WO2017187871A1 - High power generation efficiency compound semiconductor thin-film solar cell, and method for manufacturing same - Google Patents

High power generation efficiency compound semiconductor thin-film solar cell, and method for manufacturing same Download PDF

Info

Publication number
WO2017187871A1
WO2017187871A1 PCT/JP2017/012952 JP2017012952W WO2017187871A1 WO 2017187871 A1 WO2017187871 A1 WO 2017187871A1 JP 2017012952 W JP2017012952 W JP 2017012952W WO 2017187871 A1 WO2017187871 A1 WO 2017187871A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
groove
compound semiconductor
light absorption
Prior art date
Application number
PCT/JP2017/012952
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 正健
奈良崎 愛子
新納 弘之
慈郎 西永
由紀子 上川
尚吾 石塚
柴田 肇
仁木 栄
英行 高田
鳥塚 健二
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018514206A priority Critical patent/JPWO2017187871A1/en
Publication of WO2017187871A1 publication Critical patent/WO2017187871A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0463PV modules composed of a plurality of thin film solar cells deposited on the same substrate characterised by special patterning methods to connect the PV cells in a module, e.g. laser cutting of the conductive or active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a compound thin film solar cell and a method of manufacturing the same, and more particularly to a compound thin film solar cell manufactured using a laser scribing method.
  • a basic method of manufacturing a compound thin film solar cell represented by CIGS is as follows. First, a back electrode layer (molybdenum film (Mo)) is formed on a substrate such as soda glass, and then a p-type CIGS is formed thereon. Light absorbing layer (Cu (In 1-x Ga x ) Se 2 , mixed crystal prepared by combining copper indium diselenide and copper gallium diselenide at a ratio of (1-x): x), buffer layer (such as CdS) A CIGS compound solar cell is manufactured by laminating a high-resistance buffer layer (such as ZnO) and an n-type oxide transparent conductive film layer (such as ZnO: Al) in this order.
  • a high-resistance buffer layer such as ZnO
  • an n-type oxide transparent conductive film layer such as ZnO: Al
  • the process of producing a large-area module in a form in which a compound thin film solar cell such as this CIGS compound thin film solar cell is actually used includes a step of forming dividing grooves. This is because, when the area of the compound thin film solar cell is increased, the series resistance component in the conductive film layer is increased, which causes Joule loss to lower the power generation efficiency of the compound semiconductor solar cell.
  • a plurality of narrow narrow strip-shaped thin film solar battery cells are arranged so that the major axis directions coincide with each other, and a front electrode and a rear electrode made of transparent conductive film layers of adjacent solar cells
  • An extraction module is placed on the top and back electrodes of an integrated module connected in series with a layer electrically connected via division grooves and connected in series, or a solar cell divided into a certain area, and connected by a surface focusing electrode Grid type module.
  • the cell division process is a back electrode layer removal scribing process (first scribing process), a high resistance buffer layer / buffer layer / light absorbing layer removal scribing process (second scribing process), and transparent
  • the conductive film layer / high-resistance buffer layer / buffer layer / light absorption layer removing scribing step (third scribing step) is a total of three types of scribing steps.
  • the grid type module it is only one kind of transparent conductive film layer / high resistance buffer layer / buffer layer / light absorption layer removing scribing step (third scribing step).
  • the mechanical scribing method and the laser scribing method are used in the step of forming the dividing groove.
  • the mechanical scribing method it is difficult in principle to reduce the groove width to less than the thickness of the blade because the blade is in contact for scribing.
  • a crack is generated in the light absorption layer, and peeling of the back electrode and the light absorption layer occurs.
  • the mechanical scribing method in which processing is performed with a blade in contact makes it difficult to apply to flexible substrates. Therefore, in various solar cells including Si solar cells, the use of a laser scribing method which is most effective in reducing the width of the dividing groove and which can easily cope with an increase in area and flexibility has been promoted (Patent Document 1, Patent Literature 2).
  • the laser scribing method when the laser scribing method is applied to a CIGS thin film solar cell, high heat is locally generated, which causes a disadvantage that the power generation efficiency of the CIGS thin film solar cell is deteriorated. Therefore, when producing an integrated module of a CIGS thin film solar cell, generally, only the first scribing step is performed by a laser method, and the second and third scribing steps for scribing the CIGS light absorption layer Is implemented by mechanical scribing (Patent Document 3). When mechanical scribing is performed, the layer to be scribed is determined based on the difference in mechanical strength of each layer, so the bottom of the second and third scribed grooves is the molybdenum film of the back electrode layer.
  • the degradation of the power generation efficiency at the time of laser scribing occurs because the CIGS layer, which is the light absorption layer of the CIGS thin film solar cell, is melted by the thermal effect of the laser and changes to a low resistance, the upper electrode A short circuit between the conductive layer and the lower electrode (first problem), a defect serving as a starting point where electrons and holes generated at the time of light irradiation recombine without contributing to the photocurrent (recombination center ) Is known to be caused by the influence of heat (the second problem).
  • Patent Document 4 The inventors of the present invention utilized ultra-short pulse laser light as a method for suppressing processing deterioration due to the thermal effect of the laser, and limited the incident energy to considerably suppress the decrease in the power generation efficiency.
  • Patent Document 4 As a method of solving the first problem, it has been reported that it is effective to limit the removal layer by the third scribing to the buffer layer and the upper electrode layer (Non-Patent Document 1, Non-patent Document 1) Patent Document 2).
  • the efficiency recovery of the solar cell by heat treatment is disclosed, for example, in Patent Document 5, and the amorphous silicon thin film solar cell is heat-treated at a temperature of 130 ° C. or more.
  • this heat treatment is an operation for passivating the amorphous silicon semiconductor which causes the short circuit of the upper electrode and the lower electrode.
  • Non-Patent Document 2 there is a report example by Non-Patent Document 2 about the efficiency recovery by laser scribing only the upper electrode layer and the buffer layer and heat treatment.
  • the reported conversion efficiency of solar cells is as low as 6.77% after laser drift and 13.18% after recovery by heat treatment, and the factors causing the decrease in efficiency and the reason for heat treatment have not been fully elucidated.
  • JP-A-59-220979 Japanese Patent Application Laid-Open No. 7-45584 Patent No. 3867230 Unexamined-Japanese-Patent No. 2015-32731 JP 2000-340814 A
  • the layer to be removed by the third scribing to two layers of the above-mentioned buffer layer and upper electrode layer there exists a melted layer in the form of a sidewall of a groove which is a cause of short circuit between upper electrode and lower electrode. Since the power generation layer (light absorption layer) which has not been removed and has not been removed has a high resistance, it does not contribute to a short circuit between the upper electrode and the lower electrode, thereby solving the first problem. However, the solution to the second problem is not enough.
  • Heat recovery at a temperature of 85 ° C. for 15 hours was observed in the vicinity of the surface of the light absorption layer of the sample subjected to the laser scribing.
  • An increase in the copper concentration of the light absorbing layer is known to indicate the formation of defects leading to a decrease in power generation efficiency.
  • the depth of the chemical composition of the light absorbing layer near the surface of the light absorbing layer where defects are generated by laser scribing is analyzed by the depth analysis. As a result, in the power generation layer immediately after laser scribing, the deeper region is up to 90 nm deep. It was shown that the concentration of copper increased by about 30%.
  • the laser beam having a wavelength of 1.04 ⁇ m used for the laser scribing passes through the transparent conductive film layer, the high resistance buffer layer, and the buffer layer, and is absorbed by the CIGS light absorbing layer.
  • the penetration depth of light into the interior of the CIGS layer determined from the light absorption coefficient of the CIGS layer is about 1 ⁇ m, but even within this 1 ⁇ m layer, the intensity of the light decreases exponentially, so the change in the chemical composition in particular
  • the area in which the high temperature is reached is limited by the outermost surface. Since the use of an ultrashort pulse laser can almost neglect the influence of heat diffusion, it is considered that the affected depth is a shallow region up to 90 nm.
  • the recovery of the efficiency was similarly observed in dry annealing (5% or less of humidity, heat treatment for 15 hours) and vacuum annealing (heat treatment under vacuum conditions of about 10 kPa for 15 hours). That is, the heat treatment suppresses the increase in the local concentration of copper and reduces the defect density.
  • FIG. 4A is a diagram showing the results of depth direction analysis of the concentration of copper (Cu) by Auger electron spectroscopy of a CIGS layer exposed at the bottom of a dividing groove fabricated by laser scribing, and FIG. As a result of analysis, FIG.
  • FIG. 4 (b) is a diagram showing the analysis result of the sample 3 of Example 3
  • FIG. 4 (c) is a diagram showing the analysis result of the sample 4 of Example 3.
  • FIGS. 5 (a) and 5 (b) are structural diagrams of each grid type and integrated type solar battery cell. It is sectional drawing showing the structure of the grid-type module which consists of a compound thin film solar cell of this invention. It is sectional drawing which shows the preparation processes and structure of the integrated module which consists of a compound thin film solar cell of this invention.
  • the present example is an example of producing a single compound semiconductor solar battery cell which is a unit structure of a grid type module structure shown in FIG. 6, and only one type of laser scribing process (that is, transparent conductive film layer / high resistance buffer) Layer / buffer layer removal laser scribing step only).
  • a single compound semiconductor solar battery cell which is a unit structure of a grid type module structure shown in FIG. 6, and only one type of laser scribing process (that is, transparent conductive film layer / high resistance buffer) Layer / buffer layer removal laser scribing step only).
  • a CIGS light absorption layer is formed to a thickness of about 2 ⁇ m as the compound semiconductor light absorption layer 4, and a CdS layer which is a buffer layer 5 and a ZnO layer which is a high resistance buffer layer 6 are formed thereon. It laminated
  • a laser scribing process is performed in which femtosecond laser light is linearly scanned on the surface of ZnO: Al to divide the laminated portion from the buffer layer 5 to the transparent conductive film layer 7 (ZnO: Al) into a plurality of regions. went.
  • an ultrashort pulse laser with a pulse width of 400 fs (femtoseconds) was used as the laser light in order to reduce even a slight thermal damage of the CIGS light absorption layer which is relatively low in melting temperature and weak in heat.
  • a near infrared wavelength of 1.04 ⁇ m was used for the laser wavelength. This wavelength is a wavelength at which CIGS can absorb light and can efficiently ablate the CIGS light absorption layer.
  • the pulse laser beam is formed into a rectangular shape with a side of 26 ⁇ m, the intensity distribution of which is made uniform by a diffractive optical element, and the irradiation energy density per pulse of the ultrashort pulse laser is about It was reduced to a low value of 0.4 J / cm 2 .
  • the “pulse repetition” of the ultrashort pulse laser is 10 kHz, and scanning is performed once at a speed of 0.22 m / s to form the buffer layer 5 to the transparent conductive film layer 7 A dividing groove 8 to be removed was produced.
  • the scribing was performed for a total length of 32 mm surrounding a power generation area of about 52 mm 2 in area.
  • the curve factor FF and the cell conversion efficiency Eff of the solar cell fabricated as above were evaluated.
  • the curve factor FF is, as is well known, a value obtained by dividing the product of the maximum output voltage and the maximum output current by the product of the open circuit voltage and the short circuit current.
  • the conversion efficiency Eff is a value obtained by dividing the maximum power that can be taken out by the product of the radiation intensity and the light receiving area.
  • the solar battery cell was heated to a temperature of 68 ° C. in the atmosphere, and heat treatment was performed for 5 hours.
  • the curve factor FF and the cell conversion efficiency Eff were evaluated for the solar cells returned to room temperature after the heat treatment.
  • FIG. 1 shows changes in fill factor FF of cell 1 described in Table 1 measured during heat treatment.
  • the curve factor FF increases as the treatment time passes, and it has been shown that the treatment for 5 hours is approaching saturation. Since the diode characteristics of the battery change depending on the temperature during heating, the fill factor FF has a small value compared to that measured at room temperature shown in Table 1.
  • the curvilinear factor FF and the cell conversion efficiency Eff of a manufactured solar cell prepared by laser scribing a solar cell manufactured by the same method as in Example 1 were evaluated. After the evaluation, the solar battery cell was heated to a temperature of 85 ° C. in the atmosphere, and heat treatment was performed for 5 hours. The curve factor FF and the cell conversion efficiency Eff were evaluated for the solar cells returned to room temperature after the heat treatment.
  • FIG. 2 shows changes in fill factor FF of cell 1 described in Table 1 measured during heat treatment.
  • the curve factor FF increases as the treatment time passes during the heat treatment, but unlike the heat treatment at 68 ° C., the increase of the curve factor FF reaches saturation by the treatment for about 1.5 hours. It is done.
  • one division groove was formed not by mechanical scribing but by laser scribing under the same conditions as in Example 1.
  • samples 3 and 4 were prepared by subjecting the samples prepared by the same method as sample 2 to heat treatment at 85 ° C. under a reduced pressure of about 10 kPa for 0.5 hours and 3 hours.
  • the curve factor of sample 3 is increased to 0.754 as compared to sample 2 and is further increased to 0.762 for sample 4.
  • Augers electron spectroscopy is performed on the CIGS layer exposed at the bottom of the dividing groove prepared by laser scribing for the samples 2, 3 and 4. Analysis in the depth direction by.
  • FIG. 3 shows an electron microscope image (secondary electron image) of the measurement point.
  • FIG. 4 shows the distribution of Cu concentration in the depth direction obtained by Auger electron spectroscopy.
  • the same figure (a) shows the analysis result of sample 2
  • the same figure (b) shows the analysis result of sample 3
  • the same figure (c) shows the analysis result of sample 4.
  • FIG. 4 (a) shows the distribution in the depth direction of the Cu concentration observed for sample 2 in which a 1.0% efficiency drop was observed.
  • a local increase of the Cu concentration is observed in a region of depth 60 to 90 nm (symbol 9 in FIG. 5) indicated by symbol S in the figure.
  • FIG. 4B shows the result of sample 3 in which the conversion efficiency has recovered to 17.3% by performing the heat treatment for 0.5 hours.
  • the maximum signal strength Is of the area S is 38,700, and the average value Id of the signal strengths of the area D is reduced to 1.09 times 35500. Furthermore, in the result of sample 4 in which the efficiency decrease due to heat damage shown in FIG. 4C is completely suppressed, Is decreases to 36000, which is 0.98 times Id and 36,600.
  • the average value Id of the signal intensity derived from copper in a sufficiently deep region for example, a region with a depth of 240 to 750 nm
  • the maximum signal intensity Is seen in a region with a depth of 90 nm or less near the surface When (Is ⁇ Id) is satisfied, the solar cell exhibits high power generation efficiency without the influence of heat damage.
  • the present example is an example of manufacturing a compound semiconductor solar cell of the integrated module structure shown in FIG.
  • FIG. 5 (b) is a structural view showing one of the solar cells.
  • a first laser scribing step of scanning a nanosecond laser beam with a wavelength of 1064 nm in a line on the Mo surface to form a groove with a width of 40 ⁇ m and dividing it into a plurality of regions did.
  • a CIGS light absorption layer is formed to a thickness of about 2 ⁇ m as the compound semiconductor light absorption layer 13, and CdS which is the buffer layer 14 is formed thereon.
  • the layer and the ZnO layer which is the high resistance buffer layer 15 were sequentially laminated in a thickness of several tens of nm.
  • the CIGS light absorbing layer / buffer layer / high resistance buffer layer is formed in a plurality of regions at a position approximately 20 ⁇ m laterally away from the groove 17 produced by the first scribing step.
  • a second scribing step was performed to divide.
  • the second scribing step was performed by mechanical scribing or laser scribing.
  • the laser scribing step was performed using an ultrashort pulse laser with a pulse width of 400 fs (femtoseconds) having a laser wavelength of 1.04 ⁇ m as in Examples 1 to 3, but CIGS light with a thickness of about 2 ⁇ m was used.
  • the number of pulse irradiations was increased by performing “pulse repetition” of the ultrashort pulse laser at 200 kHz and scanning once at a speed of 0.14 m / s.
  • an Al doped ZnO transparent conductive film (ZnO: Al) is formed as the transparent conductive film layer 16 It laminated
  • femtosecond laser light is lined on the surface of the ZnO: Al at a position laterally separated from the groove 18 produced by the second scribing step. Scan and run.
  • the solar battery cell was heated to a temperature of 85 ° C. under a reduced pressure of about 10 kPa and subjected to a heat treatment for 15 hours.
  • the curve factor FF and the cell conversion efficiency Eff were evaluated about the photovoltaic cell which returned to room temperature after heat processing.
  • Comparative example As a comparative example, in this example, a single compound semiconductor solar cell which is a unit structure of a grid type module structure is manufactured under the same conditions as in Examples 1 to 3 and without applying the present invention.
  • a laser scribing process for removing the CIGS light absorbing layer is performed.
  • an ultrashort pulse laser with a pulse width of 400 fs (femtoseconds) was used as the laser light.
  • the irradiation energy density per pulse of the ultrashort pulse laser is reduced to a low value of about 0.3 J / cm 2 , the “pulse repetition” is 200 kHz, and scanning is performed twice at a speed of 0.43 m / s, A dividing groove for completely removing the CIGS light absorbing layer to the transparent conductive film layer was produced.
  • the scribing was performed for a total length of 32 mm surrounding a power generation area of about 52 mm 2 in area.
  • the curve factor FF and the cell conversion efficiency Eff of the solar battery cells thus divided and created were evaluated.
  • the curve factor FF exhibited by 4 cells manufactured under the above conditions was 0.687 on average, and the cell conversion efficiency Eff was 15.4%.
  • the curvilinear factor FF was 0.782, and the battery conversion efficiency Eff was 17.8%.
  • a reduction in conversion efficiency of about 2.3% was observed as compared with the cell divided by mechanical scribing.

Abstract

The present invention addresses the problem that a decrease in power generation efficiency which is caused when a CIGS thin-film solar cell is laser scribed occurs as a result of the presence of a defect (recombination center), caused by the influence of heat, which provides a starting point where electrons and holes produced in the light absorption layer of the CIGS thin-film solar cell during light irradiation are recombined and deactivated without contributing to optical current (second problem). The decrease in power generation efficiency is suppressed by removing the defect (recombination center), caused in the vicinity of the light absorption layer surface by the influence of heat during laser scribing, by performing a heat treatment in the vicinity of the absorption layer surface.

Description

高発電効率化合物半導体薄膜太陽電池及びその製造方法High power generation efficiency compound semiconductor thin film solar cell and method of manufacturing the same
 本発明は化合物薄膜太陽電池とその製造方法に係り、特にレーザースクライブ法を用いて作製する化合物薄膜太陽電池に関する。 The present invention relates to a compound thin film solar cell and a method of manufacturing the same, and more particularly to a compound thin film solar cell manufactured using a laser scribing method.
 従来、CIGSを代表とする化合物薄膜太陽電池の基本的な製造方法は、まず、ソーダガラスなどの基板に背面電極層(モリブデン膜(Mo))を製膜し、続いてその上にp型CIGS光吸収層(Cu(In1-xGax)Se2、二セレン化銅インジウムと二セレン化銅ガリウムを(1-x):xの比で合成した混晶)、バッファ層(CdSなど)、高抵抗バッファ層(ZnOなど)、n型酸化物透明導電膜層(ZnO:Alなど)の順に積層することで、CIGS化合物太陽電池を製造する。 Conventionally, a basic method of manufacturing a compound thin film solar cell represented by CIGS is as follows. First, a back electrode layer (molybdenum film (Mo)) is formed on a substrate such as soda glass, and then a p-type CIGS is formed thereon. Light absorbing layer (Cu (In 1-x Ga x ) Se 2 , mixed crystal prepared by combining copper indium diselenide and copper gallium diselenide at a ratio of (1-x): x), buffer layer (such as CdS) A CIGS compound solar cell is manufactured by laminating a high-resistance buffer layer (such as ZnO) and an n-type oxide transparent conductive film layer (such as ZnO: Al) in this order.
 このCIGS化合物薄膜太陽電池のような化合物薄膜太陽電池が実際に使用される形態である大面積のモジュールを作製する工程には、必ず分割溝を形成する工程が含まれる。
 これは、化合物薄膜太陽電池の面積が大きくなると、導電膜層での直列抵抗成分が増大し、これがジュール損失となり化合物半導体太陽電池の発電効率を低下させるためである。
 モジュールの構造には、複数の幅の狭い短冊状に分離された薄膜太陽電池セルを長軸方向が一致するように配列し、隣接する太陽電池セルの透明導電膜層からなる表面電極と背面電極層とを分割溝を介して電気的に接触させて直列接続した集積型モジュール、または、ある程度の面積に分割した太陽電池セルの上部電極、背面電極に取り出し電極を設置し、表面集束電極により接続したグリッド型モジュールがある。
 いずれも小面積の太陽電池セルを連結した薄膜太陽電池モジュールとして動作させることで、導電膜層での直接抵抗成分の増大を低減し、化合物薄膜太陽電池の発電効率の低下が抑制される。
The process of producing a large-area module in a form in which a compound thin film solar cell such as this CIGS compound thin film solar cell is actually used includes a step of forming dividing grooves.
This is because, when the area of the compound thin film solar cell is increased, the series resistance component in the conductive film layer is increased, which causes Joule loss to lower the power generation efficiency of the compound semiconductor solar cell.
In the structure of the module, a plurality of narrow narrow strip-shaped thin film solar battery cells are arranged so that the major axis directions coincide with each other, and a front electrode and a rear electrode made of transparent conductive film layers of adjacent solar cells An extraction module is placed on the top and back electrodes of an integrated module connected in series with a layer electrically connected via division grooves and connected in series, or a solar cell divided into a certain area, and connected by a surface focusing electrode Grid type module.
In any case, by operating as a thin film solar cell module in which solar cells having a small area are connected, an increase in the direct resistance component in the conductive film layer is reduced, and a reduction in the power generation efficiency of the compound thin film solar cell is suppressed.
 セル分割工程は、集積型モジュールの場合は背面電極層除去スクライブ工程(第一のスクライブ工程)と、高抵抗バッファ層/バッファ層/光吸収層除去スクライブ工程(第二のスクライブ工程)と、透明導電膜層/高抵抗バッファ層/バッファ層/光吸収層除去スクライブ工程(第三のスクライブ工程)の、計3種類のスクライブ工程からなる。
 一方、グリッド型モジュールの場合は、透明導電膜層/高抵抗バッファ層/バッファ層/光吸収層除去スクライブ工程(第三のスクライブ工程)の1種類のみである。
In the case of the integrated module, the cell division process is a back electrode layer removal scribing process (first scribing process), a high resistance buffer layer / buffer layer / light absorbing layer removal scribing process (second scribing process), and transparent The conductive film layer / high-resistance buffer layer / buffer layer / light absorption layer removing scribing step (third scribing step) is a total of three types of scribing steps.
On the other hand, in the case of the grid type module, it is only one kind of transparent conductive film layer / high resistance buffer layer / buffer layer / light absorption layer removing scribing step (third scribing step).
 上記、分割溝の形成工程には、メカニカルスクライブ法およびレーザースクライブ法が使用されている。メカニカルスクライブ法では刃を接触させてスクライブするため、溝幅を刃の厚み以下に低減することは原理的に難しい。
 また、スクライブする際に光吸収層にクラックが入り、背面電極と光吸収層の剥離が発生するという問題がある。今後益々ニーズが高まるであろう軽量可撓性を有するポリマー基板などを利用したフレキシブル化についても、刃を接触させて加工するメカニカルスクライブ法では可撓性基板への適用が難しくなる問題がある。
 そこで、Si太陽電池をはじめ各種太陽電池では、分割溝幅低減に最も効果があり大面積化・フレキシブル化にも容易に対応可能なレーザースクライブ法の利用が進められている(特許文献1、特許文献2)。
The mechanical scribing method and the laser scribing method are used in the step of forming the dividing groove. In the mechanical scribing method, it is difficult in principle to reduce the groove width to less than the thickness of the blade because the blade is in contact for scribing.
In addition, when scribing, there is a problem that a crack is generated in the light absorption layer, and peeling of the back electrode and the light absorption layer occurs. Also with regard to the use of a flexible and light-flexible polymer substrate and the like, which will be increasingly in need in the future, there is a problem that the mechanical scribing method in which processing is performed with a blade in contact makes it difficult to apply to flexible substrates.
Therefore, in various solar cells including Si solar cells, the use of a laser scribing method which is most effective in reducing the width of the dividing groove and which can easily cope with an increase in area and flexibility has been promoted (Patent Document 1, Patent Literature 2).
 しかしレーザースクライブ法をCIGS薄膜太陽電池に適用した場合、局所的に高熱が発生し、これによってCIGS薄膜太陽電池の発電効率が劣化するという不都合が生じる。
 そのため、CIGS薄膜太陽電池の集積型モジュールを作製する際には、一般的に、第1のスクライブ工程のみがレーザー法で実施され、CIGS光吸収層のスクライブを行う第2、第3のスクライブ工程は、メカニカルスクライブで実施される(特許文献3)。
 メカニカルスクライブを行う際には、各層の機械的強度の差に基づいてスクライブされる層が決まるため、第2、第3のスクライブを行った溝の底面は背面電極層のモリブデン膜になる。
 CIGS薄膜太陽電池において、レーザースクライブ時の発電効率の劣化は、CIGS薄膜太陽電池の光吸収層である、CIGS層がレーザーの熱影響で溶融して低抵抗体に変化して、上部電極(当面導電層)と下部電極を短絡すること(第1の問題点)、光照射時に発生した電子、正孔が光電流に寄与することなく再結合して失活する起点となる欠陥(再結合中心)が熱の影響で発生すること(第2の問題点)が原因として知られている。
However, when the laser scribing method is applied to a CIGS thin film solar cell, high heat is locally generated, which causes a disadvantage that the power generation efficiency of the CIGS thin film solar cell is deteriorated.
Therefore, when producing an integrated module of a CIGS thin film solar cell, generally, only the first scribing step is performed by a laser method, and the second and third scribing steps for scribing the CIGS light absorption layer Is implemented by mechanical scribing (Patent Document 3).
When mechanical scribing is performed, the layer to be scribed is determined based on the difference in mechanical strength of each layer, so the bottom of the second and third scribed grooves is the molybdenum film of the back electrode layer.
In the CIGS thin film solar cell, the degradation of the power generation efficiency at the time of laser scribing occurs because the CIGS layer, which is the light absorption layer of the CIGS thin film solar cell, is melted by the thermal effect of the laser and changes to a low resistance, the upper electrode A short circuit between the conductive layer and the lower electrode (first problem), a defect serving as a starting point where electrons and holes generated at the time of light irradiation recombine without contributing to the photocurrent (recombination center ) Is known to be caused by the influence of heat (the second problem).
 本発明者等はレーザーの熱影響による加工時劣化を抑制するための手法として、超短パルスレーザー光を利用し入射エネルギーを限定して発電効率の低下を相当抑制した(特許文献4)。
 他に第1の問題点を解決する方法として、第三のスクライブによる除去層をバッファ層、および、上部電極層に限定することが有効であることが報告されている(非特許文献1、非特許文献2)。
The inventors of the present invention utilized ultra-short pulse laser light as a method for suppressing processing deterioration due to the thermal effect of the laser, and limited the incident energy to considerably suppress the decrease in the power generation efficiency (Patent Document 4).
In addition, as a method of solving the first problem, it has been reported that it is effective to limit the removal layer by the third scribing to the buffer layer and the upper electrode layer (Non-Patent Document 1, Non-patent Document 1) Patent Document 2).
 熱処理による太陽電池の効率回復は、例えば特許文献5で開示されていて、アモルファスシリコン薄膜太陽電池を130℃以上の温度で熱処理を行っている。
 しかしこの熱処理は、上部電極、下部電極の短絡をもたらすアモルファスシリコン半導体を不動態化するための実施である。
 CIGS薄膜太陽電池について、上部電極層、バッファ層のみのレーザースクライブと加熱処理による効率回復については非特許文献2による報告例がある。
 報告されている太陽電池の変換効率はレーザースライブ後が6.77%、熱処理による回復後が13.18%と低く、効率の低下要因と熱処理の理由が十分に解明されていない。
The efficiency recovery of the solar cell by heat treatment is disclosed, for example, in Patent Document 5, and the amorphous silicon thin film solar cell is heat-treated at a temperature of 130 ° C. or more.
However, this heat treatment is an operation for passivating the amorphous silicon semiconductor which causes the short circuit of the upper electrode and the lower electrode.
For the CIGS thin film solar cell, there is a report example by Non-Patent Document 2 about the efficiency recovery by laser scribing only the upper electrode layer and the buffer layer and heat treatment.
The reported conversion efficiency of solar cells is as low as 6.77% after laser drift and 13.18% after recovery by heat treatment, and the factors causing the decrease in efficiency and the reason for heat treatment have not been fully elucidated.
特開昭59-220979号公報JP-A-59-220979 特開平7-45844号公報Japanese Patent Application Laid-Open No. 7-45584 特許第3867230号公報Patent No. 3867230 特開2015-32731号公報Unexamined-Japanese-Patent No. 2015-32731 特開2000-340814号公報JP 2000-340814 A
 第三のスクライブによる除去する層を上記バッファ層、および、上部電極層の2層に限定することにより、上部電極と下部電極の短絡の要因となっている溝の側壁面状の溶融層が存在しなくなると共に、除去を行わなかった発電層(光吸収層)は高抵抗であるため、上部電極と下部電極の短絡に寄与しないため第1の問題点は解決される。
 しかし第2の問題点に対する解決は十分でない。
By limiting the layer to be removed by the third scribing to two layers of the above-mentioned buffer layer and upper electrode layer, there exists a melted layer in the form of a sidewall of a groove which is a cause of short circuit between upper electrode and lower electrode. Since the power generation layer (light absorption layer) which has not been removed and has not been removed has a high resistance, it does not contribute to a short circuit between the upper electrode and the lower electrode, thereby solving the first problem.
However, the solution to the second problem is not enough.
 レーザースクライブ時に発生する熱の影響で、レーザースクライブで除去されるバッファ層5および高抵抗バッファ層6に隣り合う光吸収層表面近傍に発生する、太陽光照射時に発生する電子、正孔が光電流に寄与することなく再結合して失活する起点となる欠陥(再結合中心)を光吸収層表面近傍に熱処理を施してとり除いて、発電効率の低下を抑制した。 Under the influence of heat generated at the time of laser scribing, electrons and holes generated at the time of sunlight irradiation are generated near the surface of the light absorption layer adjacent to the buffer layer 5 and the high resistance buffer layer 6 removed by laser scribing The heat generation was applied to the vicinity of the surface of the light absorption layer to remove the defect (recombination center) that becomes the starting point of recombination and deactivation without contributing to the reduction of the power generation efficiency.
 レーザースクライブを行った試料の光吸収層表面近傍に、温度85℃、15時間の熱処理を行うことで効率の回復が見られた。 Heat recovery at a temperature of 85 ° C. for 15 hours was observed in the vicinity of the surface of the light absorption layer of the sample subjected to the laser scribing.
 光吸収層の銅の濃度上昇は発電効率の低下をもたらす欠陥の生成を示すものとして知られている。 An increase in the copper concentration of the light absorbing layer is known to indicate the formation of defects leading to a decrease in power generation efficiency.
 レーザースクライブで欠陥の発生する光吸収層表面近傍のオージェ電子分光による化学組成の深さ分析を行ったところ、レーザースクライブ直後の発電層において、深さ90ナノメートルまでの浅い領域で、より深い領域より銅の濃度が約30%程度上昇していることが示された。 The depth of the chemical composition of the light absorbing layer near the surface of the light absorbing layer where defects are generated by laser scribing is analyzed by the depth analysis. As a result, in the power generation layer immediately after laser scribing, the deeper region is up to 90 nm deep. It was shown that the concentration of copper increased by about 30%.
 レーザースクライブに用いた波長1.04μmのレーザー光は透明導電膜層と高抵抗バッファ層、バッファ層を透過して、CIGS光吸収層で吸収される。
 CIGS層の光吸収係数から求められるCIGS層内部への光の侵入深度は1μm程度となるが、この1μmの層内でも光の強度は指数関数的に減少しているため、特に化学組成の変化が起こるような高温に到達する領域は最表面により限定される。
 超短パルスレーザーを用いているため、熱の拡散の影響もほぼ無視できるため、影響がみられる深さが90ナノメートルまでの浅い領域となったものと考えられる。
The laser beam having a wavelength of 1.04 μm used for the laser scribing passes through the transparent conductive film layer, the high resistance buffer layer, and the buffer layer, and is absorbed by the CIGS light absorbing layer.
The penetration depth of light into the interior of the CIGS layer determined from the light absorption coefficient of the CIGS layer is about 1 μm, but even within this 1 μm layer, the intensity of the light decreases exponentially, so the change in the chemical composition in particular The area in which the high temperature is reached is limited by the outermost surface.
Since the use of an ultrashort pulse laser can almost neglect the influence of heat diffusion, it is considered that the affected depth is a shallow region up to 90 nm.
 この試料を温度85℃で5時間の加熱処理した試料では、上記の銅の濃度上昇は見られなくなり、最表面を除き、深さに対する組成比はほぼ一定となる。 In the sample heat-treated at 85 ° C. for 5 hours, the above-mentioned increase in copper concentration is not observed, and the composition ratio to the depth is almost constant except for the outermost surface.
 この効率の回復は、乾燥アニール(湿度5%以下、15時間の熱処理)、および真空アニール(10kPa程度の真空条件下で15時間の熱処理)において同様に見られた。
 すなわち、加熱処理により、銅の局所的な濃度増加が抑制され欠陥密度が低減されることによるものである。
The recovery of the efficiency was similarly observed in dry annealing (5% or less of humidity, heat treatment for 15 hours) and vacuum annealing (heat treatment under vacuum conditions of about 10 kPa for 15 hours).
That is, the heat treatment suppresses the increase in the local concentration of copper and reduces the defect density.
 レーザースクライブ法によるセル分割において熱発生による変換効率低下がないので今後益々ニーズが期待されるメカニカルスクライブでは加工困難な軽量可撓性を有するポリマー基盤へ適用してフレキシブルな大規模化合物薄膜太陽電池を作製する事ができるようになる。
 さらに、本構造では、付着力の弱い、背面電極層のモリブデン膜とCIGS光吸収層の間での剥離が起こりにくいこと、また、モリブデン膜が露出しない構造となるため、モリブデンの酸化による劣化を防ぐことができるという利点がある。
There is no decline in conversion efficiency due to heat generation in cell division by laser scribing method, so mechanical scribing that is expected to be more and more in the future is applied to polymer bases with light weight flexibility that is difficult to process and flexible large scale compound thin film solar cells It will be possible to make it.
Furthermore, in this structure, since the adhesion is weak, peeling between the molybdenum film of the back electrode layer and the CIGS light absorption layer is difficult to occur, and the molybdenum film is not exposed, deterioration due to oxidation of molybdenum is caused. There is an advantage that it can prevent.
温度68℃、5時間の加熱処理中の曲線因子FFの時間変化を表す図である。It is a figure showing the time change of curve factor FF during heat processing for 5 hours, temperature 68 ° C. 温度85℃、5時間の加熱処理中の曲線因子FFの時間変化を表す図である。It is a figure showing the time change of curve factor FF during heat processing for 5 hours, temperature 85 ° C. レーザースクライビングにより作製した分割溝の底部に露出したCIGS層のオージェ電子分光測定領域(写真中央上の四角で囲まれた部分)を示す図である。It is a figure which shows the Auger-electron spectroscopy measurement area | region (part enclosed by the square on the center of a photograph) of the CIGS layer exposed to the bottom part of the dividing groove produced by laser scribing. レーザースクライビングにより作製した分割溝の底部に露出したCIGS層のオージェ電子分光による銅(Cu)の濃度の深さ方向分析結果を表す図であって、図4(a)は実施例3試料2の分析結果、図4(b)は実施例3試料3の分析結果、図4(c)は実施例3試料4の分析結果を表す図である。FIG. 4A is a diagram showing the results of depth direction analysis of the concentration of copper (Cu) by Auger electron spectroscopy of a CIGS layer exposed at the bottom of a dividing groove fabricated by laser scribing, and FIG. As a result of analysis, FIG. 4 (b) is a diagram showing the analysis result of the sample 3 of Example 3 and FIG. 4 (c) is a diagram showing the analysis result of the sample 4 of Example 3. 本発明を表す化合物薄膜太陽電池の断面図である。図5(a)、(b)は各グリッド型、集積型の太陽電池セルの構造図である。It is a sectional view of a compound thin film solar cell showing the present invention. FIGS. 5 (a) and 5 (b) are structural diagrams of each grid type and integrated type solar battery cell. 本発明の化合物薄膜太陽電池からなるグリッド型モジュールの構造を表す断面図である。It is sectional drawing showing the structure of the grid-type module which consists of a compound thin film solar cell of this invention. 本発明の化合物薄膜太陽電池からなる集積型モジュールの作製工程と構造を示す断面図である。It is sectional drawing which shows the preparation processes and structure of the integrated module which consists of a compound thin film solar cell of this invention.
 以下、本発明の化合物薄膜太陽電池1およびその構造物について図面を用いて説明するが、図面は本発明の一態様を表しており、これに限定されるものではない。 Hereinafter, the compound thin film solar cell 1 of the present invention and the structure thereof will be described with reference to the drawings, but the drawings represent one embodiment of the present invention and the present invention is not limited thereto.
 本実施例は図6に示すグリッド型モジュール構造の単位構造となる単一の化合物半導体太陽電池セルを製造する例であり、レーザースクライブ工程は1種類のみ(すなわち、透明導電膜層/高抵抗バッファ層/バッファ層除去レーザースクライブ工程のみ)である。
 次に、一つの太陽電池セル(図5(a))をとって説明するが、他の太陽電池セルにおいても同様に作製される。
The present example is an example of producing a single compound semiconductor solar battery cell which is a unit structure of a grid type module structure shown in FIG. 6, and only one type of laser scribing process (that is, transparent conductive film layer / high resistance buffer) Layer / buffer layer removal laser scribing step only).
Next, although it demonstrates taking one solar cell (FIG. 5 (a)), it manufactures similarly in another solar cell.
 図5(a)に示すように、まず、基板層2の上に背面電極層3となる金属としてMoを800nm程度積層した。
 続いて、化合物半導体光吸収層4としてCIGS光吸収層を約2μmの厚さで製膜し、その上にバッファ層5であるCdS層と高抵抗バッファ層6であるZnO層とを各々数十nmの厚さで順次積層し、更に透明導電膜層7としてAlドープのZnO透明導電膜(ZnO:Al)を約500nmの膜厚で 積層した。
As shown in FIG. 5A, first, about 800 nm of Mo was laminated as a metal to be the back electrode layer 3 on the substrate layer 2.
Subsequently, a CIGS light absorption layer is formed to a thickness of about 2 μm as the compound semiconductor light absorption layer 4, and a CdS layer which is a buffer layer 5 and a ZnO layer which is a high resistance buffer layer 6 are formed thereon. It laminated | stacked sequentially by the thickness of nm, and also laminated | stacked the transparent conductive film layer 7 of Al dope ZnO transparent conductive film (ZnO: Al) with the film thickness of about 500 nm.
 その後に、フェムト秒レーザー光をZnO:Alの表面にライン状に走査して、バッファ層5から透明導電膜層7(ZnO:Al)までの積層部分を複数の領域に分割するレーザースクライブ工程を行った。
 この際、溶融温度が比較的低く熱に弱いCIGS光吸収層の熱ダメージを少しでも低減するため、レーザー光としては、パルス幅400fs(フェムト秒)の超短パルスレーザーを利用した。
Thereafter, a laser scribing process is performed in which femtosecond laser light is linearly scanned on the surface of ZnO: Al to divide the laminated portion from the buffer layer 5 to the transparent conductive film layer 7 (ZnO: Al) into a plurality of regions. went.
At this time, an ultrashort pulse laser with a pulse width of 400 fs (femtoseconds) was used as the laser light in order to reduce even a slight thermal damage of the CIGS light absorption layer which is relatively low in melting temperature and weak in heat.
 レーザー波長については1.04μmの近赤外波長を用いた。この波長は、CIGSが光吸収を有し効率良くCIGS光吸収層をアブレーションできる波長である。
 パルスレーザー光は回折光学素子により強度分布を均一化した1辺26μmの四角形状に成型し、熱ダメージによる電池変換効率の劣化を抑えるため、超短パルスレーザーの1パルスあたりの照射エネルギー密度を約0.4J/cmと低い値に抑えた。
For the laser wavelength, a near infrared wavelength of 1.04 μm was used. This wavelength is a wavelength at which CIGS can absorb light and can efficiently ablate the CIGS light absorption layer.
The pulse laser beam is formed into a rectangular shape with a side of 26 μm, the intensity distribution of which is made uniform by a diffractive optical element, and the irradiation energy density per pulse of the ultrashort pulse laser is about It was reduced to a low value of 0.4 J / cm 2 .
 複数パルス連続照射による蓄熱を抑えるため、超短パルスレーザーの「パルスの繰り返し」は10kHzとし、0.22 m/sの速度で1回走査することで、バッファ層5~透明導電膜層7を除去する分割溝8を作製した。
 スクライブは面積約52mmの発電領域を囲む全長32mmについて実施した。
 グリッド型モジュールは、上述の単位構造となる太陽電池セルの背面電極層12a、12b、12cに取り付けた各取り出し電極33と、透明導電膜層16a、16b、16cに取り付けた各取り出し電極34を適宜電気的に接続して集積化することができる。
In order to suppress heat storage due to multiple pulse continuous irradiation, the “pulse repetition” of the ultrashort pulse laser is 10 kHz, and scanning is performed once at a speed of 0.22 m / s to form the buffer layer 5 to the transparent conductive film layer 7 A dividing groove 8 to be removed was produced.
The scribing was performed for a total length of 32 mm surrounding a power generation area of about 52 mm 2 in area.
In the grid type module, each extraction electrode 33 attached to the back electrode layer 12a, 12b, 12c of the solar battery cell having the unit structure described above, and each extraction electrode 34 attached to the transparent conductive film layers 16a, 16b, 16c It can be electrically connected and integrated.
 上のように作製した太陽電池セルの曲線因子FFと電池変換効率Eff を評価した。
 曲線因子FFは良く知られているように最大出力電圧と最大出力電流との積を、開放電圧と短絡電流との積で除算した値である。
 また、変換効率Effは、取り出せる最大電力を放射強度と受光面積との積で除算した値である 。
The curve factor FF and the cell conversion efficiency Eff of the solar cell fabricated as above were evaluated.
The curve factor FF is, as is well known, a value obtained by dividing the product of the maximum output voltage and the maximum output current by the product of the open circuit voltage and the short circuit current.
Further, the conversion efficiency Eff is a value obtained by dividing the maximum power that can be taken out by the product of the radiation intensity and the light receiving area.
 評価の後、太陽電池セルを大気中で温度68℃に加熱し、5時間の加熱処理を行った。
 加熱処理後、室温に戻した太陽電池セルについて曲線因子FFと電池変換効率Eff を評価した。
After the evaluation, the solar battery cell was heated to a temperature of 68 ° C. in the atmosphere, and heat treatment was performed for 5 hours.
The curve factor FF and the cell conversion efficiency Eff were evaluated for the solar cells returned to room temperature after the heat treatment.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように加熱処理により曲線因子FFと電池変換効率Effがともに増加している。 As is clear from Table 1, both the fill factor FF and the battery conversion efficiency Eff are increased by the heat treatment.
 図1は、加熱処理中に測定した表1記載のセル1の曲線因子FFの変化を示すものである。
 加熱処理中、処理時間が経過するとともに曲線因子FFが増加し、5時間の処理により飽和に近づいていることが示されている。
 加熱中は電池のダイオード特性が温度に依存して変化するため、曲線因子FFは表1に示した室温で測定するものと比較して小さな値になる。
FIG. 1 shows changes in fill factor FF of cell 1 described in Table 1 measured during heat treatment.
During the heat treatment, the curve factor FF increases as the treatment time passes, and it has been shown that the treatment for 5 hours is approaching saturation.
Since the diode characteristics of the battery change depending on the temperature during heating, the fill factor FF has a small value compared to that measured at room temperature shown in Table 1.
 実施例1と同じ方法で作製した太陽電池セルをレーザースクライブ処理した作製した太陽電池セルの曲線因子FFと電池変換効率Effを評価した。
 評価の後、太陽電池セルを大気中で温度85℃に加熱し、5時間の加熱処理を行った。加熱処理後、室温に戻した太陽電池セルについて曲線因子FFと電池変換効率Eff を評価した。
The curvilinear factor FF and the cell conversion efficiency Eff of a manufactured solar cell prepared by laser scribing a solar cell manufactured by the same method as in Example 1 were evaluated.
After the evaluation, the solar battery cell was heated to a temperature of 85 ° C. in the atmosphere, and heat treatment was performed for 5 hours. The curve factor FF and the cell conversion efficiency Eff were evaluated for the solar cells returned to room temperature after the heat treatment.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように加熱処理により曲線因子FFと電池変換効率Effがともに増加している。
 図2は、加熱処理中に測定した表1記載のセル1の曲線因子FFの変化を示すものである。
As is clear from Table 2, both the fill factor FF and the cell conversion efficiency Eff are increased by the heat treatment.
FIG. 2 shows changes in fill factor FF of cell 1 described in Table 1 measured during heat treatment.
 加熱処理中、処理時間が経過するとともに曲線因子FFが増加する様子がわかるが、68℃の加熱処理と異なり約1.5時間の処理により曲線因子FFの増加が飽和に達していることが示されている。 It can be seen that the curve factor FF increases as the treatment time passes during the heat treatment, but unlike the heat treatment at 68 ° C., the increase of the curve factor FF reaches saturation by the treatment for about 1.5 hours. It is done.
 本レーザースクライブ技術と従来のメカニカルスクライブ技術の太陽電池変換効率の比較評価を行うため、透明導電膜層の製膜工程までは実施例1と全て同じ条件とし、光吸収層から透明導電膜層までの積層構造のスクライブ工程については、従来のメカニカルスクライブ工程を用いて分割溝を複数形成した試料1を作製した。 In order to compare and evaluate the solar cell conversion efficiency of the present laser scribing technology and the conventional mechanical scribing technology, all the conditions up to the film forming step of the transparent conductive film layer are the same as Example 1, and from the light absorbing layer to the transparent conductive film layer In the scribing step of the laminated structure of the above, a sample 1 having a plurality of division grooves formed was manufactured using a conventional mechanical scribing step.
 また、試料1の分割溝のうち1本の分割溝はメカニカルスクライビングではなく、実施例1と同じ条件のレーザースクライビングにより形成した試料2を作製した。 In addition, among the division grooves of Sample 1, one division groove was formed not by mechanical scribing but by laser scribing under the same conditions as in Example 1.
 さらに、試料2と同じ方法で作製した試料に対して、0.5時間、および3時間の加熱処理を、約10kPaの減圧条件下、85℃で実施したものを試料3、4とした。 Furthermore, samples 3 and 4 were prepared by subjecting the samples prepared by the same method as sample 2 to heat treatment at 85 ° C. under a reduced pressure of about 10 kPa for 0.5 hours and 3 hours.
 試料1,2,3,4について曲線因子FFと電池変換効率Eff を評価した。 The curve factor FF and the cell conversion efficiency Eff were evaluated for samples 1, 2, 3 and 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、分割溝をレーザースクライビングで形成した試料2の変換効率は16.9%であり、メカニカルスクライブ工程を用いて形成した試料1のそれの17.9%より1.0%低いが、これはレーザースクライブ工程時の熱ダメージによる効率の低減を示している。 As apparent from Table 3, the conversion efficiency of sample 2 in which the dividing groove is formed by laser scribing is 16.9%, which is 1.0 to 17.9% of that of sample 1 formed by using the mechanical scribing step. Although low, this indicates a reduction in efficiency due to thermal damage during the laser scribing process.
 スクライブを行う条件によってはより大きな効率の低減が見られる場合が多く(例えば比較例1)、フェムト秒レーザーを用いても蓄熱作用を伴う場合にはCIGS薄膜太陽電池の変換効率維持は極めて難しい。 Depending on the conditions under which scribing is performed, a large reduction in efficiency can be observed in many cases (for example, Comparative Example 1), and even when using a femtosecond laser, maintaining the conversion efficiency of the CIGS thin film solar cell is extremely difficult.
 試料2と比較して、試料3の曲線因子は0.754と増加しており、さらに、試料4では0.762とさらに増加している。
 加熱処理の時間が試料3の0.5時間から、試料4の3時間に増加することにより、レーザースクライブ工程時の熱ダメージにより低減した効率が回復し、試料4においては、ほぼ完全に解消されていることが示されている。
The curve factor of sample 3 is increased to 0.754 as compared to sample 2 and is further increased to 0.762 for sample 4.
By increasing the heat treatment time from 0.5 hours of sample 3 to 3 hours of sample 4, the efficiency reduced by the thermal damage in the laser scribing process is recovered, and sample 4 is almost completely eliminated. Is shown.
 この熱ダメージの影響とその後の加熱処理がもたらす変化を明らかにするために、試料2,3,4については、レーザースクライビングにより作製した分割溝の底部に露出した、CIGS層について、オージェ電子分光法による深さ方向の分析を行った。 In order to clarify the influence of the heat damage and the change caused by the subsequent heat treatment, Augers electron spectroscopy is performed on the CIGS layer exposed at the bottom of the dividing groove prepared by laser scribing for the samples 2, 3 and 4. Analysis in the depth direction by.
 図3には測定箇所の電子顕微鏡像(二次電子像)を示す。
 また、図4にオージェ電子分光法により得られるCu濃度の深さ方向の分布を示した。同図(a)は試料2の分析結果、同図(b)は試料3の分析結果、同図(c)は試料4の分析結果である。
FIG. 3 shows an electron microscope image (secondary electron image) of the measurement point.
Further, FIG. 4 shows the distribution of Cu concentration in the depth direction obtained by Auger electron spectroscopy. The same figure (a) shows the analysis result of sample 2, the same figure (b) shows the analysis result of sample 3, and the same figure (c) shows the analysis result of sample 4.
 図4(a)は1.0%の効率低下がみられた試料2について観測されたCu濃度の深さ方向分布を示している。
 図中符号Sで示される深さ60~90nmの領域(図5において符号9)でCu濃度の局所的な増加が見られている。
FIG. 4 (a) shows the distribution in the depth direction of the Cu concentration observed for sample 2 in which a 1.0% efficiency drop was observed.
A local increase of the Cu concentration is observed in a region of depth 60 to 90 nm (symbol 9 in FIG. 5) indicated by symbol S in the figure.
 この結果は、レーザースクライビング時の熱影響により、Cuと比較して融点の低いIn,Ga,Seが相対的に減少した結果、Cu濃度が局所的に高くなっていることを示している。
 CIGS太陽電池においては、Cu濃度が高くなった部位が欠陥として働くことが知られている。
 深さ90nm以下の領域での最大信号強度Isは48000であり、より深い領域D(深さ240~750nm(図5において符号10))でほぼ一定である信号強度の平均値Id、35700の1.34倍である。
This result indicates that the Cu concentration is locally high as a result of relatively decreasing In, Ga, and Se having a low melting point compared to Cu due to the thermal effect at the time of laser scribing.
In the CIGS solar cell, it is known that a site where the Cu concentration is high acts as a defect.
The maximum signal strength Is in the region of depth 90 nm or less is 48000, and the average value Id of signal intensities which is substantially constant in the deeper region D (depth 240 to 750 nm (10 in FIG. 5)) It is .34 times.
 これに対して、図4(b)は0.5時間の熱処理を行うことで変換効率が17.3%まで回復した試料3の結果である。 On the other hand, FIG. 4B shows the result of sample 3 in which the conversion efficiency has recovered to 17.3% by performing the heat treatment for 0.5 hours.
 領域Sの最大信号強度Isは38700であり、領域Dの信号強度の平均値Id、35500の1.09倍まで減少している。さらに、図4(c)に示した熱ダメージによる効率低下が完全に抑制された試料4の結果ではIsが36000まで減少し、Id、36600の0.98倍になっている。 The maximum signal strength Is of the area S is 38,700, and the average value Id of the signal strengths of the area D is reduced to 1.09 times 35500. Furthermore, in the result of sample 4 in which the efficiency decrease due to heat damage shown in FIG. 4C is completely suppressed, Is decreases to 36000, which is 0.98 times Id and 36,600.
 以上の結果から、レーザースクライビングの際に発生した変換効率低下の要因となる熱ダメージは、Cu濃度が深さ90nm付近で局所的に上昇することにより発生していることが示された。 From the above results, it was shown that the thermal damage causing the reduction of conversion efficiency occurred at the time of laser scribing is generated due to the local increase of the Cu concentration at a depth of about 90 nm.
 加熱処理によりCu濃度の局所的な上昇領域が解消することで熱ダメージにより低下した変換効率が回復し、高い発電効率を示す太陽電池を作製できる。 By eliminating the locally rising region of the Cu concentration by the heat treatment, the conversion efficiency reduced due to the thermal damage is recovered, and a solar cell exhibiting high power generation efficiency can be manufactured.
 より具体的には十分に深い領域(例えば、深さ240~750nmの領域)における銅に由来する信号強度の平均値Idと表面付近の深さ90nm以下の領域で見られる最大信号強度Isが条件(Is≦Id)を満たす場合に、熱ダメージの影響のない高い発電効率を示す太陽電池になる。 More specifically, the average value Id of the signal intensity derived from copper in a sufficiently deep region (for example, a region with a depth of 240 to 750 nm) and the maximum signal intensity Is seen in a region with a depth of 90 nm or less near the surface When (Is ≦ Id) is satisfied, the solar cell exhibits high power generation efficiency without the influence of heat damage.
 本実施例は図7に示す集積型モジュール構造の化合物半導体太陽電池を製造する例である。
 図5(b)はその一つの太陽電池セルを示す構造図である。
The present example is an example of manufacturing a compound semiconductor solar cell of the integrated module structure shown in FIG.
FIG. 5 (b) is a structural view showing one of the solar cells.
 まず、図7(a)に示すように、基板11の上に背面電極層12となる金属としてMoを800nm程度積層した。
 その後に、図7(b)に示すように、波長1064nmのナノ秒レーザー光をMo表面にライン状に走査して幅40μmの溝を形成して複数の領域に分割する第1のレーザースクライブ工程を行った。
First, as shown in FIG. 7A, about 800 nm of Mo was laminated on the substrate 11 as a metal to be the back electrode layer 12.
Thereafter, as shown in FIG. 7B, a first laser scribing step of scanning a nanosecond laser beam with a wavelength of 1064 nm in a line on the Mo surface to form a groove with a width of 40 μm and dividing it into a plurality of regions Did.
 続いて、図7(c)、図7(d)に示すように、化合物半導体光吸収層13としてCIGS光吸収層を約2μmの厚さで製膜し、その上にバッファ層14であるCdS層と高抵抗バッファ層15であるZnO層とを各々数十nmの厚さで順次積層した。 Subsequently, as shown in FIGS. 7C and 7D, a CIGS light absorption layer is formed to a thickness of about 2 μm as the compound semiconductor light absorption layer 13, and CdS which is the buffer layer 14 is formed thereon. The layer and the ZnO layer which is the high resistance buffer layer 15 were sequentially laminated in a thickness of several tens of nm.
 その後に、図7(e)に示すように、第1のスクライブ工程によって作製した溝17から横方に約20μm離れた位置にCIGS光吸収層/バッファ層/高抵抗バッファ層を複数の領域に分割する第2のスクライブ工程を行った。 Thereafter, as shown in FIG. 7E, the CIGS light absorbing layer / buffer layer / high resistance buffer layer is formed in a plurality of regions at a position approximately 20 μm laterally away from the groove 17 produced by the first scribing step. A second scribing step was performed to divide.
 第2のスクライブ工程はメカニカルスクライブ、または、レーザースクライブにより行った。
 レーザースクライブ工程には、実施例1~3と同様に、1.04μmのレーザー波長をもつパルス幅400fs(フェムト秒)の超短パルスレーザーを利用して実施したが、厚さ約2μmのCIGS光吸収層を完全に除去するために、超短パルスレーザーの「パルスの繰り返し」を200kHzとし、0.14 m/sの速度で1回走査することで、パルス照射数を増やして実施した。
The second scribing step was performed by mechanical scribing or laser scribing.
The laser scribing step was performed using an ultrashort pulse laser with a pulse width of 400 fs (femtoseconds) having a laser wavelength of 1.04 μm as in Examples 1 to 3, but CIGS light with a thickness of about 2 μm was used. In order to completely remove the absorption layer, the number of pulse irradiations was increased by performing “pulse repetition” of the ultrashort pulse laser at 200 kHz and scanning once at a speed of 0.14 m / s.
 図7(f)に示すように、化合物半導体光吸収層13とバッファ層14と高抵抗バッファ層15を分割後、透明導電膜層16としてAlドープのZnO透明導電膜(ZnO:Al)を約700nmの膜厚で積層した。 As shown in FIG. 7 (f), after the compound semiconductor light absorption layer 13, the buffer layer 14 and the high resistance buffer layer 15 are divided, an Al doped ZnO transparent conductive film (ZnO: Al) is formed as the transparent conductive film layer 16 It laminated | stacked by the film thickness of 700 nm.
 その後に、図7(g)に示すように、第3のスクライブ工程を、第2のスクライブ工程によって作製した溝18から横方に離れた位置にフェムト秒レーザー光をZnO:Alの表面にライン状に走査して実施した。 Thereafter, as shown in FIG. 7G, in the third scribing step, femtosecond laser light is lined on the surface of the ZnO: Al at a position laterally separated from the groove 18 produced by the second scribing step. Scan and run.
 このスクライブ工程では、実施例1~3のグリッド型モジュールのレーザースクライブと同じく、バッファ層~透明導電膜を除去する分割溝19を作製した。 In this scribing step, as in the laser scribing of the grid-type modules of Examples 1 to 3, the dividing grooves 19 for removing the buffer layer to the transparent conductive film were produced.
 以上のように作製した太陽電池セルの曲線因子FFと電池変換効率Eff を評価した。
 試料1、2は第2のスクライブ工程にメカニカルスクライブを用い、第3のスクライブ工程をレーザースクライブで行ったもの、試料3、4は第2、第3のスクライブ工程をともにレーザースクライブで行ったものである。
The curve factor FF and the cell conversion efficiency Eff of the solar cell fabricated as described above were evaluated.
Samples 1 and 2 were mechanical scribing in the second scribing step, and the third scribing step was performed by laser scribing. Samples 3 and 4 were both the second and third scribing steps performed by laser scribing. It is.
 評価の後、太陽電池セルを、約10kPaの減圧条件下で温度85℃に加熱し、15時間の加熱処理を行った。
 加熱処理後、室温に戻した太陽電池セルについて曲線因子FFと電池変換効率Effを評価した。
After the evaluation, the solar battery cell was heated to a temperature of 85 ° C. under a reduced pressure of about 10 kPa and subjected to a heat treatment for 15 hours.
The curve factor FF and the cell conversion efficiency Eff were evaluated about the photovoltaic cell which returned to room temperature after heat processing.
 表4から明らかなようにグリッド型モジュールの場合と同様に加熱処理により曲線因子FFと電池変換効率Effがともに増加した。 As is clear from Table 4, both the fill factor FF and the cell conversion efficiency Eff were increased by the heat treatment as in the case of the grid module.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(比較例)
 比較例として、本実施例は実施例1~3と同様の条件で、かつ本発明を適用しないで、グリッド型モジュール構造の単位構造となる単一の化合物半導体太陽電池を製造したものである。
(Comparative example)
As a comparative example, in this example, a single compound semiconductor solar cell which is a unit structure of a grid type module structure is manufactured under the same conditions as in Examples 1 to 3 and without applying the present invention.
 レーザースクライブ工程は1種類のみであるが、従来のメカニカルスクライブと同様に透明導電膜層/高抵抗バッファ層/バッファ層に加えて、CIGS光吸収層を除去するレーザースクライブ工程を実施したものである。 Although there is only one type of laser scribing process, in addition to the transparent conductive film layer / high-resistance buffer layer / buffer layer as in the conventional mechanical scribing, a laser scribing process for removing the CIGS light absorbing layer is performed. .
 熱に弱いCIGS 光吸収層の熱ダメージを少しでも低減するため、レーザー光としては、パルス幅400f s(フェムト秒)の超短パルスレーザーを利用した。 In order to reduce even slight thermal damage to the CIGS light absorption layer which is weak to heat, an ultrashort pulse laser with a pulse width of 400 fs (femtoseconds) was used as the laser light.
 超短パルスレーザーの1パルスあたりの照射エネルギー密度を約0.3J/cmと低い値に抑え、「パルスの繰り返し」は200kHzとし、0.43m/sの速度で2回走査することで、CIGS光吸収層~透明導電膜層を完全除去する分割溝を作製した。
 スクライブは面積約52mmの発電領域を囲む全長32mmについて実施した。
The irradiation energy density per pulse of the ultrashort pulse laser is reduced to a low value of about 0.3 J / cm 2 , the “pulse repetition” is 200 kHz, and scanning is performed twice at a speed of 0.43 m / s, A dividing groove for completely removing the CIGS light absorbing layer to the transparent conductive film layer was produced.
The scribing was performed for a total length of 32 mm surrounding a power generation area of about 52 mm 2 in area.
 このようにして分割して作成した太陽電池セルの曲線因子FFと電池変換効率Eff を評価した。
 前記の条件において作製した4セルが示した曲線因子FFは平均して0.687、電池変換効率Effは、15.4%であった。
The curve factor FF and the cell conversion efficiency Eff of the solar battery cells thus divided and created were evaluated.
The curve factor FF exhibited by 4 cells manufactured under the above conditions was 0.687 on average, and the cell conversion efficiency Eff was 15.4%.
 これに対して、メカニカルスクライブで分割したセルについては、曲線因子FFが0.782、電池変換効率Effが17.8%であった。
 レーザースクライブにより分割したセルでは、メカニカルスクライブで分割したセルと比較して約2.3%の変換効率の低下がみられた。
On the other hand, for cells divided by mechanical scribing, the curvilinear factor FF was 0.782, and the battery conversion efficiency Eff was 17.8%.
In the cell divided by laser scribing, a reduction in conversion efficiency of about 2.3% was observed as compared with the cell divided by mechanical scribing.
 CIGSを代表とする化合物薄膜太陽電池のモジュール製造に利用される。 It is used for module manufacturing of compound thin film solar cells represented by CIGS.
1 化合物薄膜太陽電池
2 基板層
3 背面電極層
4 化合物半導体層(CIGS光吸収層)
5 バッファ層
6 高抵抗バッファ層
7 透明導電膜層
8、31 溝
9 浅い領域
10 深い領域
11、11a、11b、11c 基板
12、12a、12b、12c 背面電極層
13、13a、13b、13c 化合物半導体光吸収層
14、14a バッファ層
15、15a 高抵抗バッファ層
16、16a、16b、16c 透明導電膜層
17 第一分割溝
18 第二分割溝
19 第三分割溝
21a、21b、21c、21d スクライブで分割した背面電極層
22a、22b、22c、22d スクライブで分割した化合物半導体光吸収層/バッファ層/高抵抗バッファ層
23a、23b、23c スクライブで分割した透明導電膜層
32 配線
33,34 取り出し電極
1 compound thin film solar cell 2 substrate layer 3 back electrode layer 4 compound semiconductor layer (CIGS light absorption layer)
5 buffer layer 6 high resistance buffer layer 7 transparent conductive film layer 8, 31 groove 9 shallow region 10 deep region 11, 11a, 11b, 11c substrate 12, 12a, 12b, 12c back electrode layer 13, 13a, 13b, 13c compound semiconductor Light absorbing layer 14, 14a Buffer layer 15, 15a High resistance buffer layer 16, 16a, 16b, 16c Transparent conductive film layer 17 First divided groove 18 Second divided groove 19 Third divided groove 21a, 21b, 21c, 21d by scribing Compound semiconductor light absorption layer / buffer layer / high- resistance buffer layer 23a, 23b, 23c divided by scribing back electrode layer 22a, 22b, 22c, 22d Transparent conductive film layer 32 divided by scribing Wiring 33, 34 Extraction electrode

Claims (7)

  1.  基板と、前記基板上に形成された背面電極層を第1の溝形成により分割してなる下部電極と、前記複数の下部電極上に形成され、前記第1の溝と異なる位置で第2の溝形成によって複数に分割してなる、銅を成分に含有する化合物半導体からなる光吸収層にバッファ層と高抵抗バッファ層の順に積層した構造体と、前記複数に分割された光吸収層/バッファ層/高抵抗バッファ層積層構造体の上面と、前記光吸収層/バッファ層/高抵抗バッファ層積層構造体を分割する第2の溝に形成された透明導電膜層と、前記透明導電膜層が前記第2の溝に隣接した箇所で、バッファ層/高抵抗バッファ層/透明導電膜層を、光吸収層を残置する第3の溝形成により分割してなる上部電極により構成される化合物半導体薄膜太陽電池であって、
     前記第3の溝の底面に、残置された前記光吸収層の前記化合物半導体が露出しており、
     前記化合物半導体に関して前記第3の溝の底面から背面電極方向における前記化合物半導体に含まれる前記銅に由来するオージェ電子分光信号強度であって、十分に深い領域の信号強度の平均値Idが前記化合物半導体の表面近傍の浅い領域における最大信号強度Isより大きくないことを特徴とする化合物薄膜太陽電池。
    A substrate, a lower electrode formed by dividing a back electrode layer formed on the substrate by forming a first groove, and a second electrode formed on the plurality of lower electrodes at a position different from the first groove A structure in which a buffer layer and a high resistance buffer layer are sequentially stacked on a light absorption layer made of a compound semiconductor containing copper as a component, which is divided into a plurality of parts by groove formation, and the light absorption layer / buffer divided into the plurality A transparent conductive film layer formed in the upper surface of the layer / high resistance buffer layer laminate structure, and a second groove dividing the light absorption layer / buffer layer / high resistance buffer layer laminate structure, and the transparent conductive film layer A compound semiconductor constituted by an upper electrode formed by dividing a buffer layer / high-resistance buffer layer / transparent conductive film layer by forming a third groove leaving a light absorption layer at a position adjacent to the second groove A thin film solar cell,
    The compound semiconductor of the remaining light absorption layer is exposed at the bottom of the third groove,
    It is the Auger electron spectroscopy signal intensity derived from the copper contained in the compound semiconductor in the direction from the bottom face of the third groove to the back electrode with respect to the compound semiconductor, and the average value I d of the signal intensity in the sufficiently deep region is the above What is claimed is: 1. A compound thin film solar cell characterized by not being larger than the maximum signal strength Is in a shallow region near the surface of a compound semiconductor.
  2.  基板と、前記基板上に形成された背面電極層と、前記背面電極層上に、銅を成分に含有する化合物半導体からなる光吸収層、バッファ層、高抵抗バッファ層、透明導電膜層の順に積層した構造体の、バッファ層/高抵抗バッファ層/透明導電膜層を、光吸収層を残置する第4の溝形成により分割してなる上部電極により構成される小面積の太陽電池セルに分割された構造を有する化合物半導体薄膜太陽電池であって、
     前記第4の溝の底面に、残置された前記光吸収層の前記化合物半導体が露出しており、
     前記化合物半導体に関して前記第4の溝の底面から背面電極方向における前記化合物半導体に含まれる前記銅に由来するオージェ電子分光信号強度であって、十分に深い領域の信号強度の平均値Idが前記化合物半導体の表面近傍の浅い領域における最大信号強度Isより大きくないことを特徴とする化合物薄膜太陽電池。
    A substrate, a back electrode layer formed on the substrate, and a light absorption layer made of a compound semiconductor containing copper as a component, a buffer layer, a high resistance buffer layer, and a transparent conductive film layer on the back electrode layer Divide the buffer layer / high-resistance buffer layer / transparent conductive film layer of the stacked structure into a small area solar battery cell constituted by the upper electrode formed by dividing the fourth groove leaving the light absorption layer A compound semiconductor thin film solar cell having the following structure;
    The compound semiconductor of the remaining light absorption layer is exposed at the bottom of the fourth groove,
    It is the Auger electron spectroscopy signal intensity derived from the copper contained in the compound semiconductor in the direction from the bottom surface of the fourth groove to the back electrode with respect to the compound semiconductor, and the average value I d of the signal intensity in the sufficiently deep region is the above What is claimed is: 1. A compound thin film solar cell characterized by not being larger than the maximum signal strength Is in a shallow region near the surface of a compound semiconductor.
  3.  前記十分に深い領域の深さは240~750nmであって、前記浅い領域の深さは90nm以下であることを特徴とする請求項1または請求項2のいずれか1項に記載する化合物薄膜太陽電池。 The compound thin film sun according to any one of claims 1 and 2, wherein the depth of the sufficiently deep region is 240 to 750 nm, and the depth of the shallow region is 90 nm or less. battery.
  4.  請求項1乃至請求項3のいずれか1項に記載の化合物薄膜太陽電池の製造方法であって、
     前記第3または第4の溝は、前記透明導電膜層の所定の個所にパルスレーザー光を照射しつつライン状に少なくとも1回走査し(レーザースクライブ工程と呼ぶ)、
     次に、当該走査した個所に露出した前記光吸収層の前記化合物半導体の表面近傍を加熱処理して作製したことを特徴とする化合物薄膜太陽電池の製造方法。
    It is a manufacturing method of the compound thin film solar cell of any one of Claim 1 thru | or 3, Comprising:
    The third or fourth groove is scanned at least once in a line while irradiating a predetermined portion of the transparent conductive film layer with a pulse laser beam (referred to as a laser scribing step).
    Next, the manufacturing method of a compound thin film solar cell characterized by heat-processing and manufacturing the surface vicinity of the said compound semiconductor of the said light absorption layer exposed to the said scanned location.
  5.  前記パルスレーザー光は、パルス幅がピコ秒又はフェムト秒オーダーの超短パルスレーザーであることを特徴とする化合物薄膜太陽電池の製造方法。 The method for producing a compound thin film solar cell, wherein the pulse laser light is an ultrashort pulse laser having a pulse width of picosecond or femtosecond order.
  6.  前記加熱処理は、温度85度において1.5時間以上、または、温度68度において5時間以上、加熱した状態におく加熱処理であることを特徴とする化合物薄膜太陽電池の製造方法。 The method of manufacturing a compound thin film solar cell according to claim 1, wherein the heat treatment is a heat treatment of heating at a temperature of 85 degrees for 1.5 hours or more, or at a temperature of 68 degrees for 5 hours or more.
  7.  集積型モジュール構造を有する化合物薄膜太陽電池の製造方法であって、
     基板上に形成された背面電極層(第1積層構造体)にレーザー光を走査して前記背面電極層のみにライン状の第1分割溝を形成して前記背面電極層を前記基板上において第1の複数の領域に分割する第1レーザースクライブ工程と、
     前記第1分割溝が形成された前記第1積層構造体に化合物半導体からなる光吸収層、バッファ層及び高抵抗バッファ層の順で積層した第2積層構造体の前記高抵抗バッファ層に、第1分割溝と異なる位置で、パルスレーザー光を所定の照射条件により照射しつつライン状に走査して、前記第2積層構造体において前記背面電極層をその底面とするライン状の第2分割溝を形成して前記第2積層構造体を前記背面電極層上において第2の複数の領域に分割する第2レーザースクライブ工程と、
     前記第2分割溝が形成された前記第2の積層構造体に透明導電層を積層した第3の積層構造体に、前記パルスレーザー光を前記所定の照射条件により照射しつつライン状に走査して、前記第3の積層構造体において前記光吸収層をその底面とするライン状の第3分割溝を形成して、前記透明導電層と前記背面電極とが順次対に配線(接続)されるように前記第3の積層構造体を前記光吸収層上において第3の複数の領域に分割する第3レーザースクライブ工程を有し、
     前記レーザースクライブ工程が前記第3レーザースクライブ工程であることを特徴とする請求項4乃至請求項6のいずれか1項記載の集積型モジュール構造を有する化合物薄膜太陽電池の製造方法。
    A method of manufacturing a compound thin film solar cell having an integrated module structure, comprising:
    A laser beam is scanned on the back electrode layer (first laminated structure) formed on the substrate to form line-shaped first division grooves only in the back electrode layer, and the back electrode layer is formed on the substrate A first laser scribing step of dividing into a plurality of regions of 1;
    The high resistance buffer layer of a second laminated structure in which a light absorption layer made of a compound semiconductor, a buffer layer and a high resistance buffer layer are laminated in this order on the first laminated structure in which the first divided groove is formed. At the position different from the one division groove, scanning is performed in a line while irradiating pulse laser light under a predetermined irradiation condition, and a second division groove in a line shape having the back electrode layer as the bottom surface in the second laminated structure A second laser scribing step of forming the second laminated structure on the back electrode layer to form a second plurality of regions on the back electrode layer;
    The pulse laser beam is scanned in the form of a line while being irradiated with the pulse laser beam on the third laminated structure in which the transparent conductive layer is laminated on the second laminated structure in which the second divided groove is formed. Forming a line-shaped third divided groove whose bottom surface is the light absorption layer in the third laminated structure, and the transparent conductive layer and the back electrode are sequentially wired (connected) in pairs. And a third laser scribing step of dividing the third laminated structure into a plurality of third regions on the light absorption layer,
    The method for manufacturing a compound thin film solar cell having an integrated module structure according to any one of claims 4 to 6, wherein the laser scribing step is the third laser scribing step.
PCT/JP2017/012952 2016-04-28 2017-03-29 High power generation efficiency compound semiconductor thin-film solar cell, and method for manufacturing same WO2017187871A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018514206A JPWO2017187871A1 (en) 2016-04-28 2017-03-29 High power generation efficiency compound semiconductor thin film solar cell and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-091668 2016-04-28
JP2016091668 2016-04-28

Publications (1)

Publication Number Publication Date
WO2017187871A1 true WO2017187871A1 (en) 2017-11-02

Family

ID=60160343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012952 WO2017187871A1 (en) 2016-04-28 2017-03-29 High power generation efficiency compound semiconductor thin-film solar cell, and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2017187871A1 (en)
WO (1) WO2017187871A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897450A (en) * 1994-09-26 1996-04-12 Yazaki Corp Thin film solar cell manufacturing method
JPH08316230A (en) * 1995-05-15 1996-11-29 Matsushita Electric Ind Co Ltd Precursor for formation of semiconductor thin film and manufacture of semiconductor thin film
JP2015032731A (en) * 2013-08-05 2015-02-16 独立行政法人産業技術総合研究所 Manufacturing method of compound thin film solar cell, and compound thin film solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0897450A (en) * 1994-09-26 1996-04-12 Yazaki Corp Thin film solar cell manufacturing method
JPH08316230A (en) * 1995-05-15 1996-11-29 Matsushita Electric Ind Co Ltd Precursor for formation of semiconductor thin film and manufacture of semiconductor thin film
JP2015032731A (en) * 2013-08-05 2015-02-16 独立行政法人産業技術総合研究所 Manufacturing method of compound thin film solar cell, and compound thin film solar cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANDREAS BURN ET AL.: "Selective ablation of thin films in latest generation CIGS solar cells with picosecond pulses , Proceedings of SPIE Vol. 8243", LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING (LAMOM)XVII, vol. 8243, 16 March 2012 (2012-03-16), Washington, pages 824318 - 1 - 824318-17 *
GABOR MATTHAUS ET AL.: "CIGS P3 scribing using ultrashort laser pulses and thermal annealing", APPLIED PHYSICS A, vol. 120, no. 1, 9 July 2015 (2015-07-09), New York, pages 1 - 4, XP055438901 *

Also Published As

Publication number Publication date
JPWO2017187871A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
JP4703350B2 (en) Manufacturing method of solar cell
JP4439492B2 (en) Chalcopyrite solar cell and method for manufacturing the same
KR100974221B1 (en) Method for forming selective emitter of solar cell using laser annealing and Method for manufacturing solar cell using the same
JP4925724B2 (en) Solar cell and method for manufacturing the same
US20090194150A1 (en) Solar cell and method for fabricating the same
JP4730740B2 (en) Solar cell and method for manufacturing the same
JP6271844B2 (en) Solar cell and manufacturing method thereof
US20080216895A1 (en) Chalcopyrite solar cell and method of manufacturing the same
JP2007317868A (en) Chalcopyrite solar cell, and manufacturing method thereof
JP2007317879A (en) Chalcopyrite solar cell, and manufacturing method thereof
GB2499192A (en) Method for producing a solar cell with a selective emitter
JP6202308B2 (en) Method for producing compound thin film solar cell
WO2012051574A2 (en) Ablative scribing of solar cell structures
Murison et al. CIGS P1, P2, and P3 laser scribing with an innovative fiber laser
KR101370126B1 (en) Method for forming selective emitter of solar cell using annealing by laser of top hat type and Method for manufacturing solar cell using the same
Weizman et al. Rear-side All-by-Laser Point-contact Scheme for liquid-phase-crystallized silicon on glass solar cells
Schultz et al. Laser-induced local phase transformation of CIGSe for monolithic serial interconnection: Analysis of the material properties
US20130344637A1 (en) Mask for manufacturing dopant layer of solar cell, method for manufacturing dopant layer of solar cell, and method for manufacturing dopant layer of solar cell using the mask
Huber et al. Selective structuring of thin-film solar cells by ultrafast laser ablation
WO2017187871A1 (en) High power generation efficiency compound semiconductor thin-film solar cell, and method for manufacturing same
JP5451781B2 (en) Photoelectric conversion device and manufacturing method thereof
WO2013121839A1 (en) Thin film solar cell and method for manufacturing same
JP2019009241A (en) Solar cell and manufacturing method therefor
JP5872416B2 (en) Method for manufacturing thin film solar cell
Yang et al. Toward lossless photovoltaic efficiency of Laser-shaped flexible Cu (In, Ga) Se2 solar cells on stainless steel substrates

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17789160

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17789160

Country of ref document: EP

Kind code of ref document: A1