WO2017188130A1 - Pressure-sensitive detection method, pressure-sensitive sensor, pressure-sensitive detection device, and pressure-sensitive detection system - Google Patents

Pressure-sensitive detection method, pressure-sensitive sensor, pressure-sensitive detection device, and pressure-sensitive detection system Download PDF

Info

Publication number
WO2017188130A1
WO2017188130A1 PCT/JP2017/015976 JP2017015976W WO2017188130A1 WO 2017188130 A1 WO2017188130 A1 WO 2017188130A1 JP 2017015976 W JP2017015976 W JP 2017015976W WO 2017188130 A1 WO2017188130 A1 WO 2017188130A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
electrode
sensitive
sensor
piezoelectric
Prior art date
Application number
PCT/JP2017/015976
Other languages
French (fr)
Japanese (ja)
Inventor
米田 哲也
康 油谷
泰央 市川
央隆 佐藤
佳郎 田實
Original Assignee
日本バルカー工業株式会社
学校法人関西大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本バルカー工業株式会社, 学校法人関西大学 filed Critical 日本バルカー工業株式会社
Priority to JP2018514554A priority Critical patent/JPWO2017188130A1/en
Publication of WO2017188130A1 publication Critical patent/WO2017188130A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Definitions

  • the present invention relates to a sensor technology for detecting pressure received from a person or an object with a piezoelectric element.
  • the weight of the person or the object is converted into an electrical signal, and a pressure sensor is used for the presence or absence of the person or the object, the passage or gathering of the electrical signal.
  • this pressure sensor includes a pressure-sensitive conductive rubber and an electrode whose electrical resistance value and impedance change when pressurized, and detects pressure applied from the outside (Patent Document 1).
  • the spacer is held between the upper and lower electrodes, the spacer is compressed by weighting, and the passage of a person or an object is determined when the pressure-sensitive conductive rubber and the electrode are electrically connected. It is possible.
  • the detection structure using such pressure-sensitive conductive rubber or spacer has the following problems.
  • Conductive rubber and spacers are subject to deterioration over time and elastic fatigue, and stable operation cannot be obtained over a long period of time, resulting in malfunction and lack of reliability.
  • Conductive rubber and spacer elasticity keeps the distance between electrodes, conduction between contacts by compression, and return of distance by compression release. Is hindered.
  • Patent Document 1 does not disclose or suggest the request, and does not disclose or suggest the configuration or the like for solving it.
  • an object of the present invention is to obtain a detection output corresponding to a pressure level, to reduce the size and weight of the sensor, increase the detection efficiency, and obtain a highly reliable pressure-sensitive characteristic.
  • a single or a plurality of piezoelectric layers having a pressure input surface portion are installed in a pressure input detection area, and the piezoelectric layer is sandwiched therebetween.
  • a single or a plurality of piezoelectric layers having a pressure input surface portion in a pressure input detection area and the piezoelectric layer are disposed between the piezoelectric layers.
  • a single or a plurality of electrode pairs, and a pattern electrode that is provided on at least one electrode of the electrode pair includes a plurality of electrode portions narrower than the pressure input surface portion, and receives pressure input.
  • a pressure-sensitive output obtained by input is taken out from the plurality of electrode portions included in the pattern electrode.
  • the pattern electrode may be a plurality of electrodes that extract one or more of pressure-sensitive outputs indicating the level, position, direction, or range of the pressure input, and outputs indicating a distribution of a plurality of pressure inputs. May include parts.
  • the pattern electrode may include a plurality of electrode portions disposed on any one or more of a plane, a back surface, and a side surface of the piezoelectric layer.
  • the pattern electrode includes a single or a plurality of electrode portions that are continuously bent on the pressure input surface of the piezoelectric layer, a plurality of electrode portions obtained by dividing the single electrode portion into two or more, A plurality of electrode portions arranged in the X-axis direction, the Y-axis direction, or the Z-axis direction on the pressure input surface of the piezoelectric layer, or a plurality of electrode portions branched in any plurality of directions on the pressure input surface Either may be included.
  • the pressure sensor may further include a shield layer that shields at least the electrode pair.
  • the pressure sensor may further include a viscoelastic protective layer that covers the piezoelectric layer, and a non-slip layer that is installed on an outer surface of the viscoelastic protective layer.
  • the pressure-sensitive sensor may further include a rigid layer that is interposed between the piezoelectric layer and the support means and supports the laminate including the piezoelectric layer.
  • the presence of a person or an object, a position, a passage, or a set of the pressure-sensitive sensor and the pressure-sensitive output of the pressure-sensitive sensor are used. Determination means for determining one of them.
  • the pressure-sensitive sensor and the signal conversion unit that converts the sensor output of the pressure-sensitive sensor into a sound signal or an optical signal are provided.
  • the control signal for starting and stopping the operation of the control target device according to the pressure-sensitive sensor and the sensor output level of the pressure-sensitive sensor.
  • a control unit for outputting.
  • the pressure-sensitive sensor or the pressure-sensitive detection device and the pressure-sensitive sensor or the pressure-sensitive detection device are installed.
  • the detection efficiency can be increased by reducing the dead area from the pressure input surface.
  • the pressure sensor can be reduced in size and weight, and there is no deterioration of the contacts over time, and stable pressure sensing can be detected over a long period of time. And maintenance costs can be reduced.
  • a pressure-sensitive output at a level corresponding to the pressure input can be obtained, and the degree of freedom of processing such as processing using the pressure-sensitive output level can be expanded.
  • A is a diagram showing a pressure-sensitive operation when a pressure input M is applied to either one of the electrode unit 16a-1 or the electrode unit 16a-2
  • B is a diagram illustrating both the electrode unit 16a-1 and the electrode unit 16a-2
  • FIG. 7 is a diagram showing a pressure-sensitive operation when a pressure input M is applied to the electrode portion C
  • FIG. C is a diagram showing a pressure-sensitive operation when the pressure input M applied to the electrode portions 16a-1 and 16a-2 is biased. .
  • A is a figure which abbreviate
  • B is a figure which shows a part of lamination
  • A is a plan view showing a step device according to Embodiment 2
  • B is a view showing a VB-VB cross section of A.
  • FIG. A is a figure which shows the building provided with the pressure-sensitive detection system which concerns on Example 3
  • B is a figure which shows a pressure-sensitive detection system. It is a figure which shows a pressure sensitive detection apparatus. It is a figure which shows a pressure sensitive operation.
  • 10 is a diagram illustrating a mat sensor according to a fourth embodiment. It is a figure which shows a pressure sensitive operation and signal processing. 10 is a diagram illustrating an example of an electrode unit according to Example 5.
  • FIG. It is a figure which shows an example of another electrode part. It is a figure which shows an example of another electrode part. It is a figure which shows an example of another electrode part. It is a figure which shows an example of another electrode part. It is a figure which shows an example of another electrode part. It is a figure which shows an example of another electrode part. It is a figure which shows an example of another electrode part. It is a figure which shows the pressure-sensitive detection apparatus which concerns on Example 6.
  • FIG. 10 is a diagram illustrating a mat sensor according to a fourth embodiment. It is a figure which shows a pressure sensitive operation and signal processing.
  • 10 is a diagram illustrating an example of an electrode unit according to Example 5.
  • FIG. It is a figure which shows an example of another electrode part. It is a figure which shows an
  • FIG. 1A shows a pressure-sensitive detection method and a pressure-sensitive sensor according to an embodiment.
  • the pressure sensor 2 is provided with a detection area 4 and receives a pressure input M in the detection area 4.
  • This pressurizing input M is a pressure applied from a person or an object, and may be a pressure from the foot surface for a person, for example, or a pressure from the bottom surface for an object.
  • the detection area 4 may be set in an area where a person or an object passes.
  • the pressure sensor 2 is provided with a piezoelectric layer 6.
  • the piezoelectric layer 6 includes a back support layer 8 on the back side, is supported by the area side support surface 10 of the detection area, and includes a pressure transmission layer 12 that receives the pressure input M on the top side.
  • the piezoelectric layer 6 is, for example, a piezoelectric sheet, and a pressure input M is applied to the piezoelectric layer 6 through the pressure transmission layer 12 and converted into a piezoelectric output by the piezoelectric conversion function of the piezoelectric layer 6.
  • the piezoelectric layer 6 includes a pressure input surface portion 14a on the upper surface side and a support surface portion 14b on the lower surface side. That is, the pressure input surface portion 14a is a pressure receiving surface for the pressure input M, and the support surface portion 14b is a support surface for receiving the pressure input M on the back side.
  • the piezoelectric layer 6 includes an electrode pair 16 as an example of a single or a plurality of pattern electrode pairs.
  • the electrode pair 16 includes electrode portions 16a-1 and 16a-2 on the electrode 16a on the pressure input surface portion 14a side, and electrode portions 16b-1 and 16b-2 on the electrode 16b on the support surface portion 14b side. That is, the electrode portions 16a-1 and 16a-2 have an electrode surface narrower than the pressure input surface portion 14a, and the electrode portions 16b-1 and 16b-2 are the same.
  • a narrow insulation interval 18 is set between the adjacent electrode portions 16a-1 and 16a-2, and also between the electrode portions 16b-1 and 16b-2. A similar insulation interval 18 is set.
  • the electrode pair 16 includes a plurality of electrode portions 16a-1, 16a-2 or electrode portions 16b-1, 16b-2 to form a patterned electrode having a plurality of electrode surfaces.
  • the electrode portions 16b-1 and 16b-2 also form pattern electrodes, but the pattern electrode is formed only by one of the electrode portions 16a-1 and 16a-2, and the electrode portions 16b-1 and 16b- 2 may be a single electrode part.
  • a piezoelectric output is obtained from the electrode portion 16a-1.
  • a piezoelectric output is obtained from the electrode portion 16a-2. This can be determined by comparing and amplifying the piezoelectric outputs of the electrode portions 16a-1 and 16a-2 with a differential amplifier or the like.
  • piezoelectric outputs can be obtained from both the electrode portions 16a-1 and 16a-2. If the same pressure is applied to both the electrode portions 16a-1 and 16a-2, the same piezoelectric output can be obtained from the electrode portions 16a-1 and 16a-2. This can be similarly determined by comparing the piezoelectric outputs of the electrode portions 16a-1 and 16a-2.
  • the piezoelectric output obtained from the electrode portion 16a-1 can be obtained. It becomes larger than the piezoelectric output obtained from the electrode portion 16a-2.
  • the piezoelectric obtained from the electrode portion 16a-2 is obtained. The output becomes larger than the piezoelectric output obtained from the electrode portion 16a-1. This can be similarly determined by comparing the piezoelectric outputs of the electrode portions 16a-1 and 16a-2.
  • the piezoelectric layer 6 may be a piezoelectric functional layer of a single member or a laminate of a plurality of members.
  • the piezoelectric layer 6 may be formed by laminating a double-side smoothing layer, a protective layer, an insulating layer, or the like, or may be a monomorph, a bimorph, or a laminated type.
  • the piezoelectric layer 6 may be an organic piezoelectric layer such as a piezoelectric resin sheet or a porous resin sheet, or may be an inorganic piezoelectric material layer such as quartz, barium titanate, or lead zirconate titanate.
  • the piezoelectric layer 6 has a piezoelectric constant d33 of preferably 20 ⁇ 10 ⁇ 12 [C / N] or more, more preferably 100 ⁇ 10 ⁇ , in order to achieve an excellent vibration detection function by detecting vibration in the thickness direction.
  • a piezoelectric material of 12 [C / N] or more may be used.
  • a porous resin sheet may be used for the piezoelectric layer 6.
  • This porous resin sheet has the following characteristics.
  • the porous resin sheet is preferably a sheet made of, for example, an organic material that can retain electric charge.
  • This porous resin sheet includes a nonwoven fabric or woven fabric made of fiber, a sheet-like foam made of an organic polymer, a stretched porous membrane made of an organic polymer, a matrix resin and charge-induced hollow particles (the surface of the hollow particles). And a phase separation agent dispersed in an organic polymer is removed by using an extractant such as supercritical carbon dioxide and empty.
  • seat etc. which are formed by the method of forming a hole are contained. From the viewpoint of maintaining durability and deformation performance, a nonwoven fabric or a woven fabric using a polymer fiber is preferable.
  • the porous resin sheet may contain one or more inorganic fillers. Thereby, the charge retention amount is high, and excellent piezoelectric characteristics can be obtained. If an inorganic filler is used, a sheet having a high piezoelectricity can be obtained.
  • Inorganic fillers include titanium oxide, aluminum oxide, barium titanate, lead zirconate titanate, zirconium oxide, cerium oxide, nickel oxide, tin oxide and the like.
  • the thickness of the porous resin sheet may be, for example, 10 [ ⁇ m] to 1 [mm], and more preferably 50 [ ⁇ m] to 500 [ ⁇ m].
  • the porosity is preferably 60% or more, more preferably 75% or more, and further preferably 80 to 99%. This porosity is (True density of resin-apparent density of porous resin sheet) ⁇ 100 / true density of resin (1) Is required.
  • the apparent density may be a value calculated using the weight of the porous resin sheet and the apparent volume.
  • the polymer constituting the fiber preferably has a volume resistivity of 1.0 ⁇ 10 13 [ ⁇ ⁇ cm] or more, such as polyamide resin (6-nylon, 6,6-nylon, etc.), aromatic polyamide Resins (such as aramid), polyolefin resins (such as polyethylene and polypropylene), polyester resins (such as polyethylene terephthalate), polyacrylonitrile, phenolic resins, fluorine resins (such as polytetrafluoroethylene and polyvinylidene fluoride), imides Any of resin (polyimide, polyamideimide, bismaleimide, etc.) may be used.
  • polyamide resin (6-nylon, 6,6-nylon, etc.)
  • aromatic polyamide Resins such as aramid
  • polyolefin resins such as polyethylene and polypropylene
  • polyester resins such as polyethylene terephthalate
  • fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride
  • polystyrene resin polystyrene resin
  • silicone resin polystyrene resin
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • the continuous usable temperature is high and the glass transition point is not in the operating temperature range.
  • the continuous usable temperature of the polymer is preferably 50 [° C.] or higher, more preferably 100 [° C.] or higher, and further preferably 200 [° C.]. [° C.] or more.
  • moisture resistance those exhibiting hydrophobicity are preferred.
  • a polyolefin resin or a fluorine resin may be used as the polymer having these characteristics. If a polyolefin-based resin or a fluorine-based resin is used, vibration detection is possible without causing deterioration in piezoelectric characteristics even in vibration detection at temperatures below 100 [° C.] or temperatures exceeding 100 [° C.]. PTFE is preferred for the fluororesin.
  • PTFE has excellent heat resistance, vibration detection capability and durability, and can realize the pressure-sensitive sensor 2 capable of detecting pressure under high temperature, and can maintain vibration detection performance and structure under high temperature and high pressure environment. It is.
  • the fiber for forming the piezoelectric layer 6 has an average fiber diameter of preferably 0.05 to 50 [ ⁇ m], more preferably 0.1 to 20 [ ⁇ m], and still more preferably 0.3 to 5 [ ⁇ m]. Good. If the average fiber diameter is within this range, a nonwoven fabric or woven fabric exhibiting high flexibility can be obtained. If the fiber surface area is increased, a sufficient space can be formed to hold the charge, and the fiber distribution uniformity can be increased even when the nonwoven fabric or woven fabric is formed thin.
  • the average fiber diameter of the fiber can be adjusted by selecting the fiber formation conditions. For example, according to the electrospinning method, the average fiber diameter of the obtained fiber is reduced by reducing the humidity, reducing the nozzle diameter, increasing the applied voltage, or increasing the voltage density during electrospinning. Tend.
  • the average fiber diameter is measured by scanning electron microscope (SEM) observation of the fiber (group) to be measured, and randomly, for example, a plurality of SEM images observed at a magnification of 10,000 times, What is necessary is just to obtain
  • SEM scanning electron microscope
  • the fiber diameter variation coefficient of the fiber is preferably 0.7 or less, more preferably 0.01 to 0.5 from the value calculated by the following formula. If this fiber diameter variation coefficient is within a predetermined range, the fiber diameter of the fiber becomes uniform, and the nonwoven fabric or woven fabric obtained from this fiber has a higher porosity and a high charge retention porous resin sheet. From the viewpoint of obtaining
  • Fiber diameter variation coefficient standard deviation / average fiber diameter (2)
  • the “standard deviation” is a standard deviation of the fiber diameters of the 20 fibers.
  • the fiber length of the fiber is preferably 0.1 to 1000 [mm], more preferably 0.5 to 100 [mm], and still more preferably 1 to 50 [mm].
  • the fiber may be produced by, for example, an electrospinning method, a melt spinning method, a melt electrospinning method, a spunbond method (melt blow method), a wet method, or a spunlace method.
  • the fiber obtained by the electrospinning method has a small fiber diameter.
  • a porous resin sheet having a high porosity, a high specific surface area, and high piezoelectricity can be obtained.
  • a spinning solution containing a polymer and, if necessary, a solvent is used.
  • a polymer may be used individually by 1 type and may use 2 or more types.
  • the ratio of the polymer contained in the spinning solution may be, for example, 5 to 100 [wt%], preferably 5 to 80 [wt%], more preferably 10 to 70 [wt%].
  • the solvent is not limited as long as it can dissolve or disperse the polymer.
  • the solvent include water, dimethylacetamide, dimethylformamide, tetrahydrofuran, methylpyrrolidone, xylene, acetone, chloroform, ethylbenzene, cyclohexane, benzene, sulfolane, methanol, ethanol, phenol, pyridine, propylene carbonate, acetonitrile, trichloroethane, hexafluoroisopropanol, Any of diethyl ether may be used. These solvents may be used alone or in a combination of two or more.
  • the solvent contained in the spinning solution may be, for example, 0 to 90 [wt%], preferably 10 to 90 [wt%], more preferably 20 to 80 [wt%].
  • the spinning solution may contain additives such as an inorganic filler other than a polymer, a surfactant, a dispersant, a charge adjusting agent, a functional particle, an adhesive, a viscosity adjusting agent, and a fiber forming agent.
  • An additive may be used individually by 1 type and 2 or more types may be sufficient as it.
  • the solubility of the polymer in the solvent is low, for example, when the polymer is PTFE and the solvent is water, one or more fiber forming agents are used to keep the polymer in a fiber shape during spinning. It is preferable to contain.
  • a polymer having high solubility in a solvent is preferable.
  • the fiber forming agent include polyethylene oxide, polyethylene glycol, dextran, alginic acid, chitosan, starch, polypinylpyrrolidone, polyacrylic acid, polymethacrylic acid, polyacrylamide, cellulose, and polyvinyl alcohol.
  • the amount of the fiber-forming agent used may be, for example, 0.1 to 15% by weight, preferably 1 to 10% by weight in the spinning solution, although it depends on the viscosity of the solvent and the solubility in the solvent.
  • the spinning solution may be produced by mixing a polymer, a solvent, and if necessary, an additive by a known method. If the polymer is PTFE, the spinning solution contains PTFE in an amount of 30 to 70 [wt%], preferably 35 to 60 [wt%], and a fiber forming agent in an amount of 0.1 to 10 [wt%], preferably 1 to A spinning solution containing 7 wt% and a total of 100 wt% solvent is preferred.
  • the applied voltage at the time of electrospinning is preferably 1 to 100 [kV], more preferably 5 to 50 [kV], and still more preferably 10 to 40 [kV].
  • the tip diameter (outer diameter) of the spinning nozzle used for electrospinning is preferably 0.1 to 2.0 [mm], more preferably 0.2 to 1.6 [mm].
  • the applied voltage is preferably 10 to 50 [kV], more preferably 10 to 40 [kV].
  • the tip diameter (outer diameter) of the spinning nozzle is preferably 0.3 to 1.6 [mm].
  • an electrospinning method may be used to simultaneously perform a step of producing fibers and a step of collecting fibers into a sheet to form a nonwoven fabric, or a step of producing fibers. Then, the process of accumulating the said fiber in a sheet form by a wet method and forming a nonwoven fabric may be performed.
  • a method may be used in which an aqueous dispersion containing fibers is used, and the fibers are deposited (accumulated) on a mesh and formed into a sheet (paper making).
  • the amount of fiber used in this wet method is preferably 0.1 to 10 [wt%], more preferably 0.1 to 5 [wt%] based on the total amount of the aqueous dispersion. If the fiber is used within this range, water can be efficiently used in the process of depositing the fiber, and the fiber is well dispersed and a uniform wet nonwoven fabric can be obtained.
  • the aqueous dispersion is composed of a dispersing agent or an oil agent composed of a cationic, anionic or nonionic surfactant, an antifoaming agent or the like for suppressing the generation of bubbles, respectively. Seeds or two or more may be added.
  • the method for manufacturing a woven fabric using fibers may include a fiber manufacturing step and a woven fabric forming step of weaving the fibers obtained in this step into a sheet.
  • a known weaving method may be used as a method for weaving the fiber into a sheet. Examples of the weaving method include water jet loom, air-jet loom, and rapier room.
  • the non-woven fabric or woven fabric may be heat-treated usually under conditions of 200 to 390 [° C.] and 30 to 300 [min]. By performing this heat treatment, the solvent, fiber forming agent, etc. remaining on the nonwoven fabric or woven fabric can be removed.
  • a method for producing a nonwoven fabric a case in which a production process of fibers made of PTFE by an electrospinning method is included is illustrated.
  • a method for producing a nonwoven fabric made of PTFE fiber a known production method can be adopted, and examples thereof include a method described in JP-T-2012-515850.
  • This production method includes a step of providing a spinning solution containing PTFE, a fiber forming agent, and a solvent and having a viscosity of at least 50,000 [cP], and spinning the spinning solution from a nozzle to form a fiber by electrostatic traction.
  • a step of collecting the fibers on a collector e.g., a take-up spool
  • firing the precursor to remove the solvent and fiber-forming agent to form a nonwoven fabric made of PTFE fibers.
  • the basis weight of the nonwoven fabric and the woven fabric is preferably 100 [g / m2] or less, more preferably 0.1 to 50 [g / m2], and still more preferably 0.1 to 20 [g / m2].
  • the basis weight tends to increase by increasing the spinning time and increasing the number of spinning nozzles.
  • Nonwoven fabrics and woven fabrics have fibers accumulated or woven in sheet form.
  • Such a non-woven fabric and a woven fabric may be either a single layer or two or more layers having different materials and fiber diameters.
  • the porous resin sheet is preferably subjected to polarization treatment. If the polarization treatment is performed, electric charge can be injected into the sheet, and the electric charge is concentrated in the pores in the porous resin sheet to induce polarization. In the internally polarized sheet, the charge can be taken out from the front and back surfaces of the sheet by a compressive load applied in the thickness direction of the sheet. That is, such charges cause charge transfer to the external load (electric circuit), and an electromotive force is obtained. This causes a potential difference, that is, a voltage.
  • polarization treatment method a known method may be used.
  • a corona discharge treatment may be used in addition to a DC voltage or AC voltage application treatment.
  • a high voltage power source and an electrode device may be used.
  • the discharge conditions are appropriately selected according to the material and thickness of the porous resin sheet.
  • the preferred treatment condition is a voltage of ⁇ 0.1 to ⁇ 100 [kV]. More preferably, it is -1 to -20 [kV], the current is 0.1 to 100 [mA], more preferably 1 to 80 [mA], and the distance between the electrodes is 0.1 to 100 [cm], more preferably
  • the applied voltage may be 1 to 10 [cm], and the applied voltage may be 0.01 to 10.0 [MV / m], more preferably 0.5 to 2.0 [MV / m].
  • the porous resin sheet itself may be polarized.
  • the piezoelectric layer is a laminate of, for example, a porous resin sheet and an insulating layer, the laminate is formed. After that, it is preferable to perform polarization treatment after the insulating layers are stacked.
  • the layer laminated on the porous resin sheet plays a role of preventing the electric charge held in the porous resin sheet by the polarization treatment from being attenuated by being electrically connected to the external environment. This contributes to high sensitivity of pressure detection. Moreover, it exists in the tendency which can form the new interface which can hold
  • the electrode pair 16 includes at least a pair of electrodes 16a and 16b.
  • Each electrode 16a, 16b may be an electrode layer.
  • the constituent material of the electrode layer may be any of metal (alloy), metal oxide, metal sulfide, conductive carbide, conductive polymer, and combinations thereof.
  • metals alloys
  • metal oxides metal oxides
  • metal sulfides lithium, beryllium, magnesium, calcium, strontium, barium, boron, aluminum, gallium, indium, antimony, tin, silver, gold, copper, nickel, palladium, platinum , Chromium, molybdenum, tungsten, manganese, cobalt, alloys of these, oxides of these, composite oxides of these, sulfides of these, indium tin oxide (Indium Tin Oxide: ITO), zinc oxide (Zinc Oxide) : ZnO), silver and the like are suitable.
  • ITO Indium Tin Oxide
  • Zinc Oxide zinc oxide
  • silver and the like are suitable.
  • Conductive carbides include carbon black, graphite, activated carbon, carbon fiber, single-walled carbon nanotube (SWCNT), double-walled carbon nanotube (Double-Walled Nanotube: DWCNT), and multi-walled carbon nanotube (Multi -Walled Carbon Nanotube (MWCNT), carbon nanosheet (graphene sheet), etc. are included.
  • Examples of the conductive polymer include poly (ethylene-3, 4-dioxythiophene), polyaniline derivatives, polypyrrole derivatives, and the like.
  • the electrode 16a is an electrode layer on the pressure input surface portion 14a
  • the electrode 16b is an electrode layer on the support surface portion 14b.
  • the insensitive area can be reduced from the pressure input surface portion 14 a and the detection effect of the pressure input M can be reduced. Is increased.
  • the pressure input M is detected by the piezoelectric layer 6 and the electrode pair 16, and it is not necessary to maintain the contact and the spacing between the contacts, and the contact does not deteriorate over time. Pressure sensing can be detected stably over a long period of time, and maintenance costs can be reduced.
  • a piezoelectric output representing the size and position of the pressure input M can be obtained.
  • the piezoelectric output can be used for various processes such as the position, size and distribution of the pressure input.
  • the degree of freedom can be expanded.
  • a person or an object can be detected by receiving a pressure input M from the person or object entering the detection area 4.
  • the saddle electrode pair 16 is a pattern electrode pair provided with a plurality of electrode portions 16a-1 and 16a-2, the input position and level of the pressure input M can be detected.
  • the pattern electrode is formed by a plurality of electrode portions having a plurality of narrow electrode surfaces, a plurality of electrode portions can be arranged in the detection region, and the insensitive region can be reduced.
  • FIG. 3A shows a cross section in which a part of the mat sensor according to the first embodiment is omitted.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • the mat sensor 20 is an example of the pressure-sensitive sensor 2 described above.
  • the mat sensor 20 includes a pressure receiving layer 22, a piezoelectric laminated body 24, and a back support layer 26 from the upper surface side to the rear surface side. These laminated bodies are used as a main body, and a sealing layer 28 is integrally provided. .
  • the laminated structure of the pressure-receiving layer 22, the piezoelectric laminate 24, the back support layer 26, and the sealing layer 28 may be formed by bonding, or may be any of an integrally formed body with an elastomer.
  • the pressure receiving layer 22 is an example of the pressure transmission layer 12 described above, and includes, for example, an elastic layer 22-1 as a main layer and a nonslip layer 22-2 on the upper surface side as a pressure receiving surface member.
  • the elastic layer 22-1 is an example of a viscoelastic protective layer that covers the piezoelectric layer 6.
  • the elastic layer 22-1 includes, for example, a thermosetting polymer (epoxy resin, thermosetting rubber, polyurethane, phenol resin, imide resin, silicone resin, etc.) or a thermoplastic polymer (acrylic resin, viscoelastic material). (Polyolefin resin, fluororesin, etc.) sheet.
  • a conventionally known anti-slip layer may be used as the anti-slip layer 22-2, which constitutes the tread surface of the mat sensor 20 and applies friction to the bottom surface of a pedestrian shoe sole or the like as a friction material.
  • the piezoelectric laminated body 24 is composed of, for example, the piezoelectric layer 6 and the electrode pair 16.
  • the piezoelectric laminated body 24 includes the electromagnetic shield 30 to form a single laminated body.
  • a piezoelectric sheet made of a PFA / PTFE nonwoven fabric / PFA laminate may be used for the piezoelectric layer 6.
  • shield layers 30-1 and 30-2 are provided on the upper side and the lower side.
  • the electrode pair 16 the above-described pattern electrode pair is used, and for example, aluminum or the like is used as an electrode material.
  • the shield layer 30-1 is a laminate in which insulating layers 30-12 and 30-13 are provided on the upper and lower sides of the conductor layer 30-11.
  • the shield layer 30-2 is also a laminate in which insulating layers 30-22 and 30-23 are provided on the upper and lower sides of the conductor layer 30-21.
  • aluminum may be used as the conductor material.
  • the back support layer 26 corresponds to the back support layer 8 (FIG. 1) described above.
  • the back support layer 26 includes a rigid layer 26-1 on the lower side and an elastic layer 26-2 on the upper side.
  • the rigid layer 26-1 is formed of a metal plate such as stainless steel as a rigid material.
  • the mat sensor 20 is installed and supported on the area-side support surface 10 with a rigid layer 26-1.
  • the elastic layer 26-2 is made of, for example, a thermosetting polymer (epoxy resin, thermosetting rubber, polyurethane, phenol resin, imide resin, silicone resin, etc.) or a thermoplastic polymer (acrylic resin, polyolefin resin, fluorine resin, etc.) as an elastic material. ).
  • the back surface support layer 26 is firmly supported by the rigidity of the rigid layer 26-1 on the area side support surface 10 side and the elasticity of the elastic layer 26-2, and the pressure input M applied to the mat sensor 20 is supported on the back surface. It is received on the layer 26 side.
  • the sealing layer 28 may be formed of a sealing material and detachable from the main body side of the mat sensor 20.
  • the thicknesses of the elastic layers 22-1 and 26-2 are D1 and D2, D1> D2 is set.
  • This mat sensor 20 is installed on a floor surface such as a step surface in a building or structure, as shown in FIG. 4, and the presence or absence of people or objects, passing, gathering, distribution on the floor surface, etc. Can be detected.
  • the pressure input M is applied to the piezoelectric laminate 24 through the anti-slip layer 22-2 and the elastic layer 22-1 and is transmitted to the area side through the elastic layer 26-2 and the rigid layer 26-1 on the back support layer 26 side. It is supported by the support surface 10.
  • the pressure input M acts on the pressure input surface portion 14a side of the piezoelectric layer 6 to cause piezoelectric conversion, and a piezoelectric output corresponding to the level of the pressure input M can be taken out from the electrode pair 16.
  • High sensitivity pressure detection can be performed.
  • the piezoelectric laminate 24 can be protected from the impact, and the damage of the electrode pair 16 and the impact deterioration of the detection function of the piezoelectric layer 6 can be prevented.
  • non-slip layer 22-2 Since the non-slip layer 22-2 is installed on the tread surface, an appropriate friction can be imparted between the bottom surface of shoes and the like, thereby preventing a person from hindering walking. Moreover, a sliding state can be prevented with a thing.
  • This mat sensor 20 does not have an elastic support structure that maintains the electrode spacing by an elastic body and turns the electrodes on and off by elastic expansion and contraction, unlike the conventional pressure switch. There is no deterioration or wear between contacts, reliable and stable pressure sensing can be maintained, and maintenance is excellent.
  • FIG. 5A shows a step device according to the second embodiment.
  • the step device 40 includes the above-described mat sensor 20 together with the device housing 42.
  • the apparatus housing 42 has, for example, a flat rectangular shape, and includes a mat sensor fixing portion 44 for housing the mat sensor 20.
  • the mat sensor 20 is installed in the mat sensor fixing portion 44.
  • the mat sensor 20 includes a pressure sensitive range 46 in which a pressure input M can be piezoelectrically converted, as indicated by a broken line.
  • the step device 40 is provided with a control unit 48, and this control unit 48 is installed on the back side of the mat sensor 20 as shown in FIG.
  • FIG. 5B shows a cross section taken along line VB-VB in FIG.
  • the apparatus housing 42 is formed with a substrate storage unit 50 for storing the control unit 48 on the back side of the mat sensor 20.
  • the substrate storage unit 50 is installed at the longitudinal end of the apparatus housing 42 in the figure, but may be installed at any location.
  • the control unit 48 includes signal lines 52-1, 52-2 and a power supply line 54.
  • the signal lines 52-1 and 52-2 are led to an external device, and the power line 54 is led to a power source to be fed.
  • the saddle device housing 42 can be formed of a highly rigid material such as metal, and can protect the mat sensor 20. If the material is highly rigid, the occupied volume of the device housing 42 in the step device 40 including the mat sensor 20 can be reduced.
  • the pressure sensitive range 46 can be arbitrarily set for the detection region 4 such as a rectangular shape.
  • the area is set to be smaller than the area of the flat portion of the apparatus housing 42, but it can be set to be equal, and the step device 40 in which the pressure sensitive range 46 is expanded can be realized.
  • the saddle control unit 48 may be set at any position on the back surface of the mat sensor 20, and the control unit 48 can be protected by the mat sensor 20 and the apparatus housing 42, and the control operation by the detection output of the mat sensor 20 can be performed. Reliability can be maintained.
  • the weight can be reduced and the flattening can be achieved, and the exclusive volume for the step can be reduced.
  • FIG. 6A shows a building including the pressure-sensitive detection system according to the third embodiment.
  • This pressure-sensitive detection system 38 includes the above-described step device 40.
  • Building 56 is an example of a building or a structure.
  • An automatic door 60 is provided at the entrance 58 of the building 56, and a step device 40 is provided in the vicinity of the automatic door 60.
  • the automatic door 60 opens and closes to the left and right, and a person or the like can enter and exit in the open state.
  • the step device 40 detects pressurization received from a person or an object entering or exiting the entrance / exit.
  • FIG. 6B shows an example of the pressure sensitive detection device 64.
  • the pressure-sensitive detection device 64 includes the mat sensor 20 and performs pressure-sensitive detection.
  • a control unit 48 is provided on the building 56 side, and a power supply unit 65, a drive mechanism unit 66, and a display unit 68 are provided together with the pressure sensitive detection device 64.
  • the power supply unit 65 is supplied with power from the power supply line 70. This power supply voltage is stepped down by a transformer 74, rectified by a rectifier 76, and converted into a drive voltage. This drive voltage is applied to the control unit 48.
  • the control unit 48 is configured by a computer, receives the sensor output of the mat sensor 20, and generates information representing the presence / absence of a person, passage, congestion status, and the like.
  • the drive mechanism 66 is, for example, an opening / closing drive mechanism for the automatic door 60.
  • the display unit 68 is an example of an information presentation unit, and is controlled by the control unit 48 to present information such as the presence / absence of a person, passage, and congestion status as output information.
  • FIG. 7 shows the pressure-sensitive detection device 64.
  • the control unit 48 includes an amplification unit 78, a waveform shaping unit 80, and a signal processing unit 82.
  • the amplification unit 78 is, for example, a preamplifier, and amplifies the sensor output of the mat sensor 20.
  • the waveform shaping unit 80 or the signal processing unit 82 is an example of a signal conversion unit.
  • the waveform shaping unit 80 shapes the output waveform of the amplification unit 78 and converts it into, for example, a pulse waveform.
  • the signal processing unit 82 may have a function of amplifying and extracting a pulse waveform, a waveform level determination function, and a control function of the display unit 68.
  • the determination function can determine the presence or passage of a person from the level change and obtain an output representing the determination result.
  • the signal processing unit 82 having a control function is an example of a determination unit or a processing unit, and starts or stops the operation of the display unit 68 which is an example of a device according to the presence / absence, position, passage, or collection of a person or an object. It is also a control means which performs.
  • the display unit 68 receives the output of the signal processing unit 82 and displays the above-described determination result as visual information.
  • the display unit 68 may be a meter that shows a measured value, a lamp such as an LED (Light Emitting Diode) that lights up the number of people, a speaker that outputs a judgment output by sound, or an alarm. That is, the display unit 68, together with the signal processing unit 82, is an example of a signal conversion unit that converts the pressure-sensitive output into an optical signal or a sound signal.
  • FIG. 8 shows the pressure-sensitive operation and the signal processing operation of the control unit 48.
  • FIG. 8A when a pressurization input M from a person is applied to the mat sensor 20 and the pressurization input M is released, piezoelectric outputs A1 and A2 representing it appear. That is, a sharp pulsed piezoelectric output A1 that rises sharply at the input time ta of the pressurizing input M is generated, and when the pressurizing input M shifts to the static pressure state, the piezoelectric output A1 shifts to the zero level state.
  • a piezoelectric output A2 having a phase opposite to that of the piezoelectric output A1 is generated at the release time tb.
  • piezoelectric outputs A1 and A2 are generated when the pressure input M changes, and the time interval T of peak conversion of the piezoelectric outputs A1 and A2 is substantially the same as the time interval from the input time ta to the release time tb. Match. Therefore, the passage of a person can be determined by using such level information and time information of the piezoelectric outputs A1 and A2.
  • the piezoelectric outputs A1 and A2 are amplified by the amplifying unit 78, converted into a voltage having a level suitable for waveform shaping of the waveform shaping unit 80, and input to the waveform shaping unit 80.
  • this pulse waveform is a rectangular shape that becomes a constant voltage at the front edge that rises in synchronization with the rise of the piezoelectric output A1, the rear edge that falls in synchronization with the fall of the piezoelectric output A2, and the time interval T between the piezoelectric outputs A1 and A2. It is a wave.
  • the waveform output is applied to the signal processing unit 82 and compared with the threshold voltage Vth to determine the level of the waveform output.
  • the signal processing unit 82 an output in which the range in which the output waveform of the waveform shaping unit 80 exceeds the threshold voltage Vth is a high level and the others are low is obtained.
  • the display unit 68 can obtain a display output that lights up in a range exceeding the threshold voltage Vth. That is, the presence of a person is visually displayed by this lighting display.
  • This pressure-sensitive system 38 is the same as the existing sensor system, such as a power line and two signal lines, and can be replaced with the current product.
  • the mat sensor 20 without the rubber spacer is used in this pressure sensitive system 38, the functions of the piezoelectric layer 6 and its laminated body can be used effectively, and a stable operation can be obtained for a long time.
  • the mat sensor 20 using a fluorine-based piezoelectric sheet has excellent environmental resistance and can maintain stable operation even when exposed to wind and rain.
  • the soot mat sensor 20 includes the piezoelectric layer 6 that is a sheet-like sensor and can perform full-surface sensing, and can reduce the insensitive area, thereby increasing the detection efficiency.
  • the soot mat sensor 20 is an organic laminate and does not have a complicated mechanism such as a mechanical part, so the price of the pressure sensitive system 38 can be reduced.
  • the eaves stepping device 40 is provided with an LED indicator so that attention can be alerted and safety can be maintained.
  • the step device 40 can be used not only to determine the presence of a person but also the presence / absence of an object and passage.
  • the pressure-sensitive output of the mat sensor 20 can be used for operations such as driving start and storage of the driving mechanism 66 of the stepping device 40.
  • the eaves step device 40 includes the mat sensor 20 and performs pressure-sensitive detection, it has high impact resistance, excellent maintainability, and can improve waterproofness.
  • FIG. 9 shows a mat sensor 20 according to the fourth embodiment.
  • an integrating circuit 84 and an operational amplifier 86 are provided as peripheral circuits of the piezoelectric laminate 24, and are installed inside the mat sensor 20.
  • the integrating circuit 84 includes a capacitor 88, and this capacitor 88 is connected between the electrode pair 16 of the piezoelectric laminate 24.
  • the integration circuit 84 uses the impedance of the piezoelectric layer 6 of the piezoelectric laminate 24 to realize an integration function with a single capacitor 88.
  • the integrating circuit 84 and the piezoelectric laminate 24 are connected between the non-inverting terminal (+) of the operational amplifier 86 and the positive side of the power supply 90, and the integrated output of the piezoelectric output is applied to the non-inverting terminal (+) of the operational amplifier 86.
  • FIG. 10 shows the operation of the mat sensor 20.
  • a weight is used as the virtual pressure input, and the weight is dropped on the tread surface of the mat sensor 20.
  • FIG. 10A one weight is dropped at the pressure input time ta, one more weight is dropped at the time tb, one weight is removed at the time tc, and the remaining weight is released at the pressure release time td.
  • the pressure is removed by removing one weight. Therefore, the time T from the pressure input time point ta to the pressure release time point td is the static pressure period.
  • the pressure input M is applied to the mat sensor 20 at the time point ta, and the piezoelectric output A1 is generated.
  • the piezoelectric output A2 is generated at this time tb.
  • a reverse-phase piezoelectric output A3 is generated at the time tc, and a reverse-phase piezoelectric output A4 is generated at the time td when the weight is removed.
  • piezoelectric outputs A1, A2, A3, A4 are amplified by the operational amplifier 86 and taken out, and added to the signal processing unit 82 described above.
  • a waveform shaping output is obtained.
  • an output waveform B1 that rises in synchronization with the piezoelectric output A1 an output waveform B2 that rises in synchronization with the piezoelectric output A2, and an output waveform B3 that falls in synchronization with the piezoelectric output A3 are generated, and are synchronized with the piezoelectric output A4. Then, the output waveform B3 falls to 0 level.
  • the output waveform B1 represents a level representing one weight
  • the output waveform B2 represents a level representing two weights
  • the output waveform B3 represents a level representing one weight. That is, the pressurization input M is started at the time point ta, and the static pressure state is maintained for a certain time from the time point ta to the pressure removal at the time point td.
  • the static pressure period can be displayed by lighting as shown in FIG.
  • an integrating circuit 84 and an operational amplifier 86 can be built in the sensor, noise can be reduced, and the detection sensitivity of the pressure input can be increased.
  • a time integral value of 1 [ms] of the input voltage waveform can be output as a voltage.
  • the mat sensor 20 includes the integration circuit 84 and the operational amplifier 86 in the sensor, the circuit configuration on the pressure-sensitive determination side can be simplified.
  • ON / OFF judgment can be made by comparing the voltage output with the threshold value, and the judgment output can be released when the pressure input by the load is released.
  • one or each of the electrode 16a and the electrode 16b has continuous circuit-like electrode portions 92-1 and 92-2 with respect to the pressure input surface portion 14a of the piezoelectric layer 6.
  • Each of the electrode portions 92-1 and 92-2 has a continuous circuit shape that bends in a zigzag shape, and is disposed so as to cover the entire surface of the pressure input surface portion 14a of the piezoelectric layer 6.
  • the bent portions of the electrode portions 92-1 and 92-2 are arranged so as to mesh with each other, and the detection region 4 is covered with the two electrode portions 92-1 and 92-2.
  • the back electrode 16b may be a flat electrode surface.
  • the entire detection region 4 can be covered, the insensitive region can be minimized, and the detection efficiency can be increased. .
  • the electrodes 16a and 16b may be arranged by shifting the positions of the circuit-shaped electrode portions 92-1 and 92-2 in the vertical direction, or as shown in FIG. 11C. Further, the positions of the circuit-like electrode portions 92-1 and 92-2 may be shifted by 90 degrees.
  • one or each of the electrode 16a and the electrode 16b may be divided into small rectangular electrode portions 94-1 and 94-2, and the detection region 4 may be dispersed. According to this configuration, the pressure sensitivity can be stabilized by dispersing the electrodes 16a and 16b. If a pressure input M occurs across the electrode portions 94-1 and 94-2 as in the shoe mark 96 indicated by a broken line, a piezoelectric output can be obtained from both the electrode portions 94-1 and 94-2. Can do.
  • each of the electrodes 16a and 16b may be divided into three electrode portions 98-1, 98-2, and 98-3, and the detection region 4 may be dispersed.
  • an isosceles triangular electrode portion 98-1 is arranged in the center of the rectangular detection region 4, and right isosceles triangular electrode portions 98-2 and 98-3 are provided on the respective oblique sides of the electrode portion 98-1.
  • the pressure sensitivity can be similarly stabilized by dispersing the electrode 16a or the electrode 16b.
  • the first and second electrode lead portions 100-1 and 100-2 may be provided on either or each of the electrode 16a and the electrode 16b. As shown in FIG. 13B, even if the fracture 102 occurs in the electrode lead-out portion 100-1, the electrode lead-out portion 100-2 can be used for taking out the piezoelectric output, and a stable detection operation can be maintained.
  • the electrodes 16a and 16b are divided into a plurality of electrode portions 104-11, 104-12,... 104-33 and arranged in a matrix, and each electrode portion 104-11, 104-12... 104-33 may be connected by a bridging portion 106 to be electrically integrated, and a plurality of electrode lead portions 108-1, 108-2, 108-3 may be provided. That is, the plurality of electrode portions 104-11, 104-12,... 104-33 and the bridging portion 106 form a mutual bypass circuit. With such a configuration, as shown in FIG. 14B, even if the electrode lead portions 104-11, 104-12,... 104-33 and the plurality of bridging portions 106 are broken 102, the electrode portions The piezoelectric output due to the pressure input M generated in 104-31 can be taken out from the electrode lead-out portions 108-2 and 108-3.
  • a plurality of notches 110 are formed from each side of the electrodes 16a and 16b toward the center, and the electrode portions 112-1, 112-2, 112-3 and 112-4 may be formed.
  • the electrode lead-out function of the bendable electrodes 16a and 16b can be complemented, and the bendability of the electrodes 16a and 16b is complemented by the respective electrode portions 112-1, 112-2, 112-3, and 112-4. Can be strengthened.
  • the electrodes 16a and 16b of the electrode pair 16 may be arranged in the width direction of the detection region 4.
  • the electrodes 16a and 16b arranged on the same surface may be disposed on either the pressure input surface portion 14a or the support surface portion 14b of the piezoelectric layer 6.
  • the electrodes 16a, 16b include a plurality of electrode portions 114-1, 114-2, 114-3,..., And these electrode portions 114-1, 114-2, 114-3,. .. May be arranged in the X-axis direction.
  • the piezoelectric output representing the position on the X-axis can be taken out by the electrode portions 114-1, 114-2, 114-3,.
  • a piezoelectric output representing the position of the shoe print 96 on the X-axis is obtained at the electrode portion 114-1 having the shoe print 96.
  • the electrodes 16a, 16b include a plurality of electrode portions 116-1, 116-2, 116-3, 116-4,..., And these electrode portions 116-1, 116-2, 116-3, 116-4,... May be arranged in the Y-axis direction.
  • the piezoelectric output representing the position on the Y axis can be taken out by the electrode portions 116-1, 116-2, 116-3, 116-4,.
  • a piezoelectric output representing the position of the shoe print 96-1 on the Y-axis is obtained at the electrode portion 116-1 where the shoe print 96-1 is provided.
  • the piezoelectric output representing the moved position on the Y-axis is taken out from the electrode portions 116-1 and 116-2.
  • the electrode 16a includes a plurality of electrode portions 118-1, 118-2, 118-3, 118-4, and the electrode 16b includes a plurality of electrode portions 118-5, 118-6. , 118-7, 118-8.
  • the electrode 16b is disposed below the electrode 16a with the piezoelectric layer 6 interposed therebetween.
  • the electrodes 16a and 16b are arranged in a matrix in the X-axis direction and the Y-axis direction on the pressure input surface and the back surface, respectively, and the electrode portions 118-1, 118-2, 118-3, 118-4, 118-5. , 118-6, 118-7, 118-8 constitute an electrical bridge portion of the same interval to bridge each electrode portion, and each electrode portion on the peripheral side has an X-axis direction and a Y-axis direction.
  • An electrode lead portion is formed.
  • the electrode portions 118-1, 118-2, 118-3, 118-4, and 118-5, 118-6 are provided. , 118-7, 118-8, or a combination of a plurality of piezoelectric outputs. It is possible to know the coordinate position on the X-axis and Y-axis of the pressure input M where the piezoelectric output is generated.
  • the pressure-sensitive sensor 2-1 for detecting the pressure input M on the XY axis is provided on the upper and lower surfaces of the block-like elastic support 120, and the pressure input on the Z-axis is provided on the side surface.
  • a pressure sensor 2-2 for detecting M is provided.
  • An electrode 16a and an electrode 16b are provided on the pressure sensor 2-1 side with the piezoelectric layer 6 interposed therebetween.
  • the electrode 16a includes a plurality of electrode portions 118-1, 118-2, 118-3, 118-4, and an electrode 16b. Is provided with a plurality of electrode portions 118-5 and 118-6.
  • the plurality of electrode portions 118-1, 118-2, 118-3, 118-4, 118-5, and 118-6 are arranged at intervals on the XY axis described above.
  • a plurality of electrode portions 122 are arranged at intervals on the pressure-sensitive sensor 2-2 side.
  • the electrode 122 on the pressure sensor 2-2 side may also be an electrode pair disposed with the piezoelectric layer 6 interposed therebetween, or the piezoelectric layer 6 may be sandwiched laterally on the pressure input surface of the piezoelectric layer 6. May be arranged.
  • the piezoelectric output by the pressure input M applied on the XY axis can be taken out from the pressure sensor 2-1 and the piezoelectric output by the pressure input M applied on the Z axis from the pressure sensor 2-2. Can be taken out.
  • FIG. 19 shows an example of a pressure-sensitive detection device according to the sixth embodiment.
  • the pressure sensing device 124 includes a pressure sensor 2, a waveform shaping unit 126, a signal processing unit 128, a control unit 130, and a power supply unit 132.
  • the pressure sensor 2 may include a single or a plurality of piezoelectric layers 6 and electrode pairs 16.
  • the waveform shaping unit 126 has the same function as the waveform shaping unit 80 described above.
  • the signal processing unit 128 and the control unit 130 are, for example, configured by a computer, and are an example of a processing unit that performs processing including entry, passage, or gathering of a person or an object into a specific area, and these various types of signal processing are possible. .
  • the signal processing unit 128 can perform various signal processing, and the control unit 130 can perform various control operations such as start / stop control of various devices based on the signal processing.
  • the power supply unit 132 may be a battery or may generate a drive voltage using a commercial power supply.
  • a) Accumulation process of pressurization input M In addition to the integration process of pressurization input M, the determination process of the magnitude of pressurization input M, the addition process of pressurization input M, and pressurization input M are predetermined in this integration process. Processing such as determination of whether or not the value has been exceeded is included. According to this integration process, it is possible to determine the weight of a person or an object, the boarding restrictions on the aircraft based on the determination result, the determination of the cargo weight deviation, the boarding situation for adults and children, and the like.
  • the number of pressurization inputs M may be counted, and it may be determined whether or not the count value exceeds a certain value. Count the number of people and things entering and leaving, and restrict entry if it exceeds a certain number.
  • a plurality of pressure inputs M can be compared to determine a difference between the pressure inputs M or a group in which the plurality of pressure inputs M are assembled. For example, in the 100% inspection, the pressure input M (weight) is determined, and the size is used for the pass / fail determination.
  • the dispersion can be obtained from the average value of a plurality of pressure inputs M. For example, the degree of the scattered state of the cleaning liquid is examined. It can be used for designing the shape of cleaning equipment.
  • h) Signal processing according to the pressure level of the pressure input M is possible.
  • h-1) The device is driven and stopped from the voltage and the signal indicating the operation state. It can be used for camera shutter operation, for example, in conjunction with X-ray imaging with an automatic ticket gate.
  • H-2) Automatic opening / closing operation For example, it can be used for automatic opening when it is caught in a door. Also, as a sorting operation: for example, when used to estimate whether or not liquid is brought in, it may be determined from voltage attenuation after the package is shaken.
  • Color display may be performed by counting the number of times pressure is received from signals representing voltage and light.
  • the pressure sensor 2 can be used in various fields involving pressurization and can be used to detect pressure levels and pressure distribution.
  • pressure input from a person or an object is detected.
  • the pressure sensor 2 may be used to detect a person's movement or heartbeat.
  • the above-described pressure-sensitive sensor 2 may be used for detecting a pressurizing point in sports or games.
  • the eaves step device 40 may be used to detect the entry and exit of ships, aircraft, rooms, and people.
  • the present invention can be applied to a step device or the like, and can be used to determine the presence / absence of a person or an object, passage, gathering, etc.
  • Electrode part 96, 96-1, 96-2 Shoe mark 100-1, 100-2, 108-1, 108-2, 108-3 Electrode lead part 102 Fracture 106 Bridge part 110 Notch part 120 sexual feeling support 124 pressure detector 126, the waveform shaping section 128 signal processing section 130 the control unit 132 Power unit

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

In this pressure-sensitive detection method and this pressure-sensitive sensor: one or multiple piezoelectric layers each having a pressure input surface part are provided in an area for detecting a pressure input; at least one electrode of one or multiple pairs of electrodes, which are arranged across the piezoelectric layers, is used as a pattern electrode provided with a continuous electrode part or multiple electrode parts narrower than the pressure input surface part; the pattern electrode receives a pressure input; and a pressure-sensitive output is taken out. Accordingly, an insensitive region can be reduced from the pressure input surface part, whereby detection efficiency can be enhanced. Furthermore, there is no need of a contact point or no need to keep a distance between contact points by using elasticity. Thus, the pressure-sensitive sensor can be reduced in size and weight, no contact point deteriorates over time, stable pressure-sensitive detection can be performed over a long period of time, and reduction in maintenance cost can be achieved.

Description

感圧検出方法、感圧センサー、感圧検出装置および感圧検出システムPressure-sensitive detection method, pressure-sensitive sensor, pressure-sensitive detection device, and pressure-sensitive detection system
 本発明は、人や物から受ける圧力を圧電素子で検出するセンサー技術に関する。 The present invention relates to a sensor technology for detecting pressure received from a person or an object with a piezoelectric element.
 人や物の検出では、人や物が有する重量を電気信号に変換し、その電気信号を人や物の有無、その通過や集合に圧力センサーを利用することが行われている。 In the detection of a person or an object, the weight of the person or the object is converted into an electrical signal, and a pressure sensor is used for the presence or absence of the person or the object, the passage or gathering of the electrical signal.
 この圧力センサーに関し、加圧されると電気抵抗値やインピーダンスが変化する感圧導電ゴムおよび電極を備え、外部からの加圧を検出することが知られている(特許文献1)。 It is known that this pressure sensor includes a pressure-sensitive conductive rubber and an electrode whose electrical resistance value and impedance change when pressurized, and detects pressure applied from the outside (Patent Document 1).
特開昭63-32330号公報JP 63-32330 A
 ところで、従来の圧力センサーを備える検出マットでは、スペーサで上下電極の電極間を保持し、加重によりスペーサを圧縮し、感圧導電ゴムおよび電極間が導通したとき、人や物体の通過を判断することが可能である。このような感圧導電ゴムやスペーサを用いた検出構造には次のような課題がある。 By the way, in the detection mat provided with the conventional pressure sensor, the spacer is held between the upper and lower electrodes, the spacer is compressed by weighting, and the passage of a person or an object is determined when the pressure-sensitive conductive rubber and the electrode are electrically connected. It is possible. The detection structure using such pressure-sensitive conductive rubber or spacer has the following problems.
 (1) 線状センシングを採用して接点範囲を拡大しても、センシング範囲に不感領域が存在し、検出効率が低い。 (1) Even if the contact range is expanded by adopting shoreline sensing, there is a dead zone in the sensing range, and the detection efficiency is low.
 (2) 電極間の開閉では開閉出力しか得られないし、この開閉出力も一定圧以上の加圧入力で生じるにすぎない。 (2) Only opening / closing output can be obtained by opening / closing between the electrodes, and this opening / closing output is only generated by pressurization input above a certain pressure.
 (3) 導電ゴム及びスペーサは経年劣化や弾性疲労を生じ、長期に亘って安定した動作が得られず、誤動作が生じ、信頼性に欠ける。 (3) Conductive rubber and spacers are subject to deterioration over time and elastic fatigue, and stable operation cannot be obtained over a long period of time, resulting in malfunction and lack of reliability.
 (4) 導電ゴム及びスペーサの弾性で電極間の間隔維持、圧縮による接点間導通、圧縮解除による間隔復帰を繰り返す場合、所定厚さ以上の導電ゴム及びスペーサを必要とするため、小型化や軽量化が妨げられる。 (4) Conductive rubber and spacer elasticity keeps the distance between electrodes, conduction between contacts by compression, and return of distance by compression release. Is hindered.
 斯かる要求や課題について、特許文献1にはその開示や示唆はなく、それを解決する構成等についての開示や示唆はない。 Regarding such demands and issues, Patent Document 1 does not disclose or suggest the request, and does not disclose or suggest the configuration or the like for solving it.
 そこで、本発明の目的は、上記課題に鑑み、圧力レベルに応じた検出出力を得ることができ、センサーの小型化および軽量化を図るとともに検出効率を高め、信頼性の高い感圧特性を得ることにある。
In view of the above problems, an object of the present invention is to obtain a detection output corresponding to a pressure level, to reduce the size and weight of the sensor, increase the detection efficiency, and obtain a highly reliable pressure-sensitive characteristic. There is.
 上記目的を達成するため、本発明の感圧検出方法の一側面によれば、加圧入力の検出エリアに加圧入力面部を持つ単一または複数の圧電層を設置し、前記圧電層を挟んで配置された単一または複数の電極対の少なくとも一方の電極を、前記加圧入力面部より狭い連続した電極部または複数の電極部を備えるパターン電極とし、前記パターン電極に加圧入力を受け、前記パターン電極から感圧出力を取り出す。 In order to achieve the above object, according to one aspect of the pressure-sensitive detection method of the present invention, a single or a plurality of piezoelectric layers having a pressure input surface portion are installed in a pressure input detection area, and the piezoelectric layer is sandwiched therebetween. At least one electrode of a single or a plurality of electrode pairs arranged in a pattern electrode including a continuous electrode portion or a plurality of electrode portions narrower than the pressure input surface portion, and receives pressure input to the pattern electrode, A pressure sensitive output is taken out from the pattern electrode.
 上記目的を達成するため、本発明の感圧センサーの一側面によれば、加圧入力の検出エリアに加圧入力面部を持つ単一または複数の圧電層と、前記圧電層を挟んで配置された単一または複数の電極対と、前記電極対の少なくとも一方の電極に備えられ、前記加圧入力面部より狭い複数の電極部を含み、加圧入力を受けるパターン電極とを備え、前記加圧入力で得られる感圧出力が前記パターン電極に含まれる複数の前記電極部から取り出される。 In order to achieve the above object, according to one aspect of the pressure-sensitive sensor of the present invention, a single or a plurality of piezoelectric layers having a pressure input surface portion in a pressure input detection area and the piezoelectric layer are disposed between the piezoelectric layers. A single or a plurality of electrode pairs, and a pattern electrode that is provided on at least one electrode of the electrode pair, includes a plurality of electrode portions narrower than the pressure input surface portion, and receives pressure input. A pressure-sensitive output obtained by input is taken out from the plurality of electrode portions included in the pattern electrode.
 上記感圧センサーにおいて、前記パターン電極は、前記加圧入力のレベル、位置、方向または範囲を表す感圧出力、複数の加圧入力の分布を表す出力の何れかまたは2以上を取り出す複数の電極部を含んでよい。 In the pressure-sensitive sensor, the pattern electrode may be a plurality of electrodes that extract one or more of pressure-sensitive outputs indicating the level, position, direction, or range of the pressure input, and outputs indicating a distribution of a plurality of pressure inputs. May include parts.
 上記感圧センサーにおいて、前記パターン電極は、前記圧電層の平面、背面および側面の何れかまたは2以上に配置される複数の電極部を含んでよい。 In the pressure-sensitive sensor, the pattern electrode may include a plurality of electrode portions disposed on any one or more of a plane, a back surface, and a side surface of the piezoelectric layer.
 上記感圧センサーにおいて、前記パターン電極は、前記圧電層の加圧入力面上で連続して屈曲する単一または複数の電極部、単一の電極部を2以上に分割した複数の電極部、前記圧電層の加圧入力面にX軸方向、Y軸方向またはZ軸方向に配列された複数の電極部、または、前記加圧入力面の任意の複数方向に分岐させた複数の電極部の何れかを含んでよい。 In the pressure-sensitive sensor, the pattern electrode includes a single or a plurality of electrode portions that are continuously bent on the pressure input surface of the piezoelectric layer, a plurality of electrode portions obtained by dividing the single electrode portion into two or more, A plurality of electrode portions arranged in the X-axis direction, the Y-axis direction, or the Z-axis direction on the pressure input surface of the piezoelectric layer, or a plurality of electrode portions branched in any plurality of directions on the pressure input surface Either may be included.
 上記感圧センサーにおいて、さらに、少なくとも前記電極対をシールドするシールド層を備えてよい。 The pressure sensor may further include a shield layer that shields at least the electrode pair.
 上記感圧センサーにおいて、さらに、前記圧電層を覆う粘弾性保護層と、前記粘弾性保護層の外面部に設置された滑止め層とを備えてよい。 The pressure sensor may further include a viscoelastic protective layer that covers the piezoelectric layer, and a non-slip layer that is installed on an outer surface of the viscoelastic protective layer.
 上記感圧センサーにおいて、さらに、前記圧電層と支持手段との間に介在させ、前記圧電層を含む積層体を支持する剛性層とを備えてよい。 The pressure-sensitive sensor may further include a rigid layer that is interposed between the piezoelectric layer and the support means and supports the laminate including the piezoelectric layer.
 上記目的を達成するため、本発明の感圧検出装置の一側面によれば、前記感圧センサーと、前記感圧センサーの感圧出力を用いて人または物の有無、位置、通過または集合の何れかを判定する判定手段とを備える。 In order to achieve the above object, according to one aspect of the pressure-sensitive detection device of the present invention, the presence of a person or an object, a position, a passage, or a set of the pressure-sensitive sensor and the pressure-sensitive output of the pressure-sensitive sensor are used. Determination means for determining one of them.
 上記目的を達成するため、本発明の感圧検出装置の一側面によれば、前記感圧センサーと、前記感圧センサーのセンサー出力を音信号または光信号に変換する信号変換部とを備える。 In order to achieve the above object, according to one aspect of the pressure-sensitive detection device of the present invention, the pressure-sensitive sensor and the signal conversion unit that converts the sensor output of the pressure-sensitive sensor into a sound signal or an optical signal are provided.
 上記目的を達成するため、本発明の感圧検出装置の一側面によれば、前記感圧センサーと、前記感圧センサーのセンサー出力レベルに応じ、制御対象機器の動作開始、動作停止の制御信号を出力する制御部とを備える。 In order to achieve the above object, according to one aspect of the pressure-sensitive detection device of the present invention, the control signal for starting and stopping the operation of the control target device according to the pressure-sensitive sensor and the sensor output level of the pressure-sensitive sensor. And a control unit for outputting.
 上記目的を達成するため、本発明の感圧検出システムの一側面によれば、前記感圧センサー、または前記感圧検出装置と、前記感圧センサーまたは前記感圧検出装置が設置され、人または物が通過しまたは集合するエリアと、前記感圧センサーまたは前記感圧検出装置に含まれる前記感圧センサーのセンサー出力から前記エリアの人または物の通過または集合を含む処理をする処理手段と、前記処理手段に有線または無線により接続され、前記処理手段の処理結果を提示する提示手段とを備える。 In order to achieve the above object, according to one aspect of the pressure-sensitive detection system of the present invention, the pressure-sensitive sensor or the pressure-sensitive detection device and the pressure-sensitive sensor or the pressure-sensitive detection device are installed. An area where an object passes or gathers, and processing means for performing processing including passage or gathering of persons or objects in the area from the sensor output of the pressure sensor included in the pressure sensor or the pressure sensing device; Presentation means connected to the processing means by wire or wirelessly and presenting the processing result of the processing means.
 本発明の感圧検出方法、感圧センサー、感圧検出装置および感圧検出システムによれば、次のいずれかの効果が得られる。 According to the pressure-sensitive detection method, pressure-sensitive sensor, pressure-sensitive detection device, and pressure-sensitive detection system of the present invention, any of the following effects can be obtained.
 (1) 加圧入力面部から不感領域を削減して検出効力を高めることができる。 (1) The detection efficiency can be increased by reducing the dead area from the pressure input surface.
 (2) 接点や、接点間の弾性による間隔保持が不要であり、感圧センサーの小型化および軽量化を図ることができ、接点の経年劣化がなく、長期に亘って安定した感圧検出が行え、メンテナンスコストを削減できる。 (2) There is no need to maintain the contact between the contacts and the elasticity between the contacts, the pressure sensor can be reduced in size and weight, and there is no deterioration of the contacts over time, and stable pressure sensing can be detected over a long period of time. And maintenance costs can be reduced.
 (3) 加圧入力に応じたレベルの感圧出力が得られ、感圧出力のレベルを用いた処理など、処理の自由度を拡大できる。 (3) A pressure-sensitive output at a level corresponding to the pressure input can be obtained, and the degree of freedom of processing such as processing using the pressure-sensitive output level can be expanded.
 そして、本発明の他の目的、特徴及び利点は、添付図面及び各実施の形態を参照することにより、一層明確になるであろう。
Other objects, features, and advantages of the present invention will become clearer with reference to the accompanying drawings and each embodiment.
一実施の形態に係る感圧検出方法および感圧センサーを説明するための図である。It is a figure for demonstrating the pressure-sensitive detection method and pressure sensor which concern on one embodiment. Aは、電極部16a-1または電極部16a-2のいずれか一方に加圧入力Mが加わる場合の感圧動作を示す図、Bは、電極部16a-1および電極部16a-2の双方に加圧入力Mが加わる場合の感圧動作を示す図、Cは、電極部16a-1および電極部16a-2に加わる加圧入力Mに偏りがある場合の感圧動作を示す図である。A is a diagram showing a pressure-sensitive operation when a pressure input M is applied to either one of the electrode unit 16a-1 or the electrode unit 16a-2, and B is a diagram illustrating both the electrode unit 16a-1 and the electrode unit 16a-2. FIG. 7 is a diagram showing a pressure-sensitive operation when a pressure input M is applied to the electrode portion C, and FIG. C is a diagram showing a pressure-sensitive operation when the pressure input M applied to the electrode portions 16a-1 and 16a-2 is biased. . Aは、実施例1に係る感圧センサーの一部を省略して示す図、Bは、感圧センサーの積層断面の一部を示す図である。A is a figure which abbreviate | omits and shows a part of pressure sensor which concerns on Example 1, B is a figure which shows a part of lamination | stacking cross section of a pressure sensor. 感圧センサーの感圧動作を示す図である。It is a figure which shows the pressure sensitive operation | movement of a pressure sensor. Aは、実施例2に係るステップ装置を示す平面図、Bは、AのVB-VB断面を示す図である。A is a plan view showing a step device according to Embodiment 2, and B is a view showing a VB-VB cross section of A. FIG. Aは実施例3に係る感圧検出システムを備えるビルを示す図、Bは感圧検出システムを示す図である。A is a figure which shows the building provided with the pressure-sensitive detection system which concerns on Example 3, B is a figure which shows a pressure-sensitive detection system. 感圧検出装置を示す図である。It is a figure which shows a pressure sensitive detection apparatus. 感圧動作を示す図である。It is a figure which shows a pressure sensitive operation. 実施例4に係るマットセンサーを示す図である。FIG. 10 is a diagram illustrating a mat sensor according to a fourth embodiment. 感圧動作および信号処理を示す図である。It is a figure which shows a pressure sensitive operation and signal processing. 実施例5に係る電極部の一例を示す図である。10 is a diagram illustrating an example of an electrode unit according to Example 5. FIG. 他の電極部の一例を示す図である。It is a figure which shows an example of another electrode part. 他の電極部の一例を示す図である。It is a figure which shows an example of another electrode part. 他の電極部の一例を示す図である。It is a figure which shows an example of another electrode part. 他の電極部の一例を示す図である。It is a figure which shows an example of another electrode part. 他の電極部の一例を示す図である。It is a figure which shows an example of another electrode part. 他の電極部の一例を示す図である。It is a figure which shows an example of another electrode part. 他の電極部の一例を示す図である。It is a figure which shows an example of another electrode part. 実施例6に係る感圧検出装置を示す図である。It is a figure which shows the pressure-sensitive detection apparatus which concerns on Example 6. FIG.
 <感圧検出方法および感圧センサー> <Pressure detection method and pressure sensor>
 図1のAは、一実施の形態に係る感圧検出方法および感圧センサーを示している。 FIG. 1A shows a pressure-sensitive detection method and a pressure-sensitive sensor according to an embodiment.
 この感圧センサー2には検出領域4が備えられ、この検出領域4で加圧入力Mを受ける。この加圧入力Mは人または物などから加えられる圧力であり、人ではたとえば、足面からの圧力、物ではたとえば、底面からの圧力でよい。検出領域4は、人または物が通過するなどのエリアに設定すればよい。 The pressure sensor 2 is provided with a detection area 4 and receives a pressure input M in the detection area 4. This pressurizing input M is a pressure applied from a person or an object, and may be a pressure from the foot surface for a person, for example, or a pressure from the bottom surface for an object. The detection area 4 may be set in an area where a person or an object passes.
 この感圧センサー2には圧電層6が備えられる。この圧電層6は背面側に背面支持層8を備え、検出エリアのエリア側支持面10に支持され、上面側に加圧入力Mを受ける圧力伝達層12が備えられる。圧電層6はたとえば、圧電シートであり、加圧入力Mが圧力伝達層12を通して圧電層6に加えられ、圧電層6の圧電変換機能により圧電出力に変換される。 The pressure sensor 2 is provided with a piezoelectric layer 6. The piezoelectric layer 6 includes a back support layer 8 on the back side, is supported by the area side support surface 10 of the detection area, and includes a pressure transmission layer 12 that receives the pressure input M on the top side. The piezoelectric layer 6 is, for example, a piezoelectric sheet, and a pressure input M is applied to the piezoelectric layer 6 through the pressure transmission layer 12 and converted into a piezoelectric output by the piezoelectric conversion function of the piezoelectric layer 6.
 圧電層6には図1のBに示すように、上面側に加圧入力面部14a、下面側に支持面部14bを備える。つまり、加圧入力面部14aは加圧入力Mの受圧面であり、支持面部14bは加圧入力Mを背面側で受け止める支持面である。 As shown in FIG. 1B, the piezoelectric layer 6 includes a pressure input surface portion 14a on the upper surface side and a support surface portion 14b on the lower surface side. That is, the pressure input surface portion 14a is a pressure receiving surface for the pressure input M, and the support surface portion 14b is a support surface for receiving the pressure input M on the back side.
 この圧電層6には単一または複数のパターン電極対の一例として、電極対16が備えられる。この電極対16は、加圧入力面部14a側にある電極16aに電極部16a-1、16a-2、支持面部14b側にある電極16bに電極部16b-1、16b-2が備えられる。つまり、電極部16a-1、16a-2は加圧入力面部14aより狭い電極面を持ち、電極部16b-1、16b-2も同様である。 The piezoelectric layer 6 includes an electrode pair 16 as an example of a single or a plurality of pattern electrode pairs. The electrode pair 16 includes electrode portions 16a-1 and 16a-2 on the electrode 16a on the pressure input surface portion 14a side, and electrode portions 16b-1 and 16b-2 on the electrode 16b on the support surface portion 14b side. That is, the electrode portions 16a-1 and 16a-2 have an electrode surface narrower than the pressure input surface portion 14a, and the electrode portions 16b-1 and 16b-2 are the same.
 図1のCに示すように、隣接して配置された電極部16a-1、16a-2の間には狭隘な絶縁間隔18が設定され、電極部16b-1、16b-2の間にも同様な絶縁間隔18が設定されている。 As shown in FIG. 1C, a narrow insulation interval 18 is set between the adjacent electrode portions 16a-1 and 16a-2, and also between the electrode portions 16b-1 and 16b-2. A similar insulation interval 18 is set.
 このように電極対16は、複数の電極部16a-1、16a-2または電極部16b-1、16b-2を備えて複数の電極面を持つパターン電極を形成している。この例では、電極部16b-1、16b-2もパターン電極を形成しているが、一方の電極部16a-1、16a-2のみでパターン電極を形成し、電極部16b-1、16b-2を単一の電極部としてよい。 Thus, the electrode pair 16 includes a plurality of electrode portions 16a-1, 16a-2 or electrode portions 16b-1, 16b-2 to form a patterned electrode having a plurality of electrode surfaces. In this example, the electrode portions 16b-1 and 16b-2 also form pattern electrodes, but the pattern electrode is formed only by one of the electrode portions 16a-1 and 16a-2, and the electrode portions 16b-1 and 16b- 2 may be a single electrode part.
 したがって、このような電極対16を備える感圧センサー2で加圧入力Mを受ける場合、電極部16a-1または電極部16a-2のいずれか一方に加圧入力Mが加わる場合、電極部16a-1および電極部16a-2の双方に加圧入力Mが加わる場合、電極部16a-1および電極部16a-2に加わる加圧入力Mに偏りがある場合のパターンが存在することになる。 Therefore, when the pressure input M is received by the pressure-sensitive sensor 2 having such an electrode pair 16, when the pressure input M is applied to either the electrode portion 16a-1 or the electrode portion 16a-2, the electrode portion 16a When the pressure input M is applied to both -1 and the electrode part 16a-2, there is a pattern in which the pressure input M applied to the electrode part 16a-1 and the electrode part 16a-2 is biased.
 <電極部16a-1または電極部16a-2の一方に加圧入力Mが加わる場合> <When pressurization input M is applied to one of electrode part 16a-1 or electrode part 16a-2>
 図2のAに実線で示すように、電極部16a-1に加圧入力Mが加われば、電極部16a-1から圧電出力が得られる。また、図2のAに破線で示すように、電極部16a-2に加圧入力Mが加われば、電極部16a-2から圧電出力が得られる。これは電極部16a-1、16a-2の各圧電出力を差動増幅器などで比較、増幅すれば、判別できる。 As shown by a solid line in FIG. 2A, when a pressure input M is applied to the electrode portion 16a-1, a piezoelectric output is obtained from the electrode portion 16a-1. Further, as indicated by a broken line in FIG. 2A, when a pressure input M is applied to the electrode portion 16a-2, a piezoelectric output is obtained from the electrode portion 16a-2. This can be determined by comparing and amplifying the piezoelectric outputs of the electrode portions 16a-1 and 16a-2 with a differential amplifier or the like.
 <電極部16a-1および電極部16a-2の双方に加圧入力Mが加わる場合> <When pressure input M is applied to both electrode 16a-1 and electrode 16a-2>
 図2のBに実線で示すように、電極部16a-1、16a-2に共通に加圧入力Mが加われば、電極部16a-1、16a-2の双方から圧電出力が得られる。電極部16a-1、16a-2の双方に同一の圧力が加われば、電極部16a-1、16a-2から同一の圧電出力が得られることになる。これは電極部16a-1、16a-2の各圧電出力を比較することにより、同様に判別できる。 As shown by the solid line in FIG. 2B, when a pressure input M is applied in common to the electrode portions 16a-1 and 16a-2, piezoelectric outputs can be obtained from both the electrode portions 16a-1 and 16a-2. If the same pressure is applied to both the electrode portions 16a-1 and 16a-2, the same piezoelectric output can be obtained from the electrode portions 16a-1 and 16a-2. This can be similarly determined by comparing the piezoelectric outputs of the electrode portions 16a-1 and 16a-2.
 <電極部16a-1および電極部16a-2に加わる加圧入力Mに偏りがある場合> <When the pressure input M applied to the electrode portion 16a-1 and the electrode portion 16a-2 is biased>
 図2のCに実線で示すように、電極部16a-1、16a-2に加わる加圧入力Mが電極部16a-1側に強く作用すれば、電極部16a-1から得られる圧電出力が電極部16a-2から得られる圧電出力より大きくなる。また、図2のCに破線で示すように、電極部16a-1、16a-2に加わる加圧入力Mが電極部16a-2側に強く作用すれば、電極部16a-2から得られる圧電出力が電極部16a-1から得られる圧電出力より大きくなる。これは電極部16a-1、16a-2の各圧電出力を比較することにより、同様に判別できる。 As indicated by the solid line in FIG. 2C, if the pressure input M applied to the electrode portions 16a-1 and 16a-2 acts strongly on the electrode portion 16a-1 side, the piezoelectric output obtained from the electrode portion 16a-1 can be obtained. It becomes larger than the piezoelectric output obtained from the electrode portion 16a-2. Further, as indicated by a broken line in FIG. 2C, if the pressure input M applied to the electrode portions 16a-1 and 16a-2 acts strongly on the electrode portion 16a-2 side, the piezoelectric obtained from the electrode portion 16a-2 is obtained. The output becomes larger than the piezoelectric output obtained from the electrode portion 16a-1. This can be similarly determined by comparing the piezoelectric outputs of the electrode portions 16a-1 and 16a-2.
 <圧電層6の材質など> <Material of piezoelectric layer 6>
 圧電層6は、単一部材または複数の部材の積層体の圧電機能層であればよい。この圧電層6は、両面平滑化層、保護層、絶縁層などを積層させてよいし、モノモルフやバイモルフおよび積層型でもよい。この圧電層6は圧電性樹脂からなるシート、多孔質樹脂シートなどの有機圧電層でもよく、水晶、チタン酸バリウム、チタン酸ジルコン酸鉛などの無機圧電材料層でもよい。 The piezoelectric layer 6 may be a piezoelectric functional layer of a single member or a laminate of a plurality of members. The piezoelectric layer 6 may be formed by laminating a double-side smoothing layer, a protective layer, an insulating layer, or the like, or may be a monomorph, a bimorph, or a laminated type. The piezoelectric layer 6 may be an organic piezoelectric layer such as a piezoelectric resin sheet or a porous resin sheet, or may be an inorganic piezoelectric material layer such as quartz, barium titanate, or lead zirconate titanate.
 圧電層6には厚さ方向の振動検出でより優れた振動検出機能を達成するため、たとえば、圧電定数d33が好ましくは20×10-12〔C/N〕以上、より好ましくは100×10-12〔C/N〕以上の圧電材料を用いればよい。 The piezoelectric layer 6 has a piezoelectric constant d33 of preferably 20 × 10−12 [C / N] or more, more preferably 100 × 10−, in order to achieve an excellent vibration detection function by detecting vibration in the thickness direction. A piezoelectric material of 12 [C / N] or more may be used.
 圧電層6にはたとえば多孔質樹脂シートを用いればよい。この多孔質樹脂シートには次のような特徴がある。 For example, a porous resin sheet may be used for the piezoelectric layer 6. This porous resin sheet has the following characteristics.
 a)微小振動圧に対する電荷応答性や検出機能が高く、高温環境下で電荷保持が可能である。優れた検出機能が得られ、高い可撲性や耐衝撃性とともに、軽量化を図ることができる。 A) Charge responsiveness to micro vibration pressure and detection function are high, and charge retention is possible under high temperature environment. An excellent detection function is obtained, and it is possible to reduce the weight as well as high bruising and impact resistance.
 b)感圧センサー2の薄膜化や、大面積化等の任意の形状もしくは曲面形状、検出面形状に対する形状追従性が得られ、検出面の自由度が拡大する。 B) Arbitrary shape such as a thin film pressure sensor 2 or a large area, a curved surface shape, and a shape followability to the detection surface shape can be obtained, and the degree of freedom of the detection surface is expanded.
 そして、多孔質樹脂シートは、電荷を保持し得るたとえば、有機系材料からなるシートであることが好ましい。この多孔質樹脂シートには、ファイバーからなる不織布または織布、有機重合体からなるシート状の発泡体、有機重合体からなる延伸多孔質膜、マトリックス樹脂と電荷誘起性中空粒子(中空粒子の表面の少なくとも一部に導電性物質が付着している粒子)とを含む多孔質樹脂シート、有機重合体中に分散させた相分離化剤を超臨界二酸化炭素などの抽出剤を用いて除去し空孔を形成する方法によって形成されるシートなどが含まれる。耐久性や変形性能の維持の側面からみれば、ポリマー製ファイバーを用いた不織布または織布が好ましい。 The porous resin sheet is preferably a sheet made of, for example, an organic material that can retain electric charge. This porous resin sheet includes a nonwoven fabric or woven fabric made of fiber, a sheet-like foam made of an organic polymer, a stretched porous membrane made of an organic polymer, a matrix resin and charge-induced hollow particles (the surface of the hollow particles). And a phase separation agent dispersed in an organic polymer is removed by using an extractant such as supercritical carbon dioxide and empty. The sheet | seat etc. which are formed by the method of forming a hole are contained. From the viewpoint of maintaining durability and deformation performance, a nonwoven fabric or a woven fabric using a polymer fiber is preferable.
 多孔質樹脂シートには1種または2種以上の無機フィラーを含んでもよい。これにより、電荷保持量が高く、優れた圧電特性が得られる。無機フィラーを用いれば、高圧電率を持つシートが得られる。無機フィラーには、ポリマーより高誘電率のものが好ましく、比誘電率ε=10~10000のものを用いてよい。無機フィラーには酸化チタン、酸化アルミニウム、チタン酸バリウム、チタン酸ジルコン酸鉛、酸化ジルコニウム、酸化セリウム、酸化ニッケル、酸化スズなどが含まれる。 The porous resin sheet may contain one or more inorganic fillers. Thereby, the charge retention amount is high, and excellent piezoelectric characteristics can be obtained. If an inorganic filler is used, a sheet having a high piezoelectricity can be obtained. The inorganic filler preferably has a higher dielectric constant than the polymer, and may have a relative dielectric constant ε = 10 to 10,000. Inorganic fillers include titanium oxide, aluminum oxide, barium titanate, lead zirconate titanate, zirconium oxide, cerium oxide, nickel oxide, tin oxide and the like.
 多孔質樹脂シートの厚さは、たとえば10〔μm〕~1〔mm〕でよく、より好ましくは50〔μm〕~500〔μm〕でよい。高電荷保持性を得るには、空孔率が好ましくは60〔%〕以上、より好ましくは75〔%〕以上、さらに好ましくは80~99〔%〕でよい。この空孔率は、
(樹脂の真密度-多孔質樹脂シートの見掛けの密度)×100/樹脂の真密度
                               ・・・(1) 
により求められる。見掛けの密度には、多孔質樹脂シートの重量および見掛けの体積を用いて算出される値を用いればよい。
The thickness of the porous resin sheet may be, for example, 10 [μm] to 1 [mm], and more preferably 50 [μm] to 500 [μm]. In order to obtain high charge retention, the porosity is preferably 60% or more, more preferably 75% or more, and further preferably 80 to 99%. This porosity is
(True density of resin-apparent density of porous resin sheet) × 100 / true density of resin (1)
Is required. The apparent density may be a value calculated using the weight of the porous resin sheet and the apparent volume.
 ファイバーを構成するためのポリマーは、体積抵抗率が1.0×1013〔Ω・cm〕以上のものがよく、たとえばポリアミド系樹脂(6-ナイロン、6,6-ナイロンなど)、芳香族ポリアミド系樹脂(アラミドなど)、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレンなど)、ポリエステル系樹脂(ポリエチレンテレフタラートなど)、ポリアクリロニトリル、フェノール系樹脂、フッ素系樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど)、イミド系樹脂(ポリイミド、ポリアミドイミド、ビスマレイミドなど)などの何れかでよい。 The polymer constituting the fiber preferably has a volume resistivity of 1.0 × 10 13 [Ω · cm] or more, such as polyamide resin (6-nylon, 6,6-nylon, etc.), aromatic polyamide Resins (such as aramid), polyolefin resins (such as polyethylene and polypropylene), polyester resins (such as polyethylene terephthalate), polyacrylonitrile, phenolic resins, fluorine resins (such as polytetrafluoroethylene and polyvinylidene fluoride), imides Any of resin (polyimide, polyamideimide, bismaleimide, etc.) may be used.
 耐熱性や耐候性に優れるなどの点からすれば、分子および結晶構造に起因する双極子を持たないポリマーが好ましい。たとえば、ポリオレフィン系樹脂(ポリエチレン、ポリプロピレン、エチレンプロピレン樹脂など)、ポリエステル系樹脂(ポリエチレンエレフタラートなど)、ポリウレタン樹脂、ポリスチレン樹脂、シリコーン樹脂等の非フッ素系樹脂、および、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系樹脂などを用いてよい。 From the standpoint of excellent heat resistance and weather resistance, a polymer having no dipole due to the molecule and crystal structure is preferable. For example, polyolefin resin (polyethylene, polypropylene, ethylene propylene resin, etc.), polyester resin (polyethylene terephthalate, etc.), non-fluorine resin such as polyurethane resin, polystyrene resin, silicone resin, and polytetrafluoroethylene (PTFE) Fluorine resins such as tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) and tetrafluoroethylene-hexafluoropropylene copolymer (FEP) may be used.
 耐熱性や耐候性などを考慮すれば、連続使用可能温度が高く、ガラス転移点を使用温度域に持たないことが好ましい。たとえばUL746B(UL規格)の連続使用温度試験によれば、ポリマーの連続使用可能温度は好ましくは50〔℃〕以上であること、より好ましくは100〔℃〕以上であること、さらに好ましくは200〔℃〕以上であればよい。耐湿性を考慮すれば、溌水性を示すものが好ましい。 Considering heat resistance and weather resistance, it is preferable that the continuous usable temperature is high and the glass transition point is not in the operating temperature range. For example, according to the continuous use temperature test of UL746B (UL standard), the continuous usable temperature of the polymer is preferably 50 [° C.] or higher, more preferably 100 [° C.] or higher, and further preferably 200 [° C.]. [° C.] or more. In consideration of moisture resistance, those exhibiting hydrophobicity are preferred.
 これらの特性を備えるポリマーには、たとえばポリオレフィン系樹脂や、フッ素系樹脂を用いればよい。ポリオレフィン系樹脂や、フッ素系樹脂を用いれば、100〔℃〕下や100〔℃〕を超える高温下での振動検出においても、圧電特性に低下を来すことなく、振動検出が可能となる。フッ素系樹脂ではPTFEが好ましい。 For example, a polyolefin resin or a fluorine resin may be used as the polymer having these characteristics. If a polyolefin-based resin or a fluorine-based resin is used, vibration detection is possible without causing deterioration in piezoelectric characteristics even in vibration detection at temperatures below 100 [° C.] or temperatures exceeding 100 [° C.]. PTFE is preferred for the fluororesin.
 PTFEでは、耐熱性、振動検知能および耐久性に優れ、高温下での加圧検出が可能な感圧センサー2を実現でき、高温および高圧の環境下で、振動検出性能や構造の維持が可能である。 PTFE has excellent heat resistance, vibration detection capability and durability, and can realize the pressure-sensitive sensor 2 capable of detecting pressure under high temperature, and can maintain vibration detection performance and structure under high temperature and high pressure environment. It is.
 圧電層6を形成するためのファイバーについて、平均繊維径が好ましくは0.05~50〔μm〕、より好ましくは0.1~20〔μm〕、さらに好ましくは0.3~5〔μm〕でよい。平均繊維径がこの範囲内であれば、高柔軟性を示す不織布または織布が得られる。繊維表面積が大きくなれば、電荷を保持するに十分な空間が形成でき、不織布または織布を薄く形成した場合にも繊維の分布均一性を高くできる。 The fiber for forming the piezoelectric layer 6 has an average fiber diameter of preferably 0.05 to 50 [μm], more preferably 0.1 to 20 [μm], and still more preferably 0.3 to 5 [μm]. Good. If the average fiber diameter is within this range, a nonwoven fabric or woven fabric exhibiting high flexibility can be obtained. If the fiber surface area is increased, a sufficient space can be formed to hold the charge, and the fiber distribution uniformity can be increased even when the nonwoven fabric or woven fabric is formed thin.
 ファイバーの平均繊維径は、ファイバーの形成条件の選択で調整できる。たとえば、電界紡糸法によれば、電界紡糸の際に湿度を下げ、ノズル径を小さくし、印加電圧を高くし、または電圧密度を高くすることにより、得られたファイバーの平均繊維径が小さくなる傾向がある。 The average fiber diameter of the fiber can be adjusted by selecting the fiber formation conditions. For example, according to the electrospinning method, the average fiber diameter of the obtained fiber is reduced by reducing the humidity, reducing the nozzle diameter, increasing the applied voltage, or increasing the voltage density during electrospinning. Tend.
 ここで、平均繊維径は、測定対象であるファイバー(群)を走査型電子顕微鏡(Scanning Electron Microscope:SEM) 観察し、10,000倍の倍率で観測したSEM画像から無作為に複数のたとえば、20本のファイバーを選び、これらの繊維径(長径)の測定結果による平均値から求めればよい。 Here, the average fiber diameter is measured by scanning electron microscope (SEM) observation of the fiber (group) to be measured, and randomly, for example, a plurality of SEM images observed at a magnification of 10,000 times, What is necessary is just to obtain | require 20 fibers and to obtain | require from the average value by the measurement result of these fiber diameters (major axis).
 ファイバーの繊維径変動係数は、下記式で算出される値から好ましくは0.7以下、より好ましくは0.01~0.5であればよい。この繊維径変動係数が所定の範囲内にあれば、ファイバーの繊維径が均一となり、このファイバーで得られる不織布または織布はより高い空孔率を有し、電荷保持性の高い多孔質樹脂シートを得る上からも好ましい。 The fiber diameter variation coefficient of the fiber is preferably 0.7 or less, more preferably 0.01 to 0.5 from the value calculated by the following formula. If this fiber diameter variation coefficient is within a predetermined range, the fiber diameter of the fiber becomes uniform, and the nonwoven fabric or woven fabric obtained from this fiber has a higher porosity and a high charge retention porous resin sheet. From the viewpoint of obtaining
         繊維径変動係数=標準偏差/平均繊維径   ・・・(2) 
 なお、「標準偏差」とは、前記20本のファイバーの繊維径の標準偏差である。
Fiber diameter variation coefficient = standard deviation / average fiber diameter (2)
The “standard deviation” is a standard deviation of the fiber diameters of the 20 fibers.
 ファイバーの繊維長は、好ましくは0.1~1000〔mm〕、より好ましくは0.5~100〔mm〕、さらに好ましくは1~50〔mm〕であればよい。 The fiber length of the fiber is preferably 0.1 to 1000 [mm], more preferably 0.5 to 100 [mm], and still more preferably 1 to 50 [mm].
 ファイバーは、たとえば、電界紡糸法、溶融紡糸法、溶融電界紡糸法、スパンボンド法(メルトブロー法)、湿式法、スパンレース法により製造すればよい。電界紡糸法により得られるファイバーは繊維径が小さい。このファイバーを用いた不織布または織布では、空孔率が高くかつ高比表面積であり、高い圧電性を有する多孔質樹脂シートを得ることができる。 The fiber may be produced by, for example, an electrospinning method, a melt spinning method, a melt electrospinning method, a spunbond method (melt blow method), a wet method, or a spunlace method. The fiber obtained by the electrospinning method has a small fiber diameter. In the nonwoven fabric or woven fabric using this fiber, a porous resin sheet having a high porosity, a high specific surface area, and high piezoelectricity can be obtained.
 電界紡糸法では、ポリマーおよび必要に応じて溶媒を含む紡糸液が用いられる。ポリマーは、1種単独で用いてもよく、2種以上を用いてもよい。紡糸液中に含まれるポリマーの割合は、例えば5~100〔重量%〕、好ましくは5~80〔重量%〕、より好ましくは10~70〔重量%〕でよい。 In the electrospinning method, a spinning solution containing a polymer and, if necessary, a solvent is used. A polymer may be used individually by 1 type and may use 2 or more types. The ratio of the polymer contained in the spinning solution may be, for example, 5 to 100 [wt%], preferably 5 to 80 [wt%], more preferably 10 to 70 [wt%].
 溶媒はポリマーを溶解しまたは分散し得るものであればよく、限定されない。溶媒はたとえば、水、ジメチルアセトアミド、ジメチルホルムアミド、テトラヒドロフラン、メチルピロリドン、キシレン、アセトン、クロロホルム、エチルベンゼン、シクロヘキサン、ベンゼン、スルホラン、メタノール、エタノール、フェノール、ピリジン、プロピレンカーボネート、アセトニトリル、トリクロロエタン、ヘキサフルオロイソプロパノール、ジエチルエーテルのいずれでもよい。これらの溶媒は、1種単独で用いてもよいし、2種以上を組み合わせた混合溶媒を用いてもよい。紡糸液中に含まれる溶媒は、たとえば、0~90〔重量%〕、好ましくは10~90〔重量%〕、より好ましくは20~80〔重量%〕でよい。 The solvent is not limited as long as it can dissolve or disperse the polymer. Examples of the solvent include water, dimethylacetamide, dimethylformamide, tetrahydrofuran, methylpyrrolidone, xylene, acetone, chloroform, ethylbenzene, cyclohexane, benzene, sulfolane, methanol, ethanol, phenol, pyridine, propylene carbonate, acetonitrile, trichloroethane, hexafluoroisopropanol, Any of diethyl ether may be used. These solvents may be used alone or in a combination of two or more. The solvent contained in the spinning solution may be, for example, 0 to 90 [wt%], preferably 10 to 90 [wt%], more preferably 20 to 80 [wt%].
 紡糸液は、ポリマー以外の無機フィラー、界面活性剤、分散剤、電荷調整剤、機能性粒子、接着剤、粘度調整剤、繊維形成剤などの添加剤を含んでよい。添加剤は、1種単独で用いてもよく、2種以上でもよい。紡糸液において、ポリマーの溶媒への溶解度が低い場合、たとえば、ポリマーがPTFEであり、溶媒が水である場合、紡糸時にポリマーを繊維形状に保持させるには1種または2種以上の繊維形成剤を含むことが好ましい。 The spinning solution may contain additives such as an inorganic filler other than a polymer, a surfactant, a dispersant, a charge adjusting agent, a functional particle, an adhesive, a viscosity adjusting agent, and a fiber forming agent. An additive may be used individually by 1 type and 2 or more types may be sufficient as it. In the spinning solution, when the solubility of the polymer in the solvent is low, for example, when the polymer is PTFE and the solvent is water, one or more fiber forming agents are used to keep the polymer in a fiber shape during spinning. It is preferable to contain.
 溶媒に対し高い溶解度を有するポリマーであることが好ましい。繊維形成剤としてたとえば、ポリエチレンオキサイド、ポリエチレングリコール、デキストラン、アルギン酸、キトサン、でんぷん、ポリピニルピロリドン、ポリアクリル酸、ポリメタクリル酸、ポリアクリルアミド、セルロース、ポリビニルアルコールが挙げられる。繊維形成剤の使用量は、溶媒の粘度、溶媒への溶解度にもよるが、紡糸液中にたとえば、0.1~15〔重量%〕、好ましくは1~10〔重量%〕でよい。 A polymer having high solubility in a solvent is preferable. Examples of the fiber forming agent include polyethylene oxide, polyethylene glycol, dextran, alginic acid, chitosan, starch, polypinylpyrrolidone, polyacrylic acid, polymethacrylic acid, polyacrylamide, cellulose, and polyvinyl alcohol. The amount of the fiber-forming agent used may be, for example, 0.1 to 15% by weight, preferably 1 to 10% by weight in the spinning solution, although it depends on the viscosity of the solvent and the solubility in the solvent.
 紡糸液は、ポリマー、溶媒および必要に応じて添加剤を公知の方法で混合して製造すればよい。ポリマーがPTFEであれば、紡糸液として、PTFEを30~70〔重量%〕、好ましくは35~60〔重量%〕含み、繊維形成剤を0.1~10〔重量%〕、好ましくは1~7〔重量%〕含み、合計が100〔重量%〕の溶媒を含む紡糸液が好ましい。 The spinning solution may be produced by mixing a polymer, a solvent, and if necessary, an additive by a known method. If the polymer is PTFE, the spinning solution contains PTFE in an amount of 30 to 70 [wt%], preferably 35 to 60 [wt%], and a fiber forming agent in an amount of 0.1 to 10 [wt%], preferably 1 to A spinning solution containing 7 wt% and a total of 100 wt% solvent is preferred.
 電界紡糸を行う際の印加電圧は、好ましくは1~100〔kV〕、より好ましくは5~50〔kV〕、さらに好ましくは10~40〔kV〕でよい。 The applied voltage at the time of electrospinning is preferably 1 to 100 [kV], more preferably 5 to 50 [kV], and still more preferably 10 to 40 [kV].
 電界紡糸に用いられる紡糸ノズルの先端径(外径)は、好ましくは0.1~2.0〔mm〕、より好ましくは0.2~1.6〔mm〕でよい。 The tip diameter (outer diameter) of the spinning nozzle used for electrospinning is preferably 0.1 to 2.0 [mm], more preferably 0.2 to 1.6 [mm].
 たとえば、紡糸液を用いる場合、印加電圧は、好ましくは10~50〔kV〕、より好ましくは10~40〔kV〕である。紡糸ノズルの先端径(外径)は、好ましくは0.3~1.6〔mm〕でよい。 For example, when a spinning solution is used, the applied voltage is preferably 10 to 50 [kV], more preferably 10 to 40 [kV]. The tip diameter (outer diameter) of the spinning nozzle is preferably 0.3 to 1.6 [mm].
 ファイバーで不織布を形成するにはたとえば、電界紡糸法を用いて、ファイバーを製造する工程、およびファイバーをシート状に集積して不織布を形成する工程を同時に行ってよいし、ファイバーを製造する工程の後、湿式法により前記ファイバーをシート状に集積して不織布を形成する工程を行ってよい。 In order to form a nonwoven fabric with fibers, for example, an electrospinning method may be used to simultaneously perform a step of producing fibers and a step of collecting fibers into a sheet to form a nonwoven fabric, or a step of producing fibers. Then, the process of accumulating the said fiber in a sheet form by a wet method and forming a nonwoven fabric may be performed.
 湿式法による不織布の形成ではたとえば、ファイバーを含有する水分散液を用い、メッシュ上にファイバーを堆積(集積)させてシート状に成形(抄紙)する方法を用いてよい。 In forming a nonwoven fabric by a wet method, for example, a method may be used in which an aqueous dispersion containing fibers is used, and the fibers are deposited (accumulated) on a mesh and formed into a sheet (paper making).
 この湿式法におけるファイバーの使用量は、水分散液全量に対して、好ましくは0.1~10〔重量%〕、より好ましくは0.1~5〔重量%〕でよい。この範囲内でファイバーを使用すれば、ファイバーを堆積させる工程で水を効率よく活用でき、また、ファイバーの分散状態がよく、均一な湿式不織布が得られる。 The amount of fiber used in this wet method is preferably 0.1 to 10 [wt%], more preferably 0.1 to 5 [wt%] based on the total amount of the aqueous dispersion. If the fiber is used within this range, water can be efficiently used in the process of depositing the fiber, and the fiber is well dispersed and a uniform wet nonwoven fabric can be obtained.
 水分散液には、分散状態を良好にするためにカチオン系、アニオン系、ノニオン系等の界面活性剤などからなる分散剤や油剤、また、泡の発生を抑制する消泡剤等をそれぞれ1種または2種以上を添加してよい。 In order to improve the dispersion state, the aqueous dispersion is composed of a dispersing agent or an oil agent composed of a cationic, anionic or nonionic surfactant, an antifoaming agent or the like for suppressing the generation of bubbles, respectively. Seeds or two or more may be added.
 ファイバーによる織布の製造方法には、ファイバーの製造工程、この工程で得られたファイバーをシート状に製織する織布形成工程を含んでよい。ファイバーをシート状に製織する方法には、公知の製織方法を用いてよい。この製織方法にはウォータージェットルーム、エア-ジェットルーム、レピアルームなどの方法が挙げられる。 The method for manufacturing a woven fabric using fibers may include a fiber manufacturing step and a woven fabric forming step of weaving the fibers obtained in this step into a sheet. A known weaving method may be used as a method for weaving the fiber into a sheet. Examples of the weaving method include water jet loom, air-jet loom, and rapier room.
 ポリマーがPTFEであれば、不織布または織布の形成後、加熱処理を行うことが好ましい。この加熱処理では、該不織布または織布を、通常200~390〔℃〕、30~300〔分〕の条件で熱処理すればよい。この加熱処理を行えば、不織布または織布に残留する溶媒や繊維形成剤などを除去できる。 If the polymer is PTFE, it is preferable to perform heat treatment after the formation of the nonwoven fabric or woven fabric. In this heat treatment, the non-woven fabric or woven fabric may be heat-treated usually under conditions of 200 to 390 [° C.] and 30 to 300 [min]. By performing this heat treatment, the solvent, fiber forming agent, etc. remaining on the nonwoven fabric or woven fabric can be removed.
 不織布の製造方法の一例として、電界紡糸法によるPTFEからなるファイバーの製造工程を含む場合を例示する。PTFEファイバーからなる不織布の製造方法には公知の製造方法を採用でき、たとえば、特表2012-515850号公報に記載された方法が挙げられる。この製造方法には、PTFE、繊維形成剤および溶媒を含み、少なくとも50,000〔cP〕の粘度を有する紡糸液を提供するステップと、紡糸液をノズルより紡糸し静電的牽引力によりファイバー化するステップと、前記ファイバーをコレクター(例:巻き取りスプール)の上に集め、前駆体を形成するステップと、前駆体を焼成して溶媒および繊維形成剤を除去することでPTFEファイバーからなる不織布を形成するステップとが含まれる。 As an example of a method for producing a nonwoven fabric, a case in which a production process of fibers made of PTFE by an electrospinning method is included is illustrated. As a method for producing a nonwoven fabric made of PTFE fiber, a known production method can be adopted, and examples thereof include a method described in JP-T-2012-515850. This production method includes a step of providing a spinning solution containing PTFE, a fiber forming agent, and a solvent and having a viscosity of at least 50,000 [cP], and spinning the spinning solution from a nozzle to form a fiber by electrostatic traction. A step of collecting the fibers on a collector (e.g., a take-up spool) to form a precursor, and firing the precursor to remove the solvent and fiber-forming agent to form a nonwoven fabric made of PTFE fibers. Step.
 不織布および織布の目付は、好ましくは100〔g/m2〕以下、より好ましくは0.1~50〔g/m2〕、さらに好ましくは0.1~20〔g/m2〕でよい。目付は、紡糸時間を長くし、紡糸ノズル数を増やすなどにより、増大する傾向を呈する。 The basis weight of the nonwoven fabric and the woven fabric is preferably 100 [g / m2] or less, more preferably 0.1 to 50 [g / m2], and still more preferably 0.1 to 20 [g / m2]. The basis weight tends to increase by increasing the spinning time and increasing the number of spinning nozzles.
 不織布および織布は、ファイバーをシート状に集積または製織している。斯かる不織布および織布は、単層から構成されるもの、または材質や繊維径の異なる2層以上から構成されるものの何れでもよい。 Nonwoven fabrics and woven fabrics have fibers accumulated or woven in sheet form. Such a non-woven fabric and a woven fabric may be either a single layer or two or more layers having different materials and fiber diameters.
 そして、多孔質樹脂シートは、分極処理されたものが好ましい。分極処理をすれば、該シートに電荷を注入でき、該電荷は、多孔質樹脂シート内の空孔内に集中して分極を誘起させる。内部分極したシートでは、該シートの厚さ方向に印加される圧縮荷重により、シートの表裏面から該電荷を取り出すことが可能である。つまり、斯かる電荷が外部負荷(電気回路)に対して電荷移動を生じ、起電力が得られる。これが電位差、つまり電圧を生起させる。 The porous resin sheet is preferably subjected to polarization treatment. If the polarization treatment is performed, electric charge can be injected into the sheet, and the electric charge is concentrated in the pores in the porous resin sheet to induce polarization. In the internally polarized sheet, the charge can be taken out from the front and back surfaces of the sheet by a compressive load applied in the thickness direction of the sheet. That is, such charges cause charge transfer to the external load (electric circuit), and an electromotive force is obtained. This causes a potential difference, that is, a voltage.
 分極処理の方法には、公知の方法を用いてよく、たとえば、直流電圧や交流電圧の印加処理の他、コロナ放電処理を用いればよい。 As the polarization treatment method, a known method may be used. For example, a corona discharge treatment may be used in addition to a DC voltage or AC voltage application treatment.
 コロナ放電処理では、高電圧電源および電極装置を用いればよい。放電条件は、多孔質樹脂シートの材料および厚さに応じて適宜選択し、たとえば、PTFEからなる多孔質樹脂シートであれば、好ましい処理条件として、電圧が-0.1~-100〔kV〕、より好ましくは-1~-20〔kV〕、電流が0.1~100〔mA〕、より好ましくは1~80〔mA〕、電極間距離が0.1~100〔cm〕、より好ましくは1~10〔cm〕、印加電圧が0.01~10.0〔MV/m〕、より好ましくは0.5~2.0〔MV/m〕とすればよい。 In the corona discharge treatment, a high voltage power source and an electrode device may be used. The discharge conditions are appropriately selected according to the material and thickness of the porous resin sheet. For example, in the case of a porous resin sheet made of PTFE, the preferred treatment condition is a voltage of −0.1 to −100 [kV]. More preferably, it is -1 to -20 [kV], the current is 0.1 to 100 [mA], more preferably 1 to 80 [mA], and the distance between the electrodes is 0.1 to 100 [cm], more preferably The applied voltage may be 1 to 10 [cm], and the applied voltage may be 0.01 to 10.0 [MV / m], more preferably 0.5 to 2.0 [MV / m].
 分極処理について、多孔質樹脂シート単体に対して分極処理をしてよいが、圧電層として、たとえば、多孔質樹脂シートと絶縁層などとの積層体を構成するのであれば、該積層体を形成した後、絶縁層の積層後に分極処理をすることが好ましい。多孔質樹脂シートに積層される層は、分極処理により多孔質樹脂シートに保持された電荷が外部環境と電気的に接続して減衰するのを防止する役割を果たす。これにより、加圧検出の高感度化に寄与する。また、多孔質樹脂シートと多孔質樹脂シートに積層される層との間に電荷を保持し得る新たな界面を形成できる傾向にある。これにより、多孔質樹脂シートの圧電率が向上すると考えられる。 Regarding the polarization treatment, the porous resin sheet itself may be polarized. However, if the piezoelectric layer is a laminate of, for example, a porous resin sheet and an insulating layer, the laminate is formed. After that, it is preferable to perform polarization treatment after the insulating layers are stacked. The layer laminated on the porous resin sheet plays a role of preventing the electric charge held in the porous resin sheet by the polarization treatment from being attenuated by being electrically connected to the external environment. This contributes to high sensitivity of pressure detection. Moreover, it exists in the tendency which can form the new interface which can hold | maintain an electric charge between the porous resin sheet and the layer laminated | stacked on a porous resin sheet. This is considered to improve the piezoelectricity of the porous resin sheet.
 <電極対16の材質など> <Material of electrode pair 16>
 電極対16は少なくとも一対の電極16a、16bが含まれる。各電極16a、16bは電極層でよい。電極層の構成材料は、金属(合金)、金属酸化物、金属硫化物、導電性炭化物、導電性高分子およびこれらの組み合わせなど、いずれでもよい。金属(合金)、金属酸化物、金属硫化物には、リチウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ホウ素、アルミニウム、ガリウム、インジウム、アンチモン、錫、銀、金、銅、ニッケル、パラジウム、白金、クロム、モリブデン、タングステン、マンガン、コバルト、これらの合金、これらの酸化物、これらの複合酸化物、これらの硫化物が含まれ、酸化インジウムスズ(Indium Tin Oxide:ITO)、酸化亜鉛(Zinc Oxide:ZnO)、銀などが好適である。 The electrode pair 16 includes at least a pair of electrodes 16a and 16b. Each electrode 16a, 16b may be an electrode layer. The constituent material of the electrode layer may be any of metal (alloy), metal oxide, metal sulfide, conductive carbide, conductive polymer, and combinations thereof. For metals (alloys), metal oxides, and metal sulfides, lithium, beryllium, magnesium, calcium, strontium, barium, boron, aluminum, gallium, indium, antimony, tin, silver, gold, copper, nickel, palladium, platinum , Chromium, molybdenum, tungsten, manganese, cobalt, alloys of these, oxides of these, composite oxides of these, sulfides of these, indium tin oxide (Indium Tin Oxide: ITO), zinc oxide (Zinc Oxide) : ZnO), silver and the like are suitable.
 導電性炭化物には、カーボンブラック、黒鉛、活性炭、炭素繊維、シングルウォールカーボンナノチューブ(Single-Walled Carbon Nanotube:SWCNT)、ダブルウォールカーボンナノチューブ(Double-Walled Carbon Nanotube:DWCNT)、マルチウォールカーボンナノチューブ(Multi-Walled Carbon Nanotube:MWCNT)、カーボンナノシート(グラフェンシート) などが含まれる。導電性高分子には、ポリ (エチレン-3, 4-ジオキシチオフェン)、ポリアニリン誘導体、ポリピロール誘導体などが含まれる。 Conductive carbides include carbon black, graphite, activated carbon, carbon fiber, single-walled carbon nanotube (SWCNT), double-walled carbon nanotube (Double-Walled Nanotube: DWCNT), and multi-walled carbon nanotube (Multi -Walled Carbon Nanotube (MWCNT), carbon nanosheet (graphene sheet), etc. are included. Examples of the conductive polymer include poly (ethylene-3, 4-dioxythiophene), polyaniline derivatives, polypyrrole derivatives, and the like.
 この一実施の形態では、分極処理が施された圧電層6の表裏面にアルミニウムをスパッタリング処理して厚さ0.5〔μm〕程度の電極層を形成し、この電極層を以て電極対16を形成した。電極16aは加圧入力面部14aにある電極層であり、電極16bは支持面部14bにある電極層である。これら電極層は圧電層6の介在によって電気的に絶縁状態に維持されている。 In this embodiment, aluminum is sputtered on the front and back surfaces of the polarization-treated piezoelectric layer 6 to form an electrode layer having a thickness of about 0.5 [μm], and the electrode pair 16 is formed using this electrode layer. Formed. The electrode 16a is an electrode layer on the pressure input surface portion 14a, and the electrode 16b is an electrode layer on the support surface portion 14b. These electrode layers are maintained in an electrically insulated state by the interposition of the piezoelectric layer 6.
<一実施の形態の効果> <Effect of one embodiment>
 (1) この感圧センサー2では、電極対16が複数の電極部16a-1、16a-2を備えているので、加圧入力面部14aから不感領域を削減でき、加圧入力Mの検出効力が高められる。 (1) In this pressure sensitive sensor 2, since the electrode pair 16 includes a plurality of electrode portions 16 a-1 and 16 a-2, the insensitive area can be reduced from the pressure input surface portion 14 a and the detection effect of the pressure input M can be reduced. Is increased.
 (2) この感圧センサー2では、圧電層6と電極対16によって加圧入力Mを検出しており、接点や、接点間の弾性による間隔保持が不要であり、接点の経年劣化がなく、長期に亘って安定した感圧検出が行え、メンテナンスコストを削減できる。 (2) In this pressure sensitive sensor 2, the pressure input M is detected by the piezoelectric layer 6 and the electrode pair 16, and it is not necessary to maintain the contact and the spacing between the contacts, and the contact does not deteriorate over time. Pressure sensing can be detected stably over a long period of time, and maintenance costs can be reduced.
 (3) 加圧入力Mの大きさや位置を表す圧電出力が得られ、圧電出力を用いて加圧入力の位置、大きさ、分布など多様な処理に利用でき、圧電出力を用いた各種処理の自由度を拡大できる。 (3) A piezoelectric output representing the size and position of the pressure input M can be obtained. The piezoelectric output can be used for various processes such as the position, size and distribution of the pressure input. The degree of freedom can be expanded.
 (4) この感圧センサー2によれば、検出領域4に入る人や物から加圧入力Mを受けることにより、人や物を検出することができる。 (4) According to the pressure-sensitive sensor 2, a person or an object can be detected by receiving a pressure input M from the person or object entering the detection area 4.
 (5) 電極対16が複数の電極部16a-1、16a-2を備えたパターン電極対であるから、加圧入力Mの入力位置やそのレベルを検出することができる。 (5) Since the saddle electrode pair 16 is a pattern electrode pair provided with a plurality of electrode portions 16a-1 and 16a-2, the input position and level of the pressure input M can be detected.
 (6) 狭い複数の電極面を持つ複数の電極部によってパターン電極を形成したので、検出領域に複数の電極部を配設でき、不感領域を削減できる。 (6) Since the pattern electrode is formed by a plurality of electrode portions having a plurality of narrow electrode surfaces, a plurality of electrode portions can be arranged in the detection region, and the insensitive region can be reduced.
 図3のAは、実施例1に係るマットセンサーの一部を省略した断面を示している。図1と同一部分には同一符号を付してある。 3A shows a cross section in which a part of the mat sensor according to the first embodiment is omitted. The same parts as those in FIG. 1 are denoted by the same reference numerals.
 このマットセンサー20は既述の感圧センサー2の一例である。このマットセンサー20には、上面側から背面側に向かって受圧層22、圧電積層体24および背面支持層26が備えられ、これらの積層体を本体部とし、封止層28が一体に備えられる。受圧層22、圧電積層体24、背面支持層26および封止層28の積層構造体は張り合わせて形成してもよく、エラストマとの一体成形体の何れでもよい。 The mat sensor 20 is an example of the pressure-sensitive sensor 2 described above. The mat sensor 20 includes a pressure receiving layer 22, a piezoelectric laminated body 24, and a back support layer 26 from the upper surface side to the rear surface side. These laminated bodies are used as a main body, and a sealing layer 28 is integrally provided. . The laminated structure of the pressure-receiving layer 22, the piezoelectric laminate 24, the back support layer 26, and the sealing layer 28 may be formed by bonding, or may be any of an integrally formed body with an elastomer.
 受圧層22は既述の圧力伝達層12の一例であり、受圧面部材としてたとえば、弾性層22-1を主層に、上面側に滑止め層22-2を備える。弾性層22-1は圧電層6を覆う粘弾性保護層の一例である。この弾性層22-1には弾性材料または粘弾性材料としてたとえば、熱硬化性ポリマー(エポキシ樹脂、熱硬化性ゴム、ポリウレタン、フェノール樹脂、イミド樹脂、シリコーン樹脂等)や熱可塑性ポリマー(アクリル樹脂、ポリオレフィン樹脂、フッ素樹脂等)のシートで形成すればよい。滑止め層22-2は従来公知の滑止め層を用いればよく、マットセンサー20の踏み面を構成し、摩擦材として歩行者の靴底などの底面にフリクションを付与する。 The pressure receiving layer 22 is an example of the pressure transmission layer 12 described above, and includes, for example, an elastic layer 22-1 as a main layer and a nonslip layer 22-2 on the upper surface side as a pressure receiving surface member. The elastic layer 22-1 is an example of a viscoelastic protective layer that covers the piezoelectric layer 6. The elastic layer 22-1 includes, for example, a thermosetting polymer (epoxy resin, thermosetting rubber, polyurethane, phenol resin, imide resin, silicone resin, etc.) or a thermoplastic polymer (acrylic resin, viscoelastic material). (Polyolefin resin, fluororesin, etc.) sheet. A conventionally known anti-slip layer may be used as the anti-slip layer 22-2, which constitutes the tread surface of the mat sensor 20 and applies friction to the bottom surface of a pedestrian shoe sole or the like as a friction material.
 圧電積層体24はたとえば、圧電層6および電極対16で構成され、この実施例では、電磁シールド30を含んでひとつの積層体としている。圧電層6にはたとえば、PFA・PTFE不織布・PFA積層体からなる圧電シートを用いればよい。圧電層6および電極対16の電磁シールド30として、上側および下側にシールド層30-1、30-2が備えられる。電極対16には、既述のパターン電極対が用いられ、たとえば、電極材料としてアルミニウムなどが用いられる。 The piezoelectric laminated body 24 is composed of, for example, the piezoelectric layer 6 and the electrode pair 16. In this embodiment, the piezoelectric laminated body 24 includes the electromagnetic shield 30 to form a single laminated body. For example, a piezoelectric sheet made of a PFA / PTFE nonwoven fabric / PFA laminate may be used for the piezoelectric layer 6. As the electromagnetic shield 30 of the piezoelectric layer 6 and the electrode pair 16, shield layers 30-1 and 30-2 are provided on the upper side and the lower side. As the electrode pair 16, the above-described pattern electrode pair is used, and for example, aluminum or the like is used as an electrode material.
 シールド層30-1は、図3のBに示すように、導体層30-11の上下側に絶縁層30-12、30-13を設置した積層体である。同様に、シールド層30-2も導体層30-21の上下側に絶縁層30-22、30-23を設置した積層体である。導体層30-11、30-21は導体材料としてたとえば、アルミニウムを用いればよい。 As shown in FIG. 3B, the shield layer 30-1 is a laminate in which insulating layers 30-12 and 30-13 are provided on the upper and lower sides of the conductor layer 30-11. Similarly, the shield layer 30-2 is also a laminate in which insulating layers 30-22 and 30-23 are provided on the upper and lower sides of the conductor layer 30-21. For the conductor layers 30-11 and 30-21, for example, aluminum may be used as the conductor material.
 背面支持層26は、既述の背面支持層8(図1)に相当する。この背面支持層26には下側に剛性層26-1、上側に弾性層26-2が備えられる。剛性層26-1は剛性材料としてたとえば、ステンレスなどの金属板で形成される。このマットセンサー20は剛性層26-1を以てエリア側支持面10に設置されて支持される。弾性層26-2は弾性材料としてたとえば、熱硬化性ポリマー(エポキシ樹脂、熱硬化性ゴム、ポリウレタン、フェノール樹脂、イミド樹脂、シリコーン樹脂等)や熱可塑性ポリマー(アクリル樹脂、ポリオレフィン樹脂、フッ素樹脂等)のシートで形成すればよい。つまり、背面支持層26は、エリア側支持面10側の剛性層26-1による剛性と、弾性層26-2の弾性とを以て強固に支持され、マットセンサー20に加わる加圧入力Mが背面支持層26側で受け止められる。 The back support layer 26 corresponds to the back support layer 8 (FIG. 1) described above. The back support layer 26 includes a rigid layer 26-1 on the lower side and an elastic layer 26-2 on the upper side. The rigid layer 26-1 is formed of a metal plate such as stainless steel as a rigid material. The mat sensor 20 is installed and supported on the area-side support surface 10 with a rigid layer 26-1. The elastic layer 26-2 is made of, for example, a thermosetting polymer (epoxy resin, thermosetting rubber, polyurethane, phenol resin, imide resin, silicone resin, etc.) or a thermoplastic polymer (acrylic resin, polyolefin resin, fluorine resin, etc.) as an elastic material. ). That is, the back surface support layer 26 is firmly supported by the rigidity of the rigid layer 26-1 on the area side support surface 10 side and the elasticity of the elastic layer 26-2, and the pressure input M applied to the mat sensor 20 is supported on the back surface. It is received on the layer 26 side.
 封止層28は封止材料で成形され、マットセンサー20の本体部側と着脱可能としてよい。 The sealing layer 28 may be formed of a sealing material and detachable from the main body side of the mat sensor 20.
 このマットセンサー20では、弾性層22-1、26-2の厚さをD1、D2とすれば、D1>D2に設定されている。同一の弾性を備えた場合にはたとえば、D1=D2×2とすればよい。これにより、踏み面側にある弾性層22-1に加わる衝撃を吸収することができ、圧電積層体24に伝わる衝撃を緩衝できる。弾性層22-1、26-2の厚さ設定は一例であり、たとえば、弾性層22-1側に衝撃吸収機能の高い弾性材料を用いれば厚さ設定をD1=D2としてもよい。 In the mat sensor 20, if the thicknesses of the elastic layers 22-1 and 26-2 are D1 and D2, D1> D2 is set. When the same elasticity is provided, for example, D1 = D2 × 2 may be set. Thereby, the impact applied to the elastic layer 22-1 on the tread surface side can be absorbed, and the impact transmitted to the piezoelectric laminate 24 can be buffered. The thickness setting of the elastic layers 22-1 and 26-2 is an example. For example, if an elastic material having a high shock absorbing function is used on the elastic layer 22-1 side, the thickness setting may be D1 = D2.
<実施例1の効果> <Effect of Example 1>
 (1) このマットセンサー20によれば、既述の一実施の形態と同様の効果を得ることができる。 (1) According to this mat sensor 20, it is possible to obtain the same effect as that of the one embodiment described above.
 (2) このマットセンサー20は図4に示すように、建築物や構造物にあるステップ面などの床面に設置し、人や物の存在の有無、通過、集合、床面上の分布などを検出できる。その際、加圧入力Mは滑止め層22-2および弾性層22-1を介して圧電積層体24に加わり、背面支持層26側の弾性層26-2および剛性層26-1を通してエリア側支持面10により支持される。これにより、圧電層6には加圧入力面部14a側に加圧入力Mが作用して圧電変換を生じ、この加圧入力Mのレベルに応じた圧電出力を電極対16から取り出すことができ、高感度の感圧検出を行うことができる。 (2) This mat sensor 20 is installed on a floor surface such as a step surface in a building or structure, as shown in FIG. 4, and the presence or absence of people or objects, passing, gathering, distribution on the floor surface, etc. Can be detected. At that time, the pressure input M is applied to the piezoelectric laminate 24 through the anti-slip layer 22-2 and the elastic layer 22-1 and is transmitted to the area side through the elastic layer 26-2 and the rigid layer 26-1 on the back support layer 26 side. It is supported by the support surface 10. Thereby, the pressure input M acts on the pressure input surface portion 14a side of the piezoelectric layer 6 to cause piezoelectric conversion, and a piezoelectric output corresponding to the level of the pressure input M can be taken out from the electrode pair 16. High sensitivity pressure detection can be performed.
 (3) 弾性層22-1で衝撃を吸収できるので、圧電積層体24を衝撃から防護でき、電極対16の破損や圧電層6の検出機能の衝撃劣化を防止できる。 (3) Since the impact can be absorbed by the elastic layer 22-1, the piezoelectric laminate 24 can be protected from the impact, and the damage of the electrode pair 16 and the impact deterioration of the detection function of the piezoelectric layer 6 can be prevented.
 (4) 踏み面に滑止め層22-2が設置されるので、靴などの底面との間に適当な摩擦を付与でき、人の歩行の妨げを防止できる。また、物では滑動状態を防止できる。 (4) Since the non-slip layer 22-2 is installed on the tread surface, an appropriate friction can be imparted between the bottom surface of shoes and the like, thereby preventing a person from hindering walking. Moreover, a sliding state can be prevented with a thing.
 (5) このマットセンサー20では、従前の圧力スイッチのように、弾性体によって電極間隔を維持し、弾性の伸縮で電極間をON・OFFさせる弾性支持構造を備えていないので、弾性劣化による検出劣化や、接点間摩耗を生じることがなく、信頼性の高い安定した感圧検出を持続でき、メンテナンス性に優れる。 (5) マ ッ ト This mat sensor 20 does not have an elastic support structure that maintains the electrode spacing by an elastic body and turns the electrodes on and off by elastic expansion and contraction, unlike the conventional pressure switch. There is no deterioration or wear between contacts, reliable and stable pressure sensing can be maintained, and maintenance is excellent.
 図5のAは、実施例2に係るステップ装置を示している。このステップ装置40には装置筐体42とともに既述のマットセンサー20が備えられる。装置筐体42はたとえば、偏平な長方形状であり、マットセンサー20を収納するためのマットセンサー固定部44を備えている。このマットセンサー固定部44にマットセンサー20が設置されている。マットセンサー20は破線で示すように、加圧入力Mの圧電変換可能な感圧範囲46を備える。 FIG. 5A shows a step device according to the second embodiment. The step device 40 includes the above-described mat sensor 20 together with the device housing 42. The apparatus housing 42 has, for example, a flat rectangular shape, and includes a mat sensor fixing portion 44 for housing the mat sensor 20. The mat sensor 20 is installed in the mat sensor fixing portion 44. The mat sensor 20 includes a pressure sensitive range 46 in which a pressure input M can be piezoelectrically converted, as indicated by a broken line.
 ステップ装置40には制御部48が備えられ、この制御部48は図5のBに示すように、マットセンサー20の背面側に設置されている。図5のBは、図5のAのVB-VB線断面を示している。装置筐体42にはマットセンサー20の背面側に制御部48を収納する基板収納部50が形成されている。この例では、基板収納部50は図中、装置筐体42の長手方向の端に設置されているが、何れの箇所に設置してもよい。 The step device 40 is provided with a control unit 48, and this control unit 48 is installed on the back side of the mat sensor 20 as shown in FIG. FIG. 5B shows a cross section taken along line VB-VB in FIG. The apparatus housing 42 is formed with a substrate storage unit 50 for storing the control unit 48 on the back side of the mat sensor 20. In this example, the substrate storage unit 50 is installed at the longitudinal end of the apparatus housing 42 in the figure, but may be installed at any location.
 制御部48には信号線52-1、52-2および電源線54が備えられる。信号線52-1、52-2は外部装置に導かれ、電源線54は電源に導かれて給電される。 The control unit 48 includes signal lines 52-1, 52-2 and a power supply line 54. The signal lines 52-1 and 52-2 are led to an external device, and the power line 54 is led to a power source to be fed.
<実施例2の効果> <Effect of Example 2>
 (1) 装置筐体42は金属などの剛性の高い材料で形成でき、マットセンサー20を防護することができる。剛性の高い材料であれば、マットセンサー20を備えるステップ装置40における装置筐体42の占有体積を削減できる。 (1) The saddle device housing 42 can be formed of a highly rigid material such as metal, and can protect the mat sensor 20. If the material is highly rigid, the occupied volume of the device housing 42 in the step device 40 including the mat sensor 20 can be reduced.
 (2) 感圧範囲46は長方形状など、検出領域4に対して任意に設定できる。実施例2では装置筐体42の平面部の面積より小さく設定しているが、同等に設定することもでき、感圧範囲46を拡大したステップ装置40を実現できる。 (2) The pressure sensitive range 46 can be arbitrarily set for the detection region 4 such as a rectangular shape. In the second embodiment, the area is set to be smaller than the area of the flat portion of the apparatus housing 42, but it can be set to be equal, and the step device 40 in which the pressure sensitive range 46 is expanded can be realized.
 (3) 制御部48はマットセンサー20の背面の何れの位置に設定してもよく、この制御部48をマットセンサー20と装置筐体42を以て防護でき、マットセンサー20の検出出力による制御動作の信頼性を維持することができる。 (3) The saddle control unit 48 may be set at any position on the back surface of the mat sensor 20, and the control unit 48 can be protected by the mat sensor 20 and the apparatus housing 42, and the control operation by the detection output of the mat sensor 20 can be performed. Reliability can be maintained.
 (4) このようなステップ装置40によれば、軽量化とともに偏平化を図ることができ、ステップに対する専有体積を削減できる。 (4) According to such a step device 40, the weight can be reduced and the flattening can be achieved, and the exclusive volume for the step can be reduced.
 図6のAは、実施例3に係る感圧検出システムを備えるビルを示している。この感圧検出システム38は、既述のステップ装置40を備える。 FIG. 6A shows a building including the pressure-sensitive detection system according to the third embodiment. This pressure-sensitive detection system 38 includes the above-described step device 40.
 ビル56は建築物や構造物の一例である。このビル56の出入口部58には自動ドア60が備えられ、この自動ドア60の近傍にステップ装置40が備えられる。この自動ドア60は左右に開閉し、開状態で人などの出入りが可能である。ステップ装置40は、この出入口部を出入りする人や物から受ける加圧を検出する。 Building 56 is an example of a building or a structure. An automatic door 60 is provided at the entrance 58 of the building 56, and a step device 40 is provided in the vicinity of the automatic door 60. The automatic door 60 opens and closes to the left and right, and a person or the like can enter and exit in the open state. The step device 40 detects pressurization received from a person or an object entering or exiting the entrance / exit.
 図6のBは、感圧検出装置64の一例を示している。この感圧検出装置64は、マットセンサー20を備えて感圧検出を行う。この例では、ビル56側に制御部48が備えられ、感圧検出装置64とともに電源部65、駆動機構部66および表示部68が備えられる。電源部65には給電線70から給電される。この給電電圧は変圧器74で降圧され、整流器76で整流されて駆動電圧に変換される。この駆動電圧が制御部48に印加される。制御部48はたとえば、コンピュータで構成され、マットセンサー20のセンサー出力を受け、人の有無、通過、混雑状況などを表す情報を生成する。 FIG. 6B shows an example of the pressure sensitive detection device 64. The pressure-sensitive detection device 64 includes the mat sensor 20 and performs pressure-sensitive detection. In this example, a control unit 48 is provided on the building 56 side, and a power supply unit 65, a drive mechanism unit 66, and a display unit 68 are provided together with the pressure sensitive detection device 64. The power supply unit 65 is supplied with power from the power supply line 70. This power supply voltage is stepped down by a transformer 74, rectified by a rectifier 76, and converted into a drive voltage. This drive voltage is applied to the control unit 48. For example, the control unit 48 is configured by a computer, receives the sensor output of the mat sensor 20, and generates information representing the presence / absence of a person, passage, congestion status, and the like.
 駆動機構部66はたとえば、自動ドア60の開閉駆動機構である。表示部68は情報提示手段の一例であり、制御部48によって制御され、出力情報として既述の人の有無、通過、混雑状況などの情報を提示する。 The drive mechanism 66 is, for example, an opening / closing drive mechanism for the automatic door 60. The display unit 68 is an example of an information presentation unit, and is controlled by the control unit 48 to present information such as the presence / absence of a person, passage, and congestion status as output information.
 図7は、感圧検出装置64を示している。制御部48には増幅部78、波形成形部80および信号処理部82が備えられる。増幅部78はたとえば、プリアンプであり、マットセンサー20のセンサー出力を増幅する。波形成形部80または信号処理部82は信号変換部の一例である。波形成形部80は増幅部78の出力波形を成形し、たとえば、パルス波形に変換する。信号処理部82はパルス波形を増幅して取り出す機能や、波形のレベル判定機能、表示部68の制御機能を備えてよい。つまり、判定機能では人の存在、通過などをレベル変化から判定し、その判定結果を表す出力を得ることができる。制御機能を備える信号処理部82は判定手段または処理手段の一例であり、人や物の有無、位置、通過または集合の何れかに応じ、機器の一例である表示部68の動作開始や動作停止を行う制御手段でもある。 FIG. 7 shows the pressure-sensitive detection device 64. The control unit 48 includes an amplification unit 78, a waveform shaping unit 80, and a signal processing unit 82. The amplification unit 78 is, for example, a preamplifier, and amplifies the sensor output of the mat sensor 20. The waveform shaping unit 80 or the signal processing unit 82 is an example of a signal conversion unit. The waveform shaping unit 80 shapes the output waveform of the amplification unit 78 and converts it into, for example, a pulse waveform. The signal processing unit 82 may have a function of amplifying and extracting a pulse waveform, a waveform level determination function, and a control function of the display unit 68. That is, the determination function can determine the presence or passage of a person from the level change and obtain an output representing the determination result. The signal processing unit 82 having a control function is an example of a determination unit or a processing unit, and starts or stops the operation of the display unit 68 which is an example of a device according to the presence / absence, position, passage, or collection of a person or an object. It is also a control means which performs.
 表示部68には信号処理部82の出力を受け、既述の判定結果を視覚情報で表示する。この表示部68には測定値を示すメーターや、人数などを点灯表示するLED(Light Emitting Diode)などのランプ、判定出力を音で出力するスピーカや警報機を用いてよい。つまり、表示部68は信号処理部82とともに、感圧出力を光信号や、音信号に変換する信号変換手段の一例でもある。 The display unit 68 receives the output of the signal processing unit 82 and displays the above-described determination result as visual information. The display unit 68 may be a meter that shows a measured value, a lamp such as an LED (Light Emitting Diode) that lights up the number of people, a speaker that outputs a judgment output by sound, or an alarm. That is, the display unit 68, together with the signal processing unit 82, is an example of a signal conversion unit that converts the pressure-sensitive output into an optical signal or a sound signal.
 図8は、感圧動作および制御部48の信号処理の動作を示している。図8のAに示すように、マットセンサー20には人からの加圧入力Mが加わり、その加圧入力Mが解除されると、それを表す圧電出力A1、A2が現れる。つまり、加圧入力Mの入力時点taで急峻に立ち上がる先鋭なパルス状の圧電出力A1が生じ、加圧入力Mが静圧化状態に移行すると、圧電出力A1は0レベル状態に移行する。この静圧状態から加圧入力Mが解除されると、その解除時点tbに圧電出力A1と逆相関係の圧電出力A2が生じる。圧電層6の圧電変換特性により、加圧入力Mの変化時点に圧電出力A1、A2が生じ、圧電出力A1、A2のピーク転換の時間間隔Tは入力時点taから解除時点tbの時間間隔とほぼ一致している。したがって、このような圧電出力A1、A2のレベル情報および時間情報を用いれば、人の通過を判断することができる。 FIG. 8 shows the pressure-sensitive operation and the signal processing operation of the control unit 48. As shown in FIG. 8A, when a pressurization input M from a person is applied to the mat sensor 20 and the pressurization input M is released, piezoelectric outputs A1 and A2 representing it appear. That is, a sharp pulsed piezoelectric output A1 that rises sharply at the input time ta of the pressurizing input M is generated, and when the pressurizing input M shifts to the static pressure state, the piezoelectric output A1 shifts to the zero level state. When the pressurization input M is released from this static pressure state, a piezoelectric output A2 having a phase opposite to that of the piezoelectric output A1 is generated at the release time tb. Due to the piezoelectric conversion characteristics of the piezoelectric layer 6, piezoelectric outputs A1 and A2 are generated when the pressure input M changes, and the time interval T of peak conversion of the piezoelectric outputs A1 and A2 is substantially the same as the time interval from the input time ta to the release time tb. Match. Therefore, the passage of a person can be determined by using such level information and time information of the piezoelectric outputs A1 and A2.
 各圧電出力A1、A2は増幅部78で増幅され、波形成形部80の波形成形に適するレベルの電圧に変換され、波形成形部80に入力される。 The piezoelectric outputs A1 and A2 are amplified by the amplifying unit 78, converted into a voltage having a level suitable for waveform shaping of the waveform shaping unit 80, and input to the waveform shaping unit 80.
 波形成形部80では、図8のBに示すように、波形成形が行われ、圧電出力A1、A2に同期したパルス波形が得られる。つまり、このパルス波形は、圧電出力A1の立ち上がりに同期して立ち上がる前エッジ、圧電出力A2の降下に同期して降下する後エッジ、圧電出力A1、A2間の時間間隔Tで一定電圧となる矩形波である。 In the waveform shaping unit 80, waveform shaping is performed as shown in FIG. 8B, and a pulse waveform synchronized with the piezoelectric outputs A1 and A2 is obtained. That is, this pulse waveform is a rectangular shape that becomes a constant voltage at the front edge that rises in synchronization with the rise of the piezoelectric output A1, the rear edge that falls in synchronization with the fall of the piezoelectric output A2, and the time interval T between the piezoelectric outputs A1 and A2. It is a wave.
 この波形出力は信号処理部82に加えられて閾値電圧Vthと比較され、波形出力のレベル判断が行われる。この信号処理部82では波形成形部80の出力波形が閾値電圧Vthを超える範囲を高レベル、それ以外を低レベルとする出力が得られる。 The waveform output is applied to the signal processing unit 82 and compared with the threshold voltage Vth to determine the level of the waveform output. In the signal processing unit 82, an output in which the range in which the output waveform of the waveform shaping unit 80 exceeds the threshold voltage Vth is a high level and the others are low is obtained.
 この結果、図8のCに示すように、表示部68には閾値電圧Vthを超える範囲で点灯する表示出力が得られる。つまり、この点灯表示により、人の存在が視覚的に表示される。 As a result, as shown in FIG. 8C, the display unit 68 can obtain a display output that lights up in a range exceeding the threshold voltage Vth. That is, the presence of a person is visually displayed by this lighting display.
<実施例3の効果> <Effect of Example 3>
 (1) この感圧システム38は、電源線と2本の信号線など、既設のセンサーシステムと同様であり、現行品に対応でき、置換することができる。 (1) This pressure-sensitive system 38 is the same as the existing sensor system, such as a power line and two signal lines, and can be replaced with the current product.
 (2) この感圧システム38にはゴムスペーサのないマットセンサー20を用いているので、圧電層6やその積層体が持つ機能を有効に活用でき、長期に安定した動作を得ることができる。フッ素系圧電シートを用いたマットセンサー20では、耐環境性に優れ、風雨に晒されても安定した動作を維持できる。 (2) Since the mat sensor 20 without the rubber spacer is used in this pressure sensitive system 38, the functions of the piezoelectric layer 6 and its laminated body can be used effectively, and a stable operation can be obtained for a long time. The mat sensor 20 using a fluorine-based piezoelectric sheet has excellent environmental resistance and can maintain stable operation even when exposed to wind and rain.
 (3) マットセンサー20では、シート状センサーである圧電層6を備えて全面センシングが可能であり、不感領域を削減できるので、検出効率を高めることができる。 (3) The soot mat sensor 20 includes the piezoelectric layer 6 that is a sheet-like sensor and can perform full-surface sensing, and can reduce the insensitive area, thereby increasing the detection efficiency.
 (4) マットセンサー20は有機積層体であり、機構部品などの複雑な機構を備えていないので、感圧システム38の価格を低減化できる。 (4) The soot mat sensor 20 is an organic laminate and does not have a complicated mechanism such as a mechanical part, so the price of the pressure sensitive system 38 can be reduced.
 (5) ステップ装置40にはLEDによるインジケータを備えることにより、注意喚起や安全性の維持を図ることができる。このステップ装置40では、人だけでなく物の有無、通過などの判定にも利用することができる。 (5) The eaves stepping device 40 is provided with an LED indicator so that attention can be alerted and safety can be maintained. The step device 40 can be used not only to determine the presence of a person but also the presence / absence of an object and passage.
 (6) ステップ装置40の駆動機構部66の駆動開始や収納などの動作にもマットセンサー20の感圧出力を利用することができる。 (6) The pressure-sensitive output of the mat sensor 20 can be used for operations such as driving start and storage of the driving mechanism 66 of the stepping device 40.
 (7) ステップ装置40はマットセンサー20を備えて感圧検出を行うので、耐衝撃性が高く、メンテナンス性に優れ、防水性を高めることができる。 (7) Since the eaves step device 40 includes the mat sensor 20 and performs pressure-sensitive detection, it has high impact resistance, excellent maintainability, and can improve waterproofness.
 (8) ステップ装置40にはマットセンサー20側の配線を装置筐体42に収納でき、制御部48の出力線を最小限化できるので、配線数の削減とスマート化などを図ることができる。 (8) Since the wiring on the mat sensor 20 side can be accommodated in the apparatus housing 42 in the stepping device 40 and the output line of the control unit 48 can be minimized, the number of wirings can be reduced and smarter can be achieved.
 図9は、実施例4に係るマットセンサー20を示している。このマットセンサー20では、圧電積層体24の周辺回路として積分回路84およびオペアンプ86が備えられ、マットセンサー20の内部に設置される。 FIG. 9 shows a mat sensor 20 according to the fourth embodiment. In the mat sensor 20, an integrating circuit 84 and an operational amplifier 86 are provided as peripheral circuits of the piezoelectric laminate 24, and are installed inside the mat sensor 20.
 積分回路84にはキャパシタ88が備えられ、このキャパシタ88が圧電積層体24の電極対16間に接続されている。積分回路84は、圧電積層体24の圧電層6が持つインピーダンスを利用し、単一のキャパシタ88で積分機能を実現している。この積分回路84および圧電積層体24はオペアンプ86の非反転端子(+)と電源90の正極側の間に接続され、圧電出力の積分出力がオペアンプ86の非反転端子(+)に加えられる。 The integrating circuit 84 includes a capacitor 88, and this capacitor 88 is connected between the electrode pair 16 of the piezoelectric laminate 24. The integration circuit 84 uses the impedance of the piezoelectric layer 6 of the piezoelectric laminate 24 to realize an integration function with a single capacitor 88. The integrating circuit 84 and the piezoelectric laminate 24 are connected between the non-inverting terminal (+) of the operational amplifier 86 and the positive side of the power supply 90, and the integrated output of the piezoelectric output is applied to the non-inverting terminal (+) of the operational amplifier 86.
 図10は、このマットセンサー20の動作を示している。仮想の加圧入力としてたとえば、錘を使用し、この錘をマットセンサー20の踏み面に落下させる。図10のAに示すように、加圧入力時点taで錘1個を落下させ、時点tbでさらに錘1個を落下させ、時点tcで錘1個を外し、加圧解除時点tdで残りの錘1個を外して除圧している。したがって、加圧入力時点taから加圧解除時点tdの時間Tが静圧期間である。 FIG. 10 shows the operation of the mat sensor 20. For example, a weight is used as the virtual pressure input, and the weight is dropped on the tread surface of the mat sensor 20. As shown in FIG. 10A, one weight is dropped at the pressure input time ta, one more weight is dropped at the time tb, one weight is removed at the time tc, and the remaining weight is released at the pressure release time td. The pressure is removed by removing one weight. Therefore, the time T from the pressure input time point ta to the pressure release time point td is the static pressure period.
 図10のBに示すように、時点taで加圧入力Mがマットセンサー20に加わり、圧電出力A1が生じる。この加圧入力Mの後、2つ目の錘を落下させて加圧入力Mを追加すると、この時点tbで圧電出力A2が生じる。ひとつの錘を除くと、その時点tcで逆相の圧電出力A3が生じ、さらに錘を外した時点tdで逆相の圧電出力A4が生じる。 As shown in FIG. 10B, the pressure input M is applied to the mat sensor 20 at the time point ta, and the piezoelectric output A1 is generated. When the pressure input M is added by dropping the second weight after the pressure input M, the piezoelectric output A2 is generated at this time tb. When one weight is removed, a reverse-phase piezoelectric output A3 is generated at the time tc, and a reverse-phase piezoelectric output A4 is generated at the time td when the weight is removed.
 これら圧電出力A1、A2、A3、A4はオペアンプ86により増幅されて取り出され、既述の信号処理部82に加えられる。 These piezoelectric outputs A1, A2, A3, A4 are amplified by the operational amplifier 86 and taken out, and added to the signal processing unit 82 described above.
 これにより、図10のCに示すように、波形成形出力が得られる。この波形成形出力では、圧電出力A1に同期して立ち上がる出力波形B1、圧電出力A2に同期して立ち上がる出力波形B2、圧電出力A3に同期して降下する出力波形B3が生じ、圧電出力A4に同期して出力波形B3は0レベルに降下する。 Thereby, as shown in C of FIG. 10, a waveform shaping output is obtained. In this waveform shaping output, an output waveform B1 that rises in synchronization with the piezoelectric output A1, an output waveform B2 that rises in synchronization with the piezoelectric output A2, and an output waveform B3 that falls in synchronization with the piezoelectric output A3 are generated, and are synchronized with the piezoelectric output A4. Then, the output waveform B3 falls to 0 level.
 出力波形B1は、錘1個分を表すレベル、出力波形B2は、錘2個分を表すレベル、出力波形B3は、錘1個分を表すレベルを表している。つまり、時点taで加圧入力Mの開始であり、この時点taから時点tdの除圧までの一定時間で静圧状態が維持される。 The output waveform B1 represents a level representing one weight, the output waveform B2 represents a level representing two weights, and the output waveform B3 represents a level representing one weight. That is, the pressurization input M is started at the time point ta, and the static pressure state is maintained for a certain time from the time point ta to the pressure removal at the time point td.
 この静圧期間において、既述の表示部68を用いれば、図10のDに示すように、静圧期間を点灯により表示することができる。 In this static pressure period, if the display unit 68 described above is used, the static pressure period can be displayed by lighting as shown in FIG.
<実施例4の効果> <Effect of Example 4>
 (1) このマットセンサー20では、センサー内に積分回路84やオペアンプ86を内蔵することができ、ノイズ低減を図ることができ、加圧入力の検出感度を高めることができる。たとえば、入力電圧波形の1〔ms〕の時間積分値を電圧として出力させることができる。 (1) In this mat sensor 20, an integrating circuit 84 and an operational amplifier 86 can be built in the sensor, noise can be reduced, and the detection sensitivity of the pressure input can be increased. For example, a time integral value of 1 [ms] of the input voltage waveform can be output as a voltage.
 (2) マットセンサー20では、センサー内に積分回路84やオペアンプ86を備えるので、感圧判定側の回路構成を簡略化できる。 (2) Since the mat sensor 20 includes the integration circuit 84 and the operational amplifier 86 in the sensor, the circuit configuration on the pressure-sensitive determination side can be simplified.
 (3) 加除圧による電圧変化や加圧時点間の静圧検出が可能であり、静圧時および段階的な加圧、除圧に対する電圧出力を得ることができる。つまり、加圧入力に応じたレベルの電圧出力を取り出すことができる。 (3) It is possible to detect the voltage change due to pressure addition / decompression and the static pressure during the pressurization time, and obtain the voltage output for the static pressure and stepwise pressurization and depressurization. That is, a voltage output at a level corresponding to the pressure input can be taken out.
 (4) 電圧出力と閾値との比較によるON、OFF判定が可能であり、荷重による加圧入力が解除された時点でその判定出力を解除することができる。 (4) ON / OFF judgment can be made by comparing the voltage output with the threshold value, and the judgment output can be released when the pressure input by the load is released.
 (5) このような感圧判定によれば、人や物の有無、その集合量や分布を表す出力を容易に得ることができる。 (5) 圧 According to such pressure-sensitive determination, it is possible to easily obtain the output indicating the presence / absence of a person or an object, the collection amount or distribution thereof.
<有無判定が可能なパターン電極例> <Example of pattern electrode that can be determined>
 (1) 不感領域の最小限化 (1) Minimizing insensitive areas
 図11のAに示すように、電極16aまたは電極16bの何れか一方またはそれぞれには、圧電層6の加圧入力面部14aに対し、連続するサーキット状の電極部92-1、92-2が備えられる。各電極部92-1、92-2はジグザグ状に屈曲する連続するサーキット状であり、圧電層6の加圧入力面部14aの全面を覆って配置されている。この例では、各電極部92-1、92-2の屈曲部が互いに噛み合うように配置され、検出領域4が二つの電極部92-1、92-2を以て覆われている。このような電極16a、16bに対し、背面側の電極16bは、フラット電極面としてもよい。 As shown in FIG. 11A, one or each of the electrode 16a and the electrode 16b has continuous circuit-like electrode portions 92-1 and 92-2 with respect to the pressure input surface portion 14a of the piezoelectric layer 6. Provided. Each of the electrode portions 92-1 and 92-2 has a continuous circuit shape that bends in a zigzag shape, and is disposed so as to cover the entire surface of the pressure input surface portion 14a of the piezoelectric layer 6. In this example, the bent portions of the electrode portions 92-1 and 92-2 are arranged so as to mesh with each other, and the detection region 4 is covered with the two electrode portions 92-1 and 92-2. In contrast to the electrodes 16a and 16b, the back electrode 16b may be a flat electrode surface.
 このような電極16a、16bにサーキット状の電極部92-1、92-2を備えれば、検出領域4を全面的に網羅でき、不感領域を最小限にでき、検出効率を高めることができる。 If the electrodes 16a and 16b are provided with circuit-like electrode portions 92-1 and 92-2, the entire detection region 4 can be covered, the insensitive region can be minimized, and the detection efficiency can be increased. .
 各電極16a、16bは、図11のBに示すように、サーキット状の電極部92-1、92-2の上下方向の位置をずらして配置してもよいし、図11のCに示すようにサーキット状の各電極部92-1、92-2の位置を90度だけずらして配置してもよい。 As shown in FIG. 11B, the electrodes 16a and 16b may be arranged by shifting the positions of the circuit-shaped electrode portions 92-1 and 92-2 in the vertical direction, or as shown in FIG. 11C. Further, the positions of the circuit-like electrode portions 92-1 and 92-2 may be shifted by 90 degrees.
 (2) 電極16a、16bの分散化 (2) Dispersion of saddle electrodes 16a and 16b
 図12のAに示すように、電極16aまたは電極16bの何れか一方またはそれぞれを小さい矩形の電極部94-1、94-2に分割し、検出領域4を分散化してもよい。係る構成によれば、電極16a、16bの分散化により感圧度を安定化させることができる。破線で示す靴跡96のように、電極部94-1、94-2に跨がって加圧入力Mが生じれば、電極部94-1、94-2の双方から圧電出力を得ることができる。 As shown in FIG. 12A, one or each of the electrode 16a and the electrode 16b may be divided into small rectangular electrode portions 94-1 and 94-2, and the detection region 4 may be dispersed. According to this configuration, the pressure sensitivity can be stabilized by dispersing the electrodes 16a and 16b. If a pressure input M occurs across the electrode portions 94-1 and 94-2 as in the shoe mark 96 indicated by a broken line, a piezoelectric output can be obtained from both the electrode portions 94-1 and 94-2. Can do.
 図12のBに示すように、電極16a、16bのそれぞれを電極部98-1、98-2、98-3に3分割し、検出領域4を分散化してよい。この場合、長方形状の検出領域4の中央に二等辺三角形の電極部98-1が配置され、電極部98-1の各斜辺側に直角二等辺三角形の電極部98-2、98-3が配置されている。係る構成によれば、電極16aまたは電極16bの分散化で同様に感圧度を安定化させることができる。この場合、破線で示す靴跡96のように、電極部98-1、98-2に跨がって加圧入力Mが生じれば、電極部98-1、98-2の双方に圧電出力が得られる。 As shown in FIG. 12B, each of the electrodes 16a and 16b may be divided into three electrode portions 98-1, 98-2, and 98-3, and the detection region 4 may be dispersed. In this case, an isosceles triangular electrode portion 98-1 is arranged in the center of the rectangular detection region 4, and right isosceles triangular electrode portions 98-2 and 98-3 are provided on the respective oblique sides of the electrode portion 98-1. Has been placed. According to such a configuration, the pressure sensitivity can be similarly stabilized by dispersing the electrode 16a or the electrode 16b. In this case, if a pressure input M is generated across the electrode portions 98-1 and 98-2 as shown by the shoe mark 96 indicated by a broken line, a piezoelectric output is applied to both the electrode portions 98-1 and 98-2. Is obtained.
 (3) バイパス回路による破断部の補完 (3) 破 断 Compensation of fractured part by bypass circuit
 図13のAに示すように、電極16aまたは電極16bの何れか一方またはそれぞれに第1および第2の電極引出し部100-1、100-2を備えてよい。図13のBに示すように、電極引出し部100-1で破断102を生じても、圧電出力の取出しには電極引出し部100-2を用いることができ、安定した検出動作を維持できる。 As shown in FIG. 13A, the first and second electrode lead portions 100-1 and 100-2 may be provided on either or each of the electrode 16a and the electrode 16b. As shown in FIG. 13B, even if the fracture 102 occurs in the electrode lead-out portion 100-1, the electrode lead-out portion 100-2 can be used for taking out the piezoelectric output, and a stable detection operation can be maintained.
 図14のAに示すように、電極16a、16bを複数の電極部104-11、104-12・・・・104-33に分割してマトリクス状に配列するとともに、各電極部104-11、104-12・・・・104-33を橋絡部106で連結して電気的に一体化するとともに、複数の電極引出し部108-1、108-2、108-3を備えてもよい。つまり、複数の電極部104-11、104-12・・・・104-33および橋絡部106を以て互いのバイパス回路としている。係る構成とすれば、図14のBに示すように、電極引出し部104-11、104-12・・・・104-33や複数の橋絡部106で破断102を生じていても、電極部104-31に生じた加圧入力Mによる圧電出力を電極引出し部108-2、108-3から取り出すことができる。 As shown in FIG. 14A, the electrodes 16a and 16b are divided into a plurality of electrode portions 104-11, 104-12,... 104-33 and arranged in a matrix, and each electrode portion 104-11, 104-12... 104-33 may be connected by a bridging portion 106 to be electrically integrated, and a plurality of electrode lead portions 108-1, 108-2, 108-3 may be provided. That is, the plurality of electrode portions 104-11, 104-12,... 104-33 and the bridging portion 106 form a mutual bypass circuit. With such a configuration, as shown in FIG. 14B, even if the electrode lead portions 104-11, 104-12,... 104-33 and the plurality of bridging portions 106 are broken 102, the electrode portions The piezoelectric output due to the pressure input M generated in 104-31 can be taken out from the electrode lead-out portions 108-2 and 108-3.
 (4) 電極部16a、16bの屈曲性の強化 (4) Strengthening the flexibility of the saddle electrode parts 16a and 16b
 図15のAに示すように、電極16a、16bの各辺部から中心部方向に向かう複数の切欠部110を形成し、隣り合う切欠部110の間に電極部112-1、112-2、112-3、112-4を形成してもよい。係る構成によれば、屈曲可能な電極16a、16bの電極引出し機能を補完でき、各電極部112-1、112-2、112-3、112-4によって電極16a、16bの屈曲性を補完し、強化することができる。 As shown in FIG. 15A, a plurality of notches 110 are formed from each side of the electrodes 16a and 16b toward the center, and the electrode portions 112-1, 112-2, 112-3 and 112-4 may be formed. According to such a configuration, the electrode lead-out function of the bendable electrodes 16a and 16b can be complemented, and the bendability of the electrodes 16a and 16b is complemented by the respective electrode portions 112-1, 112-2, 112-3, and 112-4. Can be strengthened.
 (5) 電極部16a、16bの同一面配置 (5) Saddle electrode parts 16a, 16b on the same plane
 図15のBに示すように、検出領域4の幅方向に電極対16の各電極16a、16bを配置してもよい。同一面に配置する電極16a、16bは、圧電層6の加圧入力面部14aまたは支持面部14bのいずれに設置してもよい。 15B, the electrodes 16a and 16b of the electrode pair 16 may be arranged in the width direction of the detection region 4. The electrodes 16a and 16b arranged on the same surface may be disposed on either the pressure input surface portion 14a or the support surface portion 14b of the piezoelectric layer 6.
<位置判定が可能なパターン電極例> <Example of pattern electrode capable of position determination>
 (6) X軸上の位置の特定 (6) Specification of position on X axis
 図16のAに示すように、電極16a、16bは複数の電極部114-1、114-2、114-3・・・を備え、これら電極部114-1、114-2、114-3・・・をX軸方向に配列させてもよい。このようにすれば、電極部114-1、114-2、114-3・・・により、X軸上の位置を表す圧電出力を取り出すことができる。この場合、靴跡96のある電極部114-1には靴跡96のX軸上の位置を表す圧電出力が得られる。 As shown in FIG. 16A, the electrodes 16a, 16b include a plurality of electrode portions 114-1, 114-2, 114-3,..., And these electrode portions 114-1, 114-2, 114-3,. .. May be arranged in the X-axis direction. In this way, the piezoelectric output representing the position on the X-axis can be taken out by the electrode portions 114-1, 114-2, 114-3,. In this case, a piezoelectric output representing the position of the shoe print 96 on the X-axis is obtained at the electrode portion 114-1 having the shoe print 96.
 (7) Y軸上の位置の特定 (7) 位置 Specify position on Y-axis
 図16のBに示すように、電極16a、16bは複数の電極部116-1、116-2、116-3、116-4・・・を備え、これら電極部116-1、116-2、116-3、116-4・・・をY軸方向に配列させてもよい。このようにすれば、電極部116-1、116-2、116-3、116-4・・・により、Y軸上の位置を表す圧電出力を取り出すことができる。この場合、靴跡96-1のある電極部116-1には靴跡96-1のY軸上の位置を表す圧電出力が得られる。破線で示すように、靴跡96-1から靴跡96-2に移動すれば、移動したY軸上の位置を表す圧電出力が電極部116-1、116-2から取り出される。 As shown in FIG. 16B, the electrodes 16a, 16b include a plurality of electrode portions 116-1, 116-2, 116-3, 116-4,..., And these electrode portions 116-1, 116-2, 116-3, 116-4,... May be arranged in the Y-axis direction. In this way, the piezoelectric output representing the position on the Y axis can be taken out by the electrode portions 116-1, 116-2, 116-3, 116-4,. In this case, a piezoelectric output representing the position of the shoe print 96-1 on the Y-axis is obtained at the electrode portion 116-1 where the shoe print 96-1 is provided. As indicated by the broken line, when the shoe print 96-1 moves to the shoe print 96-2, the piezoelectric output representing the moved position on the Y-axis is taken out from the electrode portions 116-1 and 116-2.
 (8) X軸およびY軸上の位置の特定 (8) Specify position on X and Y axes
 図17のAに示すように、電極16aは、複数の電極部118-1、118-2、118-3、118-4を備え、電極16bは、複数の電極部118-5、118-6、118-7、118-8を備えている。この電極16bは、電極16aの下側に圧電層6を挟んで配置される。電極16a、電極16bは加圧入力面および背面にそれぞれX軸方向およびY軸方向にマトリクス状に配列するとともに、電極部118-1、118-2、118-3、118-4、118-5、118-6、118-7、118-8を以て同一間隔の電気的橋絡部を構成して各電極部間を橋絡させ、周縁側の各電極部にはX軸方向およびY軸方向に電極引出し部が形成されている。 As shown in FIG. 17A, the electrode 16a includes a plurality of electrode portions 118-1, 118-2, 118-3, 118-4, and the electrode 16b includes a plurality of electrode portions 118-5, 118-6. , 118-7, 118-8. The electrode 16b is disposed below the electrode 16a with the piezoelectric layer 6 interposed therebetween. The electrodes 16a and 16b are arranged in a matrix in the X-axis direction and the Y-axis direction on the pressure input surface and the back surface, respectively, and the electrode portions 118-1, 118-2, 118-3, 118-4, 118-5. , 118-6, 118-7, 118-8 constitute an electrical bridge portion of the same interval to bridge each electrode portion, and each electrode portion on the peripheral side has an X-axis direction and a Y-axis direction. An electrode lead portion is formed.
 このような構成とすれば、加圧入力面より加圧入力Mが付与されると、電極部118-1、118-2、118-3、118-4、および、118-5、118-6、118-7、118-8のいずれかまたは複数の組合せから圧電出力が得られる。この圧電出力が生じた加圧入力MのX軸、Y軸上の座標位置を知ることができる。 With this configuration, when the pressure input M is applied from the pressure input surface, the electrode portions 118-1, 118-2, 118-3, 118-4, and 118-5, 118-6 are provided. , 118-7, 118-8, or a combination of a plurality of piezoelectric outputs. It is possible to know the coordinate position on the X-axis and Y-axis of the pressure input M where the piezoelectric output is generated.
 (9) X軸、Y軸およびZ軸上の位置の特定 (9) 位置 Specify the position on the X, Y, and Z axes
 図17のBに示すように、ブロック状の弾性支持体120の上面および下面にX-Y軸上の加圧入力Mを検出する感圧センサー2-1、側面にZ軸上の加圧入力Mを検出する感圧センサー2-2を備えている。感圧センサー2-1側には電極16aおよび電極16bが圧電層6を挟んで備えられ、電極16aには複数の電極部118-1、118-2、118-3、118-4、電極16bには複数の電極部118-5、118-6が備えられる。これら複数の電極部118-1、118-2、118-3、118-4、118-5、118-6は既述のX-Y軸上に間隔を設けて配列されている。感圧センサー2-2側には、複数の電極部122が間隔を設けて配列されている。図示しないが、感圧センサー2-2側の電極122も圧電層6を挟んで配置される電極対であってもよいし、圧電層6の加圧入力面に横方向に圧電層6を挟んで配置されてもよい。 As shown in FIG. 17B, the pressure-sensitive sensor 2-1 for detecting the pressure input M on the XY axis is provided on the upper and lower surfaces of the block-like elastic support 120, and the pressure input on the Z-axis is provided on the side surface. A pressure sensor 2-2 for detecting M is provided. An electrode 16a and an electrode 16b are provided on the pressure sensor 2-1 side with the piezoelectric layer 6 interposed therebetween. The electrode 16a includes a plurality of electrode portions 118-1, 118-2, 118-3, 118-4, and an electrode 16b. Is provided with a plurality of electrode portions 118-5 and 118-6. The plurality of electrode portions 118-1, 118-2, 118-3, 118-4, 118-5, and 118-6 are arranged at intervals on the XY axis described above. A plurality of electrode portions 122 are arranged at intervals on the pressure-sensitive sensor 2-2 side. Although not shown, the electrode 122 on the pressure sensor 2-2 side may also be an electrode pair disposed with the piezoelectric layer 6 interposed therebetween, or the piezoelectric layer 6 may be sandwiched laterally on the pressure input surface of the piezoelectric layer 6. May be arranged.
 係る構成では、感圧センサー2-1からX-Y軸上に加わる加圧入力Mによる圧電出力を取り出すことができ、感圧センサー2-2からZ軸上に加わる加圧入力Mによる圧電出力を取り出すことができる。 In this configuration, the piezoelectric output by the pressure input M applied on the XY axis can be taken out from the pressure sensor 2-1 and the piezoelectric output by the pressure input M applied on the Z axis from the pressure sensor 2-2. Can be taken out.
<分布判定が可能なパターン電極例> <Pattern electrode example capable of distribution determination>
 図18のAに示すように、この電極16a、16bでは、複数の加圧入力M1、M2・・・MNが加わった場合、その分布出力をX軸方向およびY軸方向に圧電出力が生じた加圧入力M1、M2・・・MNのX軸、Y軸上の座標位置を知ることができ、その圧電出力から加圧入力M1、M2・・・MNの分布を知ることができる。 As shown in FIG. 18A, when a plurality of pressure inputs M1, M2,... MN are added to the electrodes 16a and 16b, piezoelectric outputs are generated in the X-axis direction and the Y-axis direction. The coordinate positions on the X and Y axes of the pressure inputs M1, M2,... MN can be known, and the distribution of the pressure inputs M1, M2,.
<方向判定が可能なパターン電極例> <Pattern electrode example capable of direction determination>
 図18のBに示すように、X-Y軸上にある感圧センサー2-1に対し、傾斜方向から加圧入力Mが加わった場合、感圧センサー2-1から加圧入力Mの入力角度を表す圧電出力が得られる。 As shown in FIG. 18B, when a pressure input M is applied to the pressure sensor 2-1 on the XY axis from the tilt direction, the input of the pressure input M from the pressure sensor 2-1 is applied. A piezoelectric output representing the angle is obtained.
 図19は、実施例6に係る感圧検出装置の一例を示している。この感圧検出装置124には、感圧センサー2、波形成形部126、信号処理部128、制御部130および電源部132が備えられる。 FIG. 19 shows an example of a pressure-sensitive detection device according to the sixth embodiment. The pressure sensing device 124 includes a pressure sensor 2, a waveform shaping unit 126, a signal processing unit 128, a control unit 130, and a power supply unit 132.
 感圧センサー2には単一または複数の圧電層6や電極対16を備えてよい。波形成形部126は、既述の波形成形部80と同様の機能を備える。 The pressure sensor 2 may include a single or a plurality of piezoelectric layers 6 and electrode pairs 16. The waveform shaping unit 126 has the same function as the waveform shaping unit 80 described above.
 信号処理部128および制御部130はたとえば、コンピュータで構成され、特定のエリアに対する人または物の進入、通過または集合を含む処理を行う処理手段の一例であり、これら各種の信号処理が可能である。信号処理部128では各種の信号処理が可能であり、制御部130では、その信号処理に基づき、各種機器の発停制御など、各種の制御動作を行うことができる。 The signal processing unit 128 and the control unit 130 are, for example, configured by a computer, and are an example of a processing unit that performs processing including entry, passage, or gathering of a person or an object into a specific area, and these various types of signal processing are possible. . The signal processing unit 128 can perform various signal processing, and the control unit 130 can perform various control operations such as start / stop control of various devices based on the signal processing.
 電源部132はバッテリでもよいし、商用電源を用いて駆動電圧を生成してもよい。 The power supply unit 132 may be a battery or may generate a drive voltage using a commercial power supply.
<信号処理および制御動作など> <Signal processing and control operations>
 a)加圧入力Mの積算処理
 この積算処理には、加圧入力Mの積算処理の他、加圧入力Mの大きさの判定処理、加圧入力Mの加算処理、加圧入力Mが所定値を超えたか否かの判定などの処理が含まれる。この積算処理によれば、人や物の重量の判定、その判定結果による航空機への搭乗制限、貨物の偏重判定、大人・子供の区別する搭乗状況などの判別が可能である。
a) Accumulation process of pressurization input M In addition to the integration process of pressurization input M, the determination process of the magnitude of pressurization input M, the addition process of pressurization input M, and pressurization input M are predetermined in this integration process. Processing such as determination of whether or not the value has been exceeded is included. According to this integration process, it is possible to determine the weight of a person or an object, the boarding restrictions on the aircraft based on the determination result, the determination of the cargo weight deviation, the boarding situation for adults and children, and the like.
 b)加圧入力Mの頻度
 加圧入力Mの回数をカウントし、そのカウント値が一定値を超えたか否かを判定すればよい。人や物の入・退場数をカウントし、一定数を超えれば、入場制限をする。
b) Frequency of pressurization input M The number of pressurization inputs M may be counted, and it may be determined whether or not the count value exceeds a certain value. Count the number of people and things entering and leaving, and restrict entry if it exceeds a certain number.
 c)加圧入力Mの分布処理
 加圧入力Mの大きさと時点、場所、または大きさおよび回数、場所および回数を記録すればよい。物からの加圧入力Mの分布状況を可視化可能である。荷物のトレーサビリティーなどの判定に利用すればよい。
c) Distribution processing of the pressure input M The size and time point, location, or size and number of the pressure input M, and the location and number of times may be recorded. The distribution state of the pressure input M from the object can be visualized. It can be used to determine the traceability of luggage.
 d)複数の加圧入力Mの相関処理
 加圧入力Mを記録し、その記録に基づき、その規則性を判定する。ベッドに感圧センサーを配置し、加圧入力Mから就寝姿勢の癖の判定、靴底に感圧センサーを配置することで靴底圧力から歩き方や走り方の癖の判定などの処理が可能である。
d) Correlation processing of a plurality of pressure inputs M The pressure input M is recorded, and the regularity is determined based on the record. By placing a pressure sensor on the bed and judging the sleeping posture from pressure input M, and placing a pressure sensor on the sole, it is possible to determine how to walk and run from the sole pressure. It is.
 e)推定処理
 加圧入力Mの平均値を求めれば、たとえば、ロール面圧力の均質性を推定することができる。
e) Estimation process If the average value of the pressure input M is obtained, for example, the uniformity of the roll surface pressure can be estimated.
 f)検定処理
 複数の加圧入力Mを比較し、加圧入力M間や、複数の加圧入力Mを集合させたグループ間での違いを判定することができる。たとえば、全数検査において、加圧入力M(重さ)を判定し、その大きさで合否判定に利用する。
f) Testing process A plurality of pressure inputs M can be compared to determine a difference between the pressure inputs M or a group in which the plurality of pressure inputs M are assembled. For example, in the 100% inspection, the pressure input M (weight) is determined, and the size is used for the pass / fail determination.
 g)分散処理
 複数の加圧入力Mの平均値から分散を求めることができる。たとえば、洗浄液の飛散状態の程度をみる。洗浄器具の形状設計などに活用することができる。
g) Dispersion processing The dispersion can be obtained from the average value of a plurality of pressure inputs M. For example, the degree of the scattered state of the cleaning liquid is examined. It can be used for designing the shape of cleaning equipment.
 h)加圧入力Mの圧力レベルに応じた信号処理が可能である。
 h-1)電圧と動作状態を表す信号から、機器の駆動や停止を行う。カメラのシャッター動作、たとえば、自動改札でのX線撮影との連動などに利用できる。
h) Signal processing according to the pressure level of the pressure input M is possible.
h-1) The device is driven and stopped from the voltage and the signal indicating the operation state. It can be used for camera shutter operation, for example, in conjunction with X-ray imaging with an automatic ticket gate.
 h-2)自動開閉動作として:たとえば、ドアに挟まれ時、自動開扉などに利用できる。また、選別動作として:たとえば、液体持込み有無の推定に利用する場合、荷物を揺らした後の電圧減衰から判定すればよい。 H-2) Automatic opening / closing operation: For example, it can be used for automatic opening when it is caught in a door. Also, as a sorting operation: for example, when used to estimate whether or not liquid is brought in, it may be determined from voltage attenuation after the package is shaken.
 h-3)電圧および音を表す信号から、物の落下、立入禁止区域への侵入、点字ブロック踏み付けから指向性を判断し、音声案内を出力する。 H-3) From the signals representing voltage and sound, judge the directivity from the falling of objects, entering the restricted area, and stepping on the braille block, and output voice guidance.
 h-4)電圧および光を表す信号から、圧力を受けた回数カウントにより色表示を行えばよい。 H-4) Color display may be performed by counting the number of times pressure is received from signals representing voltage and light.
 <実施例6の効果> <Effects of Example 6>
 (1) 感圧センサー2は加圧を伴う各種の分野に利用し、圧力レベルや圧力分布などの検出に利用できる。 (1) The pressure sensor 2 can be used in various fields involving pressurization and can be used to detect pressure levels and pressure distribution.
 (2) 加圧状態をユーザに告知できるので、感圧センサーを備えることにより、各種機器の利便性を高めることができる。 (2) Since the user can be informed of the pressurized state, the convenience of various devices can be enhanced by providing a pressure-sensitive sensor.
〔他の実施の形態〕 [Other Embodiments]
 (1) 上記一実施の形態または実施例では、人や物からの加圧入力を検出することを例示したが、感圧センサー2は人の動きや鼓動などの検出に用いてもよい。 (1) In the above-described embodiment or example, it is exemplified that pressure input from a person or an object is detected. However, the pressure sensor 2 may be used to detect a person's movement or heartbeat.
 (2) 既述の感圧センサー2はスポーツや遊戯などの加圧点の検出に用いてもよい。 (2) The above-described pressure-sensitive sensor 2 may be used for detecting a pressurizing point in sports or games.
 (3) ステップ装置40は船舶や航空機、室の人や物の出入り検出に利用してもよい。 (3) The eaves step device 40 may be used to detect the entry and exit of ships, aircraft, rooms, and people.
 以上説明したように、本発明の最も好ましい実施の形態や実施例について説明した。本発明は上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態または実施例に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。 As described above, the most preferred embodiments and examples of the present invention have been described. The present invention is not limited to the above description. Various modifications and changes can be made by those skilled in the art based on the gist of the invention described in the claims or in the embodiments or examples for carrying out the invention. It goes without saying that such modifications and changes are included in the scope of the present invention.
産業上の利用の可能性Industrial applicability
 本発明によれば、ステップ装置などに適用でき、人や物の存在の有無、通過、集合などの判断に利用でき、有益である。 According to the present invention, it can be applied to a step device or the like, and can be used to determine the presence / absence of a person or an object, passage, gathering, etc.
 2 感圧センサー
 4 検出領域
 6 圧電層
 8 背面支持層
 10 エリア側支持面
 12 圧力伝達層
 14a 加圧入力面部
 14b 支持面部
 16 電極対
 16a、16b 電極
 16a-1、16a-2、16b-1、16b-2 電極部
 18 絶縁間隔
 20 マットセンサー
 22 受圧層
 22-1 弾性層
 22-2 滑止め層
 24 圧電積層体
 26 背面支持層
 26-1 剛性層
 26-2 弾性層
 28 封止層
 30-1、30-2 シールド層
 30-11、30-21 導体層
 30-12、30-13、30-22、30-23 絶縁層
 38 感圧検出システム
 40 ステップ装置
 42 装置筐体
 44 マットセンサー固定部
 46 感圧範囲
 48 制御部
 50 基板収納部
 52-1、52-2 信号線
 54 電源線
 56 ビル
 58 出入口部
 60 自動ドア
 64 感圧検出装置
 65 電源部
 66 駆動機構部
 68 表示部
 74 変圧器
 76 整流器
 78 増幅部
 80 波形成形部
 82 信号処理部
 84 積分回路
 86 オペアンプ
 88 キャパシタ
 90 電源
 92-1、92-2、94-1、94-2、98-1、98-2、98-3、104-11、104-12・・・・104-33、112-1、112-2、112-3、112-4、114-1、114-2、114-3、116-1、116-2、116-3、116-4、118-1、118-2、118-3、118-4、118-5、118-6、118-7、118-8、122 電極部
 96、96-1、96-2 靴跡
 100-1、100-2、108-1、108-2、108-3 電極引出し部
 102 破断
 106 橋絡部
 110 切欠部
 120 弾性支持体
 124 感圧検出装置
 126 波形成形部
 128 信号処理部
 130 制御部
 132 電源部
                                                                                
2 Pressure-sensitive sensor 4 Detection area 6 Piezoelectric layer 8 Back support layer 10 Area side support surface 12 Pressure transmission layer 14a Pressurization input surface portion 14b Support surface portion 16 Electrode pair 16a, 16b Electrodes 16a-1, 16a-2, 16b-1, 16b-2 Electrode portion 18 Insulation interval 20 Mat sensor 22 Pressure receiving layer 22-1 Elastic layer 22-2 Non-slip layer 24 Piezoelectric laminate 26 Back support layer 26-1 Rigid layer 26-2 Elastic layer 28 Sealing layer 30-1 , 30-2 Shield layer 30-11, 30-21 Conductor layer 30-12, 30-13, 30-22, 30-23 Insulating layer 38 Pressure sensitive detection system 40 Step device 42 Device housing 44 Mat sensor fixing portion 46 Pressure sensing range 48 Control unit 50 Substrate storage unit 52-1, 52-2 Signal line 54 Power supply line 56 Building 58 Entrance / exit 60 Automatic door 64 Pressure detection Device 65 Power supply unit 66 Drive mechanism unit 68 Display unit 74 Transformer 76 Rectifier 78 Amplification unit 80 Waveform shaping unit 82 Signal processing unit 84 Integration circuit 86 Operational amplifier 88 Capacitor 90 Power supply 92-1, 92-2, 94-1, 94- 2, 98-1, 98-2, 98-3, 104-11, 104-12... 104-33, 112-1, 112-2, 112-3, 112-4, 114-1, 114 -2, 114-3, 116-1, 116-2, 116-3, 116-4, 118-1, 118-2, 118-3, 118-4, 118-5, 118-6, 118-7 , 118-8, 122 Electrode part 96, 96-1, 96-2 Shoe mark 100-1, 100-2, 108-1, 108-2, 108-3 Electrode lead part 102 Fracture 106 Bridge part 110 Notch part 120 Sexual feeling support 124 pressure detector 126, the waveform shaping section 128 signal processing section 130 the control unit 132 Power unit

Claims (12)

  1.  加圧入力の検出エリアに加圧入力面部を持つ単一または複数の圧電層を設置し、
     前記圧電層を挟んで配置された単一または複数の電極対の少なくとも一方の電極を、前記加圧入力面部より狭い連続した電極部または複数の電極部を備えるパターン電極とし、
     前記パターン電極に加圧入力を受け、前記パターン電極から感圧出力を取り出す感圧検出方法。
    A single or multiple piezoelectric layers with a pressure input surface are installed in the pressure input detection area.
    At least one electrode of a single or a plurality of electrode pairs arranged with the piezoelectric layer in between is a patterned electrode having a continuous electrode portion or a plurality of electrode portions narrower than the pressure input surface portion,
    A pressure-sensitive detection method for receiving pressure input to the pattern electrode and extracting a pressure-sensitive output from the pattern electrode.
  2.  加圧入力の検出エリアに加圧入力面部を持つ単一または複数の圧電層と、
     前記圧電層を挟んで配置された単一または複数の電極対と、
     前記電極対の少なくとも一方の電極に備えられ、前記加圧入力面部より狭い複数の電極部を含み、加圧入力を受けるパターン電極と、
     を備え、前記加圧入力で得られる感圧出力が前記パターン電極に含まれる複数の前記電極部から取り出される感圧センサー。
    Single or multiple piezoelectric layers having a pressure input surface in the pressure input detection area;
    A single or a plurality of electrode pairs disposed across the piezoelectric layer; and
    A pattern electrode that is provided on at least one electrode of the electrode pair, includes a plurality of electrode portions narrower than the pressure input surface portion, and receives pressure input;
    And a pressure-sensitive sensor that takes out a pressure-sensitive output obtained by the pressure input from the plurality of electrode portions included in the pattern electrode.
  3.  前記パターン電極は、前記加圧入力のレベル、位置、方向または範囲を表す感圧出力、複数の加圧入力の分布を表す出力の何れかまたは2以上を取り出す複数の電極部を含む請求項2に記載の感圧センサー。 3. The pattern electrode includes a plurality of electrode portions for extracting any one or two or more of pressure-sensitive outputs indicating the level, position, direction, or range of the pressure input, and outputs indicating a distribution of the plurality of pressure inputs. The pressure-sensitive sensor described in 1.
  4.  前記パターン電極は、前記圧電層の平面、背面および側面の何れかまたは2以上に配置される複数の電極部を含む請求項2または3の請求項に記載の感圧センサー。 The pressure sensor according to claim 2 or 3, wherein the pattern electrode includes a plurality of electrode portions disposed on any one or more of a plane, a back surface, and a side surface of the piezoelectric layer.
  5.  前記パターン電極は、前記圧電層の加圧入力面上で連続して屈曲する単一または複数の電極部、単一の電極部を2以上に分割した複数の電極部、前記圧電層の加圧入力面にX軸方向、Y軸方向またはZ軸方向に配列された複数の電極部、または、前記加圧入力面の任意の複数方向に分岐させた複数の電極部の何れかを含む、請求項2ないし4の何れかの請求項に記載の感圧センサー。 The pattern electrode includes a single or a plurality of electrode portions that are continuously bent on the pressure input surface of the piezoelectric layer, a plurality of electrode portions obtained by dividing the single electrode portion into two or more, and a pressure applied to the piezoelectric layer. The input surface includes any of a plurality of electrode portions arranged in the X-axis direction, the Y-axis direction, or the Z-axis direction, or a plurality of electrode portions branched in any plurality of directions of the pressure input surface. Item 5. The pressure-sensitive sensor according to any one of Items 2 to 4.
  6.  さらに、少なくとも前記電極対をシールドするシールド層と、
     を備える、請求項2ないし5の何れかの請求項に記載の感圧センサー。
    Furthermore, at least a shield layer that shields the electrode pair;
    The pressure-sensitive sensor according to any one of claims 2 to 5, further comprising:
  7.  さらに、前記圧電層を覆う粘弾性保護層と、
     前記粘弾性保護層の外面部に設置された滑止め層と、
     を備える、請求項2ないし6の何れかの請求項に記載の感圧センサー。
    A viscoelastic protective layer covering the piezoelectric layer;
    A non-slip layer installed on the outer surface of the viscoelastic protective layer;
    The pressure-sensitive sensor according to any one of claims 2 to 6, further comprising:
  8.  さらに、前記圧電層と支持手段との間に介在させ、前記圧電層を含む積層体を支持する剛性層と、
     を備える、請求項2ないし7の何れかの請求項に記載の感圧センサー。
    Further, a rigid layer that is interposed between the piezoelectric layer and the supporting means and supports the laminate including the piezoelectric layer;
    The pressure-sensitive sensor according to any one of claims 2 to 7, further comprising:
  9.  請求項2ないし請求項8の何れかの請求項に記載する感圧センサーと、
     前記感圧センサーの感圧出力を用いて人または物の有無、位置、通過または集合の何れかを判定する判定手段と、
     を備える感圧検出装置。
    A pressure-sensitive sensor according to any one of claims 2 to 8;
    A determination means for determining the presence or absence of a person or an object, a position, a passage, or a set using a pressure-sensitive output of the pressure-sensitive sensor;
    A pressure-sensitive detection device.
  10.  請求項2ないし請求項8の何れかの請求項に記載する感圧センサーと、
     前記感圧センサーのセンサー出力を音信号または光信号に変換する信号変換部と、
     を備える感圧検出装置。
    A pressure-sensitive sensor according to any one of claims 2 to 8;
    A signal converter for converting the sensor output of the pressure sensor into a sound signal or an optical signal;
    A pressure-sensitive detection device.
  11.  請求項2ないし請求項8の何れかの請求項に記載する感圧センサーと、
     前記感圧センサーのセンサー出力レベルに応じ、制御対象機器の動作開始、動作停止の制御信号を出力する制御部と、
     を備える感圧検出装置。
    A pressure-sensitive sensor according to any one of claims 2 to 8;
    In accordance with the sensor output level of the pressure sensor, a control unit that outputs a control signal for starting and stopping the operation of the control target device;
    A pressure-sensitive detection device.
  12.  請求項2ないし請求項8に記載された感圧センサー、または請求項9ないし請求項11に記載された感圧検出装置と、
     前記感圧センサーまたは前記感圧検出装置が設置され、人または物が通過しまたは集合するエリアと、
     前記感圧センサーまたは前記感圧検出装置に含まれる前記感圧センサーのセンサー出力から前記エリアの人または物の通過または集合を含む処理をする処理手段と、
     前記処理手段に有線または無線により接続され、前記処理手段の処理結果を提示する提示手段と、
     を備える感圧検出システム。
                                                                                    
    A pressure-sensitive sensor according to claim 2 or claim 8, or a pressure-sensitive detection device according to claims 9 to 11;
    An area where the pressure sensor or the pressure detection device is installed and a person or an object passes or gathers;
    Processing means for performing processing including passing or gathering of persons or objects in the area from the sensor output of the pressure sensor included in the pressure sensor or the pressure detection device;
    Presenting means connected to the processing means by wire or wireless and presenting a processing result of the processing means;
    A pressure-sensitive detection system.
PCT/JP2017/015976 2016-04-28 2017-04-21 Pressure-sensitive detection method, pressure-sensitive sensor, pressure-sensitive detection device, and pressure-sensitive detection system WO2017188130A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018514554A JPWO2017188130A1 (en) 2016-04-28 2017-04-21 Pressure-sensitive detection method, pressure-sensitive sensor, pressure-sensitive detection device, and pressure-sensitive detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-090732 2016-04-28
JP2016090732 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017188130A1 true WO2017188130A1 (en) 2017-11-02

Family

ID=60161486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015976 WO2017188130A1 (en) 2016-04-28 2017-04-21 Pressure-sensitive detection method, pressure-sensitive sensor, pressure-sensitive detection device, and pressure-sensitive detection system

Country Status (2)

Country Link
JP (1) JPWO2017188130A1 (en)
WO (1) WO2017188130A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092708A1 (en) * 2016-11-15 2018-05-24 日本バルカー工業株式会社 Piezoelectric element sheet and method for manufacturing same
JP2019219184A (en) * 2018-06-15 2019-12-26 株式会社バルカー Determination circuit and determination method
WO2020071296A1 (en) * 2018-10-05 2020-04-09 ソニー株式会社 Control device, control method, and program
JPWO2019135401A1 (en) * 2018-01-05 2021-01-07 ソニー株式会社 Sensors, input devices and electronics
WO2023176847A1 (en) * 2022-03-18 2023-09-21 三菱ケミカル株式会社 Electronic apparatus, bed sensor, and sensor for shelf

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994028A (en) * 1982-11-22 1984-05-30 Nippon Soken Inc Detector for pressure distribution of contact surface
JPH09511100A (en) * 1994-01-27 1997-11-04 アクティブ コントロール エクスパーツ インコーポレイテッド Packaged strain actuator
JP2004154242A (en) * 2002-11-05 2004-06-03 Oomikku:Kk Linear switch and sensor sheet for bed using the same, and supporting device for caring bed
JP2005249644A (en) * 2004-03-05 2005-09-15 Matsushita Electric Ind Co Ltd Pressure sensor device, and circuit and system using the same
JP2006164020A (en) * 2004-12-09 2006-06-22 Jr Higashi Nippon Consultants Kk Pedestrian movement route tracing method and system
US20070199376A1 (en) * 2003-09-17 2007-08-30 Claudio Cavalloni Multi-Layer Piezoelectric Measuring Element, And Pressure Sensor Or Force Sensor Comprising Such A Measuring Element
JP2009540304A (en) * 2006-06-14 2009-11-19 キストラー ホールディング アクチエンゲゼルシャフト Measurement of lateral force
JP2014235134A (en) * 2013-06-04 2014-12-15 日本写真印刷株式会社 Piezoelectric sensor and pressure detection device
JP2014238277A (en) * 2013-06-06 2014-12-18 日本写真印刷株式会社 Piezoelectric sensor and pressure detector
JP2015178965A (en) * 2014-03-18 2015-10-08 テルモ株式会社 measuring device
JP2016020814A (en) * 2014-07-11 2016-02-04 積水化学工業株式会社 Piezoelectric sensor switch

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994028A (en) * 1982-11-22 1984-05-30 Nippon Soken Inc Detector for pressure distribution of contact surface
JPH09511100A (en) * 1994-01-27 1997-11-04 アクティブ コントロール エクスパーツ インコーポレイテッド Packaged strain actuator
JP2004154242A (en) * 2002-11-05 2004-06-03 Oomikku:Kk Linear switch and sensor sheet for bed using the same, and supporting device for caring bed
US20070199376A1 (en) * 2003-09-17 2007-08-30 Claudio Cavalloni Multi-Layer Piezoelectric Measuring Element, And Pressure Sensor Or Force Sensor Comprising Such A Measuring Element
JP2005249644A (en) * 2004-03-05 2005-09-15 Matsushita Electric Ind Co Ltd Pressure sensor device, and circuit and system using the same
JP2006164020A (en) * 2004-12-09 2006-06-22 Jr Higashi Nippon Consultants Kk Pedestrian movement route tracing method and system
JP2009540304A (en) * 2006-06-14 2009-11-19 キストラー ホールディング アクチエンゲゼルシャフト Measurement of lateral force
JP2014235134A (en) * 2013-06-04 2014-12-15 日本写真印刷株式会社 Piezoelectric sensor and pressure detection device
JP2014238277A (en) * 2013-06-06 2014-12-18 日本写真印刷株式会社 Piezoelectric sensor and pressure detector
JP2015178965A (en) * 2014-03-18 2015-10-08 テルモ株式会社 measuring device
JP2016020814A (en) * 2014-07-11 2016-02-04 積水化学工業株式会社 Piezoelectric sensor switch

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092708A1 (en) * 2016-11-15 2018-05-24 日本バルカー工業株式会社 Piezoelectric element sheet and method for manufacturing same
JPWO2018092708A1 (en) * 2016-11-15 2019-10-17 株式会社バルカー Piezoelectric element sheet and manufacturing method thereof
JPWO2019135401A1 (en) * 2018-01-05 2021-01-07 ソニー株式会社 Sensors, input devices and electronics
JP7140142B2 (en) 2018-01-05 2022-09-21 ソニーグループ株式会社 Sensors, input devices and electronics
US11725992B2 (en) 2018-01-05 2023-08-15 Sony Corporation Sensor, inputting device, and electronic apparatus
JP2019219184A (en) * 2018-06-15 2019-12-26 株式会社バルカー Determination circuit and determination method
WO2020071296A1 (en) * 2018-10-05 2020-04-09 ソニー株式会社 Control device, control method, and program
JPWO2020071296A1 (en) * 2018-10-05 2021-09-02 ソニーグループ株式会社 Control devices, control methods and programs
JP7306406B2 (en) 2018-10-05 2023-07-11 ソニーグループ株式会社 Control device, control method and program
WO2023176847A1 (en) * 2022-03-18 2023-09-21 三菱ケミカル株式会社 Electronic apparatus, bed sensor, and sensor for shelf

Also Published As

Publication number Publication date
JPWO2017188130A1 (en) 2019-03-07

Similar Documents

Publication Publication Date Title
WO2017188130A1 (en) Pressure-sensitive detection method, pressure-sensitive sensor, pressure-sensitive detection device, and pressure-sensitive detection system
US11008679B2 (en) Woven textile fabric
US10648873B2 (en) Sensor device for detecting pressure
KR102351848B1 (en) Pressure sensing sensor and pressure sensing apparatus comprising the same
JP5207937B2 (en) Fibrous deformation sensor and fabric deformation sensor
US10393498B2 (en) Sensor unit using electro-active polymer for wireless transmission/reception of deformation information, and sensor using same
WO2007080959A1 (en) Cloth for electrical device
JP6764928B2 (en) Vibration detection method, vibration sensor, vibration detection device and vibration detection system
JP6467217B2 (en) Piezoelectric vibration sensor
WO2016028667A1 (en) Thread shaped contact electrification fiber
Slobodian et al. Multifunctional flexible and stretchable polyurethane/carbon nanotube strain sensor for human breath monitoring
Lauterbach et al. A large-area sensor system underneath the floor for ambient assisted living applications
WO2019188066A1 (en) Input device and electronic device
WO2017065074A1 (en) Deformation detection device and diagnosis system
JP6889315B2 (en) Vibration sensor, vibration measurement method and vibration sensor manufacturing kit
JP5810127B2 (en) Piezoelectric vibration sensor
KR101630052B1 (en) Flexible triboelectric generator and wearable energy device comprising the same
US10648872B2 (en) Sensor device for detecting pressure
US11725992B2 (en) Sensor, inputting device, and electronic apparatus
US11626484B2 (en) High efficiency room temperature infrared sensor
KR102185565B1 (en) Conductive composite yarn capable of sensing the force in vertical and horizontal direction and textile sensor having the same
JP2018081020A (en) Vibration sensor and vibration detection system
JP2015021754A (en) Planar conductor for sensor and sensor detector
JPWO2015167013A1 (en) Sound wave / impact detector
KR101292088B1 (en) Multilayer composite element having permeability and hydro phobic property

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018514554

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789413

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789413

Country of ref document: EP

Kind code of ref document: A1