may include a transmitter 112, 212 and a receiver 114, 214, respectively.
  • the transmitting unit 112 and the receiving unit 114 of the terminal 100 are configured to transmit and receive signals with the base station 200 and other terminals, and the processor 120 is functionally connected with the transmitting unit 112 and the receiving unit 114.
  • the transmitter 112 and the receiver 114 may be configured to control a process of transmitting and receiving signals with other devices.
  • the processor 120 performs various processes on the signal to be transmitted and transmits the signal to the transmitter 112, and performs the process on the signal received by the receiver 114.
  • the processor 120 may store information included in the exchanged message in the memory 130.
  • the terminal 100 can perform the method of various embodiments of the present invention described above.
  • the transmitter 212 and the receiver 214 of the base station 200 are configured to transmit and receive signals with other base stations and terminals, and the processor 220 is functionally connected to the transmitter 212 and the receiver 214 to transmit the signal. 212 and the receiver 214 may be configured to control the process of transmitting and receiving signals with other devices.
  • the processor 220 may perform various processing on the signal to be transmitted, transmit the signal to the transmitter 212, and may perform processing on the signal received by the receiver 214. If necessary, the processor 220 may store information included in the exchanged message in the memory 230. With such a structure, the base station 200 may perform the method of the various embodiments described above.
  • Processors 120 and 220 of the terminal 100 and the base station 200 respectively instruct (eg, control, coordinate, manage, etc.) the operation in the terminal 100 and the base station 200.
  • Respective processors 120 and 220 may be connected to memories 130 and 230 that store program codes and data.
  • the memories 130 and 230 are coupled to the processors 120 and 220 to store operating systems, applications, and general files.
  • the processor 120 or 220 of the present invention may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like.
  • the processors 120 and 220 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the above-described method may be written as a program executable on a computer, and may be implemented in a general-purpose digital computer which operates the program using a computer readable medium.
  • the structure of the data used in the above-described method can be recorded on the computer-readable medium through various means.
  • Program storage devices that may be used to describe storage devices that include executable computer code for performing the various methods of the present invention should not be understood to include transient objects, such as carrier waves or signals. do.
  • the computer readable medium includes a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (eg, a CD-ROM, a DVD, etc.).
  • control channel transmission and reception method in the mmWave system as described above can be applied to various wireless communication systems including not only 3GPP systems but also IEEE 802.16x and 802.11x systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Disclosed is a terminal for performing an mmWave communication method, comprising the steps of: receiving, from a base station, information notifying two search spaces have been configured to detect a control channel in one mmWave TTI, and receiving an indicator indicating the position of a first search space and a second space for detecting the control channel within the mmWave TTI; performing blind decoding for each of the first search space and the second search space indicated by the indicator; detecting a downlink control channel from the first search space and/or the second search space; and decoding downlink data indicated by the downlink control channel.

Description

MMWAVE 통신 시스템에서 단말의 통신 방법 및 단말Method and terminal of terminal in MMWAVE communication system
이하의 설명은 무선 통신 시스템에 대한 것으로, 구체적으로는 mmWave 통신 시스템에서 단말의 통신 방법 및 그 단말에 대한 것이다.The following description relates to a wireless communication system, and more particularly, to a communication method and a terminal of a terminal in an mmWave communication system.
본 발명이 적용될 수 있는 무선 통신 시스템의 일례로서 3GPP LTE (3rd Generation Partnership Project Long Term Evolution, 이하 "LTE"라 함) 통신 시스템에 대해 개략적으로 설명한다.As an example of a wireless communication system to which the present invention may be applied, a 3GPP LTE (3rd Generation Partnership Project Long Term Evolution (LTE)) communication system will be described in brief.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망구조를 개략적으로 도시한 도면이다. E-UMTS(Evolved Universal Mobile Telecommunications System) 시스템은 기존 UMTS(Universal Mobile Telecommunications System)에서 진화한 시스템으로서, 3GPP에서 표준화 작업을 진행하고 있다. 일반적으로 E-UMTS는 LTE(Long Term Evolution) 시스템 또는 LTE-A(LTE-Advanced) 시스템으로 불린다. UMTS 및 E-UMTS의 기술 규격(technical specification)의 상세한 내용은 각각 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network"의 Release 7 내지 Release 13을 참조할 수 있다.1 is a diagram schematically illustrating an E-UMTS network structure as an example of a wireless communication system. The Evolved Universal Mobile Telecommunications System (E-UMTS) system is an evolution from the existing Universal Mobile Telecommunications System (UMTS), and is being standardized in 3GPP. In general, the E-UMTS is called a Long Term Evolution (LTE) system or an LTE-Advanced (LTE-A) system. For details of technical specifications of UMTS and E-UMTS, refer to Release 7 to Release 13 of "3rd Generation Partnership Project; Technical Specification Group Radio Access Network", respectively.
도 1을 참조하면, E-UMTS는 단말(User Equipment, UE)과 기지국(eNode B, eNB, 네트워크(E-UTRAN)의 종단에 위치하여 외부 네트워크와 연결되는 접속 게이트웨이(Access Gateway, AG)를 포함한다. 기지국은 브로드캐스트 서비스, 멀티캐스트 서비스 및/또는 유니캐스트 서비스를 위해 다중 데이터 스트림을 동시에 전송할 수 있다. Referring to FIG. 1, an E-UMTS is located at an end of a user equipment (UE) and a base station (eNode B, eNB, network (E-UTRAN)) and connects an access gateway (AG) connected to an external network. The base station may transmit multiple data streams simultaneously for broadcast service, multicast service and / or unicast service.
한 기지국에는 하나 이상의 셀이 존재한다. 셀은 1.25, 2.5, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다. 기지국은 다수의 단말에 대한 데이터 송수신을 제어한다. 하향 링크(Downlink, DL) 데이터에 대해 기지국은 하향 링크 스케줄링 정보를 전송하여 해당 단말에게 데이터가 전송될 시간/주파수 영역, 부호화, 데이터 크기, HARQ(Hybrid Automatic Repeat and reQuest) 관련 정보 등을 알려준다. 또한, 상향 링크(Uplink, UL) 데이터에 대해 기지국은 상향 링크 스케줄링 정보를 해당 단말에게 전송하여 해당 단말이 사용할 수 있는 시간/주파수 영역, 부호화, 데이터 크기, HARQ 관련 정보 등을 알려준다. 기지국간에는 사용자 트래픽 또는 제어 트래픽 전송을 위한 인터페이스가 사용될 수 있다. 핵심망(Core Network, CN)은 AG와 단말의 사용자 등록 등을 위한 네트워크 노드 등으로 구성될 수 있다. AG는 복수의 셀들로 구성되는 TA(Tracking Area) 단위로 단말의 이동성을 관리한다.One or more cells exist in one base station. The cell is set to one of bandwidths such as 1.25, 2.5, 5, 10, 15, and 20 MHz to provide a downlink or uplink transmission service to the terminal. Different cells may be configured to provide different bandwidths. The base station controls data transmission and reception for a plurality of terminals. For downlink (DL) data, the base station transmits downlink scheduling information to inform the corresponding UE of time / frequency domain, encoding, data size, and HARQ (Hybrid Automatic Repeat and reQuest) related information. In addition, the base station transmits uplink scheduling information to the terminal for uplink (UL) data, and informs the time / frequency domain, encoding, data size, HARQ related information, etc. that the terminal can use. An interface for transmitting user traffic or control traffic may be used between base stations. The core network (Core Network, CN) may be composed of a network node for the user registration of the AG and the terminal. The AG manages the mobility of the UE in units of a tracking area (TA) composed of a plurality of cells.
무선 통신 기술은 WCDMA를 기반으로 LTE-A 까지 개발되어 왔지만, 사용자와 사업자의 요구와 기대는 지속적으로 증가하고 있다. 또한, 다른 무선 접속 기술이 계속 개발되고 있으므로 향후 경쟁력을 가지기 위해서는 새로운 기술 진화가 요구된다. 비트당 비용 감소, 서비스 가용성 증대, 융통성 있는 주파수 밴드의 사용, 단순 구조와 개방형 인터페이스, 단말의 적절한 파워 소모 등이 요구된다.Wireless communication technology has been developed up to LTE-A based on WCDMA, but the needs and expectations of users and operators are continuously increasing. In addition, as other radio access technologies continue to be developed, new technological evolution is required to be competitive in the future. Reduced cost per bit, increased service availability, the use of flexible frequency bands, simple structure and open interface, and adequate power consumption of the terminal are required.
본 발명의 목적은 초고주파 대역을 이용하는 mmWave 통신 시스템에서 단말과 기지국 간의 안정적인 통신 메커니즘을 제안하는 것이다.An object of the present invention is to propose a stable communication mechanism between a terminal and a base station in an mmWave communication system using an ultra-high frequency band.
본 발명의 또 다른 목적은 mmWave 기지국이 단말에 하향링크 제어채널을 안정적으로 전송하는 것이다.Another object of the present invention is to mmWave base station to stably transmit a downlink control channel to the terminal.
본 발명의 또 다른 목적은 하향링크 제어채널의 안정적인 수신을 보장하는 방법을 여러 가지로 구현하는 것이다.Still another object of the present invention is to implement various methods for ensuring stable reception of a downlink control channel.
본 발명에서 이루고자 하는 기술적 목적들은 이상에서 언급한 사항들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 이하 설명할 본 발명의 실시 예들로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 고려될 수 있다.Technical objects to be achieved in the present invention are not limited to the above-mentioned matters, and other technical problems not mentioned above are provided to those skilled in the art from the embodiments of the present invention to be described below. May be considered.
상기 기술적 과제를 해결하기 위한 통신 방법은, 하나의 mmWave TTI 내에서 제어 채널을 검출하기 위한 두 개의 검색공간이 설정됨을 알리는 정보를 수신하는 단계, 제어 채널을 검출하기 위한 제1 검색공간(search space) 및 제2 검색공간의 mmWave TTI 내에서의 위치를 나타내는 지시자를 mmWave 기지국으로부터 수신하는 단계, 지시자에 의해 지시되는 제1 검색공간 및 제2 검색공간에 대한 블라인드 디코딩을 각각 수행하는 단계, 제1 검색공간 및 제2 검색공간 중 적어도 하나로부터 하향링크 제어채널을 검출하는 단계, 및 하향링크 제어채널에 의해 지시되는 하향링크 데이터를 디코딩하는 단계를 포함한다.In order to solve the above technical problem, the communication method may include receiving information indicating that two search spaces for detecting a control channel are set in one mmWave TTI, and a first search space for detecting the control channel. ) And receiving, from the mmWave base station, an indicator indicating a location within the mmWave TTI of the second search space, performing blind decoding for the first search space and the second search space indicated by the indicator, respectively; Detecting a downlink control channel from at least one of the search space and the second search space, and decoding the downlink data indicated by the downlink control channel.
지시자는 매 TTI마다 수신될 수 있다.The indicator may be received every TTI.
지시자는 mmWave 기지국에 의해 제1 검색공간 및 제2 검색공간의 설정이 변경되는 TTI에서만 수신될 수 있다.The indicator may be received only in the TTI where the settings of the first search space and the second search space are changed by the mmWave base station.
블라인드 디코딩은 새로운 지시자가 수신되기 전까지는 최근에 수신된 지시자에 따라 반영속적으로(semi-persistent) 수행될 수 있다.The blind decoding may be performed semi-persistent according to the recently received indicator until a new indicator is received.
제1 검색공간은 TTI의 첫 OFDM(Orthogonal Frequency Division Multiplexing) 심볼로부터 n 개의 OFDM 심볼에 배치되며, 제2 검색공간은 TTI의 마지막 OFDM 심볼로부터 m 개의 OFDM 심볼에 배치되며, n, m은 자연수일 수 있다.The first search space is arranged in n OFDM symbols from the first Orthogonal Frequency Division Multiplexing (OFDM) symbol of the TTI, and the second search space is arranged in m OFDM symbols from the last OFDM symbol of the TTI, where n and m are natural numbers. Can be.
지시자가 제1 검색공간 및 제2검색공간을 포함하는 검색공간의 개수를 나타내는 경우, 블라인드 디코딩은 개수만큼의 검색공간에 대하여 미리 설정된 위치에서 수행될 수 있다.When the indicator indicates the number of search spaces including the first search space and the second search space, the blind decoding may be performed at a predetermined position with respect to the number of search spaces.
상기 기술적 과제를 해결하기 위한 단말은 송신부, 수신부, 및 송신부 및 수신부와 연결되어 동작하는 프로세서를 포함하되, 프로세서는, 하나의 mmWave TTI 내에서 제어 채널을 검출하기 위한 두 개의 검색공간이 설정됨을 알리는 정보를 수신하도록 수신부를 제어하고, 제어 채널을 검출하기 위한 제1 검색공간 및 제2 검색공간의 mmWave TTI 내에서의 위치를 나타내는 지시자를 mmWave 기지국으로부터 수신하도록 수신부를 제어하고, 지시자에 의해 지시되는 제1 검색공간 및 제2 검색공간에 대한 블라인드 디코딩을 각각 수행하고, 제1 검색공간 및 제2 검색공간 중 적어도 하나로부터 하향링크 제어채널을 검출하고, 하향링크 제어채널에 의해 지시되는 하향링크 데이터를 디코딩한다.The terminal for solving the technical problem includes a transmitter, a receiver, and a processor connected to the transmitter and the receiver to operate, wherein the processor informs that two search spaces for detecting a control channel in one mmWave TTI are set. Control the receiving unit to receive information, control the receiving unit to receive from the mmWave base station an indicator indicating a position within the mmWave TTI of the first search space and the second search space for detecting the control channel, and indicated by the indicator Performing blind decoding on the first search space and the second search space, respectively, detecting a downlink control channel from at least one of the first search space and the second search space, and downlink data indicated by the downlink control channel Decode
본 발명의 실시 예들에 따르면 다음과 같은 효과를 기대할 수 있다.According to embodiments of the present invention, the following effects can be expected.
첫째로, mmWave 통신 시스템에서 급격한 채널 변화가 발생하더라도 단말과 기지국 간의 효율적인 통신이 가능하게 된다.First, even though a sudden channel change occurs in the mmWave communication system, efficient communication between the terminal and the base station is possible.
둘째로, mmWave 통신 시스템을 지원하는 단말이 mmWave 기지국으로부터의 하향링크 제어채널을 안정적으로 수신할 수 있게 된다.Secondly, the terminal supporting the mmWave communication system can stably receive the downlink control channel from the mmWave base station.
셋째로, 제어채널을 안정적으로 수신케하는 여러 가지 방식을 통해서 다양한 채널 변화에 적응적으로 동작할 수 있게 되어, 단말의 제어채널의 수신이 보장될 수 있다.Third, it is possible to operate adaptively to various channel changes through various methods for stably receiving the control channel, thereby ensuring the reception of the control channel of the terminal.
본 발명의 실시 예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 본 발명의 실시 예들에 대한 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 발명을 실시함에 따른 의도하지 않은 효과들 역시 본 발명의 실시 예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.Effects obtained in the embodiments of the present invention are not limited to the above-mentioned effects, and other effects not mentioned above are commonly known in the art to which the present invention pertains from the description of the embodiments of the present invention. Can be clearly derived and understood by those who have In other words, unintended effects of practicing the present invention may also be derived by those skilled in the art from the embodiments of the present invention.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시 예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시 예로 구성될 수 있다. 각 도면에서의 참조 번호(reference numerals)들은 구조적 구성요소(structural elements)를 의미한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings are provided to help understand the present disclosure, and provide embodiments of the present disclosure with the detailed description. However, the technical features of the present invention are not limited to the specific drawings, and the features disclosed in the drawings may be combined with each other to constitute a new embodiment. Reference numerals in each drawing refer to structural elements.
도 1은 무선 통신 시스템의 일례로서 E-UMTS 망 구조를 개략적으로 예시한다.1 schematically illustrates an E-UMTS network structure as an example of a wireless communication system.
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 예시한다.FIG. 2 illustrates a structure of a control plane and a user plane of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard.
도 3은 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.3 illustrates physical channels used in a 3GPP system and a general signal transmission method using the same.
도 4는 LTE/LTE-A 시스템에서 사용되는 무선 프레임의 구조를 예시한다.4 illustrates a structure of a radio frame used in an LTE / LTE-A system.
도 5는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한다.5 illustrates a resource grid for a downlink slot.
도 6은 하향링크 서브프레임의 구조를 예시한다.6 illustrates a structure of a downlink subframe.
도 7은 EPDCCH와 EPDCCH에 의하여 스케줄링되는 PDSCH를 예시하는 도면이다. 7 is a diagram illustrating an EPDCCH and a PDSCH scheduled by an EPDCCH.
도 8은 mmWave 통신 시스템에서 장애물에 의한 통신 연결의 영향을 도시하는 도면이다.8 is a diagram illustrating the influence of communication connection by obstacles in the mmWave communication system.
도 9는 이동하는 장애물에 의한 수신 전력 변화와 그에 따른 TTI(Transmission Time Interval) 구성 예시를 도시한다.9 illustrates an example of a change in received power caused by a moving obstacle and a configuration of a transmission time interval (TTI) according to it.
도 10은 mmWave 시스템에서 자원 구조에 대한 첫 번째 예시에 따른 프레임 구조를 도시한다.10 illustrates a frame structure according to the first example of the resource structure in the mmWave system.
도 11은 mmWave 시스템에서 자원 구조에 대한 첫 번째 예시에 따른 자원 그리드를 도시한다.11 shows a resource grid according to the first example of the resource structure in the mmWave system.
도 12는 mmWave 시스템에서 자원 구조에 대한 첫 번째 예시 및 두 번째 예시에 따른 SAW(Stop And Wait) HARQ (Hybrid Automatic Repeat reQuest)절차를 도시한다.12 illustrates a Stop And Wait (SAW) Hybrid Automatic Repeat reQuest (HAQ) procedure according to a first example and a second example of a resource structure in an mmWave system.
도 13은 mmWave 시스템에서 자원 구조에 대한 세 번째 예시에 따른 SAW HARQ 절차를 도시한다.13 illustrates a SAW HARQ procedure according to a third example of a resource structure in an mmWave system.
도 14는 제어채널의 단말의 디코딩 실패로 인하여 데이터 디코딩이 실패하는 과정을 나타내는 도면이다.14 is a diagram illustrating a process in which data decoding fails due to a decoding failure of a terminal of a control channel.
도 15는 제안하는 일 실시 예에 따른 제어채널 전송 방법을 도시하는 도면이다.15 illustrates a control channel transmission method according to an embodiment of the present invention.
도 16은 제안하는 또 다른 실시 예에 따른 제어채널 전송 방법을 도시하는 도면이다.16 is a diagram illustrating a control channel transmission method according to another exemplary embodiment.
도 17은 제안하는 또 다른 실시 예에 따른 제어채널 전송 방법을 도시하는 도면이다.17 is a diagram illustrating a control channel transmission method according to another exemplary embodiment.
도 18은 제안하는 또 다른 실시 예에 따른 제어채널 전송 방법을 도시하는 도면이다.18 is a diagram illustrating a control channel transmission method according to another exemplary embodiment.
도 19는 제안하는 실시 예에 따른 제어채널 전송 방법의 수행 과정을 도시하는 흐름도이다.19 is a flowchart illustrating a process of performing a control channel transmission method according to an exemplary embodiment.
도 20은 도 19와 관련하여 기지국이 제어채널의 전송 전력을 결정하는 과정을 도시하는 도면이다.FIG. 20 is a diagram illustrating a process of determining, by the base station, transmission power of a control channel with reference to FIG. 19.
도 21은 제안하는 실시 예와 관련된 단말 및 기지국의 구성을 도시하는 도면이다.21 is a diagram illustrating a configuration of a terminal and a base station related to the proposed embodiment.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in the present invention have been selected as widely used general terms as possible in consideration of the functions in the present invention, but this may vary according to the intention or precedent of the person skilled in the art, the emergence of new technologies and the like. In addition, in certain cases, there is also a term arbitrarily selected by the applicant, in which case the meaning will be described in detail in the description of the invention. Therefore, the terms used in the present invention should be defined based on the meanings of the terms and the contents throughout the present invention, rather than the names of the simple terms.
이하의 실시 예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성할 수도 있다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다.The following embodiments combine the components and features of the present invention in a predetermined form. Each component or feature may be considered to be optional unless otherwise stated. Each component or feature may be embodied in a form that is not combined with other components or features. In addition, some of the components and / or features may be combined to form an embodiment of the present invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment, or may be replaced with corresponding components or features of another embodiment.
도면에 대한 설명에서, 본 발명의 요지를 흐릴 수 있는 절차 또는 단계 등은 기술하지 않았으며, 당업자의 수준에서 이해할 수 있을 정도의 절차 또는 단계는 또한 기술하지 아니하였다.In the description of the drawings, procedures or steps which may obscure the gist of the present invention are not described, and procedures or steps that can be understood by those skilled in the art are not described.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함(comprising 또는 including)"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서에 기재된 "...부", "...기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다. 또한, "일(a 또는 an)", "하나(one)", "그(the)" 및 유사 관련어는 본 발명을 기술하는 문맥에 있어서(특히, 이하의 청구항의 문맥에서) 본 명세서에 달리 지시되거나 문맥에 의해 분명하게 반박되지 않는 한, 단수 및 복수 모두를 포함하는 의미로 사용될 수 있다.Throughout the specification, when a part is said to "comprising" (or including) a component, this means that it may further include other components, except to exclude other components unless specifically stated otherwise. do. In addition, the terms "... unit", "... group", "module", etc. described in the specification mean a unit for processing at least one function or operation, which is hardware or software or a combination of hardware and software. It can be implemented as. Also, "a or an", "one", "the", and the like are used differently in the context of describing the present invention (particularly in the context of the following claims). Unless otherwise indicated or clearly contradicted by context, it may be used in the sense including both the singular and the plural.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802.xx 시스템, 3GPP 시스템, 3GPP LTE 시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 설명하지 않은 자명한 단계들 또는 부분들은 상기 문서들을 참조하여 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802.xx system, 3GPP system, 3GPP LTE system and 3GPP2 system. That is, obvious steps or parts which are not described among the embodiments of the present invention may be described with reference to the above documents.
또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다. 특히, 본 발명의 실시 예들은 IEEE 802.16 시스템의 표준 문서인 P802.16e-2004, P802.16e-2005, P802.16.1, P802.16p 및 P802.16.1b 표준 문서들 중 하나 이상에 의해 뒷받침될 수 있다.In addition, all terms disclosed in the present document can be described by the above standard document. In particular, embodiments of the present invention may be supported by one or more of the standard documents P802.16e-2004, P802.16e-2005, P802.16.1, P802.16p, and P802.16.1b standard documents of the IEEE 802.16 system. have.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced.
또한, 본 발명의 실시 예들에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the embodiments of the present invention are provided to help the understanding of the present invention, and the use of the specific terms may be changed to other forms without departing from the technical spirit of the present invention.
1. LTE/LTE-A 시스템 일반LTE / LTE-A System General
도 2는 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 전송되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 전송되는 통로를 의미한다.FIG. 2 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on the 3GPP radio access network standard. The control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted. The user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 전송 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송채널(Trans안테나 포트 Channel)을 통해 연결되어 있다. 상기 전송채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신 측과 수신 측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향 링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향 링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.The physical layer, which is the first layer, provides an information transfer service to an upper layer by using a physical channel. The physical layer is connected to the upper layer of the medium access control layer through a trans-antenna port channel. Data moves between the medium access control layer and the physical layer through the transport channel. Data moves between the physical layer at the transmitting side and the physical layer at the receiving side. The physical channel utilizes time and frequency as radio resources. Specifically, the physical channel is modulated in the Orthogonal Frequency Division Multiple Access (OFDMA) scheme in the downlink, and modulated in the Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in the uplink.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 전송을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다.제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 전송하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.The medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel. The RLC layer of the second layer supports reliable data transmission. The function of the RLC layer may be implemented as a functional block inside the MAC. The PDCP (Packet Data Convergence Protocol) layer of the second layer provides unnecessary control for efficiently transmitting IP packets such as IPv4 or IPv6 over a narrow bandwidth air interface. It performs header compression function that reduces information.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선 베어러(Radio Bearer; RB)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.The Radio Resource Control (RRC) layer located at the bottom of the third layer is defined only in the control plane. The RRC layer is responsible for controlling logical channels, transport channels, and physical channels in association with configuration, reconfiguration, and release of radio bearers (RBs). RB means a service provided by the second layer for data transmission between the terminal and the network. To this end, the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode. The non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
기지국(eNB)을 구성하는 하나의 셀은 1.4, 3, 5, 10, 15, 20Mhz 등의 대역폭 중 하나로 설정되어 여러 단말에게 하향 또는 상향 전송 서비스를 제공한다. 서로 다른 셀은 서로 다른 대역폭을 제공하도록 설정될 수 있다.One cell constituting an eNB is set to one of bandwidths such as 1.4, 3, 5, 10, 15, and 20 MHz to provide downlink or uplink transmission services to multiple terminals. Different cells may be configured to provide different bandwidths.
네트워크에서 단말로 데이터를 전송하는 하향 전송채널은 시스템 정보를 전송하는 BCH(Broadcast Channel), 페이징 메시지를 전송하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 전송하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 전송될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향 전송채널로는 초기 제어 메시지를 전송하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 전송하는 상향 SCH(Shared Channel)가 있다. 전송채널의 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.The downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a downlink shared channel (SCH) for transmitting user traffic or a control message. have. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message. It is located above the transport channel, and the logical channel mapped to the transport channel is a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
도 3은 3GPP LTE/LTE-A 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다. FIG. 3 is a diagram for explaining physical channels used in a 3GPP LTE / LTE-A system and a general signal transmission method using the same.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 사용자 기기는 단계 S301에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 사용자 기기는 기지국으로부터 주동기 채널(Primary Synchronization Channel, P-SCH) 및 부동기 채널(Secondary Synchronization Channel, S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득한다. 그 후, 사용자 기기는 기지국으로부터 물리방송채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 사용자 기기는 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.The user equipment that is powered on again or enters a new cell while the power is turned off performs an initial cell search operation such as synchronizing with the base station in step S301. To this end, the user equipment receives a primary synchronization channel (P-SCH) and a secondary synchronization channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID. Thereafter, the user equipment may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the user equipment may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
초기 셀 탐색을 마친 사용자 기기는 단계 S302에서 물리 하향링크제어채널(Physical Downlink Control Channel, PDCCH) 및 물리하향링크제어채널 정보에 따른 물리하향링크공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.After the initial cell search, the user equipment receives the physical downlink control channel (PDCCH) and the physical downlink control channel (PDSCH) according to the physical downlink control channel information in step S302. Specific system information can be obtained.
이후, 사용자 기기는 기지국에 접속을 완료하기 위해 이후 단계 S303 내지 단계 S306과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 사용자 기기는 물리임의접속채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S303), 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S304). 경쟁 기반 임의 접속의 경우 추가적인 물리임의접속채널의 전송(S305) 및 물리하향링크제어채널 및 이에 대응하는 물리하향링크공유 채널 수신(S306)과 같은 충돌해결절차(Contention Resolution Procedure)를 수행할 수 있다.Thereafter, the user equipment may perform a random access procedure such as step S303 to step S306 to complete the access to the base station. To this end, the user equipment transmits a preamble through a physical random access channel (PRACH) (S303), and responds to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel. The message may be received (S304). In case of contention-based random access, contention resolution procedures such as transmission of an additional physical random access channel (S305) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S306) may be performed. .
상술한 바와 같은 절차를 수행한 사용자 기기는 이후 일반적인 상/하향링크 신호 전송 절차로서 물리하향링크제어채널/물리하향링크공유채널 수신(S307) 및 물리상향링크공유채널(Physical Uplink Shared Channel, PUSCH)/물리상향링크제어채널(Physical Uplink Control Channel, PUCCH) 전송(S308)을 수행할 수 있다. 사용자 기기가 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. 본 명세서에서, HARQ ACK/NACK은 간단히 HARQ-ACK 혹은 ACK/NACK(A/N)으로 지칭된다. HARQ-ACK은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 및 NACK/DTX 중 적어도 하나를 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다. The user equipment which has performed the above-described procedure is then subjected to a physical downlink control channel / physical downlink shared channel (S307) and a physical uplink shared channel (PUSCH) as a general uplink / downlink signal transmission procedure. Physical Uplink Control Channel (PUCCH) transmission (S308) may be performed. The control information transmitted from the user equipment to the base station is collectively referred to as uplink control information (UCI). UCI includes Hybrid Automatic Repeat and reQuest Acknowledgment / Negative-ACK (HARQ ACK / NACK), Scheduling Request (SR), Channel State Information (CSI), and the like. In the present specification, HARQ ACK / NACK is simply referred to as HARQ-ACK or ACK / NACK (A / N). HARQ-ACK includes at least one of positive ACK (simply ACK), negative ACK (NACK), DTX, and NACK / DTX. The CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), a Rank Indication (RI), and the like. UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data should be transmitted at the same time. In addition, the UCI may be aperiodically transmitted through the PUSCH by the request / instruction of the network.
도 4는 LTE/LTE-A 시스템에서 사용되는 무선 프레임의 구조를 예시하는 도면이다.4 is a diagram illustrating a structure of a radio frame used in an LTE / LTE-A system.
도 4를 참조하면, 셀룰라 OFDM 무선 패킷 통신 시스템에서, 상향링크/하향링크 데이터 패킷 전송은 서브프레임(subframe) 단위로 이루어지며, 한 서브프레임은 다수의 OFDM 심볼을 포함하는 일정 시간 구간으로 정의된다. 3GPP LTE/LTE-A 표준에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다. Referring to FIG. 4, in a cellular OFDM wireless packet communication system, uplink / downlink data packet transmission is performed in subframe units, and one subframe is defined as a predetermined time interval including a plurality of OFDM symbols. . The 3GPP LTE / LTE-A standard supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
도4의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 하향링크 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(transmission time interval)라 한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다. 하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(Resource Block; RB)을 포함한다. 3GPP LTE 시스템에서는 하향링크에서 OFDMA 를 사용하므로, OFDM 심볼이 하나의 심볼 구간을 나타낸다. OFDM 심볼은 또한 SC-FDMA 심볼 또는 심볼 구간으로 칭하여질 수도 있다. 자원 할당 단위로서의 자원 블록(RB)은 하나의 슬롯에서 복수개의 연속적인 부반송파(subcarrier)를 포함할 수 있다. 4A illustrates the structure of a type 1 radio frame. The downlink radio frame consists of 10 subframes, and one subframe consists of two slots in the time domain. The time taken for one subframe to be transmitted is called a transmission time interval (TTI). For example, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms. One slot includes a plurality of OFDM symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. In the 3GPP LTE system, since OFDMA is used in downlink, an OFDM symbol represents one symbol period. An OFDM symbol may also be referred to as an SC-FDMA symbol or symbol period. A resource block (RB) as a resource allocation unit may include a plurality of consecutive subcarriers in one slot.
하나의 슬롯에 포함되는 OFDM 심볼의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 표준 CP(normal CP)가 있다. 예를 들어, OFDM 심볼이 표준 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 7개일 수 있다. OFDM 심볼이 확장된 CP에 의해 구성된 경우, 한 OFDM 심볼의 길이가 늘어나므로, 한 슬롯에 포함되는 OFDM 심볼의 수는 표준 CP인 경우보다 적다. 확장된 CP의 경우에, 예를 들어, 하나의 슬롯에 포함되는 OFDM 심볼의 수는 6개일 수 있다. 사용자 기기가 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심볼간 간섭을 더욱 줄이기 위해 확장된 CP가 사용될 수 있다.The number of OFDM symbols included in one slot may vary depending on the configuration of a cyclic prefix (CP). CPs include extended CPs and normal CPs. For example, when an OFDM symbol is configured by a standard CP, the number of OFDM symbols included in one slot may be seven. When the OFDM symbol is configured by the extended CP, since the length of one OFDM symbol is increased, the number of OFDM symbols included in one slot is smaller than that of the standard CP. In the case of an extended CP, for example, the number of OFDM symbols included in one slot may be six. If the channel state is unstable, such as when the user equipment moves at a high speed, an extended CP may be used to further reduce intersymbol interference.
표준 CP가 사용되는 경우 하나의 슬롯은 7개의 OFDM 심볼을 포함하므로, 하나의 서브프레임은 14개의 OFDM 심볼을 포함한다. 이때, 각 서브프레임의 처음 최대 3 개의 OFDM 심볼은 PDCCH(physical downlink control channel)에 할당되고, 나머지 OFDM 심볼은 PDSCH(physical downlink shared channel)에 할당될 수 있다.When a standard CP is used, since one slot includes 7 OFDM symbols, one subframe includes 14 OFDM symbols. In this case, the first up to three OFDM symbols of each subframe may be allocated to a physical downlink control channel (PDCCH), and the remaining OFDM symbols may be allocated to a physical downlink shared channel (PDSCH).
도4의 (b)는 타입 2 무선 프레임의 구조를 예시한다. 타입 2 무선 프레임은 2개의하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 2개의 슬롯을 포함하는 4개의 일반 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(Guard Period, GP) 및UpPTS(Uplink Pilot Time Slot)을 포함하는 특별 서브프레임(special subframe)으로 구성된다. 4B illustrates a structure of a type 2 radio frame. Type 2 radio frames consist of two half frames, each half frame comprising four general subframes including two slots, a downlink pilot time slot (DwPTS), a guard period (GP) and It consists of a special subframe including an Uplink Pilot Time Slot (UpPTS).
상기 특별 서브프레임에서, DwPTS는 사용자 기기에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 사용자 기기의 상향링크 전송 동기를 맞추는 데 사용된다. 즉, DwPTS는 하향링크 전송으로, UpPTS는 상향링크 전송으로 사용되며, 특히 UpPTS는 PRACH 프리앰블이나 SRS 전송의 용도로 활용된다. 또한, 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다. In the special subframe, DwPTS is used for initial cell search, synchronization or channel estimation at the user equipment. UpPTS is used for channel estimation at base station and synchronization of uplink transmission of user equipment. That is, DwPTS is used for downlink transmission and UpPTS is used for uplink transmission. In particular, UpPTS is used for PRACH preamble or SRS transmission. In addition, the guard period is a period for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
상기 특별 서브프레임에 관하여 현재 3GPP 표준 문서에서는 아래 표 1과 같이 설정을 정의하고 있다. 표 1에서
Figure PCTKR2016006063-appb-I000001
인 경우 DwPTS와 UpPTS를 나타내며, 나머지 영역이 보호구간으로 설정된다.
Regarding the special subframe, the current 3GPP standard document defines a configuration as shown in Table 1 below. In Table 1
Figure PCTKR2016006063-appb-I000001
In the case of DwPTS and UpPTS, the remaining area is set as a protection interval.
표 1
Figure PCTKR2016006063-appb-T000001
Table 1
Figure PCTKR2016006063-appb-T000001
한편, 타입 2 무선 프레임의 구조, 즉 TDD 시스템에서 상향링크/하향링크 서브프레임 설정(UL/DL configuration)은 아래의 표 2와 같다.On the other hand, the structure of the type 2 radio frame, that is, UL / DL configuration (UL / DL configuration) in the TDD system is shown in Table 2 below.
표 2
Figure PCTKR2016006063-appb-T000002
TABLE 2
Figure PCTKR2016006063-appb-T000002
상기 표 2에서 D는 하향링크 서브프레임, U는 상향링크 서브프레임을 지시하며, S는 상기 특별 서브프레임을 의미한다. 또한, 상기 표 2는 각각의 시스템에서 상향링크/하향링크 서브프레임 설정에서 하향링크-상향링크 스위칭 주기 역시 나타나있다.In Table 2, D denotes a downlink subframe, U denotes an uplink subframe, and S denotes the special subframe. Table 2 also shows the downlink-uplink switching period in the uplink / downlink subframe configuration in each system.
상술한 무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 심볼의 수는 다양하게 변경될 수 있다.The structure of the radio frame described above is merely an example, and the number of subframes included in the radio frame, the number of slots included in the subframe, and the number of symbols included in the slot may be variously changed.
도 5는 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한다.5 illustrates a resource grid for a downlink slot.
도 5를 참조하면, 하향링크 슬롯은 시간 영역에서
Figure PCTKR2016006063-appb-I000002
OFDM 심볼을 포함하고 주파수 영역에서
Figure PCTKR2016006063-appb-I000003
자원블록을 포함한다. 각각의 자원블록이
Figure PCTKR2016006063-appb-I000004
부반송파를 포함하므로 하향링크 슬롯은 주파수 영역에서
Figure PCTKR2016006063-appb-I000005
부반송파를 포함한다. 도 5는 하향링크 슬롯이 7 OFDM 심볼을 포함하고 자원블록이 12 부반송파를 포함하는 것으로 예시하고 있지만 반드시 이로 제한되는 것은 아니다. 예를 들어, 하향링크 슬롯에 포함되는 OFDM 심볼의 개수는 순환전치(Cyclic Prefix; CP)의 길이에 따라 변형될 수 있다.
5, the downlink slot is in the time domain
Figure PCTKR2016006063-appb-I000002
Contains OFDM symbols and in the frequency domain
Figure PCTKR2016006063-appb-I000003
Contains resource blocks. Each resource block
Figure PCTKR2016006063-appb-I000004
Downlink slots in the frequency domain because they include subcarriers
Figure PCTKR2016006063-appb-I000005
Includes subcarriers 5 illustrates that the downlink slot includes 7 OFDM symbols and the resource block includes 12 subcarriers, but is not necessarily limited thereto. For example, the number of OFDM symbols included in the downlink slot may be modified according to the length of a cyclic prefix (CP).
자원 그리드 상의 각 요소를 자원요소(Resource Element; RE)라 하고, 하나의 자원 요소는 하나의 OFDM 심볼 인덱스 및 하나의 부반송파 인덱스로 지시된다. 하나의 RB는
Figure PCTKR2016006063-appb-I000006
자원요소로 구성되어 있다. 하향링크 슬롯에 포함되는 자원블록의 수(
Figure PCTKR2016006063-appb-I000007
)는 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다.
Each element on the resource grid is called a Resource Element (RE), and one resource element is indicated by one OFDM symbol index and one subcarrier index. One RB
Figure PCTKR2016006063-appb-I000006
It consists of resource elements. The number of resource blocks included in the downlink slot (
Figure PCTKR2016006063-appb-I000007
) Depends on the downlink transmission bandwidth set in the cell.
도 6은 하향링크 서브프레임의 구조를 예시한다.6 illustrates a structure of a downlink subframe.
도 6을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4)개의 OFDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은 OFDM 심볼은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역에 해당한다. LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 응답으로 HARQ ACK/NACK(Hybrid Automatic Repeat request acknowledgment/negative-acknowledgment) 신호를 나른다.Referring to FIG. 6, up to three (4) OFDM symbols located at the front of the first slot of a subframe correspond to a control region to which a control channel is allocated. The remaining OFDM symbols correspond to data regions to which the Physical Downlink Shared Channel (PDSCH) is allocated. Examples of a downlink control channel used in LTE include a Physical Control Format Indicator Channel (PCFICH), a Physical Downlink Control Channel (PDCCH), a Physical Hybrid ARQ Indicator Channel (PHICH), and the like. The PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe. The PHICH carries a HARQ ACK / NACK (Hybrid Automatic Repeat request acknowledgment / negative-acknowledgment) signal in response to uplink transmission.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 지칭한다. DCI는 사용자 기기 또는 사용자 기기 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 상향/하향링크 스케줄링 정보, 상향링크 전송(Tx) 파워 제어 명령 등을 포함한다.Control information transmitted through the PDCCH is referred to as downlink control information (DCI). The DCI includes resource allocation information and other control information for the user device or user device group. For example, the DCI includes uplink / downlink scheduling information, uplink transmission (Tx) power control command, and the like.
PDCCH는 하향링크 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위-계층 제어 메시지의 자원 할당 정보, 사용자 기기 그룹 내의 개별 사용자 기기들에 대한 Tx 파워 제어 명령 세트, Tx 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 사용자 기기는 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집합(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 사용자 기기에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자(예, RNTI(radio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 사용자 기기를 위한 것일 경우, 해당 사용자 기기의 식별자(예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자(예, paging-RNTI (P-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 시스템 정보(보다 구체적으로, 시스템 정보 블록(system Information block, SIC))를 위한 것일 경우, SI-RNTI(system Information RNTI)가 CRC에 마스킹 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI(random access-RNTI)가 CRC에 마스킹 될 수 있다.The PDCCH includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), a paging channel, Resource allocation information of upper-layer control messages such as paging information on PCH), system information on DL-SCH, random access response transmitted on PDSCH, Tx power control command set for individual user devices in a group of user devices, Tx power It carries control commands and activation instruction information of Voice over IP (VoIP). A plurality of PDCCHs may be transmitted in the control region. The user equipment may monitor the plurality of PDCCHs. The PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs). CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions. The CCE corresponds to a plurality of resource element groups (REGs). The format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs. The base station determines the PDCCH format according to the DCI to be transmitted to the user equipment, and adds a cyclic redundancy check (CRC) to the control information. The CRC is masked with an identifier (eg, a radio network temporary identifier (RNTI)) according to the owner or purpose of use of the PDCCH. For example, when the PDCCH is for a specific user equipment, an identifier (eg, cell-RNTI (C-RNTI)) of the corresponding user equipment may be masked to the CRC. If the PDCCH is for a paging message, a paging identifier (eg, paging-RNTI (P-RNTI)) may be masked to the CRC. When the PDCCH is for system information (more specifically, a system information block (SIC)), a system information RNTI (SI-RNTI) may be masked to the CRC. If the PDCCH is for a random access response, a random access-RNTI (RA-RNTI) may be masked to the CRC.
도7은 EPDCCH와 EPDCCH에 의하여 스케줄링되는 PDSCH를 예시하는 도면이다. 7 is a diagram illustrating an EPDCCH and a PDSCH scheduled by an EPDCCH.
도 7을 참조하면, EPDCCH는 일반적으로 데이터를 전송하는 PDSCH 영역의 일부분을 정의하여 사용할 수 있으며, 단말은 자신의 EPDCCH 유무를 검출하기 위한 블라인드 디코딩(blind decoding) 과정을 수행해야 한다. EPDCCH는 기존의 레거시 PDCCH와 동일한 스케줄링 동작(즉, PDSCH, PUSCH 제어)을 수행하지만, RRH와 같은 노드에 접속한 단말의 개수가 증가하면 PDSCH 영역 안에 보다 많은 수의 EPDCCH가 할당되어 단말이 수행해야 할 블라인드 디코딩의 횟수가 증가하여 복잡도가 높아질 수 있는 단점은 존재할 수 있다.Referring to FIG. 7, an EPDCCH may generally define and use a portion of a PDSCH region for transmitting data, and the UE should perform a blind decoding process for detecting the presence or absence of its own EPDCCH. The EPDCCH performs the same scheduling operation as the legacy legacy PDCCH (ie PDSCH and PUSCH control), but when the number of UEs connected to the same node as the RRH increases, a larger number of EPDCCHs are allocated in the PDSCH region and thus should be performed by the UE. There may be a disadvantage that the complexity may be increased by increasing the number of blind decoding to be performed.
2. mmWave 통신 시스템2. mmWave communication system
도 8은 mmWave 통신 시스템에서 장애물에 의한 통신 연결의 영향을 도시하는 도면이다. 8 is a diagram illustrating the influence of communication connection by obstacles in the mmWave communication system.
도 8(a)는 mmWave 통신 시스템에서 장애물에 의한 통신 연결의 영향을 측정하기 위한 조건을 도시한다. 도 8(b) 및 도 8(c) 는 각각 도 8(a)의 조건에 따라 측정된 통신 연결의 영향을 시각화하여 도시하는 도면이다. 8 (a) shows the conditions for measuring the influence of the communication connection by the obstacle in the mmWave communication system. 8 (b) and 8 (c) are diagrams visualizing and showing the influence of the communication connection measured according to the conditions of FIG. 8 (a), respectively.
UE 밀도가 730UE/km2이고 1000 TTI 동안 2640MHz 대역폭이 유지되며, 512 서브캐리어당 336 서브캐리어를 데이터 전송에 사용하는 환경에서, 도 8(a)의 조건에 따라 장애물의 영향을 측정하는 경우를 고려한다. 도 8(b)는 사람이 장애물인 경우 경로에 따른 장애물의 밀도를 도시하는 그래프이다. 도 8(c)는 통신 연결이 블록됨에 따른 네트워크 수율(throughput)을 도시한다. 도 8(b) 및 도 8(c)로부터 통신 경로 상에 위치하는 장애물의 밀도에 따라 mmWave 통신 연결이 큰 영향을 받음을 알 수 있다.In an environment where the UE density is 730 UE / km 2 , 2640 MHz bandwidth is maintained for 1000 TTI, and 336 subcarriers per 512 subcarriers are used for data transmission, the influence of obstacles is measured according to the condition of FIG. 8 (a). Consider. 8B is a graph showing the density of obstacles along a path when a person is an obstacle. 8 (c) shows the network throughput as the communication connection is blocked. From (b) and (c) it can be seen that the mmWave communication connection is greatly affected by the density of obstacles located on the communication path.
또한, 인간이 달릴 때 14.4km/h, 걸을 때 4.8 km/h 정도의 속도를 고려하는 경우, LoS(Line of Sight)와 NLoS의 전력 손실 차이는 5m 이내에서 약 15dB로 나타난다. 이를 바탕으로, 100m 거리에서 LoS와 NLoS의 전력 손실 차는 약 45dB로 볼 수 있다.In addition, when considering the speed of about 14.4 km / h when running and about 4.8 km / h when walking, the difference in power loss between Line of Sight and NLoS is about 15 dB within 5 meters. Based on this, the difference in power loss between LoS and NLoS is about 45dB at a distance of 100m.
0.6m/s로 걷는 사람의 LoS/NLoS transition time이 약 150ms 일 때 10m/s로 움직이는 물체의 transition time 변화는 9ms 정도로 나타나며, UE를 파지한 손의 갑작스런 움직임이나 움직이는 장애물 등의 특수한 상황에서는 더 짧게 나타날 수 있다. 이러한 결과가 아래의 표 3에 나타난다.When the LoS / NLoS transition time of a person walking at 0.6m / s is about 150ms, the transition time change of an object moving at 10m / s is about 9ms, and in special situations such as a sudden movement of a hand holding a UE or a moving obstacle, It may appear short. These results are shown in Table 3 below.
표 3
Walking(0.6m/s) Sprinting(10m/s) Swift Hand swing(43m/s)
LoS/NLoS 천이 150 ms 9 ms 2.093 ms
TABLE 3
Walking (0.6m / s) Sprinting (10m / s) Swift Hand swing (43m / s)
LoS / NLoS Transition 150 ms 9 ms 2.093 ms
표 3으로부터 LoS/NLoS 천이 및 움직이는 장애물에 대한 통신 연결이 블록될 확률은 장애물의 이동 특성과 주변 환경에 따라 달라짐을 알 수 있다.From Table 3, it can be seen that the probability of blocking the LoS / NLoS transition and the communication connection to the moving obstacle depends on the movement characteristics of the obstacle and the surrounding environment.
도 9는 이동하는 장애물에 의한 수신 전력 변화와 그에 따른 TTI(Transmission Time Interval) 구성 예시를 도시한다.9 illustrates an example of a change in received power caused by a moving obstacle and a configuration of a transmission time interval (TTI) according to it.
초고주파 대역을 이용하는 mmWave 시스템의 TTI는 시스템 요구사항에 따라 설계되는데, 레거시 시스템에 비하여 상대적으로 짧은 길이를 갖는다. 이는, mmWave 시스템에서는 LoS/NLoS 천이에 따른 성능 영향이 크기 때문이다. 이에 따라, closed-loop 시스템을 구성함으로써 피드백을 통해 LoS/NLoS 천이 상태를 견디기 위하여 송신 전력을 증가시키는 시스템을 구현할 수도 있겠으나, LoS/NLoS 천이 구간에서 전송되는 mmWave 제어 채널의 성능 자체가 열화되는 문제점이 발생할 수도 있다. The TTI of the mmWave system using the ultra-high frequency band is designed according to the system requirements, which is relatively shorter than the legacy system. This is because the mmWave system has a large performance impact due to LoS / NLoS transition. Accordingly, although a closed-loop system may be configured to increase the transmit power to withstand the LoS / NLoS transition state through feedback, the performance of the mmWave control channel transmitted in the LoS / NLoS transition period may be degraded. Problems may also arise.
이하의 도 10 내지 도 13에서는 mmWave TTI를 구성하는 여러 가지 예시에 대해 설명한다. 먼저, 아래의 표 4는 mmWave 시스템에서 프레임(또는 TTI)의 설계를 위한 요구사항을 나타내며, 아래의 표 4는 mmWave 시스템의 구현 예시이다.10 to 13, various examples of the mmWave TTI will be described. First, Table 4 below shows the requirements for the design of a frame (or TTI) in the mmWave system, and Table 4 below is an example of an implementation of the mmWave system.
표 4
파라미터
Coverage : ≤ 1km
Operation bandwidth : 10GHz ~ 60GHz
Max. Doppler's frequency : 250km/h@30GHz, 125km/h@60GHz
Max. channel delay : 0.5us
CP overhead : ≤7%
Channel Bandwidth : under 500MHz (Reference)
Peak data rate X 10 Gbps
Table 4
parameter value
Coverage : ≤ 1km
Operation bandwidth
10 GHz to 60 GHz
Max. Doppler's frequency 250km / h @ 30GHz, 125km / h @ 60GHz
Max. channel delay 0.5us
CP overhead : ≤7%
Channel Bandwidth : under 500MHz (Reference)
Peak data rate X 10 Gbps
표 4에 따른 mmWave 시스템에서 TTI를 설계하는 3가지 방식을 설명하며, 첫 번째 예시는 메모리 크기를 제한하는 방식이고, 두 번째 예시는 UE의 프로세싱 타임을 제한하는 방식(HARQ 프로세스는 유지한 채로)이고, 세 번째 예시는 UE의 프로세싱 타임을 제한하는 방식(HARQ 프로세스를 증가시키며)이다.Three ways to design TTI in mmWave system according to Table 4 are described, the first example is to limit the memory size, the second example is to limit the processing time of the UE (with the HARQ process maintained) And a third example is how to limit the processing time of the UE (increasing HARQ process).
이러한 세 가지 방식에 따른 프레임 관련 파라미터가 아래의 표 5에 도시된다.Frame related parameters according to these three schemes are shown in Table 5 below.
표 5
Parameter LTE(Normal CP) 제 1 안 제 2 안 제 3 안
Subcarrier-spacing 15kHz 104.25kHz
OFDM symbol period 66.67us 9.59us
Guard Interval/Cyclic Prefix 4.7us 0.5us
OFDM symbol duration 71.14us 10.09us
Efficiency in terms of energy 94.1% 95%
Occupied BW 90MHz (5 CCs) 427.008MHz
Guard-band 10MHz (5 CCs) 47.445MHz
Total System BW 100MHz 474.453MHz
No. of available subcarriers 6,000 (5 CCs) 4096
Number of OFDM symbol per TTI 14 symbols 22 76 22(assume)
TTI duration 1ms 222us 767us 222us
HARQ process number 8 8 8 24
UE processing time 2.3ms 0.666ms 2.3ms 2.3ms
Total soft buffer size NSB=35,982,720 NSB NSB X 3.45 NSB X 3
Max. TB size 299,856 NTB ≤ 2,998,580 NTB X 3.45 NTB
Table 5
Parameter LTE (Normal CP) 1st proposal 2nd proposal 3rd proposal
Subcarrier-spacing 15 kHz 104.25 kHz
OFDM symbol period 66.67us 9.59us
Guard Interval / Cyclic Prefix 4.7us 0.5us
OFDM symbol duration 71.14us 10.09us
Efficiency in terms of energy 94.1% 95%
Occupied BW 90 MHz (5 CCs) 427.008 MHz
Guard-band 10 MHz (5 CCs) 47.445 MHz
Total System BW 100 MHz 474.453 MHz
No. of available subcarriers 6,000 (5 CCs) 4096
Number of OFDM symbol per TTI 14 symbols 22 76 22 (assume)
TTI duration 1 ms 222us 767us 222us
HARQ process number 8 8 8 24
UE processing time 2.3 ms 0.666 ms 2.3 ms 2.3 ms
Total soft buffer size NSB = 35,982,720 NSB NSB X 3.45 NSB X 3
Max. TB size 299,856 NTB ≤ 2,998,580 NTB X 3.45 NTB
도 10은 mmWave 시스템에서 자원 구조에 대한 첫 번째 예시에 따른 프레임 구조를 도시하고, 도 11은 mmWave 시스템에서 자원 구조에 대한 첫 번째 예시에 따른 자원 그리드를 도시하고, 도 12는 mmWave 시스템에서 자원 구조에 대한 첫 번째 예시 및 두 번째 예시에 따른 SAW(Stop And Wait) HARQ (Hybrid Automatic Repeat reQuest)절차를 도시한다.10 shows a frame structure according to a first example of a resource structure in an mmWave system, FIG. 11 shows a resource grid according to a first example of a resource structure in an mmWave system, and FIG. 12 shows a resource structure in an mmWave system. A Stop And Wait (SAW) HARQ (Hybrid Automatic Repeat reQuest) procedure according to a first example and a second example is shown.
먼저, 도 10은 앞서 설명한 제1안, 즉 메모리 사이즈를 제한하는 방식에 따른 프레임 구조를 도시한다(버퍼 사이즈 제한). First, FIG. 10 illustrates a frame structure according to the first scheme described above, that is, a method of limiting a memory size (buffer size limitation).
단일한 코드워드(CW)를 가정하고, HARQ 프로세스의 수는 종래 LTE 시스템과 동일한 8개로 유지하는 경우를 가정한다. 한편, 제1안에서 메모리 사이즈(버퍼 사이즈)는 표 5와 같이 종래 LTE의 최대 버퍼 사이즈와 동일하게 구성한다. 시스템 커버리지가 1km 이하이고 RTT(Round Trip Time)이 6.67 us 일 때, UE의 프로세싱 타임은 아래의 수학식 1과 같이 결정된다.It is assumed that a single codeword (CW) is assumed and the number of HARQ processes is maintained at the same number as that of the conventional LTE system. Meanwhile, in the first embodiment, the memory size (buffer size) is configured to be the same as the maximum buffer size of the conventional LTE as shown in Table 5. When the system coverage is 1 km or less and the round trip time (RTT) is 6.67 us, the processing time of the UE is determined as in Equation 1 below.
[수학식 1][Equation 1]
Figure PCTKR2016006063-appb-I000008
Figure PCTKR2016006063-appb-I000008
표 5에 나타난 바와 같이, TTI는 최종 22 OFDM 심볼인 222us로 결정된다. 제1안에 따른 시간축 자원 구조와 자원 그리드가 각각 도 10 및 도 11에 도시되며, 제1안에 따른 HARQ 프로세스는 도 12와 같이 도시된다.As shown in Table 5, the TTI is determined to be 222us, which is the last 22 OFDM symbols. A time base resource structure and a resource grid according to the first scheme are shown in FIGS. 10 and 11, respectively, and the HARQ process according to the first scheme is illustrated as in FIG. 12.
아래 표 6은 제1안에 있어서 LTE의 버퍼 사이즈를 기반으로 한 코드 비트 사이즈를 나타내며, 표 7은 상술한 제1안의 TTI를 정의하는 파라미터들을 나타낸다.Table 6 below shows a code bit size based on the buffer size of LTE in the first proposal, and Table 7 shows parameters defining the TTI of the first proposal described above.
표 6
Parameter Value Remarks
Max soft buffer 35,982,720 TS 36.306 표준에 기술됨.
Max HARQ process No. 8 TS 36.212 표준에 기술됨.
coded bit per a TB 4,497,840 in SCW case
Table 6
Parameter Value Remarks
Max soft buffer 35,982,720 Described in the TS 36.306 standard.
Max HARQ process No. 8 Described in the TS 36.212 standard.
coded bit per a TB 4,497,840 in SCW case
표 7
Parameter Value Remarks
RE per OFDM symbol 4,096 Full subcarrier 이용
Layer 8 Max 8 layer 가정
Modulation 8 256 QAM support 가정
overhead (%) 25 LTE link budget 산출 시 고려하는 overhead 적용LTE Peak data rate: 8 layer 에 전송에 필요한 RE의 overheadTotal 42 REs: 12RE (PDCCH), 6RE (CRS), 24 (DMRS)Overhead= 42 / 168 = 25%
No. of OFDM symbol per TTI 22 symbols In SCW case
One TTI 222us
TABLE 7
Parameter Value Remarks
RE per OFDM symbol 4,096 Full subcarrier
Layer
8 Max 8 layer assumption
Modulation
8 256 QAM support Assumptions
overhead (%) 25 Apply overhead when calculating LTE link budgetLTE Peak data rate: overhead of RE required for transmission on 8 layer 42 REs: 12RE (PDCCH), 6RE (CRS), 24 (DMRS) Overhead = 42/168 = 25%
No. of OFDM symbol per TTI 22 symbols In SCW case
One TTI 222us
나아가, 아래의 표 8은 제1안에 따른 최대 전송블록(Transport Block, TB) 크기에 관련된 파라미터들을 나타낸다.Furthermore, Table 8 below shows parameters related to a maximum transport block (TB) size according to the first proposal.
표 8
Parameter Value Remarks
Max. TB size per (a TB per CC) 299,856 In MCW case of LTE-A (TS 36.213)
Max. coded bit per a TB 449,784 In MCW case of LTE-A (TS 36.213)
Supported coding rate range ≥ 0.67 In LTE, Reference로 활용
Max. code bit size (Alt. 1-B) 4,497,840 In SCW case
Supported coding rate range ≥ 0.67 LTE와 동일한 code-rate 범위 정의
Max. TB size for Alt. 1-B ≤ 2,998,580 In SCW case
Table 8
Parameter Value Remarks
Max. TB size per (a TB per CC) 299,856 In MCW case of LTE-A (TS 36.213)
Max. coded bit per a TB 449,784 In MCW case of LTE-A (TS 36.213)
Supported coding rate range ≥ 0.67 In LTE, used as reference
Max. code bit size (Alt. 1-B) 4,497,840 In SCW case
Supported coding rate range ≥ 0.67 Same code-rate range definition as LTE
Max. TB size for Alt. 1-B ≤ 2,998,580 In SCW case
한편, 제2안의 경우에는 상술한 제1안과는 달리, UE의 프로세싱 타임을 제한하는 방식이다. 예를 들어, 제2안은 UE의 MAC 또는 PHY 계층의 프로세싱 타임을 제한하는 방식이다.On the other hand, in the case of the second eye, unlike the first eye described above, the method of limiting the processing time of the UE. For example, the second proposal is to limit the processing time of the MAC or PHY layer of the UE.
단일 CW를 가정하고, HARQ 프로세스의 수는 LTE 시스템과 동일하게 8을 유지하며, 시스템 커버리지가 1km이하이고 RTT가 6.67us라는 가정은 앞서 설명한 제1안과 동일하다. 한편, 제2안에서는 UE의 프로세싱 타임을 2.3ms로 가정한다.Assuming a single CW, the number of HARQ processes remains 8, the same as the LTE system, and the assumption that the system coverage is less than 1km and the RTT is 6.67us is the same as the first proposal described above. On the other hand, the second proposal assumes that the processing time of the UE is 2.3ms.
제2안의 경우 TTI는 최종 76개의 OFDM 심볼인 767.6us 로 결정되며, 제2안의 HARQ 프로세스는 도 12와 동일하게 나타난다. 한편 제2안의 HARQ 프로세스에 있어서는 하나의 TTI가 767.6 us로 구성된다는 차이점이 있어서, 최종적인 TB 크기도 제1안에 비하여 약 3.45배가 증가된다.In the second case, the TTI is determined as 767.6us, which is the last 76 OFDM symbols, and the HARQ process of the second eye is shown in FIG. 12. On the other hand, in the HARQ process of the second eye, there is a difference that one TTI is composed of 767.6 us, so that the final TB size is also increased by about 3.45 times compared to the first eye.
도 13은 mmWave 시스템에서 자원 구조에 대한 세 번째 예시에 따른 SAW HARQ 절차를 도시한다.13 illustrates a SAW HARQ procedure according to a third example of a resource structure in an mmWave system.
제3안의 경우에도 제2안과 유사하게 UE의 프로세싱 타임을 제한하는 방식이며, 제3안에서는 제2안과는 달리 HARQ 프로세스 수가 증가된다. 단일 CW를 가정하고, 시스템 커버리지가 1km 이하이고, RTT가 6.67 us인 조건에 있어서, UE의 프로세싱 타임이 2.3ms 이고 하나의 TTI가 22개의 OFDM 심볼인 222us인 경우를 가정한다. Similar to the second scheme, the third scheme also limits the processing time of the UE. Unlike the second scheme, the third scheme increases the number of HARQ processes. Assuming a single CW, assuming that the system coverage is less than 1km, the RTT is 6.67 us, the processing time of the UE is 2.3ms and one TTI is 222us which is 22 OFDM symbols.
이때, 하나의 TTI의 OFDM 심볼 길이 자체는 제3안과 제1안이 동일하나, 제3안의 경우 HARQ 프로세스 수가 24로 증가되었음을 도 13에서 알 수 있다.In this case, it can be seen from FIG. 13 that the OFDM symbol length itself of one TTI is the same as the third eye and the first eye, but in the third eye, the number of HARQ processes is increased to 24.
이상에서 설명한 mmWave 프레임 구조를 기반으로 한 link budget은 아래의 표 9와 같이 나타날 수 있다. 표 9에서 알 수 있듯이, mmWave 시스템에서는 서비스 커버리지가 1km이하로 감소하는 반면에, 중심 주파수의 증가로 인한 파장이 짧아져서 매시브 안테나를 이용한 SNR(Signal to Noise Ratio) 증대가 용이하다는 점을 가정하였다. 따라서, mmWave 시스템은 종래의 LTE 보다 높은 SNR 성능을 제공할 수 있게 되어 최대 변조 방식을 64 QAM(Quadrature Amplitude Modulation)에서 256 QAM 으로 증가한 것을 가정하였다. 이러한 가정에 따라, 기본 시스템 요구사항을 만족하면서도 높은 전송률인 10Gbps 전송률을 달성할 수 있게 된다.The link budget based on the mmWave frame structure described above may be shown in Table 9 below. As shown in Table 9, it is assumed that in the mmWave system, the service coverage is reduced to less than 1 km, while the wavelength is shortened due to the increase in the center frequency, so that it is easy to increase the signal to noise ratio (SNR) using a massive antenna. . Therefore, the mmWave system can provide higher SNR performance than the conventional LTE, and it is assumed that the maximum modulation scheme is increased from 64 quadrature amplitude modulation (QAM) to 256 QAM. Based on these assumptions, it is possible to meet the basic system requirements while achieving a high data rate of 10 Gbps.
표 9
Parameters LTE-A(5CC) LTE-HF(△f=120kHz) HF(△f=104.25kHz)
Transmission Time Interval (ms) 1ms 0.125ms 0.22ms
No. of OFDM symbol in a TTI 14 14 22
Transmission BW(Occupied BW) 100MHz(90MHz) 400MHz(360MHz) 474.4MHz(427MHz)
Overhead 20% 20% 20%
Maximum modulation order 6 (64QAM) 8 (256QAM) 8 (256QAM)
Maximum number of layer 8 8 8
Peak data rate 3.2Gbps 17.2Gbps 20.8Gpbs
Parameters LTE-A(5CC) LTE-HF(△f=120kHz) HF(△f=104.25kHz)
Table 9
Parameters LTE-A (5CC) LTE-HF (△ f = 120kHz) HF (△ f = 104.25 kHz)
Transmission Time Interval (ms) 1 ms 0.125 ms 0.22 ms
No. of OFDM symbol in a TTI 14 14 22
Transmission BW (Occupied BW) 100 MHz (90 MHz) 400 MHz (360 MHz) 474.4 MHz (427 MHz)
Overhead 20% 20% 20%
Maximum modulation order 6 (64QAM) 8 (256QAM) 8 (256QAM)
Maximum number of layer 8 8 8
Peak data rate 3.2 Gbps 17.2 Gbps 20.8 Gpbs
Parameters LTE-A (5CC) LTE-HF (△ f = 120kHz) HF (△ f = 104.25 kHz)
3. 제안하는 mmWave 시스템에서의 제어채널 송수신 방법3. Control channel transmission and reception method in mmWave system
도 14는 제어채널의 단말의 디코딩 실패로 인하여 데이터 디코딩이 실패하는 과정을 나타내는 도면이다.14 is a diagram illustrating a process in which data decoding fails due to a decoding failure of a terminal of a control channel.
한편, mmWave 시스템에서 신체, 장애물 등이 연결에 주는 영향은 확률적인 값으로 표현할 수는 있지만, 정확하게 언제 어떻게 통신 연결을 열화시키는지에 대해서는 알 수 없다. 만약 mmWave 통신에 있어서 제어채널이 전송되는 시점에 통신 연결이 불안정하게 되어 수신 성능이 열화되는 경우, 제어채널의 디코딩 실패가 발생할 수 있다. 도 14(a)에 도시된 바와 같이, 제어채널이 잘못 디코딩되는 경우, 대응하는 데이터 채널이 잘못 디코딩될 수 있다. On the other hand, the effects of the body, obstacles, etc. on the connection in the mmWave system can be expressed as a stochastic value, but it is not known exactly when and how to degrade the communication connection. If the communication connection becomes unstable at the time of transmitting the control channel in mmWave communication and the reception performance is deteriorated, decoding failure of the control channel may occur. As shown in FIG. 14A, when a control channel is erroneously decoded, a corresponding data channel may be erroneously decoded.
이와는 달리, 데이터에 대한 전송 다이버시티를 확보하기 위해 하나의 검색 공간(search space) 내에 복수의 데이터 각각에 대한 지시자가 포함된다 하더라도, 제어채널 자체의 디코딩에 실패한다면 대응하는 데이터 채널의 디코딩이 실패하게 되어 문제가 발생한다.On the contrary, even if an indicator for each of a plurality of data is included in one search space to secure transmission diversity for data, if the decoding of the control channel itself fails, the decoding of the corresponding data channel fails. The problem arises.
따라서, 이하에서는 mmWave 시스템에서 제어채널을 강건하고 안정적으로 송신/수신할 수 있는 방법에 대해 설명한다. 도 15 내지 도 17에서 첫 번째 실시 예를, 도 18 내지 도 20에서 두 번째 실시 예를 각각 설명한다.Therefore, the following describes a method for robustly and stably transmitting / receiving a control channel in the mmWave system. The first embodiment of FIGS. 15 to 17 and the second embodiment of FIGS. 18 to 20 will be described.
도 15 내지 도 17은 제안하는 일 실시 예에 따른 제어채널 전송 방법을 도시하는 도면이다. 첫 번째 실시 예는 mmWave TTI(또는, 서브프레임)에서 제어채널이 위치하는 검색 공간을 종래의 통신 시스템과 다르게 구성하는 방식이다.15 to 17 are diagrams illustrating a control channel transmission method according to an exemplary embodiment. According to a first embodiment, a search space in which a control channel is located in a mmWave TTI (or subframe) is configured differently from a conventional communication system.
제안하는 실시 예에 따른 검색 공간의 위치는 도 15(a), 도 15(b), 도 15(c)에 도시된 바와 같이 구성될 수 있다. mmWave 시스템에서 제안되는 실시 예에 따른 검색 공간의 위치는 LTE/LTE-A 시스템에서 PCFICH(Physical Control Format Indicator Channel)와 같이 제어채널의 위치를 지시하는 별도의 채널에 의해 UE로 알려질 수 있다. The location of the search space according to the proposed embodiment may be configured as shown in FIGS. 15 (a), 15 (b) and 15 (c). The location of the search space according to the embodiment proposed in the mmWave system may be known to the UE by a separate channel indicating the location of the control channel, such as a physical control format indicator channel (PCFICH) in the LTE / LTE-A system.
mmWave 시스템에서 제안되는 제어채널은, 도 15(b)에 도시된 바와 같이, mmWave TTI(또는, 서브프레임) 내에서 처음 n 개의 OFDM 심볼 및 마지막 m 개의 OFDM 심볼 내에 배치될 수 있다(n은 m과 같거나 다를 수 있다). 도 15(b)에서는 mmWave TTI 내에서 처음 3개의 OFDM 심볼과 마지막 2개의 OFDM 심볼에 mmWave 시스템의 제어채널이 배치되는 자원 구조가 도시된다. The control channel proposed in the mmWave system may be arranged in the first n OFDM symbols and the last m OFDM symbols in the mmWave TTI (or subframe), as shown in FIG. 15 (b). May be the same or different). FIG. 15 (b) shows a resource structure in which a control channel of the mmWave system is arranged in the first three OFDM symbols and the last two OFDM symbols in the mmWave TTI.
한편, 이와 같이 종래의 통신 시스템과 다른 방식으로 구성되는 제어채널의 위치 및 검색 공간의 위치는 도 15(a)에 도시되는 'PCFICH'에 의해 지시될 수 있다. 다시 말해서, 도 15(a)에서 'PCFICH'에 의해 '제어채널 1' 및 '제어채널 2'의 위치가 지시되면, UE는 '제어채널 1' 및 '제어채널 2'를 각각 별도로 디코딩함으로써 데이터 채널을 디코딩할 수 있게 된다. 따라서, UE는 일반적인 '제어채널 1' 이외에 추가적으로 '제어채널 2'에 대한 디코딩 기회를 얻을 수 있게 되어, 통신 환경이 나쁜 상황에서도 제어채널을 안정적으로 디코딩할 수 있다는 장점이 있다. 한편, 앞서 'PCFICH'로 설명한 mmWave TTI의 채널은 설명의 편의를 위한 예시에 불과하며, mmWave 시스템에서 정의되는 제어채널의 위치를 지시하기 위하여 별도의 채널이 정의될 수 있다.Meanwhile, the position of the control channel and the position of the search space configured in a manner different from the conventional communication system may be indicated by the 'PCFICH' shown in FIG. 15 (a). In other words, when the position of 'control channel 1' and 'control channel 2' is indicated by 'PCFICH' in FIG. 15 (a), the UE decodes data of 'control channel 1' and 'control channel 2' separately. The channel can be decoded. Accordingly, the UE can obtain a decoding opportunity for 'control channel 2' in addition to the general 'control channel 1', so that the control channel can be stably decoded even in a bad communication environment. Meanwhile, the channel of mmWave TTI described above as 'PCFICH' is merely an example for convenience of description, and a separate channel may be defined to indicate the position of a control channel defined in the mmWave system.
도 15(c)는 mmWave 시스템에서 정의되는 제어채널의 위치를 지시하는 CFI(Control Format Indicator)의 설정 예시를 도시한다. 도 15(c)에 도시된 바와 같이, CFI는 mmWave TTI 내에서 제어채널의 위치를 나타내기 위하여 도 15(b)의 처음 3개의 OFDM 심볼을 나타내는 '1', '2', '3' 값 이외에도 마지막 2개의 OFDM 심볼을 나타내는 '4', '5' 값을 추가적으로 포함한다. UE는 CFI에 포함된 '4' 와 '5' 값에 대한 코드워드를 인식함으로써 mmWave TTI 내에서 마지막 2개의 OFDM 심볼에 제어채널이 위치함을 알 수 있다. 이에 따라, UE는 마지막 2개의 OFDM 심볼에 위치하는 검색 공간에 대해 블라인드 디코딩을 수행함으로써, '제어채널 2'를 추가적으로 검출할 수 있다.FIG. 15C illustrates an example of setting a control format indicator (CFI) indicating a position of a control channel defined in the mmWave system. As shown in FIG. 15 (c), the CFI values '1', '2', and '3' representing the first three OFDM symbols of FIG. 15 (b) to indicate the position of the control channel within the mmWave TTI. In addition, it additionally includes '4' and '5' values representing the last two OFDM symbols. The UE can recognize that the control channel is located in the last two OFDM symbols in the mmWave TTI by recognizing the codewords for the values '4' and '5' included in the CFI. Accordingly, the UE may additionally detect 'control channel 2' by performing blind decoding on the search space located in the last two OFDM symbols.
한편, CFI 에서 '4', '5'에 대응하는 mmWave TTI 내에서의 제어채널 위치는 마지막 OFDM 심볼 이외의 다른 위치가 될 수도 있으며, 도 15(a), 도 15(b) 등에 도시된 내용은 단순한 예시에 불과하다. 이와 같이 새로운 제어채널의 위치는 mmWave TTI 내에서 임의의 위치가 될 수 있으며, mmWave RRC 계층에서 미리 설정될 수 있다.Meanwhile, the position of the control channel in the mmWave TTI corresponding to '4' and '5' in the CFI may be a position other than the last OFDM symbol, and is illustrated in FIGS. 15 (a) and 15 (b). Is just an example. As such, the position of the new control channel may be any position within the mmWave TTI and may be preset in the mmWave RRC layer.
이상에서 제안한 실시 예에 따르면, mmWave CFI를 통해서 새로운 검색 공간을 지시할 수 있게 되고, mmWave 시스템에서 정의되는 새로운 제어채널을 용이하게 할당할 수 있게 된다. 또한, mmWave 시스템에서 정의되는 제어채널에 대한 전송 다이버시티를 얻을 수 있어, 하나의 TTI 내에서 제어채널에 대한 디코딩 확률 또한 증가될 수 있다. According to the embodiment proposed above, it is possible to indicate a new search space through the mmWave CFI, it is possible to easily allocate a new control channel defined in the mmWave system. In addition, transmission diversity for a control channel defined in the mmWave system can be obtained, so that the decoding probability for the control channel within one TTI can also be increased.
한편, 상술한 바와 같이 mmWave TTI 내에서 이질적인 위치에 두 개의 검색 공간이 설정된다는 점은 mmWave 시스템에 의해 미리 UE에게 알려질 수 있다. 예를 들어, 종래의 검색 공간에 더하여 새로운 검색 공간(상술한 제어채널2)이 설정된다는 정보가 mmWave SIB(System Information Block)에 실려서 UE로 알려질 수 있다. 이에 따라, 검색 공간이 서로 다른 위치에 둘 이상 설정된다는 사실을 인지한 UE는 RRC 연결 상태(RRC-connected state)에서 상향링크로 기준 신호(Reference Signal, RS) 또는 프리엠블을 전송하며, 이를 수신한 mmWave 기지국은 PDCCH를 위한 검색 공간을 mmWave TTI 내에 설정한다. 검색 공간들이 서로 다른 위치에 설정됨에 따라 제어 정보의 다이버시티가 획득될 수 있음은 앞서 설명한 바와 같다. Meanwhile, as described above, it may be known to the UE in advance by the mmWave system that two search spaces are set at heterogeneous positions within the mmWave TTI. For example, information indicating that a new search space (control channel 2 described above) is set up in addition to the conventional search space may be carried in the mmWave System Information Block (SIB) and known to the UE. Accordingly, the UE, recognizing that two or more search spaces are set in different locations, transmits a reference signal (RS) or a preamble in uplink in an RRC-connected state and receives the received signal. One mmWave base station sets up a search space for the PDCCH in the mmWave TTI. As described above, the diversity of the control information can be obtained as the search spaces are set at different positions.
도 16은 도 15에 도시된 실시 예를 변형한 실시 예이다. 도 15에서 제안한 실시 예에서, UE는 mmWave 시스템에서 정의되는 제어채널의 검색 공간을 LTE 시스템의 PCFICH와 같이 제어채널의 위치를 나타내는 채널을 통해 알 수 있었다. 이와는 달리, 도 16의 실시 예에서 UE는 LTE 시스템의 PBCH(Physical Broadcast Channel)와 같은 역할을 하는 채널로부터 제어채널의 검색 공간 위치를 파악할 수도 있다. FIG. 16 is a modified embodiment of the embodiment shown in FIG. 15. In the embodiment proposed in FIG. 15, the UE could know the search space of the control channel defined in the mmWave system through a channel indicating the position of the control channel, such as the PCFICH of the LTE system. In contrast, in the embodiment of FIG. 16, the UE may determine the search space location of the control channel from a channel serving as a PBCH (Physical Broadcast Channel) of the LTE system.
도 16에서 제안하는 실시 예에 의하면, 반영속적(semi-persistent)으로 mmWave 제어채널의 위치가 UE에 브로드캐스트된다. 다시 말해서, 도 16에 도시된 바와 같이 mmWave PBCH에서 한번 mmWave 제어채널의 위치를 지시하는 정보가 브로드캐스트되면, UE는 새로운 제어채널인 '제어채널 2'를 추가적인 시그널링 없이도 계속하여 mmWave TTI 내의 해당 위치(예를 들어, 마지막 2개의 OFDM 심볼)에서 검출한다. 한편, 이어지는 특정 mmWave TTI에서 mmWave 제어채널의 위치를 설정하는 새로운 정보가 브로드캐스트되면(예를 들어, 더 이상 제어채널이 마지막 2개의 OFDM 심볼에서 정의되지 않는다는 정보), UE는 더 이상 '제어채널 2'를 검출하기 위한 블라인드 디코딩을 mmWave TTI 내에서 수행하지 않는다. According to the embodiment proposed in FIG. 16, the position of the mmWave control channel is broadcast to the UE semi-persistent. In other words, when the information indicating the position of the mmWave control channel is broadcast once in the mmWave PBCH, as shown in FIG. 16, the UE continues to transmit the new control channel 'control channel 2' without additional signaling to the corresponding position in the mmWave TTI. (E.g., the last two OFDM symbols). On the other hand, if new information is broadcasted that sets the position of the mmWave control channel in a particular mmWave TTI that follows (eg, the information that the control channel is no longer defined in the last two OFDM symbols), the UE no longer has a 'control channel'. No blind decoding to detect 2 'is performed within the mmWave TTI.
다시 말해서, 도 15에서 설명한 방식에 따른 실시 예에 의하면, 매 TTI 마다 기지국이 mmWave 제어채널이 할당된 위치를 PCFICH와 같은 채널을 통해 UE에게 지시해준다. 반면에, 도 16에서 설명한 방식에 따른 실시 예에 의하면, 기지국에 의해서 PBCH와 같은 채널을 통해 mmWave 제어채널이 할당된 위치가 UE에게 한번 지시되면, 새로운 지시가 접수될 때까지 mmWave 제어채널이 반영속적으로 해당 위치에 할당되어 전송된다. In other words, according to the embodiment according to the scheme described with reference to FIG. 15, for every TTI, the base station indicates to the UE the position where the mmWave control channel is allocated through a channel such as PCFICH. On the other hand, according to the embodiment described with reference to FIG. 16, when the location to which the mmWave control channel is allocated by the base station through the same channel as the PBCH is instructed to the UE once, the mmWave control channel is semi-halted until a new indication is received. It is permanently assigned to the location and transmitted.
도 17은 도 15 및 도 16에서 설명한 실시 예들이 복합적으로 적용되는 실시 예를 도시한다. 도 16에서 설명한 실시 예들과는 달리, mmWave 시스템의 PBCH와 같은 채널에서 mmWave 시스템에서 정의되는 제어채널의 개수에 대한 정보만 정의될 수도 있다. mmWave 시스템의 제어채널과 그에 대응하는 PCFICH의 위치가 RRC 계층에 의해 미리 설정된 경우, 도 17(a)와 같이 PBCH에서 제어채널의 위치만을 지시하더라도 UE는 미리 설정된 PCFICH를 통해 새로운 제어채널을 블라인드 디코딩할 수 있다. FIG. 17 illustrates an embodiment in which the embodiments described with reference to FIGS. 15 and 16 are combined. Unlike the embodiments described with reference to FIG. 16, only information on the number of control channels defined in the mmWave system may be defined in the same channel as the PBCH of the mmWave system. If the control channel of the mmWave system and the position of the PCFICH corresponding thereto is preset by the RRC layer, the UE blindly decodes the new control channel through the preset PCFICH even if only the position of the control channel is indicated in the PBCH as shown in FIG. can do.
도 17(b)를 예로 들어 설명하면, PCFICH의 위치가 TTI 내에서 첫 번째 OFDM 심볼과 마지막 OFDM 심볼로 미리 설정되고, 제어채널의 위치가 처음 2개의 OFDM 심볼(제어채널 1)과 마지막 3개의 OFDM 심볼(제어채널 2)로 미리 설정될 수 있다. 이러한 경우, UE는 PBCH로부터 제어채널의 개수에 대한 값으로 2개(즉, '01' 비트)가 수신되면, 기설정된 두 PCFICH의 위치를 디코딩하여 제어채널 1과 제어채널 2에 대한 검색 공간을 파악하고, 이어서 해당 검색 공간에 대해 블라인드 디코딩을 수행하여 제어채널 1, 제어채널 2를 각각 검출할 수 있다.Referring to FIG. 17 (b), the PCFICH is pre-set to the first OFDM symbol and the last OFDM symbol in the TTI, and the position of the control channel is the first two OFDM symbols (control channel 1) and the last three symbols. It may be preset to an OFDM symbol (control channel 2). In this case, when two UEs (ie, '01' bits) are received from the PBCH as a value for the number of control channels, the UE decodes the positions of the two preset PCFICHs to decode the search space for the control channel 1 and the control channel 2. After that, the control channel 1 and the control channel 2 may be detected by performing blind decoding on the corresponding search space.
도 18 내지 도 20은 제안하는 또 다른 실시 예에 따른 제어채널 전송 방법을 도시하는 도면이다. 이상의 도 15 내지 도 17에서는 제어채널의 전송 다이버시티를 향상시키는 실시 예에 대해 설명하였다. 도 18 내지 도 20에서는 TTI 내에서 제어채널의 오버헤드는 유지하되, 제어채널에 대한 디코딩 신뢰도를 향상시키는 두 번째 실시 예를 설명한다.18 to 20 are diagrams illustrating a control channel transmission method according to another exemplary embodiment. 15 to 17 have been described with reference to an embodiment of improving transmission diversity of a control channel. 18 to 20 illustrate a second embodiment in which the overhead of the control channel is maintained within the TTI, but the decoding reliability of the control channel is improved.
도 18 내지 도 20에서 설명하는 실시 예에서는, mmWave 제어채널 인에이블러(enabler)를 정의한다. mmWave 제어채널 인에이블러는 mmWave 제어채널의 전송 상태를 나타내는 정보로써, 제어채널 내에서의 위치는 고정적으로 할당된다. UE는 기지국으로부터 수신된 mmWave 제어채널 인에이블러를 디코딩함으로써 전체 제어채널의 전송 성능에 대한 정보를 파악할 수 있다.In the embodiments described with reference to FIGS. 18 through 20, an mmWave control channel enabler is defined. The mmWave control channel enabler is information indicating the transmission status of the mmWave control channel, and a position in the control channel is fixedly assigned. The UE can grasp information on the transmission performance of the entire control channel by decoding the mmWave control channel enabler received from the base station.
구체적으로 설명하면, 도 18(a)에 도시된 바와 같이 mmWave 제어채널 내의 소정 영역에 mmWave 제어채널 인에이블러가 할당된다. mmWave 기지국 커버리지 내에 위치하는 UE들은 이러한 제어채널 인에이블러가 배치되는 위치에 대해서는 미리 알고 있다. 또는, 도 18(b)에 도시된 바와 같이 mmWave 제어채널 인에이블러는 제어채널 내에서 분산배치될 수도 있다. Specifically, as shown in FIG. 18A, the mmWave control channel enabler is allocated to a predetermined region in the mmWave control channel. UEs located within mmWave base station coverage know in advance where such control channel enablers are located. Alternatively, as shown in FIG. 18B, the mmWave control channel enabler may be distributed in the control channel.
한편, mmWave 제어채널 인에이블러는 기지국과 UE 간에 미리 약속된 코드로 전송되며, UE는 mmWave 제어채널 인에이블러를 수신한 뒤 디코딩되는지 여부만을 판단한다. 다시 말해서, mmWave 제어채널 인에이블러는 UE로 하여금 특정 정보를 획득하기 위함이 아니라, 제어채널 전반의 전송 상태를 대표할 수 있도록 UE에 의해 디코딩되는지 여부만을 확인하기 위하여 전송된다. Meanwhile, the mmWave control channel enabler is transmitted with a code previously promised between the base station and the UE, and the UE determines only whether it is decoded after receiving the mmWave control channel enabler. In other words, the mmWave control channel enabler is transmitted only to determine whether the UE is decoded by the UE so as to represent the transmission status over the control channel, rather than to obtain specific information.
UE는 mmWave 제어채널 인에이블러를 수신 및 디코딩함으로써 하향링크 제어채널의 전력과 링크 안정성에 대해 확인한다. 이어서, UE는 mmWave 제어채널 인에이블러에 대한 ACK/NACK(ACKnowledgement/Negative ACKnowledgement)을 기지국으로 전송한다. mmWave 제어채널 인에이블러에 대한 ACK/NACK은 해당 TTI 내의 데이터에 대한 ACK/NACK 과 함께 기지국으로 전송될 수 있다. 즉, 인에이블러와 데이터 각각에 대한 ACK/NACK은 TTI 당 한번씩만 전송되므로, UE가 상향링크 전송시에 두 ACK/NACK을 함께 전송함으로써 상향링크 시그널링의 오버헤드를 줄일 수 있다. The UE checks the power and link stability of the downlink control channel by receiving and decoding the mmWave control channel enabler. Subsequently, the UE transmits ACKnowledgement / Negative ACKnowledgement (ACK / NACK) for the mmWave control channel enabler to the base station. The ACK / NACK for the mmWave control channel enabler may be transmitted to the base station together with the ACK / NACK for the data in the corresponding TTI. That is, since the ACK / NACK for each of the enabler and the data are transmitted only once per TTI, the overhead of uplink signaling can be reduced by the UE transmitting both ACK / NACKs during uplink transmission.
도 19는 상술한 mmWave 제어채널 인에이블러의 도입에 따른 시그널링 과정을 도시하는 흐름도이다.19 is a flowchart illustrating a signaling process according to the introduction of the mmWave control channel enabler described above.
먼저, mmWave 기지국이 UE로 서브프레임(또는, TTI) 내에서 제어채널 내에 mmWave 제어채널 인에이블러를 전송한다. 인에이블러를 수신한 UE는 인에이블러를 디코딩하며, 인에이블러에 대한 ACK/NACK 및 데이터에 대한 ACK/NACK을 함께 상향링크로 기지국에 전송한다. 이어서, mmWave 제어채널 인에이블러에 대한 ACK/NACK을 수신한 기지국은 전송 전력을 조절하여 새로운 하향링크 제어채널을 UE로 전송한다. 예를 들어, UE가 인에이블러의 디코딩에 성공했다면(ACK이 수신된 경우) 이전 하향링크 제어채널 전송의 전송 상태가 양호한 것으로 파악되므로, 기지국은 다음 하향링크 제어채널 전송 전력을 유지하거나 상대적으로 적은 값만큼 상향조절하여 전송한다. 반면에, UE가 인에이블러의 디코딩에 실패했다면(NACK이 수신된 경우) 기지국은 다음 하향링크 제어채널 전송 전력을 상대적으로 큰 값만큼 상향조절하여 전송할 수 있다. First, the mmWave base station transmits an mmWave control channel enabler in a control channel in a subframe (or TTI) to the UE. Upon receiving the enabler, the UE decodes the enabler and transmits ACK / NACK for the enabler and ACK / NACK for the data together to the base station in uplink. Subsequently, the base station receiving the ACK / NACK for the mmWave control channel enabler transmits a new downlink control channel to the UE by adjusting the transmission power. For example, if the UE successfully decodes the enabler (when an ACK is received), the transmission state of the previous downlink control channel transmission is determined to be good, so that the base station maintains or relatively transmits the next downlink control channel transmission power. Transmit uplink by a small value. On the other hand, if the UE fails to decode the enabler (when a NACK is received), the base station may transmit the next downlink control channel transmit power by adjusting a relatively large value.
도 20은 도 19에서 설명한 과정을 구체적인 예시를 들어 표시한다. 도 20에 도시된 표에서는 mmWave 제어채널 인에이블러 대신 PCFICH가 이용될 수도 있음이 나타난다. 즉, mmWave 제어채널 인에이블러의 역할을 PCFICH가 대신하도록 구현될 수도 있다.FIG. 20 exemplarily illustrates the process described with reference to FIG. 19. 20 shows that the PCFICH may be used instead of the mmWave control channel enabler. That is, the PCFICH may be implemented to replace the role of the mmWave control channel enabler.
기지국이 인에이블러/PCFICH에 대한 ACK과 데이터에 대한 ACK을 수신한 경우(즉, '11' 비트를 수신한 경우), 기지국은 mmWave 제어채널과 mmWave 데이터 채널의 전송 상태가 모두 양호함을 알 수 있다. 따라서, 다음 하향링크 전송시 기지국은 이전과 같은 전송 전력을 이용할 수 있다. 반면에, 인에이블러/PCFICH에 대한 NACK이 수신된 경우('01'), 기지국은 제어채널의 전송 상태가 좋지 않음을 알 수 있다. 제어채널의 전송 상태가 좋지 않은 경우, 제어채널의 디코딩이 실패함에 따라 데이터 채널의 디코딩도 실패할 가능성이 높아, 기지국은 데이터 채널에 대한 ACK이 수신되었다 하더라도 데이터 채널의 올바른 디코딩에 실패한 것으로 간주한다. 이어서, 기지국은 다음 차례의 하향링크 전송시 제어채널에 대한 전송 전력을 올려서 전송한다.If the base station receives an ACK for the Enabler / PCFICH and an ACK for data (that is, receives an '11' bit), the base station knows that both the mmWave control channel and the mmWave data channel have good transmission. Can be. Therefore, the base station may use the same transmission power as the next downlink transmission. On the other hand, when the NACK for the enabler / PCFICH is received ('01'), the base station can know that the transmission state of the control channel is not good. If the transmission state of the control channel is not good, the decoding of the data channel is likely to fail as the decoding of the control channel fails, so that the base station considers that the correct decoding of the data channel has failed even if an ACK for the data channel is received. . Subsequently, the base station increases and transmits the transmission power for the control channel during the next downlink transmission.
반대로, 인에이블러/PCFICH에 대한 ACK과 데이터에 대한 NACK이 수신된 경우('10'), 기지국은 제어채널 자체는 양호하게 전송되었으나 데이터 채널의 디코딩이 실패하였으므로, 데이터 채널만을 재전송한다. 인에이블러/PCFICH에 대한 NACK과 데이터에 대한 NACK이 수신된 경우('00'), 기지국은 데이터 채널과 제어채널의 전송 상태가 모두 불량한 것으로 판단하고, 다음 하향링크 전송시 제어채널의 전송 전력을 올려서 전송한다. 마지막으로, 기지국이 인에이블러/PCFICH에 대한 응답과 데이터에 대한 응답의 ACK/NACK 수신에 실패하는 경우, UE로부터의 상향링크 전송이 불량한 경우이므로 기지국은 하향링크 전송이 정상적으로 이루어졌는지 확인할 수 없다. 따라서, 기지국은 다음 하향링크 전송시 제어채널의 전송 전력을 올려서 전송한다.On the contrary, when the ACK for the enabler / PCFICH and the NACK for the data are received ('10'), the base station retransmits only the data channel because the control channel itself is well transmitted but the decoding of the data channel fails. When the NACK for the Enabler / PCFICH and the NACK for the data are received ('00'), the base station determines that the transmission state of the data channel and the control channel are both poor and transmit power of the control channel in the next downlink transmission. Send it up. Finally, when the base station fails to receive the ACK / NACK of the response to the enabler / PCFICH and the response to the data, because the uplink transmission from the UE is poor, the base station can not determine whether the downlink transmission was successful . Therefore, the base station increases and transmits the transmission power of the control channel during the next downlink transmission.
4. 장치 구성4. Device Configuration
도 21은 본 발명의 일 실시 예와 관련된 단말 및 기지국의 구성을 도시하는 도면이다. 도 21에서 단말(100) 및 기지국(200)은 각각 무선 주파수(RF) 유닛(110, 210), 프로세서(120, 220) 및 메모리(130, 230)를 포함할 수 있다. 도 21에서는 단말(100)와 기지국(200) 간의 1:1 통신 환경만을 도시하였으나, 다수의 단말과 다수의 기지국 간에도 통신 환경이 구축될 수 있다. 또한, 도 21에 도시된 기지국(200)은 매크로 셀 기지국과 스몰 셀 기지국에 모두 적용될 수 있다.21 is a diagram illustrating a configuration of a terminal and a base station according to an embodiment of the present invention. In FIG. 21, the terminal 100 and the base station 200 may include radio frequency (RF) units 110 and 210, processors 120 and 220, and memories 130 and 230, respectively. In FIG. 21, only a 1: 1 communication environment between the terminal 100 and the base station 200 is illustrated, but a communication environment may be established between a plurality of terminals and a plurality of base stations. In addition, the base station 200 illustrated in FIG. 21 may be applied to both the macro cell base station and the small cell base station.
각 RF 유닛(110, 210)은 각각 송신부(112, 212) 및 수신부(114, 214)를 포함할 수 있다. 단말(100)의 송신부(112) 및 수신부(114)는 기지국(200) 및 다른 단말들과 신호를 송신 및 수신하도록 구성되며, 프로세서(120)는 송신부(112) 및 수신부(114)와 기능적으로 연결되어 송신부(112) 및 수신부(114)가 다른 기기들과 신호를 송수신하는 과정을 제어하도록 구성될 수 있다. 또한, 프로세서(120)는 전송할 신호에 대한 각종 처리를 수행한 후 송신부(112)로 전송하며, 수신부(114)가 수신한 신호에 대한 처리를 수행한다.Each RF unit 110, 210 may include a transmitter 112, 212 and a receiver 114, 214, respectively. The transmitting unit 112 and the receiving unit 114 of the terminal 100 are configured to transmit and receive signals with the base station 200 and other terminals, and the processor 120 is functionally connected with the transmitting unit 112 and the receiving unit 114. In connection, the transmitter 112 and the receiver 114 may be configured to control a process of transmitting and receiving signals with other devices. In addition, the processor 120 performs various processes on the signal to be transmitted and transmits the signal to the transmitter 112, and performs the process on the signal received by the receiver 114.
필요한 경우 프로세서(120)는 교환된 메시지에 포함된 정보를 메모리(130)에 저장할 수 있다. 이와 같은 구조를 가지고 단말(100)은 이상에서 설명한 본 발명의 다양한 실시 형태의 방법을 수행할 수 있다.If necessary, the processor 120 may store information included in the exchanged message in the memory 130. With such a structure, the terminal 100 can perform the method of various embodiments of the present invention described above.
기지국(200)의 송신부(212) 및 수신부(214)는 다른 기지국 및 단말들과 신호를 송신 및 수신하도록 구성되며, 프로세서(220)는 송신부(212) 및 수신부(214)와 기능적으로 연결되어 송신부(212) 및 수신부(214)가 다른 기기들과 신호를 송수신하는 과정을 제어하도록 구성될 수 있다. 또한, 프로세서(220)는 전송할 신호에 대한 각종 처리를 수행한 후 송신부(212)로 전송하며 수신부(214)가 수신한 신호에 대한 처리를 수행할 수 있다. 필요한 경우 프로세서(220)는 교환된 메시지에 포함된 정보를 메모리(230)에 저장할 수 있다. 이와 같은 구조를 가지고 기지국(200)은 앞서 설명한 다양한 실시 형태의 방법을 수행할 수 있다.The transmitter 212 and the receiver 214 of the base station 200 are configured to transmit and receive signals with other base stations and terminals, and the processor 220 is functionally connected to the transmitter 212 and the receiver 214 to transmit the signal. 212 and the receiver 214 may be configured to control the process of transmitting and receiving signals with other devices. In addition, the processor 220 may perform various processing on the signal to be transmitted, transmit the signal to the transmitter 212, and may perform processing on the signal received by the receiver 214. If necessary, the processor 220 may store information included in the exchanged message in the memory 230. With such a structure, the base station 200 may perform the method of the various embodiments described above.
단말(100) 및 기지국(200) 각각의 프로세서(120, 220)는 각각 단말(100) 및 기지국(200)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(120, 220)은 프로그램 코드들 및 데이터를 저장하는 메모리(130, 230)들과 연결될 수 있다. 메모리(130, 230)는 프로세서(120, 220)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다. Processors 120 and 220 of the terminal 100 and the base station 200 respectively instruct (eg, control, coordinate, manage, etc.) the operation in the terminal 100 and the base station 200. Respective processors 120 and 220 may be connected to memories 130 and 230 that store program codes and data. The memories 130 and 230 are coupled to the processors 120 and 220 to store operating systems, applications, and general files.
본 발명의 프로세서(120, 220)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(120, 220)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. The processor 120 or 220 of the present invention may also be referred to as a controller, a microcontroller, a microprocessor, a microcomputer, or the like. The processors 120 and 220 may be implemented by hardware or firmware, software, or a combination thereof.
하드웨어를 이용하여 본 발명의 실시 예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(120, 220)에 구비될 수 있다. When implementing an embodiment of the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), and programmable logic devices (PLDs) configured to perform the present invention. Field programmable gate arrays (FPGAs) may be provided in the processors 120 and 220.
한편, 상술한 방법은, 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터 판독 가능 매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 또한, 상술한 방법에서 사용된 데이터의 구조는 컴퓨터 판독 가능 매체에 여러 수단을 통하여 기록될 수 있다. 본 발명의 다양한 방법들을 수행하기 위한 실행 가능한 컴퓨터 코드를 포함하는 저장 디바이스를 설명하기 위해 사용될 수 있는 프로그램 저장 디바이스들은, 반송파(carrier waves)나 신호들과 같이 일시적인 대상들은 포함하는 것으로 이해되지는 않아야 한다. 상기 컴퓨터 판독 가능 매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드 디스크 등), 광학적 판독 매체(예를 들면, 시디롬, DVD 등)와 같은 저장 매체를 포함한다.Meanwhile, the above-described method may be written as a program executable on a computer, and may be implemented in a general-purpose digital computer which operates the program using a computer readable medium. In addition, the structure of the data used in the above-described method can be recorded on the computer-readable medium through various means. Program storage devices that may be used to describe storage devices that include executable computer code for performing the various methods of the present invention should not be understood to include transient objects, such as carrier waves or signals. do. The computer readable medium includes a storage medium such as a magnetic storage medium (eg, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (eg, a CD-ROM, a DVD, etc.).
본원 발명의 실시 예 들과 관련된 기술 분야에서 통상의 지식을 가진 자는 상기 기재의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 방법들은 한정적인 관점이 아닌 설명적 관점에서 고려되어야 한다. 본 발명의 범위는 발명의 상세한 설명이 아닌 특허청구 범위에 나타나며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It will be understood by those skilled in the art that embodiments of the present invention can be implemented in a modified form without departing from the essential characteristics of the above description. Therefore, the disclosed methods should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the detailed description of the invention, and all differences within the equivalent scope should be construed as being included in the scope of the present invention.
상술한 바와 같은 mmWave 시스템에서의 제어채널 송수신 방법은 3GPP 시스템뿐 아니라, 그 외에도 IEEE 802.16x, 802.11x 시스템을 포함하는 다양한 무선 통신 시스템에 적용하는 것이 가능하다.The control channel transmission and reception method in the mmWave system as described above can be applied to various wireless communication systems including not only 3GPP systems but also IEEE 802.16x and 802.11x systems.

Claims (12)

  1. mmWave 통신 시스템을 지원하는 단말의 통신 방법에 있어서,In the communication method of the terminal supporting the mmWave communication system,
    하나의 mmWave TTI(Transmission Time Interval) 내에서 제어 채널을 검출하기 위한 두 개의 검색공간이 설정됨을 알리는 정보를 수신하는 단계;Receiving information indicating that two search spaces for detecting a control channel are set within one mmWave Transmission Time Interval (TTI);
    상기 제어 채널을 검출하기 위한 제1 검색공간(search space) 및 제2 검색공간의 상기 mmWave TTI 내에서의 위치를 나타내는 지시자를 mmWave 기지국으로부터 수신하는 단계;Receiving an indicator from an mmWave base station indicating a position in the mmWave TTI of a first search space and a second search space for detecting the control channel;
    상기 지시자에 의해 지시되는 상기 제1 검색공간 및 상기 제2 검색공간에 대한 블라인드 디코딩을 각각 수행하는 단계; Performing blind decoding on the first search space and the second search space respectively indicated by the indicator;
    상기 제1 검색공간 및 상기 제2 검색공간 중 적어도 하나로부터 하향링크 제어채널을 검출하는 단계; 및Detecting a downlink control channel from at least one of the first search space and the second search space; And
    상기 하향링크 제어채널에 의해 지시되는 하향링크 데이터를 디코딩하는 단계를 포함하는, 통신 방법.Decoding downlink data indicated by the downlink control channel.
  2. 제1항에 있어서,The method of claim 1,
    상기 지시자는 매 TTI마다 수신되는 것인, 통신 방법.Wherein the indicator is received every TTI.
  3. 제1항에 있어서,The method of claim 1,
    상기 지시자는 상기 mmWave 기지국에 의해 상기 제1 검색공간 및 상기 제2 검색공간의 설정이 변경되는 TTI에서만 수신되는 것인, 통신 방법.And the indicator is received only by a TTI in which the settings of the first search space and the second search space are changed by the mmWave base station.
  4. 제3항에 있어서,The method of claim 3,
    상기 블라인드 디코딩은 새로운 지시자가 수신되기 전까지는 최근에 수신된 지시자에 따라 반영속적으로(semi-persistent) 수행되는 것인, 통신 방법.The blind decoding is performed semi-persistent according to a recently received indicator until a new indicator is received.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1 검색공간은 상기 TTI의 첫 OFDM(Orthogonal Frequency Division Multiplexing) 심볼로부터 n 개의 OFDM 심볼에 배치되며, 상기 제2 검색공간은 상기 TTI의 마지막 OFDM 심볼로부터 m 개의 OFDM 심볼에 배치되며, 상기 n, m은 자연수인 것인, 통신 방법.The first search space is disposed in n OFDM symbols from the first Orthogonal Frequency Division Multiplexing (OFDM) symbol of the TTI, and the second search space is disposed in m OFDM symbols from the last OFDM symbol of the TTI, and n and m are natural numbers.
  6. 제1항에 있어서,The method of claim 1,
    상기 지시자가 상기 제1 검색공간 및 상기 제2검색공간을 포함하는 검색공간의 개수를 나타내는 경우, 상기 블라인드 디코딩은 상기 개수만큼의 검색공간에 대하여 미리 설정된 위치에서 수행되는 것인, 통신 방법.And when the indicator indicates the number of search spaces including the first search space and the second search space, the blind decoding is performed at a preset position for the number of search spaces.
  7. mmWave 통신 시스템을 지원하는 단말에 있어서,In the terminal supporting the mmWave communication system,
    송신부;A transmitter;
    수신부; 및 Receiver; And
    상기 송신부 및 상기 수신부와 연결되어 동작하는 프로세서를 포함하되,A processor operating in connection with the transmitter and the receiver,
    상기 프로세서는, The processor,
    하나의 mmWave TTI 내에서 제어 채널을 검출하기 위한 두 개의 검색공간이 설정됨을 알리는 정보를 수신하도록 상기 수신부를 제어하고,Control the receiver to receive information indicating that two search spaces for detecting the control channel are set in one mmWave TTI,
    상기 제어 채널을 검출하기 위한 제1 검색공간 및 제2 검색공간의 상기 mmWave TTI 내에서의 위치를 나타내는 지시자를 mmWave 기지국으로부터 수신하도록 상기 수신부를 제어하고,Control the receiving unit to receive, from a mmWave base station, an indicator indicating a position within the mmWave TTI of a first search space and a second search space for detecting the control channel,
    상기 지시자에 의해 지시되는 상기 제1 검색공간 및 상기 제2 검색공간에 대한 블라인드 디코딩을 각각 수행하고,Perform blind decoding on the first search space and the second search space respectively indicated by the indicator,
    상기 제1 검색공간 및 상기 제2 검색공간 중 적어도 하나로부터 하향링크 제어채널을 검출하고,Detecting a downlink control channel from at least one of the first search space and the second search space;
    상기 하향링크 제어채널에 의해 지시되는 하향링크 데이터를 디코딩하는 것인, 단말.And decoding downlink data indicated by the downlink control channel.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 지시자는 매 TTI마다 수신되는 것인, 단말.The indicator is received every TTI terminal.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 지시자는 상기 mmWave 기지국에 의해 상기 제1 검색공간 및 상기 제2 검색공간의 설정이 변경되는 TTI에서만 수신되는 것인, 단말.The indicator is received by the mmWave base station only in the TTI that the settings of the first search space and the second search space is changed, the terminal.
  10. 제9항에 있어서,The method of claim 9,
    상기 프로세서는 새로운 지시자가 수신되기 전까지는 최근에 수신된 지시자에 따라 반영속적으로 상기 블라인드 디코딩을 수행하는 것인, 단말.The processor is to perform the blind decoding in accordance with a recently received indicator until the new indicator is received, the terminal.
  11. 제7항에 있어서,The method of claim 7, wherein
    상기 제1 검색공간은 상기 TTI의 첫 OFDM 심볼로부터 n 개의 OFDM 심볼에 배치되며, 상기 제2 검색공간은 상기 TTI의 마지막 OFDM 심볼로부터 m 개의 OFDM 심볼에 배치되며, 상기 n, m은 자연수인 것인, 단말.Wherein the first search space is disposed in n OFDM symbols from the first OFDM symbol of the TTI, and the second search space is disposed in m OFDM symbols from the last OFDM symbol of the TTI, wherein n and m are natural numbers Phosphorus, terminal.
  12. 제7항에 있어서,The method of claim 7, wherein
    상기 지시자가 상기 제1 검색공간 및 상기 제2검색공간을 포함하는 검색공간의 개수를 나타내는 경우, 상기 프로세서는 상기 개수만큼의 검색공간에 대하여 미리 설정된 위치에서 상기 블라인드 디코딩을 수행하는 것인, 단말.When the indicator indicates the number of search spaces including the first search space and the second search space, the processor performs the blind decoding at a preset position with respect to the number of search spaces. .
PCT/KR2016/006063 2016-06-08 2016-06-08 Method for terminal communication in mmwave communication system and terminal WO2017213274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/006063 WO2017213274A1 (en) 2016-06-08 2016-06-08 Method for terminal communication in mmwave communication system and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/006063 WO2017213274A1 (en) 2016-06-08 2016-06-08 Method for terminal communication in mmwave communication system and terminal

Publications (1)

Publication Number Publication Date
WO2017213274A1 true WO2017213274A1 (en) 2017-12-14

Family

ID=60577931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006063 WO2017213274A1 (en) 2016-06-08 2016-06-08 Method for terminal communication in mmwave communication system and terminal

Country Status (1)

Country Link
WO (1) WO2017213274A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221101A1 (en) * 2019-04-28 2020-11-05 深圳市万普拉斯科技有限公司 Antenna combination device and mobile terminal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130058294A1 (en) * 2010-04-05 2013-03-07 Ntt Docomo, Inc. Base station apparatus and user terminal
US20130194956A1 (en) * 2012-01-30 2013-08-01 Futurewei Technologies, Inc. System and Method for Common Control Channels in a Communications System
US20140307693A1 (en) * 2011-11-07 2014-10-16 Panasonic Corporation Enhanced pdcch overlapping with the pdcch region
US20160007371A1 (en) * 2013-02-07 2016-01-07 Interdigital Patent Holdings, Inc. Physical layer (phy) design for a low latency millimeter wave (mmw) backhaul system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130058294A1 (en) * 2010-04-05 2013-03-07 Ntt Docomo, Inc. Base station apparatus and user terminal
US20140307693A1 (en) * 2011-11-07 2014-10-16 Panasonic Corporation Enhanced pdcch overlapping with the pdcch region
US20130194956A1 (en) * 2012-01-30 2013-08-01 Futurewei Technologies, Inc. System and Method for Common Control Channels in a Communications System
US20160007371A1 (en) * 2013-02-07 2016-01-07 Interdigital Patent Holdings, Inc. Physical layer (phy) design for a low latency millimeter wave (mmw) backhaul system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Consideration on sPDCCH Design", R1 -165049, 3GPP TSG RAN WG1 MEETING ?85, 13 May 2016 (2016-05-13), Nanjing, China, XP051096680 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020221101A1 (en) * 2019-04-28 2020-11-05 深圳市万普拉斯科技有限公司 Antenna combination device and mobile terminal

Similar Documents

Publication Publication Date Title
WO2015115818A1 (en) Method and device for transmitting harq ack/nack
WO2014046457A1 (en) Method and apparatus for performing uplink transmission in a wireless communication system
WO2014175638A1 (en) Method and apparatus for controlling data transmission in wireless communication system
WO2015076501A1 (en) Method for performing random access procedure
WO2018169327A1 (en) Method for ack/nack transmission and reception in wireless communication system and apparatus therefor
WO2017135682A1 (en) Method for transmitting uplink control channel and user equipment for performing same
WO2013069994A1 (en) Method and device for setting uplink transmission power in wireless communication system
WO2014025228A1 (en) Method and apparatus for supporting burst transmission in a wireless communication system
WO2015065000A1 (en) Method and apparatus of transmitting control information considering tdd-fdd ca
WO2016048100A1 (en) Method for transmitting and receiving signal in wireless communication system and device for performing same
WO2015012665A1 (en) Method for transmitting signal for mtc and apparatus for same
WO2011025195A2 (en) Transmission method of downlink signal in wireless communication system and transmission apparatus therefor
WO2014107033A1 (en) Method for monitoring downlink control channel in wireless communication system and device for same
WO2017078501A1 (en) Method for signal transmission, and apparatus therefor
WO2014081241A1 (en) Method for transceiving control signal, and apparatus therefor
WO2013125871A1 (en) Communication method for user equipment and user equipment, and communication method for base station and base station
WO2013073916A1 (en) Method for transmitting uplink control channel by terminal in wireless communication system
WO2017034125A1 (en) Method for performing communication using flexible fdd frame in wireless communication system and device therefor
WO2016048111A2 (en) Monitoring method by terminal in wireless communication system supporting carrier aggregation and device for same
WO2016171457A1 (en) Method for multiplexing ack/nack response in wireless communication system, and apparatus therefor
WO2013012261A2 (en) Method for transmitting and receiving resource allocation information in wireless communication system and apparatus therefor
WO2015064924A1 (en) Method for transmitting, to mtc device, pdsch including downlink data, and base station therefor
WO2016018132A1 (en) Method supporting d2d communication and apparatus therefor in wireless communication system
WO2016085310A1 (en) Wireless signal transmission and reception method and device in wireless communication system
WO2016048112A2 (en) Method for transmitting and receiving signal by terminal in wireless communication system supporting carrier aggregation and device for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16904707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16904707

Country of ref document: EP

Kind code of ref document: A1