WO2017213138A1 - Reception device - Google Patents

Reception device Download PDF

Info

Publication number
WO2017213138A1
WO2017213138A1 PCT/JP2017/020977 JP2017020977W WO2017213138A1 WO 2017213138 A1 WO2017213138 A1 WO 2017213138A1 JP 2017020977 W JP2017020977 W JP 2017020977W WO 2017213138 A1 WO2017213138 A1 WO 2017213138A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
signal
communication
correction
phase
Prior art date
Application number
PCT/JP2017/020977
Other languages
French (fr)
Japanese (ja)
Inventor
宣明 松平
岸上 友久
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2017213138A1 publication Critical patent/WO2017213138A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • the present disclosure relates to a receiving device used in a communication system in which a plurality of communication devices transmit and receive communication signals via a common transmission path.
  • a bus connection type communication system in which a plurality of communication devices transmit and receive communication signals via a common communication line is known.
  • signal reflection occurs due to impedance mismatch at the branch point between the branch line and the communication line to which each communication device is connected and the input / output point of each communication device, and the signal waveform deteriorates.
  • a phenomenon in which a signal waveform is disturbed by such a reflected wave is called ringing.
  • Patent Document 1 discloses that when a signal transitions from dominant to recessive, it is disturbed by ringing by outputting a high level signal for a certain period of time regardless of the received communication signal. A technique for masking the output is described.
  • Patent Document 1 The technique described in Patent Document 1 is based on the premise that waveform disturbance due to ringing converges within a communication period of one bit of code. That is, assuming that the communication time length for one bit of code is TD and the time length in which waveform distortion due to ringing occurs is TRING, the technique described in Patent Document 1 can be applied only under the condition of TD> TRING. The As a result of the inventor's investigation, if the waveform distortion is to be masked in a situation where TD ⁇ TRING, the signal described in Patent Document 1 cannot be applied because all signals for one bit of code are masked. Was found.
  • CAN FD Controller-Area-Network-with-Flexible-Data-rate.
  • the communication speed of 500 kbps is increased to a maximum of 5 Mbps. That is, the time length per bit of the code is reduced to 1/10.
  • the time length in which the waveform is disturbed by ringing is the same regardless of the communication speed, it is difficult to apply the technique described in Patent Document 1.
  • a receiving device includes: a communication control device provided in a communication device that constructs a communication system in which a plurality of communication devices transmit and receive communication signals via a common communication line; and a common communication line It functions as an interface between them.
  • the receiving device includes an AD conversion unit, a learning unit, and a correction unit.
  • the AD conversion unit is configured to convert a communication signal received via a common communication line into a digital signal and output the digital signal.
  • the learning unit receives a predetermined communication signal and converts the received signal, which is a waveform of a digital signal when converted by the AD conversion unit, and a given ideal waveform representing a waveform of a reference digital signal corresponding to the communication signal Is configured to create waveform correction information.
  • This waveform correction information is information relating to the difference between the received waveform and the ideal waveform.
  • the learning unit is configured to save the created waveform correction information in the storage unit.
  • the correction unit generates a correction signal that is a signal obtained by correcting the waveform of the digital signal converted by the AD conversion unit after the waveform correction information is stored using the waveform correction information stored in the storage unit, and generates the correction signal.
  • the corrected signal is output to the communication control device.
  • a receiving apparatus calculates a waveform correction information based on a difference between a received waveform obtained by digitally converting a received communication signal and a given ideal waveform, thereby reducing a small-scale circuit in a short time. You can learn the amount of waveform correction. By using the waveform correction information acquired by such learning, waveform disturbance due to ringing can be appropriately self-corrected and high-speed bus communication can be realized.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a communication system.
  • FIG. 2 is a diagram illustrating a circuit configuration of the ECU.
  • FIG. 3 is a diagram illustrating a circuit configuration of the receiver.
  • FIG. 4 is a diagram illustrating a configuration of a CAN FD communication frame.
  • FIG. 5 is an operation waveform diagram regarding the receiver.
  • FIG. 6 is a diagram illustrating an example of a comparison between an output signal waveform and an ideal waveform.
  • FIG. 7 is an operation waveform diagram regarding the receiver.
  • FIG. 8 is a flowchart showing the procedure of the learning process.
  • FIG. 9 is a diagram illustrating bit time divisions related to CAN FD.
  • FIG. 10 is a diagram illustrating rising noise in the output signal.
  • FIG. 11 is a diagram illustrating falling noise in the output signal.
  • FIG. 12 is a flowchart showing the procedure of the correction process.
  • each ECU 100 functions as a communication device according to the present disclosure.
  • CAN FD which is a well-known standard
  • the bus 10 used in the communication system of the present embodiment is a two-wire bus composed of a first communication line 11 and a second communication line 12.
  • Dominant / Recessive is expressed by the potential difference between the potential of the first communication line 11 and the potential of the second communication line 12.
  • the potential of the first communication line 11 is “Sig-H”
  • the potential of the second communication line 12 is “Sig-L”.
  • This communication system is a so-called bus connection type network form. Specifically, in this communication system, a plurality of branch lines are branched from a bus 10 as a trunk line, and an ECU 100 is connected to each branch line.
  • one ECU 100 includes a communication controller 110 and a transceiver 120.
  • the communication controller 110 is an information processing apparatus including a CPU, a ROM, a RAM, and the like.
  • the communication controller 110 is embodied by, for example, a microcontroller that integrates functions as a computer system.
  • the communication controller 110 executes processing for communication control.
  • the communication controller 110 includes a Tx terminal and an Rx terminal as communication terminals.
  • the Tx terminal and the Rx terminal are connected to the communication terminal of the transceiver 120, respectively.
  • the communication controller 110 corresponds to the communication control device according to the present disclosure.
  • the transceiver 120 is a device that functions as an interface between the bus 10 and the communication controller 110.
  • the transceiver 120 includes a transmitter 130 and a receiver 140.
  • the transmitter 130 and the receiver 140 are respectively connected to both the first communication line 11 and the second communication line 12.
  • the transmitter 130 has a function of converting a transmission signal output from the Tx terminal of the communication controller 110 into a communication signal and transmitting the communication signal to the first communication line 11 and the second communication line 12.
  • a transmission signal output from the Tx terminal of the communication controller 110 is referred to as a “Tx signal”.
  • Tx signal A transmission signal output from the Tx terminal of the communication controller 110 is referred to as a “Tx signal”.
  • the first communication line 11 and the second communication line 12 are not supplied without flowing out the current to the first communication line 11 and drawing the current from the second communication line 12.
  • a communication signal representing Recessive is transmitted by setting the potential difference between and to zero.
  • Tx signal when the Tx signal is at the Dominant level, a current is flown out to the first communication line 11 and a current is drawn from the second communication line 12, so that the first communication line 11 is connected to the second communication line 12.
  • a communication signal representing Dominant is sent out by generating a potential difference in. Communication is established when communication signals representing Recessive and Dominant generated in this way are transmitted to the receiver 140 of another ECU 100 via the first communication line 11 and the second communication line 12.
  • the receiver 140 is an electronic circuit corresponding to the receiving device in the present disclosure.
  • the receiver 140 is embodied by a microprocessor specialized in digital signal processing.
  • the receiver 140 demodulates the communication signal received from the first communication line 11 and the second communication line 12 and outputs the received signal to the Rx terminal of the communication controller 110.
  • a reception signal output from the receiver 104 to the Rx terminal of the communication controller 110 is referred to as an “Rx signal”.
  • the receiver 140 has a function of correcting the distortion of the waveform of the communication signal due to the reflected wave generated at the branch point between the branch line and the main line connected to the bus 10 and the input / output point of the ECU 100.
  • the receiver 140 includes an anti-aliasing filter (hereinafter referred to as AAF) 141, an analog-digital converter (hereinafter referred to as ADC) 142, a learning determination unit 143, and a correction processing unit 144.
  • AAF anti-aliasing filter
  • ADC analog-digital converter
  • the AAF 141 is a low-pass filter that limits the bandwidth of the communication signal input to the ADC 142 and prevents the occurrence of aliasing noise.
  • the ADC 142 is an electronic circuit that converts the communication signal output from the AAF 141 into a digital signal sampled at a predetermined sampling frequency (for example, 5 MHz).
  • the learning determination unit 143 monitors the code of the CAN FD communication frame represented by the digital signal output from the ADC 142, and sends a signal for determining the learning interval and the correction interval for the communication frame to the correction processing unit 144.
  • This is an electronic circuit to output.
  • the learning section is a section for learning a correction amount for correcting distortion of the signal waveform in the received communication frame.
  • the correction section is a section in which the signal waveform is corrected using the correction amount acquired in the learning section in the received communication frame.
  • the communication frame used in the CAN FD protocol includes code regions such as SOF, Identifier, RRS, IDE, FDF, res, BRS, ESI, DLC, Data, and CRC.
  • the CAN FD protocol communication frame consists of two phases: an arbitration phase and a data phase.
  • the arbitration phase is set to the first bit rate. Specifically, the arbitration phase is set to a bit rate (for example, 500 kbps) equivalent to the conventional CAN.
  • the data phase is set to the second bit rate. Specifically, the data phase is faster than the arbitration phase, and a bit rate up to 5 Mbps can be set.
  • CAN FD is a communication method conforming to CDMA / CA.
  • the CAN FD is configured to perform communication timing arbitration with other ECUs 100 using the Identifier. That is, since the waveform of the communication signal is disturbed in the section of the identifier in the arbitration phase due to the collision of the communication signals from the plurality of ECUs 100, this section is not suitable for learning waveform distortion due to ringing. Therefore, in the present embodiment, a section from RRS to BRS in the arbitration phase is used as a learning section. Then, a section from BRS to CRC constituting the data phase on the high speed side is set as a correction section.
  • the learning determination unit 143 when the learning determination unit 143 detects a code corresponding to RRS from the output signal of the ADC 142, the learning determination unit 143 switches the learning signal TRen, which is a signal representing the learning section, from the Low level to the High level and outputs it.
  • the learning determination unit 143 detects a code corresponding to BRS from the output signal of the ADC 142, the learning determination unit 143 switches and outputs the correction signal CRen, which is a signal indicating the correction section, from the Low level to the High level.
  • the learning determination unit 143 detects a code corresponding to CRC from the output signal of the ADC 142, the learning determination unit 143 switches the learning signal TRen and the correction signal CRen to the low level.
  • the correction processing unit 144 is an electronic circuit that selectively performs learning processing and correction processing.
  • the learning process is a process of learning a correction amount for correcting distortion of the output signal from the ADC 142.
  • the correction process is a process of correcting distortion of the output signal based on the correction amount learned by the learning process.
  • the correction processing unit 144 includes a memory 145 as a storage device. Note that the method by which the correction processing unit 144 realizes each function is not limited to software, and some or all of the elements may be realized by using hardware that combines a logic circuit, an analog circuit, and the like.
  • the correction processing unit 144 is based on a comparison between the waveform of the output signal from the ADC 142 and the ideal waveform when the learning signal TRen output from the learning determination unit 143 indicates a high level, that is, when the learning interval is valid. To learn the correction amount.
  • the correction amount here corresponds to the waveform correction information in the present disclosure. A specific example of the learning process for learning the correction amount will be described with reference to FIGS.
  • the graph of FIG. 5 is a graph showing an example of a signal waveform for one bit of code in the arbitration phase of the communication frame received by the receiver 140.
  • the upper stage shows the waveform of the input signal to the ADC 142
  • the lower stage shows the waveform of the output signal from the ADC 142.
  • the waveform of the input signal is disturbed due to ringing immediately after the rise and fall of the amplitude level. Since the waveform disturbance in the input signal is reflected in the output signal from the ADC 142, the output signal does not form an accurate rectangular wave, and has a distorted shape immediately after rising and falling.
  • the correction processing unit 144 has an ideal waveform that is a reference digital signal that imitates the waveform of the output signal from the ADC 142 and the accurate signal waveform of one bit in the arbitration phase. And the voltage difference between the waveform of the output signal and the ideal waveform is calculated as a correction amount.
  • a rectangular wave represented by a broken line in the graph of FIG. 6 is an ideal waveform of 500 kbps corresponding to the arbitration phase.
  • information representing such an ideal waveform is registered in advance in a memory 145 included in the correction processing unit 144.
  • the correction processing unit 144 measures the difference between the amplitude levels of the output signal and the ideal waveform immediately after the amplitude level of the output signal rises above a threshold value Vth (for example, 1 V). The correction processing unit 144 acquires the measured value of the amplitude level difference as the rising correction amount Vrise. Further, the correction processing unit 144 measures the difference between the amplitude levels of the output signal and the ideal waveform immediately after the amplitude level of the output signal drops below the threshold value Vth. The correction processing unit 144 acquires the measured value of the difference in amplitude level as the fall correction amount Vfall. The correction processing unit 144 stores the acquired correction amounts for Vrise and Vfall in the memory 145.
  • Vth for example, 1 V
  • the method of learning the correction amount may be a method of obtaining an average value of correction amounts measured from a plurality of bits.
  • the correction processing unit 144 measures Vrise and Vfall from a plurality of codes included in the RRS to BRS areas corresponding to the learning section illustrated in FIG.
  • the correction processing unit 144 stores the average values of Vrise and Vfall in the memory 145 as correction amounts.
  • the correction processing unit 144 uses the correction amount stored in the memory 145 when the correction signal CRen output from the learning determination unit 143 indicates a high level, that is, when the correction section is valid. The waveform of the output signal from is corrected. A specific example of this correction processing will be described with reference to FIG.
  • the correction processing unit 144 starts correction of the amplitude level of the output signal using the correction amounts of Vrise and Vfall when the communication frame enters the data phase and the correction signal CRen becomes High level. To do.
  • the correction processing unit 144 increases the amplitude level of the output signal by Vrise. Is added to correct the output signal.
  • the output signal is corrected by subtracting the amplitude level from the output signal by Vfall. If the phase of the sampling clock of the ADC 142 is correctly synchronized with the communication frame in the arbitration phase and the data phase, the correction amount learned in the arbitration phase of 500 kbps may be applied to the data phase of 5 Mbps. Is possible. This is because the distortion of the signal waveform due to ringing does not depend on the data rate.
  • the correction processing unit 144 determines whether or not the learning signal TRen output from the learning determination unit 143 is at a high level. When the learning signal TRen is at the low level (S100: NO), the correction processing unit 144 repeats the process of S100. When the learning signal TRen is at the high level (S100: YES), the correction processing unit 144 moves the process to S102.
  • the correction processing unit 144 determines whether or not a rise in which the amplitude level of the output signal from the ADC 142 (hereinafter, output signal) exceeds the threshold value Vth has been detected. When the rising edge of the output signal is not detected (S102: NO), the correction processing unit 144 repeats the process of S102. When the rising edge of the output signal is detected (S102: YES), the correction processing unit 144 moves the process to S104. In S104, the correction processing unit 144 measures the difference between the amplitude level immediately after the rising of the output signal and the amplitude level immediately after the rising of the ideal waveform, and acquires the measured value as the rising correction amount Vrise.
  • the correction processing unit 144 determines whether or not the output signal is maintained at the High level at the sampling point of the bit timing defined in the CAN FD specification.
  • the time length for one code is divided into four segments of SYNC_SEG, PROP_SEG, PHASE_SEG1, and PHASE_SEG2.
  • the amplitude level of the output signal recognized at the sampling point corresponding to the boundary between PHASE_SEG1 and PHASE_SEG2 in the time length of one bit of the code is recognized as the code represented by the output signal. .
  • the correction processing unit 144 when it is determined that the output signal is maintained at the High level at the sampling point (S106: YES), the correction processing unit 144 proceeds to S108. In S108, the correction processing unit 144 stores the rising correction amount Vrise acquired in S104 in the memory 145. If it is determined in S106 that the output signal has changed to the Low level at the sampling point (S106: NO), the correction processing unit 144 moves the process to S110.
  • the correction processing unit 144 rejects the rising correction amount Vrise acquired in S104 without saving. After the process of S110, the correction processing unit 144 returns the process to S102.
  • the process in S110 will be described in detail with reference to FIG.
  • the correction processing unit 144 determines whether or not a falling edge in which the amplitude level of the output signal falls below the threshold value Vth is detected. When the falling edge of the output signal is not detected (S112: NO), the correction processing unit 144 repeats the process of S112. When the falling edge of the output signal is detected (S112: YES), the correction processing unit 144 moves the process to S114. In S114, the correction processing unit 144 measures the difference between the amplitude level immediately after the fall of the output signal and the amplitude level immediately after the fall of the ideal waveform, and acquires the measured value as the fall correction amount Vfall.
  • the correction processing unit 144 determines whether or not the timing at which the falling edge is detected in S112 is included in the PHASE_SEG2 section of the bit timing illustrated in FIG. When the timing at which the falling is detected is not included in the section of PHASE_SEG2 (S116: NO), the correction processing unit 144 moves the process to S118. In S118, the correction processing unit 144 stores the fall correction amount Vfall acquired in S114 in the memory 145.
  • the processing of S120 will be described in detail with reference to FIG.
  • the communication frame received by the receiver 140 is input to the receiver 140 with a delay from the transmission timing on the transmission side. For this reason, the end of the communication signal for one bit of code is usually detected later than PHASE_SEG2 of the bit timing on the receiving side. Therefore, as illustrated in FIG. 11, when a falling edge is detected in the PHASE_SEG2 section of the bit timing, the detected falling edge is likely to be noise. For this reason, when a falling edge is detected in the section of PHASE_SEG2 after the rising edge of the output signal is detected, the learning result relating to the falling edge is rejected.
  • the correction processing unit 144 determines whether or not the correction signal CRen output from the learning determination unit 143 is at a high level. When the correction signal CRen is at the low level (S122: NO), the correction processing unit 144 returns the process to S102 and repeats the acquisition of Vrise and Vfall for the next code. When the correction signal CRen is at the high level (S122: YES), the correction processing unit 144 moves the process to S124.
  • the correction processing unit 144 calculates an average value for each of the rising correction amount Vrise and the falling correction amount Vfall stored in the memory 145 in S108 and S118. Then, the correction processing unit 144 stores the calculated average value of the rising correction amount Vrise and the average value of the falling correction amount Vfall in the memory 145. After S124, the correction processing unit 144 proceeds to the correction processing illustrated in FIG.
  • the flowchart illustrated in FIG. 8 represents processing assuming that Vrise and Vfall are learned for a code starting from a phase where the amplitude level of the output signal rises from the Low level to the High level.
  • the correction process part 144 may be the structure which learns Vfall and Vrise for the code
  • the correction processing unit 144 branches the learning process depending on whether a rising edge or a falling edge is detected at a timing corresponding to the start of the code. Specifically, the correction processing unit 144 branches the learning process into a sequence in which learning is performed on a code starting from a rising edge and a sequence in which learning is performed on a code starting from a falling edge. In addition, also when the code
  • the correction processing unit 144 acquires the fall correction amount Vfall in S104 on condition that the fall is detected in S102. Then, the correction processing unit 144 stores the fall correction amount Vfall in the memory 145 in S108 on the condition that the amplitude level at the sampling point is the Low level in S106. When the amplitude level at the sampling point is the high level in S106, the correction processing unit 144 rejects the correction amount Vfall.
  • the correction processing unit 144 acquires the rising correction amount Vrise in S114 on condition that the rising is detected in S112. Then, the correction processing unit 144 stores the rising correction amount Vrise in the memory 145 on the condition that the timing at which the rising is detected is not included in the section of PHASE_SEG2. When the rising timing is included in the PHASE_SEG2 section in S112, the correction processing unit 144 rejects the rising correction amount Vrise.
  • the correction processing unit 144 determines whether or not a rise in which the amplitude level of the output signal of the ADC 142 exceeds the threshold value Vth is detected. When the rising edge of the output signal is not detected (S200: NO), the correction processing unit 144 repeats the process of S200. When the rising edge of the output signal is detected (S200: YES), the correction processing unit 144 moves the process to S202.
  • the correction processing unit 144 corrects the waveform of the output signal immediately after the rise using the rise correction amount Vrise stored in the memory 145 in S124 of the above-described correction process. Specifically, the correction processing unit 144 adds the amplitude level of the output signal of the ADC 142 by the rising correction amount Vrise and outputs the Rx signal.
  • the correction processing unit 144 determines whether or not a fall in which the amplitude level of the output signal falls below the threshold value Vth is detected. When the falling edge of the output signal is not detected (S204: NO), the correction processing unit 144 repeats the process of S204. When the falling edge of the output signal is detected (S204: YES), the correction processing unit 144 moves the process to S206.
  • the correction processing unit 144 corrects the waveform of the output signal immediately after the falling using the falling correction amount Vfall stored in the memory 145 in S124 of the above-described correction processing. Specifically, the correction processing unit 144 subtracts the amplitude level of the output signal of the ADC 142 by the fall correction amount Vfall and outputs the Rx signal.
  • the correction processing unit 144 determines whether or not the correction signal CRen output from the learning determination unit 143 is at a low level. When the correction signal CRen is at the high level (S208: NO), the correction processing unit 144 returns the process to S200 and repeats the correction of the output signal. When the correction signal CRen is at the low level (S208: YES), the correction processing unit 144 moves the process to S210.
  • the correction processing unit 144 clears data related to the rising correction amount Vrise and the falling correction amount Vfall stored in the memory 145. After the process of S210, the correction processing unit 144 ends the correction process.
  • the flowchart illustrated in FIG. 12 represents processing assuming that the waveform of the output signal is corrected for a code starting from a phase in which the amplitude level of the output signal rises from the low level to the high level.
  • the correction processing unit 144 may be configured to correct the waveform of the output signal with respect to a code that starts from a phase in which the amplitude level of the output signal falls from the High level to the Low level.
  • the correction processing unit 144 branches the correction processing depending on whether a rising edge or a falling edge is detected at a timing corresponding to the start of the code. Specifically, the correction processing unit 144 branches the correction processing into a sequence for performing correction for a code starting from a rising edge and a sequence for performing correction for a code starting from a falling edge. Even when the code starting from the falling edge is the target of correction, the correction processing unit 144 can perform learning by a procedure similar to the flowchart illustrated in FIG. Specifically, the contents of the flowchart of FIG. 12 are read as follows.
  • the correction processing unit 144 corrects the waveform of the output signal immediately after the fall using the fall correction amount Vfall in S202 on the condition that the fall is detected in S200. Then, the correction processing unit 144 corrects the waveform of the output signal immediately after the rise using the rise correction amount Vrise in S206 on the condition that the rise is detected in S204.
  • the communication system has the following effects.
  • the correction processing unit 144 of the receiver 140 can learn the rising correction amount Vrise and the falling correction amount Vfall based on the difference between the output signal of the ADC 142 and the ideal waveform during the arbitration phase in the CAN FD communication frame. it can.
  • the correction processing unit 144 corrects the output signal using the rising correction amount Vrise and the falling correction amount Vfall obtained by learning, and appropriately corrects the waveform disturbance due to ringing, High-speed bus communication can be realized.
  • a comparative large-scale digital circuit such as DFE is known as a circuit for shaping a signal waveform.
  • DFE is an abbreviation for Decision Feedback Equalizer.
  • DFE has a plurality of multipliers and has a large circuit scale, there is a drawback that the price of a communication device including a transceiver is increased.
  • DFE is a mechanism for adjusting the correction amount by the LMS algorithm, it takes time to learn the correction amount. For this reason, learning cannot be completed in a short time such as the RSS to BRS section in the CAN FD communication frame.
  • LMS is an abbreviation for LeastLMean Square.
  • the correction processing unit 144 of the receiver 140 calculates the correction amount by comparing the ideal waveform stored in the correction processing unit 144 with the waveform of the output signal of the ADC 142. it can. With such a configuration, the communication system of the present embodiment can learn the correction amount in a short time with a small circuit.
  • the ADC 142 corresponds to an AD conversion unit.
  • the correction processing unit 144 corresponds to a learning unit and a correction unit.
  • the memory 145 corresponds to a storage unit.
  • the present disclosure can also be realized in various forms such as a system including the transceiver 120 including the receiver 140 described above as a constituent element and a program for causing the computer to function as the correction processing unit 144.
  • the present disclosure can be realized in various forms such as a non-transition actual recording medium such as a semiconductor memory in which the program is recorded, a signal waveform correction method corresponding to the program, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

In the present invention a correction processing unit (144) of a receiver (140) learns a correction amount by comparing an output signal from an ADC (142) and an ideal waveform during an arbitration phase of a communication frame. Then, the correction processing unit (144) uses the correction amount learned during the arbitration phase to correct and output the waveform of the output signal from the ADC (142) during a data phase of the communication frame.

Description

受信装置Receiver 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2016年6月8日に日本国特許庁に出願された日本国特許出願第2016-114506号に基づく優先権を主張するものであり、日本国特許出願第2016-114506号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2016-114506 filed with the Japan Patent Office on June 8, 2016, and is based on Japanese Patent Application No. 2016-114506. The entire contents are incorporated by reference into this international application.
 本開示は、複数の通信装置が共通の伝送路を介して通信信号を送受信する通信システムで用いられる受信装置に関する。 The present disclosure relates to a receiving device used in a communication system in which a plurality of communication devices transmit and receive communication signals via a common transmission path.
 複数の通信装置が共通の通信線を介して通信信号を送受信するバス接続型の通信システムが知られている。この種の通信システムでは、各通信装置が接続される支線と通信線との分岐点や各通信装置の入出力点において、インピーダンスの不整合により信号の反射が生じて信号波形が劣化する。このような反射波により信号波形に乱れを生じる現象をリンギングという。 A bus connection type communication system in which a plurality of communication devices transmit and receive communication signals via a common communication line is known. In this type of communication system, signal reflection occurs due to impedance mismatch at the branch point between the branch line and the communication line to which each communication device is connected and the input / output point of each communication device, and the signal waveform deteriorates. A phenomenon in which a signal waveform is disturbed by such a reflected wave is called ringing.
 上記問題に対して、特許文献1には、信号がドミナントからレセッシブへ遷移するときに、一定時間の間は受信される通信信号に関係なくハイレベルの信号を出力することにより、リンギングにより乱された出力をマスクする技術が記載されている。 In response to the above problem, Patent Document 1 discloses that when a signal transitions from dominant to recessive, it is disturbed by ringing by outputting a high level signal for a certain period of time regardless of the received communication signal. A technique for masking the output is described.
特開2011-135283号公報JP 2011-135283 A
 特許文献1に記載の技術は、リンギングによる波形の乱れが符号1ビット分の通信期間内に収束することを前提としている。すなわち、符号1ビット分の通信時間長をTD、リンギングによる波形の乱れが生じる時間長をTRINGとすると、特許文献1に記載の技術を適用できるのは、TD>TRINGとなる状況下に限定される。発明者の検討の結果、TD≦TRINGとなる状況下で波形の乱れをマスクしようとすると、符号1ビット分の信号が全てマスクされてしまうため、特許文献1に記載の技術は適用できないという課題が見出された。 The technique described in Patent Document 1 is based on the premise that waveform disturbance due to ringing converges within a communication period of one bit of code. That is, assuming that the communication time length for one bit of code is TD and the time length in which waveform distortion due to ringing occurs is TRING, the technique described in Patent Document 1 can be applied only under the condition of TD> TRING. The As a result of the inventor's investigation, if the waveform distortion is to be masked in a situation where TD ≦ TRING, the signal described in Patent Document 1 cannot be applied because all signals for one bit of code are masked. Was found.
 近年、従来よりも高速な通信が可能なCAN FD(登録商標)等の通信規格が提案されている。なお、CAN FDは、Controller Area Network with Flexible Data-rateの略称である。このCAN FDにおいては、従来のCAN(登録商標)ならば500kbpsであった通信速度が最大5Mbpsまで高速化される。つまり、符号1ビットあたりの時間長が1/10まで縮小される。一方、リンギングにより波形に乱れが生じる時間長は通信速度に拠らず同程度であるため、特許文献1に記載の技術の適用は困難になる。 In recent years, communication standards such as CAN FD (registered trademark) capable of higher-speed communication than before have been proposed. Note that CAN FD is an abbreviation for Controller-Area-Network-with-Flexible-Data-rate. In this CAN FD, if the conventional CAN (registered trademark), the communication speed of 500 kbps is increased to a maximum of 5 Mbps. That is, the time length per bit of the code is reduced to 1/10. On the other hand, since the time length in which the waveform is disturbed by ringing is the same regardless of the communication speed, it is difficult to apply the technique described in Patent Document 1.
 本開示の一局面は、リンギングによる波形乱れを適切に自己補正し、高速なバス通信を実現するための技術を提供することが好ましい。
 本開示の一態様に係る受信装置は、複数の通信装置が共通の通信線を介して通信信号を送受信する通信システムを構築する通信装置内に設けられた通信制御装置と共通の通信線との間のインタフェースとして機能する。この受信装置は、AD変換部と、学習部と、補正部とを備える。
In one aspect of the present disclosure, it is preferable to provide a technique for appropriately self-correcting waveform disturbance due to ringing and realizing high-speed bus communication.
A receiving device according to an aspect of the present disclosure includes: a communication control device provided in a communication device that constructs a communication system in which a plurality of communication devices transmit and receive communication signals via a common communication line; and a common communication line It functions as an interface between them. The receiving device includes an AD conversion unit, a learning unit, and a correction unit.
 AD変換部は、共通の通信線を介して受信される通信信号をデジタル信号に変換して出力するように構成されている。学習部は、所定の通信信号が受信されてAD変換部により変換されたときのデジタル信号の波形である受信波形と、当該通信信号に対応する基準のデジタル信号の波形を表す所与の理想波形とを比較することにより波形補正情報を作成するように構成されている。この波形補正情報は、受信波形と理想波形との差に関する情報である。学習部は、作成された波形補正情報を記憶部に保存するように構成されている。補正部は、波形補正情報が記憶された後にAD変換部により変換されたデジタル信号の波形を、記憶部に記憶された波形補正情報を用いて補正した信号である補正信号を生成し、その生成された補正信号を通信制御装置に出力するように構成されている。 The AD conversion unit is configured to convert a communication signal received via a common communication line into a digital signal and output the digital signal. The learning unit receives a predetermined communication signal and converts the received signal, which is a waveform of a digital signal when converted by the AD conversion unit, and a given ideal waveform representing a waveform of a reference digital signal corresponding to the communication signal Is configured to create waveform correction information. This waveform correction information is information relating to the difference between the received waveform and the ideal waveform. The learning unit is configured to save the created waveform correction information in the storage unit. The correction unit generates a correction signal that is a signal obtained by correcting the waveform of the digital signal converted by the AD conversion unit after the waveform correction information is stored using the waveform correction information stored in the storage unit, and generates the correction signal. The corrected signal is output to the communication control device.
 本開示の一態様に係る受信装置は、受信された通信信号をデジタル変換した受信波形と所与の理想波形との差分に基づいて波形補正情報を算出することで、短時間に小規模な回路で波形補正量を学習できる。このような学習により取得された波形補正情報を用いることで、リンギングによる波形乱れを適切に自己補正し、高速なバス通信を実現できる。 A receiving apparatus according to an aspect of the present disclosure calculates a waveform correction information based on a difference between a received waveform obtained by digitally converting a received communication signal and a given ideal waveform, thereby reducing a small-scale circuit in a short time. You can learn the amount of waveform correction. By using the waveform correction information acquired by such learning, waveform disturbance due to ringing can be appropriately self-corrected and high-speed bus communication can be realized.
 本開示についての上記目的及びその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面の概要は次のとおりである。
図1は、通信システムの概略構成を表すブロック図である。 図2は、ECUの回路構成を表す図である。 図3は、レシーバの回路構成を表す図である。 図4は、CAN FDの通信フレームの構成を表す図である。 図5は、レシーバに関する動作波形図である。 図6は、出力信号の波形と理想波形との比較の一例を表す図である。 図7は、レシーバに関する動作波形図である。 図8は、学習処理の手順を表すフローチャートである。 図9は、CAN FDに関するビットタイム区分を表す図である。 図10は、出力信号における立上がりノイズを表す図である。 図11は、出力信号における立下がりノイズを表す図である。 図12は、補正処理の手順を表すフローチャートである。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The outline of the drawing is as follows.
FIG. 1 is a block diagram illustrating a schematic configuration of a communication system. FIG. 2 is a diagram illustrating a circuit configuration of the ECU. FIG. 3 is a diagram illustrating a circuit configuration of the receiver. FIG. 4 is a diagram illustrating a configuration of a CAN FD communication frame. FIG. 5 is an operation waveform diagram regarding the receiver. FIG. 6 is a diagram illustrating an example of a comparison between an output signal waveform and an ideal waveform. FIG. 7 is an operation waveform diagram regarding the receiver. FIG. 8 is a flowchart showing the procedure of the learning process. FIG. 9 is a diagram illustrating bit time divisions related to CAN FD. FIG. 10 is a diagram illustrating rising noise in the output signal. FIG. 11 is a diagram illustrating falling noise in the output signal. FIG. 12 is a flowchart showing the procedure of the correction process.
 以下、本開示の実施形態を図面に基づいて説明する。なお、本開示は下記の実施形態に限定されるものではなく様々な態様にて実施することが可能である。
 [通信システムの構成の説明]
 実施形態の通信システムの構成について、図1を参照しながら説明する。この通信システムは、複数のECU100が共通の通信線であるバス10を介して通信信号を送受信するように構成されている。この通信システムにおいて送受信される通信信号は、Dominant/Recessiveの2値で表されるビット単位の信号列で構成される。なお、ECUは、Electronic Control Unitの略称である。
Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, this indication is not limited to the following embodiment, It is possible to implement in various aspects.
[Description of configuration of communication system]
The configuration of the communication system according to the embodiment will be described with reference to FIG. This communication system is configured such that a plurality of ECUs 100 transmit and receive communication signals via a bus 10 that is a common communication line. A communication signal transmitted and received in this communication system is composed of a signal sequence in bit units represented by binary values of Dominant / Recessive. ECU is an abbreviation for Electronic Control Unit.
 この通信システムでは、各ECU100が本開示における通信装置として機能する。本実施形態では、各ECU100間の通信プロトコルとして、周知の規格であるCAN FDが用いられることを前提とする。本実施形態の通信システムにおいて用いられるバス10は、第1通信線11及び第2通信線12からなる2線式のバスである。図2に例示されるとおり、第1通信線11の電位と第2通信線12の電位との電位差によってDominant/Recessiveが表現される。以下、第1通信線11の電位を「Sig-H」とし、第2通信線12の電位を「Sig-L」とする。なお、この通信システムは、いわゆるバス接続型のネットワーク形態である。具体的には、この通信システムは、幹線としてのバス10から複数の支線が分岐し、各支線にECU100が接続されている。 In this communication system, each ECU 100 functions as a communication device according to the present disclosure. In the present embodiment, it is assumed that CAN FD, which is a well-known standard, is used as a communication protocol between the ECUs 100. The bus 10 used in the communication system of the present embodiment is a two-wire bus composed of a first communication line 11 and a second communication line 12. As illustrated in FIG. 2, Dominant / Recessive is expressed by the potential difference between the potential of the first communication line 11 and the potential of the second communication line 12. Hereinafter, the potential of the first communication line 11 is “Sig-H”, and the potential of the second communication line 12 is “Sig-L”. This communication system is a so-called bus connection type network form. Specifically, in this communication system, a plurality of branch lines are branched from a bus 10 as a trunk line, and an ECU 100 is connected to each branch line.
 [ECUの構成の説明]
 各ECU100に共通する構成について、図2を参照しながら説明する。図2に例示されるとおり、1つのECU100は、通信コントローラ110と、トランシーバ120とを備える。
[Description of ECU configuration]
A configuration common to each ECU 100 will be described with reference to FIG. As illustrated in FIG. 2, one ECU 100 includes a communication controller 110 and a transceiver 120.
 通信コントローラ110は、CPU、ROM、RAM等を備える情報処理装置である。通信コントローラ110は、例えば、コンピュータシステムとしての機能が集約されたマイクロコントローラ等により具現化される。この通信コントローラ110は、通信制御のための処理を実行する。また、この通信コントローラ110は、通信端子としてのTx端子及びRx端子を備える。Tx端子及びRx端子は、それぞれトランシーバ120の通信端子と接続されている。なお、通信コントローラ110は、本開示における通信制御装置に相当する。 The communication controller 110 is an information processing apparatus including a CPU, a ROM, a RAM, and the like. The communication controller 110 is embodied by, for example, a microcontroller that integrates functions as a computer system. The communication controller 110 executes processing for communication control. The communication controller 110 includes a Tx terminal and an Rx terminal as communication terminals. The Tx terminal and the Rx terminal are connected to the communication terminal of the transceiver 120, respectively. Note that the communication controller 110 corresponds to the communication control device according to the present disclosure.
 トランシーバ120は、バス10と通信コントローラ110との間のインタフェースとして機能する装置である。トランシーバ120は、トランスミッタ130及びレシーバ140とを備える。トランスミッタ130及びレシーバ140は、それぞれが第1通信線11及び第2通信線12の両方に接続されている。 The transceiver 120 is a device that functions as an interface between the bus 10 and the communication controller 110. The transceiver 120 includes a transmitter 130 and a receiver 140. The transmitter 130 and the receiver 140 are respectively connected to both the first communication line 11 and the second communication line 12.
 トランスミッタ130は、通信コントローラ110のTx端子から出力される送信信号を通信信号に変換して第1通信線11及び第2通信線12へ送出する機能を有する。通信コントローラ110のTx端子から出力される送信信号を、「Tx信号」という。具体的には、Tx信号がRecessiveの状態では、第1通信線11への電流の流し出し及び第2通信線12からの電流の引き込みを行わず、第1通信線11と第2通信線12との電位差をほぼゼロにすることにより、Recessiveを表す通信信号を送出する。一方、Tx信号がDominantレベルの状態では、第1通信線11への電流の流し出し及び第2通信線12からの電流の引き込みを行い、第1通信線11と第2通信線12との間に電位差を生じさせることにより、Dominantを表す通信信号を送出する。このようにして生成されるRecessive及びDominantを表す通信信号が、第1通信線11及び第2通信線12を介して他のECU100のレシーバ140へ伝わることで通信が成立する。 The transmitter 130 has a function of converting a transmission signal output from the Tx terminal of the communication controller 110 into a communication signal and transmitting the communication signal to the first communication line 11 and the second communication line 12. A transmission signal output from the Tx terminal of the communication controller 110 is referred to as a “Tx signal”. Specifically, in the state where the Tx signal is Recessive, the first communication line 11 and the second communication line 12 are not supplied without flowing out the current to the first communication line 11 and drawing the current from the second communication line 12. A communication signal representing Recessive is transmitted by setting the potential difference between and to zero. On the other hand, when the Tx signal is at the Dominant level, a current is flown out to the first communication line 11 and a current is drawn from the second communication line 12, so that the first communication line 11 is connected to the second communication line 12. A communication signal representing Dominant is sent out by generating a potential difference in. Communication is established when communication signals representing Recessive and Dominant generated in this way are transmitted to the receiver 140 of another ECU 100 via the first communication line 11 and the second communication line 12.
 レシーバ140は、本開示における受信装置に相当する電子回路である。レシーバ140は、デジタル信号処理に特化したマイクロプロセッサ等により具現化される。レシーバ140は、第1通信線11及び第2通信線12から受信した通信信号を復調して通信コントローラ110のRx端子へ受信信号を出力する。レシーバ104から通信コントローラ110のRx端子へ出力される受信信号を、「Rx信号」という。このレシーバ140は、バス10に接続される支線と本線との分岐点やECU100の入出力点において発生する反射波による通信信号の波形の歪みを補正する機能を有する。 The receiver 140 is an electronic circuit corresponding to the receiving device in the present disclosure. The receiver 140 is embodied by a microprocessor specialized in digital signal processing. The receiver 140 demodulates the communication signal received from the first communication line 11 and the second communication line 12 and outputs the received signal to the Rx terminal of the communication controller 110. A reception signal output from the receiver 104 to the Rx terminal of the communication controller 110 is referred to as an “Rx signal”. The receiver 140 has a function of correcting the distortion of the waveform of the communication signal due to the reflected wave generated at the branch point between the branch line and the main line connected to the bus 10 and the input / output point of the ECU 100.
 [レシーバの構成の説明]
 レシーバ140の構成について、図3を参照しながら説明する。図3に例示されるとおり、レシーバ140は、アンチエイリアシングフィルタ(以下、AAF)141と、アナログデジタルコンバータ(以下、ADC)142と、学習判定部143と、補正処理部144とを備える。
[Description of receiver configuration]
The configuration of the receiver 140 will be described with reference to FIG. As illustrated in FIG. 3, the receiver 140 includes an anti-aliasing filter (hereinafter referred to as AAF) 141, an analog-digital converter (hereinafter referred to as ADC) 142, a learning determination unit 143, and a correction processing unit 144.
 AAF141は、ADC142に入力される通信信号の帯域制限を行い、折り返し雑音の発生を防ぐローパスフィルタである。ADC142は、AAF141から出力された通信信号を所定のサンプリング周波数(例えば、5MHz)でサンプリングしたデジタル信号に変換する電子回路である。 The AAF 141 is a low-pass filter that limits the bandwidth of the communication signal input to the ADC 142 and prevents the occurrence of aliasing noise. The ADC 142 is an electronic circuit that converts the communication signal output from the AAF 141 into a digital signal sampled at a predetermined sampling frequency (for example, 5 MHz).
 学習判定部143は、ADC142から出力されたデジタル信号で表されるCAN FDの通信フレームの符号を監視し、当該通信フレームについて学習区間と補正区間とを判別するための信号を補正処理部144に出力する電子回路である。学習区間とは、受信された通信フレームのうち、信号波形の歪みを補正するための補正量を学習する区間である。また、補正区間とは、受信された通信フレームのうち、学習区間において取得された補正量を用いて信号波形の補正を行う区間である。 The learning determination unit 143 monitors the code of the CAN FD communication frame represented by the digital signal output from the ADC 142, and sends a signal for determining the learning interval and the correction interval for the communication frame to the correction processing unit 144. This is an electronic circuit to output. The learning section is a section for learning a correction amount for correcting distortion of the signal waveform in the received communication frame. The correction section is a section in which the signal waveform is corrected using the correction amount acquired in the learning section in the received communication frame.
 図4を参照して、CAN FDプロトコルで用いられる通信フレームを対象とする学習区間及び補正区間の具体例について説明する。図4に例示されるとおり、CAN FDプロトコルで用いられる通信フレームには、SOF,Identifier,RRS,IDE,FDF,res,BRS,ESI,DLC,Data,及びCRC等の符号領域が含まれる。 Referring to FIG. 4, a specific example of a learning section and a correction section for communication frames used in the CAN FD protocol will be described. As illustrated in FIG. 4, the communication frame used in the CAN FD protocol includes code regions such as SOF, Identifier, RRS, IDE, FDF, res, BRS, ESI, DLC, Data, and CRC.
 CAN FDプロトコルの通信フレームは、アービトレーションフェーズとデータフェーズとの2つのフェーズで構成されている。アービトレーションフェーズは、第1のビットレートに設定されている。具体的には、アービトレーションフェーズは、従来のCANと同等のビットレート(例えば、500kbps)に設定されている。データフェーズは、第2のビットレートに設定されている。具体的には、データフェーズは、アービトレーションフェーズよりも高速であって、最大5Mbpsまでのビットレートを設定可能である。 The CAN FD protocol communication frame consists of two phases: an arbitration phase and a data phase. The arbitration phase is set to the first bit rate. Specifically, the arbitration phase is set to a bit rate (for example, 500 kbps) equivalent to the conventional CAN. The data phase is set to the second bit rate. Specifically, the data phase is faster than the arbitration phase, and a bit rate up to 5 Mbps can be set.
 なお、CAN FDは、CDMA/CAに則した通信方式である。つまり、CAN FDは、他のECU100との通信タイミングの調停をIdentifierを用いて行うように構成されている。つまり、アービトレーションフェーズのうちIdentifierの区間は複数のECU100からの通信信号の衝突により通信信号の波形が乱れるため、この区間はリンギングによる波形の歪みを学習するには適していない。そこで、本実施形態では、アービトレーションフェーズのうち、RRSからBRSまでの区間を学習区間として利用する。そして、高速側のデータフェーズを構成するBRSからCRCまでの区間を補正区間とする。 Note that CAN FD is a communication method conforming to CDMA / CA. In other words, the CAN FD is configured to perform communication timing arbitration with other ECUs 100 using the Identifier. That is, since the waveform of the communication signal is disturbed in the section of the identifier in the arbitration phase due to the collision of the communication signals from the plurality of ECUs 100, this section is not suitable for learning waveform distortion due to ringing. Therefore, in the present embodiment, a section from RRS to BRS in the arbitration phase is used as a learning section. Then, a section from BRS to CRC constituting the data phase on the high speed side is set as a correction section.
 本実施形態では、学習判定部143は、ADC142の出力信号の中からRRSに該当する符号を検知した場合、学習区間を表す信号である学習信号TRenをLowレベルからHighレベルに切換えて出力する。つぎに、学習判定部143は、ADC142の出力信号の中からBRSに該当する符号を検知した場合、補正区間を表す信号である補正信号CRenをLowレベルからHighレベルに切換えて出力する。そして、学習判定部143は、ADC142の出力信号の中からCRCに該当する符号を検知した場合、学習信号TRen及び補正信号CRenをLowレベルに切換える。 In the present embodiment, when the learning determination unit 143 detects a code corresponding to RRS from the output signal of the ADC 142, the learning determination unit 143 switches the learning signal TRen, which is a signal representing the learning section, from the Low level to the High level and outputs it. Next, when the learning determination unit 143 detects a code corresponding to BRS from the output signal of the ADC 142, the learning determination unit 143 switches and outputs the correction signal CRen, which is a signal indicating the correction section, from the Low level to the High level. When the learning determination unit 143 detects a code corresponding to CRC from the output signal of the ADC 142, the learning determination unit 143 switches the learning signal TRen and the correction signal CRen to the low level.
 図3の説明に戻る。補正処理部144は、学習処理と補正処理とを選択的に行う電子回路である。学習処理は、ADC142からの出力信号の歪みを補正するための補正量を学習する処理である。補正処理は、学習処理によって学習された補正量に基づいて出力信号の歪みを補正する処理である。補正処理部144は、記憶装置としてのメモリ145を備える。なお、補正処理部144が各機能を実現する手法はソフトウェアに限るものではなく、その一部又は全部の要素を論理回路やアナログ回路等を組合せたハードウェアを用いて実現してもよい。 Returning to the explanation of FIG. The correction processing unit 144 is an electronic circuit that selectively performs learning processing and correction processing. The learning process is a process of learning a correction amount for correcting distortion of the output signal from the ADC 142. The correction process is a process of correcting distortion of the output signal based on the correction amount learned by the learning process. The correction processing unit 144 includes a memory 145 as a storage device. Note that the method by which the correction processing unit 144 realizes each function is not limited to software, and some or all of the elements may be realized by using hardware that combines a logic circuit, an analog circuit, and the like.
 補正処理部144は、学習判定部143から出力される学習信号TRenがHighレベルを表している場合、すなわち学習区間が有効である場合、ADC142からの出力信号の波形と理想波形との比較に基づいて補正量を学習する。ここでいう補正量は、本開示における波形補正情報に相当する。補正量を学習する学習処理の具体例について、図5,6を参照しながら説明する。 The correction processing unit 144 is based on a comparison between the waveform of the output signal from the ADC 142 and the ideal waveform when the learning signal TRen output from the learning determination unit 143 indicates a high level, that is, when the learning interval is valid. To learn the correction amount. The correction amount here corresponds to the waveform correction information in the present disclosure. A specific example of the learning process for learning the correction amount will be described with reference to FIGS.
 図5のグラフは、レシーバ140において受信された通信フレームのアービトレーションフェーズにおける符号1ビット分の信号波形の一例を表すグラフである。これらのグラフのうち、上段はADC142への入力信号の波形であり、下段はADC142からの出力信号の波形を表す。 The graph of FIG. 5 is a graph showing an example of a signal waveform for one bit of code in the arbitration phase of the communication frame received by the receiver 140. Among these graphs, the upper stage shows the waveform of the input signal to the ADC 142, and the lower stage shows the waveform of the output signal from the ADC 142.
 図5に例示されるとおり、入力信号の波形において、振幅レベルの立上がりと立下がりの直後において、リンギングによる波形の乱れが生じている。この入力信号における波形の乱れがADC142からの出力信号に反映されることで、出力信号が正確な矩形波を形成せず、立上がりと立下りの直後において歪な形状となっている。 As illustrated in FIG. 5, in the waveform of the input signal, the waveform is disturbed due to ringing immediately after the rise and fall of the amplitude level. Since the waveform disturbance in the input signal is reflected in the output signal from the ADC 142, the output signal does not form an accurate rectangular wave, and has a distorted shape immediately after rising and falling.
 そこで、図6に例示されるとおり、補正処理部144は、ADC142からの出力信号の波形と、アービトレーションフェーズにおける符号1ビット分の正確な信号波形を模した、基準のデジタル信号である理想波形とを比較し、出力信号の波形と理想波形との電圧差を補正量として算出する。なお、図6のグラフにおいて破線で表される矩形波は、アービトレーションフェーズに対応する500kbpsの理想波形である。本実施形態では、このような理想波形を表す情報が、補正処理部144が備えるメモリ145に予め登録されていることを前提とする。 Therefore, as illustrated in FIG. 6, the correction processing unit 144 has an ideal waveform that is a reference digital signal that imitates the waveform of the output signal from the ADC 142 and the accurate signal waveform of one bit in the arbitration phase. And the voltage difference between the waveform of the output signal and the ideal waveform is calculated as a correction amount. Note that a rectangular wave represented by a broken line in the graph of FIG. 6 is an ideal waveform of 500 kbps corresponding to the arbitration phase. In the present embodiment, it is assumed that information representing such an ideal waveform is registered in advance in a memory 145 included in the correction processing unit 144.
 図6に例示されるとおり、補正処理部144は、出力信号の振幅レベルが閾値Vth(例えば、1V)を越えて上昇した直後における出力信号と理想波形との振幅レベルの差を測定する。補正処理部144は、その振幅レベルの差の測定値を立上がり補正量Vriseとして取得する。また、補正処理部144は、出力信号の振幅レベルが閾値Vthを越えて下降した直後における出力信号と理想波形との振幅レベルの差を測定する。補正処理部144は、その振幅レベルの差の測定値を立下がり補正量Vfallとして取得する。補正処理部144は、取得されたVrise及びVfallの各補正量をメモリ145に保存する。 As illustrated in FIG. 6, the correction processing unit 144 measures the difference between the amplitude levels of the output signal and the ideal waveform immediately after the amplitude level of the output signal rises above a threshold value Vth (for example, 1 V). The correction processing unit 144 acquires the measured value of the amplitude level difference as the rising correction amount Vrise. Further, the correction processing unit 144 measures the difference between the amplitude levels of the output signal and the ideal waveform immediately after the amplitude level of the output signal drops below the threshold value Vth. The correction processing unit 144 acquires the measured value of the difference in amplitude level as the fall correction amount Vfall. The correction processing unit 144 stores the acquired correction amounts for Vrise and Vfall in the memory 145.
 なお、補正量を学習する方法は、複数ビットから測定された補正量の平均値を取得する方法であってもよい。具体的には、補正処理部144は、図4に例示される学習区間に相当するRRS~BRSの領域に含まれる複数の符号からそれぞれVrise及びVfallを測定する。補正処理部144は、Vrise及びVfallそれぞれの平均値を補正量としてメモリ145に保存する。 Note that the method of learning the correction amount may be a method of obtaining an average value of correction amounts measured from a plurality of bits. Specifically, the correction processing unit 144 measures Vrise and Vfall from a plurality of codes included in the RRS to BRS areas corresponding to the learning section illustrated in FIG. The correction processing unit 144 stores the average values of Vrise and Vfall in the memory 145 as correction amounts.
 一方、補正処理部144は、学習判定部143から出力される補正信号CRenがHighレベルを表している場合、すなわち補正区間が有効である場合、メモリ145に記憶されている補正量を用いてADC142からの出力信号の波形を補正する。この補正処理の具体例について、図7を参照しながら説明する。 On the other hand, the correction processing unit 144 uses the correction amount stored in the memory 145 when the correction signal CRen output from the learning determination unit 143 indicates a high level, that is, when the correction section is valid. The waveform of the output signal from is corrected. A specific example of this correction processing will be described with reference to FIG.
 図7のグラフは、レシーバ140において受信された通信フレームのアービトレーションフェーズ(すなわち、500kbps)からデータフェーズ(すなわち、5Mbps)に移行する過程における信号波形の一例を表すグラフである。図7に例示されるとおり、補正処理部144は、通信フレームがデータフェーズに入り補正信号CRenがHighレベルになることで、Vrise及びVfallの補正量を用いて出力信号の振幅レベルの補正を開始する。 7 is a graph showing an example of a signal waveform in the process of shifting from the arbitration phase (that is, 500 kbps) of the communication frame received by the receiver 140 to the data phase (that is, 5 Mbps). As illustrated in FIG. 7, the correction processing unit 144 starts correction of the amplitude level of the output signal using the correction amounts of Vrise and Vfall when the communication frame enters the data phase and the correction signal CRen becomes High level. To do.
 具体的には、図7の中段のグラフに例示されるとおり、補正処理部144は、ADC142の出力信号の振幅レベルが閾値Vthを越えて上昇したときに、出力信号にVriseの分だけ振幅レベルを加算して出力信号を補正する。また、ADC142の出力信号の振幅レベルが閾値Vthを越えて下降したときに、出力信号からVfallの分だけ振幅レベルを減算して出力信号を補正する。アービトレーションフェーズとデータフェーズにおいて、ADC142のサンプリングクロックの位相が通信フレームに正しく同期されている状態であれば、500kbpsのアービトレーションフェーズで学習された補正量を、5Mbpsのデータフェーズに対して適用することが可能である。この理由は、リンギングによる信号波形の歪みがデータ速度に依存しないからである。 Specifically, as illustrated in the middle graph of FIG. 7, when the amplitude level of the output signal of the ADC 142 increases beyond the threshold value Vth, the correction processing unit 144 increases the amplitude level of the output signal by Vrise. Is added to correct the output signal. When the amplitude level of the output signal of the ADC 142 falls below the threshold value Vth, the output signal is corrected by subtracting the amplitude level from the output signal by Vfall. If the phase of the sampling clock of the ADC 142 is correctly synchronized with the communication frame in the arbitration phase and the data phase, the correction amount learned in the arbitration phase of 500 kbps may be applied to the data phase of 5 Mbps. Is possible. This is because the distortion of the signal waveform due to ringing does not depend on the data rate.
 上述の補正の結果、図7の下段のグラフに例示されるとおり、補正後の出力信号ではリンギングによる波形の歪みの影響の大部分を取除くことができ、閾値Vthに対して十分なノイズマージンを持ったデジタル信号の波形を生成することができる。なお、CAN FDにおいては、通信信号がRecessiveのときとDominantのときとによって、トランシーバ120のインピーダンスが変化する。このため、通信信号の立上がりと立下りとによって、リンギングを起す反射の状態が変化する。そのため、本実施形態のようにVrise及びVfallをそれぞれ学習することで、精度の高い補正を実現できる。 As a result of the above correction, as illustrated in the lower graph of FIG. 7, most of the influence of waveform distortion due to ringing can be removed from the corrected output signal, and a sufficient noise margin with respect to the threshold Vth can be removed. It is possible to generate a digital signal waveform having In the CAN FD, the impedance of the transceiver 120 changes depending on whether the communication signal is Recessive or Dominant. For this reason, the state of reflection that causes ringing changes depending on the rise and fall of the communication signal. Therefore, highly accurate correction can be realized by learning Vrise and Vfall as in the present embodiment.
 [学習処理の手順の説明]
 レシーバ140の補正処理部144が実行する学習処理の手順について、図8のフローチャートを参照しながら説明する。この学習処理は、レシーバ140において通信フレームが受信される度に実行される。
[Description of learning procedure]
The procedure of the learning process executed by the correction processing unit 144 of the receiver 140 will be described with reference to the flowchart of FIG. This learning process is executed every time a communication frame is received by the receiver 140.
 S100では、補正処理部144は、学習判定部143から出力されている学習信号TRenがHighレベルであるか否かを判定する。学習信号TRenがLowレベルである場合(S100:NO)、補正処理部144はS100の処理を繰返す。学習信号TRenがHighレベルである場合(S100:YES)、補正処理部144は処理をS102に移す。 In S100, the correction processing unit 144 determines whether or not the learning signal TRen output from the learning determination unit 143 is at a high level. When the learning signal TRen is at the low level (S100: NO), the correction processing unit 144 repeats the process of S100. When the learning signal TRen is at the high level (S100: YES), the correction processing unit 144 moves the process to S102.
 S102では、補正処理部144は、ADC142からの出力信号(以下、出力信号)の振幅レベルが閾値Vthを超えて上昇する立上がりを検知したか否かを判定する。出力信号の立上がりが検知されていない場合(S102:NO)、補正処理部144はS102の処理を繰返す。出力信号の立上がりが検知された場合(S102:YES)、補正処理部144は処理をS104に移す。S104では、補正処理部144は、出力信号の立上がり直後における振幅レベルと、理想波形の立上がり直後における振幅レベルとの差を測定し、その測定値を立上がり補正量Vriseとして取得する。 In S102, the correction processing unit 144 determines whether or not a rise in which the amplitude level of the output signal from the ADC 142 (hereinafter, output signal) exceeds the threshold value Vth has been detected. When the rising edge of the output signal is not detected (S102: NO), the correction processing unit 144 repeats the process of S102. When the rising edge of the output signal is detected (S102: YES), the correction processing unit 144 moves the process to S104. In S104, the correction processing unit 144 measures the difference between the amplitude level immediately after the rising of the output signal and the amplitude level immediately after the rising of the ideal waveform, and acquires the measured value as the rising correction amount Vrise.
 S106では、補正処理部144は、CAN FDの仕様で規定されているビットタイミングのサンプリングポイントにおいて、出力信号がHighレベルを維持しているか否かを判定する。CAN FDの仕様においては、図9に例示されるとおり、符号1ビット分の時間長が、SYNC_SEG,PROP_SEG,PHASE_SEG1,PHASE_SEG2の4つのセグメントに区分されている。そして、符号1ビット分の時間長のうち、PHASE_SEG1とPHASE_SEG2との境界に相当するサンプリングポイントにおいて認識された出力信号の振幅レベルが、当該出力信号が表す符号として認識されるように構成されている。 In S106, the correction processing unit 144 determines whether or not the output signal is maintained at the High level at the sampling point of the bit timing defined in the CAN FD specification. In the CAN FD specification, as illustrated in FIG. 9, the time length for one code is divided into four segments of SYNC_SEG, PROP_SEG, PHASE_SEG1, and PHASE_SEG2. The amplitude level of the output signal recognized at the sampling point corresponding to the boundary between PHASE_SEG1 and PHASE_SEG2 in the time length of one bit of the code is recognized as the code represented by the output signal. .
 図8のフローチャートの説明に戻る。S106において、サンプリングポイントで出力信号がHighレベルを維持していると判定された場合(S106:YES)、補正処理部144は処理をS108に移す。S108では、補正処理部144は、S104において取得された立上がり補正量Vriseをメモリ145に保存する。S106において、サンプリングポイントで出力信号がLowレベルに変わっていると判定された場合(S106:NO)、補正処理部144は処理をS110に移す。 Returning to the flowchart of FIG. In S106, when it is determined that the output signal is maintained at the High level at the sampling point (S106: YES), the correction processing unit 144 proceeds to S108. In S108, the correction processing unit 144 stores the rising correction amount Vrise acquired in S104 in the memory 145. If it is determined in S106 that the output signal has changed to the Low level at the sampling point (S106: NO), the correction processing unit 144 moves the process to S110.
 S110では、補正処理部144は、S104において取得された立上がり補正量Vriseを保存せずに棄却する。S110の処理の後、補正処理部144は処理をS102に戻す。このS110における処理について、図10を参照しながら詳しく説明する。 In S110, the correction processing unit 144 rejects the rising correction amount Vrise acquired in S104 without saving. After the process of S110, the correction processing unit 144 returns the process to S102. The process in S110 will be described in detail with reference to FIG.
 図10に例示されるとおり、出力信号が閾値Vthを越えて立上がったにも関わらず、当該ビットタイム区分のサンプルポイントに相当する時刻において振幅レベルがLowレベルに下がっている場合、先の立上がりはノイズである可能性が高い。そのため、出力信号の立上がりが検出された後、サンプリングポイントにおいて出力信号がLowレベルであった場合には、その学習結果を棄却するように構成されている。 As illustrated in FIG. 10, when the output signal rises beyond the threshold value Vth and the amplitude level falls to the low level at the time corresponding to the sample point of the bit time section, the previous rise Is likely to be noise. Therefore, after the rising of the output signal is detected, if the output signal is at a low level at the sampling point, the learning result is rejected.
 図8のフローチャートの説明に戻る。S112では、補正処理部144は、出力信号の振幅レベルが閾値Vthを超えて下降する立下がりを検知したか否かを判定する。出力信号の立下りが検知されていない場合(S112:NO)、補正処理部144はS112の処理を繰返す。出力信号の立下がりが検知された場合(S112:YES)、補正処理部144は処理をS114に移す。S114では、補正処理部144は、出力信号の立下がり直後における振幅レベルと、理想波形の下がり直後における振幅レベルとの差を測定し、その測定値を立下がり補正量Vfallとして取得する。 Returning to the flowchart of FIG. In S112, the correction processing unit 144 determines whether or not a falling edge in which the amplitude level of the output signal falls below the threshold value Vth is detected. When the falling edge of the output signal is not detected (S112: NO), the correction processing unit 144 repeats the process of S112. When the falling edge of the output signal is detected (S112: YES), the correction processing unit 144 moves the process to S114. In S114, the correction processing unit 144 measures the difference between the amplitude level immediately after the fall of the output signal and the amplitude level immediately after the fall of the ideal waveform, and acquires the measured value as the fall correction amount Vfall.
 S116では、補正処理部144は、S112において立下がりが検知されたタイミングが、図9に例示されるビットタイミングのPHASE_SEG2の区間内に含まれているか否かを判定する。立下りが検知されたタイミングがPHASE_SEG2の区間内に含まれていない場合(S116:NO)、補正処理部144は処理をS118に移す。S118では、補正処理部144は、S114において取得された立下がり補正量Vfallをメモリ145に保存する。 In S116, the correction processing unit 144 determines whether or not the timing at which the falling edge is detected in S112 is included in the PHASE_SEG2 section of the bit timing illustrated in FIG. When the timing at which the falling is detected is not included in the section of PHASE_SEG2 (S116: NO), the correction processing unit 144 moves the process to S118. In S118, the correction processing unit 144 stores the fall correction amount Vfall acquired in S114 in the memory 145.
 S116において、立下りが検知されたタイミングがPHASE_SEG2の区間内に含まれていると判定された場合(S116:YES)、補正処理部144は処理をS120に移す。S120では、補正処理部144は、S114において取得された立上がり補正量Vfallを保存せずに棄却する。S120の処理の後、補正処理部144は処理をS112に戻す。 In S116, when it is determined that the timing at which the falling is detected is included in the section of PHASE_SEG2 (S116: YES), the correction processing unit 144 moves the process to S120. In S120, the correction processing unit 144 rejects the rising correction amount Vfall acquired in S114 without saving it. After the process of S120, the correction processing unit 144 returns the process to S112.
 このS120の処理について、図11を参照しながら詳しく説明する。レシーバ140において受信される通信フレームは、送信側の送信タイミングよりも遅れてレシーバ140に入力される。そのため、符号1ビット分の通信信号の終端は、通常、受信側のビットタイミングのPHASE_SEG2よりも遅れて検出される。したがって、図11に例示されるとおり、ビットタイミングのPHASE_SEG2の区間内において立下がりが検知された場合、その検知された立下りはノイズである可能性が高い。そのため、出力信号の立上がりが検出された後、PHASE_SEG2の区間内において立下りが検出された場合には、その立下りに関する学習結果を棄却するように構成されている。 The processing of S120 will be described in detail with reference to FIG. The communication frame received by the receiver 140 is input to the receiver 140 with a delay from the transmission timing on the transmission side. For this reason, the end of the communication signal for one bit of code is usually detected later than PHASE_SEG2 of the bit timing on the receiving side. Therefore, as illustrated in FIG. 11, when a falling edge is detected in the PHASE_SEG2 section of the bit timing, the detected falling edge is likely to be noise. For this reason, when a falling edge is detected in the section of PHASE_SEG2 after the rising edge of the output signal is detected, the learning result relating to the falling edge is rejected.
 図8のフローチャートの説明に戻る。S122では、補正処理部144は、学習判定部143から出力されている補正信号CRenがHighレベルであるか否かを判定する。補正信号CRenがLowレベルである場合(S122:NO)、補正処理部144は処理をS102に戻し、次の符号についてVrise及びVfallの取得を繰返す。補正信号CRenがHighレベルである場合(S122:YES)、補正処理部144は処理をS124に移す。 Returning to the flowchart of FIG. In S122, the correction processing unit 144 determines whether or not the correction signal CRen output from the learning determination unit 143 is at a high level. When the correction signal CRen is at the low level (S122: NO), the correction processing unit 144 returns the process to S102 and repeats the acquisition of Vrise and Vfall for the next code. When the correction signal CRen is at the high level (S122: YES), the correction processing unit 144 moves the process to S124.
 S124では、補正処理部144は、S108及びS118においてメモリ145に保存された立上がり補正量Vrise及び立下がり補正量Vfallそれぞれについて平均値を算出する。そして、補正処理部144は、その算出された立上がり補正量Vriseの平均値及び立下がり補正量Vfallの平均値をメモリ145に保存する。S124の後、補正処理部144は、図12に例示される補正処理に移行する。 In S124, the correction processing unit 144 calculates an average value for each of the rising correction amount Vrise and the falling correction amount Vfall stored in the memory 145 in S108 and S118. Then, the correction processing unit 144 stores the calculated average value of the rising correction amount Vrise and the average value of the falling correction amount Vfall in the memory 145. After S124, the correction processing unit 144 proceeds to the correction processing illustrated in FIG.
 ところで、図8に例示されるフローチャートは、出力信号の振幅レベルがLowレベルからHighレベルに立上がる局面から始まる符号を対象に、VriseとVfallとを学習することを想定した処理を表している。あるいは、補正処理部144は、出力信号の振幅レベルがHighレベルからLowレベルに立下がる局面から始まる符号を対象にVfallとVriseとを学習する構成であってもよい。 Incidentally, the flowchart illustrated in FIG. 8 represents processing assuming that Vrise and Vfall are learned for a code starting from a phase where the amplitude level of the output signal rises from the Low level to the High level. Or the correction process part 144 may be the structure which learns Vfall and Vrise for the code | symbol which starts from the aspect where the amplitude level of an output signal falls from a High level to a Low level.
 その場合、補正処理部144は、符号の開始に相当するタイミングにおいて立上がりを検知したか立下りを検知したかに応じて学習処理を分岐することが考えられる。具体的には、補正処理部144は、立上がりから始まる符号を対象に学習を行うシーケンスと、立下りから始まる符号を対象に学習を行うシーケンスとに学習処理を分岐する。なお、立下りから開始する符号を学習の対象とする場合にも、補正処理部144は、図8に例示されるフローチャートと類似の手順により学習を行うことができる。具体的には図8のフローチャートの内容を次のように読替える。 In that case, it is conceivable that the correction processing unit 144 branches the learning process depending on whether a rising edge or a falling edge is detected at a timing corresponding to the start of the code. Specifically, the correction processing unit 144 branches the learning process into a sequence in which learning is performed on a code starting from a rising edge and a sequence in which learning is performed on a code starting from a falling edge. In addition, also when the code | cord | chord which starts from a fall is made into the object of learning, the correction process part 144 can learn by the procedure similar to the flowchart illustrated in FIG. Specifically, the contents of the flowchart of FIG. 8 are read as follows.
 補正処理部144は、S102において立下がりを検知したことを条件に、S104において立下がり補正量Vfallを取得する。そして、補正処理部144は、S106においてサンプリングポイントにおける振幅レベルがLowレベルであることを条件に、S108において立下がり補正量Vfallをメモリ145に保存する。S106においてサンプリングポイントにおける振幅レベルがHighレベルである場合、補正処理部144は、補正量Vfallを棄却する。 The correction processing unit 144 acquires the fall correction amount Vfall in S104 on condition that the fall is detected in S102. Then, the correction processing unit 144 stores the fall correction amount Vfall in the memory 145 in S108 on the condition that the amplitude level at the sampling point is the Low level in S106. When the amplitude level at the sampling point is the high level in S106, the correction processing unit 144 rejects the correction amount Vfall.
 また、補正処理部144は、S112において立上がりを検知したことを条件に、S114において立上がり補正量Vriseを取得する。そして、補正処理部144は、立上がりが検知されたタイミングがPHASE_SEG2の区間内に含まれていないことを条件に、立上がり補正量Vriseをメモリ145に保存する。S112において立上がりのタイミングがPHASE_SEG2の区間内に含まれている場合、補正処理部144は、立上がり補正量Vriseを棄却する。 Further, the correction processing unit 144 acquires the rising correction amount Vrise in S114 on condition that the rising is detected in S112. Then, the correction processing unit 144 stores the rising correction amount Vrise in the memory 145 on the condition that the timing at which the rising is detected is not included in the section of PHASE_SEG2. When the rising timing is included in the PHASE_SEG2 section in S112, the correction processing unit 144 rejects the rising correction amount Vrise.
 [補正処理の手順の説明]
 レシーバ140の補正処理部144が実行する補正処理の手順について、図12のフローチャートを参照しながら説明する。この補正処理は、上述の学習処理に続けて実行される。
[Description of correction procedure]
The procedure of the correction process performed by the correction processing unit 144 of the receiver 140 will be described with reference to the flowchart of FIG. This correction process is executed following the learning process described above.
 S200では、補正処理部144は、ADC142の出力信号の振幅レベルが閾値Vthを超えて上昇する立上がりを検知したか否かを判定する。出力信号の立上がりが検知されていない場合(S200:NO)、補正処理部144はS200の処理を繰返す。出力信号の立上がりが検知された場合(S200:YES)、補正処理部144は処理をS202に移す。 In S200, the correction processing unit 144 determines whether or not a rise in which the amplitude level of the output signal of the ADC 142 exceeds the threshold value Vth is detected. When the rising edge of the output signal is not detected (S200: NO), the correction processing unit 144 repeats the process of S200. When the rising edge of the output signal is detected (S200: YES), the correction processing unit 144 moves the process to S202.
 S202では、補正処理部144は、上述の補正処理のS124においてメモリ145に保存された立上がり補正量Vriseを用いて、立上がり直後の出力信号の波形を補正する。具体的には、補正処理部144は、ADC142の出力信号の振幅レベルを立上がり補正量Vriseの分だけ加算してRx信号を出力する。 In S202, the correction processing unit 144 corrects the waveform of the output signal immediately after the rise using the rise correction amount Vrise stored in the memory 145 in S124 of the above-described correction process. Specifically, the correction processing unit 144 adds the amplitude level of the output signal of the ADC 142 by the rising correction amount Vrise and outputs the Rx signal.
 S204では、補正処理部144は、出力信号の振幅レベルが閾値Vthを超えて下降する立下がりを検知したか否かを判定する。出力信号の立下りが検知されていない場合(S204:NO)、補正処理部144はS204の処理を繰返す。出力信号の立下がりが検知された場合(S204:YES)、補正処理部144は処理をS206に移す。 In S204, the correction processing unit 144 determines whether or not a fall in which the amplitude level of the output signal falls below the threshold value Vth is detected. When the falling edge of the output signal is not detected (S204: NO), the correction processing unit 144 repeats the process of S204. When the falling edge of the output signal is detected (S204: YES), the correction processing unit 144 moves the process to S206.
 S206では、補正処理部144は、上述の補正処理のS124においてメモリ145に保存された立下がり補正量Vfallを用いて、立下がり直後の出力信号の波形を補正する。具体的には、補正処理部144は、ADC142の出力信号の振幅レベルを立下がり補正量Vfallの分だけ減算してRx信号を出力する。 In S206, the correction processing unit 144 corrects the waveform of the output signal immediately after the falling using the falling correction amount Vfall stored in the memory 145 in S124 of the above-described correction processing. Specifically, the correction processing unit 144 subtracts the amplitude level of the output signal of the ADC 142 by the fall correction amount Vfall and outputs the Rx signal.
 S208では、補正処理部144は、学習判定部143から出力されている補正信号CRenがLowレベルであるか否かを判定する。補正信号CRenがHighレベルである場合(S208:NO)、補正処理部144は処理をS200に戻し、出力信号の補正を繰返す。補正信号CRenがLowレベルである場合(S208:YES)、補正処理部144は処理をS210に移す。 In S208, the correction processing unit 144 determines whether or not the correction signal CRen output from the learning determination unit 143 is at a low level. When the correction signal CRen is at the high level (S208: NO), the correction processing unit 144 returns the process to S200 and repeats the correction of the output signal. When the correction signal CRen is at the low level (S208: YES), the correction processing unit 144 moves the process to S210.
 S210では、補正処理部144は、メモリ145に保存されている立上がり補正量Vrise及び立下り補正量Vfallに関するデータをクリアする。S210の処理の後、補正処理部144は補正処理を終了する。 In S210, the correction processing unit 144 clears data related to the rising correction amount Vrise and the falling correction amount Vfall stored in the memory 145. After the process of S210, the correction processing unit 144 ends the correction process.
 ところで、図12に例示されるフローチャートは、出力信号の振幅レベルがLowレベルからHighレベルに立上がる局面から始まる符号を対象に、出力信号の波形を補正することを想定した処理を表している。あるいは、補正処理部144は、出力信号の振幅レベルがHighレベルからLowレベルに立下がる局面から始まる符号を対象に出力信号の波形を補正する構成であってもよい。 By the way, the flowchart illustrated in FIG. 12 represents processing assuming that the waveform of the output signal is corrected for a code starting from a phase in which the amplitude level of the output signal rises from the low level to the high level. Alternatively, the correction processing unit 144 may be configured to correct the waveform of the output signal with respect to a code that starts from a phase in which the amplitude level of the output signal falls from the High level to the Low level.
 その場合、補正処理部144は、符号の開始に相当するタイミングにおいて立上がりを検知したか立下りを検知したかに応じて補正処理を分岐することが考えられる。具体的には、補正処理部144は、立上がりから始まる符号を対象に補正を行うシーケンスと、立下りから始まる符号を対象に補正を行うシーケンスとに補正処理を分岐する。なお、立下りから開始する符号を補正の対象とする場合にも、補正処理部144は、図12に例示されるフローチャートと類似の手順により学習を行うことができる。具体的には図12のフローチャートの内容を次のように読替える。 In that case, it is conceivable that the correction processing unit 144 branches the correction processing depending on whether a rising edge or a falling edge is detected at a timing corresponding to the start of the code. Specifically, the correction processing unit 144 branches the correction processing into a sequence for performing correction for a code starting from a rising edge and a sequence for performing correction for a code starting from a falling edge. Even when the code starting from the falling edge is the target of correction, the correction processing unit 144 can perform learning by a procedure similar to the flowchart illustrated in FIG. Specifically, the contents of the flowchart of FIG. 12 are read as follows.
 補正処理部144は、S200において立下がりを検知したことを条件に、S202において立下がり補正量Vfallを用いて立下がり直後の出力信号の波形を補正する。そして補正処理部144は、S204において立上がりを検知したことを条件に、S206において立上がり補正量Vriseを用いて立上がり直後の出力信号の波形を補正する。 The correction processing unit 144 corrects the waveform of the output signal immediately after the fall using the fall correction amount Vfall in S202 on the condition that the fall is detected in S200. Then, the correction processing unit 144 corrects the waveform of the output signal immediately after the rise using the rise correction amount Vrise in S206 on the condition that the rise is detected in S204.
 [効果]
 実施形態の通信システムによれば、以下の効果を奏する。
 レシーバ140の補正処理部144は、CAN FDの通信フレームにおけるアービトレーションフェーズの間に、ADC142の出力信号と理想波形との差分に基づいて、立上がり補正量Vrise及び立下り補正量Vfallを学習することができる。そして、データフェーズにおいて、補正処理部144が、学習により取得された立上がり補正量Vrise及び立下り補正量Vfallを用いて、出力信号を補正することで、リンギングによる波形乱れを適切に自己補正し、高速なバス通信を実現できる。
[effect]
The communication system according to the embodiment has the following effects.
The correction processing unit 144 of the receiver 140 can learn the rising correction amount Vrise and the falling correction amount Vfall based on the difference between the output signal of the ADC 142 and the ideal waveform during the arbitration phase in the CAN FD communication frame. it can. In the data phase, the correction processing unit 144 corrects the output signal using the rising correction amount Vrise and the falling correction amount Vfall obtained by learning, and appropriately corrects the waveform disturbance due to ringing, High-speed bus communication can be realized.
 信号波形を整形する回路としては、DFEのような比較的な大規模デジタル回路が知られている。なお、DFEは、Decision Feedback Equalizerの略語である。一般的に、DFEは複数の掛算器を有することで回路規模が大きいため、トランシーバを含む通信装置の価格が高くなってしまうという欠点がある。また、DFEは、LMSアルゴリズムによって補正量を調節する仕組みであるため、補正量の習得に時間がかかる。このため、CAN FDの通信フレームにおけるRSS~BRSの区間のような短時間に学習を終えることができない。なお、LMSは、Least Mean Squareの略語である。 A comparative large-scale digital circuit such as DFE is known as a circuit for shaping a signal waveform. Note that DFE is an abbreviation for Decision Feedback Equalizer. In general, since DFE has a plurality of multipliers and has a large circuit scale, there is a drawback that the price of a communication device including a transceiver is increased. Moreover, since DFE is a mechanism for adjusting the correction amount by the LMS algorithm, it takes time to learn the correction amount. For this reason, learning cannot be completed in a short time such as the RSS to BRS section in the CAN FD communication frame. LMS is an abbreviation for LeastLMean Square.
 これに対し、本実施形態では、レシーバ140の補正処理部144が、補正処理部144の内部に格納されている理想波形と、ADC142の出力信号の波形との比較により補正量を算出することができる。このような構成により、本実施形態の通信システムは、小規模な回路でかつ短期間に補正量の学習を行うことができる。 On the other hand, in this embodiment, the correction processing unit 144 of the receiver 140 calculates the correction amount by comparing the ideal waveform stored in the correction processing unit 144 with the waveform of the output signal of the ADC 142. it can. With such a configuration, the communication system of the present embodiment can learn the correction amount in a short time with a small circuit.
 [実施形態の各構成の対応関係]
 ADC142が、AD変換部に相当する。補正処理部144が、学習部及び補正部に相当する。メモリ145が、記憶部に相当する。
[Correspondence between each configuration of the embodiment]
The ADC 142 corresponds to an AD conversion unit. The correction processing unit 144 corresponds to a learning unit and a correction unit. The memory 145 corresponds to a storage unit.
 [変形例]
 上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。
[Modification]
The functions of one component in each of the above embodiments may be shared by a plurality of components, or the functions of a plurality of components may be exhibited by one component. Moreover, you may abbreviate | omit a part of structure of each said embodiment. In addition, at least a part of the configuration of each of the above embodiments may be added to or replaced with the configuration of the other above embodiments. In addition, all the aspects included in the technical idea specified from the wording described in the claims are embodiments of the present disclosure.
 上述したレシーバ140を備えるトランシーバ120を構成要件とするシステム、補正処理部144としてコンピュータを機能させるためのプログラム等の種々の形態で本開示を実現することもできる。また、前記プログラムを記録した半導体メモリ等の非遷移的実態的記録媒体、プログラムに対応する信号波形補正方法等の種々の形態で本開示を実現することもできる。 The present disclosure can also be realized in various forms such as a system including the transceiver 120 including the receiver 140 described above as a constituent element and a program for causing the computer to function as the correction processing unit 144. In addition, the present disclosure can be realized in various forms such as a non-transition actual recording medium such as a semiconductor memory in which the program is recorded, a signal waveform correction method corresponding to the program, and the like.

Claims (7)

  1.  受信装置(140)であって、
     前記受信装置は、複数の通信装置(100)が共通の通信線を介して通信信号を送受信する通信システムを構築する前記通信装置内に設けられ通信制御のための処理を行う通信制御装置(110)と前記共通の通信線との間のインタフェースとして機能するように構成されており、
     前記共通の通信線を介して受信される通信信号をデジタル信号に変換して出力するように構成されたAD変換部(142)と、
     所定の通信信号が受信されて前記AD変換部により変換されたときのデジタル信号の波形である受信波形と、前記所定の通信信号に対応する基準のデジタル信号の波形を表す所与の理想波形とを比較し、前記受信波形と前記理想波形との差に関する情報である波形補正情報を作成し、作成された波形補正情報を記憶部(145)に保存するように構成された学習部(144)と、
     前記波形補正情報が記憶された後に前記AD変換部により変換されたデジタル信号の波形を前記記憶部に記憶された波形補正情報を用いて補正した信号である補正信号を生成し、その生成された補正信号を前記通信制御装置に出力するように構成された補正部(144)と、
     を備える受信装置。
    A receiving device (140),
    The receiving device is a communication control device (110) that is provided in the communication device that constructs a communication system in which a plurality of communication devices (100) transmit and receive communication signals via a common communication line and performs processing for communication control. ) And the common communication line.
    An AD converter (142) configured to convert a communication signal received via the common communication line into a digital signal and output the digital signal;
    A received waveform that is a waveform of a digital signal when a predetermined communication signal is received and converted by the AD converter, and a given ideal waveform that represents a waveform of a reference digital signal corresponding to the predetermined communication signal; The learning unit (144) configured to create waveform correction information that is information related to a difference between the received waveform and the ideal waveform, and store the generated waveform correction information in the storage unit (145) When,
    A correction signal, which is a signal obtained by correcting the waveform of the digital signal converted by the AD conversion unit after the waveform correction information is stored using the waveform correction information stored in the storage unit, is generated. A correction unit (144) configured to output a correction signal to the communication control device;
    A receiving device.
  2.  請求項1に記載の受信装置において、
     前記共通の通信線を介して受信される通信信号は、データ転送レートが比較的遅い調停領域と、前記調停領域の次に設けられ、前記調停領域のデータ転送レートより高速のデータ転送レートを設定可能なデータ領域とを備えるフレームを構成し、
     前記学習部は、前記調停領域の通信信号が前記AD変換部により変換されたときのデジタル信号の波形である受信波形と、前記調停領域の通信信号に対応する理想的なデジタル信号の波形を表す所与の理想波形とを比較して前記波形補正情報を作成するように構成されており、
     前記補正部は、前記データ領域の通信信号が前記AD変換部により変換されたデジタル信号の波形を前記波形補正情報を用いて補正した信号である補正信号を生成するように構成されている、受信装置。
    The receiving device according to claim 1,
    Communication signals received via the common communication line are provided after an arbitration area having a relatively slow data transfer rate and the arbitration area, and set a data transfer rate faster than the data transfer rate of the arbitration area. A frame with possible data areas,
    The learning unit represents a reception waveform that is a waveform of a digital signal when a communication signal in the arbitration region is converted by the AD converter, and an ideal digital signal waveform corresponding to the communication signal in the arbitration region It is configured to generate the waveform correction information by comparing with a given ideal waveform,
    The correction unit is configured to generate a correction signal that is a signal obtained by correcting the waveform of the digital signal obtained by converting the communication signal in the data area by the AD conversion unit using the waveform correction information. apparatus.
  3.  請求項2に記載の受信装置において、
     前記共通の通信線を介して受信される通信信号の前記調停領域は、当該通信信号を識別する情報であるID領域と、当該通信信号に関する情報である制御領域とを順に備えるように構成されており、
     前記学習部は、前記調停領域のうち前記制御領域の通信信号が前記AD変換部により変換されたときのデジタル信号の波形である受信波形と、前記制御領域の通信信号に対応する理想的なデジタル信号の波形を表す所与の理想波形とを比較して前記波形補正情報を作成するように構成されている、受信装置。
    The receiving device according to claim 2,
    The arbitration area of communication signals received via the common communication line is configured to sequentially include an ID area that is information for identifying the communication signal and a control area that is information related to the communication signal. And
    The learning unit includes a reception waveform which is a waveform of a digital signal when a communication signal in the control region in the arbitration region is converted by the AD conversion unit, and an ideal digital corresponding to the communication signal in the control region. A receiving device configured to generate the waveform correction information by comparing with a given ideal waveform representing a waveform of a signal.
  4.  請求項1ないし請求項3の何れか1項に記載の受信装置において、
     前記学習部は、前記受信波形において信号レベルがローレベルからハイレベルに立上がる局面である立上がり局面の波形と、前記立上がり局面に対応する前記理想波形との間で信号レベルを比較して、前記立上がり局面に関する前記波形補正情報を作成し、また、前記受信波形において信号レベルがハイレベルからローレベルに立下がる局面である立下り局面の波形と、前記立下り局面に対応する前記理想波形との間で信号レベルを比較して、前記立下がり局面に関する前記波形補正情報を作成するように構成されており、
     前記補正部は、前記AD変換部により変換されたデジタル信号について、前記立上がり局面の波形を前記立上がり局面に関する波形補正情報を用いて補正した補正信号を生成し、前記立下り局面の波形を前記立下がり局面に関する波形補正情報を用いて補正した補正信号を生成するように構成されている、受信装置。
    The receiving apparatus according to any one of claims 1 to 3,
    The learning unit compares a signal level between a waveform of a rising phase that is a phase in which a signal level rises from a low level to a high level in the received waveform and the ideal waveform corresponding to the rising phase, and The waveform correction information related to the rising phase is created, and the waveform of the falling phase that is a phase where the signal level falls from a high level to a low level in the received waveform and the ideal waveform corresponding to the falling phase Is configured to create the waveform correction information regarding the falling phase by comparing signal levels between
    The correction unit generates a correction signal obtained by correcting the waveform of the rising phase using the waveform correction information regarding the rising phase of the digital signal converted by the AD conversion unit, and the waveform of the falling phase is converted to the rising phase. A receiving apparatus configured to generate a correction signal corrected using waveform correction information related to a falling phase.
  5.  請求項1ないし請求項4の何れか1項に記載の受信装置において、
     前記学習部は、前記受信波形を構成する複数の符号に対応する波形について複数の前記波形補正情報を作成し、前記複数の波形補正情報の平均値を前記補正部による補正に用いる波形補正情報として前記記憶部に保存するように構成されている、受信装置。
    The receiving apparatus according to any one of claims 1 to 4,
    The learning unit creates a plurality of waveform correction information for waveforms corresponding to a plurality of codes constituting the received waveform, and uses the average value of the plurality of waveform correction information as waveform correction information used for correction by the correction unit A receiving device configured to save in the storage unit.
  6.  請求項1ないし請求項5の何れか1項に記載の受信装置において、
     前記学習部は、前記受信波形の信号レベルがローレベルからハイレベルに立上がる局面である立上がり局面について前記波形補正情報を作成するように構成されており、前記信号レベルの立上がりが検知された後、前記受信波形を構成する複数の符号のうち、符号1ビット分の時間間隔におけるサンプリングポイントに相当する局面において、前記信号レベルがローレベルになっている場合、当該立上がり局面に関する前記波形補正情報を棄却するように構成されている、受信装置。
    The receiving apparatus according to any one of claims 1 to 5,
    The learning unit is configured to create the waveform correction information for a rising phase, which is a phase in which the signal level of the received waveform rises from a low level to a high level, and after the rising of the signal level is detected When the signal level is low in the aspect corresponding to the sampling point at the time interval of one code of the plurality of codes constituting the received waveform, the waveform correction information regarding the rising phase is A receiving device configured to reject.
  7.  請求項1ないし請求項6の何れか1項に記載の受信装置において、
     前記学習部は、前記受信波形の信号レベルがハイレベルからローレベルに立下がる局面である立下がり局面について前記波形補正情報を作成するように構成されており、前記信号レベルの立上がりが検知された後、前記受信波形の符号1ビット分の時間間隔におけるサンプリングポイント相当する局面から当該時間間隔の終端までの期間に信号レベルがハイレベルからローレベルに立下がった場合、当該立上がり局面に関する前記波形補正情報を棄却するように構成されている、受信装置。
    The receiving apparatus according to any one of claims 1 to 6,
    The learning unit is configured to create the waveform correction information for a falling phase in which the signal level of the received waveform falls from a high level to a low level, and the rising of the signal level is detected Thereafter, when the signal level falls from a high level to a low level during a period from the phase corresponding to the sampling point in the time interval corresponding to one bit of the code of the received waveform to the end of the time interval, the waveform correction related to the rising phase A receiving device configured to reject information.
PCT/JP2017/020977 2016-06-08 2017-06-06 Reception device WO2017213138A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-114506 2016-06-08
JP2016114506A JP6524969B2 (en) 2016-06-08 2016-06-08 Receiver

Publications (1)

Publication Number Publication Date
WO2017213138A1 true WO2017213138A1 (en) 2017-12-14

Family

ID=60578710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020977 WO2017213138A1 (en) 2016-06-08 2017-06-06 Reception device

Country Status (2)

Country Link
JP (1) JP6524969B2 (en)
WO (1) WO2017213138A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7120156B2 (en) * 2019-05-29 2022-08-17 株式会社デンソー Communication device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208781A (en) * 1987-02-24 1988-08-30 Nec Corp Waveform shaping circuit
JPH08274688A (en) * 1995-03-28 1996-10-18 Sony Corp Digital line terminating equipment
WO2009047852A1 (en) * 2007-10-11 2009-04-16 Fujitsu Limited Reception circuit, reception method and signal transmission system
WO2009047865A1 (en) * 2007-10-12 2009-04-16 Fujitsu Limited Reception circuit, conversion table generating method of ad converter of the same and signal transmission system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208781A (en) * 1987-02-24 1988-08-30 Nec Corp Waveform shaping circuit
JPH08274688A (en) * 1995-03-28 1996-10-18 Sony Corp Digital line terminating equipment
WO2009047852A1 (en) * 2007-10-11 2009-04-16 Fujitsu Limited Reception circuit, reception method and signal transmission system
WO2009047865A1 (en) * 2007-10-12 2009-04-16 Fujitsu Limited Reception circuit, conversion table generating method of ad converter of the same and signal transmission system

Also Published As

Publication number Publication date
JP2017220820A (en) 2017-12-14
JP6524969B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
CN105684360B (en) Subscriber station of a bus system and method for improving the reception quality in a bus system
US8588340B2 (en) Receiving device
JP6697990B2 (en) Semiconductor device
KR20060089553A (en) Eq receiver of semiconductor memory
JP4393458B2 (en) Data transmission apparatus and data transmission method
CN110719242A (en) Equalizer adjustment device, equalizer adjustment method, receiver, and transmission/reception system
WO2016052218A1 (en) Transmission device, transmission method, and filter circuit
US7305037B2 (en) Calibration system for a communications system
US20140169507A1 (en) Manchester code receiving circuit
WO2017213138A1 (en) Reception device
EP1423923B1 (en) Adaptive equalizer for reducing distortion in a communication channel
TWI543548B (en) Method and associated processing module for interconnection system
JP4930510B2 (en) Signal receiving apparatus and waveform shaping method
US20090267814A1 (en) Circuit arrangement, l[ocal] i[nterconnected] ne[twork] comprising such circuit arrangement as well as method for processing input signals of the lin
CN114765463A (en) Receiver and data transmission system
JP2007295021A (en) Receiver and receiving method
US20060155816A1 (en) Data transmission system and data transmission device
JP4848035B2 (en) Receiver circuit
US20060121866A1 (en) Squelch circuit and communication apparatus used with the same
US11575549B2 (en) Continuous time linear equalization and bandwidth adaptation using asynchronous sampling
CN110247734B (en) Data transmission method and device and electronic equipment
JP6504354B2 (en) Receiver
US10721102B2 (en) Communication apparatus and communication method
CN109428844B (en) Communication device and communication method
US9742695B2 (en) Relay device and connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17810313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17810313

Country of ref document: EP

Kind code of ref document: A1