WO2017200313A1 - Method for manufacturing water treatment separator, water treatment separator manufactured using same, and water treatment module comprising water treatment separator - Google Patents

Method for manufacturing water treatment separator, water treatment separator manufactured using same, and water treatment module comprising water treatment separator Download PDF

Info

Publication number
WO2017200313A1
WO2017200313A1 PCT/KR2017/005159 KR2017005159W WO2017200313A1 WO 2017200313 A1 WO2017200313 A1 WO 2017200313A1 KR 2017005159 W KR2017005159 W KR 2017005159W WO 2017200313 A1 WO2017200313 A1 WO 2017200313A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
water treatment
monomer
random copolymer
content
Prior art date
Application number
PCT/KR2017/005159
Other languages
French (fr)
Korean (ko)
Inventor
이병수
김태형
전형준
이영주
신정규
곽봉주
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170061255A external-priority patent/KR102085402B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2018522772A priority Critical patent/JP6582352B2/en
Priority to EP17799670.9A priority patent/EP3369475B1/en
Priority to US15/770,859 priority patent/US10688449B2/en
Priority to CN201780004100.3A priority patent/CN108348870B/en
Publication of WO2017200313A1 publication Critical patent/WO2017200313A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present specification relates to a method for preparing a water treatment membrane, a water treatment membrane manufactured using the same, and a water treatment module including the water treatment membrane.
  • Osmotic phenomenon is the movement of a solvent through a membrane from a solution of low solute concentration to a solution of high solute concentration between two solutions separated by semi-permeable membrane.
  • the pressure is called osmotic pressure.
  • applying an external pressure higher than osmotic pressure causes the solvent to move toward a solution with a low concentration of solute.
  • This phenomenon is called reverse osmosis.
  • a pressure gradient can be used as a driving force to separate various salts or organic substances through the semipermeable membrane.
  • the water treatment membrane using the reverse osmosis phenomenon is used to separate the material of the molecular level, remove the salt from the brine or sea water to supply the domestic, construction, industrial water.
  • water treatment separation membranes include polyamide-based water treatment separation membranes, and polyamide-based water treatment separation membranes are manufactured by forming a polyamide active layer on a microporous layer support.
  • a sulfonic layer is formed to form a microporous support, and the microporous support is immersed in an aqueous solution of m-phenylene diamine (mPD) to form an mPD layer, which in turn is formed of trimesoyl chloride (TriMesoyl Chloride, TMC)
  • TMC trimesoyl chloride
  • the present specification is to provide a water treatment membrane having an improved salt removal rate and flow rate and a method for producing the same.
  • preparing a porous support Forming a polyamide active layer on the porous support using interfacial polymerization of an aqueous solution containing an amine compound and an organic solution containing an acyl halide compound; And coating a coating solution comprising a random copolymer comprising a monomer of Formula 1, a monomer of Formula 2, and a monomer of Formula 3 on the polyamide active layer:
  • the content of the random copolymer is 0.5 to 2% by weight based on the total weight of the coating solution provides a method for producing a water treatment separation membrane.
  • the content of the monomer of Formula 1 is 70 to 90% by weight based on the entire random copolymer
  • the content of the monomer of Formula 2 is 5 to 25% by weight based on the entire random copolymer
  • the content of the monomer of Formula 3 is 5 to 25% by weight based on the entire random copolymer
  • R 1 to R 3 are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
  • the porous support A polyamide active layer provided on the porous support; And it provides a water treatment separation membrane comprising a coating layer comprising a random copolymer comprising a monomer represented by the above formulas 1 to 3 on the polyamide active layer, according to the above-described manufacturing method.
  • Reverse osmosis membrane prepared by the manufacturing method according to an embodiment of the present disclosure is excellent in permeation flux and salt removal rate.
  • the reverse osmosis membrane is prepared according to one embodiment of the present specification, by including an acetoacetyl-based compound in the coating solution, it is possible to prepare a reverse osmosis membrane excellent in durability and stain resistance.
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
  • substituted or unsubstituted is hydrogen; heavy hydrogen; Halogen group; Nitrile group; And it is substituted with one or two or more substituents selected from the group consisting of a substituted or unsubstituted alkyl group, or means having no substituent.
  • the halogen group may be fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 20.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-o
  • preparing a porous support Forming a polyamide active layer on the porous support using interfacial polymerization of an aqueous solution containing an amine compound and an organic solution containing an acyl halide compound; And coating a coating solution including a random copolymer including a monomer of Formula 1, a monomer of Formula 2, and a monomer of Formula 3 on the polyamide active layer, wherein the content of the random copolymer is It provides a method for producing a water treatment separator of 0.5 to 2% by weight based on the total weight of the coating liquid.
  • the content of the monomer of Formula 1 is 70 to 90% by weight based on the entire random copolymer
  • the content of the monomer of Formula 2 is 5 to 25% by weight based on the entire random copolymer
  • the content of the monomer of Formula 3 is 5 to 25% by weight based on the entire random copolymer
  • R 1 to R 3 are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
  • the monomers of Chemical Formulas 1 to 3 may be continuously connected to each other, the same monomer may be connected to each other, or different monomers may be connected to each other.
  • a coating layer of a polymer material may be used on a nonwoven fabric.
  • the polymer material include polysulfone, polyethersulfone, polycarbonate, polyethylene oxide, polyimide, polyetherimide, polyether ether ketone, polypropylene, polymethylpentene, polymethyl chloride and polyvinylidene fluorine. Ride or the like may be used, but is not necessarily limited thereto.
  • polysulfone may be used as the polymer material.
  • the thickness of the porous support may be 60 ⁇ m to 100 ⁇ m, but is not limited thereto and may be adjusted as necessary.
  • the pore size of the porous support is preferably 1nm to 500nm, but is not limited thereto.
  • the polyamide active layer may include forming an aqueous solution layer including an amine compound on a porous support; And contacting an organic solution including an acyl halide compound on the aqueous solution layer including the amine compound to form a polyamide active layer.
  • the contact when the aqueous solution layer containing the amine compound and the organic solution containing the acyl halide compound contact, the amine compound and acyl halide compound coated on the surface of the polyamide by interfacial polymerization Is produced and adsorbed onto the microporous support to form a thin film.
  • the contact may form an active layer through a method such as dipping, spraying or coating.
  • a method of forming an aqueous solution layer including an amine compound on the porous support is not particularly limited, and any method capable of forming an aqueous solution layer on the support may be used without limitation. Specifically, the method of forming the aqueous solution layer containing an amine compound on the porous support may be sprayed, applied, immersed, dripping and the like.
  • the aqueous solution layer may be additionally subjected to a step of removing an aqueous solution including an excess amine compound as necessary.
  • the aqueous solution layer formed on the porous support may be unevenly distributed when there are too many aqueous solutions present on the support.
  • a non-uniform active layer may be formed by subsequent interfacial polymerization. Therefore, it is preferable to remove excess aqueous solution after forming an aqueous solution layer on the said support body.
  • the removal of the excess aqueous solution is not particularly limited, but may be performed using, for example, a sponge, air knife, nitrogen gas blowing, natural drying, or a compression roll.
  • the amine compound in the aqueous solution containing the amine compound is not limited as long as it can be used for the polymerization of polyamide, but specific examples include m-phenylenediamine (mPD), p-phenylenediamine (PPD), 1,3 , 6-benzenetriamine (TAB), 4-chloro-1,3-phenylenediamine, 6-chloro-1,3-phenylenediamine, 3-chloro-1,4-phenylene diamine or mixtures thereof It can be used preferably.
  • the content of the amine compound may be 0.1 wt% or more and 20 wt% or less with respect to 100 wt% of the composition.
  • the acyl halide compound is not limited as long as it can be used for the polymerization of polyamide, but is an aromatic compound having 2 to 3 carboxylic acid halides as a specific example, and may include trimezoyl chloride, isophthaloyl chloride and terephthaloyl. One or a mixture of two or more selected from the group of compounds consisting of chlorides may be preferably used.
  • the acyl halide compound may be present in an amount of 0.05 wt% or more and 1 wt% or less with respect to 100 wt% of the composition.
  • the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 included in the coating solution has unreacted functional groups and self-crosslinking present in the active layer. It is possible to prevent the active layer used for a long time directly contact with the raw water, thereby increasing the durability of the active layer, it is possible to ensure continuous performance.
  • the monomer of Formula 1 may serve to prevent surface damage of the active layer and to protect the active layer for a long time in the water treatment membrane, the content of the random copolymer may be 70 to 90% by weight.
  • the monomer of Chemical Formula 2 is an intermediate in which the monomer of Chemical Formula 1 is modified to synthesize the monomer of Chemical Formula 3, and the content of the random copolymer may be 5 to 25% by weight depending on the degree of reaction.
  • the monomer of Chemical Formula 3 enables unreacted functional groups and self-crosslinking present in the active layer, and serves to prevent the coating solution from being easily removed from the active layer.
  • the monomer of Formula 3 may have a content of 5 to 25% by weight in the random copolymer, when the content is more than 25% by weight, since the flow rate is sharply reduced, the effect of the water treatment membrane protective layer is present in the range great.
  • the rapid decrease in salt removal rate and a slight decrease in flow rate may be due to the lack of an absolute amount of the compound coated on the surface of the active layer is not properly functioning as a protective layer, 2
  • the decrease in the salt removal rate and the rapid decrease in the flow rate are determined to decrease the performance due to the change in the surface properties by the compound coated in excess on the surface of the active layer.
  • it can be applied to low grade water treatment membranes.
  • the random copolymer has a molecular weight (MW) of 20,000 to 40,000, preferably 25,000 to 35,000.
  • the solvent of the coating liquid may be a hydrophilic solvent, preferably may be distilled water.
  • a method of forming a coating solution on the polyamide active layer is not particularly limited, and any method capable of forming a coating layer on the polyamide active layer may be used without limitation.
  • the method of forming a coating layer on the polyamide active layer may include drying, after treatment such as spraying, coating, dipping, dropping, and the like.
  • the coating layer may be further subjected to the step of removing the excess coating liquid as needed.
  • the coating layer formed on the polyamide active layer may be unevenly distributed when there is too much coating liquid present on the support. Therefore, it is preferable to remove excess coating liquid after forming a coating layer on the polyamide active layer.
  • the excess coating liquid is not particularly limited, but may be performed using, for example, a sponge, air knife, nitrogen gas blowing, air drying, or a compression roll.
  • the R One To R 3 They are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • R 1 and R 2 may be hydrogen.
  • the end group of the random copolymer may be a linear or branched alkyl group, and specific examples thereof include methyl, ethyl, and propyl, but are not limited thereto.
  • a porous support A polyamide active layer provided on the porous support; And a random copolymer comprising a monomer of Formula 1, a monomer of Formula 2, and a monomer of Formula 3 on the polyamide active layer, and provides a water treatment separation membrane prepared according to the above-described preparation method.
  • the water treatment separation membrane may further include an additional layer, if necessary, for example, the water treatment separation membrane may further include an antifouling layer provided on the polyamide active layer.
  • the water treatment separation membrane may be used as a micro filtration membrane, an ultra filtration membrane, an ultra filtration membrane, a nano filtration membrane, a reverse osmosis membrane, or a reverse osmosis membrane. Can be used.
  • One embodiment of the present specification provides a water treatment module including the aforementioned water treatment separation membrane.
  • a specific kind of the water treatment module is not particularly limited, and examples thereof include a plate & frame module, a tubular module, a hollow & fiber module or a spiral wound module.
  • the water treatment module includes the reverse osmosis membrane according to one embodiment of the present specification described above, other configurations and manufacturing methods are not particularly limited, and any general means known in the art may be employed without limitation. .
  • the water treatment module according to an exemplary embodiment of the present specification has excellent salt removal rate and permeate flow rate, and uses a reverse osmosis membrane having a large effective membrane area, and has a small performance deviation and improved uniformity. It can be usefully used in water treatment devices such as water treatment devices.
  • An aqueous solution layer was formed by applying an aqueous solution containing 3.6 wt% of metaphenylenediamine (mPD) on the porous polysulfone support prepared by the above method.
  • mPD metaphenylenediamine
  • An organic solution was prepared by adding 0.25 wt% of trimezoyl chloride (TMC) solution using an ISOPar (Exxon) solvent, and then applying the organic solution onto the aqueous layer and drying to form a polyamide active layer.
  • TMC trimezoyl chloride
  • a random copolymer (weight average molecular weight 30,000, GOHSENX Z-) comprising 89.4% by weight of the monomer of Formula 1, 4.0% by weight of the monomer of Formula 2 and 6.6% by weight of monomer of Formula 3 on the polyamide active layer 200, Nippon Synthetic Chemical Industry Co., Ltd) and 0.5% by weight of a coating solution using distilled water as a solvent and then coated by the method of drying to prepare a water treatment separation membrane.
  • R 1 and R 2 in Chemical Formula 3 applied in Example 1 are hydrogen, and R 3 is a methyl group.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that a random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 1 wt%.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 1.5% by weight.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 2% by weight.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 0.1 wt%.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 0.25 wt%.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 5% by weight.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 10 wt%.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that a coating solution including 1.5 wt% of polyvinyl alcohol including only Formula 1 as a monomer instead of acetoacetylated polyvinyl alcohol was used.
  • a water treatment separation membrane was manufactured in the same manner as in Example 1, except that a coating solution including 2.0 wt% of polyvinyl alcohol including only Formula 1 as a monomer instead of acetoacetylated polyvinyl alcohol was used.
  • the initial salt removal rate and initial permeate flow rate of the water treatment membranes prepared according to Examples 1 to 4 and Comparative Examples 1 to 7 were evaluated by the following method.
  • a water treatment module including a flat plate permeation cell, a high pressure pump, a storage tank, and a cooling device was used.
  • the structure of the plate-shaped transmission cell was 28 cm 2 in an effective cross-flow (cross-flow) manner.
  • the reverse osmosis membrane was installed in the permeation cell, and then preliminarily operated for about 1 hour using tertiary distilled water to stabilize the evaluation equipment.
  • the flux was calculated by measuring the amount of water permeated at 25 ° C. for 15 minutes. Rejection was calculated by analyzing the salt concentration before and after permeation using a conductivity meter.
  • the coating solution contains 0.5 to 2% by weight of acetoacetylated polyvinyl alcohol, it was found that the salt removal rate and the flow rate significantly increased as compared with less than 0.5% or more than 2% by weight.
  • the membrane is exposed to contaminants (foulant, skim milk) and chemical cleaning is performed in order to evaluate the fouling resistance and chemical resistance through the change in membrane performance caused by contaminants and the change in membrane performance after chemical cleaning to remove contaminants.
  • contamination foulant, skim milk
  • chemical cleaning is performed in order to evaluate the fouling resistance and chemical resistance through the change in membrane performance caused by contaminants and the change in membrane performance after chemical cleaning to remove contaminants. The performance during the removal of contaminants stuck to the membrane surface was observed over time.
  • a water treatment module including a flat plate permeation cell, a high pressure pump, a storage tank, and a cooling device was used.
  • the structure of the plate-shaped transmission cell was 28 cm 2 in an effective cross-flow (cross-flow) manner.
  • the reverse osmosis membrane was installed in the permeation cell, and then preliminarily operated for about 1 hour using tertiary distilled water to stabilize the evaluation equipment. Thereafter, 50 ppm skim milk was injected into the 2,000 ppm sodium chloride solution, and the equipment was operated for about 1 hour at a flow rate of 225 psi and 4.5 L / min, and then stabilized.
  • the amount of water permeated at 25 ° C. for 15 minutes was measured.
  • the flux was calculated, and the salt removal rate was calculated by analyzing the salt concentration before and after the permeation using a conductivity meter. Thereafter, the flow rate and the salt removal rate were measured at regular time intervals while the performance of the separator decreased to 50% of the initial flow rate.
  • Chemical cleaning was performed to remove contaminants from the contaminated membrane.
  • NaOH solution with pH 12 was operated for 30 minutes at 4.5 L / min flow rate and circulated in flat plate permeation cell. Soaking was performed for 60 minutes and equipment was again operated for 30 minutes. It was circulated in the type permeation cell. The distilled water was then operated for about 30 minutes at a flow rate of 4.5 L / min to remove NaOH remaining in the flat permeation cell.
  • HCl (or Citric acid) solution of pH 2 was operated for 30 minutes at 4.5 L / min flow rate and circulated in the flat-type permeation cell, soaking for 60 minutes, and again for 30 minutes. It was made to circulate in a flat permeation cell.
  • the equipment was operated for about 30 minutes at 4.5 L / min flow rate to remove HCl (or Citric acid) solution remaining in the flat permeate cell, and then 2,000 ppm sodium chloride at 225 psi and 4.5 L / min flow rate for 1 hour.
  • the flux is calculated by measuring the amount of water permeated at 25 ° C. for 15 minutes, and the salt removal rate is analyzed by analyzing the salt concentration before and after the permeation using a conductivity meter. Rejection was calculated.
  • the existing polyvinyl alcohol applied film (Comparative Example 7) was found to be reduced by 41.71% compared to the initial flow rate, 0.13% compared to the initial removal rate, respectively, when exposed to contaminants for 30 hours, acetoacetylated poly Vinyl alcohol applied separator (Example 2) was found to be 29.55% compared to the initial flow rate, 0.11% compared to the initial removal rate, respectively, under the same conditions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present specification provides a method for manufacturing a water treatment separator, a water treatment separator manufactured using the same, and a water treatment module comprising the water treatment separator, wherein the method comprises the steps of: preparing a porous support; forming a polyamide active layer on the porous support using an interfacial polymerization of an aqueous solution containing an amine compound and an organic solution containing an acyl halide compound; and coating a coating liquid on the polyamide active layer, the coating liquid containing a random copolymer comprising monomers represented by chemical formulas 1 to 3, the content of the random copolymer being 0.5-2 wt% relative to the total weight of the coating liquid.

Description

수처리 분리막의 제조방법, 이를 이용하여 제조된 수처리 분리막, 및 수처리 분리막을 포함하는 수처리 모듈Method for producing a water treatment membrane, a water treatment module prepared using the same, and a water treatment module comprising a water treatment membrane
본 출원은 2016년 5월 18일에 한국특허청에 제출된 한국 특허 출원 제10-2016-0061092호 및 2017년 5월 17일에 한국특허청에 제출된 한국 특허 출원 제10-2017-0061255호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.This application is subject to the Korean Patent Application No. 10-2016-0061092 filed with the Korean Intellectual Property Office on May 18, 2016 and the Korean Patent Application No. 10-2017-0061255 filed on May 17, 2017 with the Korean Patent Office. Claiming benefit, the entire contents of which are incorporated herein by reference.
본 명세서는 수처리 분리막의 제조방법, 이를 이용하여 제조된 수처리 분리막, 및 수처리 분리막을 포함하는 수처리 모듈에 관한 것이다.The present specification relates to a method for preparing a water treatment membrane, a water treatment membrane manufactured using the same, and a water treatment module including the water treatment membrane.
반투과성막으로 격리된 두 용액 사이에서 용매가 용질의 농도가 낮은 용액에서 높은 용액 쪽으로 분리막을 통과하여 이동하는 현상을 삼투 현상이라 하며, 이 때 용매의 이동으로 용질의 농도가 높은 용액 측에 작용하는 압력을 삼투압이라고 한다. 그런데 삼투압보다 높은 외부 압력을 걸어주면 용매는 용질의 농도가 낮은 용액 쪽으로 이동하게 되는데, 이 현상을 역삼투라고 한다. 역삼투 원리를 이용하여 압력 구배를 구동력으로 해서 반투과성 막을 통해 각종 염이나 유기 물질을 분리해낼 수 있다. 이러한 역삼투 현상을 이용한 수처리 분리막은 분자 수준의 물질을 분리하고, 염수 또는 해수에서 염을 제거하여 가정용 및 건축용, 산업용 용수를 공급하는데 사용되고 있다.Osmotic phenomenon is the movement of a solvent through a membrane from a solution of low solute concentration to a solution of high solute concentration between two solutions separated by semi-permeable membrane. The pressure is called osmotic pressure. However, applying an external pressure higher than osmotic pressure causes the solvent to move toward a solution with a low concentration of solute. This phenomenon is called reverse osmosis. Using the reverse osmosis principle, a pressure gradient can be used as a driving force to separate various salts or organic substances through the semipermeable membrane. The water treatment membrane using the reverse osmosis phenomenon is used to separate the material of the molecular level, remove the salt from the brine or sea water to supply the domestic, construction, industrial water.
이러한 수처리 분리막의 대표적인 예로는, 폴리아미드계 수처리 분리막을 들 수 있으며, 폴리아미드계 수처리 분리막은 미세 다공층 지지체 상에 폴리아미드 활성층을 형성하는 방법으로 제조되고 있으며, 보다 구체적으로는, 부직포 위에 폴리술폰층을 형성하여 미세 다공성 지지체를 형성하고, 이 미세 다공성 지지체를 m-페닐렌 디아민(m-Phenylene Diamine, mPD) 수용액에 침지시켜 mPD층을 형성하고, 이를 다시 트리메조일클로라이드(TriMesoyl Chloride, TMC) 유기 용매에 침지시켜 mPD층을 TMC와 접촉시켜 계면 중합시킴으로써 폴리아미드층을 형성하는 방법으로 제조되고 있다.Representative examples of such water treatment separation membranes include polyamide-based water treatment separation membranes, and polyamide-based water treatment separation membranes are manufactured by forming a polyamide active layer on a microporous layer support. A sulfonic layer is formed to form a microporous support, and the microporous support is immersed in an aqueous solution of m-phenylene diamine (mPD) to form an mPD layer, which in turn is formed of trimesoyl chloride (TriMesoyl Chloride, TMC) It is manufactured by the method of forming a polyamide layer by immersing in an organic solvent and making an mPD layer contact with TMC and interfacially polymerizing.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 공개특허공보 제2014-0005489호Republic of Korea Patent Publication No. 2014-0005489
본 명세서는 개선된 염제거율 및 유량을 가지는 수처리 분리막 및 이의 제조방법에 대하여 제공하고자 한다.The present specification is to provide a water treatment membrane having an improved salt removal rate and flow rate and a method for producing the same.
본 명세서의 일 실시상태는, 다공성 지지체를 준비하는 단계; 아민 화합물을 포함하는 수용액 및 아실 할라이드 화합물을 포함하는 유기용액의 계면중합을 이용하여, 상기 다공성 지지체 상에 폴리아미드 활성층을 형성하는 단계; 및 상기 폴리아미드 활성층 상에 하기 화학식 1 의 단량체, 하기 화학식 2의 단량체 및 하기 화학식 3의 단량체를 포함하는 랜덤 공중합체를 포함하는 코팅액을 코팅하는 단계를 포함하고,One embodiment of the present specification, preparing a porous support; Forming a polyamide active layer on the porous support using interfacial polymerization of an aqueous solution containing an amine compound and an organic solution containing an acyl halide compound; And coating a coating solution comprising a random copolymer comprising a monomer of Formula 1, a monomer of Formula 2, and a monomer of Formula 3 on the polyamide active layer:
상기 랜덤 공중합체의 함량은 상기 코팅액 전체 중량을 기준으로 0.5 내지 2 중량%인 것인 수처리 분리막의 제조방법을 제공한다.The content of the random copolymer is 0.5 to 2% by weight based on the total weight of the coating solution provides a method for producing a water treatment separation membrane.
[화학식 1][Formula 1]
Figure PCTKR2017005159-appb-I000001
Figure PCTKR2017005159-appb-I000001
[화학식 2][Formula 2]
Figure PCTKR2017005159-appb-I000002
Figure PCTKR2017005159-appb-I000002
[화학식 3][Formula 3]
Figure PCTKR2017005159-appb-I000003
Figure PCTKR2017005159-appb-I000003
상기 화학식 1 내지 3에 있어서,In Chemical Formulas 1 to 3,
상기 화학식 1의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 70 내지 90 중량%이고,The content of the monomer of Formula 1 is 70 to 90% by weight based on the entire random copolymer,
상기 화학식 2의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 5 내지 25 중량%이며,The content of the monomer of Formula 2 is 5 to 25% by weight based on the entire random copolymer,
상기 화학식 3의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 5 내지 25 중량%이고,The content of the monomer of Formula 3 is 5 to 25% by weight based on the entire random copolymer,
R1 내지 R3는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.R 1 to R 3 are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
또한, 본 명세서의 일 실시상태는, 다공성 지지체; 상기 다공성 지지체 상에 구비된 폴리아미드 활성층; 및 상기 폴리아미드 활성층 상에 전술한 화학식 1 내지 3으로 표시되는 단량체를 포함하는 랜덤 공중합체를 포함하는 코팅층을 포함하고, 전술한 제조방법에 따라 제조된 수처리 분리막을 제공한다.In addition, an exemplary embodiment of the present specification, the porous support; A polyamide active layer provided on the porous support; And it provides a water treatment separation membrane comprising a coating layer comprising a random copolymer comprising a monomer represented by the above formulas 1 to 3 on the polyamide active layer, according to the above-described manufacturing method.
본 명세서의 일 실시상태에 따른 제조방법에 의하여 제조된 역삼투막은 투과유량 및 염 제거율이 우수하다. 또한, 본 명세서의 일 실시상태에 따라 역삼투막을 제조할 경우에, 코팅액에 아세토아세틸 계열의 화합물을 포함함으로써 내구성 및 내오염성이 우수한 역삼투막을 제조할 수 있다.Reverse osmosis membrane prepared by the manufacturing method according to an embodiment of the present disclosure is excellent in permeation flux and salt removal rate. In addition, when the reverse osmosis membrane is prepared according to one embodiment of the present specification, by including an acetoacetyl-based compound in the coating solution, it is possible to prepare a reverse osmosis membrane excellent in durability and stain resistance.
이하 본 명세서에 대하여 더욱 상세히 설명한다.Hereinafter, the present specification will be described in more detail.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.In this specification, when a member is located "on" another member, this includes not only when a member is in contact with another member but also when another member exists between the two members.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.In the present specification, when a part "includes" a certain component, this means that the component may further include other components, except for the case where there is no description to the contrary.
본 명세서에 있어서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.Examples of substituents in the present specification are described below, but are not limited thereto.
본 명세서에 있어서,
Figure PCTKR2017005159-appb-I000004
는 다른 치환기에 연결되는 부위를 의미한다.
In the present specification,
Figure PCTKR2017005159-appb-I000004
Means a site linked to another substituent.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.The term "substituted" means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 수소; 중수소; 할로겐기; 니트릴기; 및 치환 또는 비치환된 알킬기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나, 어떠한 치환기도 갖지 않는 것을 의미한다.As used herein, the term "substituted or unsubstituted" is hydrogen; heavy hydrogen; Halogen group; Nitrile group; And it is substituted with one or two or more substituents selected from the group consisting of a substituted or unsubstituted alkyl group, or means having no substituent.
본 명세서에 있어서, 할로겐기는 불소, 염소, 브롬 또는 요오드가 될 수 있다.In the present specification, the halogen group may be fluorine, chlorine, bromine or iodine.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 20인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 20. Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2-dimethyl Heptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, and the like.
본 명세서의 일 실시상태는, 다공성 지지체를 준비하는 단계; 아민 화합물을 포함하는 수용액 및 아실 할라이드 화합물을 포함하는 유기용액의 계면중합을 이용하여, 상기 다공성 지지체 상에 폴리아미드 활성층을 형성하는 단계; 및 상기 폴리아미드 활성층 상에 하기 화학식 1 의 단량체, 하기 화학식 2의 단량체 및 하기 화학식 3의 단량체를 포함하는 랜덤 공중합체를 포함하는 코팅액을 코팅하는 단계를 포함하고, 상기 랜덤 공중합체의 함량은 상기 코팅액 전체 중량을 기준으로 0.5 내지 2 중량%인 것인 수처리 분리막의 제조방법을 제공한다.One embodiment of the present specification, preparing a porous support; Forming a polyamide active layer on the porous support using interfacial polymerization of an aqueous solution containing an amine compound and an organic solution containing an acyl halide compound; And coating a coating solution including a random copolymer including a monomer of Formula 1, a monomer of Formula 2, and a monomer of Formula 3 on the polyamide active layer, wherein the content of the random copolymer is It provides a method for producing a water treatment separator of 0.5 to 2% by weight based on the total weight of the coating liquid.
[화학식 1][Formula 1]
Figure PCTKR2017005159-appb-I000005
Figure PCTKR2017005159-appb-I000005
[화학식 2][Formula 2]
Figure PCTKR2017005159-appb-I000006
Figure PCTKR2017005159-appb-I000006
[화학식 3][Formula 3]
Figure PCTKR2017005159-appb-I000007
Figure PCTKR2017005159-appb-I000007
상기 화학식 1 내지 3에 있어서,In Chemical Formulas 1 to 3,
상기 화학식 1의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 70 내지 90 중량%이고,The content of the monomer of Formula 1 is 70 to 90% by weight based on the entire random copolymer,
상기 화학식 2의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 5 내지 25 중량%이며,The content of the monomer of Formula 2 is 5 to 25% by weight based on the entire random copolymer,
상기 화학식 3의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 5 내지 25 중량%이고,The content of the monomer of Formula 3 is 5 to 25% by weight based on the entire random copolymer,
R1 내지 R3는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.R 1 to R 3 are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
상기 화학식 1 내지 3의 단량체는 서로 연속적으로 연결되며, 동일한 단량체가 중복하여 연결되거나, 서로 상이한 단량체가 연결될 수 있다.The monomers of Chemical Formulas 1 to 3 may be continuously connected to each other, the same monomer may be connected to each other, or different monomers may be connected to each other.
본 명세서의 일 실시상태에 따르면, 상기 다공성 지지체로는, 부직포 상에 고분자 재료의 코팅층이 형성된 것을 사용할 수 있다. 상기 고분자 재료로는, 예를 들면, 폴리설폰, 폴리에테르설폰, 폴리카보네이트, 폴리에틸렌옥사이드, 폴리이미드, 폴리에테르이미드, 폴리에테르에테르케톤, 폴리프로필렌, 폴리메틸펜텐, 폴리메틸클로라이드, 폴리비닐리덴플루오라이드 등이 사용될 수 있으나, 반드시 이들로 제한되는 것은 아니다. 구체적으로, 상기 고분자 재료로서 폴리설폰을 사용할 수 있다.According to one embodiment of the present specification, as the porous support, a coating layer of a polymer material may be used on a nonwoven fabric. Examples of the polymer material include polysulfone, polyethersulfone, polycarbonate, polyethylene oxide, polyimide, polyetherimide, polyether ether ketone, polypropylene, polymethylpentene, polymethyl chloride and polyvinylidene fluorine. Ride or the like may be used, but is not necessarily limited thereto. Specifically, polysulfone may be used as the polymer material.
본 명세서의 일 실시상태에 따르면, 상기 다공성 지지체의 두께는 60㎛ 내지 100㎛ 일 수 있으나, 이에 한정되는 것은 아니고 필요에 따라 조절될 수 있다. 또한, 상기 다공성 지지체의 기공 크기는 1nm 내지 500nm인 것이 바람직하나, 이에 한정되는 것은 아니다.According to one embodiment of the present specification, the thickness of the porous support may be 60 μm to 100 μm, but is not limited thereto and may be adjusted as necessary. In addition, the pore size of the porous support is preferably 1nm to 500nm, but is not limited thereto.
본 명세서의 일 실시상태에 따르면, 상기 폴리아미드 활성층은 다공성 지지체 상에 아민 화합물을 포함하는 수용액층을 형성하는 단계; 및 상기 아민 화합물을 포함하는 수용액층 상에 아실 할라이드 화합물을 포함하는 유기용액을 접촉시켜 폴리아미드 활성층을 형성하는 단계를 통하여 형성될 수 있다.According to one embodiment of the present specification, the polyamide active layer may include forming an aqueous solution layer including an amine compound on a porous support; And contacting an organic solution including an acyl halide compound on the aqueous solution layer including the amine compound to form a polyamide active layer.
본 명세서의 일 실시상태에 따르면, 상기 아민 화합물을 포함하는 수용액층과 상기 아실 할라이드 화합물을 포함하는 유기용액의 접촉시, 표면에 코팅된 아민 화합물과 아실 할라이드 화합물이 반응하면서 계면중합에 의해 폴리아미드를 생성하고, 미세 다공성 지지체에 흡착되어 박막이 형성된다. 또한, 본 명세서의 일 실시상태에 따르면, 상기 접촉은 침지, 스프레이 또는 코팅 등의 방법을 통해 활성층을 형성할 수 있다.According to an exemplary embodiment of the present specification, when the aqueous solution layer containing the amine compound and the organic solution containing the acyl halide compound contact, the amine compound and acyl halide compound coated on the surface of the polyamide by interfacial polymerization Is produced and adsorbed onto the microporous support to form a thin film. In addition, according to one embodiment of the present specification, the contact may form an active layer through a method such as dipping, spraying or coating.
본 명세서의 일 실시상태에 따르면, 상기 다공성 지지체 상에 아민 화합물을 포함하는 수용액층을 형성하는 방법은 특별히 한정하지 않으며, 지지체 위에 수용액층을 형성할 수 있는 방법이라면 제한하지 않고 사용할 수 있다. 구체적으로, 상기 다공성 지지체 상에 아민 화합물을 포함하는 수용액층을 형성하는 방법은 분무, 도포, 침지, 적하 등을 들 수 있다.According to one embodiment of the present specification, a method of forming an aqueous solution layer including an amine compound on the porous support is not particularly limited, and any method capable of forming an aqueous solution layer on the support may be used without limitation. Specifically, the method of forming the aqueous solution layer containing an amine compound on the porous support may be sprayed, applied, immersed, dripping and the like.
본 명세서의 일 실시상태에 따르면, 상기 수용액층은 필요에 따라 과잉의 아민 화합물을 포함하는 수용액을 제거하는 단계를 추가적으로 거칠 수 있다. 상기 다공성 지지체 상에 형성된 수용액층은 지지체 상에 존재하는 수용액이 지나치게 많은 경우에는 불균일하게 분포할 수 있는데, 수용액이 불균일하게 분포하는 경우에는 이후의 계면 중합에 의해 불균일한 활성층이 형성될 수 있다. 따라서, 상기 지지체 상에 수용액층을 형성한 후에 과잉의 수용액을 제거하는 것이 바람직하다. 상기 과잉의 수용액 제거는 특별히 제한되지는 않으나, 예를 들면, 스펀지, 에어나이프, 질소 가스 블로잉, 자연건조, 또는 압축 롤 등을 이용하여 행할 수 있다.According to one embodiment of the present specification, the aqueous solution layer may be additionally subjected to a step of removing an aqueous solution including an excess amine compound as necessary. The aqueous solution layer formed on the porous support may be unevenly distributed when there are too many aqueous solutions present on the support. When the aqueous solution is unevenly distributed, a non-uniform active layer may be formed by subsequent interfacial polymerization. Therefore, it is preferable to remove excess aqueous solution after forming an aqueous solution layer on the said support body. The removal of the excess aqueous solution is not particularly limited, but may be performed using, for example, a sponge, air knife, nitrogen gas blowing, natural drying, or a compression roll.
상기 아민 화합물을 포함하는 수용액에서 상기 아민 화합물로는 폴리아미드의 중합에 사용될 수 있는 것이라면 제한하지 않으나, 구체적인 예로서 m-페닐렌디아민(mPD), p-페닐렌디아민(PPD), 1,3,6-벤젠트리아민(TAB), 4-클로로-1,3-페닐렌디아민, 6-클로로-1,3-페닐렌디아민, 3-클로로-1,4-페닐렌 디아민 또는 이들의 혼합물이 바람직하게 사용될 수 있다. 상기 아민 화합물의 함량은 상기 조성물 100 중량% 대비 0.1 중량% 이상 20 중량% 이하 이하일 수 있다.The amine compound in the aqueous solution containing the amine compound is not limited as long as it can be used for the polymerization of polyamide, but specific examples include m-phenylenediamine (mPD), p-phenylenediamine (PPD), 1,3 , 6-benzenetriamine (TAB), 4-chloro-1,3-phenylenediamine, 6-chloro-1,3-phenylenediamine, 3-chloro-1,4-phenylene diamine or mixtures thereof It can be used preferably. The content of the amine compound may be 0.1 wt% or more and 20 wt% or less with respect to 100 wt% of the composition.
상기 아실 할라이드 화합물로는 폴리아미드의 중합에 사용될 수 있는 것이라면 제한하지 않으나, 구체적인 예로서 2 내지 3개의 카르복실산 할라이드를 갖는 방향족 화합물로서, 트리메조일클로라이드, 이소프탈로일클로라이 및 테레프탈로일클로라이드로 이루어진 화합물군으로부터 선택되는 1종 또는 2종 이상의 혼합물이 바람직하게 사용될 수 있다. 상기 아실 할라이드 화합물의 함량은 상기 조성물 100 중량% 대비 0.05 중량% 이상 1 중량% 이하일 수 있다.The acyl halide compound is not limited as long as it can be used for the polymerization of polyamide, but is an aromatic compound having 2 to 3 carboxylic acid halides as a specific example, and may include trimezoyl chloride, isophthaloyl chloride and terephthaloyl. One or a mixture of two or more selected from the group of compounds consisting of chlorides may be preferably used. The acyl halide compound may be present in an amount of 0.05 wt% or more and 1 wt% or less with respect to 100 wt% of the composition.
본 발명의 일 실시상태에 있어서, 상기 코팅액에 포함된 상기 화학식 1의 단량체, 상기 화학식 2의 단량체 및 상기 화학식 3의 단량체를 포함하는 랜덤 공중합체는 활성층에 존재하는 미반응 작용기 및 자가 가교결합이 가능하여, 장시간 사용되는 활성층이 원수와 직접 접촉하는 것을 방지하므로, 활성층의 내구성을 증가시켜, 지속적인 성능 확보가 가능하다.In an exemplary embodiment of the present invention, the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 included in the coating solution has unreacted functional groups and self-crosslinking present in the active layer. It is possible to prevent the active layer used for a long time directly contact with the raw water, thereby increasing the durability of the active layer, it is possible to ensure continuous performance.
상기 화학식 1의 단량체는 수처리 분리막에서 활성층의 표면 손상 방지 및 장시간 활성층을 보호하기 역할을 하는 것으로 랜덤 공중합체 내 함량이 70 내지 90 중량% 일 수 있다. 상기 화학식 2의 단량체는 화학식 3의 단량체를 합성하기 위해 화학식 1의 단량체를 modify 한 중간체로, 반응 정도에 따라 랜덤 공중합체 내 함량이 5 내지 25 중량%일 수 있다.The monomer of Formula 1 may serve to prevent surface damage of the active layer and to protect the active layer for a long time in the water treatment membrane, the content of the random copolymer may be 70 to 90% by weight. The monomer of Chemical Formula 2 is an intermediate in which the monomer of Chemical Formula 1 is modified to synthesize the monomer of Chemical Formula 3, and the content of the random copolymer may be 5 to 25% by weight depending on the degree of reaction.
상기 화학식 3의 단량체는 활성층에 존재하는 미반응 작용기 및 자가 가교결합이 가능하게 하는 것으로, 상기 코팅액이 활성층으로부터 쉽게 제거되지 않게 하는 역할을 한다. 상기 화학식 3의 단량체는 랜던 공중합체 내 함량이 5 내지 25 중량%일 수 있으며, 상기 함량이 25 중량% 초과인 경우, 유량이 급격하게 감소하므로, 상기 범위 내에 존재시 수처리 분리막 보호층의 효과가 우수하다.The monomer of Chemical Formula 3 enables unreacted functional groups and self-crosslinking present in the active layer, and serves to prevent the coating solution from being easily removed from the active layer. The monomer of Formula 3 may have a content of 5 to 25% by weight in the random copolymer, when the content is more than 25% by weight, since the flow rate is sharply reduced, the effect of the water treatment membrane protective layer is present in the range great.
상기 랜덤 공중합체의 함량이 0.5 중량% 미만인 경우, 염제거율이 급격하게 감소하고 유량이 소폭 감소하는 것은 활성층 표면에 코팅되는 화합물의 절대량이 부족하여 보호층의 역할을 제대로 하지 못한 것으로 판단되며, 2 중량% 초과인 경우 염제거율이 소폭 감소하고 유량이 급격하게 감소하는 것은 활성층 표면에 과량으로 코팅되는 화합물에 의해 표면 물성이 변하여 성능이 저하되는 것으로 판단한다. 하지만 내구성이 증가하는 측면에 있어 낮은 등급의 수처리 분리막에 적용이 가능하다.If the content of the random copolymer is less than 0.5% by weight, the rapid decrease in salt removal rate and a slight decrease in flow rate may be due to the lack of an absolute amount of the compound coated on the surface of the active layer is not properly functioning as a protective layer, 2 In the case of more than% by weight, the decrease in the salt removal rate and the rapid decrease in the flow rate are determined to decrease the performance due to the change in the surface properties by the compound coated in excess on the surface of the active layer. However, in terms of increasing durability, it can be applied to low grade water treatment membranes.
상기 랜덤 공중합체의 분자량(MW)은 20,000 내지 40,000이며, 바람직하게는 25,000 내지 35,000일 수 있다.The random copolymer has a molecular weight (MW) of 20,000 to 40,000, preferably 25,000 to 35,000.
본 명세서의 일 실시상태에 따르면, 상기 코팅액의 용매는 친수성 용매일 수 있으며 바람직하게는 증류수일 수 있다.According to an exemplary embodiment of the present specification, the solvent of the coating liquid may be a hydrophilic solvent, preferably may be distilled water.
본 명세서의 일 실시상태에 따르면, 상기 폴리아미드 활성층 상에 코팅액을 형성하는 방법은 특별히 한정하지 않으며, 폴리아미드 활성층 상에 코팅층을 형성할 수 있는 방법이라면 제한하지 않고 사용할 수 있다. 구체적으로, 상기 폴리아미드 활성층 상에 코팅층을 형성하는 방법은 분무, 도포, 침지, 적하 등의 처리를 한 뒤, 건조하는 것을 들 수 있다.According to one embodiment of the present specification, a method of forming a coating solution on the polyamide active layer is not particularly limited, and any method capable of forming a coating layer on the polyamide active layer may be used without limitation. Specifically, the method of forming a coating layer on the polyamide active layer may include drying, after treatment such as spraying, coating, dipping, dropping, and the like.
본 명세서의 일 실시상태에 따르면, 상기 코팅층은 필요에 따라 과잉의 코팅액을 제거하는 단계를 추가적으로 거칠 수 있다. 상기 폴리아미드 활성층 상에 형성된 코팅층은 지지체 상에 존재하는 코팅액이 지나치게 많은 경우에는 불균일하게 분포할 수 있다. 따라서, 상기 폴리아미드 활성층 상에 코팅층을 형성한 후에 과잉의 코팅액을 제거하는 것이 바람직하다. 상기 과잉의 코팅액 제거는 특별히 제한되지는 않으나, 예를 들면, 스펀지, 에어나이프, 질소 가스 블로잉, 자연건조, 또는 압축 롤 등을 이용하여 행할 수 있다.According to an exemplary embodiment of the present specification, the coating layer may be further subjected to the step of removing the excess coating liquid as needed. The coating layer formed on the polyamide active layer may be unevenly distributed when there is too much coating liquid present on the support. Therefore, it is preferable to remove excess coating liquid after forming a coating layer on the polyamide active layer. The excess coating liquid is not particularly limited, but may be performed using, for example, a sponge, air knife, nitrogen gas blowing, air drying, or a compression roll.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R3는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기일 수 있다.According to an exemplary embodiment of the present specification, the R One To R 3 They are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
본 명세서의 일 실시상태에 따르면, 상기 R1 및 R2는 수소일 수 있다.According to an exemplary embodiment of the present specification, R 1 and R 2 may be hydrogen.
상기 랜덤 공중합체의 말단기는 직쇄 또는 분지쇄의 알킬기일 수 있으며, 구체적인 예로는 메틸, 에틸, 프로필 등이 있으나, 이들에 한정되지 않는다.The end group of the random copolymer may be a linear or branched alkyl group, and specific examples thereof include methyl, ethyl, and propyl, but are not limited thereto.
본 명세서의 일 실시상태는, 다공성 지지체; 상기 다공성 지지체 상에 구비된 폴리아미드 활성층; 및 상기 폴리아미드 활성층 상에 전술한 화학식 1 의 단량체, 화학식 2의 단량체 및 화학식 3의 단량체를 포함하는 랜덤 공중합체를 포함하고, 전술한 제조방법에 따라 제조된 수처리 분리막을 제공한다.One embodiment of the present specification, a porous support; A polyamide active layer provided on the porous support; And a random copolymer comprising a monomer of Formula 1, a monomer of Formula 2, and a monomer of Formula 3 on the polyamide active layer, and provides a water treatment separation membrane prepared according to the above-described preparation method.
상기 수처리 분리막은 필요에 따라 추가의 층을 더 포함할 수 있다, 예컨대, 상기 수처리 분리막은 상기 폴리아미드 활성층 상에 구비된 안티파울링층을 더 포함할 수 있다.The water treatment separation membrane may further include an additional layer, if necessary, for example, the water treatment separation membrane may further include an antifouling layer provided on the polyamide active layer.
본 명세서의 일 실시상태에 따르면, 상기 수처리 분리막은 정밀 여과막(Micro Filtration), 한외 여과막(Ultra Filtration), 나노 여과막(Nano Filtration) 또는 역삼투막(Reverse Osmosis) 등으로 이용될 수 있으며, 구체적으로 역삼투막으로 이용될 수 있다.According to one embodiment of the present specification, the water treatment separation membrane may be used as a micro filtration membrane, an ultra filtration membrane, an ultra filtration membrane, a nano filtration membrane, a reverse osmosis membrane, or a reverse osmosis membrane. Can be used.
본 명세서의 일 실시상태는, 전술한 수처리 분리막을 포함하는 수처리 모듈을 제공한다.One embodiment of the present specification provides a water treatment module including the aforementioned water treatment separation membrane.
상기 수처리 모듈의 구체적인 종류는 특별히 제한되지 않으며, 그 예에는 판형(plate & frame) 모듈, 관형(tubular) 모듈, 중공사형(Hollow & Fiber) 모듈 또는 나권형(spiral wound) 모듈 등이 포함된다. 또한, 상기 수처리 모듈은 전술한 본 명세서의 일 실시상태에 따른 역삼투막을 포함하는 한, 그 외의 기타 구성 및 제조방법 등은 특별히 한정되지 않고, 이 분야에서 공지된 일반적인 수단을 제한 없이 채용할 수 있다.A specific kind of the water treatment module is not particularly limited, and examples thereof include a plate & frame module, a tubular module, a hollow & fiber module or a spiral wound module. In addition, as long as the water treatment module includes the reverse osmosis membrane according to one embodiment of the present specification described above, other configurations and manufacturing methods are not particularly limited, and any general means known in the art may be employed without limitation. .
한편, 본 명세서의 일 실시상태에 따른 수처리 모듈은 염제거율 및 투과유량이 우수하며, 유효 막 면적이 넓은 역삼투막을 이용하여 성능 편차가 적고 균일성이 향상된 가정용/산업용 정수 장치, 하수 처리 장치, 해담수 처리 장치 등과 같은 수처리 장치에 유용하게 사용될 수 있다.On the other hand, the water treatment module according to an exemplary embodiment of the present specification has excellent salt removal rate and permeate flow rate, and uses a reverse osmosis membrane having a large effective membrane area, and has a small performance deviation and improved uniformity. It can be usefully used in water treatment devices such as water treatment devices.
하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.The following examples are intended to illustrate the invention, but the scope of the invention is not limited thereto.
수처리 분리막의 제조Preparation of Water Treatment Membrane
<실시예 1><Example 1>
DMF(N,N-디메틸포름아미드) 용액에 18 중량%의 폴리술폰 고형분을 넣고 80℃ 내지 85℃ 에서 12시간 이상 녹여 균일한 액상을 얻었다. 이 용액을 폴리에스테르 재질의 95㎛ 내지 100㎛ 두께의 부직포 위에 150㎛ 두께로 캐스팅하였다. 그런 다음, 캐스팅된 부직포를 물에 넣어 다공성 폴리술폰 지지체를 제조하였다.18 wt% of polysulfone solids were added to a DMF (N, N-dimethylformamide) solution and dissolved at 80 ° C. to 85 ° C. for at least 12 hours to obtain a uniform liquid phase. The solution was cast 150 μm thick on a 95 μm to 100 μm thick nonwoven fabric made of polyester. Then, the cast nonwoven fabric was put in water to prepare a porous polysulfone support.
상기 방법으로 제조된 다공성 폴리술폰 지지체 상에 3.6 wt%의 메타페닐렌디아민(mPD)을 포함하는 수용액으로 도포하여 수용액층을 형성하였다.An aqueous solution layer was formed by applying an aqueous solution containing 3.6 wt% of metaphenylenediamine (mPD) on the porous polysulfone support prepared by the above method.
ISOPar(Exxon) 용매를 사용한 0.25 wt%의 트리메조일클로라이드(TMC) 용액을 첨가하여 유기 용액을 제조한 후, 상기 유기 용액을 상기 수용액층 상에 도포한 후 건조하여 폴리아미드 활성층을 형성하였다.An organic solution was prepared by adding 0.25 wt% of trimezoyl chloride (TMC) solution using an ISOPar (Exxon) solvent, and then applying the organic solution onto the aqueous layer and drying to form a polyamide active layer.
그 후, 상기 폴리아미드 활성층 상에 하기 화학식 1의 단량체 89.4 중량%, 하기 화학식 2의 단량체 4.0 중량% 및 하기 화학식 3의 단량체 6.6 중량%를 포함하는 랜덤 공중합체(중량평균분자량 30,000, GOHSENX Z-200, Nippon Synthetic Chemical Industry Co., Ltd)를 0.5 중량% 포함하고 용매로 증류수를 사용한 코팅액을 도포한 뒤 건조하는 방법으로 코팅하여 수처리 분리막을 제조하였다.Then, a random copolymer (weight average molecular weight 30,000, GOHSENX Z-) comprising 89.4% by weight of the monomer of Formula 1, 4.0% by weight of the monomer of Formula 2 and 6.6% by weight of monomer of Formula 3 on the polyamide active layer 200, Nippon Synthetic Chemical Industry Co., Ltd) and 0.5% by weight of a coating solution using distilled water as a solvent and then coated by the method of drying to prepare a water treatment separation membrane.
[화학식 1][Formula 1]
Figure PCTKR2017005159-appb-I000008
Figure PCTKR2017005159-appb-I000008
[화학식 2][Formula 2]
Figure PCTKR2017005159-appb-I000009
Figure PCTKR2017005159-appb-I000009
[화학식 3][Formula 3]
Figure PCTKR2017005159-appb-I000010
Figure PCTKR2017005159-appb-I000010
상기 실시예 1에서 적용된 화학식 3의 R1 및 R2는 수소이고, R3은 메틸기이다.R 1 and R 2 in Chemical Formula 3 applied in Example 1 are hydrogen, and R 3 is a methyl group.
<실시예 2><Example 2>
상기 화학식 1의 단량체, 상기 화학식 2의 단량체 및 상기 화학식 3의 단량체를 포함하는 랜덤 공중합체를 함량을 1 중량%로 한 것을 제외하고는, 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.A water treatment separation membrane was manufactured in the same manner as in Example 1, except that a random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 1 wt%.
<실시예 3><Example 3>
상기 화학식 1의 단량체, 상기 화학식 2의 단량체 및 상기 화학식 3의 단량체를 포함하는 랜덤 공중합체의 함량을 1.5 중량%로 한 것을 제외하고는, 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.A water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 1.5% by weight.
<실시예 4><Example 4>
상기 화학식 1의 단량체, 상기 화학식 2의 단량체 및 상기 화학식 3의 단량체를 포함하는 랜덤 공중합체의 함량을 2 중량%로 한 것을 제외하고는, 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.A water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 2% by weight.
<비교예 1>Comparative Example 1
상기 화학식 1의 단량체, 상기 화학식 2의 단량체 및 상기 화학식 3의 단량체를 포함하는 랜덤 공중합체의 함량을 0.1 중량%로 한 것을 제외하고는, 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.A water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 0.1 wt%.
<비교예 2>Comparative Example 2
상기 화학식 1의 단량체, 하기 화학식 2의 단량체 및 하기 화학식 3의 단량체를 포함하는 랜덤 공중합체의 함량을 0.25 중량%로 한 것을 제외하고는, 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.A water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 0.25 wt%.
<비교예 3>Comparative Example 3
상기 화학식 1의 단량체, 상기 화학식 2의 단량체 및 상기 화학식 3의 단량체를 포함하는 랜덤 공중합체의 함량을 5 중량%로 한 것을 제외하고는, 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.A water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 5% by weight.
<비교예 4><Comparative Example 4>
상기 화학식 1의 단량체, 상기 화학식 2의 단량체 및 상기 화학식 3의 단량체를 포함하는 랜덤 공중합체의 함량을 10 중량%로 한 것을 제외하고는, 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.A water treatment separation membrane was manufactured in the same manner as in Example 1, except that the content of the random copolymer including the monomer of Formula 1, the monomer of Formula 2, and the monomer of Formula 3 was 10 wt%.
<비교예 5>Comparative Example 5
아세토아세틸화 폴리비닐알코올 대신 하기 화학식 1만을 단량체로 포함하는 폴리비닐알코올(분자량 130,000)을 1.0 중량% 포함하고, 용매로 증류수를 사용한 코팅액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.Water treatment in the same manner as in Example 1, except that 1.0% by weight of polyvinyl alcohol (molecular weight 130,000) containing only Formula 1 as a monomer instead of acetoacetylated polyvinyl alcohol, and a coating solution using distilled water as a solvent. A separator was prepared.
[화학식 1][Formula 1]
Figure PCTKR2017005159-appb-I000011
Figure PCTKR2017005159-appb-I000011
<비교예 6>Comparative Example 6
아세토아세틸화 폴리비닐알코올 대신 상기 화학식 1만을 단량체로 포함하는 폴리비닐알코올을 1.5 중량% 포함하는 코팅액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.A water treatment separation membrane was manufactured in the same manner as in Example 1, except that a coating solution including 1.5 wt% of polyvinyl alcohol including only Formula 1 as a monomer instead of acetoacetylated polyvinyl alcohol was used.
<비교예 7>Comparative Example 7
아세토아세틸화 폴리비닐알코올 대신 상기 화학식 1만을 단량체로 포함하는 폴리비닐알코올을 2.0 중량% 포함하는 코팅액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 수처리 분리막을 제조하였다.A water treatment separation membrane was manufactured in the same manner as in Example 1, except that a coating solution including 2.0 wt% of polyvinyl alcohol including only Formula 1 as a monomer instead of acetoacetylated polyvinyl alcohol was used.
<실험예 1> 수처리 분리막의 성능평가Experimental Example 1 Performance Evaluation of Water Treatment Membrane
실시예 1 내지 4, 및 비교예 1 내지 7에 따라 제조된 수처리 분리막의 초기 염제거율과 초기 투과유량을 다음과 같은 방법으로 평가하였다.The initial salt removal rate and initial permeate flow rate of the water treatment membranes prepared according to Examples 1 to 4 and Comparative Examples 1 to 7 were evaluated by the following method.
제조한 수처리 분리막의 염 제거율(Rejection) 및 투과 유량(gfd)을 측정하기 위하여, 평판형 투과 셀과 고압펌프, 저장조 그리고 냉각장치를 포함하여 구성된 수처리 모듈을 이용하였다. 상기 평판형 투과 셀의 구조는 크로스-플로우(cross-flow) 방식으로 유효 투과 면적은 28㎠ 이었다. 역삼투 분리막을 투과셀에 설치한 다음 평가 장비의 안정화를 위하여 3차 증류수를 이용하여 1시간 정도 충분히 예비 운전을 실시하였다. 이후, 2,000ppm 염화나트륨 수용액을 225 psi, 4.5 L/min의 유량으로 1시간 가량 장비 운전을 실시하여 안정화된 것을 확인한 후, 25℃ 에서 15분간 투과되는 물의 양을 측정하여 유량(flux)을 계산하고, 전도도 미터(Conductivity Meter)를 사용하여 투과 전후 염 농도를 분석하여 염제거율(Rejection)을 계산하였다.In order to measure the salt removal rate and permeation flow rate (gfd) of the prepared water treatment membrane, a water treatment module including a flat plate permeation cell, a high pressure pump, a storage tank, and a cooling device was used. The structure of the plate-shaped transmission cell was 28 cm 2 in an effective cross-flow (cross-flow) manner. The reverse osmosis membrane was installed in the permeation cell, and then preliminarily operated for about 1 hour using tertiary distilled water to stabilize the evaluation equipment. Then, after confirming that the 2,000 ppm sodium chloride aqueous solution was stabilized by operating the equipment at a flow rate of 225 psi and 4.5 L / min for about 1 hour, the flux was calculated by measuring the amount of water permeated at 25 ° C. for 15 minutes. Rejection was calculated by analyzing the salt concentration before and after permeation using a conductivity meter.
실시예 1 내지 4, 및 비교예 1 내지 7에 따라 제조된 수처리 분리막의 염제거율 및 투과유량을 전술한 방법으로 평가하였으며, 그 측정 결과를 하기 표 1에 나타내었다.The salt removal rate and permeate flow rate of the water treatment membranes prepared according to Examples 1 to 4 and Comparative Examples 1 to 7 were evaluated by the aforementioned method, and the measurement results are shown in Table 1 below.
[표 1]TABLE 1
Figure PCTKR2017005159-appb-I000012
Figure PCTKR2017005159-appb-I000012
상기 표 1을 참고하면, 상기 코팅액이 폴리비닐알코올을 1 중량%, 1.5 중량% 및 2 중량% 포함하는 경우보다, 아세토아세틸화 폴리비닐알코올을 0.5 중량%, 1 중량%, 1.5 중량% 및 2 중량% 포함하는 경우 염제거율 및 유량이 모두 개선된다는 사실을 알 수 있었다.Referring to Table 1, 0.5% by weight, 1% by weight, 1.5% by weight and 2% by weight of acetoacetylated polyvinyl alcohol than when the coating solution contains 1% by weight, 1.5% by weight and 2% by weight of polyvinyl alcohol. Including the wt%, it was found that both the salt removal rate and the flow rate were improved.
또한, 상기 코팅액이 아세토아세틸화 폴리비닐알코올을 0.5 내지 2 중량% 포함하는 경우, 0.5 중량% 미만 또는 2 중량% 초과인 경우에 비하여 염제거율 및 유량이 현저히 상승한다는 사실을 알 수 있었다.In addition, when the coating solution contains 0.5 to 2% by weight of acetoacetylated polyvinyl alcohol, it was found that the salt removal rate and the flow rate significantly increased as compared with less than 0.5% or more than 2% by weight.
<실험예 2> 내오염성 및 내화학성 측정Experimental Example 2 Measurement of Pollution Resistance and Chemical Resistance
오염물질에 의한 분리막 성능변화와 오염물질 제거를 위한 화학세정 이후의 분리막 성능변화 확인을 통해 내오염성 및 내화학성을 평가하기 위해, 분리막을 오염물질(foulant, skim milk)에 노출시키고, 화학세정을 통해 분리막 표면에 달라붙은 오염물질을 제거하는 동안의 성능을 시간에 따라 관찰하였다.The membrane is exposed to contaminants (foulant, skim milk) and chemical cleaning is performed in order to evaluate the fouling resistance and chemical resistance through the change in membrane performance caused by contaminants and the change in membrane performance after chemical cleaning to remove contaminants. The performance during the removal of contaminants stuck to the membrane surface was observed over time.
제조한 수처리 분리막의 염 제거율(Rejection) 및 투과 유량(gfd)을 측정하기 위하여, 평판형 투과 셀과 고압펌프, 저장조 그리고 냉각장치를 포함하여 구성된 수처리 모듈을 이용하였다. 상기 평판형 투과 셀의 구조는 크로스-플로우(cross-flow) 방식으로 유효 투과 면적은 28㎠ 이었다. 역삼투 분리막을 투과셀에 설치한 다음 평가 장비의 안정화를 위하여 3차 증류수를 이용하여 1시간 정도 충분히 예비 운전을 실시하였다. 이후, 2,000ppm 염화나트륨 수용액에 50ppm의 skim milk를 주입하여 225 psi, 4.5 L/min의 유량으로 1시간 가량 장비 운전을 실시하여 안정화된 것을 확인한 후, 25℃에서 15분간 투과되는 물의 양을 측정하여 유량(flux)을 계산하고, 전도도 미터(Conductivity Meter)를 사용하여 투과 전후 염 농도를 분석하여 염제거율(Rejection)을 계산하였다. 이후 분리막의 성능이 초기 유량 대비 50%대로 감소하는 동안 일정 시간 간격으로 유량과 염제거율을 측정하였다.In order to measure the salt removal rate and permeation flow rate (gfd) of the prepared water treatment membrane, a water treatment module including a flat plate permeation cell, a high pressure pump, a storage tank, and a cooling device was used. The structure of the plate-shaped transmission cell was 28 cm 2 in an effective cross-flow (cross-flow) manner. The reverse osmosis membrane was installed in the permeation cell, and then preliminarily operated for about 1 hour using tertiary distilled water to stabilize the evaluation equipment. Thereafter, 50 ppm skim milk was injected into the 2,000 ppm sodium chloride solution, and the equipment was operated for about 1 hour at a flow rate of 225 psi and 4.5 L / min, and then stabilized. The amount of water permeated at 25 ° C. for 15 minutes was measured. The flux was calculated, and the salt removal rate was calculated by analyzing the salt concentration before and after the permeation using a conductivity meter. Thereafter, the flow rate and the salt removal rate were measured at regular time intervals while the performance of the separator decreased to 50% of the initial flow rate.
오염된 분리막의 오염물질을 제거하기 위해 화학세정을 진행하였다. 화학세정은 pH 12의 NaOH 용액을 4.5 L/min의 유량으로 30분 가량 장비 운전을 실시하여 평판형 투과 셀 내에 순환시킨 후, 60분 가량 soaking을 실시하고 다시 30분 가량 장비운전을 실시하여 평판형 투과 셀 내에 순환시켰다. 이후 증류수를 4.5 L/min의 유량으로 30분 가량 장비 운전을 실시하여 평판형 투과 셀 내에 남아있는 NaOH를 제거하였다. 이후 pH 2의 HCl(혹은 Citric acid) 용액을 4.5 L/min의 유량으로 30분 가량 장비 운전을 실시하여 평판형 투과 셀 내에 순환시킨 후, 60분 가량 soaking을 실시하고 다시 30분 가량 장비운전을 실시하여 평판형 투과 셀 내에 순환시켰다. 이후 증류수를 4.5 L/min의 유량으로 30분 가량 장비 운전을 실시하여 평판형 투과 셀 내에 남아있는 HCl(혹은 Citric acid) 용액을 제거한 뒤 2,000 ppm 염화나트륨 225 psi, 4.5 L/min의 유량으로 1시간 가량 장비 운전을 실시하여 안정화된 것을 확인한 후, 25℃에서 15분간 투과되는 물의 양을 측정하여 유량(flux)을 계산하고, 전도도 미터(Conductivity Meter)를 사용하여 투과 전후 염 농도를 분석하여 염제거율(Rejection)을 계산하였다.Chemical cleaning was performed to remove contaminants from the contaminated membrane. In chemical cleaning, NaOH solution with pH 12 was operated for 30 minutes at 4.5 L / min flow rate and circulated in flat plate permeation cell. Soaking was performed for 60 minutes and equipment was again operated for 30 minutes. It was circulated in the type permeation cell. The distilled water was then operated for about 30 minutes at a flow rate of 4.5 L / min to remove NaOH remaining in the flat permeation cell. Afterwards, HCl (or Citric acid) solution of pH 2 was operated for 30 minutes at 4.5 L / min flow rate and circulated in the flat-type permeation cell, soaking for 60 minutes, and again for 30 minutes. It was made to circulate in a flat permeation cell. After that, the equipment was operated for about 30 minutes at 4.5 L / min flow rate to remove HCl (or Citric acid) solution remaining in the flat permeate cell, and then 2,000 ppm sodium chloride at 225 psi and 4.5 L / min flow rate for 1 hour. After confirming that the equipment is stabilized by running the equipment, the flux is calculated by measuring the amount of water permeated at 25 ° C. for 15 minutes, and the salt removal rate is analyzed by analyzing the salt concentration before and after the permeation using a conductivity meter. Rejection was calculated.
[표 2]TABLE 2
Figure PCTKR2017005159-appb-I000013
Figure PCTKR2017005159-appb-I000013
상기 표 2를 참고하면, 기존 폴리비닐알코올 적용막(비교예 7)은 30시간 동안 오염물질에 노출되었을 때, 각각 초기 유량 대비 41.71%, 초기 제거율 대비 0.13% 감소한 것으로 확인되었으나, 아세토아세틸화 폴리비닐알코올 적용 분리막(실시예 2)은 동일 조건에서, 각각 초기 유량 대비 29.55%, 초기 제거율 대비 0.11% 감소한 사실을 알 수 있었다.Referring to Table 2, the existing polyvinyl alcohol applied film (Comparative Example 7) was found to be reduced by 41.71% compared to the initial flow rate, 0.13% compared to the initial removal rate, respectively, when exposed to contaminants for 30 hours, acetoacetylated poly Vinyl alcohol applied separator (Example 2) was found to be 29.55% compared to the initial flow rate, 0.11% compared to the initial removal rate, respectively, under the same conditions.
또한, 기존 폴리비닐알코올 적용막(비교예 7)은 화학세정(pH 12→2)이후, 각각 초기 유량 대비 15.34%, 초기 제거율 대비 0.07% 감소한 것으로 확인되었으나, 아세토아세틸화 PVA 적용 분리막(실시예 2)은 동일 조건에서, 각각 초기 유량 대비 5.86%, 초기 제거율 대비 0.07% 감소한 사실을 알 수 있었다.In addition, the conventional polyvinyl alcohol applied membrane (Comparative Example 7) was found to be 15.34% compared to the initial flow rate and 0.07% compared to the initial removal rate after chemical cleaning (pH 12 → 2), respectively, but the acetoacetylated PVA applied membrane (Example 2) was found to decrease 5.86% of initial flow rate and 0.07% of initial removal rate, respectively.
이는 본 발명에서 제안하는 내오염 특성(성능감소 억제) 및 내화학성(화학세정 후 성능 회복 향상)이 개선된 분리막 특성을 나타내는 것으로 볼 수 있다.This can be seen as showing the improved membrane properties (inhibition of reduced performance) and chemical resistance (improved performance recovery after chemical cleaning) proposed in the present invention.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 본 발명의 범주에 속한다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications can be made within the scope of the claims and the detailed description of the invention, and this is also the scope of the present invention. Belongs to.

Claims (8)

  1. 다공성 지지체를 준비하는 단계;Preparing a porous support;
    아민 화합물을 포함하는 수용액 및 아실 할라이드 화합물을 포함하는 유기용액의 계면중합을 이용하여, 상기 다공성 지지체 상에 폴리아미드 활성층을 형성하는 단계; 및Forming a polyamide active layer on the porous support using interfacial polymerization of an aqueous solution containing an amine compound and an organic solution containing an acyl halide compound; And
    상기 폴리아미드 활성층 상에 하기 화학식 1 내지 3으로 표시되는 단량체를 포함하는 랜덤 공중합체를 포함하는 코팅액을 코팅하는 단계를 포함하고,Coating a coating solution comprising a random copolymer comprising a monomer represented by the following Chemical Formulas 1 to 3 on the polyamide active layer;
    상기 랜덤 공중합체의 함량은 코팅액 전체 중량을 기준으로 0.5 내지 2 중량%인 것인 수처리 분리막의 제조방법:The content of the random copolymer is 0.5 to 2% by weight, based on the total weight of the coating solution.
    [화학식 1] [Formula 1]
    Figure PCTKR2017005159-appb-I000014
    Figure PCTKR2017005159-appb-I000014
    [화학식 2][Formula 2]
    Figure PCTKR2017005159-appb-I000015
    Figure PCTKR2017005159-appb-I000015
    [화학식 3][Formula 3]
    Figure PCTKR2017005159-appb-I000016
    Figure PCTKR2017005159-appb-I000016
    상기 화학식 1 내지 3에 있어서,In Chemical Formulas 1 to 3,
    상기 화학식 1의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 70 내지 90 중량%이고,The content of the monomer of Formula 1 is 70 to 90% by weight based on the entire random copolymer,
    상기 화학식 2의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 5 내지 25 중량%이며,The content of the monomer of Formula 2 is 5 to 25% by weight based on the entire random copolymer,
    상기 화학식 3의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 5 내지 25 중량%이고,The content of the monomer of Formula 3 is 5 to 25% by weight based on the entire random copolymer,
    R1 내지 R3는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.R 1 to R 3 are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
  2. 청구항 1에 있어서, 상기 코팅액의 용매는 친수성 용매인 것인 수처리 분리막의 제조방법.The method of claim 1, wherein the solvent of the coating solution is a hydrophilic solvent.
  3. 청구항 1에 있어서, 상기 R1 내지 R3는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기인 것인 수처리 분리막의 제조방법.The method according to claim 1, wherein R 1 to R 3 are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  4. 청구항 1에 있어서, 상기 R1 및 R2는 수소인 것인 수처리 분리막의 제조방법.The method of claim 1, wherein R 1 and R 2 are hydrogen.
  5. 다공성 지지체; 상기 다공성 지지체 상에 구비된 폴리아미드 활성층; 및 상기 폴리아미드 활성층 상에 하기 하기 화학식 1의 단량체, 하기 화학식 2의 단량체 및 하기 화학식 3의 단량체를 포함하는 랜덤 공중합체를 포함하는 코팅층을 포함하고,Porous support; A polyamide active layer provided on the porous support; And a coating layer comprising a random copolymer comprising a monomer of Formula 1, a monomer of Formula 2, and a monomer of Formula 3 on the polyamide active layer:
    청구항 1 내지 4 중 어느 한 항의 제조방법에 따라 제조된 수처리 분리막.Water treatment separation membrane prepared according to any one of claims 1 to 4.
    [화학식 1][Formula 1]
    Figure PCTKR2017005159-appb-I000017
    Figure PCTKR2017005159-appb-I000017
    [화학식 2][Formula 2]
    Figure PCTKR2017005159-appb-I000018
    Figure PCTKR2017005159-appb-I000018
    [화학식 3][Formula 3]
    Figure PCTKR2017005159-appb-I000019
    Figure PCTKR2017005159-appb-I000019
    상기 화학식 1 내지 3에 있어서,In Chemical Formulas 1 to 3,
    상기 화학식 1의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 70 내지 90 중량%이고,The content of the monomer of Formula 1 is 70 to 90% by weight based on the entire random copolymer,
    상기 화학식 2의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 5 내지 25 중량%이며,The content of the monomer of Formula 2 is 5 to 25% by weight based on the entire random copolymer,
    상기 화학식 3의 단량체의 함량은 상기 랜덤 공중합체 전체를 기준으로 5 내지 25 중량%이고,The content of the monomer of Formula 3 is 5 to 25% by weight based on the entire random copolymer,
    R1 내지 R3는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 알킬기이다.R 1 to R 3 are the same as or different from each other, and each independently hydrogen; Or a substituted or unsubstituted alkyl group.
  6. 청구항 5에 있어서, 상기 R1 내지 R3는 서로 동일하거나 상이하고, 각각 독립적으로 수소; 또는 치환 또는 비치환된 탄소수 1 내지 20의 알킬기인 것인 수처리 분리막.The method according to claim 5, wherein R 1 to R 3 are the same as or different from each other, each independently hydrogen; Or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  7. 청구항 5에 있어서, 상기 R1 및 R2는 수소인 것인 수처리 분리막.The membrane of claim 5 wherein R 1 and R 2 are hydrogen.
  8. 청구항 5의 수처리 분리막을 포함하는 수처리 모듈.Water treatment module comprising a water treatment separation membrane of claim 5.
PCT/KR2017/005159 2016-05-18 2017-05-18 Method for manufacturing water treatment separator, water treatment separator manufactured using same, and water treatment module comprising water treatment separator WO2017200313A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018522772A JP6582352B2 (en) 2016-05-18 2017-05-18 Water treatment separation membrane production method, water treatment separation membrane produced using the same, and water treatment module comprising water treatment separation membrane
EP17799670.9A EP3369475B1 (en) 2016-05-18 2017-05-18 Method for manufacturing water treatment separator, water treatment separator manufactured using same, and water treatment module comprising water treatment separator
US15/770,859 US10688449B2 (en) 2016-05-18 2017-05-18 Method for manufacturing water treatment separator, water treatment separator manufactured using same, and water treatment module comprising water treatment separator
CN201780004100.3A CN108348870B (en) 2016-05-18 2017-05-18 Method for manufacturing water treatment separator, water treatment separator manufactured using same, and water treatment module including water treatment separator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0061092 2016-05-18
KR20160061092 2016-05-18
KR10-2017-0061255 2017-05-17
KR1020170061255A KR102085402B1 (en) 2016-05-18 2017-05-17 Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane

Publications (1)

Publication Number Publication Date
WO2017200313A1 true WO2017200313A1 (en) 2017-11-23

Family

ID=60325340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005159 WO2017200313A1 (en) 2016-05-18 2017-05-18 Method for manufacturing water treatment separator, water treatment separator manufactured using same, and water treatment module comprising water treatment separator

Country Status (1)

Country Link
WO (1) WO2017200313A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050103992A (en) * 2004-04-27 2005-11-02 한국전력공사 Silane-polyamide composite membrane and method thereof
KR20120095235A (en) * 2011-02-18 2012-08-28 웅진케미칼 주식회사 Reverse osmosis composite having high fouling resistance and manufacturing method thereof
KR20130076498A (en) * 2011-12-28 2013-07-08 주식회사 엘지화학 Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
KR20140005489A (en) 2012-07-04 2014-01-15 주식회사 엘지화학 High flux reverse osmosis membrane comprising xanthene compound and manufacturing method thereof
KR20140016272A (en) * 2011-01-24 2014-02-07 다우 글로벌 테크놀로지스 엘엘씨 Composite polyamide membrane
WO2016017754A1 (en) * 2014-07-30 2016-02-04 三菱マテリアル株式会社 Filter medium, method for producing filter medium, water treatment module, and water treatment device
KR20160061092A (en) 2014-11-21 2016-05-31 주식회사 엘지화학 Apparatus and method for battery module operation
KR20170061255A (en) 2015-11-26 2017-06-05 방경석 Job-Offering System Method using Secret Recommendation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050103992A (en) * 2004-04-27 2005-11-02 한국전력공사 Silane-polyamide composite membrane and method thereof
KR20140016272A (en) * 2011-01-24 2014-02-07 다우 글로벌 테크놀로지스 엘엘씨 Composite polyamide membrane
KR20120095235A (en) * 2011-02-18 2012-08-28 웅진케미칼 주식회사 Reverse osmosis composite having high fouling resistance and manufacturing method thereof
KR20130076498A (en) * 2011-12-28 2013-07-08 주식회사 엘지화학 Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
KR20140005489A (en) 2012-07-04 2014-01-15 주식회사 엘지화학 High flux reverse osmosis membrane comprising xanthene compound and manufacturing method thereof
WO2016017754A1 (en) * 2014-07-30 2016-02-04 三菱マテリアル株式会社 Filter medium, method for producing filter medium, water treatment module, and water treatment device
KR20160061092A (en) 2014-11-21 2016-05-31 주식회사 엘지화학 Apparatus and method for battery module operation
KR20170061255A (en) 2015-11-26 2017-06-05 방경석 Job-Offering System Method using Secret Recommendation

Similar Documents

Publication Publication Date Title
WO2012177033A2 (en) Reverse osmosis membrane having superior salt rejection and permeate flow, and method for manufacturing same
WO2010082710A1 (en) Method for preparing a highly durable reverse osmosis membrane
US4963165A (en) Composite membrane, method of preparation and use
WO2014084661A1 (en) Chlorine-resistant highly permeable water-treatment membrane, and method for preparing same
KR101677800B1 (en) Polyamide water-treatment membranes having properies of high durability and manufacturing method thereof
WO2014137049A1 (en) Polyamide-based water treatment membrane with remarkable contamination resistance, and preparation method therefor
JP5804616B2 (en) Polyamide-based water treatment separation membrane excellent in stain resistance, its production method, water treatment module and water treatment apparatus
EP0489746A1 (en) High flux semipermeable membranes.
KR102343738B1 (en) Composite polyamide membrane post-treated with nitrous acid
WO2013176508A1 (en) Polyamide-based reverse osmosis membrane having excellent initial permeate flow rate and method for manufacturing same
US11577971B2 (en) Composition for forming reverse osmosis membrane protection layer, method for preparing reverse osmosis membrane using same, reverse osmosis membrane, and water treatment module
WO2017171474A1 (en) Composition for interfacial polymerization of polyamide and method for manufacturing reverse osmosis membrane using same
WO2017039112A2 (en) Water treatment membrane production method, water treatment membrane produced using same, and water treatment module comprising water treatment membrane
WO2012161483A2 (en) Method for preparing a reverse osmosis membrane, and reverse osmosis membrane prepared thereby
EP3354333A1 (en) Water treatment membrane and method for manufacturing same
KR101477848B1 (en) Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
WO2010062016A2 (en) Polyamide composite membrane having fouling resistance and chlorine resistance and method thereof
KR102085402B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
WO2018048269A1 (en) Reverse osmosis membrane and production method therefor
WO2017200313A1 (en) Method for manufacturing water treatment separator, water treatment separator manufactured using same, and water treatment module comprising water treatment separator
KR20180086037A (en) Composition for preparing reverse osmosis membrane, method for preparing reverse osmosis membrane using the same, reverse osmosis membrane and water treatment module
WO2019240533A1 (en) Composition for polyamide interfacial polymerization, and method for manufacturing water treatment separation membrane by using same
KR102182178B1 (en) Method for manufacturing water-treatment membrane and water-treatment membrane manufactured by thereby
WO2020189898A1 (en) Pressure retarded osmosis seperation membrane and method for manufacturing same
WO2017052256A1 (en) Water treatment membrane and method for manufacturing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15770859

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2018522772

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE