WO2017209391A1 - Method for receiving csi-rs in wireless communication system and apparatus therefor - Google Patents

Method for receiving csi-rs in wireless communication system and apparatus therefor Download PDF

Info

Publication number
WO2017209391A1
WO2017209391A1 PCT/KR2017/003945 KR2017003945W WO2017209391A1 WO 2017209391 A1 WO2017209391 A1 WO 2017209391A1 KR 2017003945 W KR2017003945 W KR 2017003945W WO 2017209391 A1 WO2017209391 A1 WO 2017209391A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
zone
allocated
specific subframe
resource
Prior art date
Application number
PCT/KR2017/003945
Other languages
French (fr)
Korean (ko)
Inventor
이호재
이상림
김동규
김명진
노광석
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2017209391A1 publication Critical patent/WO2017209391A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for receiving the CSI-RS in a wireless communication system.
  • the 3GPP LTE 3rd Generation Partnership Project Long Term Evolution (LTE) system is designed as a frame structure with a 1ms transmission time interval (TTI), and the data request delay time is 10ms for video applications.
  • TTI transmission time interval
  • future 5G technologies will require lower latency data transmissions with the emergence of new applications such as real-time control and tactile internet, and 5G data demand latency will be lowered to 1ms. It is expected.
  • 5G aims to provide about 10 times less data delay than before.
  • detailed design related to CSI-RS transmission is required.
  • An object of the present invention is to provide a method for a terminal to receive a channel state information reference signal (CSI-RS) in a wireless communication system.
  • CSI-RS channel state information reference signal
  • Another object of the present invention is to provide a terminal for receiving a channel state information reference signal (CSI-RS) in a wireless communication system.
  • CSI-RS channel state information reference signal
  • a method of receiving a channel state information reference signal (CSI-RS) by the terminal in a wireless communication system the resource for the CSI-RS in a specific subframe
  • Receiving control information including information indicating whether assigned;
  • the data zone of the specific subframe is allocated to a downlink data zone and the control information indicates that resources for the CSI-RS are allocated to the specific subframe
  • the CSI-RS is based on the control information. It can be received in the downlink control zone.
  • the CSI-RS may be received in the last symbol of the downlink control zone.
  • the control information may further include information indicating the number of antenna ports for the CSI-RS.
  • the control information may further include information about the location of the resource to which the CSI-RS is allocated.
  • the information on the location of the resource to which the CSI-RS is allocated may be location information in the frequency domain.
  • the CSI-RS may be received in a downlink control zone of the specific subframe.
  • the CSI-RS may be received in a subsequent subframe corresponding to the offset value in the specific subframe based on a predefined or indicated offset value.
  • the method includes performing channel measurements based on the CSI-RS; And transmitting a measurement result according to the channel measurement through an uplink control zone or an uplink data zone.
  • a terminal for receiving a channel state information reference signal (CSI-RS) in a wireless communication system the receiver; And a processor, wherein the processor is configured to control the receiver to receive control information including information indicating whether a resource for the CSI-RS is allocated to a specific subframe, and data of the specific subframe.
  • the receiver transmits the CSI-RS to a downlink control zone based on the control information. Can be controlled to receive from.
  • the processor may control the receiver to receive the CSI-RS in the last symbol of the downlink control zone.
  • the processor may control the receiver to receive the control information in the specific subframe.
  • the terminal further includes a transmitter, the processor performs a channel measurement based on the CSI-RS, and controls the transmitter to transmit a measurement result according to the channel measurement through an uplink control zone or an uplink data zone can do.
  • the CSI-RS transmission scheme proposed in the present invention enables efficient channel state measurement in a self-contained frame structure in stand-alone NR.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2 is a diagram for explaining correlation with IMT 2020 core performance requirements for 5G and 5G performance requirements for each service scenario.
  • FIG. 3 is a diagram illustrating an LTE / LTE-A frame structure.
  • FIG. 4 is a diagram illustrating an example of an FDD / TDD frame structure in an LTE / LTE-A system.
  • FIG. 5 is a diagram exemplarily illustrating a self-contained subframe structure.
  • FIG. 6 is a diagram illustrating a self-contained subframe structure of stand-alone New RAT.
  • FIG. 7 is a diagram illustrating allocation of CSI-RS of a self-contained subframe structure.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • the transmitter and the receiver in the terminal and the base station may be configured as one radio frequency (RF) unit.
  • RF radio frequency
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as data processing is performed rather than a function of receiving or transmitting a signal.
  • the present invention proposes a new and various frame structure for the fifth generation (5G) communication system.
  • Next-generation 5G systems can be categorized into Enhanced Mobile BroadBand (eMBB) / Ultra-reliable Machine-Type Communications (uMTC) / Massive Machine-Type Communications (mMTC).
  • eMBB is a next generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and
  • uMTC is a next generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC are next generation mobile communication scenarios having low cost, low energy, short packet, and mass connectivity (eg IoT).
  • FIG. 2 is a diagram for explaining correlation with IMT 2020 core performance requirements for 5G and 5G performance requirements for each service scenario.
  • FIG 2 illustrates the correlation between the core performance requirements presented in IMT 2020 for 5G and the 5G performance requirements for each service scenario.
  • uMTC Service has very limited Over The Air (OTA) Latency Requirement, and requires high mobility and high reliability (OTA Latency: ⁇ 1ms, Mobility:> 500km / h, BLER: ⁇ 10-6).
  • OTA Latency ⁇ 1ms
  • Mobility Mobility:> 500km / h
  • BLER ⁇ 10-6
  • FIG. 3 is a diagram illustrating an LTE / LTE-A frame structure.
  • FIG. 3 shows a basic concept of a frame structure of LTE / LTE-A.
  • One frame is composed of 10 ms and 10 1 ms subframes.
  • One subframe consists of two 0.5 ms slots, and one slot consists of seven Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • One resource block (RB) is defined by 12 subcarriers spaced at 15 kHz and 7 OFDM symbols.
  • the base station transmits a Primary Synchronization Signal (PSS) for Synchronization, a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH) for system information at the Center Frequency 6RB.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the frame structure, the signal, and the channel positions may be different according to a normal / extended CP (cyclic prefix), a time division duplex (TDD), and a frequency division duplex (FDD
  • FIG. 4 is a diagram illustrating an example of an FDD / TDD frame structure in an LTE / LTE-A system.
  • downlink and uplink frequency bands are divided, and in the case of the TDD frame structure, the downlink region and the uplink region are divided in subframe units in the same band.
  • a special subframe region exists between the downlink region and the uplink region, and the special subframe is used for guard period (GP) or some data transmission to solve the interference problem between downlink and uplink. .
  • FIG. 5 is a diagram exemplarily illustrating a self-contained subframe structure.
  • 5 shows a self-contained subframe structure for satisfying the low latency requirement among the 5G performance requirements.
  • resource sections for downlink and uplink eg, downlink control channel and uplink control channel
  • there is an interference problem between downlink and uplink There is a resource section for data transmission and GP for solving the problem.
  • the downlink resource interval indicated by DL may be a resource interval for a downlink control channel
  • the uplink resource interval indicated by UL may be a resource interval for an uplink control channel.
  • the downlink resource interval indicated by DL may be a resource interval for a downlink control channel
  • the uplink resource interval indicated by UL may be a resource interval for an uplink control channel.
  • New RAT can support stand-alone. Particularly, in case of 6GHz or less, it is preferable to support stand-alone because it has wider coverage than 6GHz or more. For this reason, the present invention proposes a channel state information-reference signal (CSI-RS) for supporting stand-alone operation.
  • CSI-RS channel state information-reference signal
  • New RAT does not include CRSs flying across all subframes and full bands in order to reduce the loss of flexibility due to the allocation to R.
  • the new RAT does not include CRSs that fly through existing CRSs.
  • RSs need to be redesigned to replace this capability, one of which is called the RS for RRM measurement, which is called RRM-RS, which is transmitted in wideband, but with downlink channel conditions. Since a reference signal for channel status measurement is not defined, the present invention proposes a new CSI-RS transmission method.
  • the proposals of the present invention can be applied to the self-contained subframe structure described in FIG. 5 and the new frame structure for the 5G TDD system.
  • the present invention can be equally applied to an adaptive / self-contained frame structure.
  • the name "zone" refers to a physical resource and may also be referred to as a channel, a zone, or the like.
  • FIG. 6 is a diagram illustrating a self-contained subframe structure of stand-alone New RAT.
  • a CSI-RS may be transmitted in a fifth symbol of Subframe # N. Details of the CSI-RS design method are as follows.
  • the base station transmits a CSI-RS in the last OFDM symbol of the last zone of the downlink data zone.
  • the CSI-RS is multiplexed by frequency division multiplexing (FDM) in the last OFDM symbol.
  • FDM frequency division multiplexing
  • the receiver should perform fast data decoding and perform ACK / NACK transmission in the subframe where the data is received or as close as possible. Therefore, it is necessary to minimize the data decoding time by allocating the CSI-RS zone that cannot assist in decoding downlink data of the frame to the rear of the data zone.
  • the UE is a fast ACK in the uplink control zone (eg, xPUCCH zone) of the corresponding subframe / NACK transmission can be performed.
  • the base station transmits the CSI-RS periodically or aperiodically in the time domain, and the allocation / transmission of the CSI-RS may be indicated through downlink control information (DCI) of the base station.
  • DCI downlink control information
  • the period is a common control information (Common Control Information) (eg, MIB (Master Information Block) or SIB (System Information Block), RRC (Radio Resource Control) signaling or the base station terminal It may be defined as the default assignment of the system, or it may operate without instructions.
  • Common Control Information eg, MIB (Master Information Block) or SIB (System Information Block), RRC (Radio Resource Control) signaling or the base station terminal
  • MIB Master Information Block
  • SIB System Information Block
  • RRC Radio Resource Control
  • the base station schedules aperiodic CSI-RS transmission with DCI.
  • the base station may indicate to the UE whether or not the corresponding subframe is a subframe for transmitting the CSI-RS in a DCI (eg, DCI 1 bit) in the corresponding subframe.
  • the number of antenna ports of the aperiodic CSI-RS may be defined as the base station instructs the terminal through RRC signaling or additional bits of the DCI or is defined as a default assignment of the system and may not have an indication.
  • the base station transmits the aperiodic CSI-RS to the terminal, and the low latency downlink service may be enabled by quickly receiving feedback from the terminal.
  • the terminal transmits the CSI-RS in the subband or wideband on the frequency domain.
  • Wideband based CSI-RS may be allocated to secure scheduling gain for the wideband, and in this case, the base station may indicate the allocation of the wideband based CSI-RS to the terminal through additional bits of RRC signaling or DCI. It may be defined as a default assignment of the system or operated without indication.
  • the base station may allocate a subband-based CSI-RS to secure the resources of the xPDSCH, in which case it is indicated through additional bits of RRC signaling or DCI.
  • the base station may allocate subband-based CSI-RS only for channel measurement for a specific band, and in this case, may indicate through RRC signaling or additional bits of DCI. have.
  • the base station may allocate a subband-based CSI-RS, in which case the base station may indicate to the terminal through additional bits of RRC signaling or DCI.
  • the terminal may measure the entire CSI-RS wideband CSI-RS or only some subbands.
  • the base station may allocate the terminal-specific measurement region for the CSI-RS region.
  • the area allocated to the measurement by the base station scheduling may be instructed by the base station to the terminal through additional bits of the RRC signaling or DCI.
  • the terminal may perform measurement on the wideband CSI-RS.
  • the terminal may perform measurement on the subband CSI-RS.
  • the subbands may be single or multiple. In the case of multiple subbands, the position of the subbands in the frequency domain may be continuous or distributed.
  • the measurement areas of multiple terminals may overlap. For example, the area measured by the terminal 1 on the wideband or subband can also measure the channel based on the CSI-RS in the same area as the terminal 2. The areas where the measurements are made may overlap completely or only partially.
  • the UE may feed back measurement information measured based on the CSI-RS to the base station through an uplink control zone (eg, xPUCCH) or an uplink data zone (eg, xPUSCH).
  • Figure 7 illustrates on the resource grid for the above-mentioned allocation of CSI-RS.
  • FIG. 7 is a diagram illustrating allocation of CSI-RS of a self-contained subframe structure.
  • subframe #L illustrates a subframe in which the CSI-RS is not transmitted
  • subframe #N illustrates a subframe in which the CSI-RS is transmitted.
  • Numerals 1 to 8 shown in FIG. 7 mean CSI-RS for each antenna port (that is, an antenna port index for CSI-RS).
  • FIG. 7 illustrates that CSI-RSs for eight antenna ports are allocated by FDM.
  • the pattern of CSI-RS has been illustrated for eight antenna ports for wideband, but as mentioned above, it can be multiplexed by FDM or Code Division Multiplexing (CDM) or FDM / CDM scheme.
  • CDM Code Division Multiplexing
  • the CSI-RS pattern may have a different pattern from that of the CSI-RS pattern of FIG. 7.
  • An example of an indication filed for CSI-RS is shown in Table 1 below.
  • Table 1 below shows an indication field of downlink control information for CSI-RS.
  • RRC signaling or DCI Indication field index
  • CSI-RS time domain indication field in DCI-1 bit 0 No CSI-RS region in xPDSCH Zone One CSI-RS region exists in xPDSCH Zone Number (#) of antenna ports of CSI-RS indication field (in RRC Signaling or DCI)-N bits 0 1 port One 2 ports 2 4 ports 3 8 ports ? ? 2 N -1 4 N ports CSI-RS freq. domain indication field (in RRC Signaling or DCI)-M bits 0 PRB index: 0 to 4 2 PRB index: 5 to 8 3 PRB index: 9 to 12 ? ?
  • the UE may recognize whether to allocate CSI-RS resources in the xPDSCH through the RRC signaling of the base station or the CSI-RS time domain indication field (eg, 1 bit) of the DCI. Can be.
  • the UE that does not receive the CSI-RS receives downlink data through the corresponding xPDSCH zone, data decoding should be performed in an area excluding the CSI-RS resource area.
  • the base station transmits DCI for downlink data transmission, the base station needs to control TBS scheduling considering the CSI-RS resource zone and a modulation and coding scheme (MCS) according thereto.
  • MCS modulation and coding scheme
  • the size of the subband may vary. For example, assuming that the total size of the wideband is 100 physical resource blocks (PRBs), the size of the subband may vary from 4 PRBs, 10 PRBs, 20 PRBs, 50 PRBs, 100 PRBs, and the like.
  • PRBs physical resource blocks
  • the base station may indicate the allocation size and / or location (eg, PRB index of the subband) of the CSI-RS zone through the "CSI-RS frequency domain indication field" through the RRC signaling or DCI.
  • the UE may recognize the location in the frequency domain of the CSI-RS through the “CSI-RS frequency domain indication field”.
  • the base station may transmit a "CSI-RS measurement indication field" to the terminal through RRC signaling or DCI.
  • the “CSI-RS measurement indication field” indicates the measurement of the CSI-RS and may also indicate the frequency location (eg, PRB index information) of the CSI-RS to be measured at the same time.
  • the terminal may measure the CSI-RS in the indicated region based on the “CSI-RS measurement indication field”.
  • All fields of Table 1 described above are described based on an indication of a subframe in which the field information is received, but are predefined or indicated in the system in consideration of the DCI decoding processing time of the UE. It may be an indication of a subframe after the subframe in which the DCI is received by the offset value. For example, if the offset value is ⁇ , the base station transmits a DCI including an indication field before ⁇ subframes. Then, a CSI-RS zone is generated in a corresponding subframe after ⁇ subframes from the subframe in which the DCI is received. The UE may receive the CSI-RS in the CSI-RS region allocated to the corresponding subframe based on the offset value.
  • the offset value can also be applied to all the fields mentioned below.
  • UE behavior may be changed as follows by the above-described CSI-RS design scheme.
  • the UE which has undergone the initial access step, recognizes the indication information on the CSI-RS through the RRC signaling step.
  • the UE decodes the received “the number of antenna ports of CSI-RS indication field”, “CSI-RS frequency domain indication field” and “CSI-RS measurement indication field” to obtain respective index information.
  • the terminal may receive index information in the DCI.
  • each UE decodes a DCI for itself in a downlink control zone (eg, xPDCCH zone) and recognizes indication information on the CSI-RS.
  • the UE in the RRC_Connected state decodes “the number (#) of antenna ports of SRS indication field”, “CSI-RS frequency domain indication field” and “CSI-RS measurement indication field” indicated through the DCI format. Index information can be received.
  • the UE may have already received corresponding index information in RRC signaling.
  • the UE When the UE recognizes the CSI-RS information through the RRC signaling and / or DCI fields, the UE can measure the CSI-RS to generate channel state information and feed back to the base station.
  • the UE When the CSI-RS time domain indication field indicates '0', the UE recognizes that there is no CSI-RS region in the xPDSCH zone and decodes only the data of the xPDSCH zone. If the CSI-RS time domain indication field indicates '1', the UE decodes the xPDSCH and then measures the CSI-RS in the area that the UE should measure in the CSI-RS region. Information about the measurement region may be indicated by the “the number of antenna ports of the CSI-RS indication field”, the “CSI-RS frequency domain indication field” and the “CSI-RS measurement indication field”.
  • the UE performs the measurement based on the CSI-RS and uses the channel state information generated based on the measurement to determine an uplink control zone (eg, xPUCCH) or uplink data zone (eg, xPUSCH). It can feed back to the base station.
  • an uplink control zone eg, xPUCCH
  • uplink data zone eg, xPUSCH
  • the above-described methods have been described as an example of a self-contained subframe structure, but may be applied to existing LTE or other communication systems.
  • the above-described methods described the self-contained subframe structure for the stand-alone NR operation as an example, but may also be applied to the structure for the non-stand-alone NR operation.
  • the above-described methods illustrate a case of a subframe configured in the order of DL control zone-Guard Period (GP)-UL control zone, but the present invention is not limited thereto and may be applied to other types of subframes capable of uplink transmission.
  • GP DL control zone-Guard Period
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • the method and apparatus for receiving the CSI-RS in the wireless communication system can be applied industrially in various wireless communication systems such as 3GPP LTE / LTE-A, 5G system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method by which a terminal receives a channel state information-reference signal (CSI-RS) in a wireless communication system comprises the steps of: receiving control information including information for indicating whether a resource for a CSI-RS is allocated in a specific subframe; and receiving, in a downlink control zone, the CSI-RS on the basis of the control information, when a data zone of the specific subframe is allocated to a downlink data zone and the control information indicates that the resource for the CSI-RS is allocated in the specific subframe.

Description

무선통신 시스템에서 CSI-RS를 수신하는 방법 및 이를 위한 장치Method for receiving CSI-RS in wireless communication system and apparatus therefor
본 발명은 무선통신에 관한 것으로, 보다 상세하게는, 무선통신 시스템에서 CSI-RS를 수신하는 방법 및 이를 위한 장치에 관한 것이다.The present invention relates to wireless communication, and more particularly, to a method and apparatus for receiving the CSI-RS in a wireless communication system.
3GPP LTE (3rd Generation Partnership Project Long Term Evolution) 시스템은 1ms TTI (transmission time interval)를 가지는 프레임 구조로 디자인 되었으며, 비디오(video) 어플리케이션을 위해 데이터 요구 지연 시간은 10ms이었다. 그러나, 미래의 5G 기술은 실시간 제어(real-time control) 및 촉감 인터넷(tactile internet)과 같은 새로운 어플리케이션의 등장으로 더욱 낮은 지연의 데이터 전송을 요구하고 있으며, 5G 데이터 요구 지연은 1ms까지 낮춰질 것으로 예상된다. The 3GPP LTE 3rd Generation Partnership Project Long Term Evolution (LTE) system is designed as a frame structure with a 1ms transmission time interval (TTI), and the data request delay time is 10ms for video applications. However, future 5G technologies will require lower latency data transmissions with the emergence of new applications such as real-time control and tactile internet, and 5G data demand latency will be lowered to 1ms. It is expected.
그러나, 종래 1ms TTI를 가지는 프레임 구조로는 1ms 데이터 요구 지연을 만족시킬 수 없는 문제가 있다. 5G는 종래 대비 약 10배 감소된 데이터 지연 제공을 목표로 하고 있다. 이러한 5G 시스템의 새로운 프레임 구조에 있어서 CSI-RS 전송과 관련된 세부적인 사항의 설계가 요구된다.However, there is a problem that the conventional 1 ms TTI frame structure cannot satisfy the 1 ms data request delay. 5G aims to provide about 10 times less data delay than before. In the new frame structure of the 5G system, detailed design related to CSI-RS transmission is required.
본 발명에서 이루고자 하는 기술적 과제는 무선통신 시스템에서 단말이 채널상태정보 참조신호(Channel Sates Information-Reference Signal, CSI-RS)를 수신하는 방법을 제공하는 데 있다.An object of the present invention is to provide a method for a terminal to receive a channel state information reference signal (CSI-RS) in a wireless communication system.
본 발명에서 이루고자 하는 다른 기술적 과제는 무선통신 시스템에서 채널상태정보 참조신호(Channel Sates Information-Reference Signal, CSI-RS)를 수신하기 위한 단말을 제공하는 데 있다.Another object of the present invention is to provide a terminal for receiving a channel state information reference signal (CSI-RS) in a wireless communication system.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved in the present invention are not limited to the above technical problems, and other technical problems that are not mentioned will be clearly understood by those skilled in the art from the following description.
상기의 기술적 과제를 달성하기 위한, 무선통신 시스템에서 단말이 채널상태정보 참조신호(Channel Sates Information-Reference Signal, CSI-RS)를 수신하는 방법은, 특정 서브프레임에 상기 CSI-RS를 위한 자원이 할당된 지 여부를 지시하는 정보를 포함하는 제어 정보를 수신하는 단계; 및 상기 특정 서브프레임의 데이터 존이 하향링크 데이터 존으로 할당되고 상기 제어 정보가 상기 특정 서브프레임에 상기 CSI-RS를 위한 자원이 할당됨을 지시하는 경우, 상기 제어 정보에 기초하여 상기 CSI-RS를 하향링크 제어 존에서 수신할 수 있다. 상기 CSI-RS는 상기 하향링크 제어 존의 마지막 심볼에서 수신될 수 있다. 상기 제어 정보는 상기 특정 서브프레임에서 수신될 수 있다. 상기 CSI-RS를 위한 자원은 상기 특정 서브프레임의 상기 하향링크 데이터 존에 할당될 수 있다. 상기 제어 정보는 상기 CSI-RS를 위한 안테나 포트의 개수를 지시하는 정보를 더 포함할 수 있다. 상기 제어 정보는 상기 CSI-RS가 할당된 자원의 위치에 대한 정보를 더 포함할 수 있다. 상기 CSI-RS가 할당된 자원의 위치에 대한 정보는 주파수 도메인에서의 위치 정보일 수 있다. 상기 CSI-RS를 상기 특정 서브프레임의 하향링크 제어 존에서 수신할 수 있다. 사전에 정의되거나 혹은 지시된 옵셋 값에 기초하여 상기 CSI-RS를 상기 특정 서브프레임에서 상기 옵셋 값에 해당하는 이후의 서브프레임에서 수신할 수 있다. 상기 방법은, 상기 CSI-RS에 기초하여 채널 측정을 수행하는 단계; 및 상기 채널 측정에 따른 측정 결과를 상향링크 제어 존 또는 상향링크 데이터 존을 통해 전송하는 단계를 더 포함할 수 있다.In order to achieve the above technical problem, a method of receiving a channel state information reference signal (CSI-RS) by the terminal in a wireless communication system, the resource for the CSI-RS in a specific subframe Receiving control information including information indicating whether assigned; And when the data zone of the specific subframe is allocated to a downlink data zone and the control information indicates that resources for the CSI-RS are allocated to the specific subframe, the CSI-RS is based on the control information. It can be received in the downlink control zone. The CSI-RS may be received in the last symbol of the downlink control zone. The control information may be received in the specific subframe. Resources for the CSI-RS may be allocated to the downlink data zone of the specific subframe. The control information may further include information indicating the number of antenna ports for the CSI-RS. The control information may further include information about the location of the resource to which the CSI-RS is allocated. The information on the location of the resource to which the CSI-RS is allocated may be location information in the frequency domain. The CSI-RS may be received in a downlink control zone of the specific subframe. The CSI-RS may be received in a subsequent subframe corresponding to the offset value in the specific subframe based on a predefined or indicated offset value. The method includes performing channel measurements based on the CSI-RS; And transmitting a measurement result according to the channel measurement through an uplink control zone or an uplink data zone.
상기의 다른 기술적 과제를 달성하기 위한, 무선통신 시스템에서 채널상태정보 참조신호(Channel Sates Information-Reference Signal, CSI-RS)를 수신하기 위한 단말은, 수신기; 및 프로세서를 포함하되, 상기 프로세서는, 상기 수신기가 특정 서브프레임에 상기 CSI-RS를 위한 자원이 할당된 지 여부를 지시하는 정보를 포함하는 제어 정보를 수신하도록 제어하고, 상기 특정 서브프레임의 데이터 존이 하향링크 데이터 존으로 할당되고 상기 제어 정보가 상기 특정 서브프레임에 상기 CSI-RS를 위한 자원이 할당됨을 지시하는 경우, 상기 제어 정보에 기초하여 상기 수신기가 상기 CSI-RS를 하향링크 제어 존에서 수신하도록 제어할 수 있다. 상기 프로세서는 상기 수신기가 상기 CSI-RS를 상기 하향링크 제어 존의 마지막 심볼에서 수신하도록 제어할 수 있다. 상기 프로세서는 상기 수신기가 상기 제어 정보를 상기 특정 서브프레임에서 수신하도록 제어할 수 있다.In order to achieve the above technical problem, a terminal for receiving a channel state information reference signal (CSI-RS) in a wireless communication system, the receiver; And a processor, wherein the processor is configured to control the receiver to receive control information including information indicating whether a resource for the CSI-RS is allocated to a specific subframe, and data of the specific subframe. When a zone is allocated to a downlink data zone and the control information indicates that a resource for the CSI-RS is allocated to the specific subframe, the receiver transmits the CSI-RS to a downlink control zone based on the control information. Can be controlled to receive from. The processor may control the receiver to receive the CSI-RS in the last symbol of the downlink control zone. The processor may control the receiver to receive the control information in the specific subframe.
상기 CSI-RS를 위한 자원은 상기 특정 서브프레임의 상기 하향링크 데이터 존에 할당될 수 있다. 상기 단말은 송신기를 더 포함하되, 상기 프로세서는 상기 CSI-RS에 기초하여 채널 측정을 수행하고, 상기 송신기가 상기 채널 측정에 따른 측정 결과를 상향링크 제어 존 또는 상향링크 데이터 존을 통해 전송하도록 제어할 수 있다.Resources for the CSI-RS may be allocated to the downlink data zone of the specific subframe. The terminal further includes a transmitter, the processor performs a channel measurement based on the CSI-RS, and controls the transmitter to transmit a measurement result according to the channel measurement through an uplink control zone or an uplink data zone can do.
본 발명에서 제안한 CSI-RS 전송 방식은 Stand-alone NR에서 Self-contained 방식 프레임 구조에서의 효율적인 채널 상태 측정을 가능하게 해준다.The CSI-RS transmission scheme proposed in the present invention enables efficient channel state measurement in a self-contained frame structure in stand-alone NR.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtained in the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the following description. will be.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as part of the detailed description in order to provide a thorough understanding of the present invention, provide an embodiment of the present invention and together with the description, illustrate the technical idea of the present invention.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
도 2는 5G를 위한 IMT 2020 핵심 성능 요구사항 및 서비스 시나리오 별 5G 성능 요구사항과의 연관성을 설명하기 위한 도면이다.FIG. 2 is a diagram for explaining correlation with IMT 2020 core performance requirements for 5G and 5G performance requirements for each service scenario.
도 3은 LTE/LTE-A 프레임 구조를 도시한 도면이다.3 is a diagram illustrating an LTE / LTE-A frame structure.
도 4는 LTE/LTE-A 시스템에서의 FDD/TDD 프레임 구조의 예를 도시한 도면이다.4 is a diagram illustrating an example of an FDD / TDD frame structure in an LTE / LTE-A system.
도 5는 Self-contained Subframe 구조를 예시적으로 나타낸 도면이다.5 is a diagram exemplarily illustrating a self-contained subframe structure.
도 6은 Stand-alone New RAT 의 Self-contained Subframe 구조를 예시한 도면이다.6 is a diagram illustrating a self-contained subframe structure of stand-alone New RAT.
도 7은 Self-contained Subframe 구조의 CSI-RS의 할당을 예시한 도면이다. 7 is a diagram illustrating allocation of CSI-RS of a self-contained subframe structure.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details. For example, the following detailed description will be described in detail on the assumption that the mobile communication system is a 3GPP LTE, LTE-A system, but is also applied to any other mobile communication system except for the specific matters of 3GPP LTE, LTE-A. Applicable
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. In addition, in the following description, it is assumed that a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like. In addition, it is assumed that the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
이동 통신 시스템에서 단말(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.In a mobile communication system, a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink. The information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.In addition, specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.Although one base station 105 and one terminal 110 (including a D2D terminal) are shown to simplify the wireless communication system 100, the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.Referring to FIG. 1, the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197. The terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150. Although the transmit and receive antennas 130 and 135 are shown as one in the base station 105 and the terminal 110, respectively, the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다. On the downlink, the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols "). The symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.The symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125. In this case, each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero. In each symbol period, pilot symbols may be sent continuously. The pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다. Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다. In the configuration of the terminal 110, the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140. Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples. The symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서(150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.The symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.The processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다. 단말 및 기지국에서의 송신기 및 수신기는 하나의 RF(Radio Frequency) 유닛으로 구성될 수도 있다.The terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols. The symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175. The transmitter 175 receives and processes a stream of symbols to generate an uplink signal. The transmit antenna 135 transmits the generated uplink signal to the base station 105. The transmitter and the receiver in the terminal and the base station may be configured as one radio frequency (RF) unit.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다. In the base station 105, an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples. The symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink. The received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다. Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively. Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data. The memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다. The processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like. The processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof. When implementing embodiments of the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs) configured to perform the present invention. Field programmable gate arrays (FPGAs) may be provided in the processors 155 and 180.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.Meanwhile, when implementing embodiments of the present invention using firmware or software, the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention. The firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.The layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3. The physical layer belongs to the first layer and provides an information transmission service through a physical channel. A Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network. The terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.In the present specification, the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively. For convenience of description, the following description does not specifically refer to the processors 155 and 180. Although not specifically mentioned by the processors 155 and 180, it may be said that a series of operations such as data processing is performed rather than a function of receiving or transmitting a signal.
본 발명에서는 5세대(5G) 통신 시스템을 위한 새롭고 다양한 프레임 구조를 제안한다. 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/Ultra-reliable Machine-Type Communications (uMTC)/Massive Machine-Type Communications (mMTC) 등으로 시나리오를 구분할 수 있다. eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, uMTC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (예를 들어, V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다(예를 들어, IoT).The present invention proposes a new and various frame structure for the fifth generation (5G) communication system. Next-generation 5G systems can be categorized into Enhanced Mobile BroadBand (eMBB) / Ultra-reliable Machine-Type Communications (uMTC) / Massive Machine-Type Communications (mMTC). eMBB is a next generation mobile communication scenario with characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and uMTC is a next generation mobile communication scenario with characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc. For example, V2X, Emergency Service, Remote Control), and mMTC are next generation mobile communication scenarios having low cost, low energy, short packet, and mass connectivity (eg IoT).
도 2는 5G를 위한 IMT 2020 핵심 성능 요구사항 및 서비스 시나리오 별 5G 성능 요구사항과의 연관성을 설명하기 위한 도면이다.FIG. 2 is a diagram for explaining correlation with IMT 2020 core performance requirements for 5G and 5G performance requirements for each service scenario.
도 2는 5G를 위한 IMT 2020에서 제시한 핵심 성능 요구사항과 서비스 시나리오 별 5G 성능 요구사항과의 연관성을 도시하고 있다. 2 illustrates the correlation between the core performance requirements presented in IMT 2020 for 5G and the 5G performance requirements for each service scenario.
특히, uMTC Service는 Over The Air (OTA) Latency Requirement가 매우 제한적이고, 높은 Mobility와 높은 Reliability를 요구한다 (OTA Latency: < 1ms, Mobility: > 500km/h, BLER: < 10-6).In particular, uMTC Service has very limited Over The Air (OTA) Latency Requirement, and requires high mobility and high reliability (OTA Latency: <1ms, Mobility:> 500km / h, BLER: <10-6).
도 3은 LTE/LTE-A 프레임 구조를 도시한 도면이다.3 is a diagram illustrating an LTE / LTE-A frame structure.
도 3은 LTE/LTE-A의 프레임 구조의 기본적인 개념을 나타낸다. 하나의 프레임은 10ms으로, 10개의 1ms 서브프레임(subframe)으로 이루어진다. 하나의 서브프레임은 2개의 0.5ms 슬롯(slot)으로 이루어지며, 하나의 슬롯은 7개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼로 이루어 진다. 15 kHz 간격의 부반송파 12개와 7개의 OFDM 심볼로 하나의 자원 블록(Resource Block, RB)가 정의된다. 기지국은 중심 주파수(Center Frequency) 6RB에서 동기화(Synchronization)를 위한 Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS)와 시스템 정보를 위한 Physical Broadcast Channel (PBCH)를 전송한다. 여기서, Normal/Extended CP(Cyclic Prefix), TDD(Time Division Duplex)/FDD(Frequency Division Duplex)에 따라 상기 프레임 구조 및 신호, 채널의 위치에 차이가 있을 수 있다. 3 shows a basic concept of a frame structure of LTE / LTE-A. One frame is composed of 10 ms and 10 1 ms subframes. One subframe consists of two 0.5 ms slots, and one slot consists of seven Orthogonal Frequency Division Multiplexing (OFDM) symbols. One resource block (RB) is defined by 12 subcarriers spaced at 15 kHz and 7 OFDM symbols. The base station transmits a Primary Synchronization Signal (PSS) for Synchronization, a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH) for system information at the Center Frequency 6RB. Here, the frame structure, the signal, and the channel positions may be different according to a normal / extended CP (cyclic prefix), a time division duplex (TDD), and a frequency division duplex (FDD).
도 4는 LTE/LTE-A 시스템에서의 FDD/TDD 프레임 구조의 예를 도시한 도면이다.4 is a diagram illustrating an example of an FDD / TDD frame structure in an LTE / LTE-A system.
도 4를 참조하면, FDD 프레임 구조의 경우, 하향링크와 상향링크의 주파수 대역이 구분되어 있으며, TDD 프레임 구조의 경우 동일 밴드 내에서 서브프레임 단위로 하향링크 영역과 상향링크 영역이 구분된다. TDD 프레임 구조의 경우, 하향링크 영역과 상향링크 영역 사이에서 Special Subframe 영역이 존재하며, Special Subframe은 하향링크/상향링크 간 간섭 문제를 해결하기 위한 Guard Period (GP) 또는 일부 데이터 전송을 위해 사용된다.Referring to FIG. 4, in the case of the FDD frame structure, downlink and uplink frequency bands are divided, and in the case of the TDD frame structure, the downlink region and the uplink region are divided in subframe units in the same band. In the case of the TDD frame structure, a special subframe region exists between the downlink region and the uplink region, and the special subframe is used for guard period (GP) or some data transmission to solve the interference problem between downlink and uplink. .
도 5는 Self-contained Subframe 구조를 예시적으로 나타낸 도면이다.5 is a diagram exemplarily illustrating a self-contained subframe structure.
도 5는 5G 성능요구 사항 중, 저지연 요구조건을 만족 시키기 위한 Self-contained Subframe 구조를 나타낸다. TDD 기반의 Self-contained Subframe 구조는 하나의 서브프레임 내에 하향링크와 상향링크를 위한 자원구간(예를 들어, 하향링크 제어 채널 및 상향링크 제어 채널)이 존재하며, 하향링크/상향링크 간 간섭 문제를 해결하기 위한 GP와 데이터 전송을 위한 자원구간이 존재한다. 5 shows a self-contained subframe structure for satisfying the low latency requirement among the 5G performance requirements. In the TDD-based self-contained subframe structure, resource sections for downlink and uplink (eg, downlink control channel and uplink control channel) exist in one subframe, and there is an interference problem between downlink and uplink. There is a resource section for data transmission and GP for solving the problem.
도 5의 (a)는 Self-contained Subframe 구조의 일 예로서, 하향링크-상향링크-데이터를 위한 자원 구간의 순서로 서브프레임이 구성되며, 자원 구간 사이에 GP가 존재한다. 도 5의 (a)에서 DL로 표시된 하향링크 자원 구간은 하향링크 제어 채널을 위한 자원 구간일 수 있으며, UL로 표시된 상향링크 자원 구간은 상향링크 제어 채널을 위한 자원 구간일 수 있다.5A illustrates an example of a structure of a self-contained subframe, in which subframes are configured in the order of resource intervals for downlink-uplink-data, and a GP exists between the resource intervals. In (a) of FIG. 5, the downlink resource interval indicated by DL may be a resource interval for a downlink control channel, and the uplink resource interval indicated by UL may be a resource interval for an uplink control channel.
도 5의 (b)는 Self-contained Subframe 구조의 다른 일 예로서, 하향링크-데이터-상향링크를 위한 자원구간 순서로 서브프레임이 구성되며, 상향링크 자원 구간 앞에만 GP가 존재한다. 도 5의 (b)에서도 마찬가지로 DL로 표시된 하향링크 자원 구간은 하향링크 제어 채널을 위한 자원 구간일 수 있으며, UL로 표시된 상향링크 자원 구간은 상향링크 제어 채널을 위한 자원 구간일 수 있다.5 (b) shows another example of a self-contained subframe structure, in which subframes are configured in the order of resource sections for downlink-data-uplink, and the GP exists only before the uplink resource section. Likewise, in FIG. 5B, the downlink resource interval indicated by DL may be a resource interval for a downlink control channel, and the uplink resource interval indicated by UL may be a resource interval for an uplink control channel.
New RAT (NR)은 Stand-alone을 지원할 수 있다. 특히, 6GHz 이하의 경우는 6GHz 이상에 비해 넓은 커버리지를 가지기 때문에 stand-alone을 지원하는 것이 바람직하다. 이러한 이유로, 본 발명에서는 stand-alone 동작을 지원하기 위한 CSI-RS(Channel State Information- Reference Signal) 를 제안한다. New RAT (NR) can support stand-alone. Particularly, in case of 6GHz or less, it is preferable to support stand-alone because it has wider coverage than 6GHz or more. For this reason, the present invention proposes a channel state information-reference signal (CSI-RS) for supporting stand-alone operation.
먼저, 기본적으로 stand alone동작을 위한 단말의 초기 접속(initial access) 과정에는 동기화(synchronization) 과정과 시스템 정보를 획득하여 RACH(Random Access CHannel)를 전송하는 과정이 있다. 따라서, 동기 신호(PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal)와 시스템 정보 (예를 들어, 물리 방송 채널(xPBCH))를 위한 신호 및 채널이 고려되어야 한다 또한, New RAT (NR)의 사용 케이스(use case)중 하나인 ultra-reliable low latency communication (URLLC)을 지원하기 위해서 short TTI (Transmit Time Interval)를 고려할 수 있다. 따라서, 기존 14개 심볼이 1 서브프레임이 아닌 7개 심볼로 구성된 서브프레임을 고려한다. 이는 normal TTI는 14개 심볼로 구성되고 short TTI는 그의 반인 7개의 심볼로 구성된다고 볼 수 있다. 셀 -특정 RS(cell specific RS, CRS)가 모든 서브프레임과 full band에 할당됨으로 인한 flexibility의 손실을 줄이기 위하여, New RAT (NR) 에서는 모든 서브프레임과 full band에 걸쳐서 날아가는 CRS를 포함하지 않는다. 그러나, New RAT (NR) 에서 기존의 CRS를 통해 수행했던 기능을 대체할 RS들이 새롭게 설계될 필요가 있다. 그 중 하나로서, 기존의 RRM 측정을 위한 RS를 RRM-RS라 명명한다. 해당 RS는 wideband로 전송이 된다. 그러나, 하향링크에 대한 채널 상태 측정(Channel Status measurement)를 위한 참조신호(reference signal)가 정의되지 않았기 때문에, 본 발명에서는 새로운 CSI-RS 전송 방법을 제안한다.First, in an initial access process of a terminal for stand alone operation, there is a process of obtaining a synchronization process and system information and transmitting a RACH (Random Access CHannel). Therefore, signals and channels for a synchronization signal (PSS) / Secondary Synchronization Signal (SSS) and system information (eg, a physical broadcast channel (xPBCH)) should be considered. In order to support ultra-reliable low latency communication (URLLC), one of the use cases, short TTI (Transmit Time Interval) can be considered, so that the existing 14 symbols are replaced by 7 symbols instead of 1 subframe. Consider the configured subframe, which can be seen that the normal TTI is composed of 14 symbols and the short TTI is composed of seven symbols, which are half of those cells-a cell specific RS (CRS) is used for all subframes and full bands. New RAT (NR) does not include CRSs flying across all subframes and full bands in order to reduce the loss of flexibility due to the allocation to R. However, the new RAT (NR) does not include CRSs that fly through existing CRSs. RSs need to be redesigned to replace this capability, one of which is called the RS for RRM measurement, which is called RRM-RS, which is transmitted in wideband, but with downlink channel conditions. Since a reference signal for channel status measurement is not defined, the present invention proposes a new CSI-RS transmission method.
본 발명의 제안 사항은 도 5에서 설명한 Self-contained 방식의 프레임 구조(Self-contained subframe structure)와 5G TDD 시스템을 위한 New frame structure에 적용될 수 있다. 또한, 본 발명은 Adaptive/self-contained frame structure에도 동일하게 적용할 수 있다. 본 발명에서 존(zone)이라는 명칭은 물리 자원을 지칭하는 것으로, 채널, 영역 등으로도 호칭될 수 있다.The proposals of the present invention can be applied to the self-contained subframe structure described in FIG. 5 and the new frame structure for the 5G TDD system. In addition, the present invention can be equally applied to an adaptive / self-contained frame structure. In the present invention, the name "zone" refers to a physical resource and may also be referred to as a channel, a zone, or the like.
도 6은 Stand-alone New RAT 의 Self-contained Subframe 구조를 예시한 도면이다.6 is a diagram illustrating a self-contained subframe structure of stand-alone New RAT.
도 6을 참조하면, Subframe# N의 5번째 심볼에 CSI-RS가 전송될 수 있다. CSI-RS 설계 방식의 구체적 사항은 다음과 같다.Referring to FIG. 6, a CSI-RS may be transmitted in a fifth symbol of Subframe # N. Details of the CSI-RS design method are as follows.
(1) self-contained subframe에서 데이터 존이 하향링크 데이터 존(예를 들어, xPDSCH 존으로 할당된 경우, 기지국은 CSI-RS를 하향링크 데이터 존의 마지막 존의 마지막 OFDM 심볼에서 전송한다. (1) In a self-contained subframe, when a data zone is allocated to a downlink data zone (eg, an xPDSCH zone), the base station transmits a CSI-RS in the last OFDM symbol of the last zone of the downlink data zone.
Low latency를 위해 데이터 디코딩에 최대한 영향을 주지 않기 위하여, CSI-RS는 마지막 OFDM 심볼에서 주파수 분할 다중화(FDM) 방식으로 다중화된다. Low latency 달성을 위해서는 수신 측에서 빠른 데이터 디코딩을 수행하고, 데이터를 수신한 서브프레임 또는 최대한 인접한 서브프레임에서 ACK/NACK 전송을 수행해야 한다. 따라서, 해당 프레임의 하향링크 데이터 디코딩에 도움을 줄 수 없는 CSI-RS 존을 데이터 존의 가장 뒤쪽에 할당하여 데이터 디코딩 시간을 최소화 할 수 있게 할 필요가 있다. 또한, CSI-RS 전송을 위한 CSI-RS 존은 GP 동안 데이터 디코딩이 가능하고, ACK/NACK 인코딩이 가능하다면, 단말은 해당 서브프레임의 상향링크 제어 존(예를 들어, xPUCCH zone)에서 빠른 ACK/NACK 전송을 수행할 수 있다.In order not to affect the data decoding as much as possible for low latency, the CSI-RS is multiplexed by frequency division multiplexing (FDM) in the last OFDM symbol. To achieve low latency, the receiver should perform fast data decoding and perform ACK / NACK transmission in the subframe where the data is received or as close as possible. Therefore, it is necessary to minimize the data decoding time by allocating the CSI-RS zone that cannot assist in decoding downlink data of the frame to the rear of the data zone. In addition, if the CSI-RS zone for CSI-RS transmission is capable of data decoding during GP, and ACK / NACK encoding is possible, the UE is a fast ACK in the uplink control zone (eg, xPUCCH zone) of the corresponding subframe / NACK transmission can be performed.
(2) 기지국은 CSI-RS를 시간 도메인에서 주기적 또는 비주기적으로 전송하며, CSI-RS의 할당/전송은 기지국의 하향링크 제어 정보(Downlink Control Information, DCI)를 통해 지시될 수 있다.(2) The base station transmits the CSI-RS periodically or aperiodically in the time domain, and the allocation / transmission of the CSI-RS may be indicated through downlink control information (DCI) of the base station.
주기적 CSI-RS 의 경우, 그 주기는 공통 제어 정보(Common Control Information) (예를 들어, MIB(Master Information Block) or SIB(System Information Block), RRC(Radio Resource Control) 시그널링 또는 DCI로 기지국이 단말에게 지시해 주거나, 혹은 시스템의 default 할당으로 정의되어 지시없이 동작될 수도 있다.In the case of the periodic CSI-RS, the period is a common control information (Common Control Information) (eg, MIB (Master Information Block) or SIB (System Information Block), RRC (Radio Resource Control) signaling or the base station terminal It may be defined as the default assignment of the system, or it may operate without instructions.
비주기적 CSI-RS 의 경우, 기지국이 DCI로 비주기적 CSI-RS 전송을 스케줄링한다. 기지국은 해당 서브프레임에서 DCI (예를 들어, DCI 1 bit)로 해당 서브프레임이 CSI-RS를 전송하는 서브프레임 인지의 여부를 단말에게 지시(indication)해 줄 수 있다. 비주기적 CSI-RS의 안테나 포트 수는 기지국이 RRC 시그널링 또는 DCI의 추가 bits들을 통해 단말에게 지시해 주거나 또는 시스템의 default 할당으로써 정의되어 지시가 없을 수도 있다. 주기적 CSI-RS를 기다리지 않도록 하기 위해, 기지국은 비주기적CSI-RS를 단말에 전송하고, 단말로부터 채널 측정 정보를 빠르게 피드백 받음으로써 low latency 하향링크 서비스가 가능해질 수 있다.For aperiodic CSI-RS, the base station schedules aperiodic CSI-RS transmission with DCI. The base station may indicate to the UE whether or not the corresponding subframe is a subframe for transmitting the CSI-RS in a DCI (eg, DCI 1 bit) in the corresponding subframe. The number of antenna ports of the aperiodic CSI-RS may be defined as the base station instructs the terminal through RRC signaling or additional bits of the DCI or is defined as a default assignment of the system and may not have an indication. In order not to wait for the periodic CSI-RS, the base station transmits the aperiodic CSI-RS to the terminal, and the low latency downlink service may be enabled by quickly receiving feedback from the terminal.
(3) 단말은 CSI-RS 를 주파수 도메인 상에서 Subband 또는 Wideband에 전송한다.(3) The terminal transmits the CSI-RS in the subband or wideband on the frequency domain.
Wideband에 대한 Scheduling Gain 확보를 위해 Wideband 기반의 CSI-RS가 할당될 수 있으며, 이 경우 기지국은 RRC 시그널링 또는 DCI의 추가 bits들을 통해 단말에게 wideband 기반의 CSI-RS의 할당을 지시(indication)해 줄 수 있고, 또는 시스템의 default 할당으로써 정의되어 지시(indication) 없이 동작될 수 있다. 기지국은xPDSCH의 자원 확보를 위해 Subband 기반의 CSI-RS를 할당할 수 있으며, 이 경우 RRC 시그널링 또는 DCI의 추가 bits들을 통해 지시된다. 롱텀 채널 이득(Long term Channel gain) 정보를 기반으로 특정 대역에 대한 채널 측정만을 위해, 기지국은subband 기반의 CSI-RS를 할당할 수 있으며, 이 경우 RRC 시그널링 또는 DCI의 추가 bits들을 통해 지시할 수 있다. 특정 사용자(혹은 단말) 만을 위한 채널 측정을 위해, 기지국은subband 기반의 CSI-RS를 할당할 수 있으며, 이 경우 기지국은 RRC 시그널링 또는 DCI의 추가 bits들을 통해 단말에게 지시할 수 있다. Wideband based CSI-RS may be allocated to secure scheduling gain for the wideband, and in this case, the base station may indicate the allocation of the wideband based CSI-RS to the terminal through additional bits of RRC signaling or DCI. It may be defined as a default assignment of the system or operated without indication. The base station may allocate a subband-based CSI-RS to secure the resources of the xPDSCH, in which case it is indicated through additional bits of RRC signaling or DCI. Based only on long term channel gain information, the base station may allocate subband-based CSI-RS only for channel measurement for a specific band, and in this case, may indicate through RRC signaling or additional bits of DCI. have. For channel measurement only for a specific user (or terminal), the base station may allocate a subband-based CSI-RS, in which case the base station may indicate to the terminal through additional bits of RRC signaling or DCI.
(4) 기지국 스케줄링에 의하여, 단말은 CSI-RS의 wideband 전체를 CSI-RS를 측정하거나 일부 Subband만을 측정할 수 있다. (4) By the base station scheduling, the terminal may measure the entire CSI-RS wideband CSI-RS or only some subbands.
단말의 하향링크에 대한 채널 상태 측정을 위해, 기지국은 CSI-RS 영역에 대해 단말-특정 측정 영역을 할당할 수 있다. 기지국 스케줄링에 의하여 측정이 할당되는 영역은 RRC 시그널링 또는 DCI의 추가 bits를 통해서 기지국이 단말에게 지시해 줄 수 있다. 기지국의 스케줄링에 의하여 단말의 Wideband 상에서의 측정이 필요한 경우, 단말은 Wideband CSI-RS에 대한 측정을 수행할 수 있다. 기지국의 스케줄링에 의하여 단말의 Subband 상의 측정이 필요한 경우, 단말은Subband CSI-RS에 대한 측정을 수행할 수도 있다. 여기서 Subband는 단일 또는 다수 개 일 수 있다. 다수 개의 Subband인 경우, 주파수 도메인에서 Subband의 위치는 연속적일 수도 분산적일 수도 있다. 기지국의 스케줄링에 의하여 다수 단말의 측정 영역은 겹칠 수 있다. 예를 들어, 단말 1이 Wideband 또는 Subband상에서 측정하는 영역을 단말 2도 동일한 영역에서 CSI-RS에 기초하여 채널을 측정할 수 있다. 측정이 이루어지는 영역은 완전히 겹치거나 일부만 겹칠 수 있다.For channel state measurement for downlink of the terminal, the base station may allocate the terminal-specific measurement region for the CSI-RS region. The area allocated to the measurement by the base station scheduling may be instructed by the base station to the terminal through additional bits of the RRC signaling or DCI. When measurement on the wideband of the terminal is required by scheduling of the base station, the terminal may perform measurement on the wideband CSI-RS. When measurement on the subband of the terminal is required by scheduling of the base station, the terminal may perform measurement on the subband CSI-RS. Here, the subbands may be single or multiple. In the case of multiple subbands, the position of the subbands in the frequency domain may be continuous or distributed. By the scheduling of the base station, the measurement areas of multiple terminals may overlap. For example, the area measured by the terminal 1 on the wideband or subband can also measure the channel based on the CSI-RS in the same area as the terminal 2. The areas where the measurements are made may overlap completely or only partially.
(5) 단말은 CSI-RS에 기초하여 측정한 측정 정보를 상향링크 제어 존(예를 들어, xPUCCH) 또는 상향링크 데이터 존(예를 들어, xPUSCH)을 통해 기지국으로 피드백할 수 있다. 도 7은 상술한 CSI-RS의 할당에 대해 자원 그리드 상에서 예시하고 있다. (5) The UE may feed back measurement information measured based on the CSI-RS to the base station through an uplink control zone (eg, xPUCCH) or an uplink data zone (eg, xPUSCH). Figure 7 illustrates on the resource grid for the above-mentioned allocation of CSI-RS.
도 7은 Self-contained Subframe 구조의 CSI-RS의 할당을 예시한 도면이다. 7 is a diagram illustrating allocation of CSI-RS of a self-contained subframe structure.
도 7을 참조하면, subframe #L 은 CSI-RS가 전송되지 않는 서브프레임을 예시하고, subframe #N은 CSI-RS가 전송되는 서브프레임을 예시한다. 도 7에 도시된 숫자 1에서 8은 각 안테나 포트를 위한 CSI-RS를 의미한다(즉, CSI-RS를 위한 안테나 포트 인덱스를 의미). 도 7에는 8개의 안테나 포트에 대한 CSI-RS가 FDM 방식으로 할당되었음을 예시하고 있다. CSI-RS의 패턴은 wideband에 대해서 8개의 안테나 포트에 대해 예시되었으나, 상기 언급된 바와 같이, FDM 또는 CDM(Code Division Multiplexing) 또는 FDM/CDM 방식으로 다중화될 수 있다. 최대 지원 안테나 포트 수에 따라 혹은 시스템 환경에 따라 CSI-RS 패턴은 도 7의 CSI-RS 패턴과 다른 패턴을 가질 수 있다. CSI-RS를 위한 Indication filed를 예시하면 다음 표 1과 같다. 다음 표 1은 CSI-RS를 위한 하향링크 제어 정보의 지시 필드를 예시하고 있다.Referring to FIG. 7, subframe #L illustrates a subframe in which the CSI-RS is not transmitted, and subframe #N illustrates a subframe in which the CSI-RS is transmitted. Numerals 1 to 8 shown in FIG. 7 mean CSI-RS for each antenna port (that is, an antenna port index for CSI-RS). FIG. 7 illustrates that CSI-RSs for eight antenna ports are allocated by FDM. The pattern of CSI-RS has been illustrated for eight antenna ports for wideband, but as mentioned above, it can be multiplexed by FDM or Code Division Multiplexing (CDM) or FDM / CDM scheme. Depending on the maximum number of supported antenna ports or the system environment, the CSI-RS pattern may have a different pattern from that of the CSI-RS pattern of FIG. 7. An example of an indication filed for CSI-RS is shown in Table 1 below. Table 1 below shows an indication field of downlink control information for CSI-RS.
(RRC signaling or DCI) Indication field(RRC signaling or DCI) Indication field indexindex DescriptionsDescriptions
CSI-RS time domain indication field (in DCI) - 1 bitCSI-RS time domain indication field (in DCI)-1 bit 00 xPDSCH Zone 내에 CSI-RS region이 없음No CSI-RS region in xPDSCH Zone
1One xPDSCH Zone 내에 CSI-RS region이 존재CSI-RS region exists in xPDSCH Zone
Number (#) of antenna ports of CSI-RS indication field (in RRC Signaling or DCI) - N bitsNumber (#) of antenna ports of CSI-RS indication field (in RRC Signaling or DCI)-N bits 00 1 port1 port
1One 2 ports2 ports
22 4 ports4 ports
33 8 ports8 ports
?? ??
2N-12 N -1 4N ports4 N ports
CSI-RS freq. domain indication field (in RRC Signaling or DCI) - M bitsCSI-RS freq. domain indication field (in RRC Signaling or DCI)-M bits 00 PRB index: 0 ~ 4PRB index: 0 to 4
22 PRB index: 5 ~ 8PRB index: 5 to 8
33 PRB index: 9 ~ 12PRB index: 9 to 12
?? ??
2M-12 M -1 PRB index: 4*2M-4 ~ 4*2M-1PRB index: 4 * 2 M -4 to 4 * 2 M -1
CSI-RS measurement indication field (in RRC Signaling or DCI) - L bitsCSI-RS measurement indication field (in RRC Signaling or DCI)-L bits 00 PRB index: 0 ~ 4PRB index: 0 to 4
22 PRB index: 5 ~ 8PRB index: 5 to 8
33 PRB index: 9 ~ 12PRB index: 9 to 12
?? ??
2M-12 M -1 PRB index: 4*2M-4 ~ 4*2M-1PRB index: 4 * 2 M -4 to 4 * 2 M -1
표 1을 참조하면, 단말은 기지국의 RRC 시그널링 또는 DCI의 CSI-RS시간 도메인 지시 필드(SRS time domain indication field) (예를 들어, 1 bit)을 통하여 xPDSCH 내의 CSI-RS자원 할당 여부를 인지할 수 있다. 이를 통해, CSI-RS를 수신하지 않는 단말이 해당 xPDSCH 존을 통해 하향링크 데이터 수신할 경우, CSI-RS자원 영역을 제외한 영역에서 데이터 디코딩을 수행해야 한다. 여기서, 기지국이 하향링크 데이터 전송을 위한 DCI를 전송하는 경우, 기지국은 CSI-RS 자원 존을 고려한 TBS 스케줄링 및 이에 따른 변조 및 코딩 방식(MCS)를 제어할 필요가 있다. Referring to Table 1, the UE may recognize whether to allocate CSI-RS resources in the xPDSCH through the RRC signaling of the base station or the CSI-RS time domain indication field (eg, 1 bit) of the DCI. Can be. Through this, when the UE that does not receive the CSI-RS receives downlink data through the corresponding xPDSCH zone, data decoding should be performed in an area excluding the CSI-RS resource area. In this case, when the base station transmits DCI for downlink data transmission, the base station needs to control TBS scheduling considering the CSI-RS resource zone and a modulation and coding scheme (MCS) according thereto.
상술한 subband CSI-RS에서, subband의 크기는 다양할 수 있다. 예를 들어, wideband의 총 크기가 100 PRB(Physical Resource Block)라고 가정하면, subband의 크기는 4 PRB, 10 PRB, 20 PRB, 50 PRB, 100 PRB 등으로 다양할 수 있다. In the above-described subband CSI-RS, the size of the subband may vary. For example, assuming that the total size of the wideband is 100 physical resource blocks (PRBs), the size of the subband may vary from 4 PRBs, 10 PRBs, 20 PRBs, 50 PRBs, 100 PRBs, and the like.
기지국은 RRC 시그널링 또는 DCI를 통해 “CSI-RS frequency domain indication field” 를 통해 CSI-RS존의 할당 크기 및/또는 위치(예를 들어, subband의 PRB 인덱스)를 단말에게 지시해 줄 수 있다. 단말은 “CSI-RS frequency domain indication field” 를 통해 CSI-RS의 주파수 도메인에서의 위치를 인지할 수 있다. The base station may indicate the allocation size and / or location (eg, PRB index of the subband) of the CSI-RS zone through the "CSI-RS frequency domain indication field" through the RRC signaling or DCI. The UE may recognize the location in the frequency domain of the CSI-RS through the “CSI-RS frequency domain indication field”.
또한, 기지국은 RRC 시그널링 또는 DCI를 통해 “CSI-RS measurement indication field”를 단말에게 전송해 줄 수 있다. “CSI-RS measurement indication field”는 CSI-RS의 측정을 지시하며 동시에 측정될 CSI-RS의 주파수 위치(예를 들어, PRB 인덱스 정보)를 지시해 줄 수도 있다. 단말은 “CSI-RS measurement indication field”에 기초하여 지시된 해당 영역에서 CSI-RS을 측정할 수 있다.In addition, the base station may transmit a "CSI-RS measurement indication field" to the terminal through RRC signaling or DCI. The “CSI-RS measurement indication field” indicates the measurement of the CSI-RS and may also indicate the frequency location (eg, PRB index information) of the CSI-RS to be measured at the same time. The terminal may measure the CSI-RS in the indicated region based on the “CSI-RS measurement indication field”.
상술한 표 1의 모든 field는 상기 field 정보들을 수신한 서브프레임에 대한 지시(indication)을 기반으로 설명하나, 단말의DCI 디코딩 프로세싱 타임(decoding processing time)을 고려하여 시스템에서 사전에 정의된 혹은 지시된 옵셋(offset) 값에 의해 상기 DCI를 수신한 서브프레임 이후의 서브프레임에 대한 지시일 수도 있다. 예를 들어, offset 값이 α 라고 하면, 기지국은α개 서브프레임 전에 지시 필드(indication field)를 포함하는 DCI를 전송한다. 그러면, DCI를 수신한 서브프레임부터 α 개 서브프레임 후에 해당하는 서브프레임에서 CSI-RS 존 생성된다. 단말은 상기 옵셋 값에 기초하여 해당 서브프레임에 할당된 CSI-RS 영역에서 CSI-RS를 수신할 수 있다. 이하에서 언급할 모든 field들에 대해서도 옵셋 값이 적용될 수 있다.All fields of Table 1 described above are described based on an indication of a subframe in which the field information is received, but are predefined or indicated in the system in consideration of the DCI decoding processing time of the UE. It may be an indication of a subframe after the subframe in which the DCI is received by the offset value. For example, if the offset value is α, the base station transmits a DCI including an indication field before α subframes. Then, a CSI-RS zone is generated in a corresponding subframe after α subframes from the subframe in which the DCI is received. The UE may receive the CSI-RS in the CSI-RS region allocated to the corresponding subframe based on the offset value. The offset value can also be applied to all the fields mentioned below.
상술한 CSI-RS 설계 방식에 의하여 단말 동작(UE behavior)는 다음과 같이 변경될 수 있다. UE behavior may be changed as follows by the above-described CSI-RS design scheme.
(1) 초기 접속(initial access) 단계를 거친 단말은 RRC 시그널링 단계를 통해 CSI-RS 에 대한 지시(indication) 정보를 인지한다. 단말은 수신한 “the number of antenna ports of CSI-RS indication field”, “CSI-RS frequency domain indication field”, “CSI-RS measurement indication field” 를 디코딩하여 각각의 index 정보를 획득할 수 있다. 이와 달리, 상기 field들이 DCI로 전송되는 경우, 단말은DCI에서 index 정보를 수신할 수 있다.(1) The UE, which has undergone the initial access step, recognizes the indication information on the CSI-RS through the RRC signaling step. The UE decodes the received “the number of antenna ports of CSI-RS indication field”, “CSI-RS frequency domain indication field” and “CSI-RS measurement indication field” to obtain respective index information. In contrast, when the fields are transmitted in the DCI, the terminal may receive index information in the DCI.
(2) 한편, RRC Connected 단계에서, 각 단말은 하향링크 제어 존(예를 들어, xPDCCH 존)에서 자신을 위한 DCI를 디코딩하여 CSI-RS에 대한 지시 정보를 인지한다. RRC_Connected 상태의 단말은DCI format을 통해 지시되는 “the number (#) of antenna ports of SRS indication field”, “CSI-RS frequency domain indication field”, “CSI-RS measurement indication field” 를 디코딩하여 각각의 해당 index 정보를 수신할 수 있다. 상기 field들이 RRC 시그널링으로 전송되는 경우, 단말은 RRC 시그널링에서 이미 해당 index 정보를 수신했을 수 있다.(2) Meanwhile, in the RRC Connected step, each UE decodes a DCI for itself in a downlink control zone (eg, xPDCCH zone) and recognizes indication information on the CSI-RS. The UE in the RRC_Connected state decodes “the number (#) of antenna ports of SRS indication field”, “CSI-RS frequency domain indication field” and “CSI-RS measurement indication field” indicated through the DCI format. Index information can be received. When the fields are transmitted through RRC signaling, the UE may have already received corresponding index information in RRC signaling.
(3) 단말이RRC 시그널링 및/또는 DCI field들을 통해 CSI-RS 정보를 인지하면, CSI-RS를 측정하여 채널 상태 정보를 생성하여 기지국에 피드백할 수 있다. (3) When the UE recognizes the CSI-RS information through the RRC signaling and / or DCI fields, the UE can measure the CSI-RS to generate channel state information and feed back to the base station.
CSI-RS time domain indication field가 ‘0’을 지시하는 경우, 단말은 xPDSCH존 내에 CSI-RS 영역이 존재하지 않음을 인지하여 xPDSCH존의 데이터만을 디코딩한다. CSI-RS time domain indication field가 ‘1’를 지시하는 경우, 단말은xPDSCH를 디코딩한 후, CSI-RS 영역에서 자신이 측정해야 하는 영역에서 CSI-RS를 측정한다. 측정 영역에 대한 정보는 “the number of antenna ports of CSI-RS indication field”, “CSI-RS frequency domain indication field”, “CSI-RS measurement indication field”에 의해 지시될 수 있다. When the CSI-RS time domain indication field indicates '0', the UE recognizes that there is no CSI-RS region in the xPDSCH zone and decodes only the data of the xPDSCH zone. If the CSI-RS time domain indication field indicates '1', the UE decodes the xPDSCH and then measures the CSI-RS in the area that the UE should measure in the CSI-RS region. Information about the measurement region may be indicated by the “the number of antenna ports of the CSI-RS indication field”, the “CSI-RS frequency domain indication field” and the “CSI-RS measurement indication field”.
(4) 단말은 CSI-RS에 기초하여 측정을 수행하고, 측정에 기초하여 생성된 채널 상태 정보를 상향링크 제어 존 (예를 들어, xPUCCH) 또는 상향링크 데이터 존 (예를 들어, xPUSCH) 을 통해 기지국으로 피드백할 수 있다.(4) The UE performs the measurement based on the CSI-RS and uses the channel state information generated based on the measurement to determine an uplink control zone (eg, xPUCCH) or uplink data zone (eg, xPUSCH). It can feed back to the base station.
상술한 방법들은 Self-contained subframe 구조를 예시로 설명하였으나, 기존의 LTE 또는 다른 통신 시스템에서도 적용될 수 있다. 또한, 상술한 방법들은 Stand-alone NR 동작을 위한 Self-contained subframe 구조를 예시로 설명하였으나, Non-stand-alone NR 동작을 위한 구조에서도 적용될 수 있다. 상술한 방법들은 DL control zone - Guard Period (GP) - UL control zone의 순서로 구성된 서브프레임의 경우를 예시하고 있으나 이에 한정되는 것은 아니고, 상향링크 전송 가능한 다른 형태의 서브프레임 에서도 적용될 수 있다. 상술한 방법들은 Short TTI 형태의 7개 심볼로 구성된 서브프레임의 경우에서 예시하였으나, 일반적인 TTI 또는 Long TTI 등, 심볼의 개수가 다르거나 하향링크 데이터 존의 크기 또는 개수가 다른 형태의 서브프레임에서도 적용될 수 있다. 상술한 방법들에서 CSI-RS를 위한 다양한 Indication filed가 예시되었으나, 다른 값 또는 다른 field 명칭으로 지시될 수도 있다.The above-described methods have been described as an example of a self-contained subframe structure, but may be applied to existing LTE or other communication systems. In addition, the above-described methods described the self-contained subframe structure for the stand-alone NR operation as an example, but may also be applied to the structure for the non-stand-alone NR operation. The above-described methods illustrate a case of a subframe configured in the order of DL control zone-Guard Period (GP)-UL control zone, but the present invention is not limited thereto and may be applied to other types of subframes capable of uplink transmission. The above-described methods are illustrated in the case of a subframe composed of seven symbols of a Short TTI type, but may also be applied to a subframe having a different number of symbols or a different size or number of downlink data zones, such as a general TTI or a Long TTI. Can be. Although various Indication files for CSI-RS have been illustrated in the above-described methods, they may be indicated by different values or different field names.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the essential features of the present invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
무선통신 시스템에서 CSI-RS를 수신하는 방법 및 이를 위한 장치는 3GPP LTE/LTE-A, 5G 시스템 등 다양한 무선통신 시스템에서 산업상으로 적용이 가능하다.The method and apparatus for receiving the CSI-RS in the wireless communication system can be applied industrially in various wireless communication systems such as 3GPP LTE / LTE-A, 5G system.

Claims (15)

  1. 무선통신 시스템에서 단말이 채널상태정보 참조신호(Channel Sates Information-Reference Signal, CSI-RS)를 수신하는 방법에 있어서,In a method for receiving a channel state information reference signal (CSI-RS) in a terminal in a wireless communication system,
    특정 서브프레임에 상기 CSI-RS를 위한 자원이 할당된 지 여부를 지시하는 정보를 포함하는 제어 정보를 수신하는 단계; 및Receiving control information including information indicating whether a resource for the CSI-RS is allocated to a specific subframe; And
    상기 특정 서브프레임의 데이터 존이 하향링크 데이터 존으로 할당되고 상기 제어 정보가 상기 특정 서브프레임에 상기 CSI-RS를 위한 자원이 할당됨을 지시하는 경우, 상기 제어 정보에 기초하여 상기 CSI-RS를 하향링크 제어 존에서 수신하는 단계를 포함하는, CSI-RS 수신 방법.When the data zone of the specific subframe is allocated to a downlink data zone and the control information indicates that resources for the CSI-RS are allocated to the specific subframe, the CSI-RS is downlinked based on the control information. Receiving in the link control zone.
  2. 제 1항에 있어서,The method of claim 1,
    상기 CSI-RS는 상기 하향링크 제어 존의 마지막 심볼에서 수신되는, CSI-RS 수신 방법.The CSI-RS is received in the last symbol of the downlink control zone.
  3. 제 1항에 있어서, The method of claim 1,
    상기 제어 정보는 상기 특정 서브프레임에서 수신되는, CSI-RS 수신 방법.The control information is received in the specific subframe.
  4. 제 1항에 있어서,The method of claim 1,
    상기 CSI-RS를 위한 자원은 상기 특정 서브프레임의 상기 하향링크 데이터 존에 할당되는, CSI-RS 수신 방법.The resource for the CSI-RS is allocated to the downlink data zone of the specific subframe.
  5. 제 1항에 있어서,The method of claim 1,
    상기 제어 정보는 상기 CSI-RS를 위한 안테나 포트의 개수를 지시하는 정보를 더 포함하는, CSI-RS 수신 방법.The control information further includes information indicating the number of antenna ports for the CSI-RS.
  6. 제 1항에 있어서,The method of claim 1,
    상기 제어 정보는 상기 CSI-RS가 할당된 자원의 위치에 대한 정보를 더 포함하는, CSI-RS 수신 방법.The control information further includes information on the location of the resource to which the CSI-RS is allocated.
  7. 제 6항에 있어서,The method of claim 6,
    상기 CSI-RS가 할당된 자원의 위치에 대한 정보는 주파수 도메인에서의 위치 정보인, CSI-RS 수신 방법.The information on the location of the resource to which the CSI-RS is allocated is location information in the frequency domain.
  8. 제 1항에 있어서,The method of claim 1,
    상기 CSI-RS를 상기 특정 서브프레임의 하향링크 제어 존에서 수신하는, CSI-RS 수신 방법.And receiving the CSI-RS in a downlink control zone of the specific subframe.
  9. 제 1항에 있어서,The method of claim 1,
    사전에 정의되거나 혹은 지시된 옵셋 값에 기초하여 상기 CSI-RS를 상기 특정 서브프레임에서 상기 옵셋 값에 해당하는 이후의 서브프레임에서 수신하는, CSI-RS 수신 방법.And receiving the CSI-RS in a subsequent subframe corresponding to the offset value in the specific subframe based on a predefined or indicated offset value.
  10. 제 1항에 있어서,The method of claim 1,
    상기 CSI-RS에 기초하여 채널 측정을 수행하는 단계; 및Performing channel measurement based on the CSI-RS; And
    상기 채널 측정에 따른 측정 결과를 상향링크 제어 존 또는 상향링크 데이터 존을 통해 전송하는 단계를 더 포함하는, CSI-RS 수신 방법.And transmitting the measurement result according to the channel measurement through an uplink control zone or an uplink data zone.
  11. 무선통신 시스템에서 채널상태정보 참조신호(Channel Sates Information-Reference Signal, CSI-RS)를 수신하기 위한 단말에 있어서,A terminal for receiving a channel state information reference signal (CSI-RS) in a wireless communication system,
    수신기; 및receiving set; And
    프로세서를 포함하되,Include processors,
    상기 프로세서는, The processor,
    상기 수신기가 특정 서브프레임에 상기 CSI-RS를 위한 자원이 할당된 지 여부를 지시하는 정보를 포함하는 제어 정보를 수신하도록 제어하고,Control the receiver to receive control information including information indicating whether a resource for the CSI-RS is allocated to a specific subframe,
    상기 특정 서브프레임의 데이터 존이 하향링크 데이터 존으로 할당되고 상기 제어 정보가 상기 특정 서브프레임에 상기 CSI-RS를 위한 자원이 할당됨을 지시하는 경우, 상기 제어 정보에 기초하여 상기 수신기가 상기 CSI-RS를 하향링크 제어 존에서 수신하도록 제어하는, 단말.When the data zone of the specific subframe is allocated to a downlink data zone and the control information indicates that a resource for the CSI-RS is allocated to the specific subframe, the receiver determines that the CSI- is based on the control information. A terminal for controlling to receive an RS in a downlink control zone.
  12. 제 11항에 있어서,The method of claim 11,
    상기 프로세서는 상기 수신기가 상기 CSI-RS를 상기 하향링크 제어 존의 마지막 심볼에서 수신하도록 제어하는, 단말.And the processor controls the receiver to receive the CSI-RS in the last symbol of the downlink control zone.
  13. 제 11항에 있어서,The method of claim 11,
    상기 프로세서는 상기 수신기가 상기 제어 정보를 상기 특정 서브프레임에서 수신하도록 제어하는, 단말.And the processor controls the receiver to receive the control information in the specific subframe.
  14. 제 11항에 있어서,The method of claim 11,
    상기 CSI-RS를 위한 자원은 상기 특정 서브프레임의 상기 하향링크 데이터 존에 할당되는, 단말.The resource for the CSI-RS is allocated to the downlink data zone of the specific subframe.
  15. 제 11항에 있어서,The method of claim 11,
    송신기를 더 포함하되,Further includes a transmitter,
    상기 프로세서는 상기 CSI-RS에 기초하여 채널 측정을 수행하고, 상기 송신기가 상기 채널 측정에 따른 측정 결과를 상향링크 제어 존 또는 상향링크 데이터 존을 통해 전송하도록 제어하는, 단말.The processor performs channel measurement based on the CSI-RS, and controls the transmitter to transmit a measurement result according to the channel measurement through an uplink control zone or an uplink data zone.
PCT/KR2017/003945 2016-06-03 2017-04-12 Method for receiving csi-rs in wireless communication system and apparatus therefor WO2017209391A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662345008P 2016-06-03 2016-06-03
US62/345,008 2016-06-03

Publications (1)

Publication Number Publication Date
WO2017209391A1 true WO2017209391A1 (en) 2017-12-07

Family

ID=60477690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003945 WO2017209391A1 (en) 2016-06-03 2017-04-12 Method for receiving csi-rs in wireless communication system and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2017209391A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662255A (en) * 2018-06-29 2020-01-07 中兴通讯股份有限公司 Method, base station and storage medium for channel state indication reference signal allocation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130208678A1 (en) * 2010-08-16 2013-08-15 Zte (Usa) Inc. Methods and systems for csi-rs resource allocation in lte-advance systems
US20150078195A1 (en) * 2009-03-16 2015-03-19 Panasonic Intellectual Property Corporation Of America Radio reception apparatus, radio transmission apparatus, and radio communication method
US20150244508A1 (en) * 2012-09-11 2015-08-27 Lg Electronics Inc. Method and apparatus for transmitting channel state information-reference signals in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150078195A1 (en) * 2009-03-16 2015-03-19 Panasonic Intellectual Property Corporation Of America Radio reception apparatus, radio transmission apparatus, and radio communication method
US20130208678A1 (en) * 2010-08-16 2013-08-15 Zte (Usa) Inc. Methods and systems for csi-rs resource allocation in lte-advance systems
US20150244508A1 (en) * 2012-09-11 2015-08-27 Lg Electronics Inc. Method and apparatus for transmitting channel state information-reference signals in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Discussion on Frame Structure for NR", RL-164032, 3GPP TSG RAN WG1 MEETING #85, 15 May 2016 (2016-05-15), Nanjing, China, XP051089779 *
NOKIA ET AL.: "Mam Components for Forward Compatible Frame Structure Design in NR", R1-165029, 3GPP TSG-RAN WG1 #85, 13 May 2016 (2016-05-13), Nanjing, P.R. China, XP051096684 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662255A (en) * 2018-06-29 2020-01-07 中兴通讯股份有限公司 Method, base station and storage medium for channel state indication reference signal allocation
CN110662255B (en) * 2018-06-29 2024-01-23 中兴通讯股份有限公司 Method, base station and storage medium for channel state indication reference signal allocation

Similar Documents

Publication Publication Date Title
EP3602907B1 (en) Single slot short pucch with support for intra slot frequency hopping
WO2016122254A1 (en) Methods and apparatus for csi measurement configuration and reporting on unlicensed spectrum
WO2013028044A2 (en) Method of performing direct communication between terminals, method of supporting same, and apparatus for same
WO2013009005A2 (en) Method of allocating a resource in a wireless communication system and device for same
WO2013141546A1 (en) Method and wireless device for transmitting data packet
WO2012150822A2 (en) Method for receiving downlink signal, and user device, and method for transmitting downlink signal, and base station
WO2010039003A2 (en) Method and apparatus for wireless resource allocation for relay in wireless communication system
WO2013055173A2 (en) Method in which a terminal transceives a signal in a wireless communication system and apparatus for same
WO2018084382A1 (en) Method for transmitting sr in wireless communication system and terminal therefor
WO2016159673A1 (en) Method for receiving downlink signal by means of unlicensed band in wireless communication system and device for same
WO2016056876A1 (en) Method and device for transmitting and receiving wireless signal in wireless communication system
WO2015126028A1 (en) Method for transreceiving signals using user-specific flexible tdd technology in wireless communication system and device for same
WO2015174805A1 (en) Method and apparatus for transmitting and receiving signal by device-to-device terminal in wireless communication system
WO2011031080A2 (en) Method and apparatus for performing communication in relay system
WO2018043997A1 (en) Method for transmitting and receiving multiplexed uplink control channel and localized sounding reference symbol and device therefor
WO2013137582A1 (en) Method for setting start symbol of downlink channel in wireless communication system and apparatus for same
WO2019156474A1 (en) Method and apparatus for configuring feedback signal for sidelink communication in wireless communication system
WO2016068642A1 (en) Method and apparatus for performing rrm measurements in unlicensed band in wireless communication system
WO2012141490A2 (en) Method for sending and receiving signals for alleviating inter-cell interference in a wireless communication system and a device therefor
WO2016143966A1 (en) Method for selecting hd mode or fd mode in wireless communication system supporting fdr scheme and apparatus therefor
WO2016200229A9 (en) Method and apparatus for supporting time division duplex for cellular internet-of-things in wireless communication system
WO2016159502A1 (en) Method for processing in-band multiplexing using fcp-ofdm scheme, and device therefor
WO2017175938A1 (en) Method for cell cyclic downlink transmission in wireless communication system and apparatus therefor
WO2012134123A2 (en) Backhaul link subframe structure in mobile communication system and method for transmitting information thereof
WO2017188486A1 (en) Method for receiving data by using 2d channel-based transmission scheme, and apparatus therefor

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806884

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806884

Country of ref document: EP

Kind code of ref document: A1