WO2017208648A1 - Communication device, communication method, and program - Google Patents

Communication device, communication method, and program Download PDF

Info

Publication number
WO2017208648A1
WO2017208648A1 PCT/JP2017/015488 JP2017015488W WO2017208648A1 WO 2017208648 A1 WO2017208648 A1 WO 2017208648A1 JP 2017015488 W JP2017015488 W JP 2017015488W WO 2017208648 A1 WO2017208648 A1 WO 2017208648A1
Authority
WO
WIPO (PCT)
Prior art keywords
received
communication
signal
counterpart device
propagation delay
Prior art date
Application number
PCT/JP2017/015488
Other languages
French (fr)
Japanese (ja)
Inventor
沢子 桐山
佐藤 雅典
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2017208648A1 publication Critical patent/WO2017208648A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals

Definitions

  • the present disclosure relates to a communication device, a communication method, and a program.
  • Patent Document 1 describes a technique that is supposed to provide a base station of a CDMA system that can reduce the failure of initial synchronization acquisition and stably estimate the position.
  • a TFCI transport format combination indicator
  • Patent Document 1 describes that position estimation is performed in accordance with propagation characteristics, but does not assume any correct synchronization detection when noise is large.
  • a position estimation unit that estimates a position of a communication partner device, a demodulation unit that demodulates a received signal received from the communication partner device based on a propagation delay time according to the position of the communication partner device, A communication device is provided.
  • estimating the position of the communication partner device demodulating the received signal received from the communication partner device based on the propagation delay time according to the position of the communication partner device; A communication method is provided.
  • the computer as means for estimating the position of the communication counterpart device, and means for demodulating the received signal received from the communication counterpart device based on the propagation delay time corresponding to the position of the communication counterpart device A program for functioning the program is provided.
  • a receiving unit that receives a reception signal from a communication counterpart device, a holding unit that holds data based on a reception signal received in the past, and a reception signal newly received from the communication counterpart device
  • a communication device comprising: a demodulator that demodulates the received signal newly received from the communication partner device using a portion common to the data by the received signal received in the past.
  • receiving a reception signal from a communication partner device holding data based on a reception signal received in the past, and among the reception signals newly received from the communication partner device, the past And demodulating the received signal newly received from the communication counterpart device using a portion common to the data by the received signal received in the communication method.
  • the past A program for causing a computer to function as means for demodulating the reception signal newly received from the communication counterpart device using a portion common to the data by the reception signal received at the same time is provided.
  • GPS data positional information
  • FIG. 1 is a schematic diagram illustrating a communication system 1000 according to each embodiment of the present disclosure.
  • the terminal 100 and the base station 300 are configured to be capable of wireless communication.
  • demodulation success is improved by performing demodulation using known information recognized on the base station 300 side.
  • a method will be described in which a propagation delay based on position information is used for demodulation as known information when base station 300 receives and demodulates data from terminal 100.
  • terminal 100 transmits data in a predetermined time slot and does not perform carrier sense.
  • FIG. 2 is a schematic diagram illustrating a configuration of the terminal 100. As illustrated in FIG. 2, the terminal 100 includes a wireless communication unit 101, a control unit 102, and a GPS receiving unit 103.
  • the wireless communication unit 101 transmits and receives wireless signals according to a predetermined frame format. More specifically, the wireless communication unit 101 performs reception processing of a radio signal transmitted from the base station 300 and transmission processing of a radio signal to the base station 300. More specifically, the radio communication unit 101 converts a radio signal (for example, a 920 MHz band radio signal) transmitted from the base station 300 into an electric signal by an antenna, and performs analog processing and down conversion on the electric signal. As a result, a baseband received signal is output. Also, the wireless communication unit 101 up-converts the baseband transmission signal supplied from the control unit 102, converts the electrical signal obtained by the up-conversion into a wireless signal using an antenna, and transmits the signal.
  • a radio signal for example, a 920 MHz band radio signal
  • the control unit 102 controls overall communication in the terminal 100.
  • the control unit 102 controls the wireless communication unit 101 to transmit data, acquire position information from the GPS receiving unit 103, and generate a transmission frame including the position information.
  • the GPS receiving unit 103 acquires position information and time information of the terminal 100 by processing satellite signals transmitted from GPS satellites.
  • the terminal 100 may include other sensors such as an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, and a pulse sensor in addition to the GPS receiving unit 103.
  • the control unit 102 acquires time information from the GPS receiving unit 103 and controls the timing at which the wireless communication unit 101 can transmit. Since terminal 100 transmits data in a predetermined time slot, based on the time information, terminal 100 transmits data within the time slot having a predetermined time. As a result, the location information of the terminal 100 is transmitted to the base station 300. As described above, the GPS receiving unit 103 receives the GPS signal and acquires the position information and time information of the terminal 100.
  • FIG. 3 is a schematic diagram showing a frame format of a signal transmitted by the terminal 100.
  • a preamble / sync (Preamble / Sync) is a predetermined fixed pattern.
  • the preamble / sync is used for signal detection and frame synchronization.
  • the PHY header (PHY Header) is a part in which information related to the physical frame is described. Examples of information on physical frames include the length of PHY Header and subsequent parts (MAC Header, Payload, CRC) and modulation scheme. On the receiving side, the subsequent part can be received according to the information of the PHY header.
  • the MAC header (MAC Header) is a part that describes address information of the sender and the receiver.
  • the MAC header describes the type of information described in the payload.
  • Payload is transmission data.
  • information for example, position information, temperature information, etc.
  • CRC Cyclic Redundancy Check
  • FIG. 4 is a schematic diagram showing the configuration of the base station 300.
  • the base station 300 includes a wireless communication unit 301, a control unit 302, a demodulation unit 303, propagation delay data 304, a storage unit 305, and a terminal location estimation unit 306.
  • Each component shown in FIG. 4 can be constituted by hardware or a central processing unit such as a CPU and a program (software) for causing it to function.
  • the program can be stored in a recording medium such as a memory provided in the base station 300.
  • a wireless communication unit 301 transmits and receives wireless signals according to a predetermined frame format.
  • the control unit 302 controls the wireless communication unit 301 to perform transmission and reception. More specifically, the wireless communication unit 301 performs reception processing of a wireless signal transmitted from the terminal 100 and transmission processing of a wireless signal to the terminal 100. More specifically, the wireless communication unit 301 converts a wireless signal (for example, a 920 MHz band wireless signal) transmitted from the terminal 100 into an electrical signal by an antenna, and performs analog processing and down conversion on the electrical signal. As a result, a baseband received signal is output. Also, the wireless communication unit 301 up-converts the baseband transmission signal supplied from the control unit 302, converts the electrical signal obtained by the up-conversion into a wireless signal using an antenna, and transmits the signal.
  • a wireless signal for example, a 920 MHz band wireless signal
  • the demodulator 303 cuts out the payload in the frame shown in FIG. 3 from the received signal based on the synchronization acquired based on the propagation delay data 304 described later. Then, the demodulator 303 tries to demodulate the payload. Whether the demodulation is successful or not is confirmed using the CRC shown in FIG. The demodulator 303 estimates and corrects the propagation path characteristics, and then performs error correction code decoding processing.
  • the propagation delay data 304 is a database in which a combination of position information such as longitude / latitude and a propagation delay is stored.
  • the propagation delay data 304 will be described in detail later with reference to FIG.
  • the position information sent from the terminal 100 is demodulated by the demodulator 303.
  • the storage unit 305 holds the position information sent from the terminal 100 obtained by the demodulation process.
  • the terminal position estimation unit 306 acquires the position information of the terminal 100 from the storage unit 305, and estimates the position where the terminal 100 currently exists.
  • the control unit 302 controls overall communication of the base station 300.
  • the control unit 302 controls the wireless communication unit 301 to perform transmission and reception, and also generates a transmission frame and performs determination based on the received information.
  • the control unit 302 controls the wireless communication unit 301 so that an ACK (reception confirmation signal) is transmitted to the terminal 100 that is the transmission source of the payload.
  • FIG. 5 is a flowchart showing processing performed at the base station 300.
  • the terminal position estimation unit 306 acquires the position information of the terminal 100 from the storage unit 305, and estimates the position where the terminal 100 currently exists from the history of the position information (step S401).
  • the demodulation unit 303 acquires the location information of the terminal 100 estimated by the terminal location estimation unit 306, compares the location information of the terminal 100 and the location information of the propagation delay data 304, and corresponds to the location information of the terminal 100.
  • a propagation delay time is acquired (step S402).
  • FIG. 6 is a schematic diagram showing the format of the propagation delay data 304.
  • the propagation delay data 304 includes position information represented by latitude (A1, A2) and longitude (B1, B2), and a propagation delay time (Delay 1,) of a point corresponding to the position information.
  • Delay 2, Delay 3, Delay 4) are stored.
  • the propagation delay data 304 is transmitted when there is a change in the relative positional relationship between the terminal 100 and the base station 300, the presence of an object that hinders communication, for example, when a new building is built. It can be updated if there is a change that affects the delay time.
  • a propagation delay occurs during communication according to the positional relationship between the terminal 100 and the base station 300.
  • the propagation delay time increases as the distance between the terminal 100 and the base station 300 increases. Further, depending on the positional relationship between the terminal 100 and the base station 300, when there is a building or the like that hinders communication, the propagation delay time increases. Since the position of base station 300 is fixed, propagation delay data 304 as shown in FIG. 6 can be acquired in advance according to the position information of terminal 100. In step S402 in FIG.
  • the propagation delay time (Delay 1, Delay 2, Delay 3, Delay 4) corresponding to the position of the terminal 100 is obtained by applying the position information of the terminal 100 to the propagation delay data 304 in FIG. 6. . If the position information estimated in step S401 and the latitude (A1, A2) and longitude (B1, B2) of the propagation delay data 304 do not completely match, a propagation delay time that matches the position information is calculated by interpolation processing. To do.
  • the start timing of the received frame is determined from the start time of the time slot and the acquired propagation delay time (step S403).
  • the time delayed by the propagation delay time from the start time of the time slot is the start of the frame received on base station 300 side.
  • the base station 300 can determine the frame start timing from the start time of the time slot and the propagation delay time, the normal process of detecting the frame start timing by frame synchronization is not necessary.
  • FIG. 7 is a flowchart showing in detail the demodulation processing in step S404 performed in the base station 300.
  • the demodulator 303 cuts out the received signal based on the start timing of the acquired frame, that is, the time delayed by the propagation delay time from the start time of the time slot, and extracts the preamble portion of the cut-out received signal and the known preamble signal.
  • the propagation path characteristic is estimated by using (Step S601).
  • step S602 the payload portion is cut out from the received signal based on the acquired frame start timing.
  • step S603 the frequency / phase error due to the estimated propagation path characteristic is corrected for the cut payload.
  • step S604 an error correction code decoding process is performed.
  • the success rate of decoding can be significantly increased.
  • the error correction code is included in the payload shown in FIG.
  • step S606 frame error detection is performed based on the CRC.
  • the decoding success rate can be greatly improved.
  • the start timing of the received frame can be obtained with high accuracy. It becomes possible. Therefore, the success rate of the demodulation process can be greatly increased.
  • Second Embodiment In the second embodiment, a part of data transmitted by the terminal 100 is used as known information.
  • the configuration of the terminal 100 and the frame format of the signal transmitted by the terminal 100 are the same as those in the first embodiment.
  • FIG. 8 is a schematic diagram showing a configuration of a base station 300 in the second embodiment.
  • FIG. 8 illustrates a configuration in which the propagation delay data 304 and the terminal location estimation unit 306 are excluded from the configuration of the base station 300 in the first embodiment illustrated in FIG. 4.
  • a part of data already transmitted from the terminal 100 is used as known information. Data that has already been transmitted from the terminal 100 is held in the storage unit 305.
  • the decoding process of the error correction code in the base station 300 will be described.
  • the processing described in the first embodiment may be used, or general demodulation processing may be used.
  • the corrected received signal is demodulated in accordance with the modulation method to obtain a received bit string of 1 and 0.
  • the received bit string acquired here may be either a hard decision or a soft decision.
  • FIG. 9 is a schematic diagram showing position information (GPS data) transmitted by the terminal 100.
  • the position information shown in FIG. 9 corresponds to the payload portion of FIG.
  • 4 bits are allocated for each digit of position information. For example, for latitude “035 degrees”, 4 bits are assigned to the first digit “0”, 4 bits are assigned to the next 1 digit “3”, and 4 bits are assigned to each digit.
  • FIG. 10 is a schematic diagram showing a trellis diagram of Viterbi decoding when the number of shift registers is 2 and the coding rate is 1/2 when decoding 7-bit data.
  • the probability of each path on the trellis diagram is calculated based on the received bit string, and decoding that enables error correction is realized by following the most probable path.
  • FIG. 11 is a schematic diagram showing a trellis diagram when the upper 3 bits are known in FIG.
  • the upper 3 bits are “1”, “1”, and “0”.
  • the number of paths to be determined is reduced and there are only four paths, so that the decoding success rate is improved.
  • the paths that need to be determined with certainty are reduced, and then the probability of each path is calculated and the most likely path is selected.
  • the data that has not changed from the data received immediately before that is known information is used for the decoding process, so that the decoding judgment error is reduced and the decoding succeeds.
  • the rate can be improved.
  • the data periodically transmitted by the terminal 100 is the position information.
  • any information with little temporal change can be applied to various information other than the position information. It can also be applied to humidity information.
  • FIG. 12 is a schematic diagram showing history data of decoding results.
  • FIG. 12 shows a database holding the reception time of data transmitted by the terminal 100 and the decoding result.
  • the received signal can be stored in the storage unit 305.
  • decoding is performed again using known information.
  • the position information where the terminal 100 was present at the time T2 is estimated from the data at the time T1 and the time T3 when the decoding is successful.
  • the propagation delay time data is acquired from the propagation delay data 304 and used for decoding.
  • the decoding of data that has failed in the past can be performed afterwards. It will be possible to succeed.
  • a position estimation unit that estimates the position of the communication partner apparatus;
  • a demodulator that demodulates a received signal received from the communication counterpart device, based on a propagation delay time corresponding to a position of the communication counterpart device;
  • a communication device comprising: (2) The communication device according to (1), wherein the demodulation unit demodulates the reception signal transmitted from the communication partner device based on a predetermined time slot.
  • (3) a holding unit that holds a relationship between the position of the communication partner device and the propagation delay time;
  • the demodulator acquires the propagation delay time according to the position of the communication counterpart device based on the relationship between the position of the communication counterpart device and the propagation delay time, according to (1) or (2).
  • the relationship between the position of the communication partner device and the propagation delay time is updated according to a relative positional relationship with the communication partner device or a change in a situation that inhibits communication.
  • 3. The communication device according to 3. (5) comprising a storage unit for storing the received signal;
  • a communication method comprising: (7) means for estimating the position of the communication partner device; Means for demodulating the received signal received from the communication counterpart device based on a propagation delay time corresponding to the position of the communication counterpart device; As a program to make the computer function as.
  • a receiving unit that receives a reception signal from the communication partner device; A holding unit for holding data based on received signals received in the past; A demodulator that demodulates the reception signal newly received from the communication counterpart device by using a portion of the reception signal newly received from the communication counterpart device that is common to data of the reception signal received in the past.
  • a communication device comprising: (9) The demodulator receives the received signal newly received from the communication counterpart device by using a part common to the data received by the received signal in the past and having no temporal change.
  • a storage unit for storing the received signal is provided, The communication device according to (8), wherein the demodulator demodulates the received signal that has failed in demodulation based on received signals received before and after the received signal.
  • a communication method comprising: (12) means for receiving a received signal from the communication partner device; Means for holding data from received signals received in the past; Means for demodulating the reception signal newly received from the communication counterpart device by utilizing a portion of the reception signal newly received from the communication counterpart device that is common to the data of the reception signal received in the past; , As a program to make the computer function as.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

[Problem] to improve the success rate of demodulation without being impacted by noise. [Solution] This communication device comprises: a position estimating unit that estimates the position of a communication counterpart device; and a demodulation unit that demodulates a reception signal received from the communication counterpart device on the basis of the propagation delay time according to the position of the communication counterpart device. As a result of this configuration, it is possible to perform demodulation with timing according to the propagation delay time, which in turn makes it possible to increase the success rate of demodulation without being impacted by noise.

Description

通信装置、通信方法、及びプログラムCOMMUNICATION DEVICE, COMMUNICATION METHOD, AND PROGRAM
 本開示は、通信装置、通信方法、及びプログラムに関する。 The present disclosure relates to a communication device, a communication method, and a program.
 従来、例えば下記の特許文献1には、初期同期捕捉の失敗を減らし、安定して位置推定できるCDMAシステムの基地局を提供することを想定した技術が記載されている。 Conventionally, for example, the following Patent Document 1 describes a technique that is supposed to provide a base station of a CDMA system that can reduce the failure of initial synchronization acquisition and stably estimate the position.
特開2002-152802号公報JP 2002-152802 A
 例えばCDMAシステムでは、フレームの開始タイミングを検知するための固定パターンによる比較に加えて、制御チャネルのTFCI(transport format combination indicator)を受信して、再符号化して比較することで、フレームの開始タイミングを検知する場合がある。 For example, in a CDMA system, in addition to a comparison using a fixed pattern for detecting the start timing of a frame, a TFCI (transport format combination indicator) of the control channel is received, re-encoded and compared, and the start timing of the frame May be detected.
 しかしながら、固定パターンによる比較に加えて、制御チャネルのTFCIの再符号化による比較を行ったとしても、ノイズが大きい場合は、正しく同期検出することができなくなる。ノイズが大きい場合は、フレーム開始タイミングの判別が困難になり、フレームの開始タイミングが誤って認識されてしまうと、復調の成功率が低下する問題がある。 However, even if the comparison is made by re-encoding the TFCI of the control channel in addition to the comparison by the fixed pattern, the synchronization cannot be correctly detected if the noise is large. When the noise is large, it is difficult to determine the frame start timing. If the frame start timing is erroneously recognized, there is a problem that the demodulation success rate decreases.
 上記特許文献1に記載されている技術では、伝搬特性に応じて位置推定を行うことが記載されているが、ノイズが大きい場合に正しく同期検出するは何ら想定していない。 The technique described in Patent Document 1 describes that position estimation is performed in accordance with propagation characteristics, but does not assume any correct synchronization detection when noise is large.
 そこで、ノイズの影響を受けることなく、復調の成功率を高めることが望まれていた。 Therefore, it was desired to increase the success rate of demodulation without being affected by noise.
 本開示によれば、通信相手装置の位置を推定する位置推定部と、前記通信相手装置の位置に応じた伝播遅延時間に基づいて、前記通信相手装置から受信した受信信号を復調する復調部と、を備える、通信装置が提供される。 According to the present disclosure, a position estimation unit that estimates a position of a communication partner device, a demodulation unit that demodulates a received signal received from the communication partner device based on a propagation delay time according to the position of the communication partner device, A communication device is provided.
 また、本開示によれば、通信相手装置の位置を推定することと、前記通信相手装置の位置に応じた伝播遅延時間に基づいて、前記通信相手装置から受信した受信信号を復調することと、を備える、通信方法が提供される。 Further, according to the present disclosure, estimating the position of the communication partner device, demodulating the received signal received from the communication partner device based on the propagation delay time according to the position of the communication partner device; A communication method is provided.
 また、本開示によれば、通信相手装置の位置を推定する手段、前記通信相手装置の位置に応じた伝播遅延時間に基づいて、前記通信相手装置から受信した受信信号を復調する手段、としてコンピュータを機能させるためのプログラムが提供される。 Further, according to the present disclosure, the computer as means for estimating the position of the communication counterpart device, and means for demodulating the received signal received from the communication counterpart device based on the propagation delay time corresponding to the position of the communication counterpart device A program for functioning the program is provided.
 また、本開示によれば、通信相手装置から受信信号を受信する受信部と、過去に受信した受信信号によるデータを保持する保持部と、前記通信相手装置から新たに受信した受信信号のうち、前記過去に受信した前記受信信号によるデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調する復調部と、を備える、通信装置が提供される。 Further, according to the present disclosure, a receiving unit that receives a reception signal from a communication counterpart device, a holding unit that holds data based on a reception signal received in the past, and a reception signal newly received from the communication counterpart device, There is provided a communication device comprising: a demodulator that demodulates the received signal newly received from the communication partner device using a portion common to the data by the received signal received in the past.
 また、本開示によれば、通信相手装置から受信信号を受信することと、過去に受信した受信信号によるデータを保持することと、前記通信相手装置から新たに受信した受信信号のうち、前記過去に受信した前記受信信号によるデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調することと、を備える、通信方法。が提供される。 In addition, according to the present disclosure, receiving a reception signal from a communication partner device, holding data based on a reception signal received in the past, and among the reception signals newly received from the communication partner device, the past And demodulating the received signal newly received from the communication counterpart device using a portion common to the data by the received signal received in the communication method. Is provided.
 また、本開示によれば、通信相手装置から受信信号を受信する手段と、過去に受信した受信信号によるデータを保持する手段と、前記通信相手装置から新たに受信した受信信号のうち、前記過去に受信した前記受信信号によるデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調する手段と、としてコンピュータを機能させるためのプログラムが提供される。 In addition, according to the present disclosure, among the means for receiving a reception signal from a communication partner apparatus, the means for holding data based on a reception signal received in the past, and the reception signal newly received from the communication partner apparatus, the past A program for causing a computer to function as means for demodulating the reception signal newly received from the communication counterpart device using a portion common to the data by the reception signal received at the same time is provided.
 以上説明したように本開示によれば、ノイズの影響を受けることなく、復調の成功率を高めることが可能となる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
As described above, according to the present disclosure, it is possible to increase the success rate of demodulation without being affected by noise.
Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の各実施形態に係る通信システムを示す模式図である。It is a mimetic diagram showing a communications system concerning each embodiment of this indication. 端末の構成を示す模式図である。It is a schematic diagram which shows the structure of a terminal. 端末が送信する信号のフレームフォーマットを示す模式図である。It is a schematic diagram which shows the frame format of the signal which a terminal transmits. 基地局の構成を示す模式図である。It is a schematic diagram which shows the structure of a base station. 基地局で行われる処理を示すフローチャートである。It is a flowchart which shows the process performed in a base station. 位置情報と伝搬遅延データの形式を示す模式図である。It is a schematic diagram which shows the format of position information and propagation delay data. 基地局における復調処理の処理を示すフローチャートである。It is a flowchart which shows the process of the demodulation process in a base station. 第2の実施形態における基地局の構成を示す模式図である。It is a schematic diagram which shows the structure of the base station in 2nd Embodiment. 端末が送信する位置情報(GPSデータ)を示す模式図である。It is a schematic diagram which shows the positional information (GPS data) which a terminal transmits. シフトレジスタ数2、符号化率2分の1の場合のビタビ復号化のトレリス線図を示す模式図である。It is a schematic diagram which shows the trellis diagram of Viterbi decoding in case the number of shift registers is 2 and the coding rate is 1/2. 上位3ビットが既知の場合のトレリス線図を示す模式図である。It is a schematic diagram which shows a trellis diagram when the upper 3 bits are known. 端末が送信したデータの受信時刻と復号結果を保持したデータベースを示す模式図である。It is a schematic diagram which shows the database which hold | maintained the reception time of the data which the terminal transmitted, and the decoding result.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 なお、説明は以下の順序で行うものとする。
 1.第1の実施形態
 1.1.通信システムの構成例
 1.2.基地局と端末の構成例
 1.3.基地局で行われる処理について
 2.第2の実施形態
 2.1.第2の実施形態における基地局の構成
 3.第3の実施形態
The description will be made in the following order.
1. 1. First embodiment 1.1. Configuration example of communication system 1.2. Configuration example of base station and terminal 1.3. 1. Processing performed at the base station Second Embodiment 2.1. Configuration of base station in second embodiment 2. Third embodiment
 1.第1の実施形態
 1.1.通信システムの構成例
 図1は、本開示の各実施形態に係る通信システム1000を示す模式図である。本実施形態に係る通信システム1000では、端末100と基地局300が無線通信可能に構成される。以下の各実施形態では、基地局300が端末100から受信した信号を復調する際に、基地局300側で認識している既知情報を利用して復調を行うことで、復調の成功率を向上させる。第1の実施形態では、基地局300が端末100からデータを受信して復調する際に、位置情報に基づく伝搬遅延を既知情報として復調に用いる方法を説明する。第1の実施形態では、端末100は、予め決められたタイムスロットでデータを送信し、キャリアセンスは行わないものとする。
1. 1. First embodiment 1.1. Configuration Example of Communication System FIG. 1 is a schematic diagram illustrating a communication system 1000 according to each embodiment of the present disclosure. In the communication system 1000 according to the present embodiment, the terminal 100 and the base station 300 are configured to be capable of wireless communication. In each of the following embodiments, when the base station 300 demodulates a signal received from the terminal 100, demodulation success is improved by performing demodulation using known information recognized on the base station 300 side. Let In the first embodiment, a method will be described in which a propagation delay based on position information is used for demodulation as known information when base station 300 receives and demodulates data from terminal 100. In the first embodiment, it is assumed that terminal 100 transmits data in a predetermined time slot and does not perform carrier sense.
 1.2.端末と基地局の構成例
 図2は、端末100の構成を示す模式図である。図2に示すように、端末100は、無線通信部101、制御部102、GPS受信部103を有して構成されている。
1.2. Configuration Example of Terminal and Base Station FIG. 2 is a schematic diagram illustrating a configuration of the terminal 100. As illustrated in FIG. 2, the terminal 100 includes a wireless communication unit 101, a control unit 102, and a GPS receiving unit 103.
 無線通信部101は、所定のフレームフォーマットに応じて、無線信号の送受信を行う。より具体的には、無線通信部101は、基地局300から送信された無線信号の受信処理、および基地局300への無線信号の送信処理を行う。より具体的に説明すると、無線通信部101は、基地局300から送信された無線信号(例えば、920MHz帯の無線信号)をアンテナにより電気信号に変換し、当該電気信号にアナログ処理およびダウンコンバージョンを施すことにより、ベースバンドの受信信号を出力する。また、無線通信部101は、制御部102から供給されるベースバンドの送信信号をアップコンバージョンし、アップコンバージョンにより得られた電気信号をアンテナにより無線信号に変換して送信する。 The wireless communication unit 101 transmits and receives wireless signals according to a predetermined frame format. More specifically, the wireless communication unit 101 performs reception processing of a radio signal transmitted from the base station 300 and transmission processing of a radio signal to the base station 300. More specifically, the radio communication unit 101 converts a radio signal (for example, a 920 MHz band radio signal) transmitted from the base station 300 into an electric signal by an antenna, and performs analog processing and down conversion on the electric signal. As a result, a baseband received signal is output. Also, the wireless communication unit 101 up-converts the baseband transmission signal supplied from the control unit 102, converts the electrical signal obtained by the up-conversion into a wireless signal using an antenna, and transmits the signal.
 制御部102は、端末100における通信全般を制御する。制御部102は、無線通信部101を制御し、データの送信を行うとともに、GPS受信部103から位置情報を取得し、位置情報を含む送信フレームを生成する。GPS受信部103は、GPS衛星から送信される衛星信号を処理することにより、端末100の位置情報および時間情報を取得する。なお、端末100は、GPS受信部103に加えて、加速度センサ、ジャイロセンサ、温度センサ、気圧センサ、音圧センサおよび脈拍センサなどの他のセンサを有してもよい。 The control unit 102 controls overall communication in the terminal 100. The control unit 102 controls the wireless communication unit 101 to transmit data, acquire position information from the GPS receiving unit 103, and generate a transmission frame including the position information. The GPS receiving unit 103 acquires position information and time information of the terminal 100 by processing satellite signals transmitted from GPS satellites. Note that the terminal 100 may include other sensors such as an acceleration sensor, a gyro sensor, a temperature sensor, an atmospheric pressure sensor, a sound pressure sensor, and a pulse sensor in addition to the GPS receiving unit 103.
 制御部102は、GPS受信部103から時間情報を取得し、無線通信部101が送信可能なタイミングを制御する。端末100は、予め決められたタイムスロットでデータを送信するため、時間情報に基づいて、予め時刻が決められたタイムスロットの時間内でデータを送信する。これにより、端末100の位置情報が基地局300に送信されることになる。上述の通り、GPS受信部103は、GPS信号を受信し、端末100の位置情報、時間情報を取得する。 The control unit 102 acquires time information from the GPS receiving unit 103 and controls the timing at which the wireless communication unit 101 can transmit. Since terminal 100 transmits data in a predetermined time slot, based on the time information, terminal 100 transmits data within the time slot having a predetermined time. As a result, the location information of the terminal 100 is transmitted to the base station 300. As described above, the GPS receiving unit 103 receives the GPS signal and acquires the position information and time information of the terminal 100.
 図3は、端末100が送信する信号のフレームフォーマットを示す模式図である。図3において、プリアンブル/シンク(Preamble/Sync)は、予め決められた固定パターンである。受信側において、プリアンブル/シンクは、信号の検出、フレームの同期に用いられる。 FIG. 3 is a schematic diagram showing a frame format of a signal transmitted by the terminal 100. In FIG. 3, a preamble / sync (Preamble / Sync) is a predetermined fixed pattern. On the receiving side, the preamble / sync is used for signal detection and frame synchronization.
 PHYヘッダー(PHY Header)は、物理フレームに関する情報を記載している部分である。物理フレームに関する情報の例としては、PHY Header以降の部分(MAC Header、Payload、CRC)の長さ、変調方式が挙げられる。受信側では、PHYヘッダーの情報に従い、以降の部分の受信を行うことができる。 The PHY header (PHY Header) is a part in which information related to the physical frame is described. Examples of information on physical frames include the length of PHY Header and subsequent parts (MAC Header, Payload, CRC) and modulation scheme. On the receiving side, the subsequent part can be received according to the information of the PHY header.
 MACヘッダー(MAC Header)は、送信者、受信者のアドレス情報を記載している部分である。また、MACヘッダーには、ペイロードに記載される情報の種類などが記載される。 The MAC header (MAC Header) is a part that describes address information of the sender and the receiver. The MAC header describes the type of information described in the payload.
 ペイロード(Payload)は、送信データである。例えば、端末100が無線センサー端末である場合、センサーで取得した情報(例えば、位置情報、温度情報など)が格納される。CRC(Cyclic Redundancy Check)は、フレームの誤り検出を可能とするものである。 Payload is transmission data. For example, when the terminal 100 is a wireless sensor terminal, information (for example, position information, temperature information, etc.) acquired by the sensor is stored. CRC (Cyclic Redundancy Check) enables frame error detection.
 図4は、基地局300の構成を示す模式図である。図4に示すように、基地局300は、無線通信部301、制御部302、復調部303、伝播遅延データ304、記憶部305、端末位置推定部306、を有して構成されている。なお、図4に示す各構成要素は、ハードウェア、又はCPUなどの中央演算処理装置とこれを機能させるためのプログラム(ソフトウェア)から構成することができる。各構成要素をCPUなどの中央演算処理装置とこれを機能させるためのプログラムから構成した場合、そのプログラムは、基地局300が備えるメモリなどの記録媒体に格納されることができる。 FIG. 4 is a schematic diagram showing the configuration of the base station 300. As illustrated in FIG. 4, the base station 300 includes a wireless communication unit 301, a control unit 302, a demodulation unit 303, propagation delay data 304, a storage unit 305, and a terminal location estimation unit 306. Each component shown in FIG. 4 can be constituted by hardware or a central processing unit such as a CPU and a program (software) for causing it to function. When each component is composed of a central processing unit such as a CPU and a program for causing it to function, the program can be stored in a recording medium such as a memory provided in the base station 300.
 図4において、無線通信部301は、所定のフレームフォーマットに応じて、無線信号の送受信を行う。制御部302は、無線通信部301を制御し、送信、受信を行う。より具体的には、無線通信部301は、端末100から送信された無線信号の受信処理、および端末100への無線信号の送信処理を行う。より具体的に説明すると、無線通信部301は、端末100から送信された無線信号(例えば、920MHz帯の無線信号)をアンテナにより電気信号に変換し、当該電気信号にアナログ処理およびダウンコンバージョンを施すことにより、ベースバンドの受信信号を出力する。また、無線通信部301は、制御部302から供給されるベースバンドの送信信号をアップコンバージョンし、アップコンバージョンにより得られた電気信号をアンテナにより無線信号に変換して送信する。 In FIG. 4, a wireless communication unit 301 transmits and receives wireless signals according to a predetermined frame format. The control unit 302 controls the wireless communication unit 301 to perform transmission and reception. More specifically, the wireless communication unit 301 performs reception processing of a wireless signal transmitted from the terminal 100 and transmission processing of a wireless signal to the terminal 100. More specifically, the wireless communication unit 301 converts a wireless signal (for example, a 920 MHz band wireless signal) transmitted from the terminal 100 into an electrical signal by an antenna, and performs analog processing and down conversion on the electrical signal. As a result, a baseband received signal is output. Also, the wireless communication unit 301 up-converts the baseband transmission signal supplied from the control unit 302, converts the electrical signal obtained by the up-conversion into a wireless signal using an antenna, and transmits the signal.
 復調部303は、後述する伝播遅延データ304に基づいて獲得された同期に基づき、受信信号から図3に示すフレームにおけるペイロードを切り出す。そして、復調部303は、ペイロードの復調を試みる。復調が成功したか否かは、図3に示すCRCを用いて確認される。復調部303は、伝搬路特性の推定、補正を行った後、誤り訂正符号の復号化処理を行う。 The demodulator 303 cuts out the payload in the frame shown in FIG. 3 from the received signal based on the synchronization acquired based on the propagation delay data 304 described later. Then, the demodulator 303 tries to demodulate the payload. Whether the demodulation is successful or not is confirmed using the CRC shown in FIG. The demodulator 303 estimates and corrects the propagation path characteristics, and then performs error correction code decoding processing.
 伝搬遅延データ304は、経度・緯度といった位置情報と伝搬遅延の組み合わせが保存されたデータベースである。伝搬遅延データ304については、図6を参照して後で詳細に説明する。 The propagation delay data 304 is a database in which a combination of position information such as longitude / latitude and a propagation delay is stored. The propagation delay data 304 will be described in detail later with reference to FIG.
 端末100から送られた位置情報は復調部303によって復調される。記憶部305は、復調処理によって得られた、端末100から送られた位置情報を保持する。端末位置推定部306は、記憶部305から端末100の位置情報を取得し、端末100が現時点で存在する位置の推定を行う。 The position information sent from the terminal 100 is demodulated by the demodulator 303. The storage unit 305 holds the position information sent from the terminal 100 obtained by the demodulation process. The terminal position estimation unit 306 acquires the position information of the terminal 100 from the storage unit 305, and estimates the position where the terminal 100 currently exists.
 制御部302は、基地局300の通信全般を制御する。制御部302は、無線通信部301を制御して送信、受信を行うとともに、送信フレームの生成、受信した情報に基づく判定を行う。制御部302は、復調部303がペイロードの復調に成功した場合、当該ペイロードの送信元の端末100にACK(受信確認信号)が送信されるよう、無線通信部301を制御する。 The control unit 302 controls overall communication of the base station 300. The control unit 302 controls the wireless communication unit 301 to perform transmission and reception, and also generates a transmission frame and performs determination based on the received information. When the demodulation unit 303 succeeds in demodulating the payload, the control unit 302 controls the wireless communication unit 301 so that an ACK (reception confirmation signal) is transmitted to the terminal 100 that is the transmission source of the payload.
 1.3.基地局で行われる処理について
 図5は、基地局300で行われる処理を示すフローチャートである。端末位置推定部306は、記憶部305から端末100の位置情報を取得し、位置情報の履歴から、現時点で端末100が存在する位置を推定する(ステップS401)。次に、復調部303は、端末位置推定部306が推定した端末100の位置情報を取得し、端末100の位置情報と伝搬遅延データ304の位置情報を比較し、端末100の位置情報に対応する伝搬遅延時間を取得する(ステップS402)。
1.3. Processing Performed at Base Station FIG. 5 is a flowchart showing processing performed at the base station 300. The terminal position estimation unit 306 acquires the position information of the terminal 100 from the storage unit 305, and estimates the position where the terminal 100 currently exists from the history of the position information (step S401). Next, the demodulation unit 303 acquires the location information of the terminal 100 estimated by the terminal location estimation unit 306, compares the location information of the terminal 100 and the location information of the propagation delay data 304, and corresponds to the location information of the terminal 100. A propagation delay time is acquired (step S402).
 図6は、伝搬遅延データ304の形式を示す模式図である。図6に示すように、伝搬遅延データ304には、緯度(A1,A2)、経度(B1,B2)で表される位置情報と、その位置情報に対応する地点の伝搬遅延時間(Delay 1,Delay 2,Delay 3,Delay 4)が格納されている。また、この伝搬遅延データ304は、端末100と基地局300との相対的な位置関係に変化があった場合、通信を阻害する物体の存在、例えば新たな建造物が建つなどした場合など、伝搬遅延時間に影響を及ぼす変化があった場合は更新され得る。 FIG. 6 is a schematic diagram showing the format of the propagation delay data 304. As shown in FIG. 6, the propagation delay data 304 includes position information represented by latitude (A1, A2) and longitude (B1, B2), and a propagation delay time (Delay 1,) of a point corresponding to the position information. Delay 2, Delay 3, Delay 4) are stored. The propagation delay data 304 is transmitted when there is a change in the relative positional relationship between the terminal 100 and the base station 300, the presence of an object that hinders communication, for example, when a new building is built. It can be updated if there is a change that affects the delay time.
 端末100と基地局300との通信では、端末100と基地局300との位置関係に応じて、通信の際の伝搬遅延が発生する。基本的には、端末100と基地局300との距離が大きくなるほど、伝搬遅延時間は大きくなる。また、端末100と基地局300との位置関係に応じて、通信を阻害する建物等が存在する場合は、伝搬遅延時間は大きくなる。基地局300の位置は固定であるため、端末100の位置情報に応じて図6に示すような伝搬遅延データ304を予め取得することができる。図5のステップS402では、端末100の位置情報を図6の伝搬遅延データ304に当てはめることで、端末100の位置に応じた伝搬遅延時間(Delay 1,Delay 2,Delay 3,Delay 4)を求める。なお、ステップS401で推定した位置情報と、伝搬遅延データ304の緯度(A1,A2)、経度(B1,B2)が完全に適合しない場合は、補間処理により位置情報に適合した伝搬遅延時間を算出する。 In communication between the terminal 100 and the base station 300, a propagation delay occurs during communication according to the positional relationship between the terminal 100 and the base station 300. Basically, the propagation delay time increases as the distance between the terminal 100 and the base station 300 increases. Further, depending on the positional relationship between the terminal 100 and the base station 300, when there is a building or the like that hinders communication, the propagation delay time increases. Since the position of base station 300 is fixed, propagation delay data 304 as shown in FIG. 6 can be acquired in advance according to the position information of terminal 100. In step S402 in FIG. 5, the propagation delay time (Delay 1, Delay 2, Delay 3, Delay 4) corresponding to the position of the terminal 100 is obtained by applying the position information of the terminal 100 to the propagation delay data 304 in FIG. 6. . If the position information estimated in step S401 and the latitude (A1, A2) and longitude (B1, B2) of the propagation delay data 304 do not completely match, a propagation delay time that matches the position information is calculated by interpolation processing. To do.
 次に、タイムスロットの開始時刻と取得した伝搬遅延時間から、受信したフレームの開始タイミングを決定する(ステップS403)。上述のように、端末100は予め開始時刻が定められたタイムスロットにより送信を行うため、タイムスロットの開始時刻から伝搬遅延時間の分だけ遅らせた時刻は、基地局300側で受信したフレームの開始タイミングに相当する。以上のように、基地局300側では、タイムスロットの開始時刻と伝搬遅延時間からフレームの開始タイミングを判別できるため、フレーム同期によりフレーム開始タイミングを検知する通常の処理は不要となる。 Next, the start timing of the received frame is determined from the start time of the time slot and the acquired propagation delay time (step S403). As described above, since terminal 100 performs transmission in a time slot having a predetermined start time, the time delayed by the propagation delay time from the start time of the time slot is the start of the frame received on base station 300 side. Corresponds to timing. As described above, since the base station 300 can determine the frame start timing from the start time of the time slot and the propagation delay time, the normal process of detecting the frame start timing by frame synchronization is not necessary.
 基地局300では、フレームの開始タイミングを判別できると、次に受信した当該フレームの復調処理を行う(ステップS404)。図7は、基地局300で行われるステップS404の復調処理を詳細に示すフローチャートである。復調部303は、取得したフレームの開始タイミング、すなわち、タイムスロットの開始時刻から伝搬遅延時間の分だけ遅らせた時刻に基づいて受信信号を切り出し、切り出した受信信号のプリアンブル部分と既知のプリアンブル信号を用いて、伝搬路特性を推定する(ステップS601)。 When the base station 300 can determine the start timing of the frame, the base station 300 performs demodulation processing on the next received frame (step S404). FIG. 7 is a flowchart showing in detail the demodulation processing in step S404 performed in the base station 300. The demodulator 303 cuts out the received signal based on the start timing of the acquired frame, that is, the time delayed by the propagation delay time from the start time of the time slot, and extracts the preamble portion of the cut-out received signal and the known preamble signal. The propagation path characteristic is estimated by using (Step S601).
 次に、ステップS602では、取得したフレームの開始タイミングに基づいて、受信信号からペイロード部分を切り出す。次に、ステップS603では、切り出したペイロードに対し、推定した伝搬路特性による周波数・位相誤差を補正する。次に、ステップS604では、誤り訂正符号の復号化処理を行う。この際、本実施形態では、既知の伝播遅延信号を用いてフレーム開始タイミングを検知できるため、復号化の成功率を大幅に高めることが可能となる。なお、誤り訂正符号は、図3に示すペイロードに含まれる。次に、ステップS606では、CRCに基づいて、フレーム誤り検出を行う。 Next, in step S602, the payload portion is cut out from the received signal based on the acquired frame start timing. Next, in step S603, the frequency / phase error due to the estimated propagation path characteristic is corrected for the cut payload. Next, in step S604, an error correction code decoding process is performed. At this time, in this embodiment, since the frame start timing can be detected using a known propagation delay signal, the success rate of decoding can be significantly increased. The error correction code is included in the payload shown in FIG. Next, in step S606, frame error detection is performed based on the CRC.
 以上の方法により、位置情報を基に、既知の情報である該当位置における伝搬遅延時間を用いることで、受信したフレームの開始タイミングを誤ることなく決定することができる。従って、復号の成功率を大幅に向上させることが可能となる。 By using the propagation delay time at the corresponding position, which is known information, based on the position information by the above method, the start timing of the received frame can be determined without error. Therefore, the decoding success rate can be greatly improved.
 以上説明したように第1の実施形態によれば、端末100の位置情報から得られる伝播遅延時間に基づいて受信フレームの同期を行うため、受信したフレームの開始タイミングを高精度に取得することが可能となる。従って、復調処理の成功率を大幅に高めることが可能となる。 As described above, according to the first embodiment, since the received frame is synchronized based on the propagation delay time obtained from the location information of the terminal 100, the start timing of the received frame can be obtained with high accuracy. It becomes possible. Therefore, the success rate of the demodulation process can be greatly increased.
 2.第2の実施形態
 第2の実施形態では、端末100が送信するデータの一部を既知情報として用いる。端末100の構成、端末100が送信する信号のフレームフォーマットは第1の実施形態と同等である。
2. Second Embodiment In the second embodiment, a part of data transmitted by the terminal 100 is used as known information. The configuration of the terminal 100 and the frame format of the signal transmitted by the terminal 100 are the same as those in the first embodiment.
 2.1.第2の実施形態における基地局の構成
 図8は、第2の実施形態における基地局300の構成を示す模式図である。図8では、図4に示した第1の実施形態における基地局300の構成から、伝搬遅延データ304、端末位置推定部306を除いた構成を示している。
2.1. Configuration of Base Station in Second Embodiment FIG. 8 is a schematic diagram showing a configuration of a base station 300 in the second embodiment. FIG. 8 illustrates a configuration in which the propagation delay data 304 and the terminal location estimation unit 306 are excluded from the configuration of the base station 300 in the first embodiment illustrated in FIG. 4.
 第2の実施形態では、既に端末100から送信されているデータの一部を既知情報として用いる。既に端末100から送信されているデータは、記憶部305に保持されている。 In the second embodiment, a part of data already transmitted from the terminal 100 is used as known information. Data that has already been transmitted from the terminal 100 is held in the storage unit 305.
 以下では、基地局300における誤り訂正符号の復号化処理について説明する。誤り訂正符号の復号化処理以外の復調処理は、第1の実施形態で説明した処理を用いても良いし、一般的な復調処理を用いても良い。 Hereinafter, the decoding process of the error correction code in the base station 300 will be described. For demodulation processing other than error correction code decoding processing, the processing described in the first embodiment may be used, or general demodulation processing may be used.
 先ず、補正された受信信号に対し変調方式に合った復調を行い、1,0の受信ビット列を取得する。ここで取得する受信ビット列は硬判定でも軟判定でもどちらでもよい。 First, the corrected received signal is demodulated in accordance with the modulation method to obtain a received bit string of 1 and 0. The received bit string acquired here may be either a hard decision or a soft decision.
 次に、既知部分のビット情報を用いて、復号を行う。ここでは、端末100が基地局300へ位置情報を送るものとする。図9は、端末100が送信する位置情報(GPSデータ)を示す模式図である。図9に示す位置情報は、図3のペイロードの部分に対応する。図9に示す例では、位置情報1桁につき4ビットを割り当てる。例えば、緯度の「035度」について、最初の1桁の“0”について4ビットを割り当て、次の1桁の“3”についても4ビットを割り当て、各桁について4ビットを割り当てる。 Next, decoding is performed using the bit information of the known part. Here, it is assumed that terminal 100 sends position information to base station 300. FIG. 9 is a schematic diagram showing position information (GPS data) transmitted by the terminal 100. The position information shown in FIG. 9 corresponds to the payload portion of FIG. In the example shown in FIG. 9, 4 bits are allocated for each digit of position information. For example, for latitude “035 degrees”, 4 bits are assigned to the first digit “0”, 4 bits are assigned to the next 1 digit “3”, and 4 bits are assigned to each digit.
 この場合、緯度の上位12ビットで表される「035度」は、端末100が南北に約111キロメートル程度移動しないと変化しない。また、経度の上位12ビットで表される「139度」は、端末100が位置する緯度によって異なるが、端末100が東西に約20~111キロメートル程度移動しないと変化しない。よって、端末100が数分に1回の頻度で位置情報を送信する場合、緯度・経度の上位12ビットは直前に受信した情報から変化しないと考えられ、既知情報として使用することが可能である。そして、緯度・経度の上位12ビットを既知情報として復調を行うことで、復調の成功率を大幅に高めることが可能である。 In this case, “035 degrees” represented by the upper 12 bits of latitude does not change unless the terminal 100 moves about 111 kilometers from north to south. Further, “139 degrees” represented by the upper 12 bits of longitude varies depending on the latitude at which the terminal 100 is located, but does not change unless the terminal 100 moves about 20 to 111 kilometers from east to west. Therefore, when the terminal 100 transmits position information at a frequency of once every few minutes, it is considered that the upper 12 bits of latitude and longitude do not change from the information received immediately before, and can be used as known information. . By demodulating the upper 12 bits of latitude / longitude as known information, the success rate of demodulation can be significantly increased.
 復調処理の流れは、第1の実施形態で説明した図7と同様である。例えば、図7のステップS604では、誤り訂正符号の復号化として、ビタビ復号化を行うことができる。図10は、7ビットのデータを復号する場合に、シフトレジスタ数2、符号化率2分の1の場合のビタビ復号化のトレリス線図を示す模式図である。ビタビ復号では、受信ビット列に基づいて、トレリス線図上の各パスの確からしさを計算し、最も確からしいパスを辿ることで誤り訂正を可能とした復号を実現している。 The flow of demodulation processing is the same as that in FIG. 7 described in the first embodiment. For example, in step S604 of FIG. 7, Viterbi decoding can be performed as decoding of the error correction code. FIG. 10 is a schematic diagram showing a trellis diagram of Viterbi decoding when the number of shift registers is 2 and the coding rate is 1/2 when decoding 7-bit data. In Viterbi decoding, the probability of each path on the trellis diagram is calculated based on the received bit string, and decoding that enables error correction is realized by following the most probable path.
 図10に示すように、“0”と“1”の組み合わせが7ビットある場合、図10に示すような多数のパスが存在し、最も確からしいパスによっても復号が成功しない可能性がある。 As shown in FIG. 10, when the combination of “0” and “1” has 7 bits, there are a large number of paths as shown in FIG. 10, and decoding may not succeed even with the most probable path.
 図11は、図10において、上位3ビットが既知の場合のトレリス線図を示す模式図である。図11の例では、上位3ビットが“1”,“1”,“0”である場合を示している。この場合、判定するパスが減り、パスは4つのみになるため、復号の成功率が向上する。このように、既知部分のビット列をトレリス線図に適応することで、確からしさの判定が必要なパスを削減してから、各パスの確からしさの計算、最も確からしいパスの選択を行う。 FIG. 11 is a schematic diagram showing a trellis diagram when the upper 3 bits are known in FIG. In the example of FIG. 11, the upper 3 bits are “1”, “1”, and “0”. In this case, the number of paths to be determined is reduced and there are only four paths, so that the decoding success rate is improved. In this way, by applying the bit string of the known part to the trellis diagram, the paths that need to be determined with certainty are reduced, and then the probability of each path is calculated and the most likely path is selected.
 以上の方法により、第2の実施形態によれば、既知の情報である直前に受信したデータから変化のない部分のデータを復号処理に用いることで、復号の判定誤りを低下させ、復号の成功率を向上させることが可能となる。 By the above method, according to the second embodiment, the data that has not changed from the data received immediately before that is known information is used for the decoding process, so that the decoding judgment error is reduced and the decoding succeeds. The rate can be improved.
 なお、上述した例では、端末100が定期的に送信するデータを位置情報としたが、時間的な変化が少ない情報であれば位置情報以外の各種情報に適用することができ、例えば温度情報や湿度情報などに適用することも可能である。 In the above-described example, the data periodically transmitted by the terminal 100 is the position information. However, any information with little temporal change can be applied to various information other than the position information. It can also be applied to humidity information.
 3.第3の実施形態
 第1の実施形態、第2の実施形態では、受信信号に対してリアルタイムに既知情報を用いて復号する手法について説明したが、第3の実施形態では、受信信号をバッファリングしておき、任意のタイミングで、任意の時刻に受信した信号に対し、既知情報を用いた復号を行う。
3. Third Embodiment In the first embodiment and the second embodiment, the method of decoding received signals in real time using known information has been described. In the third embodiment, received signals are buffered. In addition, decoding using known information is performed on a signal received at an arbitrary time at an arbitrary timing.
 図12は、復号結果の履歴データを示す模式図である。図12は、端末100が送信したデータの受信時刻と復号結果を保持したデータベースを示している。受信信号は、記憶部305に記憶しておくことができる。図12の例では、時刻T2に受信したデータの復号に失敗しているため、既知情報を用いて再度復号を行う。 FIG. 12 is a schematic diagram showing history data of decoding results. FIG. 12 shows a database holding the reception time of data transmitted by the terminal 100 and the decoding result. The received signal can be stored in the storage unit 305. In the example of FIG. 12, since decoding of the data received at time T2 has failed, decoding is performed again using known information.
 第1の実施形態で説明した、位置情報に基づく伝搬遅延時間を用いる場合は、復号に成功している時刻T1、時刻T3のデータより時刻T2に端末100が存在していた位置情報を推定し、伝搬遅延データ304より伝搬遅延時間データを取得して、復号に用いる。 When the propagation delay time based on the position information described in the first embodiment is used, the position information where the terminal 100 was present at the time T2 is estimated from the data at the time T1 and the time T3 when the decoding is successful. The propagation delay time data is acquired from the propagation delay data 304 and used for decoding.
 また、第2の実施形態で説明した、変化のない部分のデータを用いる場合は、復号に成功している時刻T1、時刻T3のデータより、時刻T2に端末100が送信したデータと変化のない部分を復号に用いる。 In addition, when using the part of the data that does not change as described in the second embodiment, there is no change from the data transmitted by the terminal 100 at time T2 from the data at time T1 and time T3 that have been successfully decoded. The part is used for decoding.
 以上説明したように第3の実施形態によれば、第1及び第2の実施形態で説明した既知情報を用いて再度復号を行うことで、過去に復号に失敗したデータの復号を事後的に成功させることが可能となる。 As described above, according to the third embodiment, by performing decoding again using the known information described in the first and second embodiments, the decoding of data that has failed in the past can be performed afterwards. It will be possible to succeed.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1) 通信相手装置の位置を推定する位置推定部と、
 前記通信相手装置の位置に応じた伝播遅延時間に基づいて、前記通信相手装置から受信した受信信号を復調する復調部と、
 を備える、通信装置。
(2) 前記復調部は、予め定められたタイムスロットに基づいて前記通信相手装置から送信された前記受信信号を復調する、前記(1)に記載の通信装置。
(3) 前記通信相手装置の位置と前記伝播遅延時間との関係を保持する保持部を備え、
 前記復調部は、前記通信相手装置の位置と前記伝播遅延時間との関係に基づいて、前記通信相手装置の位置に応じた前記伝播遅延時間を取得する、前記(1)又は(2)に記載の通信装置。
(4) 前記通信相手装置の位置と前記伝播遅延時間との関係は、前記通信相手装置との相対的な位置関係、又は通信を阻害するような状況の変化に応じて更新される、請求項3に記載の通信装置。
(5) 前記受信信号を記憶する記憶部を備え、
 前記復調部は、復調に失敗した前記受信信号を、当該受信信号の前後に受信した受信信号に基づいて事後的に復調する、前記(1)~(4)のいずれかに記載の通信装置。
(6) 通信相手装置の位置を推定することと、
 前記通信相手装置の位置に応じた伝播遅延時間に基づいて、前記通信相手装置から受信した受信信号を復調することと、
 を備える、通信方法。
(7) 通信相手装置の位置を推定する手段、
 前記通信相手装置の位置に応じた伝播遅延時間に基づいて、前記通信相手装置から受信した受信信号を復調する手段、
 としてコンピュータを機能させるためのプログラム。
(8) 通信相手装置から受信信号を受信する受信部と、
 過去に受信した受信信号によるデータを保持する保持部と、
 前記通信相手装置から新たに受信した受信信号のうち、前記過去に受信した前記受信信号によるデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調する復調部と、
 を備える、通信装置。
(9) 前記復調部は、前記過去に受信した前記受信信号によるデータであって、時間的な変化の無いデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調する、前記(8)に記載の通信装置。
(10) 前記受信信号を記憶する記憶部を備え、
 前記復調部は、復調に失敗した前記受信信号を、当該受信信号の前後に受信した受信信号に基づいて事後的に復調する、前記(8)に記載の通信装置。
(11) 通信相手装置から受信信号を受信することと、
 過去に受信した受信信号によるデータを保持することと、
 前記通信相手装置から新たに受信した受信信号のうち、前記過去に受信した前記受信信号によるデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調することと、
 を備える、通信方法。
(12) 通信相手装置から受信信号を受信する手段と、
 過去に受信した受信信号によるデータを保持する手段と、
 前記通信相手装置から新たに受信した受信信号のうち、前記過去に受信した前記受信信号によるデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調する手段と、
 としてコンピュータを機能させるためのプログラム。
The following configurations also belong to the technical scope of the present disclosure.
(1) a position estimation unit that estimates the position of the communication partner apparatus;
A demodulator that demodulates a received signal received from the communication counterpart device, based on a propagation delay time corresponding to a position of the communication counterpart device;
A communication device comprising:
(2) The communication device according to (1), wherein the demodulation unit demodulates the reception signal transmitted from the communication partner device based on a predetermined time slot.
(3) a holding unit that holds a relationship between the position of the communication partner device and the propagation delay time;
The demodulator acquires the propagation delay time according to the position of the communication counterpart device based on the relationship between the position of the communication counterpart device and the propagation delay time, according to (1) or (2). Communication equipment.
(4) The relationship between the position of the communication partner device and the propagation delay time is updated according to a relative positional relationship with the communication partner device or a change in a situation that inhibits communication. 3. The communication device according to 3.
(5) comprising a storage unit for storing the received signal;
The communication device according to any one of (1) to (4), wherein the demodulator demodulates the received signal that has failed in demodulation based on received signals received before and after the received signal.
(6) estimating the position of the communication partner device;
Demodulating a received signal received from the communication counterpart device based on a propagation delay time corresponding to the position of the communication counterpart device;
A communication method comprising:
(7) means for estimating the position of the communication partner device;
Means for demodulating the received signal received from the communication counterpart device based on a propagation delay time corresponding to the position of the communication counterpart device;
As a program to make the computer function as.
(8) a receiving unit that receives a reception signal from the communication partner device;
A holding unit for holding data based on received signals received in the past;
A demodulator that demodulates the reception signal newly received from the communication counterpart device by using a portion of the reception signal newly received from the communication counterpart device that is common to data of the reception signal received in the past. When,
A communication device comprising:
(9) The demodulator receives the received signal newly received from the communication counterpart device by using a part common to the data received by the received signal in the past and having no temporal change. The communication device according to (8), wherein the communication device is demodulated.
(10) A storage unit for storing the received signal is provided,
The communication device according to (8), wherein the demodulator demodulates the received signal that has failed in demodulation based on received signals received before and after the received signal.
(11) receiving a reception signal from the communication partner device;
Holding data from received signals received in the past;
Demodulating the reception signal newly received from the communication counterpart device using a portion of the reception signal newly received from the communication counterpart device that is common to the data of the reception signal received in the past; ,
A communication method comprising:
(12) means for receiving a received signal from the communication partner device;
Means for holding data from received signals received in the past;
Means for demodulating the reception signal newly received from the communication counterpart device by utilizing a portion of the reception signal newly received from the communication counterpart device that is common to the data of the reception signal received in the past; ,
As a program to make the computer function as.
 300  基地局
 301  無線通信部
 303  復調部
 304  伝播遅延データ
 305  記憶部
 306  端末位置推定部
300 base station 301 wireless communication unit 303 demodulation unit 304 propagation delay data 305 storage unit 306 terminal position estimation unit

Claims (12)

  1.  通信相手装置の位置を推定する位置推定部と、
     前記通信相手装置の位置に応じた伝播遅延時間に基づいて、前記通信相手装置から受信した受信信号を復調する復調部と、
     を備える、通信装置。
    A position estimation unit for estimating the position of the communication partner device;
    A demodulator that demodulates a received signal received from the communication counterpart device, based on a propagation delay time corresponding to a position of the communication counterpart device;
    A communication device comprising:
  2.  前記復調部は、予め定められたタイムスロットに基づいて前記通信相手装置から送信された前記受信信号を復調する、請求項1に記載の通信装置。 The communication device according to claim 1, wherein the demodulation unit demodulates the received signal transmitted from the communication partner device based on a predetermined time slot.
  3.  前記通信相手装置の位置と前記伝播遅延時間との関係を保持する保持部を備え、
     前記復調部は、前記通信相手装置の位置と前記伝播遅延時間との関係に基づいて、前記通信相手装置の位置に応じた前記伝播遅延時間を取得する、請求項1に記載の通信装置。
    A holding unit for holding the relationship between the position of the communication counterpart device and the propagation delay time;
    The communication device according to claim 1, wherein the demodulation unit acquires the propagation delay time corresponding to the position of the communication counterpart device based on a relationship between the position of the communication counterpart device and the propagation delay time.
  4.  前記通信相手装置の位置と前記伝播遅延時間との関係は、前記通信相手装置との相対的な位置関係、又は通信を阻害するような状況の変化に応じて更新される、請求項3に記載の通信装置。 The relationship between the position of the communication partner device and the propagation delay time is updated according to a relative positional relationship with the communication partner device or a change in a situation that inhibits communication. Communication equipment.
  5.  前記受信信号を記憶する記憶部を備え、
     前記復調部は、復調に失敗した前記受信信号を、当該受信信号の前後に受信した受信信号に基づいて事後的に復調する、請求項1に記載の通信装置。
    A storage unit for storing the received signal;
    The communication apparatus according to claim 1, wherein the demodulator demodulates the received signal that has failed in demodulation based on received signals received before and after the received signal.
  6.  通信相手装置の位置を推定することと、
     前記通信相手装置の位置に応じた伝播遅延時間に基づいて、前記通信相手装置から受信した受信信号を復調することと、
     を備える、通信方法。
    Estimating the position of the communication partner device;
    Demodulating a received signal received from the communication counterpart device based on a propagation delay time corresponding to the position of the communication counterpart device;
    A communication method comprising:
  7.  通信相手装置の位置を推定する手段、
     前記通信相手装置の位置に応じた伝播遅延時間に基づいて、前記通信相手装置から受信した受信信号を復調する手段、
     としてコンピュータを機能させるためのプログラム。
    Means for estimating the position of the communication partner device;
    Means for demodulating the received signal received from the communication counterpart device based on a propagation delay time corresponding to the position of the communication counterpart device;
    As a program to make the computer function as.
  8.  通信相手装置から受信信号を受信する受信部と、
     過去に受信した受信信号によるデータを保持する保持部と、
     前記通信相手装置から新たに受信した受信信号のうち、前記過去に受信した前記受信信号によるデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調する復調部と、
     を備える、通信装置。
    A receiving unit for receiving a received signal from a communication partner device;
    A holding unit for holding data based on received signals received in the past;
    A demodulator that demodulates the reception signal newly received from the communication counterpart device by using a portion of the reception signal newly received from the communication counterpart device that is common to data of the reception signal received in the past. When,
    A communication device comprising:
  9.  前記復調部は、前記過去に受信した前記受信信号によるデータであって、時間的な変化の無いデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調する、請求項8に記載の通信装置。 The demodulating unit demodulates the received signal newly received from the communication counterpart device using a portion in common with the data received by the received signal received in the past and having no temporal change. The communication apparatus according to claim 8.
  10.  前記受信信号を記憶する記憶部を備え、
     前記復調部は、復調に失敗した前記受信信号を、当該受信信号の前後に受信した受信信号に基づいて事後的に復調する、請求項8に記載の通信装置。
    A storage unit for storing the received signal;
    The communication apparatus according to claim 8, wherein the demodulator demodulates the received signal that has failed in demodulation based on received signals received before and after the received signal.
  11.  通信相手装置から受信信号を受信することと、
     過去に受信した受信信号によるデータを保持することと、
     前記通信相手装置から新たに受信した受信信号のうち、前記過去に受信した前記受信信号によるデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調することと、
     を備える、通信方法。
    Receiving a received signal from a communication partner device;
    Holding data from received signals received in the past;
    Demodulating the reception signal newly received from the communication counterpart device using a portion of the reception signal newly received from the communication counterpart device that is common to the data of the reception signal received in the past; ,
    A communication method comprising:
  12.  通信相手装置から受信信号を受信する手段と、
     過去に受信した受信信号によるデータを保持する手段と、
     前記通信相手装置から新たに受信した受信信号のうち、前記過去に受信した前記受信信号によるデータと共通する部分を利用して、前記通信相手装置から新たに受信した前記受信信号を復調する手段と、
     としてコンピュータを機能させるためのプログラム。
    Means for receiving a received signal from a communication partner device;
    Means for holding data from received signals received in the past;
    Means for demodulating the reception signal newly received from the communication counterpart device by utilizing a portion of the reception signal newly received from the communication counterpart device that is common to the data of the reception signal received in the past; ,
    As a program to make the computer function as.
PCT/JP2017/015488 2016-06-01 2017-04-17 Communication device, communication method, and program WO2017208648A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016109984A JP6896377B2 (en) 2016-06-01 2016-06-01 Communication equipment, communication methods, and programs
JP2016-109984 2016-06-01

Publications (1)

Publication Number Publication Date
WO2017208648A1 true WO2017208648A1 (en) 2017-12-07

Family

ID=60478284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015488 WO2017208648A1 (en) 2016-06-01 2017-04-17 Communication device, communication method, and program

Country Status (2)

Country Link
JP (1) JP6896377B2 (en)
WO (1) WO2017208648A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102419773B1 (en) * 2018-01-31 2022-07-13 다이니폰 인사츠 가부시키가이샤 Thermal transfer sheet, coating solution for release layer, and method for manufacturing thermal transfer sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184433A (en) * 1998-12-11 2000-06-30 Nec Corp Radio channel multiplex communication system in cdma mobile communication system
JP2007180925A (en) * 2005-12-28 2007-07-12 Fujitsu Ltd Mobile terminal and channel compensation method for the mobile terminal
JP2010178355A (en) * 2010-03-18 2010-08-12 Fujitsu Ltd Radio communication system and radio communication method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH057176A (en) * 1991-06-26 1993-01-14 Mitsubishi Electric Corp Mobile station radio equipment
JPH11308165A (en) * 1998-04-20 1999-11-05 Matsushita Electric Ind Co Ltd Cdma base station device and its communicating method
US6470057B1 (en) * 1998-10-09 2002-10-22 Cwill Telecommunications, Inc. Method for timing recovery and compensation in time-division-duplex wireless communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000184433A (en) * 1998-12-11 2000-06-30 Nec Corp Radio channel multiplex communication system in cdma mobile communication system
JP2007180925A (en) * 2005-12-28 2007-07-12 Fujitsu Ltd Mobile terminal and channel compensation method for the mobile terminal
JP2010178355A (en) * 2010-03-18 2010-08-12 Fujitsu Ltd Radio communication system and radio communication method

Also Published As

Publication number Publication date
JP2017216615A (en) 2017-12-07
JP6896377B2 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
JP4713045B2 (en) Modulation blind detection method and system
US6456675B2 (en) Diversity reception employing periodic testing
US8155247B2 (en) Message decoding with a priori information and soft combining
US9172522B2 (en) Data transmitter and data receiver
AU2004310539B2 (en) Signal regeneration
JP3582581B2 (en) Channel estimation method
JP2009278536A (en) Wireless communication system, reception apparatus and transmission apparatus
KR100895498B1 (en) Method and apparatus of compensating for signal receiving error at receiver in packet-based communication system
WO2017103557A1 (en) Radio communication
WO2009076901A1 (en) Signal processing method and device base on automatic frequency control
US9088942B2 (en) Frequency offset estimation for early detection/decoding
WO2017208648A1 (en) Communication device, communication method, and program
JP2009130801A (en) Helicopter-satellite communication system, helicopter-carried communication apparatus used therefor and ground station communication apparatus
US6901120B2 (en) Method and apparatus for iterative parameter estimation
EP1531556A1 (en) Data reception device and data reception method
RU2515227C2 (en) Method and system for determining packet message signal
Cao et al. Impact of imperfect channel state information on ARQ schemes over Rayleigh fading channels
KR20160010060A (en) Apparatus for detecting start of frame delimiter and method thereof
WO2017208583A1 (en) Communication device, information processing device, communication method and information processing method
JP5070439B2 (en) Wireless device and wireless network provided with the same
JP3052023B2 (en) Diversity wireless transmission and reception system
JP2015056869A (en) Base station and communication control method
JP6051959B2 (en) Communication method and communication apparatus
Gallinaro et al. Improving frequency recovery in a DVB-RCS pilotless system via early decoding of different frequency estimation hypothesis
WO2014152583A2 (en) Hf communication system with decoding operations and related methods

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806208

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806208

Country of ref document: EP

Kind code of ref document: A1