WO2017183316A1 - Reception system and reception device - Google Patents

Reception system and reception device Download PDF

Info

Publication number
WO2017183316A1
WO2017183316A1 PCT/JP2017/007914 JP2017007914W WO2017183316A1 WO 2017183316 A1 WO2017183316 A1 WO 2017183316A1 JP 2017007914 W JP2017007914 W JP 2017007914W WO 2017183316 A1 WO2017183316 A1 WO 2017183316A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
intermediate frequency
reception
unit
frequency signal
Prior art date
Application number
PCT/JP2017/007914
Other languages
French (fr)
Japanese (ja)
Inventor
仲田 樹広
藤倉 幹夫
暁 江島
憲道 赤石
雅之 平林
Original Assignee
株式会社日立国際電気
株式会社Tbsテレビ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気, 株式会社Tbsテレビ filed Critical 株式会社日立国際電気
Priority to JP2018513047A priority Critical patent/JP6616890B2/en
Publication of WO2017183316A1 publication Critical patent/WO2017183316A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station

Definitions

  • the present invention relates to a technique for diversity reception of signals of a plurality of channels in a radio reception apparatus.
  • video information captured by a camera or microphone of a mobile station and collected audio information are wirelessly transmitted to the base station device, and the base station device transmits the video / audio information to the broadcast station.
  • the video / audio information is wirelessly transmitted as a broadcast signal to a general home.
  • a base station device that relays video / audio information from a mobile station to a broadcast station is called a portable video / audio transmission device (hereinafter referred to as FPU: Field Pick-up Unit).
  • FIG. 5 is a configuration diagram of a transmission / reception system according to the background art, and shows, for example, a system configuration of an FPU having a diversity function.
  • an FPU used for a marathon relay, etc. video material shot with a relay station camera, which is a mobile station, is transmitted to a base station installed on a high place such as a mountain top or a rooftop of a building while moving the relay car. And transmitted from the base station to the broadcasting station.
  • the relay vehicle is a transmission side, and includes a transmission control unit 11, an IF cable 12, a transmission high-frequency unit 13, and a transmission antenna 14.
  • the base station is a receiving side, and includes receiving antennas 16a and 16b, a receiving high-frequency unit 17, an IF cable 18, and a receiving control unit 19.
  • the captured video is compressed by a video encoder or the like and input to the transmission control unit 11.
  • the transmission control unit 11 performs a modulation process such as OFDM (Orthogonal Frequency Division Multiplexing) and inputs the IF modulation signal to the transmission high-frequency unit 13 via the IF cable 12.
  • IF means Intermediate Frequency (intermediate frequency).
  • the transmission high-frequency unit 13 converts the IF frequency to an RF (Radio (Frequency) frequency, and transmits it as a radio wave via the transmission antenna 14.
  • the transmitted radio wave is received by the receiving antennas 16 a and 16 b through the propagation path 15.
  • Receiving antennas 16a and 16b have strong directivity and must always be directed to the transmitting antenna 14 of the transmission source during transmission.
  • a mobile transmission system such as an FPU
  • the characteristics of the propagation path 15 change from moment to moment, and the amplitude and phase of the received signals that reach the receiving antennas 16a and 16b vary greatly. Therefore, a reception diversity system that realizes high reception performance is often used.
  • reception diversity a plurality of reception antennas arranged at spatially separated positions are provided for one transmission signal, and characteristics can be improved by combining signals received by the respective antennas.
  • FIG. 6 is a diagram showing the relationship between antenna correlation and diversity effect.
  • the lower the correlation between antennas the greater the improvement due to diversity, and the improvement effect of 4 to 5 dB is obtained.
  • signals received by the first receiving antenna 16a and the second receiving antenna 16b and received by the respective receiving antennas are input to the receiving high-frequency unit 17 and have two different IF frequencies. Converted to a signal.
  • ARIB STD B-57 which is an FPU standard, 130 MHz and 190 MHz are listed as desirable IF frequencies.
  • These IF signals are superimposed and input to the reception control unit 19 via the IF cable 18.
  • the reception control unit 19 combines and demodulates each IF signal by a diversity method such as maximum ratio combining. Thereafter, the video / audio information is obtained by outputting to the video decoder through error correction processing.
  • Patent Document 1 describes the application of diversity reception to the OFDM system.
  • LNA Low Noise ⁇ ⁇ Amplifier
  • FIG. 7 is a configuration diagram of a transmission / reception system using two channels according to the background art, and shows an example using two FPU systems.
  • two-channel relaying is performed by transmitting FPU 1-1, transmitting antenna 1-2, transmitting FPU 2-1, transmitting antenna 2-2, receiving FPUs 20, 30, and four receiving antennas 21a, 21b, 31a, 31b. It shows an example of operation using.
  • the reception diversity system that synthesizes two signals requires 2N reception antennas.
  • the receiving antennas 21a, 21b, 31a, 31b are often installed on the top of a mountain, on the roof of a building, or on a steel tower so that the receiving height is as high as possible so as to realize stable reception. This required diversity is very inoperable.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a technology capable of improving the characteristics of reception diversity while avoiding an increase in reception facilities.
  • a typical configuration of the receiving system of the present invention for solving the above-described problems is as follows. That is, A receiving system including a plurality of receiving devices, Each of the plurality of receiving devices is A receiving antenna that receives a first frequency signal including first transmission data for the receiving device and a second frequency signal including second transmission data for another receiving device; An intermediate for generating a first intermediate frequency signal including the first transmission data and a second intermediate frequency signal including the second transmission data based on the first frequency signal and the second frequency signal.
  • a frequency signal generator A combining unit that combines the first intermediate frequency signal and the second intermediate frequency signal to generate a combined signal;
  • a separation unit that separates the synthesized signal into the first intermediate frequency signal and the second intermediate frequency signal;
  • the first intermediate frequency signal separated by the separation unit of the receiving device and the third intermediate frequency signal including the first transmission data separated by the separation unit of another receiving device are input,
  • a diversity combining unit for generating a diversity combined signal including the first transmission data;
  • a typical configuration of the receiving apparatus of the present invention is as follows. That is, A receiving antenna that receives a first carrier signal that includes first transmission data and a second carrier signal that includes second transmission data; An intermediate frequency that generates a first intermediate frequency signal including the first transmission data and a second intermediate frequency signal including the second transmission data based on the first carrier signal and the second carrier signal. A signal generator; A combining unit that combines the first intermediate frequency signal and the second intermediate frequency signal to generate a combined signal; A separation unit that separates the synthesized signal into the first intermediate frequency signal and the second intermediate frequency signal; The first intermediate frequency signal separated by the separation unit and an intermediate frequency signal received from another receiving device and including a third intermediate frequency signal including the first transmission data are input to receive diversity. A diversity combining unit for combining; A receiving apparatus comprising:
  • the reception antenna when constructing a diversity transmission / reception system using a plurality of frequency channels, the reception antenna is shared by a plurality of channels, thereby reducing the system scale and expanding the antenna interval. This reduces antenna correlation and improves diversity performance.
  • FIG. 1 is a configuration diagram of a transmission / reception system according to the first embodiment, showing an example of performing 2-channel FPU transmission. As described above, the operation using a plurality of channels is performed in the marathon relay etc., but FIG. 1 describes the operation of two channels for easy understanding. An operation example of three channels or more will be described in another embodiment.
  • the signal (ch1) transmitted from the transmission FPU 1-1 of the first system reaches the reception antenna 101 of the first system and the reception antenna 201 of the second system.
  • the signal (ch2) transmitted from the transmission FPU 2-1 of the second system also reaches the reception antenna 101 and the reception antenna 201.
  • the first main point of the present embodiment is that the system scale is obtained by receiving the two-channel signals ch1 and ch2 using the two antennas 101 and 201. It is in reducing.
  • the housing of the reception high-frequency unit 100 to which the reception antenna 101 is connected is different from the housing of the reception high-frequency unit 200 to which the reception antenna 201 is connected, a long cable is used between the reception antenna and the reception high-frequency unit. It is possible to install a wide space between the receiving antennas 101 and 201 without any problem. As a second main point of the present embodiment, this makes it possible to widen the antenna interval, reduce the antenna correlation, and effectively operate the reception diversity.
  • this transmission / reception system includes a first system FPU transmission device and a second system FPU transmission device.
  • the FPU transmission apparatus of the first system includes a first transmission FPU1-1 and a first reception FPU as a reception apparatus.
  • the FPU transmission apparatus of the second system includes a second transmission FPU2-1 and a second reception FPU as a reception apparatus.
  • the first transmission FPU1-1 and the second transmission FPU2-1 each include a transmission control unit 11 and a transmission high-frequency unit 13 as in the background art.
  • the first transmission FPU 1-1 wirelessly transmits the transmission data of the channel (hereinafter also referred to as ch) 1 from the transmission antenna 1-2 using the carrier wave of ch1.
  • ch the transmission data of the channel
  • the second transmission FPU 2-1 wirelessly transmits the transmission data of ch2 from the transmission antenna 2-2 using the carrier wave of ch2.
  • f2 be the center frequency of the carrier wave of ch2. f1 and f2 are different from each other, and the transmission data of ch1 and the transmission data of ch2 are different from each other.
  • the ch1 carrier and the ch2 carrier are received by the reception antenna 101 of the first reception FPU and the reception antenna 201 of the second reception FPU, respectively.
  • the ch1 carrier 31 a and the ch2 carrier 32 a are received by the receiving antenna 101
  • the ch1 carrier 31 b and the ch2 carrier 32 b are received by the receiving antenna 201.
  • the receiving antenna 101 has a frequency signal including transmission data (ch1) for the receiving device (first receiving FPU) and a frequency signal including transmission data (ch2) for another receiving device (second receiving FPU).
  • the reception antenna 201 receives a frequency signal including transmission data (ch2) for the reception device (second reception FPU) and a frequency signal including transmission data (ch1) for another reception device (first reception FPU).
  • the first reception FPU is a reception device that includes the first reception high-frequency unit 100 and the first reception control unit 110.
  • the first reception high-frequency unit 100 includes a reception antenna 101, an LNA 102, an intermediate frequency signal generation unit 103, and an IF (intermediate frequency signal) synthesis unit 105.
  • the first reception control unit 110 includes an IF (intermediate frequency signal) separation unit 111, a diversity combining unit 112, and an error correction unit 113.
  • An LNA Low Noise Amplifier
  • IF is an intermediate frequency or an intermediate frequency signal as described above.
  • the intermediate frequency signal generation unit 103 includes a mixer 103a, a mixer 103b, a BPF 104a, and a BPF 104b.
  • the mixer is a frequency converter that converts a high frequency of an input signal into a lower frequency and outputs the converted signal. Specifically, for example, when a signal having a frequency f1 is input, a signal from a local oscillator (not shown) having a predetermined frequency f0 is multiplied and a frequency signal corresponding to the difference between the two signals is output.
  • a high frequency carrier wave (for example, near 1.2 GHz) received by the receiving antenna 101 and amplified by the LNA 102 is converted to an intermediate frequency having a center frequency of about 130 MHz by the mixer 103a, and the center frequency is converted by the mixer 103b. Is converted to an intermediate frequency of about 190 MHz.
  • the carrier wave includes the ch1 carrier wave (frequency f1) transmitted from the first transmission FPU1-1 and the ch2 carrier wave (frequency f2) transmitted from the second transmission FPU2-1.
  • the BPF 104a is a band-pass filter having a pass band corresponding to a bandwidth of approximately one channel centered on about 130 MHz, and a frequency other than the transmission data of ch1 with respect to an intermediate frequency signal near 130 MHz output from the mixer 103a.
  • the signal is suppressed and only the transmission data (ch1-1) of ch1 is passed.
  • the BPF 104b suppresses the frequency signal other than the ch2 transmission data with respect to the intermediate frequency signal near 190 MHz output from the mixer 103b, and passes only the ch2 transmission data (ch2-1).
  • the intermediate frequency signal generation unit 103 receives the carrier signal received by the reception antenna 101 and amplified by the LNA 102, that is, the carrier signal including the transmission data (ch1) for the first reception FPU and the transmission data for the other reception FPUs.
  • the high frequency of the carrier wave signal including (ch2) is converted to an intermediate frequency, and an intermediate frequency signal including transmission data for the first reception FPU and an intermediate frequency signal including transmission data for another reception FPU are generated.
  • an intermediate frequency signal including ch1-1 and an intermediate frequency signal including ch2-1 are generated.
  • the IF synthesis unit 105 is a synthesis unit that synthesizes, that is, adds (superimposes) a plurality of input (two in the example of FIG. 1) intermediate frequency signals to generate one intermediate frequency synthesized signal.
  • the intermediate frequency signal including ch1-1 and the intermediate frequency signal including ch2-1 are combined to generate a combined signal.
  • the IF separation unit 111 is a separation unit that separates the intermediate frequency synthesized signal generated by the IF synthesis unit 105 into a plurality of intermediate frequency signals before being synthesized by the IF synthesis unit 105.
  • the intermediate frequency synthesized signal generated by the IF synthesizing unit 105 is discriminated by frequency and separated into an intermediate frequency signal including ch1-1 and an intermediate frequency signal including ch2-1.
  • the intermediate frequency signal including ch1-1 is approximately 130 MHz
  • the intermediate frequency signal including ch2-1 is approximately 190 MHz.
  • the diversity combining unit 112 is an intermediate frequency signal separated by the IF separation unit 111 and includes an intermediate frequency signal (about 130 MHz) including transmission data of the channel (ch1-1 in the example of FIG. 1) and other receptions.
  • the intermediate frequency signal separated by the IF separation unit 211 of the device (second receiving FPU in the example of FIG. 1) and including the transmission data of the channel (ch1-2 in the example of FIG. 1) (about 190 MHz) is input and diversity combining is performed to demodulate the signal.
  • the diversity combining unit 112 performs combining (maximum ratio combining diversity) so that the SNR (signal to noise power ratio) is maximized, as is well known.
  • diversity combining section 112 separates the intermediate frequency signal including transmission data (ch1) for the receiving apparatus separated by the separating section of the receiving apparatus (first receiving FPU) and the other receiving apparatuses (second receiving FPU).
  • An intermediate frequency signal separated by the separation unit and including transmission data (ch1) for the receiving device is input, and a diversity combined signal including transmission data (ch1) for the receiving device is generated.
  • Error correction section 113 corrects the transmission error of the signal that has been diversity combined by diversity combining section 112, and outputs a ch1 video signal.
  • the second reception FPU is a reception device that includes the second reception high-frequency unit 200 and the second reception control unit 210.
  • the second reception high-frequency unit 200 includes a reception antenna 201, an LNA 202, an intermediate frequency signal generation unit 203, and an IF synthesis unit 205.
  • the second reception control unit 210 includes an IF separation unit 211, a diversity combining unit 212, and an error correction unit 213.
  • the intermediate frequency signal generation unit 203 includes a mixer 203a, a mixer 203b, a BPF 204a, and a BPF 204b.
  • a high frequency (for example, near 1.2 GHz) carrier wave received by the receiving antenna 201 and amplified by the LNA 202 is converted into an intermediate frequency having a center frequency of about 130 MHz by the mixer 203a, and is around 190 MHz by the mixer 203b. Is converted to an intermediate frequency.
  • This carrier wave includes a carrier wave (frequency f1) transmitted from the first transmission FPU1-1 and a carrier wave (frequency f2) transmitted from the second transmission FPU2-1.
  • the BPF 204a suppresses the frequency signal other than the ch2 transmission data with respect to the intermediate frequency signal near 130 MHz output from the mixer 203a, and passes only the ch2 transmission data (ch2-2).
  • the BPF 204b suppresses the frequency signal other than the transmission data of ch1 with respect to the intermediate frequency signal near 190 MHz output from the mixer 203b, and passes only the transmission data (ch1-2) of ch1.
  • the intermediate frequency signal generator 203 receives the carrier signal received by the receiving antenna 201 and amplified by the LNA 202, that is, the carrier signal including the transmission data (ch2) for the second reception FPU, and the transmission data for the other reception FPUs.
  • the high frequency of the carrier wave signal including (ch1) is converted into an intermediate frequency, and the intermediate frequency signal including the second reception FPU (ch2-2 in the example of FIG. 1) and the transmission data (FIG. 1) In the example, an intermediate frequency signal including ch1-2) is generated.
  • the IF synthesis unit 205 is a synthesis unit that synthesizes a plurality of input intermediate frequency signals (two in the example of FIG. 1) to generate one intermediate frequency synthesis signal.
  • the intermediate frequency signal including ch2-2 and the intermediate frequency signal including ch1-2 are combined to generate a combined signal.
  • the IF separation unit 211 is a separation unit that separates the intermediate frequency synthesized signal generated by the IF synthesis unit 205 into a plurality of intermediate frequency signals before being synthesized by the IF synthesis unit 205.
  • the intermediate frequency synthesized signal generated by the IF synthesizing unit 205 is discriminated by frequency and separated into an intermediate frequency signal including ch2-2 and an intermediate frequency signal including ch1-2.
  • the intermediate frequency signal including ch2-2 is approximately 130 MHz
  • the intermediate frequency signal including ch1-2 is approximately 190 MHz.
  • the diversity combining unit 212 is an intermediate frequency signal separated by the IF separation unit 211 and includes an intermediate frequency signal (about 130 MHz) including transmission data (ch2-2 in the example of FIG. 1) of the channel and other receptions.
  • the intermediate frequency signal separated by the IF separation unit 111 of the device (first reception FPU in the example of FIG. 1) and including the transmission data of the channel (ch2-1 in the example of FIG. 1) (about 190 MHz) is input and diversity combining is performed to demodulate the signal.
  • the diversity combining unit 212 performs maximum ratio combining diversity in the same manner as the diversity combining unit 112.
  • diversity combining section 212 separates the intermediate frequency signal including the transmission data (ch2) for the receiving apparatus separated by the separating section of the receiving apparatus (second receiving FPU) and the other receiving apparatuses (first receiving FPU).
  • An intermediate frequency signal separated by the separation unit and including transmission data (ch2) for the receiving device is input, and a diversity combined signal including transmission data (ch2) for the receiving device is generated.
  • Error correction section 213 corrects the transmission error of the signal that has been diversity combined by diversity combining section 212, and outputs a ch2 video signal.
  • the transmission data of ch1 and the transmission data of ch2 are, for example, video signals.
  • the receiving antennas 101 and 201 are antennas having directivity, and should be directed to the transmitting antenna 1-2 and the transmitting antenna 2-2, respectively, but when a plurality of relay vehicles approaching each other are in the distance, A plurality of relay vehicles may be captured by one reception beam.
  • a reception site is installed on the extension line so that transmission data from a plurality of transmission FPUs can be simultaneously received by one antenna as much as possible. It shall be.
  • the reception signal received by the receiving antenna 101 is input to the LNA 102 and amplified.
  • a received signal received by the receiving antenna 201 is input to the LNA 202 and amplified.
  • the difference between the frequencies of the respective channels (ch1 and ch2) is relatively narrow with respect to the carrier frequency (the ratio band is small). This is because the respective channels need to be accommodated in the effective bandwidths of the receiving antennas 101 and 201 and the LNAs 102 and 202. Under these conditions, the LNAs 102 and 202 can simultaneously amplify the reached two-channel signals. Note that this does not prevent the receiving antennas 101 and 201 and the receiving high-frequency units 100 and 200 from being configured to share 1.2 GHz / 2.3 GHz.
  • the signal amplified by the LNA 102 is branched and input to the mixers 103a and 103b. With these mixers, the RF frequency of the carrier wave is converted to an IF frequency. At this time, as described above, the mixers 103a and 103b perform conversion to different IF frequencies. Specifically, the RF frequency is converted to 130 MHz in the mixer 103a and 190 MHz in the mixer 103b as recommended in the ARIB standard for the FPU described above.
  • the IF signal converted to IF frequency (130 MHz) by the mixer 103a suppresses the signal outside the ch1 band by the BPF 104a, and extracts only the ch1 signal (ch1-1) which is the main signal.
  • the IF signal converted to the IF frequency (190 MHz) by the mixer 103b suppresses the signal outside the ch2 band by the BPF 104b, and extracts only the ch2 signal (ch2-1) as the main signal.
  • the signal amplified by the LNA 202 is branched and input to the mixers 203a and 203b.
  • the RF frequency of the carrier wave is converted to an IF frequency.
  • the RF frequency is converted to 130 MHz in the mixer 203a and 190 MHz in the mixer 203b.
  • the IF signal converted to IF frequency (130 MHz) by the mixer 203a suppresses the signal outside the ch2 band by the BPF 204a, and extracts only the ch2 signal (ch2-2) as the main signal.
  • the IF signal converted to the IF frequency (190 MHz) by the mixer 203b suppresses the signal outside the ch1 band by the BPF 204b and extracts only the ch1 signal (ch1-2) which is the main signal.
  • FIG. 2 is a diagram illustrating channel selection by the mixer and the BPF according to the first embodiment of the present invention.
  • the received signal received by the first receiving antenna 101 includes the ch1 and ch2 frequencies, but only the ch1 signal (ch1-1) is extracted by the mixer 103a and the BPF 104a. Only the ch2 signal (ch2-1) is extracted by the mixer 103b and the BPF 104b.
  • the received signal received by the second receiving antenna 201 includes the ch1 and ch2 frequencies, but only the ch1 signal (ch1-2) is extracted by the mixer 203b and the BPF 204b. Only the ch2 signal (ch2-2) is extracted by the BPF 204a.
  • the two IF signals (ch1-1 and ch2-1) of the first system are combined by the IF combining unit 105 and transmitted to the IF separation unit 111 via the IF cable 106.
  • Two IF signals (ch1-2 and ch2-2) of the second system are combined by the IF combining unit 205 and transmitted to the IF separation unit 211 via the IF cable 206.
  • the configuration of the IF combining unit it is possible to transmit two IF signals of each system using one IF cable.
  • a coaxial cable is used as the IF cable.
  • the combined signal is transmitted from the IF combining unit (105, 205) to the IF separating unit (111, 211) using an IF cable, but the combined signal is transmitted wirelessly without using a cable. It is also possible to transmit from the IF synthesis unit to the IF separation unit. Moreover, it is not restricted to a coaxial cable, You may transmit with an optical cable using analog modulation.
  • the IF signal synthesized by the IF synthesis unit 105 is separated again into two IF signals, that is, the IF signals before being synthesized by the IF synthesis unit 105 (ch1-1 and ch2). -1).
  • the IF signal synthesized by the IF synthesis unit 205 is separated again into two IF signals, that is, the IF signal (ch1- 2 and ch2-2).
  • One IF signal (ch1-1) separated by the IF separation unit 111 is input to the diversity combining unit 112 of the first system.
  • the other IF signal (ch2-1) is input to diversity combining section 212 in the second system.
  • one IF signal (ch2-2) separated by the IF separation unit 211 is input to the second diversity combining unit 212, and the other IF signal (ch1-2) is the first diversity. Input to the combining unit 112.
  • the diversity combining unit 112 of the first system aggregates the signals of ch1 received by the receiving antennas 101 and 201.
  • the diversity combining unit 212 in the eye collects the ch2 signals received by the receiving antennas 101 and 201.
  • the IF signal (ch2-1) is transferred from the IF separating unit 111 to the diversity combining unit 212, and the IF signal (ch1-2) is transferred from the IF separating unit 211 to the diversity combining unit 112, for example, using a coaxial cable.
  • the present invention is not limited to the coaxial cable, and an optical cable or the like may be used.
  • the distance between the first reception high-frequency unit 100 where the reception antenna 101 is installed and the second reception high-frequency unit 200 where the reception antenna 201 is installed is set large (for example, several meters or more) in order to enhance the diversity effect.
  • the distance between the first reception control unit 110 in which the diversity combining unit 112 is accommodated and the second reception control unit 210 in which the diversity combining unit 212 is accommodated may be close to each other.
  • the IF signal is transmitted to the other receiving device (IF separating unit 211) than the length of the first cable (106, 206) for transmitting the combined signal from the IF combining unit of the receiving device to the IF separating unit of the receiving device.
  • the length of the second cable transmitted from the receiver to the receiver (diversity combining unit 112) can be shortened. Therefore, the IF signal can be easily transmitted from another receiving apparatus to the receiving apparatus.
  • Diversity combining sections 112 and 212 respectively combine two aggregated IF signals using a diversity combining method such as maximum ratio combining that maximizes the SNR after combining. Transmission errors of the diversity combined signals are reduced by the error correction units 113 and 213, respectively, and the ch1 video signal is output from the error correction unit 113 and the ch2 video signal is output from the error correction unit 213.
  • the diversity combining sections 112 and 212 are configured such that the intermediate frequencies of the two input signals are different from each other. However, it is also possible to configure so that signals having the same intermediate frequency are combined. is there. In this case, in the second reception high-frequency unit 200, the BPF 204a passes only the transmission data (ch1-2) of ch1 to the intermediate frequency signal near 130 MHz output from the mixer 203a, and the BPF 204b Only the ch2 transmission data (ch2-2) is allowed to pass through the output intermediate frequency signal near 190 MHz.
  • the mixer 103b and the mixer 203b are omitted, and the first reception high-frequency unit 100 outputs the BPF 104a to the intermediate frequency signal around 130 MHz output from the mixer 103a. Passes only the transmission data (ch1-1) of ch1, and the BPF 104b allows only the transmission data (ch2-1) of ch2 to pass. In the second reception high-frequency unit 200, the vicinity of 130 MHz output from the mixer 203a is passed. For the intermediate frequency signal, the BPF 204a may pass only the ch1 transmission data (ch1-2), and the BPF 204b may pass only the ch2 transmission data (ch2-2).
  • diversity combining is performed by both the first reception control unit 110 and the second reception control unit 210.
  • either the first reception control unit 110 or the second reception control unit 210 is used. It is also possible to configure so that diversity combining is performed only on one side. For example, diversity combining is performed only by the first reception control unit 110, and the diversity reception unit 210 is not provided in the second reception control unit 210, and the output (ch2-2) of the IF separation unit 211 is input to the error correction unit 113. , Ch2 video signal. Even in this case, the diversity effect is produced in the video signal of ch1.
  • This method can be used, for example, when the radio wave from the transmission FPU 2-1 is continuously good.
  • each of the plurality of reception devices receives a first frequency signal including first transmission data for the reception device and second transmission data for other reception devices.
  • a receiving antenna that receives the second frequency signal, a first intermediate frequency signal that includes the first transmission data based on the first frequency signal and the second frequency signal, and a second that includes the second transmission data.
  • An intermediate frequency signal generating unit that generates two intermediate frequency signals, a combining unit that combines the first intermediate frequency signal and the second intermediate frequency signal to generate a combined signal, and the combined signal as the first intermediate frequency signal
  • a separation unit that separates into a second intermediate frequency signal, a first intermediate frequency signal separated by a separation unit of the reception device, and a third transmission data that is separated by a separation unit of another reception device and includes first transmission data
  • a diversity combining unit that generates a diversity combined signal including the first transmission data, and thereby reducing the number of antennas (that is, system equipment) and widening the antenna interval. Antenna correlation can be reduced and diversity performance can be improved.
  • (A2) a first cable that transmits the combined signal from the combining unit of the receiving device to the separating unit of the receiving device, and a second cable that transmits the third intermediate frequency signal from another receiving device to the receiving device. Since the second cable is configured to be shorter than the first cable, the interval between the reception antennas of different systems can be increased, and the interval between the diversity combining units of different systems can be reduced. be able to. (A3) Since the frequency of the input signal of the diversity combining unit is configured to vary greatly, it is easy to perform diversity combining.
  • FIG. 3 is a block diagram of a transmission / reception system according to the second embodiment, showing an example of performing 3-channel FPU transmission. 3, the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the configuration of three channels will be described. However, it is possible to realize four or more channels by the same extension.
  • the third transmission FPU3-1 includes a transmission control unit 11 and a transmission high-frequency unit 13, respectively.
  • the two-channel received signal is passed between the housings of the two systems of reception control units.
  • the three-channel received signal is transferred to the three systems. Are transferred in a ring shape between the housings of the reception control unit.
  • the first system receiving antenna 301 receives at least ch1 and ch2 signals
  • the second system receiving antenna 401 receives at least ch2 and ch3 signals
  • the third system receiving antenna 501 at least.
  • the ch3 and ch1 signals are received.
  • each antenna may receive all the ch1, ch1, and ch3 signals simultaneously.
  • the ch2 signal received by the first system is transferred to the second system
  • the ch3 signal received by the second system is transferred to the third system
  • the ch1 signal received by the third system is transferred to the first system. .
  • the transmission / reception system includes a first system FPU transmission device, a second system FPU transmission device, and a third system FPU transmission device.
  • the FPU transmission apparatus of the first system includes a first transmission FPU1-1 and a first reception FPU.
  • the FPU transmission apparatus of the second system includes a second transmission FPU2-1 and a second reception FPU.
  • the third-system FPU transmission device includes a third transmission FPU 3-1 and a third reception FPU.
  • the first transmission FPU 1-1 wirelessly transmits the transmission data of ch1 from the transmission antenna 1-2 using the carrier wave (f1) of ch1, and the second transmission FPU2-1 , Ch2 transmission data is wirelessly transmitted from the transmission antenna 2-2 using the ch2 carrier wave (f2).
  • the third transmission FPU 3-1 wirelessly transmits the transmission data of ch3 from the transmission antenna 3-2 using the carrier wave of ch3.
  • the ch1 carrier 31a and the ch2 carrier 32a are received by the reception antenna 301 of the first reception FPU, and the ch2 carrier 32b and the ch3 carrier 33b are received by the reception antenna 401 of the second reception FPU.
  • the ch3 carrier 33c and the ch1 carrier 31c are received by the reception antenna 501 of the third reception FPU.
  • the first reception FPU includes a first reception high-frequency unit 300 and a first reception control unit 310.
  • the first reception high-frequency unit 300 includes a reception antenna 301, an LNA 302, an intermediate frequency signal generation unit 303, and an IF synthesis unit 305.
  • the intermediate frequency signal generation unit 303 includes a mixer 303a, a mixer 303b, a BPF 304a, and a BPF 304b.
  • the configuration of the first reception high-frequency unit 300 is the same as the configuration of the first reception high-frequency unit 100 of the first embodiment.
  • the LNA 302 has the same function as the LNA 102 of the first embodiment.
  • the first reception control unit 310 includes an IF separation unit 311, a diversity combining unit 312, and an error correction unit 313.
  • the configuration of the first reception control unit 310 is also substantially the same as the configuration of the first reception control unit 110 of the first embodiment, but the input of the diversity combining unit 312 is not (ch1-2) from the second system, Only the point (ch1-3) from the third system is different from the first embodiment.
  • the second reception FPU includes a second reception high-frequency unit 400 and a second reception control unit 410.
  • the second reception high-frequency unit 400 includes a reception antenna 401, an LNA 402, an intermediate frequency signal generation unit 403, and an IF synthesis unit 405.
  • the intermediate frequency signal generation unit 403 includes a mixer 403a, a mixer 403b, a BPF 404a, and a BPF 404b.
  • the LNA 402 has the same function as the LNA 102 of the first embodiment.
  • the configuration of the second reception high-frequency unit 400 is substantially the same as the configuration of the first reception high-frequency unit 300, but the reception antenna 401 receives the ch2 carrier 32b (frequency f2) and the ch3 carrier 33b (frequency f3). Then, one mixer (mixer 403a) converts the frequency to an intermediate frequency signal around 130 MHz, and one BPF (BPF 404a) passes only the transmission data (ch2-2) of ch2, and the other mixer (mixer 403b). The difference is that the frequency is converted into an intermediate frequency signal in the vicinity of 190 MHz, and only the transmission data (ch3-2) of ch3 is passed through the other BPF (BPF 404b).
  • the second reception control unit 410 includes an IF separation unit 411, a diversity combining unit 412, and an error correction unit 413.
  • the configuration of the second reception control unit 410 is substantially the same as the configuration of the first reception control unit 310, but one of the outputs (ch2-2) of the IF separation unit 411 is supplied to the diversity combining unit 412 and the IF separation is performed.
  • the other point (ch3-2) of the output of the unit 411 is different from the first reception control unit 310 in that it is supplied to the diversity combining unit 512 of the third system.
  • the third reception FPU includes a third reception high-frequency unit 500 and a third reception control unit 510.
  • the third reception high-frequency unit 500 includes a reception antenna 501, an LNA 502, an intermediate frequency signal generation unit 503, and an IF synthesis unit 505.
  • the intermediate frequency signal generation unit 503 includes a mixer 503a, a mixer 503b, a BPF 504a, and a BPF 504b.
  • the LNA 502 has the same function as the LNA 102 of the first embodiment.
  • the configuration of the third reception high-frequency unit 500 is substantially the same as the configuration of the first reception high-frequency unit 300.
  • the reception antenna 501 receives the ch3 carrier 33c (frequency f3) and the ch1 carrier 31c (frequency f1).
  • one mixer (mixer 503a) converts the frequency to an intermediate frequency signal around 130 MHz
  • one BPF (BPF 504a) passes only the transmission data (ch3-3) of ch3 and the other mixer (mixer 503b).
  • the frequency is converted into an intermediate frequency signal in the vicinity of 190 MHz, and the other BPF (BPF 504b) passes only the transmission data (ch1-3) of ch1.
  • the third reception control unit 510 includes an IF separation unit 511, a diversity combining unit 512, and an error correction unit 513.
  • the configuration of the third reception control unit 510 is substantially the same as the configuration of the first reception control unit 310, but one of the outputs (ch3-3) of the IF separation unit 511 is supplied to the diversity combining unit 512, and IF separation is performed.
  • the other (ch1-3) of the output of the unit 511 is different from the first reception control unit 310 in that it is supplied to the diversity combining unit 312 of the first system.
  • the first system receiving device transmits the ch1 transmission data
  • the second system receiving device receives the ch2 transmission data
  • the third system receiving device uses the ch3 transmission data. The operation until the transmission data is acquired will be described.
  • the received signal received by the receiving antenna 301 is input to the LNA 302 and amplified.
  • a received signal received by the receiving antenna 401 is input to the LNA 402 and amplified.
  • a received signal received by the receiving antenna 501 is input to the LNA 502 and amplified.
  • the signal amplified by the LNA 302 is input to the mixers 303a and 303b, and the RF frequency of the carrier wave is converted to an IF frequency. Specifically, the RF frequency is converted to 130 MHz in the mixer 303a and 190 MHz in the mixer 303b.
  • ch1 signal (ch1-1) is extracted by the BPF 304a from the IF signal converted to the IF frequency (130 MHz) by the mixer 303a.
  • ch2 signal (ch2-1) is extracted by the BPF 304b from the IF signal converted to the IF frequency (190 MHz) by the mixer 303b.
  • the signal amplified by the LNA 402 is input to the mixers 403a and 403b, and the RF frequency is converted to 130 MHz by the mixer 403a and 190 MHz by the mixer 403b.
  • the ch2 signal (ch2-2) is extracted by the BPF 404a from the IF signal converted to the IF frequency (130 MHz) by the mixer 403a.
  • the ch3 signal (ch3-2) is extracted by the BPF 404b from the IF signal converted to the IF frequency (190 MHz) by the mixer 403b.
  • the signal amplified by the LNA 502 is input to the mixers 503a and 503b, and the RF frequency is converted to 130 MHz by the mixer 503a and 190 MHz by the mixer 503b. Then, only the ch3 signal (ch3-3) is extracted by the BPF 504a from the IF signal converted to the IF frequency (130 MHz) by the mixer 503a. Only the ch1 signal (ch1-3) is extracted by the BPF 504b from the IF signal converted to the IF frequency (190 MHz) by the mixer 503b.
  • the two IF signals (ch1-1 and ch2-1) of the first system are combined by the IF combiner 305 and sent to the IF separator 311 via the IF cable 306.
  • the two IF signals (ch2-2 and ch3-2) in the second system are combined by the IF combining unit 405 and sent to the IF separation unit 411 through the IF cable 406.
  • Two IF signals (ch3-3 and ch1-3) of the third system are combined by the IF combining unit 505 and sent to the IF separation unit 511 by the IF cable 506.
  • the IF signal synthesized by the IF synthesis unit 305 is separated into the IF signals (ch 1-1 and ch 2-1) before being synthesized by the IF synthesis unit 305.
  • the IF signal synthesized by the IF synthesis unit 405 is separated into IF signals (ch2-2 and ch3-2) before being synthesized by the IF synthesis unit 405.
  • the IF signal synthesized by the IF synthesis unit 505 is separated into IF signals (ch3-3 and ch1-3) before being synthesized by the IF synthesis unit 505.
  • the first IF signal (ch1-1) separated by the IF separation unit 311 is input to the diversity combining unit 312 of the first system.
  • the second IF signal (ch2-1) separated by the IF separation unit 311 is input to the diversity combining unit 412 of the second system.
  • the first IF signal (ch2-2) separated by the IF separation unit 411 is input to the diversity combining unit 412 of the second system, and the second IF signal (ch3-2) is supplied to the three systems.
  • the data is input to the eye diversity combining unit 512.
  • the first IF signal (ch3-3) separated by the IF separation unit 511 is input to the diversity combining unit 512 of the third system, and the second IF signal (ch1-3) is 1 This is input to the diversity combining unit 312 of the system.
  • the IF signal (ch2-1) is transferred from the IF separation unit 311 to the diversity combining unit 412
  • the IF signal (ch3-2) is transferred from the IF separation unit 411 to the diversity combining unit 512
  • the IF separation unit 511 The IF signal (ch1-3) is transferred to the diversity combining unit 312 using a coaxial cable.
  • Diversity combining sections 312, 412, 512 respectively combine two aggregated IF signals using a diversity combining method such as maximum ratio combining that maximizes the combined SNR.
  • the diversity combined signal is reduced in transmission error by the error correction units 313, 413, and 513, the error correction unit 313 receives the ch1 video signal, the error correction unit 413 receives the ch2 video signal, and the error correction unit 513
  • the video signal of ch3 is output.
  • the first reception FPU receives diversity of the ch1 signal
  • the ch1 signal received by its own reception antenna 301 and the ch1 signal received by the reception antenna 501 and passed through the third reception FPU are aggregated.
  • the video signal of ch1 is acquired as the output of the first reception FPU.
  • the ch2 signal received by its own reception antenna 401 and the ch2 signal received by the reception antenna 301 and passed through the first reception FPU are aggregated. Then, the ch2 video signal is acquired as the output of the second reception FPU.
  • the ch3 signal received by its own reception antenna 501 and the ch3 signal received by the reception antenna 401 and passed through the second reception FPU are aggregated. Then, the ch3 video signal is acquired as the output of the third reception FPU.
  • the diversity combining units 312, 412 and 512 are configured such that the intermediate frequencies of the respective input signals are different. As described in the first embodiment, however. It is also possible to configure each intermediate frequency to be substantially the same.
  • the first reception control unit 310, the second reception control unit 410, and the third reception control unit 510 are configured to perform diversity combining.
  • One or two of the reception control unit 410 and the third reception control unit 510 may be configured to perform diversity combining.
  • diversity combining is performed only by the first reception control unit 310 and the second reception control unit 410, and only the output (ch3-3) of the IF separation unit 511 is input to the error correction unit 513 in the third reception control unit 510. , Ch3 video signal. Even in this case, the diversity effect is produced in the video signals of ch1 and ch2.
  • FIG. 4 is a configuration diagram of a transmission / reception system according to the third embodiment.
  • the third embodiment is a generalized configuration of the first embodiment.
  • N is an integer
  • M is an integer and M ⁇ N
  • the diversity combining number M needs to be equal to or less than the number N of receiving antennas, and the relationship of M ⁇ N is essential.
  • each reception control unit (610, 710, 810)
  • the transmission / reception system includes a first system FPU transmission device, a second system FPU transmission device, and a third system FPU transmission device.
  • the FPU transmission apparatus of the first system includes a first transmission FPU1-1 and a first reception FPU.
  • the FPU transmission apparatus of the second system includes a second transmission FPU2-1 and a second reception FPU.
  • the third-system FPU transmission device includes a third transmission FPU 3-1 and a third reception FPU.
  • the first transmission FPU 1-1 wirelessly transmits the transmission data of ch1 from the transmission antenna 1-2 using the carrier wave (f1) of ch1, and the second transmission FPU2-1 ,
  • the transmission data of ch2 is wirelessly transmitted from the transmission antenna 2-2 using the carrier wave (f2) of ch2, and the third transmission FPU 3-1 uses the carrier wave (f3) of ch3, Radio transmission is performed from the transmission antenna 3-2.
  • the ch1 carrier, the ch2 carrier, and the ch3 carrier are received by the reception antenna 601 of the first reception FPU, the reception antenna 701 of the second reception FPU, and the reception antenna 801 of the third reception FPU. Received respectively.
  • the ch1 carrier 31a, the ch2 carrier 32a, and the ch3 carrier 33a are received by the receiving antenna 601
  • the ch1 carrier 31b, the ch2 carrier 32b, and the ch3 carrier 33b are received by the receiving antenna 701.
  • a state where the ch1 carrier 31c, the ch2 carrier 32c, and the ch3 carrier 33c are received by the reception antenna 801 is shown.
  • the first reception FPU includes a first reception high-frequency unit 600 and a first reception control unit 610.
  • the first reception high-frequency unit 600 includes a reception antenna 601, an LNA 602, an intermediate frequency signal generation unit 603, and an IF synthesis unit 605.
  • the first reception control unit 610 includes an IF separation unit 611, a diversity combining unit 612, and an error correction unit 613.
  • the LNA 602 has the same function as the LNA 102 of the first embodiment.
  • the intermediate frequency signal generation unit 603 includes a mixer 603a, a mixer 603b, a mixer 603c, a BPF 604a, a BPF 604b, and a BPF 604c.
  • the mixer 603a converts the high frequency amplified by the LNA 602 into an intermediate frequency near 130 MHz, and the BPF 604a suppresses frequency signals other than the ch1 transmission data with respect to the intermediate frequency signal near 130 MHz, and the ch1 transmission data. Pass only (ch1-1).
  • the mixer 603b converts the high frequency amplified by the LNA 602 into an intermediate frequency near 190 MHz, and the BPF 604b suppresses frequency signals other than the transmission data of ch2 with respect to the intermediate frequency signal near 190 MHz, and transmits the transmission data of ch2. Pass only (ch2-1).
  • the mixer 603c converts the high frequency amplified by the LNA 602 into an intermediate frequency near 250 MHz, and the BPF 604c suppresses the frequency signal other than the ch3 transmission data with respect to the intermediate frequency signal near 250 MHz, and transmits the ch3 transmission data. Pass only (ch3-1).
  • the IF synthesis unit 605 synthesizes a plurality of input intermediate frequency signals (three in the example of FIG. 4) to generate one intermediate frequency synthesis signal.
  • an intermediate frequency signal including ch1-1, an intermediate frequency signal including ch2-1, and an intermediate frequency signal including ch3-1 are synthesized.
  • the IF separation unit 611 separates the intermediate frequency synthesized signal generated by the IF synthesis unit 605 into a plurality of intermediate frequency signals before being synthesized by the IF synthesis unit 605.
  • the intermediate frequency synthesized signal generated by the IF synthesizing unit 605 is discriminated by frequency, and includes an intermediate frequency signal including ch1-1, an intermediate frequency signal including ch2-1, and ch3-1. Separated into an intermediate frequency signal.
  • the intermediate frequency signal including ch1-1 is approximately 130 MHz
  • the intermediate frequency signal including ch2-1 is approximately 190 MHz
  • the intermediate frequency signal including ch3-1 is approximately 250 MHz.
  • Diversity combining section 612 includes an intermediate frequency signal including transmission data (ch1-1) of the channel (ch1 in the example of FIG. 4) separated by IF separating section 611, and another receiving apparatus (in the example of FIG. Diversity combining by inputting an intermediate frequency signal separated by an IF separator of (2 reception FPU and 3rd reception FPU) and including transmission data (ch1-2, ch1-3) of the channel To demodulate the signal.
  • Error correction section 613 corrects the transmission error of the signal that has been diversity combined by diversity combining section 612, and outputs a ch1 video signal.
  • the second reception FPU includes a second reception high-frequency unit 700 and a second reception control unit 710.
  • the second reception high-frequency unit 700 includes a reception antenna 701, an LNA 702, an intermediate frequency signal generation unit 703, and an IF synthesis unit 705.
  • the second reception control unit 710 includes an IF separation unit 711, a diversity combining unit 712, and an error correction unit 713.
  • the LNA 702 has the same function as the LNA 102 of the first embodiment.
  • the intermediate frequency signal generation unit 703 includes a mixer 703a, a mixer 703b, a mixer 703c, a BPF 704a, a BPF 704b, and a BPF 704c.
  • the mixer 703a converts the high frequency amplified by the LNA 702 into an intermediate frequency near 190 MHz, and the BPF 704a suppresses the frequency signal other than the transmission data of ch1 with respect to the intermediate frequency signal near 190 MHz, and the transmission data of ch1 Pass only (ch1-2).
  • the mixer 703b converts the high frequency amplified by the LNA 702 into an intermediate frequency near 250 MHz, and the BPF 704b suppresses the frequency signal other than the ch2 transmission data with respect to the intermediate frequency signal near 250 MHz, and the ch2 transmission data Pass only (ch2-2).
  • the mixer 703c converts the high frequency amplified by the LNA 702 into an intermediate frequency near 130 MHz, and the BPF 704c suppresses the frequency signal other than the ch3 transmission data with respect to the intermediate frequency signal near 130 MHz, and transmits the ch3 transmission data. Pass only (ch3-2).
  • the IF synthesis unit 705 synthesizes a plurality of input intermediate frequency signals (three in the example of FIG. 4) to generate one intermediate frequency synthesis signal.
  • an intermediate frequency signal including ch1-2, an intermediate frequency signal including ch2-2, and an intermediate frequency signal including ch3-2 are synthesized.
  • the IF separation unit 711 separates the intermediate frequency synthesized signal generated by the IF synthesis unit 705 into a plurality of intermediate frequency signals before being synthesized by the IF synthesis unit 705.
  • the intermediate frequency synthesized signal generated by the IF synthesizing unit 705 is discriminated by frequency, and includes an intermediate frequency signal including ch1-2, an intermediate frequency signal including ch2-2, and ch3-2. Separated into an intermediate frequency signal.
  • the intermediate frequency signal including ch1-2 is approximately 190 MHz
  • the intermediate frequency signal including ch2-2 is approximately 250 MHz
  • the intermediate frequency signal including ch3-2 is approximately 130 MHz.
  • the diversity combining unit 712 includes an intermediate frequency signal (ch2-2) including transmission data of the channel (ch2 in the example of FIG. 4) separated by the IF separation unit 711, and another receiving device (in the example of FIG. Diversity combining by inputting intermediate frequency signals (ch2-1, ch2-3) including the transmission data of the channel, which are intermediate frequency signals separated by the IF separation unit of the first reception FPU and the third reception FPU) To demodulate the signal.
  • the error correction unit 713 corrects a transmission error with respect to the signal subjected to diversity combining by the diversity combining unit 712 and outputs a ch2 video signal.
  • the third reception FPU includes a third reception high frequency unit 800 and a third reception control unit 810.
  • the third reception high-frequency unit 800 includes a reception antenna 801, an LNA 802, an intermediate frequency signal generation unit 803, and an IF synthesis unit 805.
  • the third reception control unit 810 includes an IF separation unit 811, a diversity combining unit 812, and an error correction unit 813.
  • the LNA 802 has the same function as the LNA 102 of the first embodiment.
  • the intermediate frequency signal generation unit 803 includes a mixer 803a, a mixer 803b, a mixer 803c, a BPF 804a, a BPF 804b, and a BPF 804c.
  • the mixer 803a converts the high frequency amplified by the LNA 802 into an intermediate frequency near 250 MHz, and the BPF 804a suppresses the frequency signal other than the ch1 transmission data with respect to the intermediate frequency signal near 250 MHz, and the ch1 transmission data Pass only (ch1-3).
  • the mixer 803b converts the high frequency amplified by the LNA 802 into an intermediate frequency near 130 MHz, and the BPF 804b suppresses the frequency signal other than the ch2 transmission data with respect to the intermediate frequency signal near 130 MHz, and the ch2 transmission data Pass only (ch2-3).
  • the mixer 803c converts the high frequency amplified by the LNA 802 into an intermediate frequency near 190 MHz, and the BPF 804c suppresses the frequency signal other than the transmission data of ch3 with respect to the intermediate frequency signal near 190 MHz, and the transmission data of ch3 Pass only (ch3-3).
  • the IF synthesis unit 805 synthesizes a plurality of input intermediate frequency signals (three in the example of FIG. 4) to generate one intermediate frequency synthesis signal.
  • the intermediate frequency signal including ch1-3, the intermediate frequency signal including ch2-3, and the intermediate frequency signal including ch3-3 are synthesized.
  • the IF separation unit 811 separates the intermediate frequency synthesized signal generated by the IF synthesis unit 805 into a plurality of intermediate frequency signals before being synthesized by the IF synthesis unit 805.
  • the intermediate frequency synthesized signal generated by the IF synthesizing unit 805 is discriminated by frequency, and includes an intermediate frequency signal including ch1-3, an intermediate frequency signal including ch2-3, and ch3-3. Separated into an intermediate frequency signal.
  • the intermediate frequency signal including ch1-3 is approximately 250 MHz
  • the intermediate frequency signal including ch2-3 is approximately 130 MHz
  • the intermediate frequency signal including ch3-3 is approximately 190 MHz.
  • Diversity combining section 812 includes an intermediate frequency signal including transmission data (ch3-3) of the channel (ch3 in the example of FIG. 4) separated by IF separating section 811 and the other receiving apparatus (in the example of FIG. Diversity combining by inputting an intermediate frequency signal separated by the IF separator of (1 reception FPU and 2 reception FPU) and including the transmission data (ch3-1, ch3-2) of the channel To demodulate the signal.
  • the error correction unit 813 corrects the transmission error of the signal subjected to diversity combining by the diversity combining unit 812 and outputs a ch3 video signal.
  • ch1 transmission data is received by the first system receiver
  • ch2 transmission data is received by the second system receiver
  • ch3 is received by the third system receiver. The operation until the transmission data is acquired will be described.
  • the received signal received by the receiving antenna 601 is input to the LNA 602 and amplified.
  • a received signal received by the receiving antenna 701 is input to the LNA 702 and amplified.
  • a received signal received by the receiving antenna 801 is input to the LNA 802 and amplified.
  • the signal amplified by the LNA 602 is input to the mixers 603a, 603b, and 603c, and the RF frequency of the carrier wave is converted to an IF frequency. Specifically, the RF frequency is converted to 130 MHz in the mixer 603a, 190 MHz in the mixer 603b, and 250 MHz in the mixer 603c.
  • ch1 signal (ch1-1) is extracted by the BPF 604a from the IF signal converted to the IF frequency (130 MHz) by the mixer 603a.
  • ch2 signal (ch2-1) is extracted by the BPF 604b from the IF signal converted to the IF frequency (190 MHz) by the mixer 603b.
  • ch3 signal (ch3-1) is extracted by the BPF 604c from the IF signal converted to the IF frequency (250 MHz) by the mixer 603c.
  • the signal amplified by the LNA 702 is input to the mixers 703a, 703b, and 703c, and the RF frequency is converted to 190 MHz by the mixer 703a, 250 MHz by the mixer 703b, and 130 MHz by the mixer 703c.
  • the ch1 signal (ch1-2) is extracted by the BPF 704a from the IF signal converted to the IF frequency (190 MHz) by the mixer 703a.
  • Only the ch2 signal (ch2-2) is extracted by the BPF 704b from the IF signal converted to the IF frequency (250 MHz) by the mixer 703b.
  • Only the ch3 signal (ch3-2) is extracted by the BPF 704c from the IF signal converted to the IF frequency (130 MHz) by the mixer 703c.
  • the signal amplified by the LNA 802 is input to the mixers 803a, 803b, and 803c, and the RF frequency is converted to 250 MHz by the mixer 803a, 130 MHz by the mixer 803b, and 190 MHz by the mixer 803c.
  • the ch1 signal (ch1-3) is extracted by the BPF 804a from the IF signal converted to the IF frequency (250 MHz) by the mixer 803a.
  • Only the ch2 signal (ch2-3) is extracted by the BPF 804b from the IF signal converted to the IF frequency (130 MHz) by the mixer 803b.
  • Only the ch3 signal (ch3-3) is extracted by the BPF 804c from the IF signal converted to the IF frequency (190 MHz) by the mixer 803c.
  • the three IF signals (ch1-1, ch2-1, and ch3-1) of the first system are combined by the IF combiner 605 and sent to the IF separator 611 by the IF cable 606.
  • the three IF signals (ch1-2, ch2-2, and ch3-2) in the second system are combined by the IF combining unit 705 and sent to the IF separation unit 711 through the IF cable 706.
  • Three IF signals (ch1-3, ch2-3, and ch3-3) of the third system are combined by the IF combiner 805 and sent to the IF separator 811 via the IF cable 806.
  • the IF signal synthesized by the IF synthesis unit 605 is separated into IF signals (ch1-1, ch2-1, and ch3-1) before being synthesized by the IF synthesis unit 605.
  • the IF signal synthesized by the IF synthesis unit 705 is the IF signal before being synthesized by the IF synthesis unit 705 (ch1-2, ch2-2, and ch3-2).
  • the IF signal synthesized by the IF synthesis unit 805 is separated into IF signals (ch 1-3, ch 2-3, and ch 3-3) before being synthesized by the IF synthesis unit 805.
  • the first IF signal (ch1-1) separated by the IF separation unit 611 is input to the diversity combining unit 612 of the first system.
  • the second IF signal (ch2-1) separated by the IF separation unit 611 is input to the second diversity combining unit 712.
  • the third IF signal (ch3-1) separated by the IF separation unit 611 is input to the diversity combining unit 812 of the third system.
  • the first IF signal (ch1-2) separated by the IF separation unit 711 is input to the first diversity combining unit 612, and the second IF signal (ch2-2) is two systems.
  • the third IF signal (ch 3-2) input to the third diversity combining unit 712 is input to the third diversity combining unit 812.
  • the first IF signal (ch1-3) separated by the IF separation unit 811 is input to the first diversity combining unit 612, and the second IF signal (ch2-3) is 2
  • the third IF signal (ch3-3) is input to the diversity combining unit 712 of the system, and is input to the diversity combining unit 812 of the third system.
  • the IF signal (ch2-1) is transferred from the IF separating unit 611 to the diversity combining unit 712, the IF signal (ch3-1) is transferred to the diversity combining unit 812, and the IF separating unit 711 to the diversity combining unit 612.
  • the IF signal (ch1-3) is transferred to the unit 612 using a coaxial cable.
  • Diversity combining sections 612, 712, and 812 each combine three aggregated IF signals using a diversity combining method such as maximum ratio combining that maximizes the combined SNR.
  • the diversity combined signal is reduced in transmission errors by the error correction units 613, 713, and 813. From the error correction unit 613, the ch1 video signal, from the error correction unit 713, the ch2 video signal, and from the error correction unit 813 The video signal of ch3 is output.
  • the diversity combining sections 612, 712, and 812 are configured such that the frequencies of the respective input signals are greatly different.
  • the frequency of each input signal can be configured to be substantially the same.
  • the first reception control unit 610, the second reception control unit 710, and the third reception control unit 810 are configured to perform diversity combining.
  • the first reception control unit 610 and the second reception control unit 810 are configured to perform diversity combining.
  • One or two of the reception control unit 710 and the third reception control unit 810 may be configured to perform diversity combining.
  • only the first reception control unit 610 and the second reception control unit 710 perform diversity combining
  • the third reception control unit 810 inputs only the output (ch3-3) of the IF separation unit 811 to the error correction unit 813. , Ch3 video signal. Even in this case, the diversity effect is produced in the video signals of ch1 and ch2.
  • FPU transmission In the above embodiment, the case of FPU transmission has been described. However, the present invention is not limited to FPU transmission, and can be applied to other than FPU transmission.
  • the present invention can be understood not only as an apparatus, system, or method for executing the processing according to the present invention, but also as a program for realizing such a method or system, a recording medium for recording the program, or the like. it can. Further, the present invention may be configured such that the CPU performs control by executing a control program stored in a memory, or may be configured as a hardware circuit.
  • intermediate frequency signal generating unit 103a, 103b ... Mixer, 104a, 104b ... BPF, 105 ... IF synthesis unit (synthesis unit), 106 ... IF cable, 110 ... first reception control unit, 111 ... IF separation unit (separation unit) DESCRIPTION OF SYMBOLS 112 ... Diversity synthetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

The purpose of the present invention is to improve the characteristic of reception diversity while avoiding increase in reception facility. A reception system includes a plurality of reception devices. Each of the plurality of reception devices is provided with: a reception antenna which receives a first frequency signal including first transmission data, and a second frequency signal including second transmission data; an intermediate frequency signal generation unit which, on the basis of the first frequency signal and the second frequency signal, generates a first intermediate frequency signal including the first transmission data, and a second intermediate frequency signal including the second transmission data; a combining unit which combines the first intermediate frequency signal and the second intermediate frequency signal to generate a combined signal; a separation unit which separates the combined signal into the first intermediate frequency signal and the second intermediate frequency signal; and a diversity combining unit to which the first intermediate frequency signal separated in the reception device, and an intermediate frequency signal separated in another reception device and including the first transmission data are inputted to generate a diversity combined signal including the first transmission data.

Description

受信システム、及び受信装置Receiving system and receiving apparatus
  本発明は、無線受信装置において、複数チャンネルの信号をダイバーシティ受信する技術に関するものである。 The present invention relates to a technique for diversity reception of signals of a plurality of channels in a radio reception apparatus.
  例えば放送システムでは、移動局のカメラやマイクにより撮影された映像情報や収集された音声情報を基地局装置へ無線送信し、基地局装置がその映像音声情報を放送局へ送信し、放送局がその映像音声情報を放送信号として一般の家庭などに対して無線送信することが行われている。映像音声情報を移動局から放送局へ中継する基地局装置を、日本国内の放送業界では、可搬型映像音声伝送装置(以下、FPU:Field Pick-up Unit)と呼ぶ。 For example, in a broadcasting system, video information captured by a camera or microphone of a mobile station and collected audio information are wirelessly transmitted to the base station device, and the base station device transmits the video / audio information to the broadcast station. The video / audio information is wirelessly transmitted as a broadcast signal to a general home. In the broadcasting industry in Japan, a base station device that relays video / audio information from a mobile station to a broadcast station is called a portable video / audio transmission device (hereinafter referred to as FPU: Field Pick-up Unit).
  図5は、背景技術に係る送受信システムの構成図であり、例えば、ダイバーシティ機能を有するFPUのシステム構成を示している。例えば、マラソン中継等に用いられるFPUでは、移動局である中継車のカメラで撮影した映像素材を、中継車を移動させながら、山の上やビルの屋上等の高所に設けられた基地局へ伝送し、基地局から放送局へ伝送する。中継車は送信側であり、送信制御部11とIFケーブル12と送信高周波部13と送信アンテナ14とを備える。基地局は、受信側であり、受信アンテナ16a,16bと受信高周波部17とIFケーブル18と受信制御部19とを備える。 FIG. 5 is a configuration diagram of a transmission / reception system according to the background art, and shows, for example, a system configuration of an FPU having a diversity function. For example, in an FPU used for a marathon relay, etc., video material shot with a relay station camera, which is a mobile station, is transmitted to a base station installed on a high place such as a mountain top or a rooftop of a building while moving the relay car. And transmitted from the base station to the broadcasting station. The relay vehicle is a transmission side, and includes a transmission control unit 11, an IF cable 12, a transmission high-frequency unit 13, and a transmission antenna 14. The base station is a receiving side, and includes receiving antennas 16a and 16b, a receiving high-frequency unit 17, an IF cable 18, and a receiving control unit 19.
  撮影された映像は、映像エンコーダなどにより圧縮され、送信制御部11に入力される。送信制御部11では、OFDM(Orthogonal Frequency Division Multiplexing)等の変調処理を行い、IFケーブル12を経由して、IF変調信号を送信高周波部13に入力する。IFは、Intermediate Frequency(中間周波数)を意味する。送信高周波部13では、IF周波数からRF(Radio Frequency:高周波)周波数に変換し、送信アンテナ14を経由して電波として送出する。送出された電波は、伝搬路15を介し、受信アンテナ16a,16bで受信される。 The captured video is compressed by a video encoder or the like and input to the transmission control unit 11. The transmission control unit 11 performs a modulation process such as OFDM (Orthogonal Frequency Division Multiplexing) and inputs the IF modulation signal to the transmission high-frequency unit 13 via the IF cable 12. IF means Intermediate Frequency (intermediate frequency). The transmission high-frequency unit 13 converts the IF frequency to an RF (Radio (Frequency) frequency, and transmits it as a radio wave via the transmission antenna 14. The transmitted radio wave is received by the receiving antennas 16 a and 16 b through the propagation path 15.
  受信アンテナ16a,16bは、強い指向性を有し、伝送中は常に送信元の送信アンテナ14に向け続ける必要がある。しかしながら、FPUのような移動伝送システムでは、伝搬路15の特性が時々刻々変動し、受信アンテナ16a,16bに到達する受信信号の振幅と位相は大きく変動する。その為、高い受信性能を実現する受信ダイバーシティ方式がよく用いられている。受信ダイバーシティでは、1つの送信信号に対して、空間的に離れた位置に配置した複数の受信アンテナを設け、各アンテナで受信した信号を合成することで特性改善を図ることができる。 Receiving antennas 16a and 16b have strong directivity and must always be directed to the transmitting antenna 14 of the transmission source during transmission. However, in a mobile transmission system such as an FPU, the characteristics of the propagation path 15 change from moment to moment, and the amplitude and phase of the received signals that reach the receiving antennas 16a and 16b vary greatly. Therefore, a reception diversity system that realizes high reception performance is often used. In reception diversity, a plurality of reception antennas arranged at spatially separated positions are provided for one transmission signal, and characteristics can be improved by combining signals received by the respective antennas.
  図6は、アンテナ相関とダイバーシティ効果の関係を示す図である。上記のような受信ダイバーシティでは、図6に示すように、アンテナ間の相関性が低い程、ダイバーシティによる改善が大きく、4~5dBの改善効果が得られる。一方、アンテナ間の特性が完全に一致すると(アンテナ相関=1)、熱雑音の無相関性による3dBの改善のみとなり、その改善度は低い。このアンテナ間相関は、各々の受信アンテナの間の空間的な距離を広くすることで低くなる。 FIG. 6 is a diagram showing the relationship between antenna correlation and diversity effect. In reception diversity as described above, as shown in FIG. 6, the lower the correlation between antennas, the greater the improvement due to diversity, and the improvement effect of 4 to 5 dB is obtained. On the other hand, if the characteristics between the antennas are completely the same (antenna correlation = 1), the improvement is only 3 dB due to the non-correlation of thermal noise, and the improvement is low. This inter-antenna correlation is lowered by increasing the spatial distance between the receiving antennas.
  図5の構成では、1系統目の受信アンテナ16aと2系統目の受信アンテナ16bにより受信し、それぞれの受信アンテナで受信した信号は、受信高周波部17に入力され、それぞれ異なる2つのIF周波数の信号に変換される。FPUの規格であるARIB STD B-57では、望ましいIF周波数として130MHz、190MHzが挙げられている。これらのIF信号は重畳され、IFケーブル18を経由して受信制御部19に入力される。受信制御部19では、それぞれのIF信号を最大比合成などのダイバーシティ方式により合成し、復調する。その後、誤り訂正処理を経て映像デコータに出力することで、映像音声情報が得られる。 In the configuration of FIG. 5, signals received by the first receiving antenna 16a and the second receiving antenna 16b and received by the respective receiving antennas are input to the receiving high-frequency unit 17 and have two different IF frequencies. Converted to a signal. In ARIB STD B-57, which is an FPU standard, 130 MHz and 190 MHz are listed as desirable IF frequencies. These IF signals are superimposed and input to the reception control unit 19 via the IF cable 18. The reception control unit 19 combines and demodulates each IF signal by a diversity method such as maximum ratio combining. Thereafter, the video / audio information is obtained by outputting to the video decoder through error correction processing.
  下記の特許文献1には、ダイバーシティ受信のOFDM方式への適用について記載されている。 特許 Patent Document 1 below describes the application of diversity reception to the OFDM system.
特開2008-118710号公報JP 2008-118710 A
  前述したように、アンテナ間相関を低く抑えるためには、アンテナ間の距離を広くすることが重要である。しかし、現実的には1つの受信高周波部17の筐体に複数のアンテナを設ける場合、アンテナ設置範囲が制限されるため、アンテナ間距離が狭くなってしまうという問題がある。 As described above, in order to keep the correlation between antennas low, it is important to increase the distance between the antennas. However, in reality, when a plurality of antennas are provided in the housing of one reception high-frequency unit 17, there is a problem that the distance between the antennas is narrowed because the antenna installation range is limited.
  筐体とアンテナをケーブルで接続することで、アンテナ間距離を広くすることも考えられるが、GHzオーダーの周波数になるとケーブルでの損失も多く、ケーブルが長くなるとダイバーシティで得られた改善度をケーブル損失が相殺してしまうこともある。また、受信アンテナの直後にLNAを設けることでケーブル損失を防ぐことも可能であるが、LNAの設置機構やLNAへの電源供給など、システム規模を増大してしまうという欠点がある。LNAは、本明細書では、Low Noise Amplifierを意味する。 It is possible to increase the distance between the antennas by connecting the housing and the antenna with a cable. However, when the frequency is in the order of GHz, there is a lot of loss in the cable. Loss may cancel out. In addition, although it is possible to prevent cable loss by providing an LNA immediately after the receiving antenna, there is a drawback in that the system scale increases, such as an LNA installation mechanism and power supply to the LNA. In this specification, LNA means Low Noise で は Amplifier.
  ところで、マラソン中継などの大きなイベントでは、複数の中継車を用いて伝送を行う必要があり、複数台のFPUシステムを用いた運用がなされている。図7は、背景技術に係る2チャンネル使用の送受信システムの構成図であり、2台のFPUシステムを用いた一例を示している。図7では、2チャンネルの中継を、送信FPU1-1、送信アンテナ1-2、送信FPU2-1、送信アンテナ2-2、受信FPU20、30、及び4本の受信アンテナ21a、21b、31a、31bを用いて運用する例を示している。 By the way, in a big event such as a marathon relay, it is necessary to perform transmission using a plurality of relay vehicles, and an operation using a plurality of FPU systems is performed. FIG. 7 is a configuration diagram of a transmission / reception system using two channels according to the background art, and shows an example using two FPU systems. In FIG. 7, two-channel relaying is performed by transmitting FPU 1-1, transmitting antenna 1-2, transmitting FPU 2-1, transmitting antenna 2-2, receiving FPUs 20, 30, and four receiving antennas 21a, 21b, 31a, 31b. It shows an example of operation using.
  このように、FPUのシステム台数をNとすると、2つの信号を合成する受信ダイバーシティ方式では、受信アンテナは2N本が必要である。FPUの運用では、安定した受信を実現するよう、なるべく高い受信高にするため、受信アンテナ21a、21b、31a、31bは、山の上やビルの屋上や鉄塔に設置することが多く、受信アンテナが2N本必要となるダイバーシティは非常に運用性が悪い。また、機材運搬が困難なところが多く、機材が増大することによる負担は大きい。そのため、アンテナ相関が高くなることを妥協して、受信FPU20、30の筐体に、それぞれの受信アンテナを2本近接させて設置することで、運用性の向上に努めている。 As described above, assuming that the number of FPU systems is N, the reception diversity system that synthesizes two signals requires 2N reception antennas. In FPU operation, the receiving antennas 21a, 21b, 31a, 31b are often installed on the top of a mountain, on the roof of a building, or on a steel tower so that the receiving height is as high as possible so as to realize stable reception. This required diversity is very inoperable. In addition, there are many places where it is difficult to transport equipment, and the burden due to the increase in equipment is large. For this reason, compromise is made in that the antenna correlation becomes high, and efforts are made to improve operability by installing two receiving antennas in close proximity to the housings of the receiving FPUs 20 and 30.
  本発明は、上記の課題を解決するためになされたもので、受信設備の増大を避けつつ、受信ダイバーシティの特性改善を図ることができる技術を提供することを目的としている。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a technology capable of improving the characteristics of reception diversity while avoiding an increase in reception facilities.
  上記課題を解決するための、本願発明の受信システムの代表的な構成は、次のとおりである。すなわち、
  複数の受信装置を含む受信システムであって、
  前記複数の受信装置のそれぞれは、
  当該受信装置に対する第1の送信データを含む第1の周波数信号と、他の受信装置に対する第2の送信データを含む第2の周波数信号を受信する受信アンテナと、
  前記第1の周波数信号と前記第2の周波数信号に基づき、前記第1の送信データを含む第1の中間周波数信号と、前記第2の送信データを含む第2の中間周波数信号を生成する中間周波数信号生成部と、
  前記第1の中間周波数信号と前記第2の中間周波数信号を合成し、合成信号を生成する合成部と、
  前記合成信号を、前記第1の中間周波数信号と前記第2の中間周波数信号に分離する分離部と、
  当該受信装置の分離部で分離された前記第1の中間周波数信号と、他の受信装置の分離部で分離され前記第1の送信データを含む第3の中間周波数信号とが入力されて、前記第1の送信データを含むダイバーシティ合成信号が生成されるダイバーシティ合成部と、
  を備えることを特徴とする受信システム。
A typical configuration of the receiving system of the present invention for solving the above-described problems is as follows. That is,
A receiving system including a plurality of receiving devices,
Each of the plurality of receiving devices is
A receiving antenna that receives a first frequency signal including first transmission data for the receiving device and a second frequency signal including second transmission data for another receiving device;
An intermediate for generating a first intermediate frequency signal including the first transmission data and a second intermediate frequency signal including the second transmission data based on the first frequency signal and the second frequency signal. A frequency signal generator;
A combining unit that combines the first intermediate frequency signal and the second intermediate frequency signal to generate a combined signal;
A separation unit that separates the synthesized signal into the first intermediate frequency signal and the second intermediate frequency signal;
The first intermediate frequency signal separated by the separation unit of the receiving device and the third intermediate frequency signal including the first transmission data separated by the separation unit of another receiving device are input, A diversity combining unit for generating a diversity combined signal including the first transmission data;
A receiving system comprising:
  また、本願発明の受信装置の代表的な構成は、次のとおりである。すなわち、
  第1の送信データを含む第1の搬送波信号と、第2の送信データを含む第2の搬送波信号を受信する受信アンテナと、
  前記第1の搬送波信号と第2の搬送波信号に基づき、前記第1の送信データを含む第1の中間周波数信号と、前記第2の送信データを含む第2の中間周波数信号を生成する中間周波数信号生成部と、
  前記第1の中間周波数信号と前記第2の中間周波数信号を合成し、合成信号を生成する合成部と、
  前記合成信号を、前記第1の中間周波数信号と前記第2の中間周波数信号に分離する分離部と、
  前記分離部で分離された前記第1の中間周波数信号と、他の受信装置から受信した中間周波数信号であって、前記第1の送信データを含む第3の中間周波数信号とが入力されてダイバーシティ合成を行うダイバーシティ合成部と、
  を備えることを特徴とする受信装置。
A typical configuration of the receiving apparatus of the present invention is as follows. That is,
A receiving antenna that receives a first carrier signal that includes first transmission data and a second carrier signal that includes second transmission data;
An intermediate frequency that generates a first intermediate frequency signal including the first transmission data and a second intermediate frequency signal including the second transmission data based on the first carrier signal and the second carrier signal. A signal generator;
A combining unit that combines the first intermediate frequency signal and the second intermediate frequency signal to generate a combined signal;
A separation unit that separates the synthesized signal into the first intermediate frequency signal and the second intermediate frequency signal;
The first intermediate frequency signal separated by the separation unit and an intermediate frequency signal received from another receiving device and including a third intermediate frequency signal including the first transmission data are input to receive diversity. A diversity combining unit for combining;
A receiving apparatus comprising:
  上記構成によれば、受信設備の増大を避けつつ、受信ダイバーシティの特性改善を図ることができる。 According to the above configuration, it is possible to improve reception diversity characteristics while avoiding an increase in reception facilities.
本発明の第1実施例に係る送受信システムの構成図である。It is a block diagram of the transmission / reception system which concerns on 1st Example of this invention. 本発明の第1実施例に係るミキサとBPFのスペクトルを示す図である。It is a figure which shows the mixer and spectrum of BPF which concern on 1st Example of this invention. 本発明の第2実施例に係る送受信システムの構成図である。It is a block diagram of the transmission / reception system which concerns on 2nd Example of this invention. 本発明の第3実施例に係る送受信システムの構成図である。It is a block diagram of the transmission / reception system which concerns on 3rd Example of this invention. 背景技術に係る送受信システムの構成図である。It is a block diagram of the transmission / reception system which concerns on background art. アンテナ相関とダイバーシティ効果の関係を示す図である。It is a figure which shows the relationship between an antenna correlation and a diversity effect. 背景技術に係る2チャンネル使用の送受信システムの構成図である。It is a block diagram of the transmission / reception system using 2 channels which concerns on background art.
  本発明の実施形態について説明する。
  本発明の実施形態においては、複数の周波数チャンネルを用いたダイバーシティ送受信システムを構築する際に、受信アンテナを複数チャンネルで共用することにより、システム規模を低減させるとともに、アンテナ間隔を拡げる。これにより、アンテナ相関を低減させ、ダイバーシティ性能を改善させる。
An embodiment of the present invention will be described.
In the embodiment of the present invention, when constructing a diversity transmission / reception system using a plurality of frequency channels, the reception antenna is shared by a plurality of channels, thereby reducing the system scale and expanding the antenna interval. This reduces antenna correlation and improves diversity performance.
(第1実施例)
  まず、本発明の実施形態における第1実施例について、図1を用いて説明する。図1は、第1実施例に係る送受信システムの構成図であり、2チャンネルのFPU伝送を行う例を示す。前述したように、マラソン中継などでは複数のチャンネルを使用した運用を行うが、図1では理解を容易にするため2チャンネルの運用について記載している。3チャンネル以上の運用例については、他の実施例にて説明する。
(First embodiment)
First, the 1st Example in embodiment of this invention is demonstrated using FIG. FIG. 1 is a configuration diagram of a transmission / reception system according to the first embodiment, showing an example of performing 2-channel FPU transmission. As described above, the operation using a plurality of channels is performed in the marathon relay etc., but FIG. 1 describes the operation of two channels for easy understanding. An operation example of three channels or more will be described in another embodiment.
  図1に示すように、第1系統の送信FPU1-1から送出された信号(ch1)は、第1系統の受信アンテナ101と、第2系統の受信アンテナ201に到達する。また同様に、第2系統の送信FPU2-1から送出された信号(ch2)も、受信アンテナ101と受信アンテナ201に到達する。詳細の構成は後述するが、本実施形態の第一の主眼は、ch1とch2の2チャンネルの信号を、これら受信アンテナ101と201の2本のアンテナを用いてダイバーシティ受信することにより、システム規模を低減させることにある。 As shown in FIG. 1, the signal (ch1) transmitted from the transmission FPU 1-1 of the first system reaches the reception antenna 101 of the first system and the reception antenna 201 of the second system. Similarly, the signal (ch2) transmitted from the transmission FPU 2-1 of the second system also reaches the reception antenna 101 and the reception antenna 201. Although the detailed configuration will be described later, the first main point of the present embodiment is that the system scale is obtained by receiving the two-channel signals ch1 and ch2 using the two antennas 101 and 201. It is in reducing.
  また、受信アンテナ101が接続される受信高周波部100の筐体と、受信アンテナ201が接続される受信高周波部200の筐体が異なるため、受信アンテナと受信高周波部の間に長いケーブルを使用することなく、受信アンテナ101と201の間隔を広く設置することが可能である。本実施形態の第二の主眼としては、これにより、アンテナ間隔が広くなり、アンテナ相関を低減させ、受信ダイバーシティを効果的に運用することを可能とすることである。 In addition, since the housing of the reception high-frequency unit 100 to which the reception antenna 101 is connected is different from the housing of the reception high-frequency unit 200 to which the reception antenna 201 is connected, a long cable is used between the reception antenna and the reception high-frequency unit. It is possible to install a wide space between the receiving antennas 101 and 201 without any problem. As a second main point of the present embodiment, this makes it possible to widen the antenna interval, reduce the antenna correlation, and effectively operate the reception diversity.
  このように、本発明の実施形態では、システム規模の低減とダイバーシティ性能の改善を両立させることが可能となる。以下に、第1実施例の詳細な構成について説明する。 As described above, in the embodiment of the present invention, it is possible to achieve both reduction of the system scale and improvement of the diversity performance. The detailed configuration of the first embodiment will be described below.
  図1に示すように、この送受信システムは、第1系統のFPU伝送装置と第2系統のFPU伝送装置を備える。第1系統のFPU伝送装置は、第1送信FPU1‐1と、受信装置としての第1受信FPUとを備える。第2系統のFPU伝送装置は、第2送信FPU2‐1と、受信装置としての第2受信FPUとを備える。第1送信FPU1‐1と第2送信FPU2‐1は、背景技術と同様に、それぞれ、送信制御部11と送信高周波部13を備える。 送 受 信 As shown in FIG. 1, this transmission / reception system includes a first system FPU transmission device and a second system FPU transmission device. The FPU transmission apparatus of the first system includes a first transmission FPU1-1 and a first reception FPU as a reception apparatus. The FPU transmission apparatus of the second system includes a second transmission FPU2-1 and a second reception FPU as a reception apparatus. The first transmission FPU1-1 and the second transmission FPU2-1 each include a transmission control unit 11 and a transmission high-frequency unit 13 as in the background art.
  第1送信FPU1‐1は、チャンネル(以降、chとも称す)1の送信データを、ch1の搬送波を用いて、送信アンテナ1‐2から無線送信する。ch1の搬送波の中心周波数をf1とする。第2送信FPU2‐1は、ch2の送信データを、ch2の搬送波を用いて、送信アンテナ2‐2から無線送信する。ch2の搬送波の中心周波数をf2とする。f1とf2は互いに異なり、また、ch1の送信データとch2の送信データは互いに異なる。 The first transmission FPU 1-1 wirelessly transmits the transmission data of the channel (hereinafter also referred to as ch) 1 from the transmission antenna 1-2 using the carrier wave of ch1. Let f1 be the center frequency of the ch1 carrier. The second transmission FPU 2-1 wirelessly transmits the transmission data of ch2 from the transmission antenna 2-2 using the carrier wave of ch2. Let f2 be the center frequency of the carrier wave of ch2. f1 and f2 are different from each other, and the transmission data of ch1 and the transmission data of ch2 are different from each other.
  図1に示すように、ch1の搬送波とch2の搬送波は、第1受信FPUの受信アンテナ101と、第2受信FPUの受信アンテナ201において、それぞれ受信される。図1では、ch1の搬送波31aとch2の搬送波32aが受信アンテナ101で受信され、ch1の搬送波31bとch2の搬送波32bが受信アンテナ201で受信される様子を示す。 As shown in FIG. 1, the ch1 carrier and the ch2 carrier are received by the reception antenna 101 of the first reception FPU and the reception antenna 201 of the second reception FPU, respectively. In FIG. 1, the ch1 carrier 31 a and the ch2 carrier 32 a are received by the receiving antenna 101, and the ch1 carrier 31 b and the ch2 carrier 32 b are received by the receiving antenna 201.
  このように、受信アンテナ101は、当該受信装置(第1受信FPU)に対する送信データ(ch1)を含む周波数信号と、他の受信装置(第2受信FPU)に対する送信データ(ch2)を含む周波数信号を受信する。受信アンテナ201は、当該受信装置(第2受信FPU)に対する送信データ(ch2)を含む周波数信号と、他の受信装置(第1受信FPU)に対する送信データ(ch1)を含む周波数信号を受信する。 As described above, the receiving antenna 101 has a frequency signal including transmission data (ch1) for the receiving device (first receiving FPU) and a frequency signal including transmission data (ch2) for another receiving device (second receiving FPU). Receive. The reception antenna 201 receives a frequency signal including transmission data (ch2) for the reception device (second reception FPU) and a frequency signal including transmission data (ch1) for another reception device (first reception FPU).
  第1受信FPUは、第1受信高周波部100と第1受信制御部110を備える受信装置である。第1受信高周波部100は、受信アンテナ101と、LNA102と、中間周波数信号生成部103と、IF(中間周波数信号)合成部105を備える。第1受信制御部110は、IF(中間周波数信号)分離部111と、ダイバーシティ合成部112と、誤り訂正部113を備える。LNA(Low Noise Amplifier)は、NF(Noise Figure:雑音指数)の小さい増幅器であり、設けなくてもよい場合もあるが、なるべく設けることが望ましい。IFは、前述したように中間周波数、又は中間周波数信号のことである。 The first reception FPU is a reception device that includes the first reception high-frequency unit 100 and the first reception control unit 110. The first reception high-frequency unit 100 includes a reception antenna 101, an LNA 102, an intermediate frequency signal generation unit 103, and an IF (intermediate frequency signal) synthesis unit 105. The first reception control unit 110 includes an IF (intermediate frequency signal) separation unit 111, a diversity combining unit 112, and an error correction unit 113. An LNA (Low Noise Amplifier) is an amplifier having a small NF (Noise Figure) and may not be provided, but it is desirable to provide it as much as possible. IF is an intermediate frequency or an intermediate frequency signal as described above.
  中間周波数信号生成部103は、ミキサ103aと、ミキサ103bと、BPF104aと、BPF104bを備える。ミキサは、入力信号の高周波数をより低い周波数に変換して出力する周波数変換器である。詳しくは、例えば周波数f1の信号が入力されると、所定の周波数f0の局部発振器(不図示)からの信号を乗算し、両信号の差の周波数信号を出力する。 The intermediate frequency signal generation unit 103 includes a mixer 103a, a mixer 103b, a BPF 104a, and a BPF 104b. The mixer is a frequency converter that converts a high frequency of an input signal into a lower frequency and outputs the converted signal. Specifically, for example, when a signal having a frequency f1 is input, a signal from a local oscillator (not shown) having a predetermined frequency f0 is multiplied and a frequency signal corresponding to the difference between the two signals is output.
  第1実施例では、受信アンテナ101で受信され、LNA102で増幅された高周波(例えば1.2GHz付近)の搬送波は、ミキサ103aによって中心周波数が略130MHzの中間周波数に変換され、ミキサ103bによって中心周波数が約190MHzの中間周波数に変換される。この搬送波には、第1送信FPU1‐1から送信されたch1の搬送波(周波数f1)と、第2送信FPU2‐1から送信されたch2の搬送波(周波数f2)が含まれる。 In the first embodiment, a high frequency carrier wave (for example, near 1.2 GHz) received by the receiving antenna 101 and amplified by the LNA 102 is converted to an intermediate frequency having a center frequency of about 130 MHz by the mixer 103a, and the center frequency is converted by the mixer 103b. Is converted to an intermediate frequency of about 190 MHz. The carrier wave includes the ch1 carrier wave (frequency f1) transmitted from the first transmission FPU1-1 and the ch2 carrier wave (frequency f2) transmitted from the second transmission FPU2-1.
  BPF104aは、約130MHzを中心に略1チャンネル分の帯域幅に相当する通過帯域を有するバンドパスフィルタであり、ミキサ103aから出力された130MHz付近の中間周波数信号に対し、ch1の送信データ以外の周波数信号を抑圧し、ch1の送信データ(ch1‐1)だけを通過させる。BPF104bは、ミキサ103bから出力された190MHz付近の中間周波数信号に対し、ch2の送信データ以外の周波数信号を抑圧し、ch2の送信データ(ch2‐1)だけを通過させる。 The BPF 104a is a band-pass filter having a pass band corresponding to a bandwidth of approximately one channel centered on about 130 MHz, and a frequency other than the transmission data of ch1 with respect to an intermediate frequency signal near 130 MHz output from the mixer 103a. The signal is suppressed and only the transmission data (ch1-1) of ch1 is passed. The BPF 104b suppresses the frequency signal other than the ch2 transmission data with respect to the intermediate frequency signal near 190 MHz output from the mixer 103b, and passes only the ch2 transmission data (ch2-1).
  こうして、中間周波数信号生成部103は、受信アンテナ101で受信され、LNA102で増幅された搬送波信号、つまり、第1受信FPUに対する送信データ(ch1)を含む搬送波信号と、他の受信FPUに対する送信データ(ch2)を含む搬送波信号の高周波数を中間周波数に変換し、第1受信FPUに対する送信データを含む中間周波数信号と、他の受信FPUに対する送信データを含む中間周波数信号とを生成する。図1の例では、ch1‐1を含む中間周波数信号と、ch2‐1を含む中間周波数信号とを生成する。 Thus, the intermediate frequency signal generation unit 103 receives the carrier signal received by the reception antenna 101 and amplified by the LNA 102, that is, the carrier signal including the transmission data (ch1) for the first reception FPU and the transmission data for the other reception FPUs. The high frequency of the carrier wave signal including (ch2) is converted to an intermediate frequency, and an intermediate frequency signal including transmission data for the first reception FPU and an intermediate frequency signal including transmission data for another reception FPU are generated. In the example of FIG. 1, an intermediate frequency signal including ch1-1 and an intermediate frequency signal including ch2-1 are generated.
  IF合成部105は、入力された複数(図1の例では2つ)の中間周波数信号を合成、つまり加算(重畳)して、1つの中間周波数合成信号を生成する合成部である。図1の例では、ch1‐1を含む中間周波数信号と、ch2‐1を含む中間周波数信号とを合成し、合成信号を生成する。 The IF synthesis unit 105 is a synthesis unit that synthesizes, that is, adds (superimposes) a plurality of input (two in the example of FIG. 1) intermediate frequency signals to generate one intermediate frequency synthesized signal. In the example of FIG. 1, the intermediate frequency signal including ch1-1 and the intermediate frequency signal including ch2-1 are combined to generate a combined signal.
  IF分離部111は、IF合成部105で生成された中間周波数合成信号を、IF合成部105で合成される前の複数の中間周波数信号に分離する分離部である。図1の例では、IF合成部105で生成された中間周波数合成信号を、周波数により弁別し、ch1‐1を含む中間周波数信号と、ch2‐1を含む中間周波数信号とに分離する。上述したように、ch1‐1を含む中間周波数信号は約130MHz、ch2‐1を含む中間周波数信号は約190MHzである。 The IF separation unit 111 is a separation unit that separates the intermediate frequency synthesized signal generated by the IF synthesis unit 105 into a plurality of intermediate frequency signals before being synthesized by the IF synthesis unit 105. In the example of FIG. 1, the intermediate frequency synthesized signal generated by the IF synthesizing unit 105 is discriminated by frequency and separated into an intermediate frequency signal including ch1-1 and an intermediate frequency signal including ch2-1. As described above, the intermediate frequency signal including ch1-1 is approximately 130 MHz, and the intermediate frequency signal including ch2-1 is approximately 190 MHz.
  ダイバーシティ合成部112は、IF分離部111で分離された中間周波数信号であって、当該チャンネルの送信データ(図1の例ではch1‐1)を含む中間周波数信号(約130MHz)と、他の受信装置(図1の例では第2受信FPU)のIF分離部211で分離された中間周波数信号であって、当該チャンネルの送信データ(図1の例ではch1‐2)を含む中間周波数信号(約190MHz)とが入力されてダイバーシティ合成を行い、信号を復調する。 The diversity combining unit 112 is an intermediate frequency signal separated by the IF separation unit 111 and includes an intermediate frequency signal (about 130 MHz) including transmission data of the channel (ch1-1 in the example of FIG. 1) and other receptions. The intermediate frequency signal separated by the IF separation unit 211 of the device (second receiving FPU in the example of FIG. 1) and including the transmission data of the channel (ch1-2 in the example of FIG. 1) (about 190 MHz) is input and diversity combining is performed to demodulate the signal.
  一例としてダイバーシティ合成部112は、よく知られているように、SNR(信号対雑音電力比)が最大になるように合成(最大比合成ダイバーシティ)する。 As an example, the diversity combining unit 112 performs combining (maximum ratio combining diversity) so that the SNR (signal to noise power ratio) is maximized, as is well known.
  こうして、ダイバーシティ合成部112では、当該受信装置(第1受信FPU)の分離部で分離され当該受信装置に対する送信データ(ch1)を含む中間周波数信号と、他の受信装置(第2受信FPU)の分離部で分離され当該受信装置に対する送信データ(ch1)を含む中間周波数信号とが入力されて、当該受信装置に対する送信データ(ch1)を含むダイバーシティ合成信号が生成される。 Thus, diversity combining section 112 separates the intermediate frequency signal including transmission data (ch1) for the receiving apparatus separated by the separating section of the receiving apparatus (first receiving FPU) and the other receiving apparatuses (second receiving FPU). An intermediate frequency signal separated by the separation unit and including transmission data (ch1) for the receiving device is input, and a diversity combined signal including transmission data (ch1) for the receiving device is generated.
  誤り訂正部113は、ダイバーシティ合成部112でダイバーシティ合成された信号に対して、伝送誤りを訂正し、ch1の映像信号を出力する。 Error correction section 113 corrects the transmission error of the signal that has been diversity combined by diversity combining section 112, and outputs a ch1 video signal.
  第2受信FPUは、第2受信高周波部200と第2受信制御部210を備える受信装置である。第2受信高周波部200は、受信アンテナ201と、LNA202と、中間周波数信号生成部203と、IF合成部205を備える。第2受信制御部210は、IF分離部211と、ダイバーシティ合成部212と、誤り訂正部213を備える。中間周波数信号生成部203は、ミキサ203aと、ミキサ203bと、BPF204aと、BPF204bを備える。 The second reception FPU is a reception device that includes the second reception high-frequency unit 200 and the second reception control unit 210. The second reception high-frequency unit 200 includes a reception antenna 201, an LNA 202, an intermediate frequency signal generation unit 203, and an IF synthesis unit 205. The second reception control unit 210 includes an IF separation unit 211, a diversity combining unit 212, and an error correction unit 213. The intermediate frequency signal generation unit 203 includes a mixer 203a, a mixer 203b, a BPF 204a, and a BPF 204b.
  第1実施例では、受信アンテナ201で受信され、LNA202で増幅された高周波(例えば1.2GHz付近)の搬送波は、ミキサ203aによって中心周波数が約130MHzの中間周波数に変換され、ミキサ203bで190MHz付近の中間周波数に変換される。この搬送波には、第1送信FPU1‐1から送信された搬送波(周波数f1)と、第2送信FPU2‐1から送信された搬送波(周波数f2)が含まれる。 In the first embodiment, a high frequency (for example, near 1.2 GHz) carrier wave received by the receiving antenna 201 and amplified by the LNA 202 is converted into an intermediate frequency having a center frequency of about 130 MHz by the mixer 203a, and is around 190 MHz by the mixer 203b. Is converted to an intermediate frequency. This carrier wave includes a carrier wave (frequency f1) transmitted from the first transmission FPU1-1 and a carrier wave (frequency f2) transmitted from the second transmission FPU2-1.
  BPF204aは、ミキサ203aから出力された130MHz付近の中間周波数信号に対し、ch2の送信データ以外の周波数信号を抑圧し、ch2の送信データ(ch2‐2)だけを通過させる。BPF204bは、ミキサ203bから出力された190MHz付近の中間周波数信号に対し、ch1の送信データ以外の周波数信号を抑圧し、ch1の送信データ(ch1‐2)だけを通過させる。 The BPF 204a suppresses the frequency signal other than the ch2 transmission data with respect to the intermediate frequency signal near 130 MHz output from the mixer 203a, and passes only the ch2 transmission data (ch2-2). The BPF 204b suppresses the frequency signal other than the transmission data of ch1 with respect to the intermediate frequency signal near 190 MHz output from the mixer 203b, and passes only the transmission data (ch1-2) of ch1.
  こうして、中間周波数信号生成部203は、受信アンテナ201で受信され、LNA202で増幅された搬送波信号、つまり、第2受信FPUに対する送信データ(ch2)を含む搬送波信号と、他の受信FPUに対する送信データ(ch1)を含む搬送波信号の高周波数を中間周波数に変換し、第2受信FPUに対する(図1の例ではch2‐2)を含む中間周波数信号と、他の受信FPUに対する送信データ(図1の例ではch1‐2)を含む中間周波数信号とを生成する。 Thus, the intermediate frequency signal generator 203 receives the carrier signal received by the receiving antenna 201 and amplified by the LNA 202, that is, the carrier signal including the transmission data (ch2) for the second reception FPU, and the transmission data for the other reception FPUs. The high frequency of the carrier wave signal including (ch1) is converted into an intermediate frequency, and the intermediate frequency signal including the second reception FPU (ch2-2 in the example of FIG. 1) and the transmission data (FIG. 1) In the example, an intermediate frequency signal including ch1-2) is generated.
  IF合成部205は、入力された複数(図1の例では2つ)の中間周波数信号を合成して、1つの中間周波数合成信号を生成する合成部である。図1の例では、ch2‐2を含む中間周波数信号と、ch1‐2を含む中間周波数信号とを合成し、合成信号を生成する。 The IF synthesis unit 205 is a synthesis unit that synthesizes a plurality of input intermediate frequency signals (two in the example of FIG. 1) to generate one intermediate frequency synthesis signal. In the example of FIG. 1, the intermediate frequency signal including ch2-2 and the intermediate frequency signal including ch1-2 are combined to generate a combined signal.
  IF分離部211は、IF合成部205で生成された中間周波数合成信号を、IF合成部205で合成される前の複数の中間周波数信号に分離する分離部である。図1の例では、IF合成部205で生成された中間周波数合成信号を、周波数により弁別し、ch2‐2を含む中間周波数信号と、ch1‐2を含む中間周波数信号とに分離する。上述したように、ch2‐2を含む中間周波数信号は約130MHz、ch1‐2を含む中間周波数信号は約190MHzである。 The IF separation unit 211 is a separation unit that separates the intermediate frequency synthesized signal generated by the IF synthesis unit 205 into a plurality of intermediate frequency signals before being synthesized by the IF synthesis unit 205. In the example of FIG. 1, the intermediate frequency synthesized signal generated by the IF synthesizing unit 205 is discriminated by frequency and separated into an intermediate frequency signal including ch2-2 and an intermediate frequency signal including ch1-2. As described above, the intermediate frequency signal including ch2-2 is approximately 130 MHz, and the intermediate frequency signal including ch1-2 is approximately 190 MHz.
  ダイバーシティ合成部212は、IF分離部211で分離された中間周波数信号であって、当該チャンネルの送信データ(図1の例ではch2‐2)を含む中間周波数信号(約130MHz)と、他の受信装置(図1の例では第1受信FPU)のIF分離部111で分離された中間周波数信号であって、当該チャンネルの送信データ(図1の例ではch2‐1)を含む中間周波数信号(約190MHz)とが入力されてダイバーシティ合成を行い、信号を復調する。一例として、ダイバーシティ合成部212は、ダイバーシティ合成部112と同様に、最大比合成ダイバーシチを行う。 The diversity combining unit 212 is an intermediate frequency signal separated by the IF separation unit 211 and includes an intermediate frequency signal (about 130 MHz) including transmission data (ch2-2 in the example of FIG. 1) of the channel and other receptions. The intermediate frequency signal separated by the IF separation unit 111 of the device (first reception FPU in the example of FIG. 1) and including the transmission data of the channel (ch2-1 in the example of FIG. 1) (about 190 MHz) is input and diversity combining is performed to demodulate the signal. As an example, the diversity combining unit 212 performs maximum ratio combining diversity in the same manner as the diversity combining unit 112.
  こうして、ダイバーシティ合成部212では、当該受信装置(第2受信FPU)の分離部で分離され当該受信装置に対する送信データ(ch2)を含む中間周波数信号と、他の受信装置(第1受信FPU)の分離部で分離され当該受信装置に対する送信データ(ch2)を含む中間周波数信号とが入力されて、当該受信装置に対する送信データ(ch2)を含むダイバーシティ合成信号が生成される。 Thus, diversity combining section 212 separates the intermediate frequency signal including the transmission data (ch2) for the receiving apparatus separated by the separating section of the receiving apparatus (second receiving FPU) and the other receiving apparatuses (first receiving FPU). An intermediate frequency signal separated by the separation unit and including transmission data (ch2) for the receiving device is input, and a diversity combined signal including transmission data (ch2) for the receiving device is generated.
  誤り訂正部213は、ダイバーシティ合成部212でダイバーシティ合成された信号に対して、伝送誤りを訂正し、ch2の映像信号を出力する。 Error correction section 213 corrects the transmission error of the signal that has been diversity combined by diversity combining section 212, and outputs a ch2 video signal.
  次に、受信アンテナ101、201で受信した受信信号に基づき、第1系統の受信装置でch1の送信データ、第2系統の受信装置でch2の送信データを取得するまでの動作を説明する。ch1の送信データやch2の送信データは、例えば映像信号である。 Next, based on the received signals received by the receiving antennas 101 and 201, the operation until the ch1 transmission data is acquired by the first system receiver and the ch2 transmission data by the second receiver is described. The transmission data of ch1 and the transmission data of ch2 are, for example, video signals.
  受信アンテナ101、201は、指向性を有するアンテナであり、送信アンテナ1‐2、送信アンテナ2‐2にそれぞれ向けられるべきであるが、互いに接近する複数の中継車が遠方にある場合などでは、1つの受信ビームで複数の中継車を捉えられることがある。本実施例では、中継車が直線的な道路を走る場合などにその延長線上に受信サイトを設置するなどして、できるだけ複数の送信FPUからの送信データを同時に1つのアンテナで受信するように運用するものとする。 The receiving antennas 101 and 201 are antennas having directivity, and should be directed to the transmitting antenna 1-2 and the transmitting antenna 2-2, respectively, but when a plurality of relay vehicles approaching each other are in the distance, A plurality of relay vehicles may be captured by one reception beam. In this embodiment, when a relay car runs on a straight road, a reception site is installed on the extension line so that transmission data from a plurality of transmission FPUs can be simultaneously received by one antenna as much as possible. It shall be.
  受信アンテナ101で受信した受信信号は、LNA102に入力され増幅される。受信アンテナ201で受信した受信信号は、LNA202に入力され増幅される。このとき、それぞれのチャンネル(ch1とch2)の周波数の差は、搬送波周波数に対して比較的狭い間隔である(比帯域が小さい)ことが望ましい。これは、受信アンテナ101、201やLNA102、202の有効帯域幅の中に、それぞれのチャンネルが収容されている必要があるためである。この条件下であれば、LNA102、202では、到達した2チャンネルの信号を同時に増幅することができる。なお、受信アンテナ101、201や受信高周波部100、200を、1.2GHz/2.3GHz共用の構成とすることを妨げるものではない。 The reception signal received by the receiving antenna 101 is input to the LNA 102 and amplified. A received signal received by the receiving antenna 201 is input to the LNA 202 and amplified. At this time, it is desirable that the difference between the frequencies of the respective channels (ch1 and ch2) is relatively narrow with respect to the carrier frequency (the ratio band is small). This is because the respective channels need to be accommodated in the effective bandwidths of the receiving antennas 101 and 201 and the LNAs 102 and 202. Under these conditions, the LNAs 102 and 202 can simultaneously amplify the reached two-channel signals. Note that this does not prevent the receiving antennas 101 and 201 and the receiving high- frequency units 100 and 200 from being configured to share 1.2 GHz / 2.3 GHz.
  LNA102で増幅された信号は、分岐され、ミキサ103aと103bに入力される。これらのミキサで、搬送波のRF周波数がIF周波数に周波数変換される。このとき、前述したように、ミキサ103aと103bで異なるIF周波数に変換する。具体的には、前述したFPUのARIB規格で推奨されているように、RF周波数をミキサ103aでは130MHzに、ミキサ103bでは190MHzに変換する。 The signal amplified by the LNA 102 is branched and input to the mixers 103a and 103b. With these mixers, the RF frequency of the carrier wave is converted to an IF frequency. At this time, as described above, the mixers 103a and 103b perform conversion to different IF frequencies. Specifically, the RF frequency is converted to 130 MHz in the mixer 103a and 190 MHz in the mixer 103b as recommended in the ARIB standard for the FPU described above.
  ミキサ103aによりIF周波数(130MHz)に変換されたIF信号は、BPF104aにより、ch1の帯域外の信号を抑圧し、主信号であるch1の信号(ch1‐1)のみを抽出する。ミキサ103bによりIF周波数(190MHz)に変換されたIF信号は、BPF104bにより、ch2の帯域外の信号を抑圧し、主信号であるch2の信号(ch2‐1)のみを抽出する。 The IF signal converted to IF frequency (130 MHz) by the mixer 103a suppresses the signal outside the ch1 band by the BPF 104a, and extracts only the ch1 signal (ch1-1) which is the main signal. The IF signal converted to the IF frequency (190 MHz) by the mixer 103b suppresses the signal outside the ch2 band by the BPF 104b, and extracts only the ch2 signal (ch2-1) as the main signal.
  同様に、LNA202で増幅された信号は、分岐され、ミキサ203aと203bに入力される。これらのミキサで、搬送波のRF周波数がIF周波数に周波数変換される。具体的には、RF周波数をミキサ203aでは130MHzに、ミキサ203bでは190MHzに変換する。 Similarly, the signal amplified by the LNA 202 is branched and input to the mixers 203a and 203b. With these mixers, the RF frequency of the carrier wave is converted to an IF frequency. Specifically, the RF frequency is converted to 130 MHz in the mixer 203a and 190 MHz in the mixer 203b.
  ミキサ203aによりIF周波数(130MHz)に変換されたIF信号は、BPF204aにより、ch2の帯域外の信号を抑圧し、主信号であるch2の信号(ch2‐2)のみを抽出する。ミキサ203bによりIF周波数(190MHz)に変換されたIF信号は、BPF204bにより、ch1の帯域外の信号を抑圧し、主信号であるch1の信号(ch1‐2)のみを抽出する。 The IF signal converted to IF frequency (130 MHz) by the mixer 203a suppresses the signal outside the ch2 band by the BPF 204a, and extracts only the ch2 signal (ch2-2) as the main signal. The IF signal converted to the IF frequency (190 MHz) by the mixer 203b suppresses the signal outside the ch1 band by the BPF 204b and extracts only the ch1 signal (ch1-2) which is the main signal.
  図2は、本発明の第1実施例に係るミキサとBPFによるチャンネル選択を示す図である。
  図2に示すように、1系統目の受信アンテナ101で受信した受信信号は、ch1とch2の周波数を含んでいるが、ミキサ103aとBPF104aにより、ch1の信号(ch1‐1)のみが抽出され、ミキサ103bとBPF104bにより、ch2の信号(ch2‐1)のみが抽出される。
FIG. 2 is a diagram illustrating channel selection by the mixer and the BPF according to the first embodiment of the present invention.
As shown in FIG. 2, the received signal received by the first receiving antenna 101 includes the ch1 and ch2 frequencies, but only the ch1 signal (ch1-1) is extracted by the mixer 103a and the BPF 104a. Only the ch2 signal (ch2-1) is extracted by the mixer 103b and the BPF 104b.
  同様に、2系統目の受信アンテナ201で受信した受信信号は、ch1とch2の周波数を含んでいるが、ミキサ203bとBPF204bにより、ch1の信号(ch1‐2)のみが抽出され、ミキサ203aとBPF204aにより、ch2の信号(ch2‐2)のみが抽出される。 Similarly, the received signal received by the second receiving antenna 201 includes the ch1 and ch2 frequencies, but only the ch1 signal (ch1-2) is extracted by the mixer 203b and the BPF 204b. Only the ch2 signal (ch2-2) is extracted by the BPF 204a.
  その後、1系統目の2つのIF信号(ch1‐1とch2‐1)は、IF合成部105により合成され、IFケーブル106により、IF分離部111へ伝送される。2系統目の2つのIF信号(ch1‐2とch2‐2)は、IF合成部205により合成され、IFケーブル206により、IF分離部211へ伝送される。IF合成部の構成を用いることで、各系統の2つのIF信号を、それぞれ1本のIFケーブルで伝送することが可能となる。IFケーブルには、例えば同軸ケーブルが用いられる。 After that, the two IF signals (ch1-1 and ch2-1) of the first system are combined by the IF combining unit 105 and transmitted to the IF separation unit 111 via the IF cable 106. Two IF signals (ch1-2 and ch2-2) of the second system are combined by the IF combining unit 205 and transmitted to the IF separation unit 211 via the IF cable 206. By using the configuration of the IF combining unit, it is possible to transmit two IF signals of each system using one IF cable. For example, a coaxial cable is used as the IF cable.
  なお、本例では、IFケーブルを用いて合成信号をIF合成部(105,205)からIF分離部(111,211)へ送信するように構成したが、ケーブルを用いず、無線により合成信号をIF合成部からIF分離部へ送信することも可能である。また、同軸ケーブルに限られず、アナログ変調を利用し光ケーブルで伝送してもよい。 In this example, the combined signal is transmitted from the IF combining unit (105, 205) to the IF separating unit (111, 211) using an IF cable, but the combined signal is transmitted wirelessly without using a cable. It is also possible to transmit from the IF synthesis unit to the IF separation unit. Moreover, it is not restricted to a coaxial cable, You may transmit with an optical cable using analog modulation.
  1系統目のIF分離部111において、IF合成部105で合成されたIF信号は、再度2つのIF信号に分離、つまり、IF合成部105で合成される前のIF信号(ch1‐1とch2‐1)に分離される。同様に、2系統目のIF分離部211において、IF合成部205で合成されたIF信号は、再度2つのIF信号に分離、つまり、IF合成部205で合成される前のIF信号(ch1‐2とch2‐2)に分離される。 In the IF separation unit 111 of the first system, the IF signal synthesized by the IF synthesis unit 105 is separated again into two IF signals, that is, the IF signals before being synthesized by the IF synthesis unit 105 (ch1-1 and ch2). -1). Similarly, in the second system IF separation unit 211, the IF signal synthesized by the IF synthesis unit 205 is separated again into two IF signals, that is, the IF signal (ch1- 2 and ch2-2).
  IF分離部111で分離された一方のIF信号(ch1-1)は、1系統目のダイバーシティ合成部112に入力される。もう一方のIF信号(ch2-1)は、2系統目のダイバーシティ合成部212に入力される。同様に、IF分離部211で分離された一方のIF信号(ch2-2)は2系統目のダイバーシティ合成部212に入力され、もう一方のIF信号(ch1-2)は、1系統目のダイバーシティ合成部112に入力される。 One IF signal (ch1-1) separated by the IF separation unit 111 is input to the diversity combining unit 112 of the first system. The other IF signal (ch2-1) is input to diversity combining section 212 in the second system. Similarly, one IF signal (ch2-2) separated by the IF separation unit 211 is input to the second diversity combining unit 212, and the other IF signal (ch1-2) is the first diversity. Input to the combining unit 112.
  このように、片方のIF信号を2つの系統間で交差させて受け渡すことにより、1系統目のダイバーシティ合成部112には、受信アンテナ101と201で受信したch1の信号が集約され、2系統目のダイバーシティ合成部212には、受信アンテナ101と201で受信したch2の信号が集約される。 In this way, by passing one IF signal crossing between the two systems and passing the signals, the diversity combining unit 112 of the first system aggregates the signals of ch1 received by the receiving antennas 101 and 201. The diversity combining unit 212 in the eye collects the ch2 signals received by the receiving antennas 101 and 201.
  このとき、IF分離部111からダイバーシティ合成部212へのIF信号(ch2-1)の受け渡し、IF分離部211からダイバーシティ合成部112へのIF信号(ch1-2)の受け渡しは、例えば同軸ケーブルを用いて行われるが、同軸ケーブルに限られず、光ケーブル等を用いてもよい。 At this time, the IF signal (ch2-1) is transferred from the IF separating unit 111 to the diversity combining unit 212, and the IF signal (ch1-2) is transferred from the IF separating unit 211 to the diversity combining unit 112, for example, using a coaxial cable. However, the present invention is not limited to the coaxial cable, and an optical cable or the like may be used.
  受信アンテナ101が設置される第1受信高周波部100と受信アンテナ201が設置される第2受信高周波部200との間の距離は、ダイバーシティ効果を高めるため大きく設定される(例えば数メートル以上)が、ダイバーシティ合成部112が収容される第1受信制御部110とダイバーシティ合成部212が収容される第2受信制御部210との間の距離は、近接していても構わない。 The distance between the first reception high-frequency unit 100 where the reception antenna 101 is installed and the second reception high-frequency unit 200 where the reception antenna 201 is installed is set large (for example, several meters or more) in order to enhance the diversity effect. The distance between the first reception control unit 110 in which the diversity combining unit 112 is accommodated and the second reception control unit 210 in which the diversity combining unit 212 is accommodated may be close to each other.
  すなわち、合成信号を当該受信装置のIF合成部から当該受信装置のIF分離部へ伝送する第1のケーブル(106,206)の長さよりも、IF信号を他の受信装置(IF分離部211)から当該受信装置(ダイバーシティ合成部112)へ伝送する第2のケーブルの長さを短くすることができる。したがって、他の受信装置から当該受信装置へのIF信号の伝送が容易に行える。 In other words, the IF signal is transmitted to the other receiving device (IF separating unit 211) than the length of the first cable (106, 206) for transmitting the combined signal from the IF combining unit of the receiving device to the IF separating unit of the receiving device. The length of the second cable transmitted from the receiver to the receiver (diversity combining unit 112) can be shortened. Therefore, the IF signal can be easily transmitted from another receiving apparatus to the receiving apparatus.
  ダイバーシティ合成部112と212では、それぞれ、集約された2つのIF信号を、合成後のSNRが最大となる最大比合成などのダイバーシティ合成方式を用いて合成する。ダイバーシティ合成後の信号は、それぞれ、誤り訂正部113と213により伝送誤りが軽減され、誤り訂正部113からはch1の映像信号が、誤り訂正部213からはch2の映像信号が出力される。 Diversity combining sections 112 and 212 respectively combine two aggregated IF signals using a diversity combining method such as maximum ratio combining that maximizes the SNR after combining. Transmission errors of the diversity combined signals are reduced by the error correction units 113 and 213, respectively, and the ch1 video signal is output from the error correction unit 113 and the ch2 video signal is output from the error correction unit 213.
  なお、第1実施例では、ダイバーシティ合成部112と212において、それぞれの2つの入力信号の中間周波数が異なるように構成したが、同じ中間周波数の信号同士を合成するように構成することも可能である。この場合は、第2受信高周波部200において、BPF204aは、ミキサ203aから出力された130MHz付近の中間周波数信号に対し、ch1の送信データ(ch1‐2)だけを通過させ、BPF204bは、ミキサ203bから出力された190MHz付近の中間周波数信号に対し、ch2の送信データ(ch2‐2)だけを通過させるよう構成する。 In the first embodiment, the diversity combining sections 112 and 212 are configured such that the intermediate frequencies of the two input signals are different from each other. However, it is also possible to configure so that signals having the same intermediate frequency are combined. is there. In this case, in the second reception high-frequency unit 200, the BPF 204a passes only the transmission data (ch1-2) of ch1 to the intermediate frequency signal near 130 MHz output from the mixer 203a, and the BPF 204b Only the ch2 transmission data (ch2-2) is allowed to pass through the output intermediate frequency signal near 190 MHz.
  あるいは、高周波数におけるch1とch2の配置が固定的な場合は、ミキサ103bとミキサ203bを省略し、第1受信高周波部100において、ミキサ103aから出力された130MHz付近の中間周波数信号に対し、BPF104aは、ch1の送信データ(ch1‐1)だけを通過させ、BPF104bは、ch2の送信データ(ch2‐1)だけを通過させ、第2受信高周波部200において、ミキサ203aから出力された130MHz付近の中間周波数信号に対し、BPF204aは、ch1の送信データ(ch1‐2)だけを通過させ、BPF204bは、ch2の送信データ(ch2‐2)だけを通過させるよう構成してもよい。 Alternatively, when the arrangement of ch1 and ch2 at a high frequency is fixed, the mixer 103b and the mixer 203b are omitted, and the first reception high-frequency unit 100 outputs the BPF 104a to the intermediate frequency signal around 130 MHz output from the mixer 103a. Passes only the transmission data (ch1-1) of ch1, and the BPF 104b allows only the transmission data (ch2-1) of ch2 to pass. In the second reception high-frequency unit 200, the vicinity of 130 MHz output from the mixer 203a is passed. For the intermediate frequency signal, the BPF 204a may pass only the ch1 transmission data (ch1-2), and the BPF 204b may pass only the ch2 transmission data (ch2-2).
  また、第1実施例では、第1受信制御部110と第2受信制御部210の両方でダイバーシティ合成を行うように構成したが、第1受信制御部110と第2受信制御部210のいずれか一方のみでダイバーシティ合成を行うように構成することも可能である。例えば、第1受信制御部110のみでダイバーシティ合成を行い、第2受信制御部210では、ダイバーシティ合成部212を設けず、IF分離部211の出力(ch2-2)を誤り訂正部113へ入力し、ch2の映像信号とする。このようにしても、ch1の映像信号にはダイバーシティ効果が生じる。この方法は、例えば、送信FPU2‐1からの電波が継続して良好な場合に使用できる。 In the first embodiment, diversity combining is performed by both the first reception control unit 110 and the second reception control unit 210. However, either the first reception control unit 110 or the second reception control unit 210 is used. It is also possible to configure so that diversity combining is performed only on one side. For example, diversity combining is performed only by the first reception control unit 110, and the diversity reception unit 210 is not provided in the second reception control unit 210, and the output (ch2-2) of the IF separation unit 211 is input to the error correction unit 113. , Ch2 video signal. Even in this case, the diversity effect is produced in the video signal of ch1. This method can be used, for example, when the radio wave from the transmission FPU 2-1 is continuously good.
  第1実施例によれば、少なくとも以下に示す効果を奏する。
  (A1)複数の受信装置を含む受信システムにおいて、複数の受信装置のそれぞれが、当該受信装置に対する第1の送信データを含む第1の周波数信号と、他の受信装置に対する第2の送信データを含む第2の周波数信号を受信する受信アンテナと、第1の周波数信号と第2の周波数信号に基づき、第1の送信データを含む第1の中間周波数信号と、第2の送信データを含む第2の中間周波数信号を生成する中間周波数信号生成部と、第1の中間周波数信号と第2の中間周波数信号を合成し合成信号を生成する合成部と、合成信号を第1の中間周波数信号と第2の中間周波数信号に分離する分離部と、当該受信装置の分離部で分離された第1の中間周波数信号と、他の受信装置の分離部で分離され第1の送信データを含む第3の中間周波数信号とが入力されて、第1の送信データを含むダイバーシティ合成信号が生成されるダイバーシティ合成部と、を備えるよう構成したので、アンテナ本数(つまりシステム設備)を低減させるとともに、アンテナ間隔を拡げることによりアンテナ相関を低減させダイバーシティ性能を改善することができる。
  (A2)合成信号を当該受信装置の合成部から当該受信装置の分離部へ伝送する第1のケーブルと、前記第3の中間周波数信号を他の受信装置から当該受信装置へ伝送する第2のケーブルとを設け、第2のケーブルが第1のケーブルよりも短くなるように構成したので、異なる系統の受信アンテナの間隔を拡げることができ、また、異なる系統のダイバーシティ合成部の間隔を小さくすることができる。
  (A3)ダイバーシティ合成部の入力信号の周波数を大きく異ならせるように構成したので、ダイバーシティ合成を行うことが容易になる。
According to the first embodiment, at least the following effects can be obtained.
(A1) In a reception system including a plurality of reception devices, each of the plurality of reception devices receives a first frequency signal including first transmission data for the reception device and second transmission data for other reception devices. A receiving antenna that receives the second frequency signal, a first intermediate frequency signal that includes the first transmission data based on the first frequency signal and the second frequency signal, and a second that includes the second transmission data. An intermediate frequency signal generating unit that generates two intermediate frequency signals, a combining unit that combines the first intermediate frequency signal and the second intermediate frequency signal to generate a combined signal, and the combined signal as the first intermediate frequency signal A separation unit that separates into a second intermediate frequency signal, a first intermediate frequency signal separated by a separation unit of the reception device, and a third transmission data that is separated by a separation unit of another reception device and includes first transmission data Intermediate frequency signal And a diversity combining unit that generates a diversity combined signal including the first transmission data, and thereby reducing the number of antennas (that is, system equipment) and widening the antenna interval. Antenna correlation can be reduced and diversity performance can be improved.
(A2) a first cable that transmits the combined signal from the combining unit of the receiving device to the separating unit of the receiving device, and a second cable that transmits the third intermediate frequency signal from another receiving device to the receiving device. Since the second cable is configured to be shorter than the first cable, the interval between the reception antennas of different systems can be increased, and the interval between the diversity combining units of different systems can be reduced. be able to.
(A3) Since the frequency of the input signal of the diversity combining unit is configured to vary greatly, it is easy to perform diversity combining.
(第2実施例)
  次に、本発明の実施形態における第2実施例について、図3を用いて説明する。図3は、第2実施例に係る送受信システムの構成図であり、3チャンネルのFPU伝送を行う例を示す。図3において、第1実施例の図1と同じ構成には同符号を付し、説明を省略する。なお、第2実施例では、3チャンネルの構成について説明するが、4チャンネル以上についても同様の拡張により実現可能である。
(Second embodiment)
Next, a second example of the embodiment of the present invention will be described with reference to FIG. FIG. 3 is a block diagram of a transmission / reception system according to the second embodiment, showing an example of performing 3-channel FPU transmission. 3, the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In the second embodiment, the configuration of three channels will be described. However, it is possible to realize four or more channels by the same extension.
  図3に示すように、第2実施例では、3つの送信FPU1-1、2-1、3-1から、計3チャンネルの送信信号(ch1、ch2、ch3)を送出する。第3送信FPU3‐1は、第1送信FPU1‐1や第2送信FPU2‐1と同様に、それぞれ、送信制御部11と送信高周波部13を備える。 As shown in FIG. 3, in the second embodiment, a total of three channels of transmission signals (ch1, ch2, and ch3) are transmitted from the three transmission FPUs 1-1, 2-1 and 3-1. Similar to the first transmission FPU1-1 and the second transmission FPU2-1, the third transmission FPU3-1 includes a transmission control unit 11 and a transmission high-frequency unit 13, respectively.
  第1実施例では、2チャンネルの受信信号を、2つの系統の受信制御部の筐体間で交差させて受け渡ししていたが、第2実施例では、3チャンネルの受信信号を、3つの系統の受信制御部の筐体間で、リング状に受け渡す。 In the first embodiment, the two-channel received signal is passed between the housings of the two systems of reception control units. However, in the second embodiment, the three-channel received signal is transferred to the three systems. Are transferred in a ring shape between the housings of the reception control unit.
  具体的には、第1系統の受信アンテナ301では少なくともch1とch2の信号を受信し、第2系統の受信アンテナ401では少なくともch2とch3の信号を受信し、第3系統の受信アンテナ501では少なくともch3とch1の信号を受信する。もちろん、各アンテナでch1、ch1、ch3の信号を同時に全て受信しても差し支えない。そして、第1系統で受信したch2の信号を第2系統に受け渡し、第2系統で受信したch3の信号を第3系統に受け渡し、第3系統で受信したch1の信号を第1系統に受け渡す。 Specifically, the first system receiving antenna 301 receives at least ch1 and ch2 signals, the second system receiving antenna 401 receives at least ch2 and ch3 signals, and the third system receiving antenna 501 at least. The ch3 and ch1 signals are received. Of course, each antenna may receive all the ch1, ch1, and ch3 signals simultaneously. Then, the ch2 signal received by the first system is transferred to the second system, the ch3 signal received by the second system is transferred to the third system, and the ch1 signal received by the third system is transferred to the first system. .
  図3に示すように、この送受信システムは、第1系統のFPU伝送装置と第2系統のFPU伝送装置と第3系統のFPU伝送装置とを備える。第1系統のFPU伝送装置は、第1送信FPU1‐1と第1受信FPUを備える。第2系統のFPU伝送装置は、第2送信FPU2‐1と第2受信FPUを備える。第3系統のFPU伝送装置は、第3送信FPU3‐1と第3受信FPUを備える。 送 受 信 As shown in FIG. 3, the transmission / reception system includes a first system FPU transmission device, a second system FPU transmission device, and a third system FPU transmission device. The FPU transmission apparatus of the first system includes a first transmission FPU1-1 and a first reception FPU. The FPU transmission apparatus of the second system includes a second transmission FPU2-1 and a second reception FPU. The third-system FPU transmission device includes a third transmission FPU 3-1 and a third reception FPU.
  第1実施例で述べたように、第1送信FPU1‐1は、ch1の送信データを、ch1の搬送波(f1)を用いて送信アンテナ1‐2から無線送信し、第2送信FPU2‐1は、ch2の送信データを、ch2の搬送波(f2)を用いて送信アンテナ2‐2から無線送信する。第3送信FPU3‐1は、ch3の送信データを、ch3の搬送波を用いて、送信アンテナ3‐2から無線送信する。ch3の搬送波の中心周波数をf3とする。f3はf1やf2と異なり、また、ch3の送信データは、ch1の送信データやch2の送信データと異なる。 As described in the first embodiment, the first transmission FPU 1-1 wirelessly transmits the transmission data of ch1 from the transmission antenna 1-2 using the carrier wave (f1) of ch1, and the second transmission FPU2-1 , Ch2 transmission data is wirelessly transmitted from the transmission antenna 2-2 using the ch2 carrier wave (f2). The third transmission FPU 3-1 wirelessly transmits the transmission data of ch3 from the transmission antenna 3-2 using the carrier wave of ch3. Let f3 be the center frequency of the carrier wave of ch3. f3 is different from f1 and f2, and the transmission data of ch3 is different from the transmission data of ch1 and the transmission data of ch2.
  図3に示すように、ch1の搬送波31aとch2の搬送波32aは、第1受信FPUの受信アンテナ301で受信され、ch2の搬送波32bとch3の搬送波33bは、第2受信FPUの受信アンテナ401で受信され、ch3の搬送波33cとch1の搬送波31cは、第3受信FPUの受信アンテナ501で受信される。 As shown in FIG. 3, the ch1 carrier 31a and the ch2 carrier 32a are received by the reception antenna 301 of the first reception FPU, and the ch2 carrier 32b and the ch3 carrier 33b are received by the reception antenna 401 of the second reception FPU. The ch3 carrier 33c and the ch1 carrier 31c are received by the reception antenna 501 of the third reception FPU.
  第1受信FPUは、第1受信高周波部300と第1受信制御部310を備える。第1受信高周波部300は、受信アンテナ301と、LNA302と、中間周波数信号生成部303と、IF合成部305を備える。中間周波数信号生成部303は、ミキサ303aと、ミキサ303bと、BPF304aと、BPF304bを備える。第1受信高周波部300の構成は、第1実施例の第1受信高周波部100の構成と同じである。LNA302は、第1実施例のLNA102と同じ機能を有する。 The first reception FPU includes a first reception high-frequency unit 300 and a first reception control unit 310. The first reception high-frequency unit 300 includes a reception antenna 301, an LNA 302, an intermediate frequency signal generation unit 303, and an IF synthesis unit 305. The intermediate frequency signal generation unit 303 includes a mixer 303a, a mixer 303b, a BPF 304a, and a BPF 304b. The configuration of the first reception high-frequency unit 300 is the same as the configuration of the first reception high-frequency unit 100 of the first embodiment. The LNA 302 has the same function as the LNA 102 of the first embodiment.
  第1受信制御部310は、IF分離部311と、ダイバーシティ合成部312と、誤り訂正部313を備える。第1受信制御部310の構成も、第1実施例の第1受信制御部110の構成と略同じであるが、ダイバーシティ合成部312の入力が第2系統からの(ch1‐2)でなく、第3系統からの(ch1‐3)である点だけが、第1実施例と異なる。 The first reception control unit 310 includes an IF separation unit 311, a diversity combining unit 312, and an error correction unit 313. The configuration of the first reception control unit 310 is also substantially the same as the configuration of the first reception control unit 110 of the first embodiment, but the input of the diversity combining unit 312 is not (ch1-2) from the second system, Only the point (ch1-3) from the third system is different from the first embodiment.
  第2受信FPUは、第2受信高周波部400と第2受信制御部410を備える。第2受信高周波部400は、受信アンテナ401と、LNA402と、中間周波数信号生成部403と、IF合成部405を備える。中間周波数信号生成部403は、ミキサ403aと、ミキサ403bと、BPF404aと、BPF404bを備える。LNA402は、第1実施例のLNA102と同じ機能を有する。 The second reception FPU includes a second reception high-frequency unit 400 and a second reception control unit 410. The second reception high-frequency unit 400 includes a reception antenna 401, an LNA 402, an intermediate frequency signal generation unit 403, and an IF synthesis unit 405. The intermediate frequency signal generation unit 403 includes a mixer 403a, a mixer 403b, a BPF 404a, and a BPF 404b. The LNA 402 has the same function as the LNA 102 of the first embodiment.
  第2受信高周波部400の構成は、第1受信高周波部300の構成と略同じであるが、受信アンテナ401で、ch2の搬送波32b(周波数f2)とch3の搬送波33b(周波数f3)を受信し、一方のミキサ(ミキサ403a)で、130MHz付近の中間周波数信号に周波数変換し、一方のBPF(BPF404a)で、ch2の送信データ(ch2‐2)だけを通過させ、他方のミキサ(ミキサ403b)で、190MHz付近の中間周波数信号に周波数変換し、他方のBPF(BPF404b)で、ch3の送信データ(ch3‐2)だけを通過させる点が異なる。 The configuration of the second reception high-frequency unit 400 is substantially the same as the configuration of the first reception high-frequency unit 300, but the reception antenna 401 receives the ch2 carrier 32b (frequency f2) and the ch3 carrier 33b (frequency f3). Then, one mixer (mixer 403a) converts the frequency to an intermediate frequency signal around 130 MHz, and one BPF (BPF 404a) passes only the transmission data (ch2-2) of ch2, and the other mixer (mixer 403b). The difference is that the frequency is converted into an intermediate frequency signal in the vicinity of 190 MHz, and only the transmission data (ch3-2) of ch3 is passed through the other BPF (BPF 404b).
  第2受信制御部410は、IF分離部411と、ダイバーシティ合成部412と、誤り訂正部413を備える。第2受信制御部410の構成は、第1受信制御部310の構成と略同じであるが、IF分離部411の出力の一方(ch2‐2)が、ダイバーシティ合成部412に供給され、IF分離部411の出力の他方(ch3‐2)が、第3系統のダイバーシティ合成部512に供給される点が、第1受信制御部310と異なる。 The second reception control unit 410 includes an IF separation unit 411, a diversity combining unit 412, and an error correction unit 413. The configuration of the second reception control unit 410 is substantially the same as the configuration of the first reception control unit 310, but one of the outputs (ch2-2) of the IF separation unit 411 is supplied to the diversity combining unit 412 and the IF separation is performed. The other point (ch3-2) of the output of the unit 411 is different from the first reception control unit 310 in that it is supplied to the diversity combining unit 512 of the third system.
  第3受信FPUは、第3受信高周波部500と第3受信制御部510を備える。第3受信高周波部500は、受信アンテナ501と、LNA502と、中間周波数信号生成部503と、IF合成部505を備える。中間周波数信号生成部503は、ミキサ503aと、ミキサ503bと、BPF504aと、BPF504bを備える。LNA502は、第1実施例のLNA102と同じ機能を有する。 The third reception FPU includes a third reception high-frequency unit 500 and a third reception control unit 510. The third reception high-frequency unit 500 includes a reception antenna 501, an LNA 502, an intermediate frequency signal generation unit 503, and an IF synthesis unit 505. The intermediate frequency signal generation unit 503 includes a mixer 503a, a mixer 503b, a BPF 504a, and a BPF 504b. The LNA 502 has the same function as the LNA 102 of the first embodiment.
  第3受信高周波部500の構成は、第1受信高周波部300の構成と略同じであるが、受信アンテナ501で、ch3の搬送波33c(周波数f3)とch1の搬送波31c(周波数f1)を受信し、一方のミキサ(ミキサ503a)で、130MHz付近の中間周波数信号に周波数変換し、一方のBPF(BPF504a)で、ch3の送信データ(ch3‐3)だけを通過させ、他方のミキサ(ミキサ503b)で、190MHz付近の中間周波数信号に周波数変換し、他方のBPF(BPF504b)で、ch1の送信データ(ch1‐3)だけを通過させる点が異なる。 The configuration of the third reception high-frequency unit 500 is substantially the same as the configuration of the first reception high-frequency unit 300. However, the reception antenna 501 receives the ch3 carrier 33c (frequency f3) and the ch1 carrier 31c (frequency f1). Then, one mixer (mixer 503a) converts the frequency to an intermediate frequency signal around 130 MHz, and one BPF (BPF 504a) passes only the transmission data (ch3-3) of ch3 and the other mixer (mixer 503b). Thus, the frequency is converted into an intermediate frequency signal in the vicinity of 190 MHz, and the other BPF (BPF 504b) passes only the transmission data (ch1-3) of ch1.
  第3受信制御部510は、IF分離部511と、ダイバーシティ合成部512と、誤り訂正部513を備える。第3受信制御部510の構成は、第1受信制御部310の構成と略同じであるが、IF分離部511の出力の一方(ch3‐3)が、ダイバーシティ合成部512に供給され、IF分離部511の出力の他方(ch1‐3)が、第1系統のダイバーシティ合成部312に供給される点が、第1受信制御部310と異なる。 The third reception control unit 510 includes an IF separation unit 511, a diversity combining unit 512, and an error correction unit 513. The configuration of the third reception control unit 510 is substantially the same as the configuration of the first reception control unit 310, but one of the outputs (ch3-3) of the IF separation unit 511 is supplied to the diversity combining unit 512, and IF separation is performed. The other (ch1-3) of the output of the unit 511 is different from the first reception control unit 310 in that it is supplied to the diversity combining unit 312 of the first system.
  次に、受信アンテナ301、401、501で受信した受信信号に基づき、第1系統の受信装置でch1の送信データ、第2系統の受信装置でch2の送信データ、第3系統の受信装置でch3の送信データを取得するまでの動作を説明する。 Next, based on the received signals received by the receiving antennas 301, 401, 501, the first system receiving device transmits the ch1 transmission data, the second system receiving device receives the ch2 transmission data, and the third system receiving device uses the ch3 transmission data. The operation until the transmission data is acquired will be described.
  受信アンテナ301で受信した受信信号は、LNA302に入力され増幅される。受信アンテナ401で受信した受信信号は、LNA402に入力され増幅される。受信アンテナ501で受信した受信信号は、LNA502に入力され増幅される。 The received signal received by the receiving antenna 301 is input to the LNA 302 and amplified. A received signal received by the receiving antenna 401 is input to the LNA 402 and amplified. A received signal received by the receiving antenna 501 is input to the LNA 502 and amplified.
  LNA302で増幅された信号は、ミキサ303a、303bに入力され、搬送波のRF周波数がIF周波数に周波数変換される。具体的には、RF周波数をミキサ303aでは130MHzに、ミキサ303bでは190MHzに変換する。 The signal amplified by the LNA 302 is input to the mixers 303a and 303b, and the RF frequency of the carrier wave is converted to an IF frequency. Specifically, the RF frequency is converted to 130 MHz in the mixer 303a and 190 MHz in the mixer 303b.
  ミキサ303aによりIF周波数(130MHz)に変換されたIF信号から、BPF304aにより、ch1の信号(ch1‐1)のみが抽出される。ミキサ303bによりIF周波数(190MHz)に変換されたIF信号から、BPF304bにより、ch2の信号(ch2‐1)のみが抽出される。 Only the ch1 signal (ch1-1) is extracted by the BPF 304a from the IF signal converted to the IF frequency (130 MHz) by the mixer 303a. Only the ch2 signal (ch2-1) is extracted by the BPF 304b from the IF signal converted to the IF frequency (190 MHz) by the mixer 303b.
  同様に、LNA402で増幅された信号は、ミキサ403a、403bに入力され、RF周波数をミキサ403aでは130MHzに、ミキサ403bでは190MHzに変換する。そして、ミキサ403aによりIF周波数(130MHz)に変換されたIF信号から、BPF404aにより、ch2の信号(ch2‐2)のみが抽出される。ミキサ403bによりIF周波数(190MHz)に変換されたIF信号から、BPF404bにより、ch3の信号(ch3‐2)のみが抽出される。 Similarly, the signal amplified by the LNA 402 is input to the mixers 403a and 403b, and the RF frequency is converted to 130 MHz by the mixer 403a and 190 MHz by the mixer 403b. Then, only the ch2 signal (ch2-2) is extracted by the BPF 404a from the IF signal converted to the IF frequency (130 MHz) by the mixer 403a. Only the ch3 signal (ch3-2) is extracted by the BPF 404b from the IF signal converted to the IF frequency (190 MHz) by the mixer 403b.
  同様に、LNA502で増幅された信号は、ミキサ503a、503bに入力され、RF周波数をミキサ503aでは130MHzに、ミキサ503bでは190MHzに変換する。そして、ミキサ503aによりIF周波数(130MHz)に変換されたIF信号から、BPF504aにより、ch3の信号(ch3‐3)のみが抽出される。ミキサ503bによりIF周波数(190MHz)に変換されたIF信号から、BPF504bにより、ch1の信号(ch1‐3)のみが抽出される。 Similarly, the signal amplified by the LNA 502 is input to the mixers 503a and 503b, and the RF frequency is converted to 130 MHz by the mixer 503a and 190 MHz by the mixer 503b. Then, only the ch3 signal (ch3-3) is extracted by the BPF 504a from the IF signal converted to the IF frequency (130 MHz) by the mixer 503a. Only the ch1 signal (ch1-3) is extracted by the BPF 504b from the IF signal converted to the IF frequency (190 MHz) by the mixer 503b.
  その後、1系統目の2つのIF信号(ch1‐1とch2‐1)は、IF合成部305により合成され、IFケーブル306により、IF分離部311へ送出される。2系統目の2つのIF信号(ch2‐2とch3‐2)は、IF合成部405により合成され、IFケーブル406により、IF分離部411へ送出される。3系統目の2つのIF信号(ch3‐3とch1‐3)は、IF合成部505により合成され、IFケーブル506により、IF分離部511へ送出される。 After that, the two IF signals (ch1-1 and ch2-1) of the first system are combined by the IF combiner 305 and sent to the IF separator 311 via the IF cable 306. The two IF signals (ch2-2 and ch3-2) in the second system are combined by the IF combining unit 405 and sent to the IF separation unit 411 through the IF cable 406. Two IF signals (ch3-3 and ch1-3) of the third system are combined by the IF combining unit 505 and sent to the IF separation unit 511 by the IF cable 506.
  1系統目のIF分離部311において、IF合成部305で合成されたIF信号は、IF合成部305で合成される前のIF信号(ch1‐1とch2‐1)に分離される。同様に、2系統目のIF分離部411において、IF合成部405で合成されたIF信号は、IF合成部405で合成される前のIF信号(ch2‐2とch3‐2)に分離される。3系統目のIF分離部511において、IF合成部505で合成されたIF信号は、IF合成部505で合成される前のIF信号(ch3‐3とch1‐3)に分離される。 In the first system IF separation unit 311, the IF signal synthesized by the IF synthesis unit 305 is separated into the IF signals (ch 1-1 and ch 2-1) before being synthesized by the IF synthesis unit 305. Similarly, in the second system IF separation unit 411, the IF signal synthesized by the IF synthesis unit 405 is separated into IF signals (ch2-2 and ch3-2) before being synthesized by the IF synthesis unit 405. . In the third system IF separation unit 511, the IF signal synthesized by the IF synthesis unit 505 is separated into IF signals (ch3-3 and ch1-3) before being synthesized by the IF synthesis unit 505.
  IF分離部311で分離された1つ目のIF信号(ch1-1)は、1系統目のダイバーシティ合成部312に入力される。IF分離部311で分離された2つ目のIF信号(ch2-1)は、2系統目のダイバーシティ合成部412に入力される。 The first IF signal (ch1-1) separated by the IF separation unit 311 is input to the diversity combining unit 312 of the first system. The second IF signal (ch2-1) separated by the IF separation unit 311 is input to the diversity combining unit 412 of the second system.
  同様に、IF分離部411で分離された1つ目のIF信号(ch2-2)は、2系統目のダイバーシティ合成部412に入力され、2つ目のIF信号(ch3-2)は3系統目のダイバーシティ合成部512に入力される。 Similarly, the first IF signal (ch2-2) separated by the IF separation unit 411 is input to the diversity combining unit 412 of the second system, and the second IF signal (ch3-2) is supplied to the three systems. The data is input to the eye diversity combining unit 512.
  同様に、IF分離部511で分離された1つ目のIF信号(ch3-3)は、3系統目のダイバーシティ合成部512に入力され、2つ目のIF信号(ch1-3)は、1系統目のダイバーシティ合成部312に入力される。 Similarly, the first IF signal (ch3-3) separated by the IF separation unit 511 is input to the diversity combining unit 512 of the third system, and the second IF signal (ch1-3) is 1 This is input to the diversity combining unit 312 of the system.
  このとき、IF分離部311からダイバーシティ合成部412へのIF信号(ch2-1)の受け渡し、IF分離部411からダイバーシティ合成部512へのIF信号(ch3-2)の受け渡し、IF分離部511からダイバーシティ合成部312へのIF信号(ch1-3)の受け渡しは、同軸ケーブルを用いて行われる。 At this time, the IF signal (ch2-1) is transferred from the IF separation unit 311 to the diversity combining unit 412, the IF signal (ch3-2) is transferred from the IF separation unit 411 to the diversity combining unit 512, and the IF separation unit 511 The IF signal (ch1-3) is transferred to the diversity combining unit 312 using a coaxial cable.
  ダイバーシティ合成部312,412,512では、それぞれ、集約された2つのIF信号を、合成後のSNRが最大となる最大比合成などのダイバーシティ合成方式を用いて合成する。ダイバーシティ合成後の信号は、誤り訂正部313、413、513により伝送誤りが軽減され、誤り訂正部313からはch1の映像信号、誤り訂正部413からはch2の映像信号、誤り訂正部513からはch3の映像信号が出力される。 Diversity combining sections 312, 412, 512 respectively combine two aggregated IF signals using a diversity combining method such as maximum ratio combining that maximizes the combined SNR. The diversity combined signal is reduced in transmission error by the error correction units 313, 413, and 513, the error correction unit 313 receives the ch1 video signal, the error correction unit 413 receives the ch2 video signal, and the error correction unit 513 The video signal of ch3 is output.
  こうして、第1受信FPUでは、ch1の信号をダイバーシティ受信するため、自身の受信アンテナ301で受信したch1の信号と、受信アンテナ501で受信し第3受信FPUを経由したch1の信号とを集約し、第1受信FPUの出力としてch1の映像信号を取得する。 Thus, since the first reception FPU receives diversity of the ch1 signal, the ch1 signal received by its own reception antenna 301 and the ch1 signal received by the reception antenna 501 and passed through the third reception FPU are aggregated. The video signal of ch1 is acquired as the output of the first reception FPU.
  同様に、第2受信FPUでは、ch2の信号をダイバーシティ受信するため、自身の受信アンテナ401で受信したch2の信号と、受信アンテナ301で受信し第1受信FPUを経由したch2の信号とを集約し、第2受信FPUの出力としてch2の映像信号を取得する。 Similarly, in the second reception FPU, since the ch2 signal is diversity-received, the ch2 signal received by its own reception antenna 401 and the ch2 signal received by the reception antenna 301 and passed through the first reception FPU are aggregated. Then, the ch2 video signal is acquired as the output of the second reception FPU.
  同様に、第3受信FPUでは、ch3の信号をダイバーシティ受信するため、自身の受信アンテナ501で受信したch3の信号と、受信アンテナ401で受信し第2受信FPUを経由したch3の信号とを集約し、第3受信FPUの出力としてch3の映像信号を取得する。 Similarly, in the third reception FPU, since the ch3 signal is diversity-received, the ch3 signal received by its own reception antenna 501 and the ch3 signal received by the reception antenna 401 and passed through the second reception FPU are aggregated. Then, the ch3 video signal is acquired as the output of the third reception FPU.
  このように、3つの系統の受信制御部の筐体間で、IF信号をリング状に受け渡すことにより、3チャンネルの受信ダイバーシティ処理を3本の受信アンテナで実現することができる。 Thus, by passing IF signals in a ring shape between the housings of the three systems of reception control units, it is possible to realize three-channel reception diversity processing with three reception antennas.
  なお、第2実施例では、第1実施例と同様に、ダイバーシティ合成部312と412と512において、それぞれの入力信号の中間周波数が異なるように構成したが、第1実施例で述べたように、それぞれの中間周波数が略同じとなるように構成することも可能である。 In the second embodiment, as in the first embodiment, the diversity combining units 312, 412 and 512 are configured such that the intermediate frequencies of the respective input signals are different. As described in the first embodiment, however. It is also possible to configure each intermediate frequency to be substantially the same.
  また、第2実施例では、第1受信制御部310と第2受信制御部410と第3受信制御部510の全てでダイバーシティ合成を行うように構成したが、第1受信制御部310と第2受信制御部410と第3受信制御部510のうち1つ又は2つでダイバーシティ合成を行うように構成することも可能である。例えば、第1受信制御部310と第2受信制御部410のみでダイバーシティ合成を行い、第3受信制御部510では、IF分離部511の出力(ch3-3)だけを誤り訂正部513へ入力し、ch3の映像信号とする。このようにしても、ch1とch2の映像信号にはダイバーシティ効果が生じる。 Further, in the second embodiment, the first reception control unit 310, the second reception control unit 410, and the third reception control unit 510 are configured to perform diversity combining. One or two of the reception control unit 410 and the third reception control unit 510 may be configured to perform diversity combining. For example, diversity combining is performed only by the first reception control unit 310 and the second reception control unit 410, and only the output (ch3-3) of the IF separation unit 511 is input to the error correction unit 513 in the third reception control unit 510. , Ch3 video signal. Even in this case, the diversity effect is produced in the video signals of ch1 and ch2.
  第2実施例によれば、第1実施例の効果に加え、少なくとも以下に示す効果を奏する。
  (B1)チャンネル数及び受信アンテナ数よりもダイバーシティ合成数を少なくしたので、受信装置の設備を低減することができる。
According to the second embodiment, in addition to the effects of the first embodiment, there are at least the following effects.
(B1) Since the number of diversity combinations is smaller than the number of channels and the number of receiving antennas, the equipment of the receiving apparatus can be reduced.
(第3実施例)
  次に、本発明の実施形態における第3実施例について、図4を用いて説明する。図4は、第3実施例に係る送受信システムの構成図である。第3実施例は、第1実施例を一般化した構成であり、周波数的に近接するXチャンネル(Xは整数)の伝送を実施する送受信システムにおいて、N(Nは整数)本の受信アンテナを用いて、M(Mは整数でなおかつM≦N)合成ダイバーシティを行うものである。ダイバーシティ合成数Mは、受信アンテナ数N以下である必要があり、M≦Nの関係は必須である。
(Third embodiment)
Next, a third example of the embodiment of the present invention will be described with reference to FIG. FIG. 4 is a configuration diagram of a transmission / reception system according to the third embodiment. The third embodiment is a generalized configuration of the first embodiment. In a transmission / reception system that performs transmission of X channels (X is an integer) that are close in frequency, N (N is an integer) receive antennas are used. Used to perform M (M is an integer and M ≦ N) synthesis diversity. The diversity combining number M needs to be equal to or less than the number N of receiving antennas, and the relationship of M ≦ N is essential.
  図4は、X=M=N=3の例である。X=3チャンネルの送信信号をダイバーシティ受信するシステムであり、N=3本の受信アンテナを備えている。各受信高周波部(600、700、800)では、それぞれ、ダイバーシティ合成数M=3のミキサ(例えば受信高周波部600では、ミキサ603a、603b、603c)を備え、3つのIF信号を生成する。各受信制御部(610、710、810)では、再度、IF信号を3つに分離させ、各受信制御部間で受け渡しすることにより、各ダイバーシティ合成部(612、712、812)にはM=3のIF信号が集約され、それらを最大比合成などのダイバーシティ合成することにより、第1実施例で記載したM=2の合成数よりも高い受信性能を実現することができる。 FIG. 4 is an example of X = M = N = 3. This is a system that receives diversity transmission signals of X = 3 channels, and includes N = 3 reception antennas. Each reception high-frequency unit (600, 700, 800) includes a mixer with a diversity combination number M = 3 (for example, in the reception high-frequency unit 600, mixers 603a, 603b, and 603c), and generates three IF signals. In each reception control unit (610, 710, 810), the IF signal is again separated into three and passed between the reception control units, so that each diversity combining unit (612, 712, 812) has M = By combining the three IF signals and diversity combining such as maximum ratio combining, it is possible to realize a reception performance higher than the number of combining M = 2 described in the first embodiment.
  以下、第3実施例の構成を詳しく説明する。図4において、第2実施例の図3と同じ構成には同符号を付し、説明を省略する。 Hereinafter, the configuration of the third embodiment will be described in detail. 4, the same components as those in FIG. 3 of the second embodiment are denoted by the same reference numerals, and description thereof is omitted.
  図4に示すように、この送受信システムは、第1系統のFPU伝送装置と第2系統のFPU伝送装置と第3系統のFPU伝送装置とを備える。第1系統のFPU伝送装置は、第1送信FPU1‐1と第1受信FPUを備える。第2系統のFPU伝送装置は、第2送信FPU2‐1と第2受信FPUを備える。第3系統のFPU伝送装置は、第3送信FPU3‐1と第3受信FPUを備える。 送 受 信 As shown in FIG. 4, the transmission / reception system includes a first system FPU transmission device, a second system FPU transmission device, and a third system FPU transmission device. The FPU transmission apparatus of the first system includes a first transmission FPU1-1 and a first reception FPU. The FPU transmission apparatus of the second system includes a second transmission FPU2-1 and a second reception FPU. The third-system FPU transmission device includes a third transmission FPU 3-1 and a third reception FPU.
  第2実施例で述べたように、第1送信FPU1‐1は、ch1の送信データを、ch1の搬送波(f1)を用いて送信アンテナ1‐2から無線送信し、第2送信FPU2‐1は、ch2の送信データを、ch2の搬送波(f2)を用いて送信アンテナ2‐2から無線送信し、第3送信FPU3‐1は、ch3の送信データを、ch3の搬送波(f3)を用いて、送信アンテナ3‐2から無線送信する。 As described in the second embodiment, the first transmission FPU 1-1 wirelessly transmits the transmission data of ch1 from the transmission antenna 1-2 using the carrier wave (f1) of ch1, and the second transmission FPU2-1 , The transmission data of ch2 is wirelessly transmitted from the transmission antenna 2-2 using the carrier wave (f2) of ch2, and the third transmission FPU 3-1 uses the carrier wave (f3) of ch3, Radio transmission is performed from the transmission antenna 3-2.
  図4に示すように、ch1の搬送波とch2の搬送波とch3の搬送波は、第1受信FPUの受信アンテナ601と、第2受信FPUの受信アンテナ701と、第3受信FPUの受信アンテナ801において、それぞれ受信される。図4では、ch1の搬送波31aとch2の搬送波32aとch3の搬送波33aとが受信アンテナ601で受信され、ch1の搬送波31bとch2の搬送波32bとch3の搬送波33bとが受信アンテナ701で受信され、ch1の搬送波31cとch2の搬送波32cとch3の搬送波33cとが受信アンテナ801で受信される様子を示す。 As shown in FIG. 4, the ch1 carrier, the ch2 carrier, and the ch3 carrier are received by the reception antenna 601 of the first reception FPU, the reception antenna 701 of the second reception FPU, and the reception antenna 801 of the third reception FPU. Received respectively. In FIG. 4, the ch1 carrier 31a, the ch2 carrier 32a, and the ch3 carrier 33a are received by the receiving antenna 601, and the ch1 carrier 31b, the ch2 carrier 32b, and the ch3 carrier 33b are received by the receiving antenna 701. A state where the ch1 carrier 31c, the ch2 carrier 32c, and the ch3 carrier 33c are received by the reception antenna 801 is shown.
  第1受信FPUは、第1受信高周波部600と第1受信制御部610を備える。第1受信高周波部600は、受信アンテナ601と、LNA602と、中間周波数信号生成部603と、IF合成部605を備える。第1受信制御部610は、IF分離部611と、ダイバーシティ合成部612と、誤り訂正部613を備える。LNA602は、第1実施例のLNA102と同じ機能を有する。 The first reception FPU includes a first reception high-frequency unit 600 and a first reception control unit 610. The first reception high-frequency unit 600 includes a reception antenna 601, an LNA 602, an intermediate frequency signal generation unit 603, and an IF synthesis unit 605. The first reception control unit 610 includes an IF separation unit 611, a diversity combining unit 612, and an error correction unit 613. The LNA 602 has the same function as the LNA 102 of the first embodiment.
  中間周波数信号生成部603は、ミキサ603aと、ミキサ603bと、ミキサ603cと、BPF604aと、BPF604bと、BPF604cを備える。 The intermediate frequency signal generation unit 603 includes a mixer 603a, a mixer 603b, a mixer 603c, a BPF 604a, a BPF 604b, and a BPF 604c.
  ミキサ603aは、LNA602で増幅された高周波を、130MHz付近の中間周波数に変換し、BPF604aは、この130MHz付近の中間周波数信号に対し、ch1の送信データ以外の周波数信号を抑圧し、ch1の送信データ(ch1‐1)だけを通過させる。 The mixer 603a converts the high frequency amplified by the LNA 602 into an intermediate frequency near 130 MHz, and the BPF 604a suppresses frequency signals other than the ch1 transmission data with respect to the intermediate frequency signal near 130 MHz, and the ch1 transmission data. Pass only (ch1-1).
  ミキサ603bは、LNA602で増幅された高周波を、190MHz付近の中間周波数に変換し、BPF604bは、この190MHz付近の中間周波数信号に対し、ch2の送信データ以外の周波数信号を抑圧し、ch2の送信データ(ch2‐1)だけを通過させる。 The mixer 603b converts the high frequency amplified by the LNA 602 into an intermediate frequency near 190 MHz, and the BPF 604b suppresses frequency signals other than the transmission data of ch2 with respect to the intermediate frequency signal near 190 MHz, and transmits the transmission data of ch2. Pass only (ch2-1).
  ミキサ603cは、LNA602で増幅された高周波を、250MHz付近の中間周波数に変換し、BPF604cは、この250MHz付近の中間周波数信号に対し、ch3の送信データ以外の周波数信号を抑圧し、ch3の送信データ(ch3‐1)だけを通過させる。 The mixer 603c converts the high frequency amplified by the LNA 602 into an intermediate frequency near 250 MHz, and the BPF 604c suppresses the frequency signal other than the ch3 transmission data with respect to the intermediate frequency signal near 250 MHz, and transmits the ch3 transmission data. Pass only (ch3-1).
  IF合成部605は、入力された複数(図4の例では3つ)の中間周波数信号を合成して、1つの中間周波数合成信号を生成する。図4の例では、ch1‐1を含む中間周波数信号と、ch2‐1を含む中間周波数信号と、ch3‐1を含む中間周波数信号とを合成する。 The IF synthesis unit 605 synthesizes a plurality of input intermediate frequency signals (three in the example of FIG. 4) to generate one intermediate frequency synthesis signal. In the example of FIG. 4, an intermediate frequency signal including ch1-1, an intermediate frequency signal including ch2-1, and an intermediate frequency signal including ch3-1 are synthesized.
  IF分離部611は、IF合成部605で生成された中間周波数合成信号を、IF合成部605で合成される前の複数の中間周波数信号に分離する。図4の例では、IF合成部605で生成された中間周波数合成信号を、周波数により弁別し、ch1‐1を含む中間周波数信号と、ch2‐1を含む中間周波数信号と、ch3‐1を含む中間周波数信号とに分離する。上述したように、ch1‐1を含む中間周波数信号は約130MHz、ch2‐1を含む中間周波数信号は約190MHz、ch3‐1を含む中間周波数信号は約250MHzである。 The IF separation unit 611 separates the intermediate frequency synthesized signal generated by the IF synthesis unit 605 into a plurality of intermediate frequency signals before being synthesized by the IF synthesis unit 605. In the example of FIG. 4, the intermediate frequency synthesized signal generated by the IF synthesizing unit 605 is discriminated by frequency, and includes an intermediate frequency signal including ch1-1, an intermediate frequency signal including ch2-1, and ch3-1. Separated into an intermediate frequency signal. As described above, the intermediate frequency signal including ch1-1 is approximately 130 MHz, the intermediate frequency signal including ch2-1 is approximately 190 MHz, and the intermediate frequency signal including ch3-1 is approximately 250 MHz.
  ダイバーシティ合成部612は、IF分離部611で分離された当該チャンネル(図4の例ではch1)の送信データ(ch1‐1)を含む中間周波数信号と、他の受信装置(図4の例では第2受信FPUと第3受信FPU)のIF分離部で分離された中間周波数信号であって、当該チャンネルの送信データ(ch1‐2、ch1‐3)を含む中間周波数信号とが入力されてダイバーシティ合成を行い、信号を復調する。 Diversity combining section 612 includes an intermediate frequency signal including transmission data (ch1-1) of the channel (ch1 in the example of FIG. 4) separated by IF separating section 611, and another receiving apparatus (in the example of FIG. Diversity combining by inputting an intermediate frequency signal separated by an IF separator of (2 reception FPU and 3rd reception FPU) and including transmission data (ch1-2, ch1-3) of the channel To demodulate the signal.
  誤り訂正部613は、ダイバーシティ合成部612でダイバーシティ合成された信号に対して、伝送誤りを訂正し、ch1の映像信号を出力する。 Error correction section 613 corrects the transmission error of the signal that has been diversity combined by diversity combining section 612, and outputs a ch1 video signal.
  第2受信FPUは、第2受信高周波部700と第2受信制御部710を備える。第2受信高周波部700は、受信アンテナ701と、LNA702と、中間周波数信号生成部703と、IF合成部705を備える。第2受信制御部710は、IF分離部711と、ダイバーシティ合成部712と、誤り訂正部713を備える。LNA702は、第1実施例のLNA102と同じ機能を有する。 The second reception FPU includes a second reception high-frequency unit 700 and a second reception control unit 710. The second reception high-frequency unit 700 includes a reception antenna 701, an LNA 702, an intermediate frequency signal generation unit 703, and an IF synthesis unit 705. The second reception control unit 710 includes an IF separation unit 711, a diversity combining unit 712, and an error correction unit 713. The LNA 702 has the same function as the LNA 102 of the first embodiment.
  中間周波数信号生成部703は、ミキサ703aと、ミキサ703bと、ミキサ703cと、BPF704aと、BPF704bと、BPF704cを備える。 The intermediate frequency signal generation unit 703 includes a mixer 703a, a mixer 703b, a mixer 703c, a BPF 704a, a BPF 704b, and a BPF 704c.
  ミキサ703aは、LNA702で増幅された高周波を、190MHz付近の中間周波数に変換し、BPF704aは、この190MHz付近の中間周波数信号に対し、ch1の送信データ以外の周波数信号を抑圧し、ch1の送信データ(ch1‐2)だけを通過させる。 The mixer 703a converts the high frequency amplified by the LNA 702 into an intermediate frequency near 190 MHz, and the BPF 704a suppresses the frequency signal other than the transmission data of ch1 with respect to the intermediate frequency signal near 190 MHz, and the transmission data of ch1 Pass only (ch1-2).
  ミキサ703bは、LNA702で増幅された高周波を、250MHz付近の中間周波数に変換し、BPF704bは、この250MHz付近の中間周波数信号に対し、ch2の送信データ以外の周波数信号を抑圧し、ch2の送信データ(ch2‐2)だけを通過させる。 The mixer 703b converts the high frequency amplified by the LNA 702 into an intermediate frequency near 250 MHz, and the BPF 704b suppresses the frequency signal other than the ch2 transmission data with respect to the intermediate frequency signal near 250 MHz, and the ch2 transmission data Pass only (ch2-2).
  ミキサ703cは、LNA702で増幅された高周波を、130MHz付近の中間周波数に変換し、BPF704cは、この130MHz付近の中間周波数信号に対し、ch3の送信データ以外の周波数信号を抑圧し、ch3の送信データ(ch3‐2)だけを通過させる。 The mixer 703c converts the high frequency amplified by the LNA 702 into an intermediate frequency near 130 MHz, and the BPF 704c suppresses the frequency signal other than the ch3 transmission data with respect to the intermediate frequency signal near 130 MHz, and transmits the ch3 transmission data. Pass only (ch3-2).
  IF合成部705は、入力された複数(図4の例では3つ)の中間周波数信号を合成して、1つの中間周波数合成信号を生成する。図4の例では、ch1‐2を含む中間周波数信号と、ch2‐2を含む中間周波数信号と、ch3‐2を含む中間周波数信号とを合成する。 The IF synthesis unit 705 synthesizes a plurality of input intermediate frequency signals (three in the example of FIG. 4) to generate one intermediate frequency synthesis signal. In the example of FIG. 4, an intermediate frequency signal including ch1-2, an intermediate frequency signal including ch2-2, and an intermediate frequency signal including ch3-2 are synthesized.
  IF分離部711は、IF合成部705で生成された中間周波数合成信号を、IF合成部705で合成される前の複数の中間周波数信号に分離する。図4の例では、IF合成部705で生成された中間周波数合成信号を、周波数により弁別し、ch1‐2を含む中間周波数信号と、ch2‐2を含む中間周波数信号と、ch3‐2を含む中間周波数信号とに分離する。上述したように、ch1‐2を含む中間周波数信号は約190MHz、ch2‐2を含む中間周波数信号は約250MHz、ch3‐2を含む中間周波数信号は約130MHzである。 The IF separation unit 711 separates the intermediate frequency synthesized signal generated by the IF synthesis unit 705 into a plurality of intermediate frequency signals before being synthesized by the IF synthesis unit 705. In the example of FIG. 4, the intermediate frequency synthesized signal generated by the IF synthesizing unit 705 is discriminated by frequency, and includes an intermediate frequency signal including ch1-2, an intermediate frequency signal including ch2-2, and ch3-2. Separated into an intermediate frequency signal. As described above, the intermediate frequency signal including ch1-2 is approximately 190 MHz, the intermediate frequency signal including ch2-2 is approximately 250 MHz, and the intermediate frequency signal including ch3-2 is approximately 130 MHz.
  ダイバーシティ合成部712は、IF分離部711で分離された当該チャンネル(図4の例ではch2)の送信データを含む中間周波数信号(ch2‐2)と、他の受信装置(図4の例では第1受信FPUと第3受信FPU)のIF分離部で分離された中間周波数信号であって、当該チャンネルの送信データを含む中間周波数信号(ch2‐1、ch2‐3)とが入力されてダイバーシティ合成を行い、信号を復調する。 The diversity combining unit 712 includes an intermediate frequency signal (ch2-2) including transmission data of the channel (ch2 in the example of FIG. 4) separated by the IF separation unit 711, and another receiving device (in the example of FIG. Diversity combining by inputting intermediate frequency signals (ch2-1, ch2-3) including the transmission data of the channel, which are intermediate frequency signals separated by the IF separation unit of the first reception FPU and the third reception FPU) To demodulate the signal.
  誤り訂正部713は、ダイバーシティ合成部712でダイバーシティ合成された信号に対して、伝送誤りを訂正し、ch2の映像信号を出力する。 The error correction unit 713 corrects a transmission error with respect to the signal subjected to diversity combining by the diversity combining unit 712 and outputs a ch2 video signal.
  第3受信FPUは、第3受信高周波部800と第3受信制御部810を備える。第3受信高周波部800は、受信アンテナ801と、LNA802と、中間周波数信号生成部803と、IF合成部805を備える。第3受信制御部810は、IF分離部811と、ダイバーシティ合成部812と、誤り訂正部813を備える。LNA802は、第1実施例のLNA102と同じ機能を有する。 The third reception FPU includes a third reception high frequency unit 800 and a third reception control unit 810. The third reception high-frequency unit 800 includes a reception antenna 801, an LNA 802, an intermediate frequency signal generation unit 803, and an IF synthesis unit 805. The third reception control unit 810 includes an IF separation unit 811, a diversity combining unit 812, and an error correction unit 813. The LNA 802 has the same function as the LNA 102 of the first embodiment.
  中間周波数信号生成部803は、ミキサ803aと、ミキサ803bと、ミキサ803cと、BPF804aと、BPF804bと、BPF804cを備える。 The intermediate frequency signal generation unit 803 includes a mixer 803a, a mixer 803b, a mixer 803c, a BPF 804a, a BPF 804b, and a BPF 804c.
  ミキサ803aは、LNA802で増幅された高周波を、250MHz付近の中間周波数に変換し、BPF804aは、この250MHz付近の中間周波数信号に対し、ch1の送信データ以外の周波数信号を抑圧し、ch1の送信データ(ch1‐3)だけを通過させる。 The mixer 803a converts the high frequency amplified by the LNA 802 into an intermediate frequency near 250 MHz, and the BPF 804a suppresses the frequency signal other than the ch1 transmission data with respect to the intermediate frequency signal near 250 MHz, and the ch1 transmission data Pass only (ch1-3).
  ミキサ803bは、LNA802で増幅された高周波を、130MHz付近の中間周波数に変換し、BPF804bは、この130MHz付近の中間周波数信号に対し、ch2の送信データ以外の周波数信号を抑圧し、ch2の送信データ(ch2‐3)だけを通過させる。 The mixer 803b converts the high frequency amplified by the LNA 802 into an intermediate frequency near 130 MHz, and the BPF 804b suppresses the frequency signal other than the ch2 transmission data with respect to the intermediate frequency signal near 130 MHz, and the ch2 transmission data Pass only (ch2-3).
  ミキサ803cは、LNA802で増幅された高周波を、190MHz付近の中間周波数に変換し、BPF804cは、この190MHz付近の中間周波数信号に対し、ch3の送信データ以外の周波数信号を抑圧し、ch3の送信データ(ch3‐3)だけを通過させる。 The mixer 803c converts the high frequency amplified by the LNA 802 into an intermediate frequency near 190 MHz, and the BPF 804c suppresses the frequency signal other than the transmission data of ch3 with respect to the intermediate frequency signal near 190 MHz, and the transmission data of ch3 Pass only (ch3-3).
  IF合成部805は、入力された複数(図4の例では3つ)の中間周波数信号を合成して、1つの中間周波数合成信号を生成する。図4の例では、ch1‐3を含む中間周波数信号と、ch2‐3を含む中間周波数信号と、ch3‐3を含む中間周波数信号とを合成する。 The IF synthesis unit 805 synthesizes a plurality of input intermediate frequency signals (three in the example of FIG. 4) to generate one intermediate frequency synthesis signal. In the example of FIG. 4, the intermediate frequency signal including ch1-3, the intermediate frequency signal including ch2-3, and the intermediate frequency signal including ch3-3 are synthesized.
  IF分離部811は、IF合成部805で生成された中間周波数合成信号を、IF合成部805で合成される前の複数の中間周波数信号に分離する。図4の例では、IF合成部805で生成された中間周波数合成信号を、周波数により弁別し、ch1‐3を含む中間周波数信号と、ch2‐3を含む中間周波数信号と、ch3‐3を含む中間周波数信号とに分離する。上述したように、ch1‐3を含む中間周波数信号は約250MHz、ch2‐3を含む中間周波数信号は約130MHz、ch3‐3を含む中間周波数信号は約190MHzである。 The IF separation unit 811 separates the intermediate frequency synthesized signal generated by the IF synthesis unit 805 into a plurality of intermediate frequency signals before being synthesized by the IF synthesis unit 805. In the example of FIG. 4, the intermediate frequency synthesized signal generated by the IF synthesizing unit 805 is discriminated by frequency, and includes an intermediate frequency signal including ch1-3, an intermediate frequency signal including ch2-3, and ch3-3. Separated into an intermediate frequency signal. As described above, the intermediate frequency signal including ch1-3 is approximately 250 MHz, the intermediate frequency signal including ch2-3 is approximately 130 MHz, and the intermediate frequency signal including ch3-3 is approximately 190 MHz.
  ダイバーシティ合成部812は、IF分離部811で分離された当該チャンネル(図4の例ではch3)の送信データ(ch3‐3)を含む中間周波数信号と、他の受信装置(図4の例では第1受信FPUと第2受信FPU)のIF分離部で分離された中間周波数信号であって、当該チャンネルの送信データ(ch3‐1、ch3‐2)を含む中間周波数信号とが入力されてダイバーシティ合成を行い、信号を復調する。 Diversity combining section 812 includes an intermediate frequency signal including transmission data (ch3-3) of the channel (ch3 in the example of FIG. 4) separated by IF separating section 811 and the other receiving apparatus (in the example of FIG. Diversity combining by inputting an intermediate frequency signal separated by the IF separator of (1 reception FPU and 2 reception FPU) and including the transmission data (ch3-1, ch3-2) of the channel To demodulate the signal.
  誤り訂正部813は、ダイバーシティ合成部812でダイバーシティ合成された信号に対して、伝送誤りを訂正し、ch3の映像信号を出力する。 The error correction unit 813 corrects the transmission error of the signal subjected to diversity combining by the diversity combining unit 812 and outputs a ch3 video signal.
  次に、受信アンテナ601、701、801で受信した受信信号に基づき、第1系統の受信装置でch1の送信データ、第2系統の受信装置でch2の送信データ、第3系統の受信装置でch3の送信データを取得するまでの動作を説明する。 Next, based on the received signals received by the receiving antennas 601, 701, and 801, ch1 transmission data is received by the first system receiver, ch2 transmission data is received by the second system receiver, and ch3 is received by the third system receiver. The operation until the transmission data is acquired will be described.
  受信アンテナ601で受信した受信信号は、LNA602に入力され増幅される。受信アンテナ701で受信した受信信号は、LNA702に入力され増幅される。受信アンテナ801で受信した受信信号は、LNA802に入力され増幅される。 The received signal received by the receiving antenna 601 is input to the LNA 602 and amplified. A received signal received by the receiving antenna 701 is input to the LNA 702 and amplified. A received signal received by the receiving antenna 801 is input to the LNA 802 and amplified.
  LNA602で増幅された信号は、ミキサ603a、603b、603cに入力され、搬送波のRF周波数がIF周波数に周波数変換される。具体的には、RF周波数をミキサ603aでは130MHzに、ミキサ603bでは190MHzに、ミキサ603cでは250MHzに変換する。 The signal amplified by the LNA 602 is input to the mixers 603a, 603b, and 603c, and the RF frequency of the carrier wave is converted to an IF frequency. Specifically, the RF frequency is converted to 130 MHz in the mixer 603a, 190 MHz in the mixer 603b, and 250 MHz in the mixer 603c.
  ミキサ603aによりIF周波数(130MHz)に変換されたIF信号から、BPF604aにより、ch1の信号(ch1‐1)のみが抽出される。ミキサ603bによりIF周波数(190MHz)に変換されたIF信号から、BPF604bにより、ch2の信号(ch2‐1)のみが抽出される。ミキサ603cによりIF周波数(250MHz)に変換されたIF信号から、BPF604cにより、ch3の信号(ch3‐1)のみが抽出される。 Only the ch1 signal (ch1-1) is extracted by the BPF 604a from the IF signal converted to the IF frequency (130 MHz) by the mixer 603a. Only the ch2 signal (ch2-1) is extracted by the BPF 604b from the IF signal converted to the IF frequency (190 MHz) by the mixer 603b. Only the ch3 signal (ch3-1) is extracted by the BPF 604c from the IF signal converted to the IF frequency (250 MHz) by the mixer 603c.
  同様に、LNA702で増幅された信号は、ミキサ703a、703b、703cに入力され、RF周波数をミキサ703aでは190MHzに、ミキサ703bでは250MHzに、ミキサ703cでは130MHzに変換する。そして、ミキサ703aによりIF周波数(190MHz)に変換されたIF信号から、BPF704aにより、ch1の信号(ch1‐2)のみが抽出される。ミキサ703bによりIF周波数(250MHz)に変換されたIF信号から、BPF704bにより、ch2の信号(ch2‐2)のみが抽出される。ミキサ703cによりIF周波数(130MHz)に変換されたIF信号から、BPF704cにより、ch3の信号(ch3‐2)のみが抽出される。 Similarly, the signal amplified by the LNA 702 is input to the mixers 703a, 703b, and 703c, and the RF frequency is converted to 190 MHz by the mixer 703a, 250 MHz by the mixer 703b, and 130 MHz by the mixer 703c. Then, only the ch1 signal (ch1-2) is extracted by the BPF 704a from the IF signal converted to the IF frequency (190 MHz) by the mixer 703a. Only the ch2 signal (ch2-2) is extracted by the BPF 704b from the IF signal converted to the IF frequency (250 MHz) by the mixer 703b. Only the ch3 signal (ch3-2) is extracted by the BPF 704c from the IF signal converted to the IF frequency (130 MHz) by the mixer 703c.
  同様に、LNA802で増幅された信号は、ミキサ803a、803b、803cに入力され、RF周波数をミキサ803aでは250MHzに、ミキサ803bでは130MHzに、ミキサ803cでは190MHzに変換する。そして、ミキサ803aによりIF周波数(250MHz)に変換されたIF信号から、BPF804aにより、ch1の信号(ch1‐3)のみが抽出される。ミキサ803bによりIF周波数(130MHz)に変換されたIF信号から、BPF804bにより、ch2の信号(ch2‐3)のみが抽出される。ミキサ803cによりIF周波数(190MHz)に変換されたIF信号から、BPF804cにより、ch3の信号(ch3‐3)のみが抽出される。 Similarly, the signal amplified by the LNA 802 is input to the mixers 803a, 803b, and 803c, and the RF frequency is converted to 250 MHz by the mixer 803a, 130 MHz by the mixer 803b, and 190 MHz by the mixer 803c. Then, only the ch1 signal (ch1-3) is extracted by the BPF 804a from the IF signal converted to the IF frequency (250 MHz) by the mixer 803a. Only the ch2 signal (ch2-3) is extracted by the BPF 804b from the IF signal converted to the IF frequency (130 MHz) by the mixer 803b. Only the ch3 signal (ch3-3) is extracted by the BPF 804c from the IF signal converted to the IF frequency (190 MHz) by the mixer 803c.
  その後、1系統目の3つのIF信号(ch1‐1とch2‐1とch3‐1)は、IF合成部605により合成され、IFケーブル606により、IF分離部611へ送出される。2系統目の3つのIF信号(ch1‐2とch2‐2とch3‐2)は、IF合成部705により合成され、IFケーブル706により、IF分離部711へ送出される。3系統目の3つのIF信号(ch1‐3とch2‐3とch3‐3)は、IF合成部805により合成され、IFケーブル806により、IF分離部811へ送出される。 After that, the three IF signals (ch1-1, ch2-1, and ch3-1) of the first system are combined by the IF combiner 605 and sent to the IF separator 611 by the IF cable 606. The three IF signals (ch1-2, ch2-2, and ch3-2) in the second system are combined by the IF combining unit 705 and sent to the IF separation unit 711 through the IF cable 706. Three IF signals (ch1-3, ch2-3, and ch3-3) of the third system are combined by the IF combiner 805 and sent to the IF separator 811 via the IF cable 806.
  1系統目のIF分離部611において、IF合成部605で合成されたIF信号は、IF合成部605で合成される前のIF信号(ch1‐1とch2‐1とch3‐1)に分離される。同様に、2系統目のIF分離部711において、IF合成部705で合成されたIF信号は、IF合成部705で合成される前のIF信号(ch1‐2とch2‐2とch3‐2)に分離される。3系統目のIF分離部811において、IF合成部805で合成されたIF信号は、IF合成部805で合成される前のIF信号(ch1‐3とch2‐3とch3‐3)に分離される。 In the IF separation unit 611 of the first system, the IF signal synthesized by the IF synthesis unit 605 is separated into IF signals (ch1-1, ch2-1, and ch3-1) before being synthesized by the IF synthesis unit 605. The Similarly, in the second system IF separation unit 711, the IF signal synthesized by the IF synthesis unit 705 is the IF signal before being synthesized by the IF synthesis unit 705 (ch1-2, ch2-2, and ch3-2). Separated. In the third-system IF separation unit 811, the IF signal synthesized by the IF synthesis unit 805 is separated into IF signals (ch 1-3, ch 2-3, and ch 3-3) before being synthesized by the IF synthesis unit 805. The
  IF分離部611で分離された1つ目のIF信号(ch1-1)は、1系統目のダイバーシティ合成部612に入力される。IF分離部611で分離された2つ目のIF信号(ch2-1)は、2系統目のダイバーシティ合成部712に入力される。IF分離部611で分離された3つ目のIF信号(ch3-1)は、3系統目のダイバーシティ合成部812に入力される。 The first IF signal (ch1-1) separated by the IF separation unit 611 is input to the diversity combining unit 612 of the first system. The second IF signal (ch2-1) separated by the IF separation unit 611 is input to the second diversity combining unit 712. The third IF signal (ch3-1) separated by the IF separation unit 611 is input to the diversity combining unit 812 of the third system.
  同様に、IF分離部711で分離された1つ目のIF信号(ch1-2)は、1系統目のダイバーシティ合成部612に入力され、2つ目のIF信号(ch2-2)は2系統目のダイバーシティ合成部712に入力され、3つ目のIF信号(ch3-2)は、3系統目のダイバーシティ合成部812に入力される。 Similarly, the first IF signal (ch1-2) separated by the IF separation unit 711 is input to the first diversity combining unit 612, and the second IF signal (ch2-2) is two systems. The third IF signal (ch 3-2) input to the third diversity combining unit 712 is input to the third diversity combining unit 812.
  同様に、IF分離部811で分離された1つ目のIF信号(ch1-3)は、1系統目のダイバーシティ合成部612に入力され、2つ目のIF信号(ch2-3)は、2系統目のダイバーシティ合成部712に入力され、3つ目のIF信号(ch3-3)は3系統目のダイバーシティ合成部812に入力される。 Similarly, the first IF signal (ch1-3) separated by the IF separation unit 811 is input to the first diversity combining unit 612, and the second IF signal (ch2-3) is 2 The third IF signal (ch3-3) is input to the diversity combining unit 712 of the system, and is input to the diversity combining unit 812 of the third system.
  このとき、IF分離部611からダイバーシティ合成部712へのIF信号(ch2-1)の受け渡しやダイバーシティ合成部812へのIF信号(ch3-1)の受け渡し、IF分離部711からダイバーシティ合成部612へのIF信号(ch1-2)の受け渡しやダイバーシティ合成部812へのIF信号(ch3-2)の受け渡し、IF分離部811からダイバーシティ合成部712へのIF信号(ch2-3)の受け渡しやダイバーシティ合成部612へのIF信号(ch1-3)の受け渡しは、同軸ケーブルを用いて行われる。 At this time, the IF signal (ch2-1) is transferred from the IF separating unit 611 to the diversity combining unit 712, the IF signal (ch3-1) is transferred to the diversity combining unit 812, and the IF separating unit 711 to the diversity combining unit 612. IF signal (ch1-2) delivery, IF signal (ch3-2) delivery to diversity combining unit 812, IF signal (ch2-3) delivery from IF separating unit 811 to diversity combining unit 712, and diversity combining The IF signal (ch1-3) is transferred to the unit 612 using a coaxial cable.
  ダイバーシティ合成部612,712,812では、それぞれ、集約された3つのIF信号を、合成後のSNRが最大となる最大比合成などのダイバーシティ合成方式を用いて合成する。ダイバーシティ合成後の信号は、誤り訂正部613、713、813により伝送誤りが軽減され、誤り訂正部613からはch1の映像信号、誤り訂正部713からはch2の映像信号、誤り訂正部813からはch3の映像信号が出力される。 Diversity combining sections 612, 712, and 812 each combine three aggregated IF signals using a diversity combining method such as maximum ratio combining that maximizes the combined SNR. The diversity combined signal is reduced in transmission errors by the error correction units 613, 713, and 813. From the error correction unit 613, the ch1 video signal, from the error correction unit 713, the ch2 video signal, and from the error correction unit 813 The video signal of ch3 is output.
  なお、図4では、X(チャンネル数)=M(ダイバーシティ合成数)=N(受信アンテナ数)=3の例を説明したが、X=N=4以上とすることも可能であり、X=N=4以上の場合において、ダイバーシティ合成数Mをチャンネル数Xよりも少なくするように構成してもよい。このようにしても、背景技術に比べ、高い受信性能を実現することができる。なお、X=N=3、M=2の場合は、第2実施例に示したとおりである。 In FIG. 4, an example in which X (number of channels) = M (diversity combining number) = N (number of receiving antennas) = 3 has been described, but it is possible to set X = N = 4 or more. In the case of N = 4 or more, the diversity combining number M may be configured to be smaller than the channel number X. Even in this case, it is possible to realize higher reception performance than the background art. Note that the case of X = N = 3 and M = 2 is as shown in the second embodiment.
  また、第3実施例では、第1実施例と同様に、ダイバーシティ合成部612と712と812において、それぞれの入力信号の周波数が大きく異なるように構成したが、第1実施例で述べたように、それぞれの入力信号の周波数が略同じとなるように構成することも可能である。 Further, in the third embodiment, as in the first embodiment, the diversity combining sections 612, 712, and 812 are configured such that the frequencies of the respective input signals are greatly different. However, as described in the first embodiment, The frequency of each input signal can be configured to be substantially the same.
  また、第3実施例では、第1受信制御部610と第2受信制御部710と第3受信制御部810の全てでダイバーシティ合成を行うように構成したが、第1受信制御部610と第2受信制御部710と第3受信制御部810のうち1つ又は2つでダイバーシティ合成を行うように構成することも可能である。例えば、第1受信制御部610と第2受信制御部710のみでダイバーシティ合成を行い、第3受信制御部810では、IF分離部811の出力(ch3-3)だけを誤り訂正部813へ入力し、ch3の映像信号とする。このようにしても、ch1とch2の映像信号にはダイバーシティ効果が生じる。 In the third embodiment, the first reception control unit 610, the second reception control unit 710, and the third reception control unit 810 are configured to perform diversity combining. However, the first reception control unit 610 and the second reception control unit 810 are configured to perform diversity combining. One or two of the reception control unit 710 and the third reception control unit 810 may be configured to perform diversity combining. For example, only the first reception control unit 610 and the second reception control unit 710 perform diversity combining, and the third reception control unit 810 inputs only the output (ch3-3) of the IF separation unit 811 to the error correction unit 813. , Ch3 video signal. Even in this case, the diversity effect is produced in the video signals of ch1 and ch2.
  第3実施例によれば、第1実施例の効果に加え、少なくとも以下に示す効果を奏する。
  (C1)チャンネル数X=ダイバーシティ合成数M=受信アンテナ数N=3以上として受信システムを構成したので、X=Nに比べてMの数を少なくした第2実施例に比べて、ダイバーシティ性能を向上することができる。
According to the third embodiment, in addition to the effects of the first embodiment, there are at least the following effects.
(C1) Since the receiving system is configured with the number of channels X = diversity combining number M = the number of receiving antennas N = 3 or more, the diversity performance is improved as compared with the second embodiment in which the number of M is reduced compared to X = N. Can be improved.
  以上、本発明の実施形態を具体的に説明したが、本発明は上述の各実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to each above-mentioned embodiment, A various change is possible in the range which does not deviate from the summary.
  上記実施形態では、FPU伝送の場合を説明したが、FPU伝送に限られるものではなく、FPU伝送以外にも適用可能である。 In the above embodiment, the case of FPU transmission has been described. However, the present invention is not limited to FPU transmission, and can be applied to other than FPU transmission.
  また、本発明は、本発明に係る処理を実行する装置やシステムや方法としてだけでなく、このような方法やシステムを実現するためのプログラムや当該プログラムを記録する記録媒体などとして把握することができる。
  また、本発明は、CPUがメモリに格納された制御プログラムを実行することにより制御する構成としてもよく、また、ハードウエア回路として構成してもよい。
Further, the present invention can be understood not only as an apparatus, system, or method for executing the processing according to the present invention, but also as a program for realizing such a method or system, a recording medium for recording the program, or the like. it can.
Further, the present invention may be configured such that the CPU performs control by executing a control program stored in a memory, or may be configured as a hardware circuit.
  1‐1…第1送信FPU、1‐2…送信アンテナ、2‐1…第2送信FPU、2‐2…送信アンテナ、3‐1…送信FPU、3‐2…送信アンテナ、11…送信制御部、12…IFケーブル、13…送信高周波部、14…送信アンテナ、15…伝搬路、16a,16b…受信アンテナ、17…受信高周波部、18…IFケーブル、19…受信制御部、20…受信FPU、21a,21b…受信アンテナ、30…受信FPU、31a,31b…受信アンテナ、100…第1受信高周波部、101…受信アンテナ、102…LNA、103…中間周波数信号生成部、103a,103b…ミキサ、104a,104b…BPF、105…IF合成部(合成部)、106…IFケーブル、110…第1受信制御部、111…IF分離部(分離部)、112…ダイバーシティ合成部、113…誤り訂正部、200…第2受信高周波部、201…受信アンテナ、202…LNA、203…中間周波数信号生成部、203a,203b…ミキサ、204a,204b…BPF、205…IF合成部、206…IFケーブル、210…第2受信制御部、211…IF分離部、212…ダイバーシティ合成部、213…誤り訂正部。 1-1 ... 1st transmission FPU, 1-2 ... transmission antenna, 2-1 ... 2nd transmission FPU, 2-2 ... transmission antenna, 3-1 ... transmission FPU, 3-2 ... transmission antenna, 11 ... transmission control , 12 ... IF cable, 13 ... transmission high frequency part, 14 ... transmission antenna, 15 ... propagation path, 16a, 16b ... reception antenna, 17 ... reception high frequency part, 18 ... IF cable, 19 ... reception control part, 20 ... reception FPU, 21a, 21b ... receiving antenna, 30 ... receiving FPU, 31a, 31b ... receiving antenna, 100 ... first receiving high frequency unit, 101 ... receiving antenna, 102 ... LNA, 103 ... intermediate frequency signal generating unit, 103a, 103b ... Mixer, 104a, 104b ... BPF, 105 ... IF synthesis unit (synthesis unit), 106 ... IF cable, 110 ... first reception control unit, 111 ... IF separation unit (separation unit) DESCRIPTION OF SYMBOLS 112 ... Diversity synthetic | combination part, 113 ... Error correction part, 200 ... 2nd receiving high frequency part, 201 ... Reception antenna, 202 ... LNA, 203 ... Intermediate frequency signal generation part, 203a, 203b ... Mixer, 204a, 204b ... BPF, 205 ... IF combining section, 206 ... IF cable, 210 ... second reception control section, 211 ... IF separating section, 212 ... diversity combining section, 213 ... error correcting section.

Claims (3)

  1.   複数の受信装置を含む受信システムであって、
      前記複数の受信装置のそれぞれは、
      当該受信装置に対する第1の送信データを含む第1の周波数信号と、他の受信装置に対する第2の送信データを含む第2の周波数信号を受信する受信アンテナと、
      前記第1の周波数信号と前記第2の周波数信号に基づき、前記第1の送信データを含む第1の中間周波数信号と、前記第2の送信データを含む第2の中間周波数信号を生成する中間周波数信号生成部と、
      前記第1の中間周波数信号と前記第2の中間周波数信号を合成し、合成信号を生成する合成部と、
      前記合成信号を、前記第1の中間周波数信号と前記第2の中間周波数信号に分離する分離部と、
      当該受信装置の分離部で分離された前記第1の中間周波数信号と、他の受信装置の分離部で分離され前記第1の送信データを含む第3の中間周波数信号とが入力されて、前記第1の送信データを含むダイバーシティ合成信号が生成されるダイバーシティ合成部と、
      を備えることを特徴とする受信システム。
    A receiving system including a plurality of receiving devices,
    Each of the plurality of receiving devices is
    A receiving antenna that receives a first frequency signal including first transmission data for the receiving device and a second frequency signal including second transmission data for another receiving device;
    An intermediate for generating a first intermediate frequency signal including the first transmission data and a second intermediate frequency signal including the second transmission data based on the first frequency signal and the second frequency signal. A frequency signal generator;
    A combining unit that combines the first intermediate frequency signal and the second intermediate frequency signal to generate a combined signal;
    A separation unit that separates the synthesized signal into the first intermediate frequency signal and the second intermediate frequency signal;
    The first intermediate frequency signal separated by the separation unit of the receiving device and the third intermediate frequency signal including the first transmission data separated by the separation unit of another receiving device are input, A diversity combining unit for generating a diversity combined signal including the first transmission data;
    A receiving system comprising:
  2.   請求項1に記載した受信システムであって、
      前記合成信号を当該受信装置の合成部から当該受信装置の分離部へ伝送する第1のケーブルと、前記第3の中間周波数信号を他の受信装置から当該受信装置へ伝送する第2のケーブルとを有し、前記第2のケーブルが前記第1のケーブルよりも短いことを特徴とする受信システム。
    The receiving system according to claim 1,
    A first cable for transmitting the combined signal from the combining unit of the receiving device to the separating unit of the receiving device; and a second cable for transmitting the third intermediate frequency signal from another receiving device to the receiving device; The receiving system is characterized in that the second cable is shorter than the first cable.
  3.   第1の送信データを含む第1の搬送波信号と、第2の送信データを含む第2の搬送波信号を受信する受信アンテナと、
      前記第1の搬送波信号と第2の搬送波信号に基づき、前記第1の送信データを含む第1の中間周波数信号と、前記第2の送信データを含む第2の中間周波数信号を生成する中間周波数信号生成部と、
      前記第1の中間周波数信号と前記第2の中間周波数信号を合成し、合成信号を生成する合成部と、
      前記合成信号を、前記第1の中間周波数信号と前記第2の中間周波数信号に分離する分離部と、
      前記分離部で分離された前記第1の中間周波数信号と、他の受信装置から受信した中間周波数信号であって、前記第1の送信データを含む第3の中間周波数信号とが入力されてダイバーシティ合成を行うダイバーシティ合成部と、
      を備えることを特徴とする受信装置。
    A receiving antenna that receives a first carrier signal that includes first transmission data and a second carrier signal that includes second transmission data;
    An intermediate frequency that generates a first intermediate frequency signal including the first transmission data and a second intermediate frequency signal including the second transmission data based on the first carrier signal and the second carrier signal. A signal generator;
    A combining unit that combines the first intermediate frequency signal and the second intermediate frequency signal to generate a combined signal;
    A separation unit that separates the synthesized signal into the first intermediate frequency signal and the second intermediate frequency signal;
    The first intermediate frequency signal separated by the separation unit and an intermediate frequency signal received from another receiving device and including a third intermediate frequency signal including the first transmission data are input to receive diversity. A diversity combining unit for combining;
    A receiving apparatus comprising:
PCT/JP2017/007914 2016-04-22 2017-02-28 Reception system and reception device WO2017183316A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018513047A JP6616890B2 (en) 2016-04-22 2017-02-28 Receiving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016086332 2016-04-22
JP2016-086332 2016-04-22

Publications (1)

Publication Number Publication Date
WO2017183316A1 true WO2017183316A1 (en) 2017-10-26

Family

ID=60115997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007914 WO2017183316A1 (en) 2016-04-22 2017-02-28 Reception system and reception device

Country Status (2)

Country Link
JP (1) JP6616890B2 (en)
WO (1) WO2017183316A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205261A (en) * 1998-01-09 1999-07-30 Daihen Corp Space diversity type receiver
JP2008514135A (en) * 2004-09-20 2008-05-01 パナソニック オートモーティブ システムズ カンパニー オブ アメリカ ディビジョン オブ パナソニック コーポレイション オブ ノース アメリカ Apparatus having a distributed architecture for receiving and / or transmitting radio frequency signals and method for implementing the distributed architecture
JP2009524980A (en) * 2006-01-25 2009-07-02 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for reducing combiner loss in a multi-sector omni base station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205261A (en) * 1998-01-09 1999-07-30 Daihen Corp Space diversity type receiver
JP2008514135A (en) * 2004-09-20 2008-05-01 パナソニック オートモーティブ システムズ カンパニー オブ アメリカ ディビジョン オブ パナソニック コーポレイション オブ ノース アメリカ Apparatus having a distributed architecture for receiving and / or transmitting radio frequency signals and method for implementing the distributed architecture
JP2009524980A (en) * 2006-01-25 2009-07-02 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and apparatus for reducing combiner loss in a multi-sector omni base station

Also Published As

Publication number Publication date
JPWO2017183316A1 (en) 2019-02-14
JP6616890B2 (en) 2019-12-04

Similar Documents

Publication Publication Date Title
TWI443976B (en) Method and apparatus for reducing combiner loss in a multi-sector, omni-base station
KR100555166B1 (en) Multiple Branch Receiver System and Method
JP2009522908A (en) Interference canceling wireless repeater
JP2007528665A (en) Method, apparatus, base station, and base station site for reducing the number of feeders in an antenna diversity system
EP2658134A1 (en) Multi-antenna system
JP6616890B2 (en) Receiving system
KR101492840B1 (en) Wireless repeater for tunnel
WO2018146741A1 (en) Transmitter, communication system, control method and programm
JP4568287B2 (en) Optical transmission apparatus, optical transmission system, optical transmission method, and optical transmission method
KR20110028230A (en) Apparatus for trnasmitting/receiving in wireless communication system
KR100337223B1 (en) Method and system of optical-repeating for muti-frequency bands
JP6461878B2 (en) Receiver, receiving method and radio
JP4695628B2 (en) Wireless communication system for elevator
JP7133300B2 (en) Receiving system of diversity type microphone
WO2017158910A1 (en) Active antenna system
JP2006196947A (en) Relaying amplifier
JP2000324033A (en) Method and device for repeating identical frequency
KR100422107B1 (en) Apparatus and method of relaying mobile communication signals for multi-directional sector antenna using micro-wave frequency band
JP2006211171A (en) Relay amplifier
JP3505354B2 (en) Satellite broadcasting system and receiving terminal
KR200332434Y1 (en) Interference Signal Elimination Circuit of Radio Relay Apparatus for In-phase Elimination Form using Primary Signal
JP5367741B2 (en) Method, apparatus, base station, and base station site for reducing the number of feeders in an antenna diversity system
KR20180060422A (en) Radio relay apparatus for tunnels and control method thereof
JP2987077B2 (en) Synchronous relay method and apparatus for FM broadcast
RU2563028C2 (en) Method and device of generating at least one output signal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018513047

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785661

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785661

Country of ref document: EP

Kind code of ref document: A1