WO2017196106A1 - Method for interworking between heterogeneous radio access networks and apparatus therefor - Google Patents

Method for interworking between heterogeneous radio access networks and apparatus therefor Download PDF

Info

Publication number
WO2017196106A1
WO2017196106A1 PCT/KR2017/004894 KR2017004894W WO2017196106A1 WO 2017196106 A1 WO2017196106 A1 WO 2017196106A1 KR 2017004894 W KR2017004894 W KR 2017004894W WO 2017196106 A1 WO2017196106 A1 WO 2017196106A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
flow
radio
core network
lte
Prior art date
Application number
PCT/KR2017/004894
Other languages
French (fr)
Korean (ko)
Inventor
김하성
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170055128A external-priority patent/KR102172469B1/en
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to US16/092,471 priority Critical patent/US11096091B2/en
Publication of WO2017196106A1 publication Critical patent/WO2017196106A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present embodiments relate to a method and apparatus for interworking between heterogeneous radio access networks, and more particularly, to a method and apparatus for interworking between 5G and LTE / LTE-Advanced radio access networks.
  • the existing LTE / LTE-Advanced wireless access network uses the EPS bearer as a basic unit to perform QoS control at the bearer level. Therefore, in the core network, a plurality of traffic flows are mapped to EPS bearers, and QoS parameters of the bearer level are allocated to the radio access network. Accordingly, the radio access network performs radio bearer control and QoS control of the corresponding level.
  • the existing bearer level QoS control scheme is provided to provide more flexible and detailed services with various transmission speed, reliability, latency requirements and QoS characteristics based on network slicing technology. More granular flow-based packet control will also be introduced.
  • the conventional bearer packet control based 5G and the LTE / LTE-Advanced base station interworking method is insufficient support for the flow control consideration is necessary.
  • natural interworking with existing LTE / LTE-Advanced wireless access networks will be very important to provide stable services.
  • An object of the present embodiments is to provide a method and apparatus for interworking between 5G and LTE / LTE-Advanced radio access network on a 5G network capable of flow packet-based QoS control for providing various packet QoS.
  • embodiments of the present invention provide a method for interworking between heterogeneous radio access networks, in which a master base station receives a quality of service policy from a core network connected to a master base station and a secondary base station, and receives one or more packet flows from the core network. And mapping one or more packet flows to at least one of a radio flow and a radio bearer based on the quality of service policy.
  • the embodiments of the present invention provide a method for interworking between heterogeneous radio access networks, the terminal transmitting a packet flow to a core network, and mapping between the packet flow and the radio bearer based on a flow identifier assigned by the core network. Receiving a message from the master base station or the secondary base station performing the step, and transmitting a message including the flow identifier and the bearer identifier to the core network.
  • the terminal for the connection with the master base station transmits a connection request message to the core network, and assigned by the core network
  • a method comprising the steps of: receiving a connection reestablishment message from a secondary base station that performs a mapping between a flow and a radio bearer based on a flow identifier, and transmitting a connection reestablishment complete message to the secondary base station.
  • the flow packet-based 5G and LTE / LTE-Advanced base station interworking enables to provide more flexible and detailed services having various requirements and QoS characteristics of 5G.
  • FIG. 1 is a diagram illustrating a case where a 5G radio access network is a master base station in a core and a radio access network structure when 5G and LTE / LTE-Advanced interworking.
  • FIG. 2 is a diagram illustrating a case where an LTE / LTE-Advanced radio access network is a master base station in a core and a radio access network structure when 5G and LTE / LTE-Advanced interwork.
  • FIG. 3 is a diagram illustrating an example of a process for interworking between heterogeneous wireless access networks according to the present embodiments.
  • FIG. 4 is a diagram illustrating another example of a method of interworking between heterogeneous wireless access networks according to the present embodiments.
  • FIG. 5 is a diagram illustrating an example of an initial connection establishment procedure in a method of interworking between heterogeneous wireless access networks according to the present embodiments.
  • FIG. 6 is a diagram illustrating a configuration of a base station according to the present embodiments.
  • FIG. 7 is a diagram illustrating a configuration of a user terminal according to the present embodiments.
  • the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement.
  • the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement.
  • the MTC terminal may mean a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.
  • the MTC terminal may mean a newly defined 3GPP Release-13 low cost (or low complexity) UE category / type for performing LTE-based MTC related operations.
  • the MTC terminal supports enhanced coverage compared to the existing LTE coverage, or supports UE category / type defined in the existing 3GPP Release-12 or lower, or newly defined Release-13 low cost (or lower power consumption).
  • low complexity can mean UE category / type.
  • the wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like.
  • the wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB).
  • a user terminal is a generic concept meaning a terminal in wireless communication.
  • user equipment (UE) in WCDMA, LTE, and HSPA, as well as mobile station (MS) in GSM, user terminal (UT), and SS It should be interpreted as a concept that includes a subscriber station, a wireless device, and the like.
  • a base station or cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an eNB, 5G, a sector, and a site. Other terms such as Site, Base Transceiver System (BTS), Access Point, Access Node, Relay Node, Remote Radio Head (RRH), Radio Unit (RU), and small cell may be referred to.
  • BTS Base Transceiver System
  • RRH Remote Radio Head
  • RU Radio Unit
  • a base station or a cell includes some areas or functions covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or sector (site) in LTE, a gNB in 5G, and the like. It should be interpreted in a comprehensive sense, which encompasses various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, and small cell communication range.
  • BSC base station controller
  • the base station may be interpreted in two senses. i) the device providing the megacell, the macrocell, the microcell, the picocell, the femtocell, the small cell in relation to the wireless area, or ii) the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station.
  • the base station may indicate the radio area itself to receive or transmit a signal from the viewpoint of the user terminal or the position of a neighboring base station.
  • the base station is collectively referred to as a mega cell, a macro cell, a micro cell, a pico cell, a femto cell, a small cell, an RRH, an antenna, an RU, a low power node (LPN), a point, an eNB, a gNB, a transmission / reception point, a transmission point, and a reception point.
  • LPN low power node
  • the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to.
  • the user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to.
  • the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal
  • the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM-FDMA OFDM-TDMA
  • OFDM-CDMA OFDM-CDMA
  • One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB.
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers.
  • the uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like.
  • Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
  • EPDCCH enhanced PDCCH
  • extended PDCCH extended PDCCH
  • a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
  • a wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal.
  • antenna transmission system a cooperative multi-cell communication system.
  • the CoMP system may include at least two multiple transmission / reception points and terminals.
  • the multiple transmit / receive point is at least one having a high transmission power or a low transmission power in a macro cell region, which is connected to an eNB or a macro cell (hereinafter referred to as an 'eNB') and wired controlled by an optical cable or an optical fiber to an eNB. May be RRH.
  • downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal
  • uplink refers to a communication or communication path from a terminal to multiple transmission / reception points.
  • a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
  • a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH may be described in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH.
  • a description of transmitting or receiving a PDCCH or transmitting or receiving a signal through the PDCCH may be used as a meaning including transmitting or receiving an EPDCCH or transmitting or receiving a signal through the EPDCCH.
  • the physical downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH.
  • the EPDCCH which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the PDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
  • high layer signaling described below includes RRC signaling for transmitting RRC information including an RRC parameter.
  • the eNB performs downlink transmission to the terminals.
  • the eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH.
  • a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted.
  • PUSCH physical uplink shared channel
  • the background technology of the present invention is a 5G network, a radio flow control, a radio access network, and an interworking technology between 5G and LTE / LTE-Advanced.
  • An object of the present invention is to provide a method and apparatus for interworking between 5G and LTE / LTE-Advanced radio access networks on a 5G network capable of controlling flow packet-based QoS for providing various packet QoS.
  • the 5G network is divided into a core network (CN) and a radio access network (RAN).
  • the terminal assumes a dual mode terminal capable of connecting to both 5G and LTE / LTE-Advanced base station.
  • the 5G Core Network is divided into a Control Plane (CP) and a User Plane (UP) function, and is composed of 5G CN-CP and 5G CN-UP devices, respectively.
  • the interface between the 5G CN-CP and 5G CN-UP devices is connected via the manufacturer's own or standardized interface.
  • the 5G core network is capable of supporting both 5G and LTE (or evolved LTE) base stations.
  • the interface between 5G core network and 5G / LTE / LTE-Advanced radio access network is interworked with eS1 (Enhanced S1).
  • the 5G base station or the LTE / LTE-Advanced base station may be the master base station according to the operator's wireless access network deployment scenario.
  • the master base station is connected to the 5G CN-CP device through the eS1-CP interface, and both the master base station and the secondary base station are connected to the 5G CN-UP device through the eS1-UP interface.
  • FIG. 1 illustrates a case in which 5G and LTE / LTE-Advanced wireless access networks serve as a master base station in a non-standalone interworking structure
  • FIG. 2 illustrates 5G and LTE /
  • the LTE-Advanced radio access network is a network structure when the LTE / LTE-Advanced radio access network 300 serves as a master base station in a non-standalone interworking structure.
  • Multiple packet flows according to various services are delivered from the PDN to the 5G core network 100.
  • the 5G CN-CP 110 generates a QoS policy, performs a storage function, and delivers it to the 5G CN-UP 120 and the master base station.
  • 5G and LTE / LTE-Advanced radio access networks support 1) control of a radio bearer, 2) control of a radio flow, or both.
  • the master base station may merge 1) a plurality of flows received from the 5G core network 100 to generate a new radio flow (if necessary), and 2) map, convert, and generate a radio flow and a radio bearer.
  • the master base station 1) merges a plurality of flows received from the 5G core network 100 to generate a new radio flow (if necessary), 2) maps and generates a core network flow to the radio flow, and 3) for the radio flows. Determine your priorities. In particular, high priority can be given to high priority flows such as RRC signaling messages.
  • FIG. 3 illustrates an example of a method for interworking between 5G and LTE / LTE-Advanced radio access networks according to the present embodiments.
  • the master base station receives a QoS policy from the 5G core network 100 among the 5G radio access network 200 and the LTE / LTE-Advanced radio access network 300 (S300).
  • the master base station receives the packet flow from the 5G core network 100 (S310), if necessary, merges the received packet flows to generate a new flow (S320).
  • the master base station maps the packet flows to the radio flow or the radio bearer based on the QoS policy received from the 5G core network 100 (S330), and performs the control of the radio flow unit or the control of the radio bearer unit.
  • the master base station may transmit a flow identifier assigned by the 5G core network 100 to the terminal 400, the terminal 400 transmits a message including the flow identifier and the bearer identifier to the 5G core network 100 Can be.
  • a procedure for setting and requesting a QoS policy may be performed between the 5G core network 100, the master base station, the secondary base station, and the terminal 400.
  • mapping of the packet flow may be performed in two steps: mapping to the wireless flow and the radio bearer.
  • FIG. 4 shows another example of a process of an interworking method between 5G and LTE / LTE-Advanced wireless access network according to the present embodiments.
  • the master base station among the 5G radio access network 200 and the LTE / LTE-Advanced radio access network 300 receives a QoS policy from the 5G core network 100 (S400).
  • the master base station receives the packet flow from the 5G core network 100 (S410).
  • the master base station maps the packet flow received from the 5G core network 100 to the radio flow based on the QoS policy (S420), and maps the radio flow to the radio bearer (S430).
  • the 5G core network 100 may map the packet flow received from the terminal to the radio flow, and the master base station may map the radio flow mapped by the 5G core network 100 to the radio bearer.
  • the 5G core network 100 may assign a flow identifier and the allocated flow identifier may be transmitted to the terminal 400 by the master base station, and the terminal 400 sends a message including the flow identifier and the bearer identifier to the 5G core network ( 100).
  • a procedure for setting and requesting a QoS policy may be performed between the 5G core network 100, the master base station, the secondary base station, and the terminal 400.
  • This packet flow-based control enables stable interworking between the 5G radio access network 200 and the LTE / LTE-Advanced radio access network 300, and provides various services having various QoS characteristics more flexibly and precisely. do.
  • 5 illustrates an example of an initial connection establishment procedure when interworking between 5G and LTE / LTE-Advanced wireless access network according to the present embodiments.
  • the 5G RRC initial connection setup procedure is performed by the terminal 400 in LTE / LTE-Advanced.
  • 5G RRC signaling is transmitted through the base station 300, and a specific initial connection setup procedure is as follows.
  • the LTE / LTE-Advanced base station 300 broadcasts and transmits system information to the terminal 400 (S500).
  • the terminal 400 transmits a PDN Connectivity Request message to the 5G CN-CP 110 (S501). At this time, the terminal 400 requests a dedicated flow for 5G RRC connection.
  • the flows may be classified in detail according to the purpose of use, attributes, and the like (eg, signaling flow, MBB data flow, URLLC data flow, mMTC data flow, etc.).
  • the 5G CN-CP 110 allocates a flow ID and transmits a Create Session Request message to the PDN 500 (S502).
  • the PDN 500 responds to the 5G CN-CP 110 with a Create Session Response message (S503).
  • a flow QoS policy is set and a request procedure is performed between the 5G CN-CP 110, the 5G CN-UP 120, the RAN 200 and 300, and the terminal 400 (S504).
  • the 5G CN-CP 110 transmits to the terminal 400 including the PDN Connectivity Accept in the Flow Setup Request message (S505).
  • the LTE / LTE-Advanced and 5G radio access networks perform the mapping and conversion procedure between the flow and the radio bearer as needed according to the QoS control method (S506).
  • the LTE / LTE-Advanced base station 300 transmits an RRC Connection Reconfiguration including a PDN Connectivity Accept message to the terminal 400 (S507).
  • the terminal 400 transmits an RRC Connection Reconfiguration Complete to the LTE / LTE-Advanced base station 300 (S508).
  • the LTE / LTE-Advanced base station 300 transmits a flow setup response message to the 5G CN-CP 110 (S509).
  • the terminal 400 configures a bearer ID and a flow ID and transmits a PDN Connectivity Complete message to the 5G CN-CP 110 (S510).
  • the terminal 400 When the terminal 400 acquires PDN address information, the terminal 400 transmits a 5G RRC message to the 5G base station 200 through the LTE / LTE-Advanced base station 300 (S511).
  • 5G based on flow packet control and LTE / LTE-Advanced base station interworking will be able to provide more flexible and detailed services having various requirements and QoS characteristics of 5G.
  • efficient linkage between 5G and LTE / LTE-Advanced base stations provides more reliable connectivity and lowers deployment and operation costs.
  • FIG. 6 shows a configuration of a base station 600 according to the present embodiments.
  • the base station 600 includes a controller 610, a transmitter 620, and a receiver 630.
  • control unit 610 provides a more flexible and detailed method for providing various services having various requirements and QoS characteristics of 5G through 5G based on flow packet control and LTE / LTE-Advanced base station interworking.
  • the overall operation of the base station 600 is controlled.
  • the transmitter 620 and the receiver 630 are used to transmit and receive signals, messages, and data necessary for carrying out the present invention described above.
  • FIG. 7 illustrates a configuration of a user terminal 700 according to the present embodiments.
  • the user terminal 700 includes a receiver 710, a controller 720, and a transmitter 730.
  • the receiver 710 receives downlink control information, data, and a message from a base station through a corresponding channel.
  • control unit 720 in accordance with the present invention described above through the flow packet control based 5G and LTE / LTE-Advanced base station interworking to provide a variety of services having a variety of requirements and QoS characteristics of 5G more flexible and detailed The overall operation of the user terminal 700 according to the control.
  • the transmitter 730 transmits uplink control information, data, and a message to a base station through a corresponding channel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present embodiments relate to a method and an apparatus for interworking between 5G and LTE/LTE-advanced radio access networks (RANs) in a 5G network capable of a flow packet based-QoS control in order to provide various packet QoSs. The present embodiments can further flexibly and precisely provide various 5G services having various requirements and QoS characteristics through interworking between flow packet-based 5G and LTE/LTE-advanced base stations, and can provide stable connectivity through efficient interworking between the 5G and LTE/LTE-advanced base stations.

Description

이종 무선 액세스 망 간의 연동 방법 및 그 장치Interworking method between heterogeneous wireless access networks and device therefor
본 실시예들은 이종 무선 액세스 망 간의 연동 방법 및 장치에 관한 것으로서, 구체적으로, 5G와 LTE/LTE-Advanced 무선 액세스 망 간의 연동 방법 및 장치에 관한 것이다.The present embodiments relate to a method and apparatus for interworking between heterogeneous radio access networks, and more particularly, to a method and apparatus for interworking between 5G and LTE / LTE-Advanced radio access networks.
기존 LTE/LTE-Advanced 무선 액세스 망은 EPS 베어러를 기본 단위로 사용하여 베어러 레벨의 QoS 제어를 수행한다. 그러므로, 코어 네트워크에서 다수의 트래픽 플로우들을 EPS 베어러로 매핑하고, 해당 베어러 레벨의 QoS 파라미터를 무선 액세스 망에 할당하게 된다. 이에 따라, 무선 액세스 망은 무선 베어러 제어 및 해당 레벨의 QoS 제어를 수행하게 된다.The existing LTE / LTE-Advanced wireless access network uses the EPS bearer as a basic unit to perform QoS control at the bearer level. Therefore, in the core network, a plurality of traffic flows are mapped to EPS bearers, and QoS parameters of the bearer level are allocated to the radio access network. Accordingly, the radio access network performs radio bearer control and QoS control of the corresponding level.
한편, 향후 도입되는 5G에서는 네트워크 슬라이싱(Network Slicing) 기술을 기반으로 다양한 전송 속도, 신뢰도, 지연도 요구 사항과 QoS 특성을 갖는 다양한 서비스들을 보다 유연하고 세밀히 제공하기 위해 기존의 베어러 레벨의 QoS 제어 방식보다 세밀한 플로우 기반 패킷 제어도 추가로 도입될 것이다.Meanwhile, in 5G, which is introduced in the future, the existing bearer level QoS control scheme is provided to provide more flexible and detailed services with various transmission speed, reliability, latency requirements and QoS characteristics based on network slicing technology. More granular flow-based packet control will also be introduced.
하지만, 종래 베어러 패킷 제어 기반의 5G와 LTE/LTE-Advanced 기지국 간 연동 방법은 플로우 제어에 대한 고려가 미흡하므로 이에 대한 지원이 필요하다. 특히, 5G 무선 액세스 망이 도입, 구축되는 초기에는 안정적인 서비스의 제공을 위하여 기존 LTE/LTE-Advanced 무선 액세스 망과의 자연스러운 연동이 매우 중요할 것이다.However, the conventional bearer packet control based 5G and the LTE / LTE-Advanced base station interworking method is insufficient support for the flow control consideration is necessary. In particular, in the early stages of introduction and construction of 5G wireless access networks, natural interworking with existing LTE / LTE-Advanced wireless access networks will be very important to provide stable services.
본 실시예들의 목적은, 다양한 패킷 QoS 제공을 위한 플로우 패킷 기반의 QoS 제어가 가능한 5G 네트워크 상에서 5G와 LTE/LTE-Advanced 무선 액세스 망 간의 연동 방법 및 장치를 제공하는 데 있다.An object of the present embodiments is to provide a method and apparatus for interworking between 5G and LTE / LTE-Advanced radio access network on a 5G network capable of flow packet-based QoS control for providing various packet QoS.
일 측면에서, 본 실시예들은, 이종 무선 액세스 망 간의 연동 방법에 있어서, 마스터 기지국이 마스터 기지국 및 세컨더리 기지국과 연결된 코어 네트워크로부터 서비스 품질 정책을 수신하는 단계와, 코어 네트워크로부터 하나 이상의 패킷 플로우를 수신하는 단계와, 서비스 품질 정책에 기초하여 하나 이상의 패킷 플로우를 무선 플로우 및 무선 베어러 중 적어도 하나에 매핑하는 단계를 포함하는 방법을 제공한다.In one aspect, embodiments of the present invention provide a method for interworking between heterogeneous radio access networks, in which a master base station receives a quality of service policy from a core network connected to a master base station and a secondary base station, and receives one or more packet flows from the core network. And mapping one or more packet flows to at least one of a radio flow and a radio bearer based on the quality of service policy.
다른 측면에서, 본 실시예들은, 이종 무선 액세스 망 간의 연동 방법에 있어서, 단말이 코어 네트워크로 패킷 플로우를 전송하는 단계와, 코어 네트워크에 의해 할당된 플로우 식별자에 기초하여 패킷 플로우와 무선 베어러 간의 매핑을 수행한 마스터 기지국 또는 세컨더리 기지국으로부터 메시지를 수신하는 단계와, 코어 네트워크로 플로우 식별자 및 베어러 식별자를 포함하는 메시지를 전송하는 단계를 포함하는 방법을 제공한다.In another aspect, the embodiments of the present invention provide a method for interworking between heterogeneous radio access networks, the terminal transmitting a packet flow to a core network, and mapping between the packet flow and the radio bearer based on a flow identifier assigned by the core network. Receiving a message from the master base station or the secondary base station performing the step, and transmitting a message including the flow identifier and the bearer identifier to the core network.
또 다른 측면에서, 본 실시예들은, 이종 무선 액세스 망 간의 연동시 초기 연결 설정 방법에 있어서, 마스터 기지국과 연결을 위한 단말이 코어 네트워크로 연결 요청 메시지를 전송하는 단계와, 코어 네트워크에 의해 할당된 플로우 식별자에 기초하여 플로우와 무선 베어러 간의 매핑을 수행한 세컨더리 기지국으로부터 연결 재설정 메시지를 수신하는 단계와, 세컨더리 기지국으로 연결 재설정 완료 메시지를 전송하는 단계를 포함하는 방법을 제공한다.In another aspect, the embodiments of the present invention, in the initial connection setting method when interworking between heterogeneous wireless access network, the terminal for the connection with the master base station transmits a connection request message to the core network, and assigned by the core network A method comprising the steps of: receiving a connection reestablishment message from a secondary base station that performs a mapping between a flow and a radio bearer based on a flow identifier, and transmitting a connection reestablishment complete message to the secondary base station.
본 실시예들에 의하면, 플로우 패킷 기반의 5G와 LTE/LTE-Advanced 기지국 연동을 통해 5G의 다양한 요구 사항과 QoS 특성을 갖는 다양한 서비스들을 보다 유연하고 세밀히 제공할 수 있도록 한다.According to the present embodiments, the flow packet-based 5G and LTE / LTE-Advanced base station interworking enables to provide more flexible and detailed services having various requirements and QoS characteristics of 5G.
또한, 5G와 LTE/LTE-Advanced 기지국 간 효율적인 연동으로 보다 안정적인 연결성을 제공하고, 구축/운용 비용을 절감할 수 있도록 한다.In addition, efficient linkage between 5G and LTE / LTE-Advanced base stations provides more reliable connectivity and reduces deployment and operating costs.
도 1은 5G 및 LTE/LTE-Advanced 연동 시, 코어 및 무선 액세스 네트워크 구조에서 5G 무선 액세스 망이 마스터 기지국인 경우를 나타낸 도면이다.FIG. 1 is a diagram illustrating a case where a 5G radio access network is a master base station in a core and a radio access network structure when 5G and LTE / LTE-Advanced interworking.
도 2는 5G 및 LTE/LTE-Advanced 연동 시, 코어 및 무선 액세스 네트워크 구조에서 LTE/LTE-Advanced 무선 액세스 망이 마스터 기지국인 경우를 나타낸 도면이다.FIG. 2 is a diagram illustrating a case where an LTE / LTE-Advanced radio access network is a master base station in a core and a radio access network structure when 5G and LTE / LTE-Advanced interwork.
도 3은 본 실시예들에 따른 이종 무선 액세스 망 간의 연동 방법의 과정의 예시를 나타낸 도면이다.3 is a diagram illustrating an example of a process for interworking between heterogeneous wireless access networks according to the present embodiments.
도 4는 본 실시예들에 따른 이종 무선 액세스 망 간의 연동 방법의 과정의 다른 예시를 나타낸 도면이다.4 is a diagram illustrating another example of a method of interworking between heterogeneous wireless access networks according to the present embodiments.
도 5는 본 실시예들에 따른 이종 무선 액세스 망 간의 연동 방법에서 초기 연결 설정 절차의 예시를 나타낸 도면이다.5 is a diagram illustrating an example of an initial connection establishment procedure in a method of interworking between heterogeneous wireless access networks according to the present embodiments.
도 6은 본 실시예들에 따른 기지국의 구성을 나타낸 도면이다.6 is a diagram illustrating a configuration of a base station according to the present embodiments.
도 7은 본 실시예들에 따른 사용자 단말의 구성을 나타낸 도면이다.7 is a diagram illustrating a configuration of a user terminal according to the present embodiments.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted.
본 명세서에서 MTC 단말은 low cost(또는 low complexity)를 지원하는 단말 또는 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및 coverage enhancement를 지원하는 단말 등을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 low cost(또는 low complexity) 및/또는 coverage enhancement를 지원하기 위한 특정 카테고리로 정의된 단말을 의미할 수 있다.In the present specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) or a terminal supporting coverage enhancement. In the present specification, the MTC terminal may mean a terminal supporting low cost (or low complexity) and coverage enhancement. Alternatively, in the present specification, the MTC terminal may mean a terminal defined in a specific category for supporting low cost (or low complexity) and / or coverage enhancement.
다시 말해 본 명세서에서 MTC 단말은 LTE 기반의 MTC 관련 동작을 수행하는 새롭게 정의된 3GPP Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다. 또는 본 명세서에서 MTC 단말은 기존의 LTE coverage 대비 향상된 coverage를 지원하거나, 혹은 저전력 소모를 지원하는 기존의 3GPP Release-12 이하에서 정의된 UE category/type, 혹은 새롭게 정의된 Release-13 low cost(또는 low complexity) UE category/type을 의미할 수 있다.In other words, in the present specification, the MTC terminal may mean a newly defined 3GPP Release-13 low cost (or low complexity) UE category / type for performing LTE-based MTC related operations. Alternatively, in the present specification, the MTC terminal supports enhanced coverage compared to the existing LTE coverage, or supports UE category / type defined in the existing 3GPP Release-12 or lower, or newly defined Release-13 low cost (or lower power consumption). low complexity) can mean UE category / type.
본 발명에서의 무선통신시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.The wireless communication system in the present invention is widely deployed to provide various communication services such as voice, packet data, and the like. The wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB). In the present specification, a user terminal is a generic concept meaning a terminal in wireless communication. In addition, user equipment (UE) in WCDMA, LTE, and HSPA, as well as mobile station (MS) in GSM, user terminal (UT), and SS It should be interpreted as a concept that includes a subscriber station, a wireless device, and the like.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), gNB(5G), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit), small cell 등 다른 용어로 불릴 수 있다.A base station or cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an eNB, 5G, a sector, and a site. Other terms such as Site, Base Transceiver System (BTS), Access Point, Access Node, Relay Node, Remote Radio Head (RRH), Radio Unit (RU), and small cell may be referred to.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 Node-B, LTE에서의 eNB 또는 섹터(싸이트), 5G에서의 gNB 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node), RRH, RU, small cell 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다. That is, in the present specification, a base station or a cell includes some areas or functions covered by a base station controller (BSC) in CDMA, a Node-B in WCDMA, an eNB or sector (site) in LTE, a gNB in 5G, and the like. It should be interpreted in a comprehensive sense, which encompasses various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node, RRH, RU, and small cell communication range.
상기 나열된 다양한 셀은 각 셀을 제어하는 기지국이 존재하므로 기지국은 두 가지 의미로 해석될 수 있다. i) 무선 영역과 관련하여 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀을 제공하는 장치 그 자체이거나, ii) 상기 무선영역 그 자체를 지시할 수 있다. i)에서 소정의 무선 영역을 제공하는 장치들이 동일한 개체에 의해 제어되거나 상기 무선 영역을 협업으로 구성하도록 상호작용하는 모든 장치들을 모두 기지국으로 지시한다. 무선 영역의 구성 방식에 따라 eNB, RRH, 안테나, RU, LPN, 포인트, 송수신포인트, 송신 포인트, 수신 포인트 등은 기지국의 일 실시예가 된다. ii)에서 사용자 단말의 관점 또는 이웃하는 기지국의 입장에서 신호를 수신하거나 송신하게 되는 무선 영역 그 자체를 기지국으로 지시할 수 있다.Since the various cells listed above have a base station for controlling each cell, the base station may be interpreted in two senses. i) the device providing the megacell, the macrocell, the microcell, the picocell, the femtocell, the small cell in relation to the wireless area, or ii) the wireless area itself. In i) all devices which provide a given wireless area are controlled by the same entity or interact with each other to cooperatively configure the wireless area to direct the base station. The eNB, RRH, antenna, RU, LPN, point, transmit / receive point, transmit point, receive point, and the like, according to the configuration of the radio region, become an embodiment of the base station. In ii), the base station may indicate the radio area itself to receive or transmit a signal from the viewpoint of the user terminal or the position of a neighboring base station.
따라서, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀, 스몰 셀, RRH, 안테나, RU, LPN(Low Power Node), 포인트, eNB, gNB, 송수신포인트, 송신 포인트, 수신 포인트를 통칭하여 기지국으로 지칭한다.Accordingly, the base station is collectively referred to as a mega cell, a macro cell, a micro cell, a pico cell, a femto cell, a small cell, an RRH, an antenna, an RU, a low power node (LPN), a point, an eNB, a gNB, a transmission / reception point, a transmission point, and a reception point. Refer to.
본 명세서에서 사용자 단말과 기지국은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 여기서, 상향링크(Uplink, UL, 또는 업링크)는 사용자 단말에 의해 기지국으로 데이터를 송수신하는 방식을 의미하며, 하향링크(Downlink, DL, 또는 다운링크)는 기지국에 의해 사용자 단말로 데이터를 송수신하는 방식을 의미한다.In the present specification, the user terminal and the base station are two transmitting and receiving entities used to implement the technology or technical idea described in this specification in a comprehensive sense and are not limited by the terms or words specifically referred to. The user terminal and the base station are two types of uplink or downlink transmitting / receiving subjects used to implement the technology or the technical idea described in the present invention, and are used in a generic sense and are not limited by the terms or words specifically referred to. Here, the uplink (Uplink, UL, or uplink) refers to a method for transmitting and receiving data to the base station by the user terminal, the downlink (Downlink, DL, or downlink) means to transmit and receive data to the user terminal by the base station It means the way.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-Advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.There is no limitation on the multiple access scheme applied to the wireless communication system. Various multiple access techniques such as Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA Can be used. One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-Advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB. The present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
또한, LTE, LTE-Advanced와 같은 시스템에서는 하나의 반송파 또는 반송파 쌍을 기준으로 상향링크와 하향링크를 구성하여 규격을 구성한다. 상향링크와 하향링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel), EPDCCH(Enhanced Physical Downlink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다. In addition, in systems such as LTE and LTE-Advanced, a standard is configured by configuring uplink and downlink based on one carrier or a pair of carriers. The uplink and the downlink include a Physical Downlink Control CHannel (PDCCH), a Physical Control Format Indicator CHannel (PCFICH), a Physical Hybrid ARQ Indicator CHannel (PHICH), a Physical Uplink Control CHannel (PUCCH), an Enhanced Physical Downlink Control CHannel (EPDCCH), and the like. Control information is transmitted through the same control channel, and data is configured by a data channel such as a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
한편 EPDCCH(enhanced PDCCH 또는 extended PDCCH)를 이용해서도 제어 정보를 전송할 수 있다.On the other hand, control information may also be transmitted using an enhanced PDCCH (EPDCCH or extended PDCCH).
본 명세서에서 셀(cell)은 송수신 포인트로부터 전송되는 신호의 커버리지 또는 송수신 포인트(transmission point 또는 transmission/reception point)로부터 전송되는 신호의 커버리지를 가지는 요소 반송파(component carrier), 그 송수신 포인트 자체를 의미할 수 있다. In the present specification, a cell means a component carrier having a coverage of a signal transmitted from a transmission / reception point or a signal transmitted from a transmission point or a transmission / reception point, and the transmission / reception point itself. Can be.
실시예들이 적용되는 무선통신 시스템은 둘 이상의 송수신 포인트들이 협력하여 신호를 전송하는 다중 포인트 협력형 송수신 시스템(coordinated multi-point transmission/reception System; CoMP 시스템) 또는 협력형 다중 안테나 전송방식(coordinated multi-antenna transmission system), 협력형 다중 셀 통신시스템일 수 있다. CoMP 시스템은 적어도 두 개의 다중 송수신 포인트와 단말들을 포함할 수 있다.A wireless communication system to which embodiments are applied may be a coordinated multi-point transmission / reception system (CoMP system) or a coordinated multi-antenna transmission scheme in which two or more transmission / reception points cooperate to transmit a signal. antenna transmission system), a cooperative multi-cell communication system. The CoMP system may include at least two multiple transmission / reception points and terminals.
다중 송수신 포인트는 기지국 또는 매크로 셀(macro cell, 이하 'eNB'라 함)과, eNB에 광케이블 또는 광섬유로 연결되어 유선 제어되는, 높은 전송파워를 갖거나 매크로 셀영역 내의 낮은 전송파워를 갖는 적어도 하나의 RRH일 수도 있다.The multiple transmit / receive point is at least one having a high transmission power or a low transmission power in a macro cell region, which is connected to an eNB or a macro cell (hereinafter referred to as an 'eNB') and wired controlled by an optical cable or an optical fiber to an eNB. May be RRH.
이하에서 하향링크(downlink)는 다중 송수신 포인트에서 단말로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말에서 다중 송수신 포인트로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 다중 송수신 포인트의 일부분일 수 있고, 수신기는 단말의 일부분일 수 있다. 상향링크에서 송신기는 단말의 일부분일 수 있고, 수신기는 다중 송수신 포인트의 일부분일 수 있다. In the following, downlink refers to a communication or communication path from a multiple transmission / reception point to a terminal, and uplink refers to a communication or communication path from a terminal to multiple transmission / reception points. In downlink, a transmitter may be part of multiple transmission / reception points, and a receiver may be part of a terminal. In uplink, a transmitter may be part of a terminal, and a receiver may be part of multiple transmission / reception points.
이하에서는 PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH 등과 같은 채널을 통해 신호가 송수신되는 상황을 'PUCCH, PUSCH, PDCCH, EPDCCH 및 PDSCH를 전송, 수신한다'는 형태로 표기하기도 한다.Hereinafter, a situation in which a signal is transmitted and received through a channel such as a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH may be described in the form of 'sending and receiving a PUCCH, a PUSCH, a PDCCH, an EPDCCH, and a PDSCH.'
또한 이하에서는 PDCCH를 전송 또는 수신하거나 PDCCH를 통해서 신호를 전송 또는 수신한다는 기재는 EPDCCH를 전송 또는 수신하거나 EPDCCH를 통해서 신호를 전송 또는 수신하는 것을 포함하는 의미로 사용될 수 있다.In addition, hereinafter, a description of transmitting or receiving a PDCCH or transmitting or receiving a signal through the PDCCH may be used as a meaning including transmitting or receiving an EPDCCH or transmitting or receiving a signal through the EPDCCH.
즉, 이하에서 기재하는 물리 하향링크 제어채널은 PDCCH를 의미하거나, EPDCCH를 의미할 수 있으며, PDCCH 및 EPDCCH 모두를 포함하는 의미로도 사용된다.That is, the physical downlink control channel described below may mean PDCCH or EPDCCH, and may also be used to include both PDCCH and EPDCCH.
또한, 설명의 편의를 위하여 PDCCH로 설명한 부분에도 본 발명의 일 실시예인 EPDCCH를 적용할 수 있으며, EPDCCH로 설명한 부분에도 본 발명의 일 실시예로 PDCCH를 적용할 수 있다.In addition, for convenience of description, the EPDCCH, which is an embodiment of the present invention, may be applied to the portion described as the PDCCH, and the PDCCH may be applied to the portion described as the EPDCCH as an embodiment of the present invention.
한편, 이하에서 기재하는 상위계층 시그널링(High Layer Signaling)은 RRC 파라미터를 포함하는 RRC 정보를 전송하는 RRC 시그널링을 포함한다.Meanwhile, high layer signaling described below includes RRC signaling for transmitting RRC information including an RRC parameter.
eNB은 단말들로 하향링크 전송을 수행한다. eNB은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH), 그리고 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH)을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신 되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.The eNB performs downlink transmission to the terminals. The eNB includes downlink control information and an uplink data channel (eg, a physical downlink shared channel (PDSCH), which is a primary physical channel for unicast transmission, and scheduling required to receive the PDSCH. For example, a physical downlink control channel (PDCCH) for transmitting scheduling grant information for transmission on a physical uplink shared channel (PUSCH) may be transmitted. Hereinafter, the transmission and reception of signals through each channel will be described in the form of transmission and reception of the corresponding channel.
본 발명의 배경이 되는 기술은 5G 네트워크, 무선 플로우 제어, 무선 액세스 네트워크, 5G와 LTE/LTE-Advanced간의 연동 기술이다.The background technology of the present invention is a 5G network, a radio flow control, a radio access network, and an interworking technology between 5G and LTE / LTE-Advanced.
5G에서 네트워크 슬라이싱(Network Slicing) 기술을 기반으로 다양한 전송 속도, 신뢰도, 지연도 요구 사항과 QoS 특성을 갖는 다양한 서비스들을 보다 유연하고 세밀히 제공하기 위해 기존의 베어러 레벨의 QoS 제어 방식보다 세밀한 플로우 기반 패킷 제어도 추가로 도입될 것이지만, 기존 베어러 패킷 제어 기반의 5G와 LTE/LTE-Advanced 기지국 간 연동 방법은 플로우 제어에 대한 고려가 미흡하므로 이에 대한 기능 지원이 필요하다. 특히, 5G 무선 액세스 망이 도입, 구축되는 초기에는 기존 LTE/LTE-Advanced 무선 액세스 망과의 자연스러운 연동이 안정적인 서비스 제공을 위해서 매우 중요할 것이다.Based on network slicing technology in 5G, flow-based packets more detailed than the existing bearer level QoS control method to provide more flexible and detailed services with various transmission speed, reliability, latency requirements and QoS characteristics. Although control will be additionally introduced, the interworking method between 5G and LTE / LTE-Advanced base station based on the existing bearer packet control needs to support the function because flow consideration is insufficient. In particular, in the early stages of introduction and construction of 5G wireless access networks, natural interworking with existing LTE / LTE-Advanced wireless access networks will be very important for stable service provision.
본 발명의 목적은 다양한 패킷 QoS 제공을 위해 플로우(Flow) 패킷 기반 QoS 제어가 가능한 5G 네트워크 상에서 5G와 LTE/LTE-Advanced 무선 액세스 망 간 연동 방법 및 장치를 제공하는 것이다.An object of the present invention is to provide a method and apparatus for interworking between 5G and LTE / LTE-Advanced radio access networks on a 5G network capable of controlling flow packet-based QoS for providing various packet QoS.
5G 네트워크는 코어 네트워크(Core Network; CN)와 무선 액세스 네트워크(Radio Access Network; RAN)로 분리, 구성된다. 단말은 5G와 LTE/LTE-Advanced 기지국 양쪽으로 연결이 가능한 듀얼 모드 단말을 가정한다.The 5G network is divided into a core network (CN) and a radio access network (RAN). The terminal assumes a dual mode terminal capable of connecting to both 5G and LTE / LTE-Advanced base station.
5G 코어 네트워크(Core Network; CN)는 제어 평면(Control Plane; CP)과 사용자 평면(User Plane; UP) 기능이 구분되며, 각각 5G CN-CP와 5G CN-UP 장치로 구성된다. 5G CN-CP와 5G CN-UP 장치 간의 인터페이스는 제조사 자체 혹은 표준화된 인터페이스를 통해 연결된다.The 5G Core Network (CN) is divided into a Control Plane (CP) and a User Plane (UP) function, and is composed of 5G CN-CP and 5G CN-UP devices, respectively. The interface between the 5G CN-CP and 5G CN-UP devices is connected via the manufacturer's own or standardized interface.
5G 코어 네트워크는 5G 및 LTE(또는 진화된 LTE) 기지국 모두를 지원 가능하다고 가정한다. 또한 5G 코어 네트워크과 5G/LTE/LTE-Advanced 무선 액세스 망 간 인터페이스는 eS1(Enhanced S1)로 연동된다.It is assumed that the 5G core network is capable of supporting both 5G and LTE (or evolved LTE) base stations. In addition, the interface between 5G core network and 5G / LTE / LTE-Advanced radio access network is interworked with eS1 (Enhanced S1).
사업자의 무선 액세스 망 구축 시나리오에 따라 5G 기지국 혹은 LTE/LTE-Advanced 기지국이 마스터 기지국이 될 수 있다. 여기서, 마스터 기지국은 5G CN-CP 장치와 eS1-CP 인터페이스로 연결되고, 마스터 기지국과 세컨더리 기지국 양쪽은 5G CN-UP 장치와 eS1-UP 인터페이스로 연결된다.The 5G base station or the LTE / LTE-Advanced base station may be the master base station according to the operator's wireless access network deployment scenario. Here, the master base station is connected to the 5G CN-CP device through the eS1-CP interface, and both the master base station and the secondary base station are connected to the 5G CN-UP device through the eS1-UP interface.
도 1은 5G와 LTE/LTE-Advanced 무선 액세스 망이 비독립형(Non-standalone) 연동 구조에서 5G 무선 액세스 망(200)이 마스터 기지국 역할을 하는 경우를 도시한 것이고, 도 2는 5G와 LTE/LTE-Advanced 무선 액세스 망이 비독립형(Non-standalone) 연동 구조에서 LTE/LTE-Advanced 무선 액세스 망(300)이 마스터 기지국 역할을 하는 경우의 네트워크 구조이다.FIG. 1 illustrates a case in which 5G and LTE / LTE-Advanced wireless access networks serve as a master base station in a non-standalone interworking structure, and FIG. 2 illustrates 5G and LTE / The LTE-Advanced radio access network is a network structure when the LTE / LTE-Advanced radio access network 300 serves as a master base station in a non-standalone interworking structure.
다양한 서비스에 따른 여러 개의 패킷 플로우가 PDN으로부터 5G 코어 네트워크(100)로 전달된다.Multiple packet flows according to various services are delivered from the PDN to the 5G core network 100.
5G CN-CP(110)는 QoS 정책을 생성, 저장 기능을 수행하고, 5G CN-UP(120) 및 마스터 기지국에 이를 전달한다.The 5G CN-CP 110 generates a QoS policy, performs a storage function, and delivers it to the 5G CN-UP 120 and the master base station.
5G 및 LTE/LTE-Advanced 무선 액세스 망에서는 1) 무선 베어러(Radio Bearer) 단위의 제어, 2) 무선 플로우(Radio Flow) 단위의 제어, 혹은 두 방식 모두를 지원한다고 가정한다.It is assumed that 5G and LTE / LTE-Advanced radio access networks support 1) control of a radio bearer, 2) control of a radio flow, or both.
1) 무선 액세스 망(RAN)이 무선 베어러(Radio Bearer) 단위의 제어 시:1) When the radio access network (RAN) controls the radio bearer unit:
마스터 기지국은 5G 코어 네트워크(100)로부터 수신한 1) 복수의 플로우들을 병합하여 새로운 무선 플로우를 생성(필요 시), 2) 무선 플로우와 무선 베어러 간 매핑 및 변환, 생성할 수 있다.The master base station may merge 1) a plurality of flows received from the 5G core network 100 to generate a new radio flow (if necessary), and 2) map, convert, and generate a radio flow and a radio bearer.
2) 무선 액세스 망(RAN)이 무선 플로우(Radio Flow) 단위의 제어 시:2) When the radio access network (RAN) controls radio flow units:
마스터 기지국은 5G 코어 네트워크(100)로부터 수신한 1) 복수의 플로우들을 병합하여 새로운 무선 플로우를 생성(필요 시), 2) 코어 네트워크 플로우를 무선 플로우로 매핑 및 생성, 3) 무선 플로우들에 대한 우선순위를 결정한다. 특히 RRC 시그널링 메시지와 같은 중요도가 높은 플로우에 대해서는 높은 우선순위를 부여 가능하다.The master base station 1) merges a plurality of flows received from the 5G core network 100 to generate a new radio flow (if necessary), 2) maps and generates a core network flow to the radio flow, and 3) for the radio flows. Determine your priorities. In particular, high priority can be given to high priority flows such as RRC signaling messages.
도 3은 본 실시예들에 따른 5G와 LTE/LTE-Advanced 무선 액세스 망 간의 연동 방법의 과정을 예시를 나타낸 것이다.3 illustrates an example of a method for interworking between 5G and LTE / LTE-Advanced radio access networks according to the present embodiments.
도 3을 참조하면, 5G 무선 액세스 망(200)과 LTE/LTE-Advanced 무선 액세스 망(300) 중에서 마스터 기지국은 5G 코어 네트워크(100)로부터 QoS 정책을 수신한다(S300).Referring to FIG. 3, the master base station receives a QoS policy from the 5G core network 100 among the 5G radio access network 200 and the LTE / LTE-Advanced radio access network 300 (S300).
그리고, 마스터 기지국은 5G 코어 네트워크(100)로부터 패킷 플로우를 수신하고(S310), 필요한 경우 수신된 패킷 플로우들을 병합하여 새로운 플로우를 생성한다(S320).Then, the master base station receives the packet flow from the 5G core network 100 (S310), if necessary, merges the received packet flows to generate a new flow (S320).
마스터 기지국은 5G 코어 네트워크(100)로부터 수신한 QoS 정책에 기초하여 패킷 플로우를 무선 플로우 또는 무선 베어러에 매핑하고(S330), 무선 플로우 단위의 제어 또는 무선 베어러 단위의 제어를 수행한다.The master base station maps the packet flows to the radio flow or the radio bearer based on the QoS policy received from the 5G core network 100 (S330), and performs the control of the radio flow unit or the control of the radio bearer unit.
여기서, 마스터 기지국은 5G 코어 네트워크(100)에 의해 할당된 플로우 식별자를 단말(400)로 전송할 수 있으며, 단말(400)은 플로우 식별자 및 베어러 식별자를 포함하는 메시지를 5G 코어 네트워크(100)로 전송할 수 있다.Here, the master base station may transmit a flow identifier assigned by the 5G core network 100 to the terminal 400, the terminal 400 transmits a message including the flow identifier and the bearer identifier to the 5G core network 100 Can be.
또한, 5G 코어 네트워크(100), 마스터 기지국, 세컨더리 기지국 및 단말(400) 간에 QoS 정책을 설정 및 요청하는 절차를 수행할 수 있다.In addition, a procedure for setting and requesting a QoS policy may be performed between the 5G core network 100, the master base station, the secondary base station, and the terminal 400.
이를 통해, 패킷 플로우 기반의 5G 무선 액세스 망(200)과 LTE/LTE-Advanced 무선 액세스 망(300) 간의 연동을 수행함으로써, 5G의 다양한 요구 사항과 QoS 특성을 갖는 다양한 서비스들을 보다 유연하고 세밀히 제공할 수 있도록 한다.By doing this, by interworking between the packet flow-based 5G radio access network 200 and the LTE / LTE-Advanced radio access network 300, to provide a variety of services with a variety of requirements and QoS characteristics of 5G more flexible and detailed Do it.
한편, 패킷 플로우의 매핑은 무선 플로우와, 무선 베어러에 매핑하는 두 단계로 수행될 수도 있다.On the other hand, the mapping of the packet flow may be performed in two steps: mapping to the wireless flow and the radio bearer.
도 4는 본 실시예들에 따른 5G와 LTE/LTE-Advanced 무선 액세스 망 간의 연동 방법의 과정의 다른 예시를 나타낸 것이다.4 shows another example of a process of an interworking method between 5G and LTE / LTE-Advanced wireless access network according to the present embodiments.
도 4를 참조하면, 5G 무선 액세스 망(200)과 LTE/LTE-Advanced 무선 액세스 망(300) 중 마스터 기지국은 5G 코어 네트워크(100)로부터 QoS 정책을 수신한다(S400)Referring to FIG. 4, the master base station among the 5G radio access network 200 and the LTE / LTE-Advanced radio access network 300 receives a QoS policy from the 5G core network 100 (S400).
그리고, 마스터 기지국은 5G 코어 네트워크(100)로부터 패킷 플로우를 수신한다(S410).Then, the master base station receives the packet flow from the 5G core network 100 (S410).
마스터 기지국은 5G 코어 네트워크(100)로부터 수신한 패킷 플로우를 QoS 정책에 기초하여 무선 플로우에 매핑하고(S420), 무선 플로우를 무선 베어러에 매핑한다(S430).The master base station maps the packet flow received from the 5G core network 100 to the radio flow based on the QoS policy (S420), and maps the radio flow to the radio bearer (S430).
여기서, 5G 코어 네트워크(100)가 단말로부터 수신한 패킷 플로우를 무선 플로우에 매핑하고, 마스터 기지국이 5G 코어 네트워크(100)에 의해 매핑된 무선 플로우를 무선 베어러에 매핑할 수 있다.Here, the 5G core network 100 may map the packet flow received from the terminal to the radio flow, and the master base station may map the radio flow mapped by the 5G core network 100 to the radio bearer.
5G 코어 네트워크(100)는 플로우 식별자를 할당하고 할당된 플로우 식별자는 마스터 기지국에 의해 단말(400)로 전송될 수 있으며, 단말(400)은 플로우 식별자와 베어러 식별자를 포함하는 메시지를 5G 코어 네트워크(100)로 전송할 수 있다.The 5G core network 100 may assign a flow identifier and the allocated flow identifier may be transmitted to the terminal 400 by the master base station, and the terminal 400 sends a message including the flow identifier and the bearer identifier to the 5G core network ( 100).
그리고, 5G 코어 네트워크(100), 마스터 기지국, 세컨더리 기지국 및 단말(400) 간에는 QoS 정책을 설정 및 요청하는 절차를 수행할 수 있다.In addition, a procedure for setting and requesting a QoS policy may be performed between the 5G core network 100, the master base station, the secondary base station, and the terminal 400.
이러한 패킷 플로우 기반의 제어를 통해 5G 무선 액세스 망(200)과 LTE/LTE-Advanced 무선 액세스 망(300) 간의 안정적인 연동을 하며, 다양한 QoS 특성을 갖는 다양한 서비스들을 보다 유연하고 세밀하게 제공할 수 있도록 한다.This packet flow-based control enables stable interworking between the 5G radio access network 200 and the LTE / LTE-Advanced radio access network 300, and provides various services having various QoS characteristics more flexibly and precisely. do.
도 5는 본 실시예들에 따른 5G와 LTE/LTE-Advanced 무선 액세스 망 간의 연동시 초기 연결 설정 절차의 예시를 나타낸 것이다.5 illustrates an example of an initial connection establishment procedure when interworking between 5G and LTE / LTE-Advanced wireless access network according to the present embodiments.
도 5를 참조하면, 5G 무선 액세스 망(200)과 LTE/LTE-Advanced 무선 액세스 망(300) 간의 비독립형 연동 시나리오에서, 5G RRC 초기 연결 설정 절차는 단말(400)에 의해 LTE/LTE-Advanced 기지국(300)을 통해 5G RRC 시그널링을 전송하며, 구체적인 초기 연결 설정 절차는 아래와 같다.Referring to FIG. 5, in a non-independent interworking scenario between the 5G radio access network 200 and the LTE / LTE-Advanced radio access network 300, the 5G RRC initial connection setup procedure is performed by the terminal 400 in LTE / LTE-Advanced. 5G RRC signaling is transmitted through the base station 300, and a specific initial connection setup procedure is as follows.
1. LTE/LTE-Advanced 기지국(300)은 단말(400)로 시스템 정보를 방송하여 전달한다(S500).1. The LTE / LTE-Advanced base station 300 broadcasts and transmits system information to the terminal 400 (S500).
2. 단말(400)은 5G CN-CP(110)로 PDN Connectivity Request 메시지를 전송한다(S501). 이때 단말(400)은 5G RRC 연결을 위한 전용 플로우를 요청한다. 여기서, 플로우들은 사용 목적 및 속성 등에 따라 세부 분류될 수 있다(예, 시그널링 플로우, MBB 데이터 플로우, URLLC 데이터 플로우, mMTC 데이터 플로우 등).2. The terminal 400 transmits a PDN Connectivity Request message to the 5G CN-CP 110 (S501). At this time, the terminal 400 requests a dedicated flow for 5G RRC connection. Here, the flows may be classified in detail according to the purpose of use, attributes, and the like (eg, signaling flow, MBB data flow, URLLC data flow, mMTC data flow, etc.).
3. 5G CN-CP(110)는 플로우 ID를 할당하고, Create Session Request 메시지를 PDN(500)으로 전송한다(S502).3. The 5G CN-CP 110 allocates a flow ID and transmits a Create Session Request message to the PDN 500 (S502).
4. PDN(500)은 5G CN-CP(110)에게 Create Session Response 메시지로 응답한다(S503).4. The PDN 500 responds to the 5G CN-CP 110 with a Create Session Response message (S503).
5. 5G CN-CP(110), 5G CN-UP(120), RAN(200, 300), 그리고 단말(400) 간에 플로우 QoS 정책을 설정 및 요청 절차를 수행한다(S504).5. A flow QoS policy is set and a request procedure is performed between the 5G CN-CP 110, the 5G CN-UP 120, the RAN 200 and 300, and the terminal 400 (S504).
6. 5G CN-CP(110)는 단말(400)로 Flow Setup Request 메시지에 PDN Connectivity Accept를 포함하여 전송한다(S505).6. The 5G CN-CP 110 transmits to the terminal 400 including the PDN Connectivity Accept in the Flow Setup Request message (S505).
7. LTE/LTE-Advanced 및 5G 무선 액세스 망은 지원 가능한 QoS 제어 방식에 따라 필요시 플로우와 무선 베어러 간 매핑, 변환 절차를 수행한다(S506).7. The LTE / LTE-Advanced and 5G radio access networks perform the mapping and conversion procedure between the flow and the radio bearer as needed according to the QoS control method (S506).
8. LTE/LTE-Advanced 기지국(300)은 단말(400)로 PDN Connectivity Accept 메시지를 포함하여 RRC Connection Reconfiguration를 전송한다(S507).8. The LTE / LTE-Advanced base station 300 transmits an RRC Connection Reconfiguration including a PDN Connectivity Accept message to the terminal 400 (S507).
9. 단말(400)은 LTE/LTE-Advanced 기지국(300)으로 RRC Connection Reconfiguration Complete를 전송한다(S508).9. The terminal 400 transmits an RRC Connection Reconfiguration Complete to the LTE / LTE-Advanced base station 300 (S508).
10. LTE/LTE-Advanced 기지국(300)은 5G CN-CP(110)로 Flow Setup Response 메시지를 전송한다(S509).10. The LTE / LTE-Advanced base station 300 transmits a flow setup response message to the 5G CN-CP 110 (S509).
11. 단말(400)은 베어러 식별자(Bearer ID) 및 플로우 식별자(Flow ID)를 구성하여 5G CN-CP(110)로 PDN Connectivity Complete 메시지를 전송한다(S510).11. The terminal 400 configures a bearer ID and a flow ID and transmits a PDN Connectivity Complete message to the 5G CN-CP 110 (S510).
12. 단말(400)이 PDN 주소 정보를 획득하게 되면, 단말(400)은 5G RRC 메시지를 LTE/LTE-Advanced 기지국(300)을 통해 5G 기지국(200)으로 전송하게 된다(S511).12. When the terminal 400 acquires PDN address information, the terminal 400 transmits a 5G RRC message to the 5G base station 200 through the LTE / LTE-Advanced base station 300 (S511).
상술한 바와 같이 본 발명에 따르면, 플로우 패킷 제어 기반의 5G와 LTE/LTE-Advanced 기지국 연동을 통해 5G의 다양한 요구 사항과 QoS 특성을 갖는 다양한 서비스들을 보다 유연하고 세밀히 제공 가능할 것이다. 또한, 5G와 LTE/LTE-Advanced 기지국 간 효율적인 연동으로 보다 안정적인 연결성을 제공하고 구축/운용 비용의 절감도 가능하다.As described above, according to the present invention, 5G based on flow packet control and LTE / LTE-Advanced base station interworking will be able to provide more flexible and detailed services having various requirements and QoS characteristics of 5G. In addition, efficient linkage between 5G and LTE / LTE-Advanced base stations provides more reliable connectivity and lowers deployment and operation costs.
도 6은 본 실시예들에 따른 기지국(600)의 구성을 나타낸 것이다.6 shows a configuration of a base station 600 according to the present embodiments.
도 6을 참조하면, 본 실시예들에 따른 기지국(600)은, 제어부(610)와 송신부(620), 수신부(630)를 포함한다.Referring to FIG. 6, the base station 600 according to the present embodiments includes a controller 610, a transmitter 620, and a receiver 630.
제어부(610)는, 전술한 본 발명에 따라 플로우 패킷 제어 기반의 5G와 LTE/LTE-Advanced 기지국 연동을 통해 5G의 다양한 요구 사항과 QoS 특성을 갖는 다양한 서비스들을 보다 유연하고 세밀히 제공하는 데에 따른 전반적인 기지국(600)의 동작을 제어한다.According to the above-described present invention, the control unit 610 provides a more flexible and detailed method for providing various services having various requirements and QoS characteristics of 5G through 5G based on flow packet control and LTE / LTE-Advanced base station interworking. The overall operation of the base station 600 is controlled.
송신부(620)와 수신부(630)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는 데 사용된다.The transmitter 620 and the receiver 630 are used to transmit and receive signals, messages, and data necessary for carrying out the present invention described above.
도 7은 본 실시예들에 따른 사용자 단말(700)의 구성을 나타낸 것이다.7 illustrates a configuration of a user terminal 700 according to the present embodiments.
도 7을 참조하면, 본 실시예들에 따른 사용자 단말(700)은, 수신부(710) 및 제어부(720), 송신부(730)를 포함한다.Referring to FIG. 7, the user terminal 700 according to the present exemplary embodiments includes a receiver 710, a controller 720, and a transmitter 730.
수신부(710)는, 기지국으로부터 하향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.The receiver 710 receives downlink control information, data, and a message from a base station through a corresponding channel.
또한, 제어부(720)는, 전술한 본 발명에 따라 플로우 패킷 제어 기반의 5G와 LTE/LTE-Advanced 기지국 연동을 통해 5G의 다양한 요구 사항과 QoS 특성을 갖는 다양한 서비스들을 보다 유연하고 세밀히 제공하는 데에 따른 전반적인 사용자 단말(700)의 동작을 제어한다.In addition, the control unit 720, in accordance with the present invention described above through the flow packet control based 5G and LTE / LTE-Advanced base station interworking to provide a variety of services having a variety of requirements and QoS characteristics of 5G more flexible and detailed The overall operation of the user terminal 700 according to the control.
송신부(730)는, 기지국에 상향링크 제어 정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.The transmitter 730 transmits uplink control information, data, and a message to a base station through a corresponding channel.
전술한 실시예에서 언급한 표준내용 또는 표준문서들은 명세서의 설명을 간략하게 하기 위해 생략한 것으로 본 명세서의 일부를 구성한다. 따라서, 위 표준내용 및 표준문서들의 일부의 내용을 본 명세서에 추가하거나 청구범위에 기재하는 것은 본 발명의 범위에 해당하는 것으로 해석되어야 한다.The standard contents or standard documents mentioned in the above embodiments are omitted to simplify the description of the specification and form a part of the present specification. Therefore, the addition of the contents of the standard and part of the standard documents to the specification or the description in the claims should be construed as falling within the scope of the present invention.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
CROSS-REFERENCE TO RELATED APPLICATIONCROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2016년 05월 13일 한국에 출원한 특허출원번호 제 10-2016-0059079 호 및 2017년 04월 28일 한국에 출원한 특허출원번호 제 10-2017-0055128 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.This patent application is filed with the Patent Application No. 10-2016-0059079 filed in Korea on May 13, 2016 and the patent application No. 10-2017-0055128 filed in Korea on April 28, 2017. Priority is claimed under section (a) (35 USC § 119 (a)), all of which is incorporated by reference in this patent application. In addition, if this patent application claims priority for the same reason for countries other than the United States, all its contents are incorporated into this patent application by reference.

Claims (15)

  1. 이종 무선 액세스 망 간의 연동 방법에 있어서,In the interworking method between heterogeneous radio access networks,
    마스터 기지국이 상기 마스터 기지국 및 세컨더리 기지국과 연결된 코어 네트워크로부터 서비스 품질 정책을 수신하는 단계;Receiving, by a master base station, a quality of service policy from a core network connected with the master base station and the secondary base station;
    상기 코어 네트워크로부터 하나 이상의 패킷 플로우를 수신하는 단계; 및Receiving one or more packet flows from the core network; And
    상기 서비스 품질 정책에 기초하여 상기 하나 이상의 패킷 플로우를 무선 플로우 및 무선 베어러 중 적어도 하나에 매핑하는 단계를 포함하는 방법.Mapping the one or more packet flows to at least one of a radio flow and a radio bearer based on the quality of service policy.
  2. 제1항에 있어서,The method of claim 1,
    상기 하나 이상의 패킷 플로우를 무선 플로우 및 무선 베어러 중 적어도 하나에 매핑하는 단계는,Mapping the one or more packet flows to at least one of a radio flow and a radio bearer,
    상기 패킷 플로우를 상기 무선 플로우에 매핑하는 단계; 및Mapping the packet flow to the wireless flow; And
    상기 무선 플로우를 상기 무선 베어러에 매핑하는 단계를 포함하는 방법.Mapping the radio flow to the radio bearer.
  3. 제1항에 있어서,The method of claim 1,
    상기 코어 네트워크는 단말로부터 패킷 플로우를 수신하고 수신된 패킷 플로우를 무선 플로우에 매핑하는 방법.The core network receives a packet flow from a terminal and maps the received packet flow to a wireless flow.
  4. 제3항에 있어서,The method of claim 3,
    상기 마스터 기지국은 상기 코어 네트워크에 의해 매핑된 상기 무선 플로우를 무선 베어러에 매핑하는 방법.The master base station maps the radio flow mapped by the core network to a radio bearer.
  5. 제1항에 있어서,The method of claim 1,
    상기 마스터 기지국은 상기 코어 네트워크에 의해 할당된 플로우 식별자를 단말로 전송하는 방법.The master base station transmits a flow identifier assigned by the core network to the terminal.
  6. 제1항에 있어서,The method of claim 1,
    상기 코어 네트워크는 단말로부터 플로우 식별자 및 베어러 식별자를 포함하는 메시지를 수신하는 방법.And the core network receives a message including a flow identifier and a bearer identifier from a terminal.
  7. 제1항에 있어서,The method of claim 1,
    상기 코어 네트워크, 상기 마스터 기지국, 상기 세컨더리 기지국 및 단말 간에 상기 서비스 품질 정책을 설정 및 요청하는 절차를 수행하는 방법.And setting and requesting the quality of service policy between the core network, the master base station, the secondary base station, and a terminal.
  8. 이종 무선 액세스 망 간의 연동 방법에 있어서,In the interworking method between heterogeneous radio access networks,
    단말이 코어 네트워크로 패킷 플로우를 전송하는 단계;Transmitting, by the terminal, the packet flow to the core network;
    상기 코어 네트워크에 의해 할당된 플로우 식별자에 기초하여 상기 패킷 플로우와 무선 베어러 간의 매핑을 수행한 마스터 기지국 또는 세컨더리 기지국으로부터 메시지를 수신하는 단계; 및Receiving a message from a master base station or a secondary base station that has performed mapping between the packet flow and the radio bearer based on the flow identifier assigned by the core network; And
    상기 코어 네트워크로 상기 플로우 식별자 및 베어러 식별자를 포함하는 메시지를 전송하는 단계를 포함하는 방법.Sending a message comprising the flow identifier and a bearer identifier to the core network.
  9. 제8항에 있어서,The method of claim 8,
    상기 마스터 기지국 또는 상기 세컨더리 기지국은 상기 패킷 플로우를 무선 플로우에 매핑하고, 상기 무선 플로우를 상기 무선 베어러에 매핑하는 방법.The master base station or the secondary base station maps the packet flow to a radio flow and the radio flow to the radio bearer.
  10. 제8항에 있어서,The method of claim 8,
    상기 코어 네트워크가 상기 패킷 플로우를 무선 플로우에 매핑하고, 상기 마스터 기지국 또는 상기 세컨더리 기지국이 상기 무선 플로우를 상기 무선 베어러에 매핑하는 방법.The core network maps the packet flow to a radio flow, and the master base station or the secondary base station maps the radio flow to the radio bearer.
  11. 제8항에 있어서,The method of claim 8,
    상기 단말은 상기 마스터 기지국 또는 상기 세컨더리 기지국으로부터 상기 코어 네트워크에 의해 할당된 상기 플로우 식별자를 수신하는 방법.The terminal receiving the flow identifier assigned by the core network from the master base station or the secondary base station.
  12. 제8항에 있어서,The method of claim 8,
    상기 코어 네트워크, 상기 마스터 기지국, 상기 세컨더리 기지국 및 상기 단말 간에 서비스 품질 정책을 설정 및 요청하는 절차를 수행하는 방법.And setting and requesting a quality of service policy between the core network, the master base station, the secondary base station, and the terminal.
  13. 이종 무선 액세스 망 간의 연동시 초기 연결 설정 방법에 있어서,In the initial connection setting method when interworking between heterogeneous wireless access networks,
    마스터 기지국과 연결을 위한 단말이 코어 네트워크로 연결 요청 메시지를 전송하는 단계;Transmitting, by the terminal for connection with the master base station, a connection request message to the core network;
    상기 코어 네트워크에 의해 할당된 플로우 식별자에 기초하여 플로우와 무선 베어러 간의 매핑을 수행한 세컨더리 기지국으로부터 연결 재설정 메시지를 수신하는 단계; 및Receiving a connection reestablishment message from a secondary base station which has performed mapping between a flow and a radio bearer based on the flow identifier assigned by the core network; And
    상기 세컨더리 기지국으로 연결 재설정 완료 메시지를 전송하는 단계를 포함하는 방법.Sending a connection reset complete message to the secondary base station.
  14. 제13항에 있어서,The method of claim 13,
    상기 마스터 기지국과 상기 세컨더리 기지국은 상기 플로우를 무선 플로우에 매핑하고, 상기 무선 플로우를 상기 무선 베어러에 매핑하는 방법.And the master base station and the secondary base station map the flow to a radio flow and the radio flow to the radio bearer.
  15. 제13항에 있어서,The method of claim 13,
    상기 단말이 상기 코어 네트워크로 상기 플로우 식별자와 베어러 식별자를 포함하는 메시지를 전송하는 단계를 더 포함하는 방법.Transmitting, by the terminal, a message including the flow identifier and a bearer identifier to the core network.
PCT/KR2017/004894 2016-05-13 2017-05-11 Method for interworking between heterogeneous radio access networks and apparatus therefor WO2017196106A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/092,471 US11096091B2 (en) 2016-05-13 2017-05-11 Method for interworking between heterogeneous radio access networks and apparatus therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0059079 2016-05-13
KR20160059079 2016-05-13
KR1020170055128A KR102172469B1 (en) 2016-05-13 2017-04-28 Methods for interworking between heterogeneous radio access networks and apparatuses
KR10-2017-0055128 2017-04-28

Publications (1)

Publication Number Publication Date
WO2017196106A1 true WO2017196106A1 (en) 2017-11-16

Family

ID=60267159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004894 WO2017196106A1 (en) 2016-05-13 2017-05-11 Method for interworking between heterogeneous radio access networks and apparatus therefor

Country Status (1)

Country Link
WO (1) WO2017196106A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451463A (en) * 2018-11-22 2019-03-08 中通服咨询设计研究院有限公司 A kind of electric bicycle theftproof system based on 5G network
WO2019236332A1 (en) * 2018-06-06 2019-12-12 T-Mobile Usa, Inc. Network symbol display in dual connectivity regions
CN110710257A (en) * 2018-02-08 2020-01-17 Oppo广东移动通信有限公司 Method and apparatus for uplink and downlink data transmission
WO2020046683A1 (en) * 2018-08-27 2020-03-05 T-Mobile Usa, Inc. Use-triggered signal scanning for network detection
CN111436057A (en) * 2019-01-15 2020-07-21 华为技术有限公司 Session management method and device
CN111586860A (en) * 2019-02-19 2020-08-25 华为技术有限公司 Communication method and device
CN111586642A (en) * 2019-02-19 2020-08-25 华为技术有限公司 Communication method and device
US11102627B1 (en) 2020-02-14 2021-08-24 T-Mobile Usa, Inc. Service type symbols
US11116030B2 (en) 2019-04-29 2021-09-07 T-Mobile Usa, Inc. 5G wireless network connection symbol policy
US11382106B2 (en) 2020-04-22 2022-07-05 T-Mobile Usa, Inc. Network symbol display for dual connectivity networks

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045268A1 (en) * 2013-09-27 2015-04-02 Panasonic Intellectual Property Corporation Of America Efficient uplink scheduling mechanisms for dual connectivity
US20150181473A1 (en) * 2013-12-19 2015-06-25 Qualcomm, Incorporated Serving gateway relocation and secondary node eligibility for dual connectivity
WO2015165540A1 (en) * 2014-04-30 2015-11-05 Nokia Solutions And Networks Oy A method, apparatus and system
US20160057687A1 (en) * 2014-08-19 2016-02-25 Qualcomm Incorporated Inter/intra radio access technology mobility and user-plane split measurement configuration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045268A1 (en) * 2013-09-27 2015-04-02 Panasonic Intellectual Property Corporation Of America Efficient uplink scheduling mechanisms for dual connectivity
US20150181473A1 (en) * 2013-12-19 2015-06-25 Qualcomm, Incorporated Serving gateway relocation and secondary node eligibility for dual connectivity
WO2015165540A1 (en) * 2014-04-30 2015-11-05 Nokia Solutions And Networks Oy A method, apparatus and system
US20160057687A1 (en) * 2014-08-19 2016-02-25 Qualcomm Incorporated Inter/intra radio access technology mobility and user-plane split measurement configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EL AYOUBI, SALAH EDDINE ET AL.: "Preliminary Views and Initial Considerationson 5G RAN Architecture and Functional Design", 5G PPP (THE 5G INFRASTRUCTURE PUBLIC PRIVATE PARTNERSHIP, 8 March 2016 (2016-03-08), XP055347115, Retrieved from the Internet <URL:https://bscw.5g-ppp.eu/pub/bscw.cgi/d92532/5G-PPP-METIS-II-5G-RAN-Architectere-White-Paper.pdf> *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710257A (en) * 2018-02-08 2020-01-17 Oppo广东移动通信有限公司 Method and apparatus for uplink and downlink data transmission
WO2019236332A1 (en) * 2018-06-06 2019-12-12 T-Mobile Usa, Inc. Network symbol display in dual connectivity regions
US10873885B2 (en) 2018-08-27 2020-12-22 T-Mobile Usa, Inc. Use-triggered signal scanning for network detection
WO2020046683A1 (en) * 2018-08-27 2020-03-05 T-Mobile Usa, Inc. Use-triggered signal scanning for network detection
CN109451463A (en) * 2018-11-22 2019-03-08 中通服咨询设计研究院有限公司 A kind of electric bicycle theftproof system based on 5G network
CN111436057A (en) * 2019-01-15 2020-07-21 华为技术有限公司 Session management method and device
CN111436057B (en) * 2019-01-15 2022-06-28 华为技术有限公司 Session management method and device
US11930393B2 (en) 2019-01-15 2024-03-12 Huawei Technologies Co., Ltd. Session management method and apparatus
CN111586642A (en) * 2019-02-19 2020-08-25 华为技术有限公司 Communication method and device
WO2020169030A1 (en) * 2019-02-19 2020-08-27 华为技术有限公司 Communication method and apparatus
CN111586860A (en) * 2019-02-19 2020-08-25 华为技术有限公司 Communication method and device
CN111586860B (en) * 2019-02-19 2023-01-06 华为技术有限公司 Communication method and device
US11116030B2 (en) 2019-04-29 2021-09-07 T-Mobile Usa, Inc. 5G wireless network connection symbol policy
US11102627B1 (en) 2020-02-14 2021-08-24 T-Mobile Usa, Inc. Service type symbols
US11902862B2 (en) 2020-02-14 2024-02-13 T-Mobile Usa, Inc. Service type symbols
US11382106B2 (en) 2020-04-22 2022-07-05 T-Mobile Usa, Inc. Network symbol display for dual connectivity networks

Similar Documents

Publication Publication Date Title
WO2017196106A1 (en) Method for interworking between heterogeneous radio access networks and apparatus therefor
WO2018043960A1 (en) Method and device for transmitting or receiving data in next generation wireless access network
WO2018012873A1 (en) Method for configuring central unit by using fronthaul interface, and device for same
WO2014051293A1 (en) Method and apparatus for blind decoding adjustment in downlink control channel
US10855658B2 (en) Method for transmitting and receiving data using WLAN carriers and apparatus thereof
WO2013028044A2 (en) Method of performing direct communication between terminals, method of supporting same, and apparatus for same
WO2018097497A1 (en) Access method in communication system and device for performing same
WO2015147615A1 (en) Method and apparatus for prioritizing d2d transmission and d2d reception in wireless communication system
WO2015133869A1 (en) Method and device for transmitting media access control information in wireless communication system supporting device-to-device communication
WO2010151047A2 (en) Apparatus and method for setting up radio bearer in wireless communication system
WO2016021945A1 (en) Method and device for communicating in unlicensed band
WO2015046830A1 (en) Method for transceiving downlink data channel and apparatus therefor
WO2015174805A1 (en) Method and apparatus for transmitting and receiving signal by device-to-device terminal in wireless communication system
WO2015170901A1 (en) Method and apparatus for radio interface-based inter-cell synchronization in wireless communication system
WO2019017707A1 (en) Method for performing a lcp procedure in wireless communication system and a device therefor
WO2017022959A1 (en) Method for indicating a priority for relay data in a d2d communication system and device therefor
WO2014182131A1 (en) Method for configuring terminal identifier in wireless communication system supporting dual connectivity and apparatus thereof
WO2012020995A2 (en) Apparatus and method for transmitting and receiving signal in a mobile communication system
WO2018131904A1 (en) Method for controlling heterogeneous network handover and apparatus therefor
WO2014157927A1 (en) Method for controlling transmission of uplink control information on plurality of serving cells, and apparatus therefor
WO2016010276A1 (en) Data retransmission processing method and apparatus therefor
WO2016013779A1 (en) Method for receiving scheduling information of unlicensed spectrum cell and device thereof
KR102172469B1 (en) Methods for interworking between heterogeneous radio access networks and apparatuses
WO2018080268A1 (en) Method and device for allocating data channel resource for next-generation wireless access network
WO2019070099A1 (en) Method and apparatus for generating reference signal sequence in wireless communication system

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17796406

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 14/03/2019 )

122 Ep: pct application non-entry in european phase

Ref document number: 17796406

Country of ref document: EP

Kind code of ref document: A1