WO2017200172A1 - Method for performing security setup for user equipment in wireless communication system and device therefor - Google Patents

Method for performing security setup for user equipment in wireless communication system and device therefor Download PDF

Info

Publication number
WO2017200172A1
WO2017200172A1 PCT/KR2016/015038 KR2016015038W WO2017200172A1 WO 2017200172 A1 WO2017200172 A1 WO 2017200172A1 KR 2016015038 W KR2016015038 W KR 2016015038W WO 2017200172 A1 WO2017200172 A1 WO 2017200172A1
Authority
WO
WIPO (PCT)
Prior art keywords
cni
terminal
key
network
security
Prior art date
Application number
PCT/KR2016/015038
Other languages
French (fr)
Korean (ko)
Inventor
한진백
강지원
조희정
변일무
김희진
심현진
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Publication of WO2017200172A1 publication Critical patent/WO2017200172A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for supporting service for setting service differential security between a terminal and a core network.
  • the mobile communication system has been developed to provide a voice service while ensuring the user's activity.
  • the mobile communication system has expanded not only voice but also data service.
  • the explosive increase in traffic causes a shortage of resources and the demand for faster services. Therefore, a more advanced mobile communication system is required. have.
  • security features expected to be added in a 5G mobile communication system compared to security features evolved to a 4G mobile communication system, may be as follows.
  • Network Slicing means providing a virtual isolated sub-network optimized for service characteristics. This is to provide optimized services for each application because the requirements of applications will be different.
  • the security architecture should also be configured very flexibly, which may mean that the 5G mobile communication network should be designed to reduce security-related overhead in accommodating network slicing.
  • -5G mobile communication systems must not only be designed to provide new functions, but also to accommodate new verticals (industries).
  • a new trust model must be defined that takes into account various types of devices with different security requirements (eg, Unattended Machines, Sensors, Wearable Devices, Vehicles) and some important sectors (eg, Public Safety, eHealth, etc.). May mean.
  • 5G must provide optimized multi-RAT operations.
  • Multi-RAT Access with different security mechanisms, this aims to reduce OTA signaling and delays required for authentication / Security Setup each time.
  • 5G Security must provide an effective Multi-RAT Security Architecture to reduce such redundancy.
  • the 5G Core Network will evolve into a Service-Oriented structure, due to the fact that a fixed single type network structure will not satisfy the requirements of various services.
  • the present specification aims to provide a service-specific security configuration method for satisfying service-specific requirements for each core network slice in a next generation system (eg, 5G system).
  • a next generation system eg, 5G system
  • a method for performing security configuration of a terminal in a wireless communication system the method performed by a first network node having a common control function (Common Control Function), the terminal of the core network (core network) Performing an authentication procedure with the terminal to connect to one or more second network nodes; Generating a first security key according to a result of the authentication procedure; Generating at least one second security key corresponding to each of the one or more second network nodes using the generated first security key; And transmitting the generated at least one second security key to the one or more second network nodes, respectively.
  • Common Control Function Common Control Function
  • the one or more second network nodes each provide an individual service.
  • the method for performing a security configuration of the terminal herein further comprises the step of receiving a first message requesting a connection to the one or more second network nodes from a Radio Access Network (RAN) node It is characterized by.
  • RAN Radio Access Network
  • connection request to the one or more second network nodes is characterized in that the connection request by the terminal.
  • a second security key corresponding to a specific second network node is generated using the first security key and an identifier (ID) of the specific second network node.
  • the method proposed in the present specification comprises the steps of receiving a second message for a communication service request (communication service request) of the terminal from the RAN node; And transmitting the received second message to a second network node corresponding to the communication service request.
  • the second message is a hash value of a second security key corresponding to a second network node corresponding to the communication service request or security capability information of the terminal. It characterized in that it comprises at least one of.
  • the generated at least one second security key is characterized in that the security key associated with the signaling protection between the terminal and the one or more second network nodes. That is, a security key for signaling protection between the terminal and the one or more second network nodes may be generated from a second security key.
  • the first security key in the present specification is characterized in that the security key is defined in the K ASME or the next generation system corresponding to the K ASME of the LTE system.
  • the second network node is characterized in that the core network instance (Core Network Instance (CNI)).
  • CNI Core Network Instance
  • the second security key is characterized in that the CNI-specific Key or CNI Seed Key.
  • the present specification is a device for setting the security of the terminal in a wireless communication system, the device, RF (Radio Frequency) unit for transmitting and receiving a radio signal; And a processor operatively coupled to the RF unit, the processor configured to perform an authentication procedure with the terminal to connect the terminal to one or more second network nodes of a core network. Perform; Generating a first security key according to a result of the authentication procedure; Generate at least one second security key corresponding to each of the one or more second network nodes using the generated first security key; And transmit the generated at least one second security key to the one or more second network nodes, respectively.
  • RF Radio Frequency
  • the processor receives a first message requesting a connection from a Radio Access Network (RAN) node to the one or more second network nodes, and authenticates with the terminal based on the received first message. It characterized in that the control to perform.
  • RAN Radio Access Network
  • the processor is configured to receive a second message for a communication service request of the terminal from the RAN node; And transmitting the received second message to a second network node corresponding to the communication service request.
  • a network node eg, C-CPF having a common control function generates a security key for each CNI and sets security between the terminal and each CNI (Core Network Slice) through the CNI.
  • C-CPF Network Control Function
  • the present specification can set different key hierarchy for each CNI providing actual service, isolation between CNIs, and various security settings according to service characteristics.
  • FIG. 1 is a diagram illustrating an example of an EPS (Evolved Packet System) related to an LTE system to which the technical features of the present specification can be applied.
  • EPS Evolved Packet System
  • FIG. 2 is a diagram illustrating a wireless communication system to which the technical features of the present specification can be applied.
  • FIG. 3 is a block diagram illustrating an example of a functional split between an E-UTRAN and an EPC to which technical features of the present specification can be applied.
  • 4A is a block diagram illustrating an example of a radio protocol architecture for a user plane to which technical features of the present specification can be applied.
  • 4B is a block diagram illustrating an example of a radio protocol structure for a control plane to which technical features of the present specification can be applied.
  • FIG. 5 is a diagram illustrating a security configuration method considering the entire network defined in the LTE (-A) system.
  • FIG. 6 is a flowchart illustrating an example of an initial key activation procedure in an E-UTRAN.
  • FIG. 7 is a flowchart illustrating an authentication and key setting procedure in initial access in an E-UTRAN.
  • FIG. 8 is a diagram illustrating an example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed herein may be applied.
  • FIG. 9 is a diagram illustrating another example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed in the specification can be applied.
  • 10 to 12 are diagrams showing still another example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed herein can be applied.
  • FIG. 13 is a diagram illustrating an example of a basic conceptual diagram of network slicing to which the method proposed in the specification can be applied.
  • FIG. 14 illustrates a diagram of sharing a common set of C-plane functions among a plurality of core network instances to which the method proposed in this specification may be applied.
  • 15 is a flowchart illustrating an example of a terminal and CNI-specific security configuration method (service-specific security configuration method) proposed in the present specification.
  • FIG. 16 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
  • 17 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
  • FIG. 18 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
  • 19 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
  • 20 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
  • FIG. 21 is a flowchart illustrating an example of a method for differentiating security setting for each terminal and service for each CNI proposed in the present specification.
  • FIG. 22 illustrates a block diagram of a wireless communication device to which the methods proposed in the specification can be applied.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) device, Machine-to-Machine (M2M) device, Device-to-Device (D2D) device and the like can be replaced.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station
  • a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • NOMA NOMA
  • CDMA may be implemented by radio technology such as universal terrestrial radio access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE).
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all the terms disclosed in the present document can be described by the standard document.
  • the description will be mainly based on the 5G system, but the technical features of the present invention are not limited thereto, and of course, the present invention may also be applied to a 3GPP LTE / LTE-A system.
  • APN Access Point Name
  • the name of the access point managed by the network which is provided to the UE. That is, the name (string) of the PDN. Based on the name of the access point, the corresponding PDN for the transmission and reception of data is determined.
  • MME Mobility Management Entity
  • a session is a channel for data transmission.
  • the unit may be a PDN, a bearer, or an IP flow unit.
  • the difference in each unit can be divided into the entire target network unit (APN or PDN unit), the QoS classification unit (Bearer unit), and the destination IP address unit as defined in 3GPP.
  • APN or PDN unit the entire target network unit
  • QoS classification unit the QoS classification unit
  • destination IP address unit as defined in 3GPP.
  • P-TMSI Packet Temporary Mobile Subscriber
  • GTP GPRS Tunneling Protocol
  • TEID Tunnel Endpoint ID
  • GUTI Globally Unique Temporary Identity, UE identifier known to MME
  • FIG. 1 is a diagram illustrating an example of an EPS (Evolved Packet System) related to an LTE system to which the present invention can be applied.
  • EPS Evolved Packet System
  • the LTE system aims to provide seamless Internet Protocol connectivity between the user equipment (UE) and the packet data network (PDN) without interfering with the end user's use of the application while the user is on the move. .
  • the LTE system completes the evolution of radio access through the Evolved Universal Terrestrial Radio Access Network (E-UTRAN), which defines a radio protocol architecture between the user terminal and the base station, which is an Evolved Packet Core (EPC) network. It is also achieved through evolution in non-wireless terms by the inclusion of System Architecture Evolution (SAE).
  • LTE and SAE include an Evolved Packet System (EPS).
  • EPS Evolved Packet System
  • the EPS uses the concept of EPS bearers to route IP traffic from the gateway to the user terminal in the PDN.
  • a bearer is an IP packet flow having a specific Quality of Service (QoS) between the gateway and the user terminal.
  • QoS Quality of Service
  • E-UTRAN and EPC both set up and release bearers required by the application.
  • EPC also called CN (core network)
  • CN core network
  • a node (logical or physical node) of an EPC of the SAE includes a mobility management entity (MME) 30, a PDN-GW or a PDN gateway (P-GW) 50, and an S-GW ( Serving Gateway (40), Policy and Charging Rules Function (PCRF) 60, Home Subscriber Server (HSS) 70, and the like.
  • MME mobility management entity
  • P-GW PDN gateway
  • S-GW Serving Gateway
  • PCRF Policy and Charging Rules Function
  • HSS Home Subscriber Server
  • the MME 30 is a control node that handles signaling between the UE and the CN.
  • the protocol exchanged between the UE and the CN is known as the Non-Access Stratum (NAS) protocol.
  • NAS Non-Access Stratum
  • Examples of the functions supported by the MME 30 include functions related to bearer management operated by the session management layer in the NAS protocol, including network setup, management and release of bearers, network and It is manipulated by the connection layer or mobility management layer in the NAS protocol layer, including the establishment of connection and security between UEs.
  • the S-GW 40 serves as a local mobility anchor for data bearers when the UE moves between base stations (eNodeBs). All user IP packets are sent via the S-GW 40.
  • the S-GW 40 may also temporarily downlink data while the UE is in an idle state known as the ECM-IDLE state and the MME initiates paging of the UE to re-establish the bearer. Maintain information about bearers when buffering. It also serves as a mobility anchor for inter-working with other 3GPP technologies such as General Packet Radio Service (GRPS) and Universal Mobile Telecommunications System (UMTS).
  • GRPS General Packet Radio Service
  • UMTS Universal Mobile Telecommunications System
  • the P-GW 50 performs IP address assignment for the UE and performs flow-based charging in accordance with QoS enforcement and rules from the PCRF 60.
  • the P-GW 50 performs QoS enforcement for GBR bearers (Guaranteed Bit Rate (GBR) bearers). It also serves as a mobility anchor for interworking with non-3GPP technologies such as CDMA2000 and WiMAX networks.
  • GBR bearers Guard Bit Rate (GBR) bearers
  • the PCRF 60 performs policy control decision-making and performs flow-based charging.
  • the HSS 70 is also called a home location register (HLR) and includes SAE subscription data including EPS-subscribed QoS profile and access control information for roaming. It also includes information about the PDN that the user accesses. This information may be maintained in the form of an Access Point Name (APN), which is a Domain Name system (DNS) -based label that identifies the PDN address that represents the access point or subscribed IP address for the PDN.
  • APN Access Point Name
  • DNS Domain Name system
  • various interfaces such as S1-U, S1-MME, S5 / S8, S11, S6a, Gx, Rx, and SG may be defined between EPS network elements.
  • FIG. 2 shows a wireless communication system to which the present invention is applied.
  • E-UTRAN Evolved-UMTS Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
  • BS base station
  • UE user equipment
  • the base stations 20 may be connected to each other through an X2 interface.
  • the base station 20 is connected to a Serving Gateway (S-GW) through a Mobility Management Entity (MME) and an S1-U through an Evolved Packet Core (EPC), more specifically, an S1-MME through an S1 interface.
  • S-GW Serving Gateway
  • MME Mobility Management Entity
  • EPC Evolved Packet Core
  • EPC consists of MME, S-GW and Packet Data Network Gateway (P-GW).
  • the MME has access information of the terminal or information on the capability of the terminal, and this information is mainly used for mobility management of the terminal.
  • S-GW is a gateway having an E-UTRAN as an endpoint
  • P-GW is a gateway having a PDN as an endpoint.
  • Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems.
  • L2 second layer
  • L3 third layer
  • the RRC Radio Resource Control
  • the RRC layer located in the third layer plays a role of controlling radio resources between the terminal and the network.
  • the RRC layer exchanges an RRC message between the terminal and the base station.
  • FIG. 3 is a block diagram illustrating an example of a functional split between an E-UTRAN and an EPC to which the present invention can be applied.
  • hatched blocks represent radio protocol layers and empty blocks represent functional entities in the control plane.
  • the base station performs the following functions.
  • Radio resource management such as radio bearer control, radio admission control, connection mobility control, and dynamic resource allocation to a terminal RRM
  • IP Internet Protocol
  • IP Internet Protocol
  • Scheduling and transmission (5) scheduling and transmission of broadcast information, and (6) measurement and measurement report setup for mobility and scheduling.
  • the MME performs the following functions. (1) distribution of paging messages to base stations, (2) Security Control, (3) Idle State Mobility Control, (4) SAE Bearer Control, (5) NAS ( Ciphering and Integrity Protection of Non-Access Stratum Signaling.
  • S-GW performs the following functions. (1) termination of user plane packets for paging, and (2) user plane switching to support terminal mobility.
  • FIG. 4A illustrates an example of a radio protocol architecture for a user plane to which technical features of the present specification can be applied
  • FIG. 4B illustrates a control plane to which technical features of the present specification can be applied.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to the upper layer MAC (Medium Access Control) layer through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
  • MAC Medium Access Control
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • the function of the MAC layer is mapping between logical channels and transport channels and multiplexing / demultiplexing ('/') into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels. Meaning includes both the concepts of 'or' and 'and').
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • RLC layer Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs.
  • QoS Quality of Service
  • the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode).
  • TM transparent mode
  • UM unacknowledged mode
  • Acknowledged Mode acknowledged mode
  • AM Three modes of operation (AM).
  • AM RLC provides error correction through an automatic repeat request (ARQ).
  • the RRC (Radio Resource Control) layer is defined only in the control plane.
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • PDCP Packet Data Convergence Protocol
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering.
  • the functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transmission of control plane data and encryption / integrity protection.
  • the establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • RB can be further divided into SRB (Signaling RB) and DRB (Data RB).
  • SRB is used as a path for transmitting RRC messages in the control plane
  • DRB is used as a path for transmitting user data in the user plane.
  • the UE If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
  • the downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
  • RACH random access channel
  • Logical channels that are located above transport channels and are mapped to transport channels include Broadcast Control Channel (BCCH), Paging Control Channel (PCCH), Common Control Channel (CCCH), Multicast Control Channel (MCCH), and Multicast Traffic (MTCH). Channel).
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast Traffic
  • the physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain.
  • One sub-frame consists of a plurality of OFDM symbols in the time domain.
  • the RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers.
  • each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel.
  • Transmission Time Interval is a unit time of subframe transmission.
  • FIG. 5 is a diagram illustrating a security configuration method considering the entire network defined in the LTE (-A) system.
  • FIG. 6 is a flowchart illustrating an example of an initial key activation procedure in an E-UTRAN.
  • FIG. 7 is a flowchart illustrating an authentication and key setting procedure in initial access in an E-UTRAN.
  • FIG. 6 illustrates an overall procedure of authenticating and setting a key for a corresponding user terminal when a user performs initial access in a 4G system (LTE (-A) system).
  • LTE (-A) system LTE
  • the user terminal after performing random access, the user terminal establishes an RRC connection with the base station through 1 to 3 procedures (RRC Connection Setup Request, RRC Connection Setup, and RRC Connection Setup Complete).
  • RRC Connection Setup Request RRC Connection Setup Request
  • RRC Connection Setup RRC Connection Setup
  • RRC Connection Setup Complete RRC Connection Setup Complete
  • FIG. 7 illustrates the authentication procedure performed in the network access procedure illustrated in FIG. 6 in more detail.
  • FIG. 8 is a diagram illustrating an example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed herein may be applied.
  • the wireless communication system structure for supporting the next generation RAN may be expressed as a 'high level architecture'.
  • Next generation may be briefly expressed as “Next Gen”, and the next generation may collectively refer to a term for a future communication generation including 5G.
  • next generation will be referred to as “Next Gen”.
  • next Gen supports new RAT (s), evolved LTE and non-3GPP access types, but not GERAN and UTRAN.
  • Examples of the non-3GPP access types may include WLAN access, fixed access, and the like.
  • next Gen structure supports an unified authentication framework for other access systems, and supports simultaneous connection with a plurality of terminals through a plurality of access technologies.
  • next Gen architecture allows for independent evolution of the core network and the RAN and minimizes access dependencies.
  • next Gen structure supports separation of control plane and user plane functions, and supports transmission of IP packets, non-IP PDUs, and Ethernet frames.
  • the “Next Gen” structure may include a NextGen UE 810, a NextGen RAN 820, a NextGen Core 830, and a Data network 840.
  • the UE is a “NextGen UE” and the RAN defining a radio protocol structure between the UE and the base station is “NextGen RAN” to perform mobility control and IP packet flow management of the UE.
  • Core network can be expressed as 'NextGen Core'.
  • 'NextGen RAN' may correspond to E-UTRAN in LTE (-A) system
  • 'NextGen Core' may correspond to EPC in LTE (-A) system
  • MME in LTE EPC Network entities that perform functions such as S-GW, P-GW, etc. may also be included in NextGen Core.
  • An NG1-C interface and an NG1-U interface exist between the NextGen RAN and the NextGen Core, and an NG-Gi interface exists between the NextGen Core and the Data Network.
  • NG1-C represents a reference point for a control plane between NextGen RAN and NextGen Core
  • NG1-U represents a reference point for a user plane between NextGen RAN and NextGen Core.
  • the NG-NAS represents a reference point for a control plane between a NextGen UE and a NextGen Core.
  • NG-Gi represents a reference point between NextGen Core and Data network.
  • the data network may be an operator external public network, a private data network, an intra-operator data network, or the like.
  • FIG. 9 is a diagram illustrating another example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed in the specification can be applied.
  • FIG. 9 subdivides the NextGen Core of FIG. 8 into a control plane (CP) function and a user plane (CP) function, and illustrates an interface between UE / AN / AF in detail.
  • CP control plane
  • CP user plane
  • a policy of Quality of Service (QoS) in a wireless communication system to which the present invention is applied may be stored and set in a CP (Control Plane) Function 531 for the following reasons.
  • the CP functions and the UP functions are functions included in the NextGen CN (indicated by a dotted line), and may be implemented by one physical device or each other.
  • 10 and 12 illustrate another example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed herein may be applied.
  • FIGS. 10 to 12 show examples of a wireless communication system structure for supporting a next generation RAN including a network slicing concept described generally herein.
  • FIG. 10 shows control plane interfaces for network slicing having common and slice specific functions
  • FIG. 11 shows a core part including a network slicing concept
  • FIG. 12 shows terminals allocated to Core NSI after attaching. The figure shown.
  • NextGen Core or 5G Network Core
  • NFs Network Functions
  • CCNF Common Control Plane Network Function
  • SCNF Slice-specific Control Plane Network Functions
  • the CCNF may be represented by C-CPF or the like.
  • the CCNF is a set of basic control plane network functions to support common basic function operations among NSIs in NextGen Core.
  • Core Network Slice may be represented as a Core Network Instance.
  • FIG. 13 is a diagram illustrating an example of a basic conceptual diagram of network slicing to which the method proposed in the specification can be applied.
  • the assumption in FIG. 13 is that a particular Network Slice of a particular PLMN is not visible to any terminal connected via a Radio Interface.
  • the RAN is shown only to the terminal as RAT + PLMN, which Network Slice (Network Instance) is connected to the terminal is performed in the network, the terminal is not involved.
  • RAT + PLMN which Network Slice (Network Instance) is connected to the terminal is performed in the network, the terminal is not involved.
  • Slice Selection and Routing Function may be provided by the RAN, which is similar to NNSF (Network Node Selection Function), which is one of functions currently performed by a base station of a 4G system.
  • NNSF Network Node Selection Function
  • FIG. 14 illustrates a diagram of sharing a common set of C-plane functions among a plurality of core network instances to which the method proposed in this specification may be applied.
  • 5G network architecture is expected to be configured to accommodate the concept of network slicing in the core network.
  • FIG. 14 shows an example of such a structure, and according to the architecture shown in FIG. 14, UEs are connected to CNIs for actual service through Common CPFs.
  • CNIs which are logical networks optimized to provide respective services with different service requirements, must be provided with a security mechanism that matches the CNIs. Means.
  • 5G systems are aimed at Service Oriented Network, fixed-type authentication and security settings that do not consider service requirements at all as in 4G systems are obstacles in providing various services to be realized in 5G systems.
  • 5G system should construct network slices to satisfy service-specific security requirements, not the concept of applying the same security mechanism to the entire network as in the prior art, and different security mechanisms must be provided for this.
  • the method or technology proposed in the present specification is a network fragment or a network slice (network slice) through a 5G Core Network including a network slicing concept in order to efficiently provide new 5G (or next generation) services. It provides a differentiated security configuration method for each CNI to support a situation in which services are provided through core network instances (CNIs) per slice.
  • CNIs core network instances
  • the terminal may receive a plurality of services through a plurality of network slices (CNIs).
  • CNIs network slices
  • the present specification provides a security configuration method that satisfies each service requirement for each CNI.
  • the first embodiment provides a method for C-CPF to create a security key for each CNI after authentication of the terminal and transfer the security key to the corresponding CNI, thereby performing security configuration between the terminal and each CNI.
  • a first security key (eg, generated as a result of performing an authentication procedure for network access while a common control function (C-CPF) that controls a network access of a terminal performs an access request of the terminal)
  • C-CPF common control function
  • a second security key (CNI Seed Key) for each CNI is generated and the generated second security key is transferred to the corresponding CNI.
  • the first security key will be described as an MME Base Key and the second security key as a CNI Seed Key.
  • the CNI receiving the CNI Seed Key from the C-CPF checks the legality of the terminal and the CNI Seed Key through the received CNI Seed Key.
  • the CNI generates an additional security key to be used in the terminal and the RAN section from the CNI Seed Key.
  • the CNI and the terminal may coordinate various security attributes according to the service characteristics provided by the CNI.
  • the first embodiment provides a method for applying a security mechanism that meets the corresponding service requirements for each network slice (CNI) having different service requirements, and thus different for each CNI providing the actual service.
  • Security key hierarchy can be set, and isolation between CNIs is possible, resulting in various security settings according to service characteristics.
  • the common control function for controlling the network access of the terminal as a result of performing the authentication procedure for the network access, while performing the access request of the terminal Using the generated first security key, a second security key for each CNI is generated, and the generated second security key is transmitted to each CNI.
  • the first security key may be expressed as an MME Base Key, and the like, and may be replaced with a key name defined in a future 5G system.
  • the CNI Network Key may be generated from the MME Base Key, and the CNI Network Key may be a security key for protecting signaling between the UE and 5G CNI.
  • the first security key may correspond to K ASME used in the LTE system.
  • the second security key may be represented as a CNI Seed Key, CNI-specific Key, and the like.
  • the second security key may be a security key for protecting a service provided from a specific CNI.
  • a second security key eg, a CNI Seed Key
  • C-CPF Common-Control Plane Function
  • the CNI transfers the second security key (CNI Seed Key) to the RAN node to which the terminal accesses, causing the terminal and the RAN node to generate a security key of an AS interval, or from the CNI to the second.
  • the C-CPF further uses an additional third to be used in the terminal and the RAN section from the second security key and the RAN Node RAT type information according to the RAT type (eg, New RAT, eLTE, WLAN, etc.) of the RAN node.
  • the security key may be generated and transferred to the RAN node to which the terminal is connected.
  • the third security key may be a connection between the terminal and the RAN, that is, a security key associated with the AS, and a third security key may be generated from Equation 1 below from the second security key and the RAN Node RAT type information.
  • each CNI and the terminal may coordinate (or exchange) various security attributes with the terminal according to the service characteristics provided by the corresponding CNI.
  • the security attribute may be a size of a security key used for encryption and decryption, whether to apply an encryption / integrity algorithm according to service characteristics, and the like.
  • the procedure for checking whether or not the second security key (eg, CNI Seed Key) between the UE and the CNI is legal may be performed through a session establishment procedure of the UE.
  • the second security key eg, CNI Seed Key
  • the CNI-specific security configuration method proposed in the present specification is to solve the inefficiency that does not satisfy the requirements of various services by performing the security configuration according to the service characteristics, unlike the security configuration method of the conventional LTE (4G) system .
  • 15 is a flowchart illustrating an example of a terminal and CNI-specific security configuration method (service-specific security configuration method) proposed in the present specification.
  • the wireless communication system may include a UE, a RAN node, an NSSF / CPSF, a C-CPF, and one or more CNIs (CPFs, UPFs) in order to perform a method for setting security for each UE and CNI.
  • CPFs C-CPF
  • CNIs CNIs
  • network slice selection is performed through an application ID (IDentity), a service descriptor (eg, eMBB, CriC, mMTC) provided by the terminal, or a network (eg, HSS of an LTE system). ) May be performed through subscription information of the terminal, which is managed.
  • IDentity an application ID
  • service descriptor eg, eMBB, CriC, mMTC
  • network eg, HSS of an LTE system
  • FIG. 15 illustrates an example of a service discriminating security setting procedure that operates in a 5G New Core Network in which the concept of network slicing illustrated in FIG. 14 is accommodated.
  • FIG. 15 assumes that only an interface between an HSS (or 5G New Core Network entity corresponding to the HSS) and a C-CPF (Common CPF) that stores subscription information of the terminal exists.
  • HSS or 5G New Core Network entity corresponding to the HSS
  • C-CPF Common CPF
  • the CNIs of FIG. 15 are not connected to the HSS, and the CNIs necessarily go through the C-CPF to obtain information maintained by the HSS.
  • the terminal transmits a network connection request message to establish a connection to an operator network (CNI (s)) (S1501).
  • CNI operator network
  • the network connection request message is transmitted to a Network Slice Selection Function (NNSF) / C-Plane Selection Function (CPSF) via the RAN Node (S1501).
  • NSF Network Slice Selection Function
  • CPSF C-Plane Selection Function
  • the Network Connection Request message can be directly transmitted from the terminal to the CPF of the specific CNI.
  • the NNSF / CPSF determines the CNI to be accessed by the terminal and the CPF for the corresponding CNI according to the information included in the Network Connection Request message requested by the terminal (S1502).
  • the NNSF / CPSF transfers information on the CPF (CPF-1) of the CNI # 1 to the RAN node (S1503).
  • the RAN node selects the CPF of the CNI according to the response from the NNSF / CPSF (S1504).
  • An example of the RAN node may be a base station, but is not limited thereto.
  • the RAN node transmits a network connection request message of the terminal to the C-CPF (C-CPF-1 in FIG. 15) (S1505), which is a request for connection to the CNI # 1 of the terminal.
  • the C-CPF performs authentication for connecting the terminal to the CNI-1, and as a result, generates the first security key (eg, MME Base Key) mentioned above (S1506).
  • the first security key eg, MME Base Key
  • the MME Base Key may be a K ASME of a 4G (eg LTE) system or a unique key corresponding thereto.
  • the C-CPF generates the aforementioned second security key (eg, CNI-specific Key, CNI-1 Seed Key) from the MME Base Key (S1507).
  • the aforementioned second security key eg, CNI-specific Key, CNI-1 Seed Key
  • the C-CPF may also generate a CNI-specific Key (e.g., CNI-2 Seed Key) for CNI-2 according to the subscription information of the terminal.
  • a CNI-specific Key e.g., CNI-2 Seed Key
  • the CNI-2 Seed Key generation step may or may not be selectively performed.
  • the CNI-specific Key may also be referred to as a CNI Seed Key, and may be generated by the following equations (2) and (3).
  • the C-CPF delivers the CNI-specific Keys generated by Equations 2 and 3 to the CPF of the corresponding CNI (S1508).
  • the terminal transmits a New service request message for a communication service (meaning service # 1 provided by CNI # 1) to the RAN node (S1509).
  • step S1509 the UE knows the CNI of the service requested by the UE, and uses the ID of the corresponding CNI to perform CNI-specific Key (eg, CNI-1 Seed Key) through the same method as in Equations 2 and 3 above. ) Can be created.
  • CNI-specific Key eg, CNI-1 Seed Key
  • the new service request message for the communication service to the CNI-1 of the terminal may include a hash value for the CNI-1 seed key and security capability information of the terminal.
  • the reason for including the hash value for the CNI-1 seed key in the new service request message may be to determine whether the terminal and the CNI-1 have the same CNI-1 seed key.
  • the reason for including the security capability information of the terminal in the new service request message is to coordinate information such as encryption / integrity or supportable key size between the terminal and CNI-1.
  • the RAN node forwards the new service request of the terminal to the C-CPF, and the C-CPF forwards the new service request to the CPF (CPF of CNI-1) corresponding to CNI-1 (S1510). .
  • the CPF-1 of the CNI-1 transfers a Session Response message to the C-CPF-1.
  • the C-CPF 1 transfers the session response message to the RAN node (S1511).
  • the session response message includes information such as a hash value for the CNI-1 seed key calculated by CPF-1 (CPF-1) of CNI-1 and a security attribute applicable to UPF-1 of CNI-1. can do.
  • the reason for including the hash value for the CNI-1 Seed Key (the example of the second security key mentioned above) is as described in step S1509, and the terminal and the CNI-1 have the same CNI-1 Seed Key. It is to check whether there is.
  • the reason for including the information related to the security attribute according to the service characteristics in the Session Response (Session Response) message informs the terminal (for example, the UE) the security settings that can be applied according to the service characteristics provided by the CNI-1 For sake.
  • the information related to the security attribute may also include information such as encryption and / or integrity algorithm or security key size that CNI-1 intends to apply to service provision according to the security capability received from the terminal.
  • the RAN node transmits the received Session Response to the terminal (S1512).
  • the terminal and the specific CNI CPF (CPF-1) check the legality of the CNI Seed Key with each other through the session request / session response, the terminal and the specific CNI-CPF ( CPF-1) can generate keys to be used for service in the access section.
  • the CNI-CPF may allow the CNI-CPF (CPF-1) to transmit a CNI-1 Seed Key to the RAN Node, so that the RAN Node and the UE generate separately from the received CNI-1 Seed Key.
  • the C-CPF that receives the second security key from the CNI, according to the RAT type (eg, New RAT, eLTE, WLAN, etc.) of the RAN node, the terminal and the RAN interval from the second security key and the RAN Node RAT type information.
  • the RAT type eg, New RAT, eLTE, WLAN, etc.
  • FIG. 16 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
  • FIG. 16 shows another example of a service discriminating security setting procedure proposed in the present specification according to the 5G New Core Network structure in which the concept of network slicing shown in FIG. 14 is accommodated.
  • CNIs are not connected to the HSS, and the CNIs must go through C-CPF to obtain information maintained by the HSS.
  • the terminal transmits a New Service Request message for a communication service (in the case of FIG. 16, meaning service # 1 provided by CNI # 1) to the RAN node (S1608). .
  • step S1608 the UE knows the CNI of the service requested by the UE, and uses the ID of the corresponding CNI in the same manner as defined in Equation 1 and Equation 2, and the aforementioned second security key (eg, CNI-specific Key or CNI-1 Seed Key) can be generated.
  • the aforementioned second security key eg, CNI-specific Key or CNI-1 Seed Key
  • the New Service Request message may include a hash value for the CNI-1 Seed Key and security capability information of the terminal.
  • the reason for including the hash value for the CNI-1 seed key in the New Service Request message is to check whether the terminal and the CNI-1 have the same CNI-1 seed key.
  • the reason why the security capability information of the terminal is included in the New Service Request message is to coordinate information such as encryption or integrity, or supportable key size, between the terminal and the CNI.
  • the RAN node selects the CPF (CPF-1) of the CNI-1 according to the information (CNI-1 ID, etc.) included in the received New Service Request message (S1609).
  • the RAN node transmits the communication service request of the terminal, that is, the New Service Request message to the CPF (CPF-1) of the CNI-1 (S1610).
  • the communication service request of the terminal is first delivered to the C-CPF, the C-CPF adds a CNI-specific Key (eg, CNI-1 Seed Key) generated by the C-CPF for the CNI-1, and the Transmit to CPF (CPF of CNI-1) corresponding to CNI of Communication Service request.
  • a CNI-specific Key eg, CNI-1 Seed Key
  • the CPF (CPF-1) of the CNI-1 transmits a session response message to the C-CPF (S1611).
  • the C-CPF transmits or forwards the session response message to the RAN node (S1612).
  • the transmitted message may be expressed as a New Service Response message.
  • the session response message may include information such as a hash value for the CNI-1 seed key calculated by the CPF of the CNI-1 and a security attribute applicable to the CNI-1 UPF-1.
  • the reason for including the hash value for the CNI-1 seed key is to check whether the terminal and the CNI-1 have the same CNI-1 seed key as described above, and why the procedure is necessary. This is because the key of the access section for subsequent services is generated from the CNI-1 Seed Key.
  • the reason why the session response message includes information related to the security attribute according to the service characteristic is to inform the terminal of the security setting that can be applied according to the service characteristic provided by the CNI-1.
  • the security attribute may also include information such as encryption / integrity algorithm or key size that CNI-1 intends to apply to service provision according to the security capability received from the terminal.
  • the RAN node transmits the received Session Response message to the terminal (S1613).
  • the session response message transmitted to the terminal is represented as a New Service Response message in FIG. 16.
  • the terminal and the CNI-CPF 1 may generate keys to be actually used for a service in an access period.
  • the CNI-CPF (CNI-CPF 1) transmits a CNI-1 Seed Key to the RAN Node, so that the RAN Node and the UE generate keys to be actually used in an Access section separately from the CNI-1 Seed Key.
  • the C-CPF which receives the CNI-1 Seed Key from the CNI, may be connected to the UE from the CNI-1 Seed Key and the RAN Node RAT type information according to the RAT type (eg, New RAT, eLTE, WLAN, etc.) of the RAN Node.
  • the RAT type eg, New RAT, eLTE, WLAN, etc.
  • the RAN node and the terminal By generating an additional third security key to be used in the RAN interval and transmitting it to the RAN node to which the terminal is connected, the RAN node and the terminal to generate keys to be actually used in the Access interval, respectively, from the received third security key. Can be.
  • the C-CPF generates a CNI Seed Key for each Network Slice (or for each CNI) for a UE that has completed authentication through C-CPF, and for each Network Slice in the corresponding Network Slice.
  • the C-CPF performs authentication with the terminal, and according to the subscription information of the authenticated terminal, the C-CPF sets security settings for the CNIs associated with the terminal. After executing it directly, it provides a way to transfer security settings for each CNI to the corresponding CNI.
  • the second embodiment provides a method for setting security differentiated between the terminal and each CNI through the following two methods.
  • the C-CPF controlling the network access of the terminal performs a connection request of the terminal, and as a result of performing the authentication procedure for the network access of the terminal, firstly, (1) a first security key to be used by each CNIs (E.g., CNI Network Key) and second security key (e.g., CNI Seed Key) to each CNI.
  • a first security key to be used by each CNIs E.g., CNI Network Key
  • second security key e.g., CNI Seed Key
  • each CNI-CPF protects signaling data between the UE and itself through a first CNI network key received from the C-CPF, and delivers a second security key (CNI -Seed Key) to the RAN node.
  • the RAN node is configured to generate a key between the terminal and the access interval.
  • the C-CPF which receives the second security key from the CNI-CPF, may be connected to the terminal from the second security key and the RAN Node RAT type information according to the RAT type (eg, New RAT, eLTE, WLAN, etc.) of the RAN node.
  • the RAT type eg, New RAT, eLTE, WLAN, etc.
  • the first security key (for example, CNI Network Key) means a key used for signaling protection between the terminal and the CNI.
  • the second security key (eg, CNI Seed Key) refers to a key generated by applying KDF to a base key and a network slice ID of a C-CPF corresponding to K ASME of a 4G system.
  • the C-CPF generates a CNI-Specific Base Key using the CNI-Specific Master Key, and uses the CNI Network Keys (UE and CNI) to be used by each CNI from the generated CNI-Specific Base Key. Key used to protect signaling between devices) and CNI Seed Key are generated and delivered to each CNI.
  • CNI Network Keys UE and CNI
  • the CNI Network Key represents an example of another security key generated from the aforementioned first security key
  • the CNI Seed Key is an example of the second security key mentioned above
  • the CNI-Specific Base Key, COUNTER. Represents a key generated by applying KDF to an ID.
  • KDF Key Derivation Function
  • each CNI-CPF protects signaling data between the terminal and itself through the CNI network key, and transmits the CNI-Seed Key to the RAN node so that the RAN node generates a terminal and an access interval key.
  • the C-CPF that receives the CNI-Seed Key from the CNI-CPF has a CNI-Seed Key and a RAN Node RAT type according to the RAT type (eg, New RAT, eLTE, WLAN, etc) of the RAN Node connected to the terminal.
  • the RAT type eg, New RAT, eLTE, WLAN, etc
  • each CNI-CPF and the terminal adjusts various security attributes according to the service characteristics provided by the corresponding CNI.
  • the network slice selection may be performed through an application ID provided by the terminal, a service descriptor (e.g., eMBB, CriC, mMTC), or the like, or subscription information of the terminal managed by the network.
  • a service descriptor e.g., eMBB, CriC, mMTC
  • 17 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
  • FIG. 17 performs C-CPF control-based authentication in a 5G New Core Network including the Network Slicing concept shown in FIG. 14, sets security for each CNI in the C-CPF, and then sets security as individual CNIs. An example of how to deliver.
  • HSS the entity storing the subscription information of the terminal.
  • CNIs are not connected to the HSS, and the CNIs must go through the C-CPF (C-CPF-1) to obtain information maintained by the HSS.
  • steps S1701 to S1706 of FIG. 17 are the same as steps S1501 to S1506 of FIG. 15, a detailed description thereof will be described with reference to FIG. 15, and hereinafter, the description will be mainly focused on different parts.
  • step S1706 the C-CPF-1 performs authentication for connecting the terminal to the C-CPF-1, and as a result generates a C-CPF Base Key (S1706).
  • the C-CPF Base Key may be viewed as a K ASME of a 4G system (or a key corresponding to the K ASME generated in a 5G system).
  • the C-CPF-1 generates a CNI-1 Network Key and a CNI-1 Seed Key using the C-CPF Base Key (S1707).
  • the CNI-1 Network Key is generated through KDF (C-CPF Base Key, Algorithm ID, Algorithm Distinguisher), and the CNI-1 Seed Key is KDF (C-CPF Base Key, Network Slice 1 ID, etc.) Can be generated via KDF (C-CPF Base Key, Network Slice 1 ID, etc.)
  • C-CPF-1 is identified as having only CNI-1 associated with the service to which the UE subscribes through HSS.
  • the C-CPF-1 determines that there is a CNI (eg, CNI-2) associated with another service to which the UE is subscribed, the C-CPF-1 additionally corresponds to the corresponding CNI (CNI-2).
  • CNI-2 Network Key
  • CNI-2 Seed Key the Salping Keys
  • the C-CPF-1 performs a procedure for setting the generated CNI-1 network key with the terminal (S1708).
  • the terminal protects the signaling data exchanged between itself and the CNI-1 CPF-1 using the CNI-1 Network Key.
  • the C-CPF-1 transfers the CNI-1 Network Key and the CNI-1 Seed Key to the CNI-1 CPF-1 (S1709).
  • the CNI-1 CPF-1 transfers the CNI-1 Seed Key received from the C-CPF-1 to the RAN Node (S1710), and uses the received CNI-1 Network Key to communicate between itself and the terminal. Protect the received signaling data.
  • the RAN node and the terminal generate a key to be used in an access section using the CNI-1 Seed Key (S1711).
  • the C-CPF which receives the CNI-1 Seed Key from the CNI-1 CPF-1, according to the RAN Node RAT type (eg, New RAT, eLTE, WLAN, etc) to which the UE is connected, CNI-1 Seed Key And an additional third security key to be used in the terminal and the RAN section from the RAN Node RAT type information, and then transmitting the additional third security key to the RAN node to which the terminal is connected, thereby separately accessing the RAN node and the terminal from the received third security key.
  • the RAN Node RAT type eg, New RAT, eLTE, WLAN, etc
  • the security capability information of the terminal may be delivered to the RAN node.
  • step S1710 information such as security attributes that may be applied in the CNI-1 UPF-1 received by the RAN node may be transmitted from the RAN node to the terminal.
  • the reason why such information is exchanged between the terminal and the RAN node is to inform the terminal of the security settings that can be applied according to the service characteristics provided by the CNI-1, so that the algorithm or the algorithm for encryption / integrity between the terminal and the CNI-1 CPF-1 can be applied. To adjust information such as key size.
  • the terminal transmits a request for a communication service (meaning service # 1 provided by CNI # 1) to the RAN node (S1712).
  • the New Service Request is delivered to the CNI-1 CPF-1 via the C-CPF-1 by the RAN node (S1712).
  • the CNI-1 CPF transmits a Session Response to the C-CPF-1, and the C-CPF-1 delivers the Session Response to the RAN Node. (S1713).
  • the session response may include information related to a security attribute according to a service characteristic.
  • the reason is to inform the terminal of the security setting to be applied according to the service characteristics provided by the CNI-1.
  • Such a security attribute may include information such as encryption / integrity algorithm or key size to be applied to service provision according to the security capability received by the CNI-1 from the terminal.
  • the RAN node transmits the received Session Response to the terminal (S1713).
  • FIG. 18 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
  • steps S1801 to S1808 of FIG. 18 are the same as steps S1701 to S1708 of FIG. 17, a detailed description thereof will be described with reference to FIG. 17, and hereinafter, the description will be mainly focused on parts having a difference.
  • FIG. 18 illustrates another method of performing C-CPF control-based authentication and delivering security settings to individual CNIs after setting security for each CNI.
  • C-CPF-1 delivers the CNI-1 Seed Key to the RAN Node (S1809).
  • the C-CPF-1 protects signaling data exchanged between itself and the terminal through a CNI-1 network key.
  • the RAN node and the terminal generate a key to be used in an access section using the CNI-1 Seed Key (S1810).
  • the C-CPF which receives the CNI-1 Seed Key from the CNI-1 CPF-1, according to the RAN Node RAT type (eg, New RAT, eLTE, WLAN, etc) to which the UE is connected, CNI-1 Seed Key And an additional third security key to be used in the terminal and the RAN section from the RAN Node RAT type information, and then transmitting the additional third security key to the RAN node to which the terminal is connected, thereby separately accessing the RAN node and the terminal from the received third security key.
  • the RAN Node RAT type eg, New RAT, eLTE, WLAN, etc
  • the security capability information of the terminal may be delivered to the RAN node.
  • step S1810 information such as security attributes that can be applied in the CNI-1 UPF-1 received by the RAN node may be transferred from the RAN node to the terminal.
  • the reason why such information is exchanged between the terminal and the RAN node is that encryption is performed between the terminal and the CNI-1 CPF-1 by informing the terminal of a security setting that can be applied according to a service characteristic provided by the CNI-1.
  • To coordinate information such as algorithm for integrity or applicable key size.
  • step S1813 information such as encryption / integrity algorithm or key size to be applied to service provision according to the security capability received from the terminal by the RAN node is transmitted to the terminal through a new service response transmission / reception procedure (step S1813) to be described later. Can be.
  • the RAN node After, when the RAN node completes setting the access interval key with the terminal, the RAN node notifies the C-CPF-1 through an access key setup complete indication (S1811).
  • the C-CPF-1 receives from the RAN node that the access interval key setting with the terminal is completed, the C-CPF-1 receives the CNI-1 seed key and the CNI- used to set the access interval key. 1 Transfer the Network Key to CNI-1 CPF-1 (S1812).
  • the CNI-1 CPF-1 protects signaling data exchanged between itself and the terminal through the CNI-1 network key.
  • 19 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
  • step S1906 C-CPF-1 generates a CNI-Specific Base Key through the CNI-Specific Master Key (S1907).
  • the CNI-Specific Master Key is a Key that is uniquely generated for each CNI of the terminal and transferred to the C-CPF-1 according to the subscription information of the terminal in the process of HSS authenticating a specific terminal at the request of the C-CPF-1. Means.
  • the CNI-Specific Maser Key may mean a key corresponding to a key (e.g., KDF (Ki, CNI-ID, etc)) generated by applying KDF to Ki of a 4G system.
  • KDF KDF (Ki, CNI-ID, etc)
  • the CNI-Specific Maser Key represents a Key generated by applying KDF to a Master Key corresponding to the Ki in a 5G system.
  • KDF Master Key, CNI-ID, etc., unique to 5G System corresponding to Ki
  • RAND SQN, SN ID, etc.
  • the term for the KDF may be replaced with a term newly defined in a 5G system.
  • KDF C-CPF Base Key
  • Algorithm ID Algorithm Distinguisher
  • CNI-1 Seed Key KDF (CNI) from the received CNI-Specific Base Key -Generate a specific base key, COUNTER, etc.
  • the COUNTER may mean a COUNTER corresponding to the NAS UPLINK COUNTER of the 4G system.
  • C-CPF-1 has identified that only CNI-1 associated with the service to which the UE is subscribed through HSS.
  • the C-CPF-1 determines that there is a CNI (eg, CNI-2) associated with another service to which the UE is subscribed
  • the C-CPF-1 further includes the above-described key for the corresponding CNI.
  • the C-CPF-1 performs a procedure of setting the generated CNI-1 Network Key with the terminal.
  • steps S1909 to S1914 Since the procedures after the operation S1908 (steps S1909 to S1914) are the same as the operations S1708 to S1713 of FIG. 17, a detailed description will be referred to FIG. 17.
  • 20 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
  • steps S2001 to S2009 of FIG. 20 are the same as steps S1901 to S1909 of FIG. 19, the detailed description will be described with reference to FIG. 19, and hereinafter, the description will be mainly focused on parts having a difference.
  • C-CPF-1 delivers the CNI-1 Seed Key to the RAN Node (S2010).
  • the C-CPF-1 protects signaling data exchanged between itself and the terminal through the CNI-1 network key (S2011).
  • the RAN node and the terminal each generate a key to be used in an access period using the CNI-1 Seed Key.
  • the C-CPF which receives the CNI-1 Seed Key from the CNI-1 CPF-1, according to the RAN Node RAT type (eg, New RAT, eLTE, WLAN, etc) to which the UE is connected, CNI-1 Seed Key And an additional third security key to be used in the terminal and the RAN section from the RAN Node RAT type information, and then transmitting the additional third security key to the RAN node to which the terminal is connected, thereby separately accessing the RAN node and the terminal from the received third security key.
  • the RAN Node RAT type eg, New RAT, eLTE, WLAN, etc
  • the security capability information of the terminal may be delivered to the RAN node.
  • information such as security attributes that may be applied in CNI-1 UPF-1 received by the RAN node in step S2010 may be transmitted from the RAN node to the terminal.
  • the reason why such information is exchanged between the terminal and the RAN node is because an algorithm for encryption / integrity between the terminal and the CNI-1 CPF-1 may be informed of a security setting that can be applied according to a service characteristic provided by the CNI-1. Or to adjust information such as applicable key size.
  • the RAN node informs the C-CPF-1 through the Access Key Setup Complete Indication when the access interval key setting with the terminal is completed (S2012).
  • the C-CPF-1 Upon receiving the completion of the access section key setting with the terminal from the RAN node, the C-CPF-1 converts the CNI-1 seed key and the CNI-1 network key used to set the access section key to the CNI-1 CPF. Transfer (S2013).
  • the CNI-1 CPF receiving the CNI-1 protects the signaling data exchanged between itself and the terminal through the CNI-1 Network Key.
  • FIG. 21 is a flowchart illustrating an example of a method for differentiating security setting for each terminal and service for each CNI proposed in the present specification.
  • FIG. 21 is a view illustrating a method for setting security differentiated between services of a terminal and a CNI based on the operation of the C-CPF in the first embodiment of the present invention.
  • the first network node performs an authentication procedure with the terminal to connect the terminal to one or more second network nodes of the core network (S2101).
  • the performing of the authentication procedure with the terminal may include receiving a first message requesting a connection from the Radio Access Network (RAN) node to the one or more second network nodes. That is, the terminal may transmit the first message requesting only connection to the first network node, or transmit the first message requesting connection to the second network.
  • RAN Radio Access Network
  • connection request to the one or more second network nodes corresponds to the connection request by the terminal.
  • the first network node is a network node having a common control function, and may be used in various terms such as C-CPF, Common Control Network Function (CCNF), and Authentication Function (AuF).
  • C-CPF Common Control Network Function
  • CCNF Common Control Network Function
  • AuF Authentication Function
  • the one or more second network nodes each provide a separate service.
  • the second network node may be represented by a core network instance (CNI) or a core network slice.
  • CNI core network instance
  • the first network node generates a first security key according to a result of performing the authentication procedure (S2102).
  • the first security key may be a security key defined in a K ASME of an LTE system or a next generation system (eg, 5G system) corresponding to the K ASME .
  • the first network node generates at least one second security key corresponding to each of the one or more second network nodes using the generated first security key (S2103).
  • the generated at least one second security key may be a security key used to generate a security key associated with signaling protection between the terminal and the one or more second network nodes.
  • the second security key may be expressed as a CNI-specific Key or CNI Seed Key.
  • the second security key corresponding to the specific second network node is generated using the first security key and the identifier (ID) of the specific second network node. See Equation 2.
  • the first network node transmits the generated at least one second security key to the one or more second network nodes, respectively (S2104).
  • the first network node receives a second message for a communication service request of the terminal from the RAN node (S2105).
  • the first network node transmits the received second message to a second network node corresponding to the communication service request (S2106).
  • the second message is at least one of a hash value of a second security key corresponding to a second network node corresponding to the communication service request or security capability information of the terminal. It may include.
  • FIG. 22 illustrates a block diagram of a wireless communication device to which the methods proposed in the specification can be applied.
  • a wireless communication system includes a base station 2210 and a plurality of terminals 2220 located in an area of a base station 2210.
  • the base station 2210 includes a processor 2211, a memory 2212, and an RF unit 2213.
  • the processor 2211 implements the functions, processes, and / or methods proposed in FIGS. 1 to 21. Layers of the air interface protocol may be implemented by the processor 2211.
  • the memory 2212 is connected to the processor 2211 and stores various information for driving the processor 2211.
  • the RF unit 2213 is connected to the processor 2211 and transmits and / or receives a radio signal.
  • the terminal 2220 includes a processor 2221, a memory 2222, and an RF unit 2223.
  • the processor 2221 implements the functions, processes, and / or methods proposed in FIGS. 1 to 21. Layers of the air interface protocol may be implemented by the processor 2221.
  • the memory 2222 is connected to the processor 2221 and stores various information for driving the processor 2221.
  • the RF unit 2223 is connected to the processor 2221 and transmits and / or receives a radio signal.
  • the memories 2212 and 2222 may be inside or outside the processors 2211 and 2221, and may be connected to the processors 2211 and 2221 by various well-known means.
  • the base station 2210 and / or the terminal 2220 may have one antenna or multiple antennas.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • a method for performing security setting of a terminal has been described with reference to an example applied to a 5G system, but it can be applied to various wireless communication systems such as a 3GPP LTE / LTE-A system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present specification discloses performing, so as to perform security setup for user equipment in a wireless communication system: a step in which a first network node having a common control function performs an authentication process with the user equipment so as to connect the user equipment to one or more second network nodes of a core network; a step of generating a first security key according to the result of the authentication process performed; a step of generating, by using the generated first security key, one or more second security keys respectively corresponding to the one or more second network nodes; and a step of transmitting the generated one or more second security keys to the respective one or more second network nodes. Thus, a security mechanism meeting service requirements by CNIs having mutually different service requirements can be applied.

Description

무선통신 시스템에서 단말의 보안설정을 수행하기 위한 방법 및 이를 위한 장치Method for performing security setting of a terminal in a wireless communication system and apparatus therefor
본 명세서는 무선통신 시스템에 관한 것으로서, 보다 상세하게는 단말과 코어 네트워크 간에 서비스 차별적인 보안을 설정하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.The present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for supporting service for setting service differential security between a terminal and a core network.
이동통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동통신 시스템이 요구되고 있다.The mobile communication system has been developed to provide a voice service while ensuring the user's activity. However, the mobile communication system has expanded not only voice but also data service. Currently, the explosive increase in traffic causes a shortage of resources and the demand for faster services. Therefore, a more advanced mobile communication system is required. have.
차세대 이동통신 시스템의 요구조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력 (Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.The requirements of the next generation of mobile communication systems will be able to accommodate the explosive data traffic, dramatically increase the data rate per user, greatly increase the number of connected devices, very low end-to-end latency, and high energy efficiency. It should be possible. For this purpose, Dual Connectivity, Massive Multiple Input Multiple Output (MIMO), In-band Full Duplex, Non-Orthogonal Multiple Access (NOMA), Super Wide Various technologies such as wideband support and device networking have been studied.
또한, 4G 이동통신 시스템까지 진화된 보안(Security) 특성들에 비해, 5G 이동통신 시스템에서 추가될 것으로 예상되는 보안(Security) 특징들은 아래와 같은 것이 있을 수 있다.In addition, security features expected to be added in a 5G mobile communication system, compared to security features evolved to a 4G mobile communication system, may be as follows.
- 5G 이동통신 시스템은 Network Slicing과 같은 새로운 형태의 Service Delivery Model을 수용해야 한다. Network Slicing이란 서비스 특성에 최적화된 가상의 고립된(Isolated) Sub-network를 제공하는 것을 의미하며, 이는 Application들의 요구사항이 각각 다를 것이므로, Application 별로 최적화된 서비스를 제공함을 목표로 한다.5G mobile communication systems must accommodate new types of Service Delivery Models such as Network Slicing. Network Slicing means providing a virtual isolated sub-network optimized for service characteristics. This is to provide optimized services for each application because the requirements of applications will be different.
이에 따라, Security Architecture도 매우 유연하게 구성되어야 하며, 이는 5G 이동통신망이 Network Slicing을 수용함에 있어서 Security 관련 Overhead를 감소시키도록 설계되어야 함을 의미할 수 있다.Accordingly, the security architecture should also be configured very flexibly, which may mean that the 5G mobile communication network should be designed to reduce security-related overhead in accommodating network slicing.
- 5G 이동통신 시스템은 새로운 Function들을 제공하도록 설계되어야 할 뿐만 아니라, 새로운 Verticals(Industries)을 수용할 수 있도록 설계되어야 한다.-5G mobile communication systems must not only be designed to provide new functions, but also to accommodate new verticals (industries).
이는 이동통신망과 통신이 어떻게 제공되어야 할지에 대한 새로운 비즈니스 모델(Business Model)을 수용함을 목표로 한다.It aims to accommodate a new business model of how mobile networks and communications should be provided.
즉, 서로 다른 Security 요구사항들을 갖는 다양한 Type의 Device들 (e.g., Unattended Machines, Sensors, Wearable Devices, Vehicles)과 일부 중요한 섹터들(e.g., Public Safety, eHealth, etc)을 고려한 새로운 Trust Model이 정의되어야 함을 의미할 수 있다.In other words, a new trust model must be defined that takes into account various types of devices with different security requirements (eg, Unattended Machines, Sensors, Wearable Devices, Vehicles) and some important sectors (eg, Public Safety, eHealth, etc.). May mean.
- 5G는 최적화된 Multi-RAT Operation들을 제공해야 한다. 이는 각각 다른 보안 메커니즘을 갖는 Multi-RAT Access의 경우, 매번 인증/Security Setup 등에 소요되는 OTA 시그널링이나 지연을 감소시킴을 목표로 한다.5G must provide optimized multi-RAT operations. In case of Multi-RAT Access with different security mechanisms, this aims to reduce OTA signaling and delays required for authentication / Security Setup each time.
즉, 종래 4G 까지는 서로 다른 RAT에 접속할 경우, Core Network가 동일할지라도, 서로 다른 인증방식과 Key Handling 등의 Security Setup 메커니즘으로 인해, 별도의 단말인증 수행 및 보안설정이 수행되었다.That is, when accessing different RATs up to 4G in the related art, even though the Core Network is the same, due to different authentication schemes and security setup mechanisms such as key handling, separate terminal authentication and security settings have been performed.
하지만, 5G Security에서는 이러한 Redundancy를 줄일 수 있는 효과적인 Multi-RAT Security Architecture가 제공되어야 한다.However, 5G Security must provide an effective Multi-RAT Security Architecture to reduce such redundancy.
한편, 5G Network Architecture와 관련하여 최근에 논의되고 있는 이슈들 중 하나는 신규 5G New Core Network에 Network Slicing 개념을 수용하는 것이다.Meanwhile, one of the issues recently discussed in relation to 5G network architecture is the adoption of the concept of network slicing in the new 5G New Core Network.
5G Core Network는 Service-Oriented 구조로 진화할 것이며, 이는 고정된 단일 형태(Single Type)의 망 구조가 다양한 서비스들의 요구사항을 만족시키지 못할 것이라는 사실에 기인한다.The 5G Core Network will evolve into a Service-Oriented structure, due to the fact that a fixed single type network structure will not satisfy the requirements of various services.
즉, 5G Network에서 제공될 것으로 예상되는 모든 서비스들을 하나의 고정 Network 구조에 수용하는 것은 비용-효율적이지 못하며, 이에 따라 물리적으로 고정된 형태의 망 구조가 다양한 서비스들의 요구사항을 수용하기 위해 논리적인 형태의 망(Network Slices) 구조로 분할되는 것이 바람직하다는 제안이 지배적이다.That is, it is not cost-effective to accommodate all services expected to be provided in 5G network in one fixed network structure, so that the physically fixed network structure is logical to accommodate the requirements of various services. The dominant proposal is that it is desirable to partition into network slices.
따라서, 본 명세서는 다음 세대 시스템(예:5G 시스템)에서 각각의 코어 네트워크 슬라이스(Core Network Slice)별로 서비스 특화된 요구사항들을 만족시키기 위한 서비스 차별적인 보안설정 방법을 제공함을 목적으로 한다.Accordingly, the present specification aims to provide a service-specific security configuration method for satisfying service-specific requirements for each core network slice in a next generation system (eg, 5G system).
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 명세서는 무선통신 시스템에서 단말의 보안설정을 수행하기 위한 방법에 있어서, 공통제어 기능(Common Control Function)을 가지는 제 1 네트워크 노드에 의해 수행되는 방법은, 상기 단말을 코어 네트워크(core network)의 하나 또는 그 이상의 제 2 네트워크 노드들로 연결시키기 위해 상기 단말과 인증 (authentication) 절차를 수행하는 단계; 상기 인증절차 수행결과에 따라 제 1 보안키를 생성하는 단계; 상기 생성된 제 1 보안키를 이용하여 상기 하나 또는 그 이상의 제 2 네트워크 노드들 각각에 대응하는 적어도 하나의 제 2 보안키를 생성하는 단계; 및 상기 생성된 적어도 하나의 제 2 보안키를 상기 하나 또는 그 이상의 제 2 네트워크 노드들로 각각 전송하는 단계를 포함하는 것을 특징으로 한다.Herein is a method for performing security configuration of a terminal in a wireless communication system, the method performed by a first network node having a common control function (Common Control Function), the terminal of the core network (core network) Performing an authentication procedure with the terminal to connect to one or more second network nodes; Generating a first security key according to a result of the authentication procedure; Generating at least one second security key corresponding to each of the one or more second network nodes using the generated first security key; And transmitting the generated at least one second security key to the one or more second network nodes, respectively.
또한, 본 명세서에서 상기 하나 또는 그 이상의 제 2 네트워크 노드들은 각각 개별적인 서비스를 제공하는 것을 특징으로 한다.Further, in the present specification, the one or more second network nodes each provide an individual service.
또한, 본 명세서에서 단말의 보안 설정을 수행하기 위한 방법은 RAN(Radio Access Network) 노드로부터 상기 하나 또는 그 이상의 제 2 네트워크 노드들로의 연결을 요청하는 제 1 메시지를 수신하는 단계를 더 포함하는 것을 특징으로 한다.In addition, the method for performing a security configuration of the terminal herein further comprises the step of receiving a first message requesting a connection to the one or more second network nodes from a Radio Access Network (RAN) node It is characterized by.
또한, 본 명세서에서 상기 하나 또는 그 이상의 제 2 네트워크 노드들로의 연결요청은 상기 단말에 의한 연결요청인 것을 특징으로 한다.In addition, in the present specification, the connection request to the one or more second network nodes is characterized in that the connection request by the terminal.
또한, 본 명세서에서 특정 제 2 네트워크 노드에 대응하는 제 2 보안키는 상기 제 1 보안키 및 상기 특정 제 2 네트워크 노드의 식별자(Identity:ID)를 이용하여 생성되는 것을 특징으로 한다.In addition, in the present specification, a second security key corresponding to a specific second network node is generated using the first security key and an identifier (ID) of the specific second network node.
또한, 본 명세서에서 제안하는 방법은 상기 RAN 노드로부터 상기 단말의 통신서비스 요청(communication service request)에 대한 제 2 메시지를 수신하는 단계; 및 상기 수신된 제 2 메시지를 상기 통신서비스 요청 (communication service request)에 대응하는 제 2 네트워크 노드로 전송하는 단계를 더 포함하는 것을 특징으로 한다.In addition, the method proposed in the present specification comprises the steps of receiving a second message for a communication service request (communication service request) of the terminal from the RAN node; And transmitting the received second message to a second network node corresponding to the communication service request.
또한, 본 명세서에서 상기 제 2 메시지는 상기 통신서비스 요청 (communication service request)에 대응하는 제 2 네트워크 노드에 대응하는 제 2 보안키의 해쉬(Hash) 값 또는 상기 단말의 보안능력(Security Capability) 정보 중 적어도 하나를 포함하는 것을 특징으로 한다.In the present specification, the second message is a hash value of a second security key corresponding to a second network node corresponding to the communication service request or security capability information of the terminal. It characterized in that it comprises at least one of.
또한, 본 명세서에서 상기 생성된 적어도 하나의 제 2 보안키는 상기 단말과 상기 하나 또는 그 이상의 제 2 네트워크 노드들 간의 시그널링 보호와 관련된 보안키인 것을 특징으로 한다. 즉, 제 2 보안키로부터 상기 단말과 상기 하나 또는 그 이상의 제 2 네트워크 노드들 간의 시그널링 보호를 위한 보안키를 생성할 수 있다.In addition, the generated at least one second security key is characterized in that the security key associated with the signaling protection between the terminal and the one or more second network nodes. That is, a security key for signaling protection between the terminal and the one or more second network nodes may be generated from a second security key.
또한, 본 명세서에서 상기 제 1 보안키는 LTE 시스템의 KASME또는 상기 KASME에 해당하는 다음 세대 시스템에서 정의되는 보안키인 것을 특징으로 한다.In addition, the first security key in the present specification is characterized in that the security key is defined in the K ASME or the next generation system corresponding to the K ASME of the LTE system.
또한, 본 명세서에서 제 2 네트워크 노드는 코어 네트워크 인스턴스(Core Network Instance:CNI)인 것을 특징으로 한다.In addition, the second network node is characterized in that the core network instance (Core Network Instance (CNI)).
또한, 본 명세서에서 상기 제 2 보안키는 CNI-specific Key 또는 CNI Seed Key인 것을 특징으로 한다.In addition, the second security key is characterized in that the CNI-specific Key or CNI Seed Key.
또한, 본 명세서는 무선통신 시스템에서 단말의 보안을 설정하기 위한 장치에 있어서, 상기 장치는, 무선신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및 상기 RF 유닛과 기능적으로 연결되는 프로세서를 포함하고, 상기 프로세서는, 상기 단말을 코어 네트워크(core network)의 하나 또는 그 이상의 제 2 네트워크 노드들로 연결시키기 위해 상기 단말과 인증(authentication) 절차를 수행하며; 상기 인증절차 수행결과에 따라 제 1 보안키를 생성하며; 상기 생성된 제 1 보안키를 이용하여 상기 하나 또는 그 이상의 제 2 네트워크 노드들 각각에 대응하는 적어도 하나의 제 2 보안키를 생성하며; 및 상기 생성된 적어도 하나의 제 2 보안키를 상기 하나 또는 그 이상의 제 2 네트워크 노드들로 각각 전송하도록 제어하는 것을 특징으로 한다.In addition, the present specification is a device for setting the security of the terminal in a wireless communication system, the device, RF (Radio Frequency) unit for transmitting and receiving a radio signal; And a processor operatively coupled to the RF unit, the processor configured to perform an authentication procedure with the terminal to connect the terminal to one or more second network nodes of a core network. Perform; Generating a first security key according to a result of the authentication procedure; Generate at least one second security key corresponding to each of the one or more second network nodes using the generated first security key; And transmit the generated at least one second security key to the one or more second network nodes, respectively.
또한, 상기 프로세서는 RAN(Radio Access Network) 노드로부터 상기 하나 또는 그 이상의 제 2 네트워크 노드들로의 연결을 요청하는 제 1 메시지를 수신하며, 상기 수신된 제 1 메시지에 기초하여 상기 단말과 인증절차를 수행하도록 제어하는 것을 특징으로 한다.Further, the processor receives a first message requesting a connection from a Radio Access Network (RAN) node to the one or more second network nodes, and authenticates with the terminal based on the received first message. It characterized in that the control to perform.
또한, 상기 프로세서는, 상기 RAN 노드로부터 상기 단말의 통신서비스 요청 (communication service request)에 대한 제 2 메시지를 수신하며; 및 상기 수신된 제 2 메시지를 상기 통신서비스 요청(communication service request) 에 대응하는 제 2 네트워크 노드로 전송하도록 제어하는 것을 특징으로 한다.In addition, the processor is configured to receive a second message for a communication service request of the terminal from the RAN node; And transmitting the received second message to a second network node corresponding to the communication service request.
본 명세서는 공통제어 기능을 가지는 네트워크 노드(예:C-CPF)가 CNI 별 보안키를 생성하고 이를 통해 단말과 각 CNI(Core Network Slice)간의 보안을 설정함으로써, 서로 다른 서비스 요구사항들을 갖는 CNI 별로 해당 서비스 요구 사항에 부합하는 Security 메커니즘을 적용할 수 있는 효과가 있다.In this specification, a network node (eg, C-CPF) having a common control function generates a security key for each CNI and sets security between the terminal and each CNI (Core Network Slice) through the CNI. There is an effect that security mechanisms that meet the service requirements can be applied.
이를 통해, 본 명세서는 실제 서비스를 제공하는 CNI별로 서로 다른 Key Hierarchy를 설정할 수 있으며, CNI들간의 isolation이 가능해지며, Service 특성에 따른 다양한 보안설정이 가능할 수 있는 효과가 있다.Through this, the present specification can set different key hierarchy for each CNI providing actual service, isolation between CNIs, and various security settings according to service characteristics.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects obtainable in the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description. .
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, included as part of the detailed description in order to provide a thorough understanding of the present invention, provide embodiments of the present invention and together with the description, describe the technical features of the present invention.
도 1은 본 명세서의 기술적 특징이 적용될 수 있는 LTE 시스템에 관련된 EPS(Evolved Packet System)의 일 예를 나타낸 도이다.1 is a diagram illustrating an example of an EPS (Evolved Packet System) related to an LTE system to which the technical features of the present specification can be applied.
도 2는 본 명세서의 기술적 특징이 적용될 수 있는 무선통신 시스템을 나타낸 도이다.2 is a diagram illustrating a wireless communication system to which the technical features of the present specification can be applied.
도 3은 본 명세서의 기술적 특징이 적용될 수 있는 E-UTRAN과 EPC간의 기능분할(functional split)의 일 예를 나타낸 블록도이다.3 is a block diagram illustrating an example of a functional split between an E-UTRAN and an EPC to which technical features of the present specification can be applied.
도 4a는 본 명세서의 기술적 특징이 적용될 수 있는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)의 일 예를 나타낸 블록도이다.4A is a block diagram illustrating an example of a radio protocol architecture for a user plane to which technical features of the present specification can be applied.
도 4b는 본 명세서의 기술적 특징이 적용될 수 있는 제어평면(control plane)에 대한 무선 프로토콜 구조의 일 예를 나타낸 블록도이다.4B is a block diagram illustrating an example of a radio protocol structure for a control plane to which technical features of the present specification can be applied.
도 5는 LTE(-A) 시스템에 정의된 전체 네트워크를 고려한 보안설정 방법을 나타낸 도이다.5 is a diagram illustrating a security configuration method considering the entire network defined in the LTE (-A) system.
도 6은 E-UTRAN에서의 초기 키 활성화 절차의 일례를 나타낸 흐름도이다.6 is a flowchart illustrating an example of an initial key activation procedure in an E-UTRAN.
도 7은 E-UTRAN에서 초기접속 시 인증 및 키 설정절차를 나타낸 흐름도이다.7 is a flowchart illustrating an authentication and key setting procedure in initial access in an E-UTRAN.
도 8은 본 명세서에서 제안하는 방법들이 적용될 수 있는 다음 세대 RAN을 지원하기 위한 무선통신 시스템 구조의 일례를 나타낸 도이다.8 is a diagram illustrating an example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed herein may be applied.
도 9는 본 명세서에서 제안하는 방법들이 적용될 수 있는 다음 세대 RAN을 지원하기 위한 무선통신 시스템 구조의 또 다른 일례를 나타낸 도이다.9 is a diagram illustrating another example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed in the specification can be applied.
도 10 내지 도 12는 본 명세서에서 제안하는 방법들이 적용될 수 있는 다음 세대 RAN을 지원하기 위한 무선통신 시스템 구조의 또 다른 일례들을 나타낸 도이다.10 to 12 are diagrams showing still another example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed herein can be applied.
도 13은 본 명세서에서 제안하는 방법이 적용될 수 있는 네트워크 슬라이싱의 기본 개념도의 일례를 나타낸 도이다.FIG. 13 is a diagram illustrating an example of a basic conceptual diagram of network slicing to which the method proposed in the specification can be applied.
도 14는 본 명세서에서 제안하는 방법이 적용될 수 있는 다수의 core network instance들 사이에서 공통의 C-plane functions의 세트를 공유하는 도를 나타낸다.FIG. 14 illustrates a diagram of sharing a common set of C-plane functions among a plurality of core network instances to which the method proposed in this specification may be applied.
도 15는 본 명세서에서 제안하는 단말과 CNI별 보안설정 방법(서비스 차별적 보안설정 방법)의 일례를 나타낸 흐름도이다.15 is a flowchart illustrating an example of a terminal and CNI-specific security configuration method (service-specific security configuration method) proposed in the present specification.
도 16은 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적 보안설정 방법의 또 다른 일례를 나타낸 흐름도이다.FIG. 16 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
도 17은 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적 보안설정 방법의 또 다른 일례를 나타낸 흐름도이다.17 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
도 18은 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적 보안설정 방법의 또 다른 일례를 나타낸 흐름도이다.18 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
도 19는 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적 보안설정 방법의 또 다른 일례를 나타낸 흐름도이다.19 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
도 20은 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적 보안설정 방법의 또 다른 일례를 나타낸 흐름도이다.20 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
도 21은 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적인 보안설정 방법의 일례를 나타낸 순서도이다.FIG. 21 is a flowchart illustrating an example of a method for differentiating security setting for each terminal and service for each CNI proposed in the present specification.
도 22는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선통신 장치의 블록 구성도를 예시한다.FIG. 22 illustrates a block diagram of a wireless communication device to which the methods proposed in the specification can be applied.
이하, 본 발명에 따른 바람직한 실시형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. Hereinafter, with reference to the accompanying drawings, preferred embodiments according to the present invention will be described in detail. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말 (Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M (Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.In this specification, a base station has a meaning as a terminal node of a network that directly communicates with a terminal. The specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station. A 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. . In addition, a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) device, Machine-to-Machine (M2M) device, Device-to-Device (D2D) device and the like can be replaced.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. Hereinafter, downlink (DL) means communication from a base station to a terminal, and uplink (UL) means communication from a terminal to a base station. In downlink, a transmitter may be part of a base station, and a receiver may be part of a terminal.
상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.In uplink, a transmitter may be part of a terminal and a receiver may be part of a base station.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.Specific terms used in the following description are provided to help the understanding of the present invention, and the use of such specific terms may be changed to other forms without departing from the technical spirit of the present invention.
이하의 기술은 CDMA(code division multiple access), FDMA (frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A (advanced)는 3GPP LTE의 진화이다.The following techniques are code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), orthogonal frequency division multiple access (OFDMA), single carrier frequency division multiple access (SC-FDMA), and NOMA It can be used in various radio access systems such as non-orthogonal multiple access. CDMA may be implemented by radio technology such as universal terrestrial radio access (UTRA) or CDMA2000. TDMA may be implemented with wireless technologies such as global system for mobile communications (GSM) / general packet radio service (GPRS) / enhanced data rates for GSM evolution (EDGE). OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA). UTRA is part of a universal mobile telecommunications system (UMTS). 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink. LTE-A (advanced) is the evolution of 3GPP LTE.
본 발명의 실시예들은 무선접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준문서에 의해 설명될 수 있다.Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all the terms disclosed in the present document can be described by the standard document.
설명을 명확하게 하기 위해, 5G 시스템을 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니며, 3GPP LTE/LTE-A 시스템에서도 적용될 수 있음은 물론이다.In order to clarify the description, the description will be mainly based on the 5G system, but the technical features of the present invention are not limited thereto, and of course, the present invention may also be applied to a 3GPP LTE / LTE-A system.

이하 도면을 참조하여 설명하기 앞서, 본 발명의 이해를 돕고자, 본 명세서에서 사용되는 용어를 간략하게 정의하기로 한다.Before describing with reference to the drawings, in order to help the understanding of the present invention, terms used herein will be briefly defined.
APN(Access Point Name): 네트워크에서 관리하는 접속 포인트의 이름으로서 UE에게 제공된다. 즉, PDN의 이름(문자열)을 가리킴. 상기 접속 포인트의 이름에 기초하여, 데이터의 송수신을 위한 해당 PDN이 결정된다.APN (Access Point Name): The name of the access point managed by the network, which is provided to the UE. That is, the name (string) of the PDN. Based on the name of the access point, the corresponding PDN for the transmission and reception of data is determined.
MME: Mobility Management Entity의 약자로서, UE에 대한 세션과 이동성을 제공하기 위해 EPS 내에서 각 엔티티를 제어하는 역할을 한다.MME, which stands for Mobility Management Entity, serves to control each entity in EPS to provide session and mobility for the UE.
세션(Session): 세션은 데이터 전송을 위한 통로로써 그 단위는 PDN, Bearer, IP flow 단위 등이 될 수 있다.Session: A session is a channel for data transmission. The unit may be a PDN, a bearer, or an IP flow unit.
각 단위의 차이는 3GPP에서 정의한 것처럼 대상 네트워크 전체 단위(APN 또는 PDN 단위), 그 내에서 QoS로 구분하는 단위(Bearer 단위), 목적지 IP 주소 단위로 구분할 수 있다.The difference in each unit can be divided into the entire target network unit (APN or PDN unit), the QoS classification unit (Bearer unit), and the destination IP address unit as defined in 3GPP.
TIN: Temporary Identity used in Next updateTIN: Temporary Identity used in Next update
P-TMSI: Packet Temporary Mobile SubscriberP-TMSI: Packet Temporary Mobile Subscriber
TAU: Tracking Area UpdateTAU: Tracking Area Update
GBR: Guaranteed Bit RateGBR: Guaranteed Bit Rate
GTP: GPRS Tunneling ProtocolGTP: GPRS Tunneling Protocol
TEID: Tunnel Endpoint IDTEID: Tunnel Endpoint ID
GUTI: Globally Unique Temporary Identity, MME에 알려진 UE 식별자GUTI: Globally Unique Temporary Identity, UE identifier known to MME

도 1은 본 발명이 적용될 수 있는 LTE 시스템에 관련된 EPS(Evolved Packet System)의 일 예를 나타낸 도이다.1 is a diagram illustrating an example of an EPS (Evolved Packet System) related to an LTE system to which the present invention can be applied.
LTE 시스템은 사용자 단말(UE)과PDN(packet data network)간에, 사용자가 이동 중 최종 사용자의 응용프로그램 사용에 방해를 주지 않으면서, 끊김 없는 IP 연결성(Internet Protocol connectivity)을 제공하는 것을 목표로 한다. LTE 시스템은, 사용자 단말과 기지국 간의 무선 프로토콜 구조(radio protocol architecture)를 정의하는 E-UTRAN(Evolved Universal Terrestrial Radio Access Network)를 통한 무선접속의 진화를 완수하며, 이는 EPC(Evolved Packet Core) 네트워크를 포함하는 SAE(System Architecture Evolution)에 의해 비-무선적 측면에서의 진화를 통해서도 달성된다. LTE와 SAE는 EPS(Evolved Packet System)를 포함한다.The LTE system aims to provide seamless Internet Protocol connectivity between the user equipment (UE) and the packet data network (PDN) without interfering with the end user's use of the application while the user is on the move. . The LTE system completes the evolution of radio access through the Evolved Universal Terrestrial Radio Access Network (E-UTRAN), which defines a radio protocol architecture between the user terminal and the base station, which is an Evolved Packet Core (EPC) network. It is also achieved through evolution in non-wireless terms by the inclusion of System Architecture Evolution (SAE). LTE and SAE include an Evolved Packet System (EPS).
EPS는 PDN 내에서 게이트웨이(gateway)로부터 사용자 단말로 IP 트래픽을 라우팅하기 위해 EPS 베어러(EPS bearers)라는 개념을 사용한다. 베어러(bearer)는 상기 게이트웨이와 사용자 단말 간에 특정한 QoS(Quality of Service)를 갖는 IP 패킷 플로우(IP packet flow)이다. E-UTRAN과 EPC는 응용 프로그램에 의해 요구되는 베어러를 함께 설정하거나 해제(release)한다.The EPS uses the concept of EPS bearers to route IP traffic from the gateway to the user terminal in the PDN. A bearer is an IP packet flow having a specific Quality of Service (QoS) between the gateway and the user terminal. E-UTRAN and EPC both set up and release bearers required by the application.
EPC는 CN(core network)이라고도 불리며, UE를 제어하고, 베어러의 설정을 관리한다.EPC, also called CN (core network), controls the UE and manages the bearer's configuration.
도 1에 도시된 바와 같이, 상기 SAE의 EPC의 노드(논리적 혹은 물리적 노드)는 MME(Mobility Management Entity)(30), PDN-GW 또는 P-GW(PDN gateway)(50), S-GW(Serving Gateway)(40), PCRF(Policy and Charging Rules Function)(60), HSS(Home subscriber Server)(70) 등을 포함한다.As shown in FIG. 1, a node (logical or physical node) of an EPC of the SAE includes a mobility management entity (MME) 30, a PDN-GW or a PDN gateway (P-GW) 50, and an S-GW ( Serving Gateway (40), Policy and Charging Rules Function (PCRF) 60, Home Subscriber Server (HSS) 70, and the like.
MME(30)는 UE와 CN간의 시그널링을 처리하는 제어노드이다. UE와 CN간에 교환되는 프로토콜은 NAS(Non-Access Stratum) 프로토콜로 알려져 있다. MME (30)에 의해 지원되는 기능들의 일례는, 베어러의 설정, 관리, 해제를 포함하여 NAS 프로토콜 내의 세션관리 계층(session management layer)에 의해 조작되는 베어러 관리(bearer management)에 관련된 기능, 네트워크와 UE간의 연결(connection) 및 보안(Security)의 설립에 포함하여 NAS 프로토콜 계층에서 연결계층 또는 이동제어 계층(mobility management layer)에 의해 조작된다.The MME 30 is a control node that handles signaling between the UE and the CN. The protocol exchanged between the UE and the CN is known as the Non-Access Stratum (NAS) protocol. Examples of the functions supported by the MME 30 include functions related to bearer management operated by the session management layer in the NAS protocol, including network setup, management and release of bearers, network and It is manipulated by the connection layer or mobility management layer in the NAS protocol layer, including the establishment of connection and security between UEs.
S-GW(40)는 UE가 기지국(eNodeB)간에 이동할 때 데이터 베어러를 위한 로컬 이동성 앵커(local mobility anchor)의 역할을 한다. 모든 사용자 IP 패킷은 S-GW(40)을 통해 송신된다. 또한 S-GW(40)는 UE가 ECM-IDLE 상태로 알려진 유휴상태(idle state)에 있고, MME가 베어러를 재설정(re-establish) 하기 위해 UE의 페이징을 개시하는 동안 하향링크 데이터를 임시로 버퍼링할 때 베어러에 관련된 정보를 유지한다. 또한, GRPS(General Packet Radio Service), UMTS(Universal Mobile Telecommunications System)와 같은 다른 3GPP 기술과의 인터워킹(inter-working)을 위한 이동성 앵커(mobility anchor)의 역할을 수행한다.The S-GW 40 serves as a local mobility anchor for data bearers when the UE moves between base stations (eNodeBs). All user IP packets are sent via the S-GW 40. The S-GW 40 may also temporarily downlink data while the UE is in an idle state known as the ECM-IDLE state and the MME initiates paging of the UE to re-establish the bearer. Maintain information about bearers when buffering. It also serves as a mobility anchor for inter-working with other 3GPP technologies such as General Packet Radio Service (GRPS) and Universal Mobile Telecommunications System (UMTS).
P-GW(50)은 UE를 위한 IP 주소할당을 수행하고, QoS 집행(Qos enforcement) 및 PCRF(60)로부터의 규칙에 따라 플로우-기반의 과금(flow-based charging)을 수행한다. P-GW(50)는 GBR 베어러(Guaranteed Bit Rate (GBR) bearers)를 위한 QoS 집행을 수행한다. 또한, CDMA2000이나 WiMAX 네트워크와 같은 비3GPP(non-3GPP) 기술과의 인터워킹을 위한 이동성 엥커 (mobility anchor) 역할도 수행한다.The P-GW 50 performs IP address assignment for the UE and performs flow-based charging in accordance with QoS enforcement and rules from the PCRF 60. The P-GW 50 performs QoS enforcement for GBR bearers (Guaranteed Bit Rate (GBR) bearers). It also serves as a mobility anchor for interworking with non-3GPP technologies such as CDMA2000 and WiMAX networks.
PCRF(60)는 정책제어 의사결정(policy control decision-making)을 수행하고, 플로우-기반의 과금(flow-based charging)을 수행한다.The PCRF 60 performs policy control decision-making and performs flow-based charging.
HSS(70)는 HLR(Home Location Register)이라고도 불리며, EPS-subscribed QoS 프로파일(profile) 및 로밍을 위한 접속제어 정보 등을 포함하는 SAE 가입 데이터(SAE subscription data)를 포함한다. 또한, 사용자가 접속하는 PDN에 대한 정보 역시 포함한다. 이러한 정보는 APN(Access Point Name) 형태로 유지될 수 있는데, APN는 DNS(Domain Name system) 기반의 레이블(label)로, PDN에 대한 엑세스 포인트 또는 가입된 IP 주소를 나타내는 PDN 주소를 설명하는 식별기법이다.The HSS 70 is also called a home location register (HLR) and includes SAE subscription data including EPS-subscribed QoS profile and access control information for roaming. It also includes information about the PDN that the user accesses. This information may be maintained in the form of an Access Point Name (APN), which is a Domain Name system (DNS) -based label that identifies the PDN address that represents the access point or subscribed IP address for the PDN. Technique.
도 1에 도시된 바와 같이, EPS 네트워크 요소(EPS network elements)들 간에는 S1-U, S1-MME, S5/S8, S11, S6a, Gx, Rx 및 SG와 같은 다양한 인터페이스가 정의될 수 있다.As shown in FIG. 1, various interfaces such as S1-U, S1-MME, S5 / S8, S11, S6a, Gx, Rx, and SG may be defined between EPS network elements.

도 2는 본 발명이 적용되는 무선통신 시스템을 나타낸다.2 shows a wireless communication system to which the present invention is applied.
이는 E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network), 또는 LTE(Long Term Evolution)/LTE-A 시스템이라고도 불릴 수 있다.This may also be called an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN), or Long Term Evolution (LTE) / LTE-A system.
E-UTRAN은 단말(10; User Equipment, UE)에게 제어평면(control plane)과 사용자 평면(user plane)을 제공하는 기지국(20; Base Station, BS)을 포함한다. The E-UTRAN includes a base station (BS) 20 that provides a control plane and a user plane to a user equipment (UE).
기지국(20)들은 X2 인터페이스를 통하여 서로 연결될 수 있다. 기지국(20) 은 S1 인터페이스를 통해 EPC(Evolved Packet Core), 보다 상세하게는 S1-MME를 통해 MME(Mobility Management Entity)와 S1-U를 통해 S-GW (Serving Gateway)와 연결된다. The base stations 20 may be connected to each other through an X2 interface. The base station 20 is connected to a Serving Gateway (S-GW) through a Mobility Management Entity (MME) and an S1-U through an Evolved Packet Core (EPC), more specifically, an S1-MME through an S1 interface.
EPC는 MME, S-GW 및 P-GW(Packet Data Network-Gateway)로 구성된다. MME는 단말의 접속정보나 단말의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이이며, P-GW는 PDN을 종단점으로 갖는 게이트웨이이다.EPC consists of MME, S-GW and Packet Data Network Gateway (P-GW). The MME has access information of the terminal or information on the capability of the terminal, and this information is mainly used for mobility management of the terminal. S-GW is a gateway having an E-UTRAN as an endpoint, and P-GW is a gateway having a PDN as an endpoint.
단말과 네트워크 사이의 무선인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1(제1계층), L2(제2계층), L3(제3계층)로 구분될 수 있는데, 이 중에서 제1계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송 서비스(Information Transfer Service)를 제공하며, 제 3계층에 위치하는 RRC(Radio Resource Control) 계층은 단말과 네트워크 간에 무선자원을 제어하는 역할을 수행한다. 이를 위해 RRC 계층은 단말과 기지국간 RRC 메시지를 교환한다.Layers of the Radio Interface Protocol between the terminal and the network are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is widely known in communication systems. L2 (second layer), L3 (third layer) can be divided into, wherein the physical layer belonging to the first layer provides an information transfer service using a physical channel (Physical Channel), The RRC (Radio Resource Control) layer located in the third layer plays a role of controlling radio resources between the terminal and the network. To this end, the RRC layer exchanges an RRC message between the terminal and the base station.

도 3은 본 발명이 적용될 수 있는 E-UTRAN과 EPC 간의 기능분할 (functional split)의 일 예를 나타낸 블록도이다.3 is a block diagram illustrating an example of a functional split between an E-UTRAN and an EPC to which the present invention can be applied.
도 3을 참조하면, 빗금친 블록은 무선 프로토콜 계층(radio protocol layer)을 나타내고, 빈 블록은 제어평면의 기능적 개체(functional entity)를 나타낸다.Referring to FIG. 3, hatched blocks represent radio protocol layers and empty blocks represent functional entities in the control plane.
기지국은 다음과 같은 기능을 수행한다. (1) 무선 베어러 제어(Radio Bearer Control), 무선허락 제어(Radio Admission Control), 연결 이동성 제어(Connection Mobility Control), 단말로의 동적 자원할당(dynamic resource allocation)와 같은 무선자원 관리(Radio Resource Management; RRM) 기능, (2) IP(Internet Protocol) 헤더압축 및 사용자 데이터 스트림의 해독(encryption), (3) S-GW로의 사용자 평면 데이터의 라우팅(routing), (4) 페이징(paging) 메시지의 스케줄링 및 전송, (5) 브로드캐스트(broadcast) 정보의 스케줄링 및 전송, (6) 이동성과 스케줄링을 위한 측정과 측정보고 설정.The base station performs the following functions. (1) Radio resource management such as radio bearer control, radio admission control, connection mobility control, and dynamic resource allocation to a terminal RRM), (2) Internet Protocol (IP) header compression and encryption of user data streams, (3) routing of user plane data to S-GW, and (4) paging messages. Scheduling and transmission, (5) scheduling and transmission of broadcast information, and (6) measurement and measurement report setup for mobility and scheduling.
MME는 다음과 같은 기능을 수행한다. (1) 기지국들로 페이징 메시지의 분산, (2) 보안제어(Security Control), (3) 아이들(idle) 상태 이동성 제어 (Idle State Mobility Control), (4) SAE 베어러 제어, (5) NAS(Non-Access Stratum) 시그널링의 암호화(Ciphering) 및 무결성 보호(Integrity Protection).The MME performs the following functions. (1) distribution of paging messages to base stations, (2) Security Control, (3) Idle State Mobility Control, (4) SAE Bearer Control, (5) NAS ( Ciphering and Integrity Protection of Non-Access Stratum Signaling.
S-GW는 다음과 같은 기능을 수행한다. (1) 페이징에 대한 사용자 평면 패킷의 종점(termination), (2) 단말 이동성의 지원을 위한 사용자 평면 스위칭.S-GW performs the following functions. (1) termination of user plane packets for paging, and (2) user plane switching to support terminal mobility.

도 4a는 본 명세서의 기술적 특징이 적용될 수 있는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)의 일 예를 나타내며, 도 4b는 본 명세서의 기술적 특징이 적용될 수 있는 제어평면 (control plane)에 대한 무선 프로토콜 구조의 일 예를 나타낸 블록도이다.4A illustrates an example of a radio protocol architecture for a user plane to which technical features of the present specification can be applied, and FIG. 4B illustrates a control plane to which technical features of the present specification can be applied. is a block diagram illustrating an example of a radio protocol structure for a plane).
사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack) 이고, 제어평면은 제어신호 전송을 위한 프로토콜 스택이다. The user plane is a protocol stack for user data transmission, and the control plane is a protocol stack for control signal transmission.
도 4a 및 4b를 참조하면, 물리계층(PHY(physical) layer)은 물리채널 (physical channel)을 이용하여 상위계층에게 정보전송 서비스(information transfer service)를 제공한다. 물리계층은 상위계층인 MAC(Medium Access Control) 계층과는 전송채널(transport channel)을 통해 연결되어 있다. 전송채널을 통해 MAC 계층과 물리계층 사이로 데이터가 이동한다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 어떤 특징으로 전송되는가에 따라 분류된다. 4A and 4B, a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel. The physical layer is connected to the upper layer MAC (Medium Access Control) layer through a transport channel. Data is moved between the MAC layer and the physical layer through the transport channel. Transport channels are classified according to how and with what characteristics data is transmitted over the air interface.
서로 다른 물리계층 사이, 즉 송신기와 수신기의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있고, 시간과 주파수를 무선자원으로 활용한다.Data moves between physical layers between physical layers, that is, between physical layers of a transmitter and a receiver. The physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes time and frequency as radio resources.
MAC 계층의 기능은 논리채널과 전송채널간의 맵핑 및 논리채널에 속하는 MAC SDU(service data unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화/역다중화(‘/’의 의미는 ‘or’과 ‘and’의 개념을 모두 포함한다)를 포함한다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에게 서비스를 제공한다. The function of the MAC layer is mapping between logical channels and transport channels and multiplexing / demultiplexing ('/') into transport blocks provided as physical channels on transport channels of MAC service data units (SDUs) belonging to the logical channels. Meaning includes both the concepts of 'or' and 'and'). The MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할 (segmentation) 및 재결합(reassembly)를 포함한다. 무선베어러(Radio Bearer; RB)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, RLC 계층은 투명모드(Transparent Mode, TM), 비확인 모드(Unacknowledged Mode, UM) 및 확인모드(Acknowledged Mode, AM)의 세 가지의 동작모드를 제공한다. AM RLC는 ARQ(automatic repeat request)를 통해 오류정정을 제공한다. Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs. In order to guarantee the various Quality of Service (QoS) required by the radio bearer (RB), the RLC layer has a transparent mode (TM), an unacknowledged mode (UM), and an acknowledged mode (Acknowledged Mode). Three modes of operation (AM). AM RLC provides error correction through an automatic repeat request (ARQ).
RRC(Radio Resource Control) 계층은 제어평면에서만 정의된다. RRC 계층은 무선 베어러들의 설정(configuration), 재설정(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. RB는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. The RRC (Radio Resource Control) layer is defined only in the control plane. The RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers. RB means a logical path provided by the first layer (PHY layer) and the second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더압축(header compression) 및 암호화 (ciphering)를 포함한다. 제어평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 제어평면 데이터의 전달 및 암호화/무결정 보호 (integrity protection)를 포함한다.Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include delivery of user data, header compression, and ciphering. The functionality of the Packet Data Convergence Protocol (PDCP) layer in the control plane includes the transmission of control plane data and encryption / integrity protection.
RB가 설정된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작방법을 설정하는 과정을 의미한다. RB는 다시 SRB(Signaling RB)와 DRB(Data RB) 두가지로 나누어 질 수 있다. SRB는 제어평면에서 RRC 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.The establishment of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method. RB can be further divided into SRB (Signaling RB) and DRB (Data RB). The SRB is used as a path for transmitting RRC messages in the control plane, and the DRB is used as a path for transmitting user data in the user plane.
단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 확립되면, 단말은 RRC 연결(RRC connected) 상태에 있게 되고, 그렇지 못할 경우 RRC 아이들(RRC idle) 상태에 있게 된다.If an RRC connection is established between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state.
네트워크에서 단말로 데이터를 전송하는 하향링크 전송채널로는 시스템 정보를 전송하는 BCH(Broadcast Channel)과 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 하향링크 SCH(Shared Channel)이 있다. 하향링크 멀티캐스트 또는 브로드캐스트 서비스의 트래픽 또는 제어메시지의 경우 하향링크 SCH를 통해 전송될 수도 있고, 또는 별도의 하향링크 MCH(Multicast Channel) 을 통해 전송될 수도 있다. 한편, 단말에서 네트워크로 데이터를 전송하는 상향링크 전송채널로는 초기 제어메시지를 전송하는 RACH(Random Access Channel)와 그 이외에 사용자 트래픽이나 제어메시지를 전송하는 상향링크 SCH(Shared Channel)가 있다.The downlink transport channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information and a downlink shared channel (SCH) for transmitting user traffic or control messages. Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH). Meanwhile, the uplink transport channel for transmitting data from the terminal to the network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or control messages.
전송채널 상위에 있으며, 전송채널에 매핑되는 논리채널(Logical Channel) 로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.Logical channels that are located above transport channels and are mapped to transport channels include Broadcast Control Channel (BCCH), Paging Control Channel (PCCH), Common Control Channel (CCCH), Multicast Control Channel (MCCH), and Multicast Traffic (MTCH). Channel).
물리채널(Physical Channel)은 시간영역에서 여러 개의 OFDM 심벌과 주파수 영역에서 여러 개의 부반송파(Sub-carrier)로 구성된다. 하나의 서브 프레임(Sub-frame)은 시간 영역에서 복수의 OFDM 심벌(Symbol)들로 구성된다. 자원블록은 자원할당 단위로, 복수의 OFDM 심벌들과 복수의 부반송파(sub-carrier)들로 구성된다. 또한 각 서브프레임은 PDCCH(Physical Downlink Control Channel) 즉, L1/L2 제어채널을 위해 해당 서브프레임의 특정 OFDM 심벌들(예, 첫번째 OFDM 심볼)의 특정 부반송파들을 이용할 수 있다. TTI (Transmission Time Interval)는 서브프레임 전송의 단위시간이다.The physical channel is composed of several OFDM symbols in the time domain and several sub-carriers in the frequency domain. One sub-frame consists of a plurality of OFDM symbols in the time domain. The RB is a resource allocation unit and includes a plurality of OFDM symbols and a plurality of subcarriers. In addition, each subframe may use specific subcarriers of specific OFDM symbols (eg, the first OFDM symbol) of the corresponding subframe for the physical downlink control channel (PDCCH), that is, the L1 / L2 control channel. Transmission Time Interval (TTI) is a unit time of subframe transmission.

도 5는 LTE(-A) 시스템에 정의된 전체 네트워크를 고려한 보안설정 방법을 나타낸 도이다.5 is a diagram illustrating a security configuration method considering the entire network defined in the LTE (-A) system.
도 5를 참조하면, 현재 LTE/LTE-A 시스템은 단말에게 제공되는 서비스가 어떤 서비스냐에 상관없이 획일적으로Core Network의 제어 개체(MME)에 대해 접속과 동시에 인증이 수행되고, 인증의 결과로 NAS/AS 키가 설정되어 서비스를 제공받기 위한 통신을 수행하게 된다.Referring to FIG. 5, in the current LTE / LTE-A system, regardless of which service is provided to a terminal, authentication is performed simultaneously with access to a control entity (MME) of the Core Network, and as a result of the NAS / AS key is set to perform communication to receive the service.

도 6은 E-UTRAN에서의 초기 키 활성화 절차의 일례를 나타낸 흐름도이다.6 is a flowchart illustrating an example of an initial key activation procedure in an E-UTRAN.
도 7은 E-UTRAN에서 초기접속 시 인증 및 키 설정절차를 나타낸 흐름도이다.7 is a flowchart illustrating an authentication and key setting procedure in initial access in an E-UTRAN.
즉, 도 6은 4G System(LTE(-A) 시스템)에서 사용자가 초기접속을 수행할 때, 해당 사용자 단말에 대한 인증 및 키 설정이 이루어지는 전반적인 절차를 나타낸다.That is, FIG. 6 illustrates an overall procedure of authenticating and setting a key for a corresponding user terminal when a user performs initial access in a 4G system (LTE (-A) system).
도 6을 참조하면, 사용자 단말은 Random Access를 수행한 이후, 1 내지 3 절차(RRC Connection Setup Request, RRC Connection Setup, RRC Connection Setup Complete)를 통해 기지국과 RRC 연결을 설정한다.Referring to FIG. 6, after performing random access, the user terminal establishes an RRC connection with the base station through 1 to 3 procedures (RRC Connection Setup Request, RRC Connection Setup, and RRC Connection Setup Complete).
이후, MME로의 Attach 절차를 통해, 인증과 AS/NAS 계층의 데이터/제어 시그널링 보호를 위한 키 설정을 수행한다.Thereafter, through the attach procedure to the MME, a key configuration for authentication and data / control signaling protection of the AS / NAS layer is performed.
도 7은 도 6에 도시된 망 접속절차에서 수행되는 인증절차를 좀 더 구체적으로 나타낸 도이다.FIG. 7 illustrates the authentication procedure performed in the network access procedure illustrated in FIG. 6 in more detail.
도 7에서는 사용자 단말의 초기접속 시 필수적으로 이루어지는 부분들만을 표시하였고, 일부 상황에 따라 선택적으로 수행될 수 있는 부분들은 제외하였다.In FIG. 7, only parts necessary for initial access of the user terminal are displayed, and parts that may be selectively performed according to some circumstances are excluded.

다음, 도 8 내지 도 12를 참조하여 본 명세서에서 제안하는 방법들이 적용될 수 있는 다음 세대 RAN을 지원하기 위한 무선통신 시스템 구조의 일례들을 살펴본다.Next, an example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed herein may be applied will be described with reference to FIGS. 8 to 12.
도 8은 본 명세서에서 제안하는 방법들이 적용될 수 있는 다음 세대 RAN을 지원하기 위한 무선통신 시스템 구조의 일례를 나타낸 도이다.8 is a diagram illustrating an example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed herein may be applied.
다음 세대 RAN을 지원하기 위한 무선통신 시스템 구조는 ‘고 수준 구조 (high level architecture)’로 표현될 수 있다.The wireless communication system structure for supporting the next generation RAN may be expressed as a 'high level architecture'.
다음 세대(Next Generation)는 “Next Gen” 등으로 간략히 표현될 수 있으며, 상기 다음 세대는 5G 등을 포함한 미래의 통신세대를 일컫는 용어를 통칭할 수 있다.Next generation may be briefly expressed as “Next Gen”, and the next generation may collectively refer to a term for a future communication generation including 5G.
설명의 편의를 위해, 이하 다음 세대를 “Next Gen”으로 표현 또는 호칭하기로 한다.For convenience of explanation, the next generation will be referred to as “Next Gen”.
본 명세서에서 제안하는 방법들이 적용될 수 있는 “Next Gen”의 구조는 new RAT(s), 진화된(evolved) LTE 및 non-3GPP access type들을 지원하지만, GERAN 및 UTRAN은 지원하지 않는다.The structure of “Next Gen” to which the methods proposed herein can be applied supports new RAT (s), evolved LTE and non-3GPP access types, but not GERAN and UTRAN.
상기 non-3GPP access type들의 일례는, WLAN access, Fixed access 등이 있을 수 있다.Examples of the non-3GPP access types may include WLAN access, fixed access, and the like.
또한, “Next Gen” 구조는 다른 access system들에 대해 통합 인증 프래임워크(unified authentication framework)를 지원하며, 다수의 접속 기술(access technology)들을 통해 다수의 단말들과 동시 연결을 지원한다.In addition, the “Next Gen” structure supports an unified authentication framework for other access systems, and supports simultaneous connection with a plurality of terminals through a plurality of access technologies.
또한, “Next Gen” 구조는 core network 및 RAN의 독립적인 진화를 허용하고, 접속 의존성(access dependency)를 최소화시킨다.In addition, the “Next Gen” architecture allows for independent evolution of the core network and the RAN and minimizes access dependencies.
또한, “Next Gen” 구조는 control plane 및 user plane 기능들에 대한 분리를 지원하며, IP packet들, non-IP PDUs 및 Ethernet frame들의 전송을 지원한다.In addition, the “Next Gen” structure supports separation of control plane and user plane functions, and supports transmission of IP packets, non-IP PDUs, and Ethernet frames.
도 8을 참조하면, “Next Gen” 구조는 NextGen UE(810), NextGen RAN(820), NextGen Core(830), Data network(840)을 포함할 수 있다.Referring to FIG. 8, the “Next Gen” structure may include a NextGen UE 810, a NextGen RAN 820, a NextGen Core 830, and a Data network 840.
여기서, “Next Gen”의 무선통신 시스템에서 단말은 ‘NextGen UE’로, 단말과 기지국 간의 무선 프로토콜 구조를 정의하는 RAN은 ‘NextGen RAN’으로, 단말의 이동성 제어, IP packet 플로우 관리 등을 수행하는 Core Network는 ‘NextGen Core’로 표현될 수 있다.Here, in the wireless communication system of “Next Gen”, the UE is a “NextGen UE” and the RAN defining a radio protocol structure between the UE and the base station is “NextGen RAN” to perform mobility control and IP packet flow management of the UE. Core network can be expressed as 'NextGen Core'.
일례로, ‘NextGen RAN’은 LTE(-A) 시스템에서의 E-UTRAN에 대응될 수 있으며, ‘NextGen Core’는 LTE(-A) 시스템에서의 EPC에 대응될 수 있으며, LTE EPC에서의 MME, S-GW, P-GW 등과 같은 기능을 수행하는 network entity들도 NextGen Core에 포함될 수도 있다.For example, 'NextGen RAN' may correspond to E-UTRAN in LTE (-A) system, 'NextGen Core' may correspond to EPC in LTE (-A) system, and MME in LTE EPC Network entities that perform functions such as S-GW, P-GW, etc. may also be included in NextGen Core.
상기 NextGen RAN과 상기 NextGen Core간에는 NG1-C interface 및 NG1-U interface가 존재하며, 상기 NextGen Core와 상기 Data Network 간에는 NG-Gi interface가 존재한다.An NG1-C interface and an NG1-U interface exist between the NextGen RAN and the NextGen Core, and an NG-Gi interface exists between the NextGen Core and the Data Network.
여기서, NG1-C는 NextGen RAN과 NextGen Core 사이의 control plane을 위한 레퍼런스 포인트(Reference Point)를 나타내며, NG1-U는 NextGen RAN과 NextGen Core 사이의 user plane을 위한 레퍼런스 포인트를 나타낸다.Here, NG1-C represents a reference point for a control plane between NextGen RAN and NextGen Core, and NG1-U represents a reference point for a user plane between NextGen RAN and NextGen Core.
NG-NAS는 도 8에 도시되지는 않았지만, NextGen UE와 NextGen Core 사이의 control plane을 위한 레퍼런스 포인트를 나타낸다.Although not illustrated in FIG. 8, the NG-NAS represents a reference point for a control plane between a NextGen UE and a NextGen Core.
또한, NG-Gi는 NextGen Core와 Data network 사이의 레퍼런스 포인트를 나타낸다.In addition, NG-Gi represents a reference point between NextGen Core and Data network.
여기서, Data network는 오퍼레이터 외부 공중망(operator external public network) 또는 개인 데이터 망(private data network) 또는 인트라-오퍼레이터 데이터 망(intra-operator data network) 등일 수 있다.Here, the data network may be an operator external public network, a private data network, an intra-operator data network, or the like.

도 9는 본 명세서에서 제안하는 방법들이 적용될 수 있는 다음 세대 RAN을 지원하기 위한 무선통신 시스템 구조의 또 다른 일례를 나타낸 도이다.9 is a diagram illustrating another example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed in the specification can be applied.
특히, 도 9는 도 8의 NextGen Core를 control plane(CP) 기능과 user plane(CP) 기능으로 세분화하고, UE/AN/AF 간의 인터페이스를 구체적으로 나타낸다.In particular, FIG. 9 subdivides the NextGen Core of FIG. 8 into a control plane (CP) function and a user plane (CP) function, and illustrates an interface between UE / AN / AF in detail.
도 9를 참조하여, flow 기반의 QoS handling 방법에 대해 좀 더 구체적으로 살펴본다.Referring to FIG. 9, a flow-based QoS handling method will be described in more detail.
도 9를 참조하면, 본 발명이 적용되는 무선통신 시스템에서 QoS(Quality Of Service)의 정책은 아래와 같은 이유들에 의해서 CP(Control Plane) Function(531)에서 저장되고 설정될 수 있다. Referring to FIG. 9, a policy of Quality of Service (QoS) in a wireless communication system to which the present invention is applied may be stored and set in a CP (Control Plane) Function 531 for the following reasons.
UP(User Plane) Function(532)에서의 적용Application in UP (User Plane) Function 532
QoS 적용을 위한 AN(Admission Control, 520)과 UE(510)에서의 전송Transmission from AN (Admission Control) 520 and UE 510 for QoS Application
도 9에 도시된 바와 같이, CP functions 및 UP functions은 NextGen CN에 포함되는 function들로서(점선으로 표시), 하나의 물리적인 장치에 의해 구현되거나 또는 각각 다른 물리적인 장치에 의해 구현될 수 있다.As shown in FIG. 9, the CP functions and the UP functions are functions included in the NextGen CN (indicated by a dotted line), and may be implemented by one physical device or each other.

도 10 내지 도 12는 본 명세서에서 제안하는 방법들이 적용될 수 있는 다음 세대 RAN을 지원하기 위한 무선통신 시스템 구조의 또 다른 일례를 나타낸 도이다.10 and 12 illustrate another example of a structure of a wireless communication system for supporting a next generation RAN to which the methods proposed herein may be applied.
즉, 도 10 내지 도 12는 본 명세서에서 전반적으로 설명되는 네트워크 슬라이싱(Network Slicing) 개념을 포함하는 다음 세대 RAN을 지원하기 위한 무선통신 시스템 구조의 일례들을 나타낸다.That is, FIGS. 10 to 12 show examples of a wireless communication system structure for supporting a next generation RAN including a network slicing concept described generally herein.
구체적으로, 도 10은 common 및 slice specific function들을 가지는 network slicing에 대한 control plane interface들을 나타내며, 도 11은 network slicing 개념을 포함하는 core part를 나타내며, 도 12는 Attach 이후에 Core NSI에 할당되는 단말들을 나타낸 도이다.Specifically, FIG. 10 shows control plane interfaces for network slicing having common and slice specific functions, FIG. 11 shows a core part including a network slicing concept, and FIG. 12 shows terminals allocated to Core NSI after attaching. The figure shown.
도 11을 참조하면, NextGen Core(또는 5G Network Core)의 control plane은 2가지 타입의 Network Functions(NFs)으로 구분된다.Referring to FIG. 11, the control plane of NextGen Core (or 5G Network Core) is divided into two types of Network Functions (NFs).
상기 2 가지 타입의 NFs는 CCNF(Common Control Plane Network Function)과 SCNF(Slice-specific Control Plane Network Functions)일 수 있다.The two types of NFs may be Common Control Plane Network Function (CCNF) and Slice-specific Control Plane Network Functions (SCNF).
상기 CCNF는 C-CPF 등으로 표현될 수도 있다.The CCNF may be represented by C-CPF or the like.
상기 CCNF는 NextGen Core 내 NSI들 사이에서 공통의 기본적인 functions operation을 지원하기 위한 기본적인 control plane network functions의 세트이다.The CCNF is a set of basic control plane network functions to support common basic function operations among NSIs in NextGen Core.
또한, Core Network Slice는 Core Network Instance로 표현될 수도 있다.In addition, the Core Network Slice may be represented as a Core Network Instance.

도 13은 본 명세서에서 제안하는 방법이 적용될 수 있는 네트워크 슬라이싱의 기본 개념도의 일례를 나타낸 도이다.FIG. 13 is a diagram illustrating an example of a basic conceptual diagram of network slicing to which the method proposed in the specification can be applied.
도 13에서의 가정은 특정 PLMN의 특정 Network Slice는 Radio Interface를 통해 연결된 어떠한 단말에게도 보이지 않는다는 것이다.The assumption in FIG. 13 is that a particular Network Slice of a particular PLMN is not visible to any terminal connected via a Radio Interface.
따라서, Slice Routing과 Selection을 위한 Function이 필요하다.Therefore, you need a function for Slice Routing and Selection.
이는 단말의 RB(Radio Bearer)를 적절한 Core Network Instance로 연결하는 역할을 수행한다.This serves to connect the RB (Radio Bearer) of the terminal to the appropriate Core Network Instance.
요약하면, RAN은 단말에게 RAT + PLMN으로만 보이며, 상기 단말이 어떤 Network Slice(Network Instance)로 연계되는지는 Network 내부에서 수행되며, 상기 단말은 관여하지 않는다.In summary, the RAN is shown only to the terminal as RAT + PLMN, which Network Slice (Network Instance) is connected to the terminal is performed in the network, the terminal is not involved.
한편, Slice Selection과 Routing Function은 RAN에 의해 제공될 수 있고, 이는 현재 4G 시스템의 기지국에 의해 수행되는 기능들 중 하나인 NNSF (Network Node Selection Function)과 유사하다.On the other hand, Slice Selection and Routing Function may be provided by the RAN, which is similar to NNSF (Network Node Selection Function), which is one of functions currently performed by a base station of a 4G system.
Slice Selection과 Routing Function은 Core Network에 의해서도 제공될 수 있다.Slice Selection and Routing Functions can also be provided by the Core Network.

도 14는 본 명세서에서 제안하는 방법이 적용될 수 있는 다수의 core network instance들 사이에서 공통의 C-plane functions의 세트를 공유하는 도를 나타낸다.FIG. 14 illustrates a diagram of sharing a common set of C-plane functions among a plurality of core network instances to which the method proposed in this specification may be applied.
앞서 언급한 바와 같이, 5G Network Architecture는 Network Slicing 개념을 Core Network에 수용하는 형태로 구성될 것으로 예상되고 있다.As mentioned above, 5G network architecture is expected to be configured to accommodate the concept of network slicing in the core network.
도 14는 이러한 구조의 일례를 나타내며, 도 14에 도시된 Architecture 에 따라, 단말은 Common CPF들을 통해 실제 서비스를 위한 CNI들로 연결된다.FIG. 14 shows an example of such a structure, and according to the architecture shown in FIG. 14, UEs are connected to CNIs for actual service through Common CPFs.
즉, 5G Core Network에 Network Slicing 개념이 수용된다는 것은, 서로 다른 서비스 요구조건들을 갖는 각각의 서비스들을 제공하기 위해 최적화된 논리적인 Network인 CNI들에 대해 해당 CNI들에 부합되는 Security 메커니즘이 제공되어야 함을 의미한다.In other words, the concept of Network Slicing in 5G Core Network means that CNIs, which are logical networks optimized to provide respective services with different service requirements, must be provided with a security mechanism that matches the CNIs. Means.
5G 시스템은 Service Oriented Network을 지향하므로, 4G 시스템에서와 같이 서비스 요구조건들을 전혀 고려하지 않는 고정된 형태의 인증 및 보안설정은 5G 시스템에서 실현될 다양한 서비스들의 제공에 걸림돌이 된다. Since 5G systems are aimed at Service Oriented Network, fixed-type authentication and security settings that do not consider service requirements at all as in 4G systems are obstacles in providing various services to be realized in 5G systems.
따라서, 5G System은 종래와 같이 전체 Network에 대해 동일한 Security Mechanism을 적용하는 개념이 아닌 Service-Specific Security 요구사항이 만족되도록 Network Slice들을 구축해야 하며, 이를 위한 서로 다른 Security Mechanism이 제공되어야 한다.Therefore, 5G system should construct network slices to satisfy service-specific security requirements, not the concept of applying the same security mechanism to the entire network as in the prior art, and different security mechanisms must be provided for this.

따라서, 본 명세서에서 제안하는 방법 또는 기술은 신규 5G(또는 다음 세대) 서비스들을 효율적으로 제공하기 위해, 네트워크 슬라이싱(Network Slicing) 개념을 포함하는 5G Core Network를 통해 단말이 네트워크 조각 또는 네트워크 슬라이스(Network Slice) 별로 CNI(Core Network Instance)들을 통해 서비스를 제공받는 상황을 지원하기 위한 CNI별 차별적인 보안설정 방법을 제공한다.Therefore, the method or technology proposed in the present specification is a network fragment or a network slice (network slice) through a 5G Core Network including a network slicing concept in order to efficiently provide new 5G (or next generation) services. It provides a differentiated security configuration method for each CNI to support a situation in which services are provided through core network instances (CNIs) per slice.
즉, 신규 5G 서비스들을 효과적으로 제공하기 위해 Network Slicing 개념이 5G Core Network에 수용될 경우, 각각의 서비스 제공을 위해 필요한 CNI들은 해당 서비스의 요구조건들을 반영하는 보안(Security) 메커니즘을 제공해야 할 필요가 있다.In other words, when the concept of Network Slicing is adopted in 5G Core Network to effectively provide new 5G services, CNIs needed to provide each service need to provide a security mechanism that reflects the requirements of the service. have.
즉, 의료, 산업, 로봇 등 원격제어 서비스, 스마트 카 안전(Smart Car Safety) 서비스 등과 같이, 1ms 이하의 저 지연 전송 요구사항을 만족시키면서 동시에 높은 신뢰성(Packet Error Rate < 10-9)이 요구되는 어플리케이션 (Application)들에 대해 각 Application이 각각 별도의 CNI를 통해 제공되는 구조로 5G Core Network가 진화될 경우, 단말은 복수의 CNI(Network Slice) 들을 통해 복수의 서비스들을 제공받을 수 있다.That is, high reliability (Packet Error Rate <10-9) is required while satisfying low latency transmission requirements of 1 ms or less, such as remote control services such as medical, industrial, and robots, and smart car safety services. When the 5G Core Network has evolved into a structure in which each application is provided through a separate CNI for applications, the terminal may receive a plurality of services through a plurality of network slices (CNIs).
따라서, 본 명세서는 CNI별로 각각의 서비스 요구사항에 부합되는 보안설정 방법을 제공한다.Therefore, the present specification provides a security configuration method that satisfies each service requirement for each CNI.

이하, 본 명세서에서 제안하는 단말과 CNI별 보안설정 방법들에 대해 다양한 실시 예들을 통해 좀 더 구체적으로 살펴본다.Hereinafter, the terminal and the CNI-specific security configuration methods proposed herein will be described in more detail through various embodiments.
My 1  One 실시practice Yes
제 1 실시 예는 C-CPF가 단말의 인증 후 CNI 별로 보안키를 생성하고, 이를 해당 CNI로 전달함으로써, 단말과 각 CNI 간에 보안설정을 수행하는 방법을 제공한다.The first embodiment provides a method for C-CPF to create a security key for each CNI after authentication of the terminal and transfer the security key to the corresponding CNI, thereby performing security configuration between the terminal and each CNI.
즉, 제 1 실시 예는 단말의 망 접속을 제어하는 공통제어 기능(C-CPF)가 상기 단말의 접속요청을 수행하면서, 망 접속을 위한 인증절차 수행의 결과로 생성된 제 1 보안키(예:MME Base Key)를 사용하여, 각 CNI를 위한 제 2 보안키 (CNI Seed Key)를 생성하고, 상기 생성된 제 2 보안키를 해당 CNI로 전달한다.That is, according to the first embodiment, a first security key (eg, generated as a result of performing an authentication procedure for network access while a common control function (C-CPF) that controls a network access of a terminal performs an access request of the terminal) Using a MME Base Key, a second security key (CNI Seed Key) for each CNI is generated and the generated second security key is transferred to the corresponding CNI.
편의상 제 1 보안키를 MME Base Key로, 제 2 보안키를 CNI Seed Key로 예를 들어 설명하기로 한다.For convenience, the first security key will be described as an MME Base Key and the second security key as a CNI Seed Key.
이후, 상기 C-CPF로부터 CNI Seed Key를 수신한 CNI는 상기 수신된 CNI Seed Key를 통해 단말과 CNI Seed Key에 대한 적법성 여부를 확인한다.Thereafter, the CNI receiving the CNI Seed Key from the C-CPF checks the legality of the terminal and the CNI Seed Key through the received CNI Seed Key.
이후, 상기 CNI는 상기 CNI Seed Key로부터 단말과 RAN 구간에서 사용할 추가적인 security Key를 생성한다.Thereafter, the CNI generates an additional security key to be used in the terminal and the RAN section from the CNI Seed Key.
또한, 상기 CNI와 단말은 상기 CNI에 의해 제공되는 서비스 특성에 따라, 다양한 Security 속성을 조율할 수 있다.In addition, the CNI and the terminal may coordinate various security attributes according to the service characteristics provided by the CNI.
이처럼, 제 1 실시 예는 서로 다른 서비스 요구사항들을 갖는 Network Slice(CNI)별로 해당 서비스 요구사항에 부합하는 Security 메커니즘을 적용할 수 있도록 하는 방법을 제공함에 따라, 실제 서비스를 제공하는 CNI별로 서로 다른 보안 키 계층(Security Key Hierarchy)를 설정할 수 있고, CNI들 간의 분리(Isolation)이 가능해져, 결과적으로 서비스(Service) 특성에 따른 다양한 보안설정이 가능하다는 장점이 있다.As described above, the first embodiment provides a method for applying a security mechanism that meets the corresponding service requirements for each network slice (CNI) having different service requirements, and thus different for each CNI providing the actual service. Security key hierarchy can be set, and isolation between CNIs is possible, resulting in various security settings according to service characteristics.
제 1 실시 예에 대해 좀 더 구체적으로 살펴보면, 단말의 망 접속을 제어하는 공통제어 기능(Common Control Function)은 상기 단말의 접속요청을 수행하면서, 상기 단말의 망 접속을 위한 인증절차 수행의 결과로 생성된 제 1 보안키(security key)를 사용하여, 각각의 CNI를 위한 제 2 보안키를 생성하고, 상기 생성된 제 2 보안키를 각 CNI로 전송한다.In more detail with respect to the first embodiment, the common control function (Common Control Function) for controlling the network access of the terminal as a result of performing the authentication procedure for the network access, while performing the access request of the terminal Using the generated first security key, a second security key for each CNI is generated, and the generated second security key is transmitted to each CNI.
여기서, 상기 제 1 보안키는 MME Base Key, 등으로 표현될 수 있으며, 향후 5G 시스템에서 정의되는 key 이름으로 대체될 수 있다.Here, the first security key may be expressed as an MME Base Key, and the like, and may be replaced with a key name defined in a future 5G system.
상기 MME Base Key로부터 CNI Network Key가 생성될 수 있으며, CNI Network Key는 단말과 5G CNI간의 Signaling을 보호하기 위한 보안키일 수 있다.The CNI Network Key may be generated from the MME Base Key, and the CNI Network Key may be a security key for protecting signaling between the UE and 5G CNI.
상기 제 1 보안키는 LTE 시스템에서 사용되고 있는 KASME에 대응될 수 있다.The first security key may correspond to K ASME used in the LTE system.
또한, 상기 제 2 보안키는 CNI Seed Key, CNI-specific Key 등으로 표현될 수 있다.In addition, the second security key may be represented as a CNI Seed Key, CNI-specific Key, and the like.
상기 제 2 보안키는 특정 CNI로부터 제공되는 서비스를 보호하기 위한 보안 키일 수 있다.The second security key may be a security key for protecting a service provided from a specific CNI.

상기 제 1 보안키 및 상기 제 2 보안키의 정의 및 역할에 대해서는 이하 실시 예들에서 좀 더 구체적으로 살펴보기로 한다.Definitions and roles of the first security key and the second security key will be described in more detail in the following embodiments.
C-CPF(Common-Control Plane Function)을 통해 제 2 보안키(예: CNI Seed Key)를 수신한 CNI는 상기 제 2 보안키를 통해 단말과 상기 제 2 보안키의 적법성 여부를 확인한다.Receiving a second security key (eg, a CNI Seed Key) through a Common-Control Plane Function (C-CPF), the CNI checks whether the terminal and the second security key are legal through the second security key.
이후, 상기 CNI는 상기 제 2 보안키(CNI Seed Key)를 단말이 접속한 RAN Node로 전달하여, 상기 단말과 상기 RAN Node로 하여금 AS 구간의 보안키를 생성하도록 하거나, 혹은 상기 CNI로부터 제 2 보안키를 수신한 C-CPF는 상기 RAN Node의 RAT 타입(e.g., New RAT, eLTE, WLAN, etc)에 따라, 제 2 보안키와 RAN Node RAT 타입정보로부터 단말과 RAN 구간에서 사용할 추가적인 제 3 보안키를 생성하여 이를 단말이 접속한 RAN Node로 전달할 수 있다. Thereafter, the CNI transfers the second security key (CNI Seed Key) to the RAN node to which the terminal accesses, causing the terminal and the RAN node to generate a security key of an AS interval, or from the CNI to the second. Receiving the security key, the C-CPF further uses an additional third to be used in the terminal and the RAN section from the second security key and the RAN Node RAT type information according to the RAT type (eg, New RAT, eLTE, WLAN, etc.) of the RAN node. The security key may be generated and transferred to the RAN node to which the terminal is connected.
상기 제 3 보안키는 단말과 RAN간의 접속 즉, AS와 관련된 보안키일 수 있으며, 상기 제 2 보안키와 RAN Node RAT 타입정보 등으로부터 제 3 보안키는 아래 수학식 1과 같이 생성될 수 있다.The third security key may be a connection between the terminal and the RAN, that is, a security key associated with the AS, and a third security key may be generated from Equation 1 below from the second security key and the RAN Node RAT type information.
Figure PCTKR2016015038-appb-M000001
Figure PCTKR2016015038-appb-M000001
이와 동시에, 각 CNI와 단말은 해당 CNI에 의해 제공되는 서비스 특성에 따라, 다양한 보안(Security)속성을 단말과 조율(또는 교환)할 수 있다.At the same time, each CNI and the terminal may coordinate (or exchange) various security attributes with the terminal according to the service characteristics provided by the corresponding CNI.
예를 들어, 상기 Security 속성은 암호화 및 복호화에 사용되는 Security Key의 크기, 서비스 특성에 따른 암호화/무결성 알고리즘의 적용여부 등일 수 있다.For example, the security attribute may be a size of a security key used for encryption and decryption, whether to apply an encryption / integrity algorithm according to service characteristics, and the like.
단말과 CNI간의 제 2 보안키(예: CNI Seed Key)에 대한 적법성 여부를 확인하는 절차는 상기 단말의 세션(Session)설정 절차를 통해 이루어질 수 있다.The procedure for checking whether or not the second security key (eg, CNI Seed Key) between the UE and the CNI is legal may be performed through a session establishment procedure of the UE.
즉, 본 명세서에서 제안하는 CNI별 보안설정 방법은 종래 LTE(4G) 시스템의 보안설정 방법과 달리 서비스 특성에 따라 보안설정을 수행함으로써, 다양한 서비스의 요구사항들을 만족시키지 못하는 비효율성을 해결하고자 한다.That is, the CNI-specific security configuration method proposed in the present specification is to solve the inefficiency that does not satisfy the requirements of various services by performing the security configuration according to the service characteristics, unlike the security configuration method of the conventional LTE (4G) system .

도 15는 본 명세서에서 제안하는 단말과 CNI별 보안설정 방법(서비스 차별적 보안설정 방법)의 일례를 나타낸 흐름도이다.15 is a flowchart illustrating an example of a terminal and CNI-specific security configuration method (service-specific security configuration method) proposed in the present specification.
도 15를 참조하면, 단말과 CNI별 보안설정 방법을 수행하기 위해 무선통신 시스템은 UE, RAN node, NSSF/CPSF, C-CPF, 하나 또는 그 이상의 CNI(CPF, UPF)들을 포함할 수 있다.Referring to FIG. 15, the wireless communication system may include a UE, a RAN node, an NSSF / CPSF, a C-CPF, and one or more CNIs (CPFs, UPFs) in order to perform a method for setting security for each UE and CNI.
도 14에 도시된 것처럼, 도 15의 경우, 복수의 CNI들은 공통의(또는 하나의) C-CPF들을 공유하는 구조를 가지는 것으로 가정한다.As shown in FIG. 14, in the case of FIG. 15, it is assumed that a plurality of CNIs have a structure that shares common (or one) C-CPFs.
여기서, 네트워크 조각(또는 슬라이스) 선택(Network Slice Selection) 은 단말이 제공하는 Application ID(IDentity), Service Descriptor(e.g., eMBB, CriC, mMTC) 등을 통해 수행되거나 또는 망(예: LTE 시스템의 HSS)이 관리하는 단말의 가입정보 등을 통해 수행될 수 있다.Here, network slice selection is performed through an application ID (IDentity), a service descriptor (eg, eMBB, CriC, mMTC) provided by the terminal, or a network (eg, HSS of an LTE system). ) May be performed through subscription information of the terminal, which is managed.
도 15는 도 14에 도시된 네트워크 슬라이싱(Network Slicing) 개념이 수용되는 5G New Core Network에서 동작하는 서비스 차별적인 보안설정 절차의 일례를 나타낸다.FIG. 15 illustrates an example of a service discriminating security setting procedure that operates in a 5G New Core Network in which the concept of network slicing illustrated in FIG. 14 is accommodated.
또한, 도 15는 단말의 가입정보를 저장하는 HSS(혹은 HSS에 대응하는 5G New Core Network 개체)와 C-CPF(Common CPF)간의 인터페이스만 존재한다고 가정한다.In addition, FIG. 15 assumes that only an interface between an HSS (or 5G New Core Network entity corresponding to the HSS) and a C-CPF (Common CPF) that stores subscription information of the terminal exists.
즉, 도 15의 CNI들은 HSS와 연결되어 있지 않으며, CNI들은 HSS가 유지하는 정보를 얻기 위해 반드시 C-CPF를 거치게 된다.That is, the CNIs of FIG. 15 are not connected to the HSS, and the CNIs necessarily go through the C-CPF to obtain information maintained by the HSS.
도 15를 참조하면, 단말은 Operator Network(CNI(들))로의 연결을 설정하기 위해, 네트워크 연결요청(Network Connection Request) 메시지를 전송한다(S1501).Referring to FIG. 15, the terminal transmits a network connection request message to establish a connection to an operator network (CNI (s)) (S1501).
상기, 네트워크 연결요청 메시지는 RAN Node를 거쳐 NNSF(Network Slice Selection Function)/CPSF(C-Plane Selection Function)으로 전달된다 (S1501).The network connection request message is transmitted to a Network Slice Selection Function (NNSF) / C-Plane Selection Function (CPSF) via the RAN Node (S1501).
만약 단말이 특정 CNI와 상기 CNI의 CPF(Control Plane Function)에 대한 정보를 RAN Node에게 제공하는 경우, 상기 Network Connection Request 메시지는 직접 상기 단말에서 상기 특정 CNI의 CPF로 전달될 수 있다.If the terminal provides a specific CNI and information on the control plane function (CPF) of the CNI to the RAN node, the Network Connection Request message can be directly transmitted from the terminal to the CPF of the specific CNI.
이후, 상기 NNSF/CPSF는 상기 단말이 요청한 Network Connection Request 메시지에 포함된 정보에 따라 상기 단말이 접속할 CNI와 해당 CNI에 대한 CPF를 결정한다(S1502).Thereafter, the NNSF / CPSF determines the CNI to be accessed by the terminal and the CPF for the corresponding CNI according to the information included in the Network Connection Request message requested by the terminal (S1502).
도 15의 경우, 단말이 Network Connection Request 메시지에 포함시킨 CNI는 CNI #1임을 알 수 있다.In FIG. 15, it can be seen that the CNI included in the Network Connection Request message by the terminal is CNI # 1.
이후, 상기 NNSF/CPSF는 상기 CNI #1의 CPF(CPF-1)에 대한 정보를 상기 RAN Node로 전달한다(S1503).Thereafter, the NNSF / CPSF transfers information on the CPF (CPF-1) of the CNI # 1 to the RAN node (S1503).
이후, 상기 NNSF/CPSF로부터의 응답에 따라 상기 RAN Node는 CNI의 CPF를 선택한다(S1504).Thereafter, the RAN node selects the CPF of the CNI according to the response from the NNSF / CPSF (S1504).
상기 RAN Node의 일례는 기지국일 수 있으나, 이에 한정되지 않는다.An example of the RAN node may be a base station, but is not limited thereto.
상기 RAN Node는 단말의 Network Connection Request 메시지를 C-CPF (도 15에서 C-CPF-1)으로 전달하며(S1505), 이는 단말의 CNI #1로의 연결을 위한 요청이다.The RAN node transmits a network connection request message of the terminal to the C-CPF (C-CPF-1 in FIG. 15) (S1505), which is a request for connection to the CNI # 1 of the terminal.
상기 C-CPF는 상기 단말을 상기 CNI-1으로 연결시키기 위한 인증을 수행하며, 그 결과로 앞서 언급한 제 1 보안키(예: MME Base Key)를 생성한다 (S1506).The C-CPF performs authentication for connecting the terminal to the CNI-1, and as a result, generates the first security key (eg, MME Base Key) mentioned above (S1506).
상기 MME Base Key는 4G(예: LTE) System의 KASME이거나 또는 이에 대응하는 고유의 Key일 수 있다.The MME Base Key may be a K ASME of a 4G (eg LTE) system or a unique key corresponding thereto.
이후, 상기 C-CPF는 상기 MME Base Key로부터 앞서 언급한 제 2 보안 키(예: CNI-specific Key, CNI-1 Seed Key)를 생성한다(S1507).Thereafter, the C-CPF generates the aforementioned second security key (eg, CNI-specific Key, CNI-1 Seed Key) from the MME Base Key (S1507).
추가적으로, 상기 C-CPF는 상기 단말의 가입정보에 따라 CNI-2에 대한 CNI-specific Key(e.g., CNI-2 Seed Key)도 생성할 수 있다.In addition, the C-CPF may also generate a CNI-specific Key (e.g., CNI-2 Seed Key) for CNI-2 according to the subscription information of the terminal.
CNI-2 Seed Key 생성단계는 선택적으로 수행될 수도 있거나 수행되지 않을 수도 있다.The CNI-2 Seed Key generation step may or may not be selectively performed.
상기 CNI-specific Key는 CNI Seed Key로 호칭될 수도 있으며, 아래 수학식 2 및 수학식 3에 의한 방법으로 생성될 수 있다.The CNI-specific Key may also be referred to as a CNI Seed Key, and may be generated by the following equations (2) and (3).
Figure PCTKR2016015038-appb-M000002
Figure PCTKR2016015038-appb-M000002
Figure PCTKR2016015038-appb-M000003
Figure PCTKR2016015038-appb-M000003
상기 C-CPF는 상기 수학식 2 및 3에 의해 생성된 CNI-specific Key들을 해당 CNI의 CPF로 전달한다(S1508).The C-CPF delivers the CNI-specific Keys generated by Equations 2 and 3 to the CPF of the corresponding CNI (S1508).
이후, 상기 단말은 Communication Service(CNI #1에 의해 제공되는 서비스 #1을 의미)를 위한 New service request 메시지를 상기 RAN Node로 전송한다(S1509).Thereafter, the terminal transmits a New service request message for a communication service (meaning service # 1 provided by CNI # 1) to the RAN node (S1509).
S1509 단계에서, 상기 단말은 자신이 요청하는 서비스의 CNI를 알고 있으며, 해당 CNI의 ID를 사용하여 상기 수학식 2 및 수학식 3과 동일한 방법을 통해 CNI-specific Key(e.g., CNI-1 Seed Key)를 생성할 수 있다.In step S1509, the UE knows the CNI of the service requested by the UE, and uses the ID of the corresponding CNI to perform CNI-specific Key (eg, CNI-1 Seed Key) through the same method as in Equations 2 and 3 above. ) Can be created.
상기 단말의 CNI-1으로의 Communication Service를 위한 New service request 메시지는 CNI-1 Seed Key에 대한 Hash 값과 단말의 Security Capability 정보가 포함될 수 있다.The new service request message for the communication service to the CNI-1 of the terminal may include a hash value for the CNI-1 seed key and security capability information of the terminal.
여기서, 상기 New service request 메시지에 CNI-1 Seed Key에 대한 Hash 값을 포함시키는 이유는 상기 단말과 CNI-1이 서로 동일한 CNI-1 Seed Key를 가지고 있는지의 여부를 확인하기 위함일 수 있다.Here, the reason for including the hash value for the CNI-1 seed key in the new service request message may be to determine whether the terminal and the CNI-1 have the same CNI-1 seed key.
또한, 이와 같은 절차가 필요한 이유는 CNI-1 Seed Key로부터 이후의 서비스를 위한 Access 구간 Key가 생성되기 때문이다.In addition, this procedure is necessary because an access section key for subsequent services is generated from the CNI-1 Seed Key.
한편, 상기 New service request 메시지에 상기 단말의 Security Capability 정보가 포함되는 이유는 상기 단말과 CNI-1간에 암호화/무결성을 위한 알고리즘이나 지원가능한 Key Size 등의 정보를 조율하기 위함이다.Meanwhile, the reason for including the security capability information of the terminal in the new service request message is to coordinate information such as encryption / integrity or supportable key size between the terminal and CNI-1.
이후, 상기 RAN Node는 상기 단말의 New service request를 C-CPF로 전달하며, 상기 C-CPF는 상기 New service request를 CNI-1에 대응되는 CPF (CNI-1의 CPF)로 전달한다(S1510).Thereafter, the RAN node forwards the new service request of the terminal to the C-CPF, and the C-CPF forwards the new service request to the CPF (CPF of CNI-1) corresponding to CNI-1 (S1510). .
이후, 상기 단말과 상기 CPF-1과의 성공적인 Session 설정이 완료된 후, CNI-1의 CPF(CPF-1)은 세션응답(Session Response) 메시지를 C-CPF(C-CPF -1)으로 전달하고, 상기 C-CPF(C-CPF 1)은 상기 세션응답 메시지를 상기 RAN Node로 전달한다(S1511).Thereafter, after the successful session setup between the terminal and the CPF-1 is completed, the CPF-1 of the CNI-1 transfers a Session Response message to the C-CPF-1. The C-CPF 1 transfers the session response message to the RAN node (S1511).
상기 세션응답(Session Response) 메시지는 CNI-1의 CPF(CPF-1)이 계산한 CNI-1 Seed Key에 대한 Hash 값과 CNI-1의 UPF-1에서 적용될 수 있는 Security 속성 등의 정보를 포함할 수 있다.The session response message includes information such as a hash value for the CNI-1 seed key calculated by CPF-1 (CPF-1) of CNI-1 and a security attribute applicable to UPF-1 of CNI-1. can do.
여기서, 상기 CNI-1 Seed Key(앞서 언급한 제 2 보안키의 일례)에 대한 Hash 값을 포함시키는 이유는 S1509 단계에서 기술된 것처럼, 단말과 CNI-1이 서로 동일한 CNI-1 Seed Key를 가지고 있는지의 여부를 확인하기 위함이다.Here, the reason for including the hash value for the CNI-1 Seed Key (the example of the second security key mentioned above) is as described in step S1509, and the terminal and the CNI-1 have the same CNI-1 Seed Key. It is to check whether there is.
또한, 해당 절차가 필요한 이유는, CNI-1 Seed Key로부터 이후의 서비스를 위한 Access 구간의 Key가 생성되기 때문이다.In addition, this procedure is necessary because a key of an access section for a subsequent service is generated from the CNI-1 Seed Key.
한편, 상기 세션응답(Session Response) 메시지에 서비스 특성에 따른 Security 속성과 관련된 정보가 포함되는 이유는 CNI-1에서 제공되는 서비스 특성에 따라 적용될 수 있는 보안설정을 단말(예: UE)에게 알려주기 위함이다. On the other hand, the reason for including the information related to the security attribute according to the service characteristics in the Session Response (Session Response) message informs the terminal (for example, the UE) the security settings that can be applied according to the service characteristics provided by the CNI-1 For sake.
상기 Security 속성과 관련된 정보는 CNI-1이 단말로부터 수신한 Security Capability에 따라 서비스 제공에 적용하고자 하는 암호화 및/또는 무결성 알고리즘이나 또는 Security Key Size 등의 정보도 포함할 수 있다.The information related to the security attribute may also include information such as encryption and / or integrity algorithm or security key size that CNI-1 intends to apply to service provision according to the security capability received from the terminal.
이후, 상기 RAN Node는 상기 수신한 Session Response를 상기 단말로 전송한다(S1512).Thereafter, the RAN node transmits the received Session Response to the terminal (S1512).
상기 세션요청/세션응답(Session Request/Session Response)를 통해, 상기 단말과 특정 CNI CPF(CPF-1)이 서로 CNI Seed Key에 대한 적법성 여부를 확인하는 경우, 상기 단말과 상기 특정 CNI-CPF(CPF-1)은 Access 구간에서 서비스를 위해 실제 사용될 Key들을 생성할 수 있다.When the terminal and the specific CNI CPF (CPF-1) check the legality of the CNI Seed Key with each other through the session request / session response, the terminal and the specific CNI-CPF ( CPF-1) can generate keys to be used for service in the access section.
이는, 상기 CNI-CPF(CPF-1)이 CNI-1 Seed Key를 상기 RAN Node로 전송하여, 상기 RAN Node와 상기 단말이 상기 수신된 CNI-1 Seed Key로부터 각각 따로 생성하도록 할 수 있다. 혹은 상기 CNI로부터 제 2 보안키를 수신한 C-CPF는 RAN Node의 RAT 타입(e.g., New RAT, eLTE, WLAN, etc)에 따라, 제 2 보안키와 RAN Node RAT 타입정보로부터 단말과 RAN 구간에서 사용할 추가적인 제 3 보안키를 생성하여 이를 단말이 접속한 RAN Node로 전달함에 의해 상기 RAN Node와 상기 단말이 상기 수신된 제 3 보안키로부터 각각 따로 생성하도록 할 수 있다.This may allow the CNI-CPF (CPF-1) to transmit a CNI-1 Seed Key to the RAN Node, so that the RAN Node and the UE generate separately from the received CNI-1 Seed Key. Alternatively, the C-CPF that receives the second security key from the CNI, according to the RAT type (eg, New RAT, eLTE, WLAN, etc.) of the RAN node, the terminal and the RAN interval from the second security key and the RAN Node RAT type information. By generating an additional third security key to be used in the RAN node to which the terminal is connected to the RAN node and the terminal can be generated separately from the received third security key.
다음으로, 단말과 CNI 별 서비스 차별적 보안설정 방법의 또 다른 일례에 대해 살펴본다.Next, another example of a service discriminating security setting method for each terminal and each CNI will be described.
도 16은 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적 보안설정 방법의 또 다른 일례를 나타낸 흐름도이다.FIG. 16 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
즉, 도 16은 도 14에 도시된 네트워크 슬라이싱(Network Slicing) 개념이 수용되는 5G New Core Network 구조에 따라 본 명세서에서 제안하는 서비스 차별적인 보안설정 절차의 다른 일례를 나타낸다.That is, FIG. 16 shows another example of a service discriminating security setting procedure proposed in the present specification according to the 5G New Core Network structure in which the concept of network slicing shown in FIG. 14 is accommodated.
도 16의 경우, 도 15에서와 동일하게 단말의 가입정보를 저장하는 HSS (혹은 상기 HSS에 대응하는 5G New Core Network의 개체)와 C-CPF(Common CPF) 간의 인터페이스만 존재한다고 가정한다.In the case of FIG. 16, as shown in FIG. 15, it is assumed that only an interface between an HSS (or an entity of a 5G New Core Network corresponding to the HSS) and C-CPF (Common CPF) that stores subscription information of the UE exists.
즉, CNI들은 상기 HSS와 연결되어 있지 않으며, 상기 CNI들은 HSS가 유지하는 정보를 얻기 위해 반드시 C-CPF를 거쳐야 한다.That is, CNIs are not connected to the HSS, and the CNIs must go through C-CPF to obtain information maintained by the HSS.
도 16의 S1602 내지 S1607 단계는 도 15의 S1501 내지 S1507 단계와 동일하므로 구체적인 설명은 도 15를 참조하기로 하고, 이하에서는 차이가 나는 부분을 위주로 살펴보기로 한다.Since operations S1602 to S1607 of FIG. 16 are the same as operations S1501 to S1507 of FIG. 15, a detailed description thereof will be described with reference to FIG. 15, and the following description will focus on the differences.
도 16을 참조하면, S1607 단계 이후, 상기 단말은 Communication Service(도 16의 경우, CNI #1에 의해 제공되는 서비스 #1을 의미)를 위한 New Service Request 메시지를 상기 RAN Node로 전송한다(S1608).Referring to FIG. 16, after step S1607, the terminal transmits a New Service Request message for a communication service (in the case of FIG. 16, meaning service # 1 provided by CNI # 1) to the RAN node (S1608). .
S1608 단계에서, 상기 단말은 자신이 요청하는 서비스의 CNI를 알고 있으며, 해당 CNI의 ID를 사용하여 상기 수학식 1 및 수학식 2에 정의된 것과 동일한 방법으로 앞서 언급한 제 2 보안키(예: CNI-specific Key 또는 CNI-1 Seed Key)를 생성할 수 있다.In step S1608, the UE knows the CNI of the service requested by the UE, and uses the ID of the corresponding CNI in the same manner as defined in Equation 1 and Equation 2, and the aforementioned second security key (eg, CNI-specific Key or CNI-1 Seed Key) can be generated.
상기 New Service Request 메시지는 CNI-1 Seed Key에 대한 Hash 값과 단말의 Security Capability 정보를 포함할 수 있다.The New Service Request message may include a hash value for the CNI-1 Seed Key and security capability information of the terminal.
여기서, 상기 New Service Request 메시지에 상기 CNI-1 Seed Key에 대한 Hash 값을 포함시키는 이유는 단말과 상기 CNI-1이 서로 동일한 CNI-1 Seed Key를 가지고 있는지의 여부를 확인하기 위함이다.Here, the reason for including the hash value for the CNI-1 seed key in the New Service Request message is to check whether the terminal and the CNI-1 have the same CNI-1 seed key.
또한, 해당 절차가 필요한 이유는, CNI-1 Seed Key로부터 이후의 서비스를 위한 Access 구간 Key가 생성되기 때문이다.In addition, the procedure is necessary because an access interval key for subsequent services is generated from the CNI-1 Seed Key.
한편, New Service Request 메시지에 상기 단말의 Security Capability 정보가 포함되는 이유는 단말과 CNI 간에 암호화/무결성을 위한 알고리즘이나 또는 지원가능한 Key Size 등의 정보를 조율하기 위함이다.On the other hand, the reason why the security capability information of the terminal is included in the New Service Request message is to coordinate information such as encryption or integrity, or supportable key size, between the terminal and the CNI.
이후, 상기 수신된 New Service Request 메시지에 포함된 정보(CNI-1 ID 등)에 따라 상기 RAN Node는 CNI-1의 CPF(CPF-1)을 선택한다(S1609).Thereafter, the RAN node selects the CPF (CPF-1) of the CNI-1 according to the information (CNI-1 ID, etc.) included in the received New Service Request message (S1609).
이후, 상기 RAN Node는 상기 단말의 Communication Service 요청 즉, 상기 New Service Request 메시지를 CNI-1의 CPF(CPF-1)로 전송한다(S1610).Thereafter, the RAN node transmits the communication service request of the terminal, that is, the New Service Request message to the CPF (CPF-1) of the CNI-1 (S1610).
여기서, 상기 단말의 Communication Service 요청은 먼저 C-CPF로 전달되며, 상기 C-CPF는 CNI-1에 대해 자신이 생성한 CNI-specific Key(e.g., CNI-1 Seed Key)를 추가하고, 이를 상기 Communication Service 요청의 CNI에 대응되는 CPF(CNI-1의 CPF)로 전송한다.Here, the communication service request of the terminal is first delivered to the C-CPF, the C-CPF adds a CNI-specific Key (eg, CNI-1 Seed Key) generated by the C-CPF for the CNI-1, and the Transmit to CPF (CPF of CNI-1) corresponding to CNI of Communication Service request.
이후, 상기 단말과 상기 CNI 1과 성공적인 세션(Session)설정이 완료된 후, 상기 CNI-1의 CPF(CPF-1)은 세션응답(Session Response) 메시지를 C-CPF로 전송한다(S1611).Subsequently, after a successful session setup with the terminal and the CNI 1 is completed, the CPF (CPF-1) of the CNI-1 transmits a session response message to the C-CPF (S1611).
이후, 상기 C-CPF는 상기 세션응답 메시지를 상기 RAN Node로 전송 또는 포워딩한다(S1612). 여기서, 전송되는 메시지는 New Service Response 메시지로 표현될 수 있다.Thereafter, the C-CPF transmits or forwards the session response message to the RAN node (S1612). Here, the transmitted message may be expressed as a New Service Response message.
상기 세션응답(Session Response) 메시지는 CNI-1의 CPF가 계산한 CNI-1 Seed Key에 대한 Hash 값과 CNI-1 UPF-1에서 적용될 수 있는 Security 속성 등의 정보를 포함할 수 있다.The session response message may include information such as a hash value for the CNI-1 seed key calculated by the CPF of the CNI-1 and a security attribute applicable to the CNI-1 UPF-1.
여기서, 상기 CNI-1 Seed Key에 대한 Hash 값을 포함시키는 이유는 앞서 살핀 것처럼, 단말과 CNI-1이 서로 동일한 CNI-1 Seed Key를 가지고 있는지의 여부를 확인하기 위함이며, 해당 절차가 필요한 이유는 CNI-1 Seed Key로부터 이후의 서비스를 위한 Access 구간의 Key가 생성되기 때문이다.Here, the reason for including the hash value for the CNI-1 seed key is to check whether the terminal and the CNI-1 have the same CNI-1 seed key as described above, and why the procedure is necessary. This is because the key of the access section for subsequent services is generated from the CNI-1 Seed Key.
한편, 상기 세션응답(Session Response) 메시지에 서비스 특성에 따른 Security 속성과 관련된 정보가 포함되는 이유는 CNI-1에서 제공되는 서비스 특성에 따라 적용될 수 있는 보안설정을 상기 단말로 알려주기 위함이다.Meanwhile, the reason why the session response message includes information related to the security attribute according to the service characteristic is to inform the terminal of the security setting that can be applied according to the service characteristic provided by the CNI-1.
이러한 Security 속성에는 CNI-1이 단말로부터 수신한 Security Capability에 따라 서비스 제공에 적용하고자 하는 암호화/무결성 알고리즘이나 Key Size 등의 정보도 포함될 수 있다.The security attribute may also include information such as encryption / integrity algorithm or key size that CNI-1 intends to apply to service provision according to the security capability received from the terminal.
이후, 상기 RAN Node는 상기 수신한 세션응답(Session Response) 메시지를 상기 단말로 전송한다(S1613).Thereafter, the RAN node transmits the received Session Response message to the terminal (S1613).
상기 단말로 전송되는 세션응답 메시지는 도 16에서 New Service Response 메시지로 표현되었다.The session response message transmitted to the terminal is represented as a New Service Response message in FIG. 16.
이후, 상기 세션요청(Session Request) 및 상기 세션응답(Session Response)를 통해, 상기 단말과 특정 CNI CPF(CNI-1의 CPF-1)가 서로 CNI Seed Key에 대한 적법성 여부를 확인하는 경우, 상기 단말과 상기 CNI-CPF(CNI-CPF 1)은 도 15에 도시된 바와 같이, Access 구간에서 서비스를 위해 실제 사용될 Key들을 생성할 수 있다.Subsequently, when the UE and the specific CNI CPF (CPF-1 of CNI-1) check the legality of the CNI Seed Key with each other through the session request and the session response, the As shown in FIG. 15, the terminal and the CNI-CPF 1 may generate keys to be actually used for a service in an access period.
이는, CNI-CPF(CNI-CPF 1)이 CNI-1 Seed Key를 상기 RAN Node로 전송하여, 상기 RAN Node와 상기 단말이 CNI-1 Seed Key로부터 각각 따로 Access 구간에서 실제 사용될 Key들을 생성하도록 할 수 있다. 혹은 상기 CNI로부터 CNI-1 Seed Key를 수신한 C-CPF는 RAN Node의 RAT 타입(e.g., New RAT, eLTE, WLAN, etc)에 따라, CNI-1 Seed Key와 RAN Node RAT 타입 정보로부터 단말과 RAN 구간에서 사용할 추가적인 제 3 보안키를 생성하여 이를 단말이 접속한 RAN Node로 전달함에 의해 상기 RAN Node와 상기 단말이 상기 수신된 제 3 보안키로부터 각각 따로 Access 구간에서 실제 사용될 Key들을 생성하도록 할 수 있다.This means that the CNI-CPF (CNI-CPF 1) transmits a CNI-1 Seed Key to the RAN Node, so that the RAN Node and the UE generate keys to be actually used in an Access section separately from the CNI-1 Seed Key. Can be. Alternatively, the C-CPF, which receives the CNI-1 Seed Key from the CNI, may be connected to the UE from the CNI-1 Seed Key and the RAN Node RAT type information according to the RAT type (eg, New RAT, eLTE, WLAN, etc.) of the RAN Node. By generating an additional third security key to be used in the RAN interval and transmitting it to the RAN node to which the terminal is connected, the RAN node and the terminal to generate keys to be actually used in the Access interval, respectively, from the received third security key. Can be.

My 2  2 실시practice Yes
앞서 살핀 제 1 실시 예는, C-CPF를 통해 인증을 완료한 단말에 대해, 상기 C-CPF가 Network Slice 별(또는 CNI 별)로 CNI Seed Key를 생성하고, 각 Network Slice로 해당 Network Slice에서 제공되는 서비스 특성 및 요구 사항에 부합하는 보안설정을 단말과 협의하여 설정하는 방법을 제공한다.In the above-described first embodiment, the C-CPF generates a CNI Seed Key for each Network Slice (or for each CNI) for a UE that has completed authentication through C-CPF, and for each Network Slice in the corresponding Network Slice. Provides a method to set security settings in accordance with the service characteristics and requirements provided in consultation with the terminal.
제 2 실시 예는 제 1 실시 예와 달리, C-CPF가 단말과 인증을 수행하고, 상기 인증된 단말의 가입정보에 따라, 상기 C-CPF가 상기 단말과 연계된 CNI들에 대해 보안설정을 직접 수행한 후, 각 CNI에 대한 보안설정을 해당 CNI로 전송하는 방법을 제공한다.According to the second embodiment, unlike the first embodiment, the C-CPF performs authentication with the terminal, and according to the subscription information of the authenticated terminal, the C-CPF sets security settings for the CNIs associated with the terminal. After executing it directly, it provides a way to transfer security settings for each CNI to the corresponding CNI.
즉, 상기 제 2 실시 예는 아래 2가지 방법을 통해 단말과 CNI별 서비스 차별적인 보안설정 방법을 제공한다.That is, the second embodiment provides a method for setting security differentiated between the terminal and each CNI through the following two methods.
단말의 망 접속을 제어하는 C-CPF는 단말의 접속요청을 수행하면서, 상기 단말의 망 접속을 위한 인증절차 수행의 결과로 첫 번째로, (1) 각각의 CNI들에 의해 사용될 제 1 보안키(예:CNI Network Key), 제 2 보안키(예:CNI Seed Key)를 각 CNI에게 전달한다.The C-CPF controlling the network access of the terminal performs a connection request of the terminal, and as a result of performing the authentication procedure for the network access of the terminal, firstly, (1) a first security key to be used by each CNIs (E.g., CNI Network Key) and second security key (e.g., CNI Seed Key) to each CNI.
이후, 각 CNI-CPF는 상기 C-CPF로부터 수신된 제 1 보안키(CNI Network Key)를 통해 단말과 자신 간의 Signaling 데이터를 보호하고, 제 2 보안키(CNI -Seed Key)를 RAN Node로 전달하여 상기 RAN Node로 하여금 단말과 Access 구간의 Key를 생성하도록 한다. 혹은 상기 CNI-CPF로부터 제 2 보안키를 수신한 C-CPF는 RAN Node의 RAT 타입(e.g., New RAT, eLTE, WLAN, etc)에 따라, 제 2 보안키와 RAN Node RAT 타입정보로부터 단말과 RAN 구간에서 사용할 제 3 보안키를 생성하여 이를 단말이 접속한 RAN Node로 전달함에 의해 상기 RAN Node로 하여금 상기 단말과 상기 수신된 제 3 보안키로부터 각각 Access 구간의 Key를 생성하도록 한다.Subsequently, each CNI-CPF protects signaling data between the UE and itself through a first CNI network key received from the C-CPF, and delivers a second security key (CNI -Seed Key) to the RAN node. The RAN node is configured to generate a key between the terminal and the access interval. Alternatively, the C-CPF, which receives the second security key from the CNI-CPF, may be connected to the terminal from the second security key and the RAN Node RAT type information according to the RAT type (eg, New RAT, eLTE, WLAN, etc.) of the RAN node. By generating a third security key to be used in the RAN interval and forwarding it to the RAN node to which the terminal accesses, so that the RAN node generates a key of the access interval from the terminal and the received third security key, respectively.
여기서, 상기 제 1 보안키(예: CNI Network Key)는 단말과 CNI간 시그널링(Signaling) 보호를 위해 사용되는 키를 의미한다.Here, the first security key (for example, CNI Network Key) means a key used for signaling protection between the terminal and the CNI.
상기 제 2 보안키(예: CNI Seed Key)는 4G System의 KASME에 대응되는 C-CPF의 Base Key와 Network Slice ID 등에 대해 KDF를 적용하여 생성된 Key를 의미한다.The second security key (eg, CNI Seed Key) refers to a key generated by applying KDF to a base key and a network slice ID of a C-CPF corresponding to K ASME of a 4G system.
두 번째로, (2) 상기 C-CPF는 CNI-Specific Master Key를 사용하여 CNI-Specific Base Key를 생성하고, 상기 생성된 CNI-Specific Base Key 로부터 각 CNI에 의해 사용될 CNI Network Key(UE와 CNI간 Signaling 보호를 위해 사용되는 키), CNI Seed Key를 생성하여 각 CNI에게 전달한다.Second, (2) the C-CPF generates a CNI-Specific Base Key using the CNI-Specific Master Key, and uses the CNI Network Keys (UE and CNI) to be used by each CNI from the generated CNI-Specific Base Key. Key used to protect signaling between devices) and CNI Seed Key are generated and delivered to each CNI.
여기서, 상기 CNI Network Key는 앞서 언급한 제 1 보안키로부터 생성되는 또 다른 보안키의 일례를 나타내며, 상기 CNI Seed Key는 앞서 언급한 제 2 보안키의 일례로서, 상기 CNI-Specific Base Key, COUNTER ID 등에 대해 KDF를 적용하여 생성된 Key를 나타낸다.Here, the CNI Network Key represents an example of another security key generated from the aforementioned first security key, and the CNI Seed Key is an example of the second security key mentioned above, and the CNI-Specific Base Key, COUNTER. Represents a key generated by applying KDF to an ID.
여기서, KDF(Key Derivation Function)의 용어는 추후 5G 시스템에서 다른 용어로 대체될 수도 있다.Here, the term KDF (Key Derivation Function) may be replaced by another term in a 5G system.
이후, 각 CNI-CPF는 상기 CNI Network Key를 통해 단말과 자신 간의 Signaling 데이터를 보호하고, 상기 CNI-Seed Key를 RAN Node로 전달하여 상기 RAN Node로 하여금 단말과 Access 구간 Key를 생성하도록 한다. 혹은 상기 CNI-CPF로부터 CNI-Seed Key를 수신한 C-CPF는 단말이 접속한 RAN Node의 RAT 타입(e.g., New RAT, eLTE, WLAN, etc)에 따라, CNI-Seed Key와 RAN Node RAT 타입정보로부터 단말과 RAN 구간에서 사용할 추가적인 제 3 보안키를 생성하여 이를 단말이 접속한 RAN Node로 전달함에 의해 상기 RAN Node로 하여금 단말과 제 3 보안키로부터 Access 구간 Key를 생성하도록 한다.Subsequently, each CNI-CPF protects signaling data between the terminal and itself through the CNI network key, and transmits the CNI-Seed Key to the RAN node so that the RAN node generates a terminal and an access interval key. Alternatively, the C-CPF that receives the CNI-Seed Key from the CNI-CPF has a CNI-Seed Key and a RAN Node RAT type according to the RAT type (eg, New RAT, eLTE, WLAN, etc) of the RAN Node connected to the terminal. By generating an additional third security key to be used in the terminal and the RAN interval from the information and transmitting it to the RAN node to which the terminal is connected to cause the RAN node to generate an Access interval key from the terminal and the third security key.

이후, 상기 첫 번째 또는 두 번째 방법을 통해, 각 CNI-CPF와 단말은 해당 CNI에 의해 제공되는 서비스 특성에 따라, 다양한 Security 속성을 조율한다.Then, through the first or second method, each CNI-CPF and the terminal adjusts various security attributes according to the service characteristics provided by the corresponding CNI.
이하에서 기술할 방법들은 도 –(그림 3)에 도시된 바와 같이, 복수의 CNI들이 공통의 CPF들을 공유하는 구조를 가정한다.The methods described below assume a structure in which a plurality of CNIs share common CPFs, as shown in FIG.
여기서, Network Slice Selection은 단말이 제공하는 Application ID, Service Descriptor(e.g., eMBB, CriC, mMTC) 등을 통해 이루어지거나 또는 망이 관리하는 단말의 가입정보 등을 통해 수행될 수 있다.Here, the network slice selection may be performed through an application ID provided by the terminal, a service descriptor (e.g., eMBB, CriC, mMTC), or the like, or subscription information of the terminal managed by the network.
도 17은 본 명세서에서 제안하는 단말과 CNI별 서비스 차별적 보안설정 방법의 또 다른 일례를 나타낸 흐름도이다.17 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
구체적으로, 도 17은 도 14에서 도시된 Network Slicing 개념을 포함하는 5G New Core Network에서 C-CPF 제어기반 인증을 수행하고, 상기 C-CPF에서 CNI별로 보안을 설정한 후, 개별 CNI로 보안설정을 전달하는 방법의 일례를 나타낸다.Specifically, FIG. 17 performs C-CPF control-based authentication in a 5G New Core Network including the Network Slicing concept shown in FIG. 14, sets security for each CNI in the C-CPF, and then sets security as individual CNIs. An example of how to deliver.
도 17의 경우, 단말의 가입정보를 저장하는 엔터티(LTE 시스템의 HSS에 대응되는 5G New Core Network의 개체를 의미)와 상기 C-CPF간의 인터페이스만 존재한다고 가정한다.In the case of FIG. 17, it is assumed that there is only an interface between the entity storing the subscription information of the terminal (meaning an entity of a 5G New Core Network corresponding to the HSS of the LTE system) and the C-CPF.
이해의 편의를 위해, 단말의 가입정보를 저장하는 엔터티를 HSS로 호칭하기로 한다.For convenience of understanding, the entity storing the subscription information of the terminal will be referred to as HSS.
즉, CNI들은 HSS와 연결되어 있지 않으며, 상기 CNI들은 HSS가 유지하는 정보를 얻기 위해서 상기 C-CPF(C-CPF-1)을 거쳐야 한다.That is, CNIs are not connected to the HSS, and the CNIs must go through the C-CPF (C-CPF-1) to obtain information maintained by the HSS.
도 17의 S1701 내지 S1706 단계는 도 15의 S1501 내지 S1506 단계와 동일하므로 구체적인 설명은 도 15를 참조하기로 하고, 이하에서는 차이나는 부분 위주로 설명하기로 한다.Since steps S1701 to S1706 of FIG. 17 are the same as steps S1501 to S1506 of FIG. 15, a detailed description thereof will be described with reference to FIG. 15, and hereinafter, the description will be mainly focused on different parts.
S1706 단계에서, C-CPF-1은 단말을 상기 C-CPF-1로 연결시키기 위한 인증을 수행하며, 그 결과로 C-CPF Base Key를 생성한다(S1706).In step S1706, the C-CPF-1 performs authentication for connecting the terminal to the C-CPF-1, and as a result generates a C-CPF Base Key (S1706).
여기서, 상기 C-CPF Base Key는 4G System의 KASME(또는 5G System에서 생성되는 상기 KASME에 대응되는 Key) 로 볼 수 있다.Here, the C-CPF Base Key may be viewed as a K ASME of a 4G system (or a key corresponding to the K ASME generated in a 5G system).
도 17의 경우, 상기 C-CPF Base Key는 Master Key로 표현된 것을 볼 수 있다.In the case of Figure 17, it can be seen that the C-CPF Base Key is represented by a Master Key.
이후, 상기 C-CPF-1은 상기 C-CPF Base Key를 사용하여 CNI-1 Network Key와 CNI-1 Seed Key를 생성한다(S1707).Thereafter, the C-CPF-1 generates a CNI-1 Network Key and a CNI-1 Seed Key using the C-CPF Base Key (S1707).
즉, 상기 CNI-1 Network Key는 KDF(C-CPF Base Key, Algorithm ID, Algorithm Distinguisher)를 통해 생성되며, 상기 CNI-1 Seed Key는 KDF(C-CPF Base Key, Network Slice 1 ID, etc)를 통해 생성될 수 있다.That is, the CNI-1 Network Key is generated through KDF (C-CPF Base Key, Algorithm ID, Algorithm Distinguisher), and the CNI-1 Seed Key is KDF (C-CPF Base Key, Network Slice 1 ID, etc.) Can be generated via
이는 상기 C-CPF-1이 HSS를 통해 상기 단말이 가입하고 있는 서비스와 연계된 CNI가 CNI-1만 존재하는 것으로 파악하고 있음을 가정한다.This assumes that C-CPF-1 is identified as having only CNI-1 associated with the service to which the UE subscribes through HSS.
즉, 상기 단말이 가입된 다른 서비스와 연계된 CNI(e.g., CNI-2)가 있음을 C-CPF-1이 파악하는 경우, 상기 C-CPF-1은 해당 CNI(CNI-2)에 대해 추가적으로 앞서 살핀 Key들(CNI-2 Network Key와 CNI-2 Seed Key)을 생성하게 된다.That is, when the C-CPF-1 determines that there is a CNI (eg, CNI-2) associated with another service to which the UE is subscribed, the C-CPF-1 additionally corresponds to the corresponding CNI (CNI-2). We will generate the Salping Keys (CNI-2 Network Key and CNI-2 Seed Key).
이후, 상기 C-CPF-1은 생성된 CNI-1 Network Key를 상기 단말과 설정하는 절차를 수행한다(S1708).Thereafter, the C-CPF-1 performs a procedure for setting the generated CNI-1 network key with the terminal (S1708).
이후, 상기 단말은 CNI-1 Network Key를 사용하여 자신과 CNI-1 CPF-1 간에 주고받는 Signaling 데이터를 보호한다.Thereafter, the terminal protects the signaling data exchanged between itself and the CNI-1 CPF-1 using the CNI-1 Network Key.
이후, 상기 C-CPF-1은 CNI-1 Network Key와 CNI-1 Seed Key를 CNI-1 CPF-1으로 전달한다(S1709).Thereafter, the C-CPF-1 transfers the CNI-1 Network Key and the CNI-1 Seed Key to the CNI-1 CPF-1 (S1709).
상기 CNI-1 CPF-1은 상기 C-CPF-1으로부터 수신한 CNI-1 Seed Key를 상기 RAN Node로 전달하며(S1710), 상기 수신된 CNI-1 Network Key를 사용하여 자신과 상기 단말 간에 주고받는 Signaling 데이터를 보호한다.The CNI-1 CPF-1 transfers the CNI-1 Seed Key received from the C-CPF-1 to the RAN Node (S1710), and uses the received CNI-1 Network Key to communicate between itself and the terminal. Protect the received signaling data.
이후, 상기 RAN Node와 상기 단말은 CNI-1 Seed Key를 사용하여 Access 구간에서 사용할 Key를 각각 생성하게 된다(S1711).Thereafter, the RAN node and the terminal generate a key to be used in an access section using the CNI-1 Seed Key (S1711).
혹은 상기 CNI-1 CPF-1으로부터 CNI-1 Seed Key를 수신한 C-CPF는 상기 단말이 접속한 RAN Node RAT 타입(e.g., New RAT, eLTE, WLAN, etc)에 따라, CNI-1 Seed Key와 RAN Node RAT 타입정보로부터 단말과 RAN 구간에서 사용할 추가적인 제 3 보안키를 생성하여 이를 단말이 접속한 RAN Node로 전달함에 의해 상기 RAN Node와 상기 단말이 상기 수신된 제 3 보안키로부터 각각 따로 Access 구간에서 사용될 Key를 생성하도록 한다.Alternatively, the C-CPF, which receives the CNI-1 Seed Key from the CNI-1 CPF-1, according to the RAN Node RAT type (eg, New RAT, eLTE, WLAN, etc) to which the UE is connected, CNI-1 Seed Key And an additional third security key to be used in the terminal and the RAN section from the RAN Node RAT type information, and then transmitting the additional third security key to the RAN node to which the terminal is connected, thereby separately accessing the RAN node and the terminal from the received third security key. Generate key to be used in section.
해당 과정을 통해, 단말의 Security Capability 정보가 상기 RAN Node에게 전달될 수 있다.Through this process, the security capability information of the terminal may be delivered to the RAN node.
또한, S1710 단계에서 상기 RAN Node가 수신한 CNI-1 UPF-1에서 적용될 수 있는 Security 속성 등의 정보는 상기 RAN Node로부터 상기 단말로 전달될 수 있다.In addition, in step S1710, information such as security attributes that may be applied in the CNI-1 UPF-1 received by the RAN node may be transmitted from the RAN node to the terminal.
이러한 정보들이 단말과 RAN Node간에 교환되는 이유는 CNI-1에서 제공되는 서비스 특성에 따라 적용될 수 있는 보안설정을 단말에게 알려서 단말과 CNI-1 CPF-1 간에 암호화/무결성을 위한 알고리즘이나 또는 적용 가능한 Key Size 등의 정보를 조율하기 위함이다.The reason why such information is exchanged between the terminal and the RAN node is to inform the terminal of the security settings that can be applied according to the service characteristics provided by the CNI-1, so that the algorithm or the algorithm for encryption / integrity between the terminal and the CNI-1 CPF-1 can be applied. To adjust information such as key size.
즉, 상기 RAN Node가 상기 단말로부터 수신한 Security Capability 정보에 따라 서비스 제공에 적용할 암호화/무결성 알고리즘이나 또는 Key Size 등의 정보가 후술할 New Service Response 송수신 절차를 통해 (S1713단계를 통해) 상기 단말로 전달될 수 있다.That is, through the New Service Response transmission and reception procedure to be described later, information such as encryption / integrity algorithm or key size to be applied to service provision according to the security capability information received from the terminal by the RAN node (through step S1713). Can be delivered.
이후, 상기 단말은 Communication Service(CNI #1에 의해 제공되는 서비스 #1을 의미)를 위한 요청(New Service Request)를 상기 RAN Node로 전송한다(S1712).Thereafter, the terminal transmits a request for a communication service (meaning service # 1 provided by CNI # 1) to the RAN node (S1712).
또한, 상기 New Service Request는 상기 RAN Node에 의해 상기 C-CPF-1을 거쳐 상기 CNI-1 CPF-1로 전달된다(S1712).In addition, the New Service Request is delivered to the CNI-1 CPF-1 via the C-CPF-1 by the RAN node (S1712).
상기 단말과 상기 CNI-1 간의 성공적인 Session 설정이 완료된 후, CNI-1 CPF는 Session Response를 상기 C-CPF-1으로 전송하고, 상기 C-CPF-1은 상기 Session Response를 상기 RAN Node로 전달한다(S1713).After the successful session setup between the terminal and the CNI-1 is completed, the CNI-1 CPF transmits a Session Response to the C-CPF-1, and the C-CPF-1 delivers the Session Response to the RAN Node. (S1713).
상기 Session Response는 서비스 특성에 따른 Security 속성과 관련된 정보를 포함할 수 있다.The session response may include information related to a security attribute according to a service characteristic.
그 이유는 상기 CNI-1에서 제공되는 서비스 특성에 따라 적용될 보안 설정을 상기 단말로 알려주기 위함이다.The reason is to inform the terminal of the security setting to be applied according to the service characteristics provided by the CNI-1.
이와 같은 Security 속성은 CNI-1이 단말로부터 수신한 Security Capability에 따라 서비스 제공에 적용하고자 하는 암호화/무결성 알고리즘이나 또는 Key Size 등의 정보를 포함할 수 있다.Such a security attribute may include information such as encryption / integrity algorithm or key size to be applied to service provision according to the security capability received by the CNI-1 from the terminal.
이후, 상기 RAN Node는 상기 수신한 Session Response를 단말로 전달한다(S1713).Thereafter, the RAN node transmits the received Session Response to the terminal (S1713).

도 18은 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적 보안설정 방법의 또 다른 일례를 나타낸 흐름도이다.18 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
도 18의 S1801 내지 S1808 단계는 도 17의 S1701 내지 S1708 단계와 동일하므로 구체적인 설명은 도 17을 참조하기로 하고, 이하에서는 차이가 나는 부분 위주로 설명하기로 한다.Since steps S1801 to S1808 of FIG. 18 are the same as steps S1701 to S1708 of FIG. 17, a detailed description thereof will be described with reference to FIG. 17, and hereinafter, the description will be mainly focused on parts having a difference.
즉, 도 18은 C-CPF 제어기반 인증을 수행하고, CNI별 보안설정 후 개별 CNI로 보안설정을 전달하는 또 다른 방법을 나타낸다.That is, FIG. 18 illustrates another method of performing C-CPF control-based authentication and delivering security settings to individual CNIs after setting security for each CNI.
S1808 단계 이후, C-CPF-1은 CNI-1 Seed Key를 RAN Node로 전달한다 (S1809).After step S1808, C-CPF-1 delivers the CNI-1 Seed Key to the RAN Node (S1809).
상기 C-CPF-1은 CNI-1 Network Key를 통해 자신과 상기 단말 간에 주고 받는 Signaling 데이터를 보호한다.The C-CPF-1 protects signaling data exchanged between itself and the terminal through a CNI-1 network key.
이후, 상기 RAN Node와 상기 단말은 CNI-1 Seed Key를 사용하여 Access 구간에서 사용할 Key를 각각 생성한다.(S1810)Thereafter, the RAN node and the terminal generate a key to be used in an access section using the CNI-1 Seed Key (S1810).
혹은 상기 CNI-1 CPF-1으로부터 CNI-1 Seed Key를 수신한 C-CPF는 상기 단말이 접속한 RAN Node RAT 타입(e.g., New RAT, eLTE, WLAN, etc)에 따라, CNI-1 Seed Key와 RAN Node RAT 타입정보로부터 단말과 RAN 구간에서 사용할 추가적인 제 3 보안키를 생성하여 이를 단말이 접속한 RAN Node로 전달함에 의해 상기 RAN Node와 상기 단말이 상기 수신된 제 3 보안키로부터 각각 따로 Access 구간에서 사용될 Key를 생성하도록 한다.Alternatively, the C-CPF, which receives the CNI-1 Seed Key from the CNI-1 CPF-1, according to the RAN Node RAT type (eg, New RAT, eLTE, WLAN, etc) to which the UE is connected, CNI-1 Seed Key And an additional third security key to be used in the terminal and the RAN section from the RAN Node RAT type information, and then transmitting the additional third security key to the RAN node to which the terminal is connected, thereby separately accessing the RAN node and the terminal from the received third security key. Generate key to be used in section.
해당 과정에서, 단말의 Security Capability 정보가 상기 RAN Node로 전달될 수 있다.In this process, the security capability information of the terminal may be delivered to the RAN node.
또한, S1810 단계에서 상기 RAN Node가 수신한 CNI-1 UPF-1에서 적용될 수 있는 Security 속성 등의 정보는 상기 RAN Node로부터 상기 단말로 전달될 수 있다.In addition, in step S1810 information such as security attributes that can be applied in the CNI-1 UPF-1 received by the RAN node may be transferred from the RAN node to the terminal.
앞서 살핀 것처럼, 이러한 정보들이 상기 단말과 상기 RAN Node간에 교환되는 이유는 CNI-1에서 제공되는 서비스 특성에 따라 적용될 수 있는 보안 설정을 상기 단말로 알려서 상기 단말과 상기 CNI-1 CPF-1 간에 암호화/무결성을 위한 알고리즘이나 또는 적용 가능한 Key Size 등의 정보를 조율하기 위함이다. As described above, the reason why such information is exchanged between the terminal and the RAN node is that encryption is performed between the terminal and the CNI-1 CPF-1 by informing the terminal of a security setting that can be applied according to a service characteristic provided by the CNI-1. To coordinate information such as algorithm for integrity or applicable key size.
즉, 상기 RAN Node가 상기 단말로부터 수신한 Security Capability에 따라 서비스 제공에 적용할 암호화/무결성 알고리즘이나 또는 Key Size 등의 정보가 후술할 New Service Response 송수신 절차(S1813 단계)를 통해 상기 단말로 전달될 수 있다.That is, information such as encryption / integrity algorithm or key size to be applied to service provision according to the security capability received from the terminal by the RAN node is transmitted to the terminal through a new service response transmission / reception procedure (step S1813) to be described later. Can be.
이후, 상기 RAN Node는 상기 단말과의 Access 구간 Key 설정이 완료되면, 이를 Access Key Setup Complete Indication을 통해 C-CPF-1으로 알린다(S1811).Thereafter, when the RAN node completes setting the access interval key with the terminal, the RAN node notifies the C-CPF-1 through an access key setup complete indication (S1811).
이후, 상기 C-CPF-1이 상기 RAN Node로부터 상기 단말과의 Access 구간 Key 설정이 완료되었음을 수신하면, 상기 C-CPF-1은 Access 구간 Key 설정을 위해 사용된 CNI-1 Seed Key와 CNI-1 Network Key를 CNI-1 CPF-1으로 전달한다(S1812).Subsequently, when the C-CPF-1 receives from the RAN node that the access interval key setting with the terminal is completed, the C-CPF-1 receives the CNI-1 seed key and the CNI- used to set the access interval key. 1 Transfer the Network Key to CNI-1 CPF-1 (S1812).
이후, 상기 CNI-1 CPF-1은 CNI-1 Network Key를 통해, 자신과 상기 단말 간에 주고받는 Signaling 데이터를 보호한다.Thereafter, the CNI-1 CPF-1 protects signaling data exchanged between itself and the terminal through the CNI-1 network key.

도 19는 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적 보안설정 방법의 또 다른 일례를 나타낸 흐름도이다.19 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
도 19의 S1901 내지 S1906 단계는 도 17의 S1701 내지 S1706 단계와 동일하므로 구체적인 설명은 도 17를 참조하기로 하고, 이하에서는 차이가 나는 부분 위주로 설명하기로 한다.Since operations S1901 to S1906 of FIG. 19 are the same as operations S1701 to S1706 of FIG. 17, a detailed description thereof will be described with reference to FIG. 17, and hereinafter, the description will be mainly focused on parts having a difference.
S1906 단계 이후, C-CPF-1은 CNI-Specific Master Key를 통해 CNI-Specific Base Key를 생성한다(S1907).After step S1906, C-CPF-1 generates a CNI-Specific Base Key through the CNI-Specific Master Key (S1907).
상기 CNI-Specific Master Key는 HSS가 C-CPF-1의 요청에 따라 특정 단말을 인증하는 과정에서 상기 단말의 가입정보에 따라 상기 단말의 CNI별로 고유하게 생성하여 C-CPF-1으로 전달하는 Key를 의미한다.The CNI-Specific Master Key is a Key that is uniquely generated for each CNI of the terminal and transferred to the C-CPF-1 according to the subscription information of the terminal in the process of HSS authenticating a specific terminal at the request of the C-CPF-1. Means.
즉, 상기 CNI-Specific Maser Key는 4G System의 Ki에 대해 KDF를 적용하여 생성된 Key(e.g., KDF (Ki, CNI–ID, etc))에 대응하는 Key를 의미할 수 있다.That is, the CNI-Specific Maser Key may mean a key corresponding to a key (e.g., KDF (Ki, CNI-ID, etc)) generated by applying KDF to Ki of a 4G system.
즉, 상기 CNI-Specific Maser Key는 5G System에서 상기 Ki에 대응되는 Master Key에 대해 KDF를 적용하여 생성된 Key를 나타낸다.That is, the CNI-Specific Maser Key represents a Key generated by applying KDF to a Master Key corresponding to the Ki in a 5G system.
이를 수식으로 나타내면, 일례로, KDF(Ki에 대응되는 5G System 고유의 Master Key, CNI –ID, etc))로 정의할 수 있으며, 상기 KDF에 대한 추가적인 입력 인자의 예로 RAND, SQN, SN ID 등도 고려될 수 있다.If this is expressed as an equation, for example, it can be defined as KDF (Master Key, CNI-ID, etc., unique to 5G System corresponding to Ki), and RAND, SQN, SN ID, etc. Can be considered.
상기 KDF에 대한 용어는 추후 5G 시스템에서 새롭게 정의되는 용어로 대체될 수도 있다.The term for the KDF may be replaced with a term newly defined in a 5G system.
이후, 상기 C-CPF-1은 상기 수신된 CNI-Specific Base Key로부터 CNI-1 Network Key(=KDF(C-CPF Base Key, Algorithm ID, Algorithm Distinguisher)와 CNI-1 Seed Key(=KDF(CNI-Specific Base Key, COUNTER, etc)를 생성한다(S1908).Then, the C-CPF-1 is a CNI-1 Network Key (= KDF (C-CPF Base Key, Algorithm ID, Algorithm Distinguisher) and CNI-1 Seed Key (= KDF (CNI) from the received CNI-Specific Base Key -Generate a specific base key, COUNTER, etc. (S1908).
여기서, COUNTER는 4G System의 NAS UPLINK COUNTER에 대응되는 COUNTER를 의미할 수 있다.Here, the COUNTER may mean a COUNTER corresponding to the NAS UPLINK COUNTER of the 4G system.
이 경우도, 도 17에서 기술된 절차와 동일하게, C-CPF-1이 HSS를 통해 상기 단말이 가입된 서비스와 연계된 CNI가 CNI-1밖에 없음을 파악했다는 것을 가정한다.Also in this case, as in the procedure described with reference to FIG. 17, it is assumed that C-CPF-1 has identified that only CNI-1 associated with the service to which the UE is subscribed through HSS.
즉, 상기 단말이 가입된 다른 서비스와 연계된 CNI(e.g., CNI-2)가 있음을 C-CPF-1이 파악하는 경우, 상기 C-CPF-1은 해당 CNI에 대해 추가로 상기 기술된 Key들(CNI-2 Network Key와 CNI-2 Seed Key)을 생성할 수 있다.That is, when the C-CPF-1 determines that there is a CNI (eg, CNI-2) associated with another service to which the UE is subscribed, the C-CPF-1 further includes the above-described key for the corresponding CNI. Can generate CNI-2 Network Key and CNI-2 Seed Key.
이후, 상기 C-CPF-1은 생성된 CNI-1 Network Key를 단말과 설정하는 절차를 수행한다.Thereafter, the C-CPF-1 performs a procedure of setting the generated CNI-1 Network Key with the terminal.
S1908 단계 이후의 절차들(S1909 내지 S1914 단계들)은 도 17의 S1708 내지 S1713 단계와 동일하므로 구체적인 설명은 도 17을 참조하기로 한다.Since the procedures after the operation S1908 (steps S1909 to S1914) are the same as the operations S1708 to S1713 of FIG. 17, a detailed description will be referred to FIG. 17.

도 20은 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적 보안설정 방법의 또 다른 일례를 나타낸 흐름도이다.20 is a flowchart illustrating still another example of a service discriminating security setting method for each terminal and CNI proposed in the present specification.
도 20의 S2001 내지 S2009 단계는 도 19의 S1901 내지 S1909 단계와 동일하므로 구체적인 설명은 도 19를 참조하기로 하고, 이하에서는 차이가 나는 부분 위주로 설명하기로 한다.Since steps S2001 to S2009 of FIG. 20 are the same as steps S1901 to S1909 of FIG. 19, the detailed description will be described with reference to FIG. 19, and hereinafter, the description will be mainly focused on parts having a difference.
S2009 단계 이후, C-CPF-1은 CNI-1 Seed Key를 RAN Node로 전달한다 (S2010).After step S2009, C-CPF-1 delivers the CNI-1 Seed Key to the RAN Node (S2010).
이후, 상기 C-CPF-1은 CNI-1 Network Key를 통해 자신과 단말 간에 주고받는 Signaling 데이터를 보호한다(S2011).Thereafter, the C-CPF-1 protects signaling data exchanged between itself and the terminal through the CNI-1 network key (S2011).
상기 RAN Node와 상기 단말은 CNI-1 Seed Key를 사용하여 Access 구간에서 사용할 Key를 각각 생성한다.The RAN node and the terminal each generate a key to be used in an access period using the CNI-1 Seed Key.
혹은 상기 CNI-1 CPF-1으로부터 CNI-1 Seed Key를 수신한 C-CPF는 상기 단말이 접속한 RAN Node RAT 타입(e.g., New RAT, eLTE, WLAN, etc)에 따라, CNI-1 Seed Key와 RAN Node RAT 타입정보로부터 단말과 RAN 구간에서 사용할 추가적인 제 3 보안키를 생성하여 이를 단말이 접속한 RAN Node로 전달함에 의해 상기 RAN Node와 상기 단말이 상기 수신된 제 3 보안키로부터 각각 따로 Access 구간에서 사용될 Key를 생성하도록 한다.Alternatively, the C-CPF, which receives the CNI-1 Seed Key from the CNI-1 CPF-1, according to the RAN Node RAT type (eg, New RAT, eLTE, WLAN, etc) to which the UE is connected, CNI-1 Seed Key And an additional third security key to be used in the terminal and the RAN section from the RAN Node RAT type information, and then transmitting the additional third security key to the RAN node to which the terminal is connected, thereby separately accessing the RAN node and the terminal from the received third security key. Generate key to be used in section.
해당 과정에서, 단말의 Security Capability 정보가 상기 RAN Node로 전달될 수 있다.In this process, the security capability information of the terminal may be delivered to the RAN node.
또한, S2010 단계에서 상기 RAN Node가 수신한 CNI-1 UPF-1에서 적용될 수 있는 Security 속성 등의 정보는 상기 RAN Node로부터 상기 단말로 전달될 수 있다.In addition, information such as security attributes that may be applied in CNI-1 UPF-1 received by the RAN node in step S2010 may be transmitted from the RAN node to the terminal.
이러한 정보들이 단말과 RAN Node간에 교환되는 이유는 CNI-1에서 제공되는 서비스 특성에 따라 적용될 수 있는 보안설정을 상기 단말로 알려서 상기 단말과 상기 CNI-1 CPF-1 간에 암호화/무결성을 위한 알고리즘이나 또는 적용 가능한 Key Size 등의 정보를 조율하기 위함이다.The reason why such information is exchanged between the terminal and the RAN node is because an algorithm for encryption / integrity between the terminal and the CNI-1 CPF-1 may be informed of a security setting that can be applied according to a service characteristic provided by the CNI-1. Or to adjust information such as applicable key size.
이후, 상기 RAN Node는 상기 단말과의 Access 구간 Key 설정이 완료되면, 이를 Access Key Setup Complete Indication을 통해 상기 C-CPF-1으로 알린다(S2012).Thereafter, the RAN node informs the C-CPF-1 through the Access Key Setup Complete Indication when the access interval key setting with the terminal is completed (S2012).
상기 RAN Node로부터 상기 단말과의 Access 구간 Key 설정이 완료되었음을 수신하면, 상기 C-CPF-1는 Access 구간 Key 설정을 위해 사용된 CNI-1 Seed Key와 CNI-1 Network Key를 CNI-1 CPF로 전달한다(S2013).Upon receiving the completion of the access section key setting with the terminal from the RAN node, the C-CPF-1 converts the CNI-1 seed key and the CNI-1 network key used to set the access section key to the CNI-1 CPF. Transfer (S2013).
이후, 이를 수신한 CNI-1 CPF는 CNI-1 Network Key를 통해, 자신과 단말 간에 주고받는 Signaling 데이터를 보호한다.Subsequently, the CNI-1 CPF receiving the CNI-1 protects the signaling data exchanged between itself and the terminal through the CNI-1 Network Key.

도 21은 본 명세서에서 제안하는 단말과 CNI 별 서비스 차별적인 보안설정 방법의 일례를 나타낸 순서도이다.FIG. 21 is a flowchart illustrating an example of a method for differentiating security setting for each terminal and service for each CNI proposed in the present specification.
도 21은 앞서 살핀 제 1 실시 예에서 C-CPF의 동작을 중심으로 단말과 CNI 별 서비스 차별적인 보안설정 방법을 설명한 도이다.FIG. 21 is a view illustrating a method for setting security differentiated between services of a terminal and a CNI based on the operation of the C-CPF in the first embodiment of the present invention.
먼저, 제 1 네트워크 노드는 단말을 코어 네트워크(core network)의 하나 또는 그 이상의 제 2 네트워크 노드들로 연결시키기 위해 상기 단말과 인증 (authentication) 절차를 수행한다(S2101).First, the first network node performs an authentication procedure with the terminal to connect the terminal to one or more second network nodes of the core network (S2101).
여기서, 상기 단말과 인증절차를 수행하는 단계는, RAN(Radio Access Network) 노드로부터 상기 하나 또는 그 이상의 제 2 네트워크 노드들로의 연결을 요청하는 제 1 메시지를 수신하는 단계를 포함할 수 있다.. 즉, 단말은 제 1 네트워크 노드로의 연결만을 요청하는 제 1 메시지를 전송하거나, 혹은 제 2 네트워크로의 연결을 요청하는 제 1 메시지를 전송할 수 있다.In this case, the performing of the authentication procedure with the terminal may include receiving a first message requesting a connection from the Radio Access Network (RAN) node to the one or more second network nodes. That is, the terminal may transmit the first message requesting only connection to the first network node, or transmit the first message requesting connection to the second network.
또한, 상기 하나 또는 그 이상의 제 2 네트워크 노드들로의 연결요청은 상기 단말에 의한 연결요청에 해당한다.In addition, the connection request to the one or more second network nodes corresponds to the connection request by the terminal.
여기서, 상기 제 1 네트워크 노드는 공통제어 기능(Common Control Function)을 가지는 네트워크 노드로서, C-CPF, CCNF(Common Control Network Function), AuF(Authentication Function) 등 다양한 용어로 사용될 수 있다.Here, the first network node is a network node having a common control function, and may be used in various terms such as C-CPF, Common Control Network Function (CCNF), and Authentication Function (AuF).
또한, 상기 하나 또는 그 이상의 제 2 네트워크 노드들은 각각 개별적인 서비스를 제공한다.In addition, the one or more second network nodes each provide a separate service.
상기 제 2 네트워크 노드는 코어 네트워크 인스턴스(Core Network Instance:CNI) 또는 코어 네트워크 슬라이스(Core Network Slice) 등으로 표현될 수 있다.The second network node may be represented by a core network instance (CNI) or a core network slice.
이후, 상기 제 1 네트워크 노드는 상기 인증절차 수행결과에 따라 제 1 보안키를 생성한다(S2102).Thereafter, the first network node generates a first security key according to a result of performing the authentication procedure (S2102).
상기 제 1 보안키는 LTE 시스템의 KASME또는 상기 KASME에 해당하는 다음 세대 시스템(예:5G 시스템)에서 정의되는 보안키일 수 있다.The first security key may be a security key defined in a K ASME of an LTE system or a next generation system (eg, 5G system) corresponding to the K ASME .
이후, 상기 제 1 네트워크 노드는 상기 생성된 제 1 보안키를 이용하여 상기 하나 또는 그 이상의 제 2 네트워크 노드들 각각에 대응하는 적어도 하나의 제 2 보안키를 생성한다(S2103).Thereafter, the first network node generates at least one second security key corresponding to each of the one or more second network nodes using the generated first security key (S2103).
상기 생성된 적어도 하나의 제 2 보안키는 상기 단말과 상기 하나 또는 그 이상의 제 2 네트워크 노드들 간의 시그널링 보호와 관련된 보안키를 생성하는데 사용되는 보안키일 수 있다.The generated at least one second security key may be a security key used to generate a security key associated with signaling protection between the terminal and the one or more second network nodes.
또한, 상기 제 2 보안키는 CNI-specific Key 또는 CNI Seed Key 등으로 표현될 수 있다.In addition, the second security key may be expressed as a CNI-specific Key or CNI Seed Key.
또한, 특정 제 2 네트워크 노드에 대응하는 제 2 보안키는 상기 제 1 보안키 및 상기 특정 제 2 네트워크 노드의 식별자(Identity: ID)를 이용하여 생성되며, 구체적인 내용은 앞서 살핀 수학식 1 및 수학식 2를 참조하기로 한다.The second security key corresponding to the specific second network node is generated using the first security key and the identifier (ID) of the specific second network node. See Equation 2.
이후, 상기 제 1 네트워크 노드는 및 상기 생성된 적어도 하나의 제 2 보안키를 상기 하나 또는 그 이상의 제 2 네트워크 노드들로 각각 전송한다(S2104).Thereafter, the first network node transmits the generated at least one second security key to the one or more second network nodes, respectively (S2104).
이후, 상기 제 1 네트워크 노드는 상기 RAN 노드로부터 상기 단말의 통신 서비스 요청(communication service request)에 대한 제 2 메시지를 수신한다 (S2105).Thereafter, the first network node receives a second message for a communication service request of the terminal from the RAN node (S2105).
이후, 상기 제 1 네트워크 노드는 상기 수신된 제 2 메시지를 상기 통신 서비스 요청(communication service request)에 대응하는 제 2 네트워크 노드 로 전송한다(S2106).Thereafter, the first network node transmits the received second message to a second network node corresponding to the communication service request (S2106).
여기서, 상기 제 2 메시지는 상기 통신 서비스 요청(communication service request)에 대응하는 제 2 네트워크 노드에 대응하는 제 2 보안키의 해쉬(Hash) 값 또는 상기 단말의 보안 능력(Security Capability) 정보 중 적어도 하나를 포함할 수 있다.Here, the second message is at least one of a hash value of a second security key corresponding to a second network node corresponding to the communication service request or security capability information of the terminal. It may include.

example 발명이Invention 적용될Apply Number 있는there is 장치Device 일반Normal
도 22는 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선통신 장치의 블록 구성도를 예시한다.FIG. 22 illustrates a block diagram of a wireless communication device to which the methods proposed in the specification can be applied.
도 22를 참조하면, 무선통신 시스템은 기지국(2210)과 기지국(2210) 영역 내에 위치한 다수의 단말(2220)을 포함한다. Referring to FIG. 22, a wireless communication system includes a base station 2210 and a plurality of terminals 2220 located in an area of a base station 2210.
기지국(2210)은 프로세서(processor, 2211), 메모리(memory, 2212) 및 RF부(radio frequency unit, 2213)을 포함한다. 프로세서(2211)는 앞서 도 1 내지 도 21에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2211)에 의해 구현될 수 있다. The base station 2210 includes a processor 2211, a memory 2212, and an RF unit 2213. The processor 2211 implements the functions, processes, and / or methods proposed in FIGS. 1 to 21. Layers of the air interface protocol may be implemented by the processor 2211.
메모리(2212)는 프로세서(2211)와 연결되어, 프로세서(2211)를 구동하기 위한 다양한 정보를 저장한다. RF부(2213)는 프로세서(2211)와 연결되어, 무선 신호를 송신 및/또는 수신한다.The memory 2212 is connected to the processor 2211 and stores various information for driving the processor 2211. The RF unit 2213 is connected to the processor 2211 and transmits and / or receives a radio signal.
단말(2220)은 프로세서(2221), 메모리(2222) 및 RF부(2223)을 포함한다. The terminal 2220 includes a processor 2221, a memory 2222, and an RF unit 2223.
프로세서(2221)는 앞서 도 1 내지 도 21에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(2221)에 의해 구현될 수 있다. 메모리(2222)는 프로세서(2221)와 연결되어, 프로세서(2221) 를 구동하기 위한 다양한 정보를 저장한다. RF부(2223)는 프로세서(2221)와 연결되어, 무선신호를 송신 및/또는 수신한다.The processor 2221 implements the functions, processes, and / or methods proposed in FIGS. 1 to 21. Layers of the air interface protocol may be implemented by the processor 2221. The memory 2222 is connected to the processor 2221 and stores various information for driving the processor 2221. The RF unit 2223 is connected to the processor 2221 and transmits and / or receives a radio signal.
메모리(2212, 2222)는 프로세서(2211, 2221) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(2211, 2221)와 연결될 수 있다. The memories 2212 and 2222 may be inside or outside the processors 2211 and 2221, and may be connected to the processors 2211 and 2221 by various well-known means.
또한, 기지국(2210) 및/또는 단말(2220)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.In addition, the base station 2210 and / or the terminal 2220 may have one antenna or multiple antennas.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허 청구범위에서 명시적인 인용관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.The embodiments described above are the components and features of the present invention are combined in a predetermined form. Each component or feature is to be considered optional unless stated otherwise. Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention. The order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form embodiments by combining claims that do not have an explicit citation in the claims or as new claims by post-application correction.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs (programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof. In the case of a hardware implementation, an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.In the case of implementation by firmware or software, an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above. The software code may be stored in memory and driven by the processor. The memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다. It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the essential features of the present invention. Accordingly, the above detailed description should not be construed as limiting in all aspects and should be considered as illustrative. The scope of the invention should be determined by reasonable interpretation of the appended claims, and all changes within the equivalent scope of the invention are included in the scope of the invention.
본 발명의 무선통신 시스템에서 단말의 보안설정을 수행하기 위한 방안은 5G 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A 시스템 등 다양한 무선통신 시스템에 적용하는 것이 가능하다.In the wireless communication system of the present invention, a method for performing security setting of a terminal has been described with reference to an example applied to a 5G system, but it can be applied to various wireless communication systems such as a 3GPP LTE / LTE-A system.

Claims (15)

  1. 무선 통신 시스템에서 단말의 보안 설정을 수행하기 위한 방법에 있어서, 공통 제어 기능(Common Control Function)을 가지는 제 1 네트워크 노드에 의해 수행되는 방법은,
    상기 단말을 코어 네트워크(core network)의 하나 또는 그 이상의 제 2 네트워크 노드들로 연결시키기 위해 상기 단말과 인증(authentication) 절차를 수행하는 단계;
    상기 인증 절차 수행 결과에 따라 제 1 보안키를 생성하는 단계;
    상기 생성된 제 1 보안키를 이용하여 상기 하나 또는 그 이상의 제 2 네트워크 노드들 각각에 대응하는 적어도 하나의 제 2 보안키를 생성하는 단계; 및
    상기 생성된 적어도 하나의 제 2 보안키를 상기 하나 또는 그 이상의 제 2 네트워크 노드들로 각각 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
    In the method for performing the security setting of the terminal in a wireless communication system, the method performed by the first network node having a common control function (Common Control Function),
    Performing an authentication procedure with the terminal to connect the terminal to one or more second network nodes of a core network;
    Generating a first security key according to a result of performing the authentication procedure;
    Generating at least one second security key corresponding to each of the one or more second network nodes using the generated first security key; And
    Transmitting the generated at least one second security key to the one or more second network nodes, respectively.
  2. 제 1항에 있어서,
    상기 하나 또는 그 이상의 제 2 네트워크 노드들은 각각 개별적인 서비스를 제공하는 것을 특징으로 하는 방법.
    The method of claim 1,
    Wherein said one or more second network nodes each provide a separate service.
  3. 제 1항에 있어서,
    RAN(Radio Access Network) 노드로부터 상기 하나 또는 그 이상의 제 2 네트워크 노드들로의 연결을 요청하는 제 1 메시지를 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
    The method of claim 1,
    Receiving a first message requesting a connection from a Radio Access Network (RAN) node to the one or more second network nodes.
  4. 제 3항에 있어서,
    상기 하나 또는 그 이상의 제 2 네트워크 노드들로의 연결 요청은 상기 단말에 의한 연결 요청인 것을 특징으로 하는 방법.
    The method of claim 3, wherein
    The connection request to the one or more second network nodes is a connection request by the terminal.
  5. 제 1항에 있어서,
    특정 제 2 네트워크 노드에 대응하는 제 2 보안키는 상기 제 1 보안키 및 상기 특정 제 2 네트워크 노드의 식별자(Identity:ID)를 이용하여 생성되는 것을 특징으로 하는 방법.
    The method of claim 1,
    And a second security key corresponding to a particular second network node is generated using the first security key and an identifier (ID) of the particular second network node.
  6. 제 3항에 있어서,
    상기 RAN 노드로부터 상기 단말의 통신 서비스 요청(communication service request)에 대한 제 2 메시지를 수신하는 단계; 및
    상기 수신된 제 2 메시지를 상기 통신 서비스 요청(communication service request)에 대응하는 제 2 네트워크 노드로 전송하는 단계를 더 포함하는 것을 특징으로 하는 방법.
    The method of claim 3, wherein
    Receiving a second message for a communication service request of the terminal from the RAN node; And
    Sending the received second message to a second network node corresponding to the communication service request.
  7. 제 6항에 있어서,
    상기 제 2 메시지는 상기 통신 서비스 요청(communication service request)에 대응하는 제 2 네트워크 노드에 대응하는 제 2 보안키의 해쉬(Hash) 값 또는 상기 단말의 보안 능력(Security Capability) 정보 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
    The method of claim 6,
    The second message includes at least one of a hash value of a second security key corresponding to a second network node corresponding to the communication service request or security capability information of the terminal. Characterized in that.
  8. 제 1항에 있어서,
    상기 생성된 적어도 하나의 제 2 보안키는 상기 단말과 상기 하나 또는 그 이상의 제 2 네트워크 노드들 간의 시그널링 보호와 관련된 보안키인 것을 특징으로 하는 방법.
    The method of claim 1,
    The generated at least one second security key is a security key associated with signaling protection between the terminal and the one or more second network nodes.
  9. 제 1항에 있어서,
    상기 제 1 보안키는 LTE 시스템의 KASME또는 상기 KASME에 해당하는 다음 세대 시스템에서 정의되는 보안키인 것을 특징으로 하는 방법.
    The method of claim 1,
    The first security key and wherein the security key to be defined in the next-generation system of the LTE system in the K ASME or the K ASME.
  10. 제 1항에 있어서,
    제 2 네트워크 노드는 코어 네트워크 인스턴스(Core Network Instance:CNI)인 것을 특징으로 하는 방법.
    The method of claim 1,
    And the second network node is a Core Network Instance (CNI).
  11. 제 1항에 있어서,
    상기 제 2 보안키는 특정 CNI로부터 제공되는 서비스를 보호하기 위한 보안키인 것을 특징으로 하는 방법.
    The method of claim 1,
    And the second security key is a security key for protecting a service provided from a specific CNI.
  12. 제 11항에 있어서,
    상기 제 2 보안키는 CNI-specific Key 또는 CNI Seed Key인 것을 특징으로 하는 방법.
    The method of claim 11,
    And the second security key is a CNI-specific key or a CNI seed key.
  13. 무선 통신 시스템에서 단말의 보안을 설정하기 위한 장치에 있어서, 상기 장치는,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및
    상기 RF 유닛과 기능적으로 연결되는 프로세서를 포함하고, 상기 프로세서는,
    상기 단말을 코어 네트워크(core network)의 하나 또는 그 이상의 제 2 네트워크 노드들로 연결시키기 위해 상기 단말과 인증(authentication) 절차를 수행하며;
    상기 인증 절차 수행 결과에 따라 제 1 보안키를 생성하며;
    상기 생성된 제 1 보안키를 이용하여 상기 하나 또는 그 이상의 제 2 네트워크 노드들 각각에 대응하는 적어도 하나의 제 2 보안키를 생성하며; 및
    상기 생성된 적어도 하나의 제 2 보안키를 상기 하나 또는 그 이상의 제 2 네트워크 노드들로 각각 전송하도록 제어하는 것을 특징으로 하는 장치.
    An apparatus for setting security of a terminal in a wireless communication system, the apparatus comprising:
    An RF unit for transmitting and receiving radio signals; And
    A processor functionally connected with the RF unit, wherein the processor includes:
    Perform an authentication procedure with the terminal to connect the terminal to one or more second network nodes of a core network;
    Generate a first security key according to a result of performing the authentication procedure;
    Generate at least one second security key corresponding to each of the one or more second network nodes using the generated first security key; And
    And transmit the generated at least one second security key to each of the one or more second network nodes.
  14. 제 13항에 있어서, 상기 프로세서는,
    RAN(Radio Access Network) 노드로부터 상기 하나 또는 그 이상의 제 2 네트워크 노드들로의 연결을 요청하는 제 1 메시지를 수신하며,
    상기 수신된 제 1 메시지에 기초하여 상기 단말과 인증 절차를 수행하도록 제어하는 것을 특징으로 하는 장치.
    The processor of claim 13, wherein the processor comprises:
    Receive a first message requesting a connection from a Radio Access Network (RAN) node to the one or more second network nodes,
    And perform an authentication procedure with the terminal based on the received first message.
  15. 제 14항에 있어서, 상기 프로세서는,
    상기 RAN 노드로부터 상기 단말의 통신 서비스 요청(communication service request)에 대한 제 2 메시지를 수신하며; 및
    상기 수신된 제 2 메시지를 상기 통신 서비스 요청(communication service request)에 대응하는 제 2 네트워크 노드로 전송하도록 제어하는 것을 특징으로 하는 장치.
    The method of claim 14, wherein the processor,
    Receive a second message for a communication service request of the terminal from the RAN node; And
    And send the received second message to a second network node corresponding to the communication service request.
PCT/KR2016/015038 2016-05-20 2016-12-21 Method for performing security setup for user equipment in wireless communication system and device therefor WO2017200172A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662339100P 2016-05-20 2016-05-20
US62/339,100 2016-05-20

Publications (1)

Publication Number Publication Date
WO2017200172A1 true WO2017200172A1 (en) 2017-11-23

Family

ID=60326223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015038 WO2017200172A1 (en) 2016-05-20 2016-12-21 Method for performing security setup for user equipment in wireless communication system and device therefor

Country Status (1)

Country Link
WO (1) WO2017200172A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081311A2 (en) * 2009-12-31 2011-07-07 삼성전자 주식회사 Method and system for supporting security in a mobile communication system
WO2012134218A2 (en) * 2011-03-31 2012-10-04 엘지전자 주식회사 Method for user equipment setting security with network in wireless communication system and apparatus for same
WO2016021817A1 (en) * 2014-08-04 2016-02-11 엘지전자 주식회사 Method for authenticating terminal in wireless communication system, and device for same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011081311A2 (en) * 2009-12-31 2011-07-07 삼성전자 주식회사 Method and system for supporting security in a mobile communication system
WO2012134218A2 (en) * 2011-03-31 2012-10-04 엘지전자 주식회사 Method for user equipment setting security with network in wireless communication system and apparatus for same
WO2016021817A1 (en) * 2014-08-04 2016-02-11 엘지전자 주식회사 Method for authenticating terminal in wireless communication system, and device for same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "NextGen Network Slice Architecture Update", S 2-162351 , 3GPP SA WG2 MEETING #1 1 5, 16 May 2016 (2016-05-16), Nanjing, China *
Z TE: "Clarification on Network Slicing in RAN", R3-161106, 3GPP TSG RAN WG3 MEETING #92, 13 May 2016 (2016-05-13), Nanjing, China, XP051094873 *

Similar Documents

Publication Publication Date Title
US11218904B2 (en) Method for applying reflective quality of service in wireless communication system, and device therefor
CN110999431B (en) Method for registering terminal in wireless communication system and apparatus therefor
US10652085B2 (en) Method for setting configuration of non-IP data delivery (NDID) in wireless communication system and device for same
US11070963B2 (en) Method and user equipment for transmitting data unit, and method and user equipment for receiving data unit
EP3544337B1 (en) Selecting an amf supporting a slice based on updated priority of the nssai
CN110431859B (en) Method for interaction between layers in wireless communication system and apparatus therefor
US10362511B2 (en) Method and apparatus for determining PDU session identity in wireless communication system
EP3569009B1 (en) Method for transmitting ul packet based on quality of service (qos) flow in wireless communication system and a device therefor
US10609608B2 (en) Method for changing connection mode in base station, and base station therefor, and method for changing connection mode in user equipment, and user equipment thereof
US10419985B2 (en) Method of supporting access network handover operation of user equipment in wireless communication system and apparatus for the same
US9386480B2 (en) Systems and methods for providing LTE-based backhaul
US10506623B2 (en) Method for triggering a BSR for sidelink data in a D2D communication system and device therefor
WO2017209367A1 (en) Method for performing authentication of terminal for each service in wireless communication system, and device therefor
US20180249479A1 (en) Data transmission and reception method and device of terminal in wireless communication system
JP2018527800A (en) Method and apparatus for performing buffer status reporting in a D2D communication system
US10623990B2 (en) User equipment and method for transmitting data, and network node and method for receiving data
JP2018506902A (en) Method and apparatus for selecting side link grant for D2D terminal in D2D communication system
US10681537B2 (en) Method for transreceiving data in wireless communication system and device supporting same
KR102047711B1 (en) Data transmission method and base station, data transmission method and core node
US20230328596A1 (en) Handover for Communication Networks
WO2017159970A1 (en) Method for performing security setting of terminal in wireless communication system and apparatus for same
KR20230011294A (en) Method and apparatus for transmitting and receiving signals in a wireless communication system
WO2017200172A1 (en) Method for performing security setup for user equipment in wireless communication system and device therefor
US20240089795A1 (en) Data Unit Processing

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16902539

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16902539

Country of ref document: EP

Kind code of ref document: A1