WO2017183795A1 - Optical sensor device and optical sensing method - Google Patents

Optical sensor device and optical sensing method Download PDF

Info

Publication number
WO2017183795A1
WO2017183795A1 PCT/KR2016/014965 KR2016014965W WO2017183795A1 WO 2017183795 A1 WO2017183795 A1 WO 2017183795A1 KR 2016014965 W KR2016014965 W KR 2016014965W WO 2017183795 A1 WO2017183795 A1 WO 2017183795A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pixels
mode
iris
proximity
Prior art date
Application number
PCT/KR2016/014965
Other languages
French (fr)
Korean (ko)
Inventor
김종태
김영수
Original Assignee
(주)파트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파트론 filed Critical (주)파트론
Publication of WO2017183795A1 publication Critical patent/WO2017183795A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0238Details making use of sensor-related data, e.g. for identification of sensor or optical parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector

Definitions

  • the present invention relates to an optical sensor device and an optical sensing method. More particularly, the present invention relates to a sensor device capable of recognizing an iris or a proximity of an object using a light emitting unit and a light receiving unit, and a sensing method using the sensor. .
  • Recent smart devices including smart phones, tablet computers and wearable devices, are being used to perform functions that contain more sensitive information or require security. As a result, higher levels of security are being employed in these smart devices.
  • security means using a password or a pattern of a specific shape have been used.
  • security means using fingerprint recognition have been widely used.
  • Security means using a biometric signal of the user, such as a fingerprint has the advantage that the security is higher than that of the conventional.
  • iris recognition is a method of contacting the surface of the fingerprint directly to the sensor surface, so it is not possible to recognize when wearing gloves or foreign material on the fingerprint, but iris recognition is a non-contact method of wearing glasses or contact lenses There is an advantage that can be recognized in.
  • an infrared light emitting unit and an infrared light receiving unit should be mounted.
  • mounting such a separate device for iris recognition is a factor in raising the price, and it is a factor that hinders the reduction of light and small size of smart devices.
  • security means using iris recognition have not been widely used.
  • An object of the present invention is to provide an optical sensor device and an optical sensing method capable of simultaneously performing iris recognition and proximity sensing with one optical sensor device.
  • Another object of the present invention is to provide an optical sensor device and an optical sensing method capable of minimizing power consumption while simultaneously performing iris recognition and proximity sensing with one optical sensor device.
  • the optical sensor device of the present invention for solving the above problems, including a control unit for determining the operation mode, a light emitting unit for emitting light of a specific wavelength and a plurality of pixels, for detecting that the emitted light is reflected on the object A light receiving unit, and the light receiving unit detects light by activating all or part of the plurality of pixels when the controller determines the operation mode as an iris recognition mode, and when the control unit determines the operation mode as a proximity sensing mode. Light is detected by activating some of the pixels that are activated in iris recognition mode.
  • the step of determining the operation mode when determined as the iris recognition mode, emits light to the iris, a plurality of pixels that the reflected light is reflected on the iris And detecting the information of the iris and the proximity sensing mode, emit light to the proximity object, and detect only the selected part of the plurality of pixels that the emitted light is reflected to the proximity object. Recognizing whether the object is in proximity.
  • iris recognition and proximity sensing can be simultaneously performed with one optical sensor device.
  • iris recognition and proximity sensing can be simultaneously performed with one optical sensor device, and power consumption can be minimized.
  • FIG 1 schematically shows an appearance of an electronic device on which the optical sensor device of the present invention is mounted.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the optical sensor device of the present invention.
  • FIG. 3 is a block diagram schematically showing the optical sensor device of the present invention.
  • FIG. 4 is a cross-sectional view showing that the optical sensor device of the present invention operates in the iris recognition mode.
  • FIG. 5 is a cross-sectional view showing the optical sensor device of the present invention operating in the proximity sensing mode.
  • FIG. 6 illustrates a light receiver in an iris recognition mode in the optical sensor device of the present invention.
  • FIG. 7 illustrates a light receiving unit in a proximity sensing mode in the optical sensor device of the present invention.
  • FIG. 8 is a schematic cross-sectional view showing the configuration of the optical sensor device of the present invention.
  • FIG 1 schematically shows an appearance of an electronic device on which the optical sensor device of the present invention is mounted.
  • the optical sensor device of the present invention may be mounted on an electronic device.
  • the electronic device may be, for example, a cellular phone terminal including a smartphone, a tablet computer, a laptop computer, a PDA device, a media player, a navigation device, a game play device, an electronic device wearable on a wrist, a headphone device, a handsfree device, or the like. This can be
  • the optical sensor device may be installed on the front side of the electronic device.
  • the front of the electronic device generally refers to a part facing the user's face when the user uses the electronic device.
  • the display device is located in front of the electronic device.
  • the optical sensor device may be specifically positioned around the display device.
  • the optical sensor device may be installed such that at least some portions are exposed to the outside. Exposing to the outside includes not only exposing a part of the optical sensor device to the outside as it is, but also optically exposed by being covered with a light transmitting part through which light of a specific wavelength can pass. In the present invention, a part of the optical sensor device may be installed to be exposed to infrared rays by being covered by a light transmitting window through which infrared rays can pass. The optical sensor device may be installed to expose portions of the light emitting unit 100 and the light receiving unit 200 which will be described later. The front optical camera 10 may be installed near the optical sensor device.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the optical sensor device of the present invention. 2, the optical sensor device of the present invention will be described.
  • the optical sensor device includes a light emitter 100, a light receiver 200, a signal processor 300, and a controller 400.
  • the light emitter 100 emits light of a specific wavelength.
  • the light emitting unit 100 may be, for example, a light emitting diode (LED), an organic light emitting diode (OLED), or a lamp.
  • the light emitter 100 emits light by receiving power from the power supply 120.
  • the power supply unit 120 may adjust the power supplied to the light emitting unit 100, and the light emitting unit 100 may adjust the power of light emitted according to the received power.
  • the light emitter 100 may emit light of an infrared wavelength band.
  • the lens 150 may be positioned above the light emitter 100.
  • the lens 150 may refract the light of the light emitter 100.
  • the FOV of the light irradiated to the outside of the optical sensor device may be adjusted.
  • the lens 150 may be one that can adjust the degree of refraction. Therefore, the FOV of the light emitter 100 may be flexibly controlled according to the adjustment state of the lens 150.
  • the light receiver 200 is an element that receives light emitted from the outside and converts the light into an electric signal.
  • the light receiver 200 may be a photo diode (PD).
  • the light receiver 200 may include a plurality of pixels.
  • the plurality of pixels constituting the light receiving unit 200 may be formed of image sensors arranged adjacent to each other in two perpendicular or diagonal directions.
  • the light receiver 200 may selectively receive light having a predetermined specific wavelength band.
  • an optical filter 230 that selectively transmits only light having a specific wavelength band may be positioned above the light receiver 200.
  • the light receiver 200 preferably receives light of a wavelength band corresponding to light emitted from the light emitter 100. Therefore, when the light emitter 100 emits light in the infrared wavelength band, the optical filter 230 covering the light receiver 200 may be an optical filter having the infrared wavelength band as the pass band.
  • the light receiver 200 mainly detects the light emitted from the light emitter 100 to be reflected on an object, but does not receive only the light reflected by the light emitter 100.
  • the light receiving unit 200 may simultaneously detect light emitted from the light emitting unit 100 and other light having the same wavelength band. However, it is preferable that the light receiving unit 200 mainly detects the light reflected by the light emitting unit 100.
  • the lens 250 may be positioned above the light receiver 200.
  • the lens 250 may collect the light so that more light is irradiated to the light receiving unit 200, and may deflect the light so that the irradiated light is focused at the light receiving unit 200.
  • the lens 250 may be adjusted to focus on the light receiver 200.
  • the lens 250 may be connected to the focusing module to move in the front and rear directions of the optical axis according to the distance between the object and the light receiving unit 200.
  • a light blocking wall 170 may be installed between the light emitter 100 and the light receiver 200.
  • the light blocking wall 170 is a structure for preventing the light emitted from the light emitting unit 100 from flowing directly into the light receiving unit 200 without reaching the object.
  • the light shielding wall 170 is formed to a suitable height, and is preferably formed of a light shielding resin material or the like.
  • the light blocking wall 170 may be formed of, for example, a black plastic resin material.
  • the signal processor 300 is a device that receives and processes an electrical signal converted by the light receiver 200 to receive light.
  • the signal processor 300 may be formed in the same package as the light receiver 200 and the light emitter 100, or may be formed as a separate package.
  • the signal processor 300 may analyze the iris image photographed in the iris recognition mode to analyze the intrinsic pattern of the iris, and determine the proximity of the proximity object by analyzing the received light amount in the proximity sensing mode.
  • the controller 400 is an element that controls the operations of the light receiver 200 and / or the light emitter 100 described above.
  • the control unit 400 may be formed in the same package as the light receiving unit 200 and the light emitting unit 100, or may be formed in a separate package.
  • the controller 400 determines an operation mode of the optical sensor device by itself or receives an input signal for determining an operation mode from the outside.
  • the controller 400 may control operations of the light receiver 200 and / or the light emitter 100 according to the determined operation mode. Control of the light receiving unit 200 and / or the light emitting unit 100 by the controller 400 will be described in detail below.
  • 3 is a block diagram schematically showing the optical sensor device of the present invention.
  • 4 is a cross-sectional view showing that the optical sensor device of the present invention operates in the iris recognition mode.
  • 5 is a cross-sectional view showing the optical sensor device of the present invention operating in the proximity sensing mode.
  • the controller 400 may determine an operation mode.
  • the operation mode determined by the controller 400 includes an iris recognition mode and a proximity sensing mode.
  • the controller 400 may control the power supply unit 120 according to two operation modes.
  • the power supply unit 120 may supply stronger power to the light emitting unit 100 and may supply weaker power to the light emitting unit 100 in the proximity sensing mode.
  • the amount of light emitted from the light emitting unit 100 may be controlled.
  • the controller 400 may control the light receiver 200 according to two operation modes. In detail, in the iris recognition mode, more pixels of the light receiver 200 may be activated, and in the proximity sensing mode, fewer pixels of the light receiver 200 may be activated. Operation of the power supply unit 120, the light emitting unit 100, and the light receiving unit 200 according to each mode will be described in more detail below.
  • the controller 400 determines an operation mode of the optical sensor device by itself or receives an input signal for determining an operation mode from the outside.
  • the operation mode may be determined according to a user's setting, an operating state of the electronic device on which the optical sensor device is mounted, and the like.
  • the optical sensor device may be determined to be in a proximity sensing mode.
  • the optical sensor device may be determined to be an iris recognition mode.
  • the optical sensor device operates in the iris recognition mode.
  • the object of the optical sensor device becomes the iris i.
  • the iris i may be located farther from the optical sensor device than the proximity object p in the proximity sensing mode.
  • the light emitter 100 emits light at a first level of power.
  • the power of the first level is higher than that of the second level of the proximity sensing mode to be described later. This is because the iris (i) is located farther away in the iris recognition mode, and the amount of light required is larger than that in the proximity sensing mode because the image of the iris (i) needs to be taken and analyzed.
  • the emitted light is irradiated to the iris (i) to be recognized and reflected.
  • the light receiver 200 detects light by activating all pixels.
  • the lens 250 covering the light receiver 200 may be adjusted in position so that an object at a far distance is formed relative to the light receiver 200.
  • the optical sensor device captures an image of the iris i.
  • the signal processor 300 analyzes the photographed iris image to analyze the unique pattern of the iris i.
  • the object of the optical sensor device becomes a proximity object p.
  • the proximity object p may be located closer to the optical sensor device than the iris i in the iris recognition mode.
  • the light emitter 100 emits light at a second level of power.
  • the power of the second level is lower than that of the first level of the iris recognition mode described above. This is because the proximity object p is relatively close in the proximity sensing mode, and the amount of light required is smaller than that in the iris recognition mode because the light reception amount is measured instead of taking an image. Thus, light can be emitted at a relatively smaller second level of power to minimize power consumption. The emitted light is irradiated to and reflected by the proximity object p to be recognized.
  • the light receiver 200 detects light by activating only selected pixels of some of the plurality of pixels.
  • the lens 250 covering the light receiver 200 may be adjusted in position so that an object at a short distance is formed relative to the light receiver 200.
  • the lens 250 covering the light receiving unit 200 may refract the light to be focused on the pixel portion where the light is activated.
  • the signal processor 300 may determine the proximity of the proximity object p by analyzing the received light amount.
  • 6 illustrates the light receiver 200 in the iris recognition mode in the optical sensor device of the present invention. 6 shows the pixel 211 activated by the light receiver 200.
  • the signal processor 300 analyzes a unique pattern of the iris from the photographed iris image. Therefore, for this purpose, an image having a certain number of pixels or more is required. Therefore, in the iris recognition mode, the image of the iris is photographed using more pixels than in the proximity sensing mode.
  • the light receiving unit 200 activates a relatively large number of pixels, which means that all pixels of the light receiving unit 200 are activated, and a pixel used for imaging in the light receiving unit 200 in a conventional optical sensor. Therefore, activating the plurality of pixels of the light receiving unit 200 in the iris recognition mode not only uses all the pixels that the actual light receiving unit 200 has, as shown in FIG. As shown in b), all of the pixels of the light receiving unit 200 are used as much as the pixels used in a typical optical sensor.
  • FIG. 7 illustrates the light receiver 200 in the proximity sensing mode in the optical sensor device of the present invention.
  • the pixel 212 activated by the light receiver 200 is displayed.
  • the proximity sensing mode the amount of light received by the light emitter 100 reflected by the proximity object is measured. Since the shape of the image formed in the light receiving unit 200 is not measured by the irradiated light, it is not required to detect light with a large number of pixels such as an iris recognition mode. Therefore, in the proximity sensing mode, light may be detected by activating some of the pixels of the light receiver 200 activated in the iris recognition mode. In detail, in the proximity sensing mode, one or two or more selected pixels of the pixels of the light receiver 200 may be used. The pixel 212 selected in the proximity sensing mode is preferably within 10% of the pixel used in the iris recognition mode.
  • the selected pixel 212 may be a plurality of pixels positioned adjacent to each other, as shown in FIG. 7A.
  • the plurality of selected pixels may be a plurality of pixels that are spaced apart from each other in the light receiving unit 200.
  • the selected pixel may be one pixel of the light receiver 200 as illustrated in FIG. 7C.
  • proximity sensing mode when a selected pixel is used to sense light, it means that the selected pixel is powered and activated and receives light and converts it into an electrical signal. On the other hand, unselected pixels are powered off and deactivated. This approach minimizes the power consumed in proximity sensing mode.
  • FIG. 8 is a schematic cross-sectional view showing the configuration of the optical sensor device of the present invention.
  • the light emitter 100 of the optical sensor device includes a first light emitter 101 and a second light emitter 102.
  • the first light emitting part 101 and the second light emitting part 102 are separate light emitting devices capable of independently emitting light.
  • the first light emitting unit 101 may operate at a higher power source than the second light emitting unit 102 and may emit light of higher power.
  • the first light emitter 101 may be used in the iris recognition mode, and the second light emitter 102 may be used in the proximity sensing mode.
  • the optical sensor device as described above has the advantage of performing iris recognition and proximity sensing using one light emitter 100 and one light receiver 200.
  • the above-described optical sensor device has an advantage of minimizing power consumption by adjusting a range of pixels activated according to an operation mode.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Input (AREA)
  • Studio Devices (AREA)

Abstract

Disclosed is an optical sensor device. An optical sensor device, according to the present invention, comprises: a control unit for determining an operation mode; a light emitting unit for emitting light of a particular wavelength; and a light receiving unit comprising a plurality of pixels and for detecting the emitted light reflecting off an object, wherein the light receiving unit detects light by means of activating all or a part of the plurality of pixels if the control unit determines that an operation mode is an iris recognition mode, and detects light by means of activating a part of the pixels activated in the iris recognition mode if the control unit determines that an operation mode is a proximity sensing mode.

Description

광학 센서 장치 및 광학 센싱 방법Optical sensor device and optical sensing method
본 발명은 광학 센서 장치 및 광학 센싱 방법에 관한 것으로, 더욱 상세하게는 발광부 및 수광부를 이용하여 홍채를 인식하거나 객체의 근접 여부를 인식할 수 있는 센서 장치 및 이러한 센서를 이용한 센싱 방법에 관한 것이다. The present invention relates to an optical sensor device and an optical sensing method. More particularly, the present invention relates to a sensor device capable of recognizing an iris or a proximity of an object using a light emitting unit and a light receiving unit, and a sensing method using the sensor. .
스마트폰, 태블릿 컴퓨터 및 웨어러블 디바이스 등을 포함하는 최근의 스마트 디바이스는 보다 민감한 정보를 포함하고 있거나 보안이 요구되는 기능을 수행하는데 사용되고 있다. 따라서 이러한 스마트 디바이스에는 보다 높은 수준의 보안 수단이 채용되는 추세이다.Recent smart devices, including smart phones, tablet computers and wearable devices, are being used to perform functions that contain more sensitive information or require security. As a result, higher levels of security are being employed in these smart devices.
종래에는 비밀번호나 특정 모양의 패턴을 이용한 보안 수단이 사용되었으나, 최근에는 지문 인식을 이용한 보안 수단이 널리 보급되고 있다. 지문 등 사용자의 생체 신호를 이용한 보안 수단은 종래의 그것보다 보안성이 높다는 장점이 있다.In the past, security means using a password or a pattern of a specific shape have been used. Recently, security means using fingerprint recognition have been widely used. Security means using a biometric signal of the user, such as a fingerprint has the advantage that the security is higher than that of the conventional.
홍채 인식을 이용한 보안 수단은 지문보다 더 많고 복잡한 고유 패턴을 가지고 있다. 또한, 홍채의 패턴은 지문의 패턴보다 위조되기 어려워 보안성이 높다는 장점이 있다. 또한, 지문 인식은 지문의 표면을 센서면에 직접 접촉하는 방식이라 장갑을 착용하고 있거나 지문에 이물이 묻은 경우 인식이 불가하다는 단점이 있지만, 홍채 인식은 비접촉 방식으로 안경이나 콘택트 렌즈를 착용한 상태에서도 인식이 가능하다는 장점이 있다.Security measures using iris recognition have more and more complex patterns than fingerprints. In addition, the pattern of the iris is difficult to be forged than the pattern of the fingerprint has the advantage of high security. In addition, fingerprint recognition is a method of contacting the surface of the fingerprint directly to the sensor surface, so it is not possible to recognize when wearing gloves or foreign material on the fingerprint, but iris recognition is a non-contact method of wearing glasses or contact lenses There is an advantage that can be recognized in.
이러한 홍채 인식을 위해서는 통상적으로 적외선 발광부와 적외선 수광부가 탑재되어야 한다. 그러나 홍채 인식을 위해 이러한 별도의 장치를 탑재하는 것은 단가 인상 요인이고, 스마트 디바이스의 경박단소화를 저해하는 요인이어서 현재까지 홍채 인식을 이용한 보안 수단은 널리 사용되지 않고 있다.In order to recognize the iris, an infrared light emitting unit and an infrared light receiving unit should be mounted. However, mounting such a separate device for iris recognition is a factor in raising the price, and it is a factor that hinders the reduction of light and small size of smart devices. Thus, security means using iris recognition have not been widely used.
본 발명이 해결하려는 과제는, 하나의 광학 센서 장치로 홍채 인식과 근접 센싱을 동시에 수행할 수 있는 광학 센서 장치 및 광학 센싱 방법을 제공하는 것이다. An object of the present invention is to provide an optical sensor device and an optical sensing method capable of simultaneously performing iris recognition and proximity sensing with one optical sensor device.
본 발명이 해결하려는 다른 과제는, 하나의 광학 센서 장치로 홍채 인식과 근접 센싱을 동시에 수행할 수 있으면서 소비 전력을 최소화할 수 있는 광학 센서 장치 및 광학 센싱 방법을 제공하는 것이다.Another object of the present invention is to provide an optical sensor device and an optical sensing method capable of minimizing power consumption while simultaneously performing iris recognition and proximity sensing with one optical sensor device.
본 발명이 해결하려는 목적은 상술한 것으로 제한되는 것은 아니며, 상술한 목적 이외의 다른 목적들은 하기의 설명 및 특허청구범위에 기재된 발명에 의해서 달성될 수 있음을 쉽게 알 수 있을 것이다.The object to be solved by the present invention is not limited to the above, it will be readily understood that other objects than the above object can be achieved by the invention described in the following description and claims.
상기 과제를 해결하기 위한 본 발명의 광학 센서 장치는, 동작 모드를 판단하는 제어부, 특정 파장의 빛을 방출하는 발광부 및 복수의 픽셀을 포함하고, 상기 방출되는 빛이 객체에 반사된 것을 감지하는 수광부를 포함하고, 상기 수광부는, 상기 제어부가 동작 모드를 홍채 인식 모드로 판단하면 상기 복수의 픽셀 중 전부 또는 일부를 활성화하여 빛을 감지하고, 상기 제어부가 동작 모드를 근접 센싱 모드로 판단하면 상기 홍채 인식 모드에서 활성화되는 픽셀 중 일부를 활성화하여 빛을 감지한다.The optical sensor device of the present invention for solving the above problems, including a control unit for determining the operation mode, a light emitting unit for emitting light of a specific wavelength and a plurality of pixels, for detecting that the emitted light is reflected on the object A light receiving unit, and the light receiving unit detects light by activating all or part of the plurality of pixels when the controller determines the operation mode as an iris recognition mode, and when the control unit determines the operation mode as a proximity sensing mode. Light is detected by activating some of the pixels that are activated in iris recognition mode.
또한, 상기 과제를 해결하기 위한 본 발명의 광학 센싱 방법은, 동작 모드를 판단하는 단계, 홍채 인식 모드로 판단되면, 빛을 홍채에 방출하고, 상기 방출되는 빛이 홍채에 반사되는 것을 복수의 픽셀로 감지하고, 홍채의 정보를 인식하는 단계 및 근접 센싱 모드로 판단되면, 빛을 근접 객체에 방출하고, 상기 방출되는 빛이 근접 객체에 반사되는 것을 상기 복수의 픽셀 중 선택된 일부의 픽셀만으로 감지하고, 객체의 근접 여부를 인식하는 단계를 포함한다.In addition, in the optical sensing method of the present invention for solving the above problems, the step of determining the operation mode, when determined as the iris recognition mode, emits light to the iris, a plurality of pixels that the reflected light is reflected on the iris And detecting the information of the iris and the proximity sensing mode, emit light to the proximity object, and detect only the selected part of the plurality of pixels that the emitted light is reflected to the proximity object. Recognizing whether the object is in proximity.
본 발명에 의하면, 하나의 광학 센서 장치로 홍채 인식과 근접 센싱을 동시에 수행할 수 있다.According to the present invention, iris recognition and proximity sensing can be simultaneously performed with one optical sensor device.
또한, 본 발명에 의하면, 하나의 광학 센서 장치로 홍채 인식과 근접 센싱을 동시에 수행할 수 있으면서 소비 전력을 최소화할 수 있다.In addition, according to the present invention, iris recognition and proximity sensing can be simultaneously performed with one optical sensor device, and power consumption can be minimized.
도 1은 본 발명의 광학 센서 장치가 탑재된 전자 장치의 외관을 개략적으로 도시한 것이다.1 schematically shows an appearance of an electronic device on which the optical sensor device of the present invention is mounted.
도 2는 본 발명의 광학 센서 장치의 구성을 단면도로 개략적으로 도시한 것이다.2 is a schematic cross-sectional view showing the configuration of the optical sensor device of the present invention.
도 3은 본 발명의 광학 센서 장치를 개략적으로 나타낸 블록도이다.3 is a block diagram schematically showing the optical sensor device of the present invention.
도 4는 본 발명의 광학 센서 장치가 홍채 인식 모드로 동작하는 것을 나타낸 단면도이다.4 is a cross-sectional view showing that the optical sensor device of the present invention operates in the iris recognition mode.
도 5는 본 발명의 광학 센서 장치가 근접 센싱 모드로 동작하는 것을 나타낸 단면도이다.5 is a cross-sectional view showing the optical sensor device of the present invention operating in the proximity sensing mode.
도 6은 본 발명의 광학 센서 장치에서 홍채 인식 모드에서의 수광부를 도시한 것이다.6 illustrates a light receiver in an iris recognition mode in the optical sensor device of the present invention.
도 7은 본 발명의 광학 센서 장치에서 근접 센싱 모드에서의 수광부를 도시한 것이다.7 illustrates a light receiving unit in a proximity sensing mode in the optical sensor device of the present invention.
도 8은 본 발명의 광학 센서 장치의 구성을 단면도로 개략적으로 도시한 것이다.8 is a schematic cross-sectional view showing the configuration of the optical sensor device of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들을 상세히 설명한다. 본 발명을 설명하는데 있어서, 해당 분야에 이미 공지된 기술 또는 구성에 대한 구체적인 설명을 부가하는 것이 본 발명의 요지를 불분명하게 할 수 있다고 판단되는 경우에는 상세한 설명에서 이를 일부 생략하도록 한다. 또한, 본 명세서에서 사용되는 용어들은 본 발명의 실시예들을 적절히 표현하기 위해 사용된 용어들로서, 이는 해당 분야의 관련된 사람 또는 관례 등에 따라 달라질 수 있다. 따라서, 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; In describing the present invention, if it is determined that adding specific descriptions of techniques or configurations already known in the art may make the gist of the present invention unclear, some of them will be omitted from the detailed description. In addition, terms used in the present specification are terms used to properly express the embodiments of the present invention, which may vary according to related persons or customs in the art. Therefore, the definitions of the terms should be made based on the contents throughout the specification.
이하, 첨부한 도 1 내지 도 7을 참조하여, 본 발명의 일 실시예에 따른 광학 센서 장치 및 광학 센싱 방법에 대해 설명한다.Hereinafter, an optical sensor device and an optical sensing method according to an embodiment of the present invention will be described with reference to FIGS. 1 to 7.
도 1은 본 발명의 광학 센서 장치가 탑재된 전자 장치의 외관을 개략적으로 도시한 것이다.1 schematically shows an appearance of an electronic device on which the optical sensor device of the present invention is mounted.
도 1을 참조하면, 본 발명의 광학 센서 장치는 전자 장치에 탑재될 수 있다. 도 1에는 광학 센서 장치가 스마트폰에 탑재된 것이 도시되어 있지만, 이에 한정되는 것은 아니다. 여기서 전자 장치는 예를 들어, 스마트폰 등을 포함하는 셀룰러 전화 단말기, 태블릿 컴퓨터, 랩탑 컴퓨터, PDA 장치, 미디어 플레이어, 내비게이션 장치, 게임 플레이 장치, 손목 등에 착용가능한 전자 장치, 헤드폰 장치, 핸즈프리 장치 등이 될 수 있다.Referring to FIG. 1, the optical sensor device of the present invention may be mounted on an electronic device. 1 shows that the optical sensor device is mounted on the smartphone, but is not limited thereto. The electronic device may be, for example, a cellular phone terminal including a smartphone, a tablet computer, a laptop computer, a PDA device, a media player, a navigation device, a game play device, an electronic device wearable on a wrist, a headphone device, a handsfree device, or the like. This can be
광학 센서 장치는 전자 장치의 전면 측에 설치될 수 있다. 전자 장치의 전면이란 통상적으로 사용자가 전자 장치를 사용할 때 사용자의 안면과 마주보게 되는 부분을 의미한다. 통상적으로 전자 장치의 전면에는 디스플레이 장치가 위치하게 된다. 도 1에 도시된 것과 같이, 광학 센서 장치는 구체적으로 디스플레이 장치의 주변에 위치할 수 있다.The optical sensor device may be installed on the front side of the electronic device. The front of the electronic device generally refers to a part facing the user's face when the user uses the electronic device. Typically, the display device is located in front of the electronic device. As shown in FIG. 1, the optical sensor device may be specifically positioned around the display device.
광학 센서 장치는 적어도 일부 부분이 외부로 노출되도록 설치될 수 있다. 외부로 노출된다는 것은 광학 센서 장치의 일부가 그대로 외부로 노출되는 것뿐만 아니라 특정 파장의 광이 투과할 수 있는 투광부로 덮여있어 광학적으로 노출되는 것을 포함한다. 본 발명에서는 광학 센서 장치의 일부가 적외선이 투과할 수 있는 투광창에 의해 덮여있어 적외선에 대해 노출되도록 설치될 수 있다. 광학 센서 장치는 후술할 발광부(100) 및 수광부(200) 부분이 노출되도록 설치될 수 있다. 광학 센서 장치의 근처에는 전면용 광학 카메라(10)가 설치될 수 있다.The optical sensor device may be installed such that at least some portions are exposed to the outside. Exposing to the outside includes not only exposing a part of the optical sensor device to the outside as it is, but also optically exposed by being covered with a light transmitting part through which light of a specific wavelength can pass. In the present invention, a part of the optical sensor device may be installed to be exposed to infrared rays by being covered by a light transmitting window through which infrared rays can pass. The optical sensor device may be installed to expose portions of the light emitting unit 100 and the light receiving unit 200 which will be described later. The front optical camera 10 may be installed near the optical sensor device.
도 2는 본 발명의 광학 센서 장치의 구성을 단면도로 개략적으로 도시한 것이다. 도 2를 참조하여, 본 발명의 광학 센서 장치에 대해서 설명하도록 한다.2 is a schematic cross-sectional view showing the configuration of the optical sensor device of the present invention. 2, the optical sensor device of the present invention will be described.
도 2를 참조하면, 광학 센서 장치는 발광부(100), 수광부(200), 신호처리부(300) 및 제어부(400)를 포함한다.Referring to FIG. 2, the optical sensor device includes a light emitter 100, a light receiver 200, a signal processor 300, and a controller 400.
발광부(100)는 특정 파장의 빛을 방출하는 소자이다. 발광부(100)는 예를 들어 발광 다이오드(LED), 유기 발광다이오드(OLED), 또는 램프일 수 있다. 발광부(100)는 전력 공급부(120)로부터 전력을 공급받아 빛을 방출한다. 전력 공급부(120)는 발광부(100)에 공급하는 전력을 조절할 수 있고, 발광부(100)는 공급받는 전력에 따라 방출하는 빛의 파워가 조절될 수 있다. 발광부(100)는 적외선 파장 대역의 빛을 방출하는 것일 수 있다.The light emitter 100 emits light of a specific wavelength. The light emitting unit 100 may be, for example, a light emitting diode (LED), an organic light emitting diode (OLED), or a lamp. The light emitter 100 emits light by receiving power from the power supply 120. The power supply unit 120 may adjust the power supplied to the light emitting unit 100, and the light emitting unit 100 may adjust the power of light emitted according to the received power. The light emitter 100 may emit light of an infrared wavelength band.
발광부(100)의 상부에는 렌즈(150)가 위치할 수 있다. 렌즈(150)는 발광부(100)의 빛을 굴절시킬 수 있다. 렌즈(150)의 굴절 특성에 따라 빛은 광학 센서 장치의 외부로 조사되는 FOV가 조절될 수 있다. 경우에 따라서, 렌즈(150)는 굴절 정도가 조절될 수 있는 것일 수 있다. 따라서 발광부(100)는 렌즈(150)의 조절 상태에 따라서 FOV가 유동적으로 제어될 수 있다.The lens 150 may be positioned above the light emitter 100. The lens 150 may refract the light of the light emitter 100. According to the refractive characteristic of the lens 150, the FOV of the light irradiated to the outside of the optical sensor device may be adjusted. In some cases, the lens 150 may be one that can adjust the degree of refraction. Therefore, the FOV of the light emitter 100 may be flexibly controlled according to the adjustment state of the lens 150.
수광부(200)는 외부에서 조사된 빛을 받아 전기 신호로 변환하는 소자이다. 수광부(200)는 포토 다이오드(PD: Photo Diode)일 수 있다. 수광부(200)는 복수의 픽셀들을 포함할 수 있다. 수광부(200)를 이루는 복수의 픽셀들은 수직하는 두 방향 또는 대각 방향으로 인접하게 배열된 이미지 센서로 형성될 수 있다.The light receiver 200 is an element that receives light emitted from the outside and converts the light into an electric signal. The light receiver 200 may be a photo diode (PD). The light receiver 200 may include a plurality of pixels. The plurality of pixels constituting the light receiving unit 200 may be formed of image sensors arranged adjacent to each other in two perpendicular or diagonal directions.
수광부(200)는 미리 정해진 특정 파장 대역의 빛을 선택적으로 수광할 수 있다. 이를 위해 상기 특정 파장 대역의 빛만 선택적으로 투과시키는 광학 필터(230)가 수광부(200) 상부에 위치할 수 있다. 수광부(200)는 발광부(100)가 방출하는 빛에 해당하는 파장 대역의 빛을 수광하는 것이 바람직하다. 따라서 발광부(100)가 적외선 파장 대역의 빛을 방출하는 경우, 수광부(200)를 덮고 있는 광학 필터(230)는 적외선 파장 대역을 통과 대역으로 하는 광학 필터일 수 있다.The light receiver 200 may selectively receive light having a predetermined specific wavelength band. To this end, an optical filter 230 that selectively transmits only light having a specific wavelength band may be positioned above the light receiver 200. The light receiver 200 preferably receives light of a wavelength band corresponding to light emitted from the light emitter 100. Therefore, when the light emitter 100 emits light in the infrared wavelength band, the optical filter 230 covering the light receiver 200 may be an optical filter having the infrared wavelength band as the pass band.
수광부(200)는 발광부(100)가 방출한 빛이 객체에 반사된 것을 감지하는 것이 주된 목적이나, 오로지 발광부(100)가 방출하여 반사된 빛만을 수광하는 것은 아니다. 수광부(200)는 발광부(100)가 방출한 빛과 이와 동일한 파장 대역을 가지는 다른 빛을 동시에 감지할 수 있다. 그러나 수광부(200)는 발광부(100)가 방출하여 반사된 빛을 주로 감지하는 것이 바람직하다.The light receiver 200 mainly detects the light emitted from the light emitter 100 to be reflected on an object, but does not receive only the light reflected by the light emitter 100. The light receiving unit 200 may simultaneously detect light emitted from the light emitting unit 100 and other light having the same wavelength band. However, it is preferable that the light receiving unit 200 mainly detects the light reflected by the light emitting unit 100.
수광부(200)의 상부에는 렌즈(250)가 위치할 수 있다. 렌즈(250)는 더 많은 빛이 수광부(200)에 조사되도록 빛을 집광할 수 있고, 조사되는 빛이 수광부(200)에서 초점이 맺히도록 빛을 굴절시킬 수 있다. 경우에 따라서, 렌즈(250)는 수광부(200)에 초점이 맺히도록 조절될 수 있다. 구체적으로, 렌즈(250)는 포커싱 모듈에 연결되어 객체와 수광부(200) 사이의 거리에 따라 광축의 앞뒤 방향으로 이동할 수 있다.The lens 250 may be positioned above the light receiver 200. The lens 250 may collect the light so that more light is irradiated to the light receiving unit 200, and may deflect the light so that the irradiated light is focused at the light receiving unit 200. In some cases, the lens 250 may be adjusted to focus on the light receiver 200. In detail, the lens 250 may be connected to the focusing module to move in the front and rear directions of the optical axis according to the distance between the object and the light receiving unit 200.
발광부(100)와 수광부(200) 사이에는 차광벽(170)이 설치될 수 있다. 차광벽(170)은 발광부(100)에서 방출된 빛이 객체에 도달하지 않고 바로 수광부(200)로 유입되는 것을 방지하기 위한 구조물이다. 차광벽(170)은 적당한 높이로 형성되고, 차광성 수지재 등으로 형성되는 것이 바람직하다. 차광벽(170)은 예를 들어, 흑색 계열의 플라스틱 수지재로 형성될 수 있다.A light blocking wall 170 may be installed between the light emitter 100 and the light receiver 200. The light blocking wall 170 is a structure for preventing the light emitted from the light emitting unit 100 from flowing directly into the light receiving unit 200 without reaching the object. The light shielding wall 170 is formed to a suitable height, and is preferably formed of a light shielding resin material or the like. The light blocking wall 170 may be formed of, for example, a black plastic resin material.
신호처리부(300)는 수광부(200)가 빛을 수광하여 변환한 전기 신호를 수신하여 처리하는 소자이다. 신호처리부(300)는 수광부(200) 및 발광부(100)와 동일한 패키지로 형성될 수도 있고, 별도의 다른 패키지로 형성될 수도 있다. 신호처리부(300)는 홍채 인식 모드에서 촬영된 홍채 이미지를 분석하여 홍채의 고유 패턴을 분석할 수 있고, 근접 센싱 모드에서 수광량을 분석하여 근접 객체의 근접 여부를 판단할 수 있다.The signal processor 300 is a device that receives and processes an electrical signal converted by the light receiver 200 to receive light. The signal processor 300 may be formed in the same package as the light receiver 200 and the light emitter 100, or may be formed as a separate package. The signal processor 300 may analyze the iris image photographed in the iris recognition mode to analyze the intrinsic pattern of the iris, and determine the proximity of the proximity object by analyzing the received light amount in the proximity sensing mode.
제어부(400)는 상술한 수광부(200) 및/또는 발광부(100)의 동작을 제어하는 소자이다. 제어부(400)는 수광부(200) 및 발광부(100)와 동일한 패키지로 형성될 수도 있고, 별도의 다른 패키지로 형성될 수도 있다. 제어부(400)는 스스로 광학 센서 장치의 동작 모드를 판단하거나 외부에서 동작 모드를 결정하는 입력 신호를 입력받아 판단한다. 제어부(400)는 판단한 동작 모드에 따라 수광부(200) 및/또는 발광부(100)의 동작을 제어할 수 있다. 제어부(400)가 수광부(200) 및/또는 발광부(100)의 동작을 제어하는 것은 아래에서 상세하게 설명하도록 한다.The controller 400 is an element that controls the operations of the light receiver 200 and / or the light emitter 100 described above. The control unit 400 may be formed in the same package as the light receiving unit 200 and the light emitting unit 100, or may be formed in a separate package. The controller 400 determines an operation mode of the optical sensor device by itself or receives an input signal for determining an operation mode from the outside. The controller 400 may control operations of the light receiver 200 and / or the light emitter 100 according to the determined operation mode. Control of the light receiving unit 200 and / or the light emitting unit 100 by the controller 400 will be described in detail below.
도 3은 본 발명의 광학 센서 장치를 개략적으로 나타낸 블록도이다. 도 4는 본 발명의 광학 센서 장치가 홍채 인식 모드로 동작하는 것을 나타낸 단면도이다. 도 5는 본 발명의 광학 센서 장치가 근접 센싱 모드로 동작하는 것을 나타낸 단면도이다.3 is a block diagram schematically showing the optical sensor device of the present invention. 4 is a cross-sectional view showing that the optical sensor device of the present invention operates in the iris recognition mode. 5 is a cross-sectional view showing the optical sensor device of the present invention operating in the proximity sensing mode.
도 3을 참조하면, 제어부(400)는 동작 모드를 판단할 수 있다. 제어부(400)가 판단하는 동작 모드는 홍채 인식 모드와 근접 센싱 모드를 포함한다.Referring to FIG. 3, the controller 400 may determine an operation mode. The operation mode determined by the controller 400 includes an iris recognition mode and a proximity sensing mode.
상기 제어부(400)는 두 가지 동작 모드에 따라 전력 공급부(120)를 제어할 수 있다. 구체적으로, 홍채 인식 모드에서 전력 공급부(120)는 더 강한 전력을 발광부(100)에 공급할 수 있고, 근접 센싱 모드에서 더 약한 전력을 발광부(100)에 공급할 수 있다. 전력 공급부(120)가 제어되는 것에 따라 발광부(100)의 빛 방출량이 제어될 수 있다.The controller 400 may control the power supply unit 120 according to two operation modes. In detail, in the iris recognition mode, the power supply unit 120 may supply stronger power to the light emitting unit 100 and may supply weaker power to the light emitting unit 100 in the proximity sensing mode. As the power supply unit 120 is controlled, the amount of light emitted from the light emitting unit 100 may be controlled.
또한, 상기 제어부(400)는 두 가지 동작 모드에 따라 수광부(200)를 제어될 수 있다. 구체적으로, 홍채 인식 모드에서는 수광부(200)의 보다 많은 픽셀을 활성화시킬 수 있고, 근접 센싱 모드에서는 수광부(200)의 보다 적은 픽셀을 활성화시킬 수 있다. 각각의 모드에 따른 전력 공급부(120), 발광부(100) 및 수광부(200)의 동작은 아래에서 더욱 상세하게 설명하도록 한다.In addition, the controller 400 may control the light receiver 200 according to two operation modes. In detail, in the iris recognition mode, more pixels of the light receiver 200 may be activated, and in the proximity sensing mode, fewer pixels of the light receiver 200 may be activated. Operation of the power supply unit 120, the light emitting unit 100, and the light receiving unit 200 according to each mode will be described in more detail below.
제어부(400)는 스스로 광학 센서 장치의 동작 모드를 판단하거나 외부에서 동작 모드를 결정하는 입력 신호를 입력받아 판단한다. 동작 모드는 사용자의 설정, 광학 센서 장치가 탑재된 전자 장치의 동작 상태 등에 따라 결정될 수 있다. 구체적으로, 광학 센서 장치가 탑재된 전자 장치가 통화 중 상태인 경우 광학 센서 장치는 근접 센싱 모드로 결정될 수 있다. 또한, 광학 센서 장치가 탑재된 전자 장치가 잠금 해제를 위한 준비 상태인 경우 광학 센서 장치는 홍채 인식 모드로 결정될 수 있다.The controller 400 determines an operation mode of the optical sensor device by itself or receives an input signal for determining an operation mode from the outside. The operation mode may be determined according to a user's setting, an operating state of the electronic device on which the optical sensor device is mounted, and the like. In detail, when the electronic device on which the optical sensor device is mounted is in a call state, the optical sensor device may be determined to be in a proximity sensing mode. In addition, when the electronic device equipped with the optical sensor device is ready for unlocking, the optical sensor device may be determined to be an iris recognition mode.
도 4를 참조하여, 광학 센서 장치가 홍채 인식 모드로 동작하는 것에 대해서 설명하도록 한다.Referring to Figure 4, it will be described that the optical sensor device operates in the iris recognition mode.
홍채 인식 모드에서 광학 센서 장치의 객체는 홍채(i)가 된다. 홍채 인식 모드에서 홍채(i)는 근접 센싱 모드에서의 근접 객체(p)보다 광학 센서 장치로부터 더 멀리 위치할 수 있다.In the iris recognition mode, the object of the optical sensor device becomes the iris i. In the iris recognition mode, the iris i may be located farther from the optical sensor device than the proximity object p in the proximity sensing mode.
홍채 인식 모드에서 발광부(100)는 제1 레벨의 파워로 빛을 방출한다. 제1 레벨의 파워는 후술할 근접 센싱 모드의 제2 레벨의 파워보다 높은 것이다. 홍채 인식 모드에서는 홍채(i)가 상대적으로 더 멀게 위치하고, 홍채(i)의 이미지를 촬영해서 분석해야 하므로 근접 센싱 모드에서보다 필요한 광량이 더 크기 때문이다. 방출된 빛은 인식하려는 홍채(i)에 조사되어 반사되게 된다.In the iris recognition mode, the light emitter 100 emits light at a first level of power. The power of the first level is higher than that of the second level of the proximity sensing mode to be described later. This is because the iris (i) is located farther away in the iris recognition mode, and the amount of light required is larger than that in the proximity sensing mode because the image of the iris (i) needs to be taken and analyzed. The emitted light is irradiated to the iris (i) to be recognized and reflected.
홍채 인식 모드에서 수광부(200)는 모든 픽셀을 활성화하여 빛을 감지한다. 이 때, 수광부(200)를 덮는 렌즈(250)는 수광부(200)에 상대적으로 원거리에 있는 객체의 초점이 맺히도록 위치가 조절될 수 있다. 이러한 과정에 따라 광학 센서 장치는 홍채(i)의 이미지를 촬영한다. 신호처리부(300)는 촬영된 홍채 이미지를 분석하여 홍채(i)의 고유 패턴을 분석하게 된다.In the iris recognition mode, the light receiver 200 detects light by activating all pixels. In this case, the lens 250 covering the light receiver 200 may be adjusted in position so that an object at a far distance is formed relative to the light receiver 200. According to this process, the optical sensor device captures an image of the iris i. The signal processor 300 analyzes the photographed iris image to analyze the unique pattern of the iris i.
도 5를 참조하여, 광학 센서 장치가 근접 센싱 모드로 동작하는 것에 대해서 설명하도록 한다.Referring to FIG. 5, an operation of the optical sensor device in the proximity sensing mode will be described.
근접 센싱 모드에서 광학 센서 장치의 객체는 근접 객체(p)가 된다. 근접 센싱 모드에서 근접 객체(p)는 홍채 인식 모드에서의 홍채(i)보다 광학 센서 장치로부터 더 가깝게 위치할 수 있다.In the proximity sensing mode, the object of the optical sensor device becomes a proximity object p. In the proximity sensing mode, the proximity object p may be located closer to the optical sensor device than the iris i in the iris recognition mode.
급전 센싱 모드에서 발광부(100)는 제2 레벨의 파워로 빛을 방출한다. 제2 레벨의 파워는 상술한 홍채 인식 모등의 제1 레벨의 파워보다 낮은 것이다. 근접 센싱 모드에서는 근접 객체(p)가 상대적으로 가깝게 위치하고, 이미지를 촬영하는 것이 아니라 수광량을 측정하는 것이므로 홍채 인식 모드에서보다 필요한 광량이 작기 때문이다. 따라서 상대적으로 더 작은 제2 레벨의 파워로 빛을 방출하여 소비 전력을 최소화할 수 있다. 방출된 빛은 인식하려는 근접 객체(p)에 조사되어 반사되게 된다.In the power supply sensing mode, the light emitter 100 emits light at a second level of power. The power of the second level is lower than that of the first level of the iris recognition mode described above. This is because the proximity object p is relatively close in the proximity sensing mode, and the amount of light required is smaller than that in the iris recognition mode because the light reception amount is measured instead of taking an image. Thus, light can be emitted at a relatively smaller second level of power to minimize power consumption. The emitted light is irradiated to and reflected by the proximity object p to be recognized.
근접 센싱 모드에서 수광부(200)는 복수의 픽셀 중 일부의 선택된 픽셀만을 활성화하여 빛을 감지한다. 이 때, 수광부(200)를 덮는 렌즈(250)는 수광부(200)에 상대적으로 근거리에 있는 객체의 초점이 맺히도록 위치가 조절될 수 있다. 또한, 수광부(200)를 덮는 렌즈(250)는 빛이 활성화된 픽셀 부분에 집광되도록 빛을 굴절시킬 수 있다. 신호처리부(300)는 수광량을 분석하여 근접 객체(p)의 근접 여부를 판단할 수 있다.In the proximity sensing mode, the light receiver 200 detects light by activating only selected pixels of some of the plurality of pixels. In this case, the lens 250 covering the light receiver 200 may be adjusted in position so that an object at a short distance is formed relative to the light receiver 200. In addition, the lens 250 covering the light receiving unit 200 may refract the light to be focused on the pixel portion where the light is activated. The signal processor 300 may determine the proximity of the proximity object p by analyzing the received light amount.
도 6은 본 발명의 광학 센서 장치에서 홍채 인식 모드에서의 수광부(200)를 도시한 것이다. 도 6에는 수광부(200)에서 활성화된 픽셀(211)을 표시하였다.6 illustrates the light receiver 200 in the iris recognition mode in the optical sensor device of the present invention. 6 shows the pixel 211 activated by the light receiver 200.
상술한 것과 같이 홍채 인식 모드에서는 홍채의 이미지를 광학적으로 촬영한다. 신호처리부(300)는 촬영한 홍채 이미지로부터 홍채의 고유 패턴을 분석한다. 따라서 이를 위해 일정 수준 이상의 화소수를 가지는 이미지가 필요하다. 따라서 홍채 인식 모드에서는 근접 센싱 모드에서보다 상대적으로 많은 픽셀을 사용하여 홍채의 이미지를 촬영한다.As described above, in the iris recognition mode, an image of the iris is optically photographed. The signal processor 300 analyzes a unique pattern of the iris from the photographed iris image. Therefore, for this purpose, an image having a certain number of pixels or more is required. Therefore, in the iris recognition mode, the image of the iris is photographed using more pixels than in the proximity sensing mode.
여기서 수광부(200)가 상대적으로 많은 픽셀을 활성화한다는 것은 수광부(200)의 모든 픽셀, 통상의 광학 센서에서 수광부(200)에서 촬상 시 사용되는 픽셀을 활성화한다는 것을 의미한다. 따라서 홍채 인식 모드에서 수광부(200)의 복수의 픽셀을 활성화한다는 것은, 도 6의 (a)에 도시된 것과 같이 실제 수광부(200)가 가지고 있는 모든 픽셀을 사용하는 것뿐만 아니라, 도 6의 (b)에 도시된 것과 같이 수광부(200)가 가지고 있는 픽셀 중 통상적인 광학 센서에서 사용하는 정도의 픽셀을 모두 사용하는 것도 포함한다.Herein, the light receiving unit 200 activates a relatively large number of pixels, which means that all pixels of the light receiving unit 200 are activated, and a pixel used for imaging in the light receiving unit 200 in a conventional optical sensor. Therefore, activating the plurality of pixels of the light receiving unit 200 in the iris recognition mode not only uses all the pixels that the actual light receiving unit 200 has, as shown in FIG. As shown in b), all of the pixels of the light receiving unit 200 are used as much as the pixels used in a typical optical sensor.
도 7은 본 발명의 광학 센서 장치에서 근접 센싱 모드에서의 수광부(200)를 도시한 것이다. 도 7에는 수광부(200)에서 활성화된 픽셀(212)을 표시하였다.FIG. 7 illustrates the light receiver 200 in the proximity sensing mode in the optical sensor device of the present invention. In FIG. 7, the pixel 212 activated by the light receiver 200 is displayed.
근접 센싱 모드에서는 근접 객체에 반사된 발광부(100)의 빛의 수광량을 측정한다. 이는 조사되는 빛에 의해 수광부(200)에 결상되는 상의 형태를 측정하는 것이 아니므로 홍채 인식 모드와 같은 많은 화소수로 빛을 감지하는 것이 요구되지 않는다. 따라서 근접 센싱 모드에서는 홍채 인식 모드에서 활성화되는 수광부(200)의 픽셀 중 일부를 활성화하여 빛을 감지할 수 있다. 구체적으로, 근접 센싱 모드에서는 수광부(200)의 픽셀 중 하나 또는 둘 이상의 선택된 픽셀이 사용될 수 있다. 근접 센싱 모드에서 선택된 픽셀(212)은 홍채 인식 모드에서 사용되는 픽셀의 10% 이내가 되는 것이 바람직하다.In the proximity sensing mode, the amount of light received by the light emitter 100 reflected by the proximity object is measured. Since the shape of the image formed in the light receiving unit 200 is not measured by the irradiated light, it is not required to detect light with a large number of pixels such as an iris recognition mode. Therefore, in the proximity sensing mode, light may be detected by activating some of the pixels of the light receiver 200 activated in the iris recognition mode. In detail, in the proximity sensing mode, one or two or more selected pixels of the pixels of the light receiver 200 may be used. The pixel 212 selected in the proximity sensing mode is preferably within 10% of the pixel used in the iris recognition mode.
선택된 픽셀(212)은 예를 들어, 도 7의 (a)에 도시된 것과 같이 복수 개이고 서로 인접하게 위치하는 픽셀들 일 수 있다. 또한, 선택된 픽셀들은 도 7의 (b)에 도시된 것과 같이 복수 개이고 수광부(200)에서 서로 이격하여 위치하는 픽셀들일 수 있다. 또한, 선택된 픽셀은 도 7의 (c)에 도시된 것과 같이 수광부(200) 중 하나의 픽셀일 수 있다.For example, the selected pixel 212 may be a plurality of pixels positioned adjacent to each other, as shown in FIG. 7A. In addition, as illustrated in (b) of FIG. 7, the plurality of selected pixels may be a plurality of pixels that are spaced apart from each other in the light receiving unit 200. In addition, the selected pixel may be one pixel of the light receiver 200 as illustrated in FIG. 7C.
근접 센싱 모드에서 선택된 픽셀이 빛을 감지하는데 사용된다는 것은 선택된 픽셀에 전원이 공급되어 활성화되고 빛을 수신하여 전기 신호로 변환한다는 것을 의미한다. 반면에 선택되지 않은 픽셀들은 전원이 차단되어 비활성화된다. 이러한 방법을 통해 근접 센싱 모드에서 소비되는 전력을 최소화할 수 있다.In proximity sensing mode, when a selected pixel is used to sense light, it means that the selected pixel is powered and activated and receives light and converts it into an electrical signal. On the other hand, unselected pixels are powered off and deactivated. This approach minimizes the power consumed in proximity sensing mode.
이하, 첨부한 도 8을 참조하여, 본 발명의 다른 일 실시예에 따른 광학 센서 장치 및 광학 센싱 방법에 대해 설명한다. 본 실시예를 설명하는데 있어서 상술한 실시예와 다른 점을 중심으로 설명한다.Hereinafter, an optical sensor device and an optical sensing method according to another exemplary embodiment of the present invention will be described with reference to the accompanying FIG. 8. In describing the present embodiment, a description will be given focusing on differences from the above-described embodiment.
도 8은 본 발명의 광학 센서 장치의 구성을 단면도로 개략적으로 도시한 것이다.8 is a schematic cross-sectional view showing the configuration of the optical sensor device of the present invention.
도 8을 참조하면, 광학 센서 장치의 발광부(100)는 제1 발광부(101)와 제2 발광부(102)를 포함한다. 제1 발광부(101)와 제2 발광부(102)는 각각 독립적으로 빛을 방출할 수 있는 별개의 발광 소자이다. 제1 발광부(101)는 제2 발광부(102)보다 더 높은 전원으로 동작하며 더 높은 파워의 빛을 방출할 수 있다. 제1 발광부(101)는 홍채 인식 모드에서 사용되며, 제2 발광부(102)는 근접 센싱 모드에서 사용될 수 있다.Referring to FIG. 8, the light emitter 100 of the optical sensor device includes a first light emitter 101 and a second light emitter 102. The first light emitting part 101 and the second light emitting part 102 are separate light emitting devices capable of independently emitting light. The first light emitting unit 101 may operate at a higher power source than the second light emitting unit 102 and may emit light of higher power. The first light emitter 101 may be used in the iris recognition mode, and the second light emitter 102 may be used in the proximity sensing mode.
상술한 것과 같은 광학 센서 장치는 하나의 발광부(100)와 하나의 수광부(200)를 이용하여 홍채 인식과 근접 센싱을 함께 수행할 수 있다는 장점이 있다. 그러면서 상술한 광학 센서 장치는 동작 모드에 따라 활성화되는 픽셀의 범위를 조절하여 소비 전력을 최소화할 수 있다는 장점이 있다.The optical sensor device as described above has the advantage of performing iris recognition and proximity sensing using one light emitter 100 and one light receiver 200. In the meantime, the above-described optical sensor device has an advantage of minimizing power consumption by adjusting a range of pixels activated according to an operation mode.
이상, 본 발명의 광학 센서 장치 및 광학 센싱 방법의 실시예들에 대해 설명하였다. 본 발명은 상술한 실시예 및 첨부한 도면에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자의 관점에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명의 범위는 본 명세서의 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.In the above, embodiments of the optical sensor device and the optical sensing method of the present invention have been described. The present invention is not limited to the above-described embodiment and the accompanying drawings, and various modifications and variations will be possible in view of those skilled in the art to which the present invention pertains. Therefore, the scope of the present invention should be defined not only by the claims of the present specification but also by the equivalents of the claims.

Claims (16)

  1. 동작 모드를 판단하는 제어부;A controller for determining an operation mode;
    특정 파장의 빛을 방출하는 발광부; 및A light emitting unit emitting light of a specific wavelength; And
    복수의 픽셀을 포함하고, 상기 방출되는 빛이 객체에 반사된 것을 감지하는 수광부를 포함하고,It includes a plurality of pixels, including a light receiving unit for detecting that the emitted light is reflected on the object,
    상기 수광부는, 상기 제어부가 동작 모드를 홍채 인식 모드로 판단하면 상기 복수의 픽셀 중 전부 또는 일부를 활성화하여 빛을 감지하고, 상기 제어부가 동작 모드를 근접 센싱 모드로 판단하면 상기 홍채 인식 모드에서 활성화되는 픽셀 중 일부를 활성화하여 빛을 감지하는 광학 센서 장치.The light receiving unit detects light by activating all or part of the plurality of pixels when the controller determines an operation mode as an iris recognition mode, and activates the iris recognition mode when the controller determines an operation mode as a proximity sensing mode. Optical sensor device that detects light by activating some of the pixels.
  2. 제1 항에 있어서,According to claim 1,
    상기 발광부는 상기 제어부가 홍채 인식 모드로 판단하면 제1 레벨의 파워로 빛을 방출하고, 상기 제어부가 근접 센싱 모드로 판단하면 제2 레벨의 파워로 빛을 방출하는 광학 센서 장치.The light emitting unit emits light at a first level of power when the controller determines the iris recognition mode, and emits light at a second level of power when the controller determines the proximity sensing mode.
  3. 제2 항에 있어서,The method of claim 2,
    상기 제1 레벨의 파워는 상기 제2 레벨의 파워보다 높은 광학 센서 장치.And the power of the first level is higher than the power of the second level.
  4. 제1 항에 있어서,According to claim 1,
    상기 발광부는 상기 제어부가 홍채 인식 모드로 판단하면 빛을 방출하는 홍채 인식용 발광부 및 상기 제어부가 근접 센싱 모드로 판단하면 빛을 방출하는 근접 센싱용 발광부를 포함하는 광학 센서 장치.The light emitting unit includes an iris recognition light emitting unit for emitting light when the control unit determines that the iris recognition mode and a proximity sensing light emitting unit for emitting light when the control unit determines the proximity sensing mode.
  5. 제1 항에 있어서,According to claim 1,
    상기 근접 센싱 모드에서 활성화되는 픽셀은 상기 수광부에서 인접하게 위치하는 적어도 두 개의 픽셀을 포함하는 광학 센서 장치.The pixel activated in the proximity sensing mode includes at least two pixels positioned adjacent to the light receiving unit.
  6. 제1 항에 있어서,According to claim 1,
    상기 근접 센싱 모드에서 활성화되는 픽셀은 상기 수광부에서 서로 이격하여 위치하는 적어도 두 개의 픽셀을 포함하는 광학 센서 장치.The pixel activated in the proximity sensing mode includes at least two pixels spaced apart from each other in the light receiver.
  7. 제1 항에 있어서,According to claim 1,
    상기 근접 센싱 모드에서 활성화되는 픽셀은 한 개의 픽셀인 광학 센서 장치.The pixel activated in the proximity sensing mode is one pixel.
  8. 제1 항에 있어서,According to claim 1,
    상기 발광부는 적외선 파장 대역의 빛을 방출하는 광학 센서 장치.The light emitting unit emits light in the infrared wavelength band.
  9. 동작 모드를 판단하는 단계;Determining an operation mode;
    홍채 인식 모드로 판단되면, 빛을 홍채에 방출하고, 상기 방출되는 빛이 홍채에 반사되는 것을 복수의 픽셀로 감지하고, 홍채의 정보를 인식하는 단계; 및If it is determined that the iris recognition mode, emitting light to the iris, detecting that the emitted light is reflected by the iris with a plurality of pixels, and recognizing information of the iris; And
    근접 센싱 모드로 판단되면, 빛을 근접 객체에 방출하고, 상기 방출되는 빛이 근접 객체에 반사되는 것을 상기 복수의 픽셀 중 선택된 일부의 픽셀만으로 감지하고, 객체의 근접 여부를 인식하는 단계를 포함하는 광학 센싱 방법.If it is determined in the proximity sensing mode, emitting light to the proximity object, detecting that the emitted light is reflected by the proximity object using only a selected pixel of the plurality of pixels, and recognizing whether the object is in proximity. Optical sensing method.
  10. 제9 항에 있어서,The method of claim 9,
    상기 홍채 인식 모드에서 홍채에 방출하는 빛은 상기 근접 센싱 모드에서 근접 객체에 방출하는 빛보다 파워가 큰 빛인 광학 센싱 방법.And the light emitted to the iris in the iris recognition mode is light having more power than the light emitted to the proximity object in the proximity sensing mode.
  11. 제9 항에 있어서,The method of claim 9,
    상기 홍채에 방출하는 빛과 상기 근접 객체에 방출하는 빛은 동일한 발광부에서 방출되고, 입력되는 전력에 따라 방출되는 빛의 파워가 조절되는 광학 센싱 방법.The light emitted to the iris and the light emitted to the proximity object is emitted from the same light emitting portion, the power of the light emitted according to the input power is an optical sensing method.
  12. 제9 항에 있어서,The method of claim 9,
    상기 복수의 픽셀 중 선택된 일부의 픽셀은 서로 인접하게 위치하는 적어도 두 개의 픽셀을 포함하는 광학 센싱 방법.And at least some selected pixels of the plurality of pixels include at least two pixels positioned adjacent to each other.
  13. 제9 항에 있어서,The method of claim 9,
    상기 복수의 픽셀 중 선택된 일부의 픽셀은 서로 이격하여 위치하는 적어도 두 개의 픽셀을 포함하는 광학 센싱 방법.And at least some selected pixels of the plurality of pixels include at least two pixels spaced apart from each other.
  14. 제9 항에 있어서,The method of claim 9,
    상기 복수의 픽셀 중 선택된 일부의 픽셀은 한 개의 픽셀인 광학 센싱 방법.And a selected portion of the plurality of pixels is one pixel.
  15. 제9 항에 있어서,The method of claim 9,
    상기 복수의 픽셀 중 선택되지 않은 다른 픽셀은 비활성화되는 광학 센싱 방법.And other unselected pixels of the plurality of pixels are deactivated.
  16. 제9 항에 있어서,The method of claim 9,
    상기 방출하는 빛은 적외선 파장 대역의 빛인 광학 센싱 방법.The emitting light is an optical sensing method of the infrared wavelength band light.
PCT/KR2016/014965 2016-04-18 2016-12-21 Optical sensor device and optical sensing method WO2017183795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0047106 2016-04-18
KR1020160047106A KR101872757B1 (en) 2016-04-18 2016-04-18 Optical sensor apparatus and optical sensing method

Publications (1)

Publication Number Publication Date
WO2017183795A1 true WO2017183795A1 (en) 2017-10-26

Family

ID=60116428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014965 WO2017183795A1 (en) 2016-04-18 2016-12-21 Optical sensor device and optical sensing method

Country Status (2)

Country Link
KR (1) KR101872757B1 (en)
WO (1) WO2017183795A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180063420A1 (en) * 2016-08-23 2018-03-01 Samsung Electronics Co., Ltd. Electronic device including iris recognition sensor and method of operating the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160739B1 (en) * 2019-01-11 2020-09-28 주식회사 템퍼스 Proximity sensor apparatus, display apparatus and distance image system
CN111199190A (en) * 2019-12-19 2020-05-26 深圳阜时科技有限公司 Optical detection device
KR102272095B1 (en) * 2020-03-16 2021-07-02 주식회사 템퍼스 Proximity sensor apparatus, back light unit, display apparatus and distance image system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030051970A (en) * 2001-12-20 2003-06-26 주식회사 큐리텍 Iris registration and recognition system
KR20080073954A (en) * 2007-02-07 2008-08-12 아이리텍 잉크 Iris identification system and method capable of reduction of illumination noise
KR20130123859A (en) * 2012-05-04 2013-11-13 삼성전자주식회사 Terminal and method for iris scanning and proximity sensing
KR20150003455A (en) * 2013-07-01 2015-01-09 삼성디스플레이 주식회사 Operating method of an iris sensing portable device and iris sensing portable device
KR20150054430A (en) * 2013-11-12 2015-05-20 삼성전자주식회사 Apparatas and method for conducting a multi sensor function in an electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020042241A (en) * 2000-11-30 2002-06-05 구자홍 Apparatus and method for certificating a customer using a iris of eye in automatic teller machine
KR101645084B1 (en) 2014-06-10 2016-08-02 아이리텍 잉크 Hand attached -type wearable device for iris recognition in outdoors and/or indoors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030051970A (en) * 2001-12-20 2003-06-26 주식회사 큐리텍 Iris registration and recognition system
KR20080073954A (en) * 2007-02-07 2008-08-12 아이리텍 잉크 Iris identification system and method capable of reduction of illumination noise
KR20130123859A (en) * 2012-05-04 2013-11-13 삼성전자주식회사 Terminal and method for iris scanning and proximity sensing
KR20150003455A (en) * 2013-07-01 2015-01-09 삼성디스플레이 주식회사 Operating method of an iris sensing portable device and iris sensing portable device
KR20150054430A (en) * 2013-11-12 2015-05-20 삼성전자주식회사 Apparatas and method for conducting a multi sensor function in an electronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180063420A1 (en) * 2016-08-23 2018-03-01 Samsung Electronics Co., Ltd. Electronic device including iris recognition sensor and method of operating the same
US10616474B2 (en) * 2016-08-23 2020-04-07 Samsung Electronics Co., Ltd. Electronic device including iris recognition sensor and method of operating the same

Also Published As

Publication number Publication date
KR20170119213A (en) 2017-10-26
KR101872757B1 (en) 2018-06-29

Similar Documents

Publication Publication Date Title
US10553179B2 (en) Electronic devices with ambient light sensors
WO2017183795A1 (en) Optical sensor device and optical sensing method
WO2019088594A2 (en) Electronic device comprising display
WO2018066761A1 (en) Display device
WO2019203598A1 (en) Electronic device comprising polarizing member and phase delay member for blocking light reflected by sensor disposed below display
CN109478236A (en) Light emitting device, biological characteristic detection device and electronic equipment
WO2011093538A1 (en) Iris scanning apparatus employing wide-angle camera, for identifying subject, and method thereof
WO2018190619A1 (en) Electronic device comprising biometric sensor
TWM568429U (en) Electronic apparatus and image capture module thereof
WO2019112252A1 (en) Electronic device with waterproof structure
US20190094069A1 (en) Electronic Devices Having Infrared Blocking Light Guides
WO2020116756A1 (en) Method for guiding measurement of biological signal in wearable device
WO2022244955A1 (en) Electronic device comprising proximity sensor having plurality of light receiving elements, and control method therefor
KR101898067B1 (en) Optical sensor module and optical sensing method
CN109496310A (en) Fingerprint identification method, device and terminal device
WO2017183796A1 (en) Electronic device having infrared optical device and method for controlling infrared optical device
WO2018034445A1 (en) Sensor package
WO2023003157A1 (en) Electronic device and fingerprint information acquisition method of electronic device
CN109508596A (en) Optical finger print recognizer component and electronic device
CN112800808A (en) Fingerprint identification method and electronic equipment
CN207182344U (en) Fingerprint recognition component and electronic installation
CN110032911B (en) Electronic equipment with structured light module
WO2022114376A1 (en) Improved tof sensor device
KR20180000158A (en) Electronic device having optical apparatus and optical sensing method of electronic device
KR101335915B1 (en) Apparatus for recognizing face

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899563

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899563

Country of ref document: EP

Kind code of ref document: A1