WO2017183072A1 - Vehicle control system, vehicle communication system, vehicle control method, and vehicle control program - Google Patents

Vehicle control system, vehicle communication system, vehicle control method, and vehicle control program Download PDF

Info

Publication number
WO2017183072A1
WO2017183072A1 PCT/JP2016/062220 JP2016062220W WO2017183072A1 WO 2017183072 A1 WO2017183072 A1 WO 2017183072A1 JP 2016062220 W JP2016062220 W JP 2016062220W WO 2017183072 A1 WO2017183072 A1 WO 2017183072A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
unit
terminal device
mode
jamming
Prior art date
Application number
PCT/JP2016/062220
Other languages
French (fr)
Japanese (ja)
Inventor
正彦 朝倉
邦道 波多野
尚人 千
正明 阿部
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2016/062220 priority Critical patent/WO2017183072A1/en
Priority to JP2018512651A priority patent/JP6572506B2/en
Publication of WO2017183072A1 publication Critical patent/WO2017183072A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle control system, a communication system for a vehicle, a vehicle control method, and a vehicle control program.
  • a target control amount for automatically controlling at least one of the steering angle of the steering wheel and the braking / driving force of the vehicle is calculated according to the traveling condition of the vehicle, and the steering angle of the steering wheel is calculated based on the target control amount.
  • An automatic driving control method of a vehicle is disclosed which automatically controls at least one of the braking / driving force of the vehicle (see, for example, Patent Document 1).
  • the present invention has been made in consideration of such circumstances, and has as its object to guide the attention of a vehicle occupant around.
  • the invention according to claim 1 comprises a recognition unit that recognizes a situation around the host vehicle, and an automatic driving control unit that performs automatic driving that automatically controls at least one of acceleration and deceleration of the host vehicle and steering.
  • the automatic driving control unit performs the automatic driving
  • the terminal device is brought into the compartment of the host vehicle and can be operated by an occupant of the host vehicle based on the situation recognized by the recognition unit.
  • a jamming control unit for jamming communication.
  • the vehicle control system is the vehicle control system according to the first aspect, further comprising: a prediction unit that predicts that the degree of the automatic driving is reduced based on the situation recognized by the recognition unit; However, when it is predicted by the prediction unit that the degree of the automatic driving decreases, the communication of the terminal device is interrupted.
  • the vehicle control system further includes a radio wave transmission unit for transmitting a radio wave, and the jamming control unit uses the radio wave transmission unit. It sends out jamming waves that disturb communication.
  • the invention according to a fourth aspect is the vehicle control system according to any one of the first to third aspects, further comprising a vehicle interior communication unit that performs pairing connection with the terminal device;
  • the control unit transmits a signal notifying a danger to the terminal device by the pairing connection by the in-room communication unit based on the situation recognized by the recognition unit.
  • the invention according to claim 5 is the vehicle control system according to any one of claims 1 to 3, further comprising a vehicle interior communication unit for performing pairing connection with the terminal device, the disturbance
  • the control unit transmits a signal for suppressing the use of the terminal device to the terminal device by the pairing connection by the communication unit for the inside of the room based on the situation recognized by the recognition unit.
  • the invention according to claim 6 is the vehicle control system according to claim 4 or 5, wherein the interference control unit does not establish a pairing connection between the in-room communication unit and the terminal device. Further, the jamming radio wave is transmitted using the radio wave transmission unit.
  • the invention according to claim 7 is the vehicle control system according to any one of claims 4 to 6, wherein the in-vehicle communication unit performs pairing connection using an electromagnetic wave that is not disturbed by the jamming radio wave. It is a thing.
  • the electromagnetic wave not disturbed by the jamming wave is a wave of a frequency band different from that of the jamming wave.
  • an in-vehicle communication section which is brought into a vehicle compartment of a host vehicle and performs pairing connection with a terminal device operable by an occupant of the host vehicle, and interference that interferes with communication of the terminal device.
  • a jamming radio wave which is a radio wave and does not disturb the pairing connection by the in-room communication unit is transmitted, and the pairing connection is established between the in-room communication unit and the terminal device;
  • a radio wave transmission unit for stopping transmission of the vehicle.
  • the on-vehicle computer executes an automatic operation in which a situation around the own vehicle is recognized, and at least one of acceleration and deceleration of the own vehicle and steering is automatically controlled. It is a vehicle control method which is brought into the compartment of the host vehicle and interferes with communication of a terminal device operable by an occupant of the host vehicle based on the recognized situation.
  • the invention according to claim 11 causes the on-vehicle computer to recognize the situation around the host vehicle, and to execute automatic driving to automatically control at least one of acceleration and deceleration and steering of the host vehicle, and to execute the automatic driving.
  • It is a vehicle control program which is brought into the compartment of the host vehicle and interferes with communication of a terminal device operable by an occupant of the host vehicle based on the recognized situation, in the case of implementation.
  • the attention of the vehicle occupant can be guided to the periphery.
  • FIG. FIG. 2 is a functional configuration diagram centering on a vehicle control system 100.
  • FIG. 2 is a functional configuration diagram of a host vehicle M. It is a block diagram of HMI70. It is a figure which shows a mode that the relative position of the own vehicle M with respect to the traffic lane L1 is recognized by the own vehicle position recognition part 140.
  • FIG. It is a figure which shows an example of the action plan produced
  • FIG. 6 is a diagram showing an example of the configuration of an HMI control unit 170. It is a figure which shows an example of the information output from HMI70. It is a figure which shows an example of the correspondence of the transmission electromagnetic wave in every automatic driving
  • working mode. 5 is a flowchart showing an example of the flow of processing performed by the vehicle control system 100. It is a flowchart which shows an example of the flow of the process performed by the paired terminal 97.
  • FIG. 5 is a flowchart illustrating another example of the flow of processing performed by the vehicle control system 100.
  • FIG. 1 is a diagram showing components of a vehicle (hereinafter referred to as a host vehicle M) on which the vehicle control system 100 of the embodiment is mounted.
  • the vehicle on which the vehicle control system 100 is mounted is, for example, a two-, three-, or four-wheeled vehicle, such as a vehicle powered by an internal combustion engine such as a diesel engine or gasoline engine, or an electric vehicle powered by an electric motor.
  • hybrid vehicles having an internal combustion engine and an electric motor.
  • An electric car is driven using electric power discharged by cells, such as a secondary battery, a hydrogen fuel cell, a metal fuel cell, and an alcohol fuel cell, for example.
  • sensors such as finders 20-1 to 20-7, radars 30-1 to 30-6, and a camera 40, a navigation device 50, and a vehicle control system 100 are provided. Will be mounted.
  • the finders 20-1 to 20-7 are, for example, LIDAR (Light Detection and Ranging, or Laser Imaging Detection and Ranging) which measures the scattered light with respect to the irradiation light and measures the distance to the object.
  • LIDAR Light Detection and Ranging, or Laser Imaging Detection and Ranging
  • the finder 20-1 is attached to a front grill or the like
  • the finders 20-2 and 20-3 are attached to the side of a vehicle body, a door mirror, the inside of a headlight, the vicinity of a side light, or the like.
  • the finder 20-4 is attached to the trunk lid or the like
  • the finders 20-5 and 20-6 are attached to the side of the vehicle body, the inside of the taillight, or the like.
  • the finders 20-1 to 20-6 described above have, for example, a detection area of about 150 degrees in the horizontal direction.
  • the finder 20-7 is attached to the roof or the like.
  • the finder 20-7 has, for example, a detection area of 360 degrees in the horizontal direction.
  • the radars 30-1 and 30-4 are, for example, long-distance millimeter-wave radars whose detection region in the depth direction is wider than other radars.
  • the radars 30-2, 30-3, 30-5, and 30-6 are middle-range millimeter-wave radars that have a narrower detection area in the depth direction than the radars 30-1 and 30-4.
  • the radar 30 detects an object by, for example, a frequency modulated continuous wave (FM-CW) method.
  • FM-CW frequency modulated continuous wave
  • the camera 40 is a digital camera using a solid-state imaging device such as, for example, a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS).
  • CMOS complementary metal oxide semiconductor
  • the camera 40 is attached to the top of the front windshield, the rear of the rearview mirror, and the like.
  • the camera 40 for example, periodically and repeatedly images the front of the host vehicle M.
  • the camera 40 may be a stereo camera including a plurality of cameras.
  • the configuration shown in FIG. 1 is merely an example, and a part of the configuration may be omitted, or another configuration may be added.
  • FIG. 2 is a functional configuration diagram centering on the vehicle control system 100 according to the embodiment.
  • the host vehicle M includes a detection device DD including a finder 20, a radar 30, and a camera 40, a navigation device 50, a wireless communication device 55, a vehicle sensor 60, an HMI (Human Machine Interface) 70, and vehicle control.
  • a system 100, a traveling driving force output device 200, a steering device 210, and a braking device 220 are mounted. These devices and devices are mutually connected by a multiplex communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network or the like.
  • CAN Controller Area Network
  • vehicle control system in the claims does not refer to only the "vehicle control system 100", but may include configurations other than the vehicle control system 100 (such as the detection device DD and the HMI 70).
  • vehicle control system 100 is also an example of a vehicular communication system.
  • the navigation device 50 has a GNSS (Global Navigation Satellite System) receiver, map information (navigation map), a touch panel display device functioning as a user interface, a speaker, a microphone, and the like.
  • the navigation device 50 specifies the position of the host vehicle M by the GNSS receiver, and derives the route from the position to the destination specified by the user.
  • the route derived by the navigation device 50 is provided to the target lane determination unit 110 of the vehicle control system 100.
  • the position of the host vehicle M may be identified or supplemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 60.
  • INS Inertial Navigation System
  • the navigation device 50 provides guidance by voice or navigation display on the route to the destination.
  • the configuration for specifying the position of the host vehicle M may be provided independently of the navigation device 50.
  • the navigation device 50 may be realized by, for example, the function of a terminal device such as a smartphone or a tablet terminal owned by the user. In this case, transmission and reception of information are performed between the terminal device and the vehicle control system 100 by wireless or wired communication.
  • the wireless communication device 55 performs wireless communication using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like.
  • the wireless communication device 55 performs wireless communication with a server for providing information of a system for monitoring the traffic condition of a road, such as VICS (registered trademark) (Vehicle Information and Communication System), for example.
  • traffic information information indicating the traffic condition of the road scheduled to travel.
  • Traffic information includes traffic congestion information ahead, time required for traffic congestion points, accident / faulty car / construction information, speed regulation / lane regulation information, location of parking lot, full / empty car information of parking lot / service area / parking area etc. Information is included.
  • the wireless communication device 55 acquires the above traffic information by communicating with a wireless beacon provided on a side band of a road or the like and performing inter-vehicle communication with other vehicles traveling around the host vehicle M. You may
  • the vehicle sensor 60 includes a vehicle speed sensor that detects a vehicle speed, an acceleration sensor that detects an acceleration, a yaw rate sensor that detects an angular velocity about a vertical axis, an orientation sensor that detects the direction of the host vehicle M, and the like.
  • FIG. 3 is a block diagram of the HMI 70.
  • the HMI 70 has, for example, a configuration of a driving operation system and a configuration of a non-driving operation system. These boundaries are not clear and the configuration of the driving system may have the function of the non-driving system (or vice versa).
  • the HMI 70 shifts, for example, an accelerator pedal 71, an accelerator opening sensor 72, an accelerator pedal reaction force output device 73, a brake pedal 74 and a brake depression amount sensor (or a master pressure sensor or the like) 75 as a configuration of a driving operation system. It includes a lever 76 and a shift position sensor 77, a steering wheel 78, a steering angle sensor 79 and a steering torque sensor 80, and other driving operation devices 81.
  • the accelerator pedal 71 is an operation element for receiving an acceleration instruction (or a deceleration instruction by a return operation) by a vehicle occupant.
  • the accelerator opening sensor 72 detects the amount of depression of the accelerator pedal 71 and outputs an accelerator opening signal indicating the amount of depression to the vehicle control system 100. In place of the output to the vehicle control system 100, the output may be directly output to the traveling driving force output device 200, the steering device 210, or the brake device 220. The same applies to the configurations of other driving operation systems described below.
  • the accelerator pedal reaction force output device 73 outputs a force (operation reaction force) in the opposite direction to the operation direction to the accelerator pedal 71, for example, in accordance with an instruction from the vehicle control system 100.
  • the brake pedal 74 is an operating element for receiving a deceleration instruction from a vehicle occupant.
  • the brake depression amount sensor 75 detects the depression amount (or depression force) of the brake pedal 74 and outputs a brake signal indicating the detection result to the vehicle control system 100.
  • the shift lever 76 is an operating element for receiving an instruction to change the shift position by the vehicle occupant.
  • the shift position sensor 77 detects a shift position instructed by the vehicle occupant, and outputs a shift position signal indicating the detection result to the vehicle control system 100.
  • the steering wheel 78 is an operating element for receiving a turning instruction from the vehicle occupant.
  • the steering angle sensor 79 detects an operation angle of the steering wheel 78, and outputs a steering angle signal indicating the detection result to the vehicle control system 100.
  • the steering torque sensor 80 detects a torque applied to the steering wheel 78, and outputs a steering torque signal indicating the detection result to the vehicle control system 100.
  • the other driving operation device 81 is, for example, a joystick, a button, a dial switch, a graphical user interface (GUI) switch, or the like.
  • the other driving operation device 81 receives an acceleration instruction, a deceleration instruction, a turning instruction, and the like, and outputs the instruction to the vehicle control system 100.
  • GUI graphical user interface
  • the HMI 70 has, for example, a display 82, a speaker 83, a touch operation detection device 84 and a content reproduction device 85, various operation switches 86, a sheet 88 and a sheet drive device 89, and a window glass 90 as a configuration of the non-operation operation system. And a window drive device 91, a car interior camera 95, a car interior communication device 96, a paired terminal 97, and a radio wave transmission device 98.
  • the display device 82 is, for example, an LCD (Liquid Crystal Display), an organic EL (Electroluminescence) display device, or the like which is attached to each part of an instrument panel, an assistant seat, an arbitrary position facing a rear seat, or the like. Also, the display device 82 may be a HUD (Head Up Display) that projects an image on a front windshield or other windows.
  • the speaker 83 outputs an audio.
  • the touch operation detection device 84 detects a touch position (touch position) on the display screen of the display device 82 and outputs the touch position to the vehicle control system 100.
  • the touch operation detection device 84 may be omitted.
  • the content reproduction device 85 includes, for example, a DVD (Digital Versatile Disc) reproduction device, a CD (Compact Disc) reproduction device, a television receiver, and various guidance image generation devices.
  • the display device 82, the speaker 83, the touch operation detection device 84, and the content reproduction device 85 may have a configuration in which a part or all of them is common to the navigation device 50.
  • the various operation switches 86 are disposed at arbitrary places in the vehicle compartment.
  • the various operation switches 86 include an automatic operation switching switch 87 for instructing start (or future start) and stop of automatic operation.
  • the automatic driving changeover switch 87 may be either a graphical user interface (GUI) switch or a mechanical switch.
  • the various operation switches 86 may also include switches for driving the sheet driving device 89 and the window driving device 91.
  • the seat 88 is a seat on which a vehicle occupant sits.
  • the seat driving device 89 freely drives the reclining angle, the longitudinal direction position, the yaw angle, and the like of the seat 88.
  • the window glass 90 is provided, for example, on each door.
  • the window drive device 91 opens and closes the window glass 90.
  • the in-vehicle camera 95 is a digital camera using a solid-state imaging device such as a CCD or a CMOS.
  • the in-vehicle camera 95 is attached to a position such as a rear view mirror, a steering boss, an instrument panel, etc., at which the head of at least a head of a vehicle occupant who performs driving operation can be imaged.
  • the camera 40 for example, periodically and repeatedly captures an image of a vehicle occupant.
  • a vehicle indoor communication device 96 is brought into, for example, a vehicle cabin, performs wireless communication with a terminal device operable by a vehicle occupant, and establishes a pairing connection. Similar to the wireless communication device 55, the terminal device performs wireless communication using, for example, a cellular network, a Wi-Fi network, Bluetooth, DSRC, or the like.
  • the terminal device is, for example, an entertainment and entertainment device such as a wireless type portable game machine, a portable display, a tablet terminal, a VR (Virtual Reality) glass, and a head mounted display.
  • the pairing connection with the terminal device may be established by an ad hoc network, or may be established by using an existing infrastructure such as the Internet.
  • the vehicle indoor communication device 96 is not limited to the pairing connection by radio waves, and may establish the pairing connection with the terminal device by optical wireless communication such as infrared light or laser.
  • the in-vehicle communication device 96 transmits a warning signal to the paired terminal 97.
  • the warning signal is a signal for reporting a danger to a vehicle occupant using the paired terminal 97, or a signal for suppressing the use of the terminal device (a signal for limiting the function of the terminal device).
  • the paired terminal 97 is a terminal device in which a pairing connection has been established with the in-vehicle communication device 96.
  • the radio wave transmission device 98 transmits jamming radio waves that interfere with the communication of the terminal device under the control of the HMI control unit 170 described later.
  • the frequency band of jamming radio waves is, for example, the frequency band of radio waves used in the cellular network (for example, 2.1 GHz band or 1.5 GHz band) or the frequency band of radio waves used in the Wi-Fi network (for example, 2.4 GHz band) Or 5 GHz band) or the same frequency band as a television broadcast wave.
  • the frequency band of jamming radio waves and the frequency band of the warning signal are preferably different from each other, but may be overlapping.
  • the radio wave transmission device 98 is provided with a part or all of the functions of the vehicle indoor communication device 96
  • the in-vehicle communication device 96 may have some or all of the functions of the radio wave transmission device 98.
  • the radio transmission device 98 may perform pairing connection with the terminal device, and the in-vehicle communication device 96 may transmit the jamming radio signal or the warning signal.
  • the traveling drive power output device 200 Prior to the description of the vehicle control system 100, the traveling drive power output device 200, the steering device 210, and the brake device 220 will be described.
  • the traveling driving force output device 200 outputs traveling driving force (torque) for the vehicle to travel to the driving wheels.
  • the traveling drive power output device 200 includes an engine, a transmission, and an engine ECU (Electronic Control Unit) for controlling the engine.
  • an electric vehicle using an electric motor as a power source a traveling motor and a motor ECU for controlling the traveling motor are provided, and when the host vehicle M is a hybrid vehicle, an engine, a transmission, an engine ECU, a traveling motor, And a motor ECU.
  • travel driving force output device 200 includes only the engine
  • the engine ECU adjusts the throttle opening degree, shift stage, and the like of the engine according to the information input from travel control unit 160 described later.
  • traveling driving force output device 200 includes only the traveling motor
  • motor ECU adjusts the duty ratio of the PWM signal given to the traveling motor according to the information input from traveling control unit 160.
  • traveling driving force output device 200 includes an engine and a traveling motor
  • engine ECU and motor ECU control the traveling driving force in coordination with each other in accordance with the information input from traveling control unit 160.
  • the steering device 210 includes, for example, a steering ECU and an electric motor.
  • the electric motor for example, applies a force to the rack and pinion mechanism to change the direction of the steered wheels.
  • the steering ECU drives the electric motor according to the information input from the vehicle control system 100 or the information of the steering angle or steering torque input, and changes the direction of the steered wheels.
  • the brake device 220 is, for example, an electric servo brake device that includes a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a braking control unit.
  • the braking control unit of the electric servo brake device controls the electric motor in accordance with the information input from the traveling control unit 160 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the electric servo brake device may be provided with a mechanism for transmitting the hydraulic pressure generated by the operation of the brake pedal to the cylinder via the master cylinder as a backup.
  • the brake device 220 is not limited to the above-described electric servo brake device, and may be an electronically controlled hydraulic brake device.
  • the electronically controlled hydraulic brake device controls the actuator according to the information input from the travel control unit 160 to transmit the hydraulic pressure of the master cylinder to the cylinder.
  • the brake device 220 may include a regenerative brake by a traveling motor that may be included in the traveling driving force output device 200.
  • the vehicle control system 100 is realized by, for example, one or more processors or hardware having equivalent functions.
  • the vehicle control system 100 is configured by combining a processor such as a central processing unit (CPU), a storage device, and an electronic control unit (ECU) having a communication interface connected by an internal bus, or an MPU (micro-processing unit). It may be.
  • a processor such as a central processing unit (CPU), a storage device, and an electronic control unit (ECU) having a communication interface connected by an internal bus, or an MPU (micro-processing unit). It may be.
  • CPU central processing unit
  • ECU electronice control unit
  • MPU micro-processing unit
  • the vehicle control system 100 includes, for example, a target lane determination unit 110, an automatic driving control unit 120, a travel control unit 160, an HMI control unit 170, and a storage unit 180.
  • the automatic driving control unit 120 includes, for example, an automatic driving mode control unit 130, a host vehicle position recognition unit 140, an external world recognition unit 142, an action plan generation unit 144, a track generation unit 146, and a switching control unit 150.
  • the combination of the detection device DD, the wireless communication device 55, and the external world recognition unit 142 described above is an example of the “recognition unit”.
  • the automatic driving control unit 120 and the traveling control unit 160 are examples of the “automatic driving control unit”.
  • the processor executes a program (software) to realize part or all of the target lane determination unit 110, the units of the automatic driving control unit 120, and the travel control unit 160. Also, some or all of these may be realized by hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit), or may be realized by a combination of software and hardware.
  • a program software to realize part or all of the target lane determination unit 110, the units of the automatic driving control unit 120, and the travel control unit 160. Also, some or all of these may be realized by hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit), or may be realized by a combination of software and hardware.
  • the storage unit 180 stores, for example, information such as high-accuracy map information 182, target lane information 184, action plan information 186, mode-specific operation availability information 188, and the like.
  • the storage unit 180 is realized by a read only memory (ROM), a random access memory (RAM), a hard disk drive (HDD), a flash memory, or the like.
  • the program executed by the processor may be stored in advance in the storage unit 180, or may be downloaded from an external device via an in-vehicle Internet facility or the like.
  • the program may be installed in the storage unit 180 by mounting a portable storage medium storing the program in a drive device (not shown).
  • the vehicle control system 100 may be distributed by a plurality of computer devices.
  • the target lane determination unit 110 is realized by, for example, an MPU.
  • the target lane determination unit 110 divides the route provided from the navigation device 50 into a plurality of blocks (for example, in units of 100 [m] in the traveling direction of the vehicle), and refers to the high accuracy map information 182 to each block Determine your target lane.
  • the target lane determination unit 110 determines, for example, which lane from the left the vehicle should travel.
  • the target lane determination unit 110 determines the target lane so that the host vehicle M can travel on a rational travel route for advancing to the branch destination, for example, when there is a branch point or a junction point in the route. .
  • the target lane determined by the target lane determination unit 110 is stored in the storage unit 180 as target lane information 184.
  • the high accuracy map information 182 is map information with higher accuracy than the navigation map of the navigation device 50.
  • the high accuracy map information 182 includes, for example, information on the center of the lane or information on the boundary of the lane. Also, the high accuracy map information 182 may include road information, traffic regulation information, address information (address / zip code), facility information, telephone number information, and the like.
  • the road information includes information indicating the type of road such as expressways, toll roads, national roads, and prefectural roads, the number of lanes of the road, the width of each lane, the slope of the road, the position of the road (longitude, latitude, height 3) (including three-dimensional coordinates), curvature of a curve of a lane, locations of merging and branching points of lanes, and information such as signs provided on roads.
  • the traffic regulation information includes information that the lane is blocked due to construction work, traffic accident, traffic jam or the like.
  • the automatic driving mode control unit 130 determines the mode of the automatic driving performed by the automatic driving control unit 120.
  • the modes of the automatic driving in this embodiment include the following modes. The following is merely an example, and the number of modes of the automatic driving may be arbitrarily determined.
  • Mode A is the mode in which the degree of automatic operation is the highest. When the mode A is implemented, all vehicle control such as complicated merging control is automatically performed, so that the vehicle occupant does not have to monitor the surroundings or the state of the own vehicle M (there is no obligation to monitor the surroundings) ).
  • the traveling mode selected in the mode A there is a low speed following traveling (TJP; Traffic Jam Pilot) which follows the preceding vehicle in a traffic jam.
  • TJP Traffic Jam Pilot
  • safe automatic driving can be realized by following a preceding vehicle on a crowded freeway.
  • the low-speed following traveling is canceled, for example, when the traveling speed of the host vehicle M becomes equal to or higher than a predetermined speed (for example, 60 km / h or higher).
  • a predetermined speed for example, 60 km / h or higher.
  • the mode A is switched to another traveling mode at the timing when the low speed following traveling ends, but may be switched to another traveling mode selectable in the mode A.
  • Mode B is a mode in which the degree of automatic operation is the second highest after mode A.
  • mode B all vehicle control is performed automatically in principle, but the driving operation of the host vehicle M is entrusted to the vehicle occupant according to the scene. For this reason, it is necessary for the vehicle occupant to monitor the surroundings and the state of the own vehicle M (the duty to monitor the surroundings is increased compared to mode A).
  • Mode C is a mode in which the degree of automatic operation is the second highest after mode B.
  • the vehicle occupant needs to perform a confirmation operation according to the scene on the HMI 70.
  • mode C for example, when the lane change timing is notified to the vehicle occupant and the vehicle occupant instructs the HMI 70 to change the lane, an automatic lane change is performed. Therefore, the vehicle occupant needs to monitor the surroundings and the state of the host vehicle M.
  • the automatic driving mode control unit 130 selects one of the automatic driving modes based on the operation of the vehicle occupant on the HMI 70, the event determined by the action plan generating unit 144, the traveling mode determined by the trajectory generating unit 146, and the like. Determine the mode.
  • the mode of the automatic operation is notified to the HMI control unit 170.
  • the limit according to the performance etc. of the detection device DD of the own vehicle M may be set to the mode of automatic driving
  • any of the modes of automatic operation it is possible to switch to the manual operation mode (override) by an operation on the configuration of the operation control system in the HMI 70.
  • Overriding is performed when, for example, a state in which the operating force of the vehicle occupant of the own vehicle M with respect to the driving operation system of the HMI 70 exceeds the threshold continues for a predetermined time or more, a predetermined operation change amount (for example Or the steering operation angle of the steering wheel 78) or when the operation on the driving operation system is performed a predetermined number of times or more.
  • the vehicle position recognition unit 140 of the automatic driving control unit 120 receives information from the high accuracy map information 182 stored in the storage unit 180 and the finder 20, the radar 30, the camera 40, the navigation device 50, or the vehicle sensor 60. And recognizes the relative position of the host vehicle M with respect to the travel lane and the lane in which the host vehicle M is traveling (traveling lane).
  • the vehicle position recognition unit 140 recognizes the pattern of road division lines (for example, an array of solid lines and broken lines) recognized from the high accuracy map information 182 and the surroundings of the vehicle M recognized from an image captured by the camera 40 The traveling lane is recognized by comparing with the pattern of the road division lines. In this recognition, the position of the host vehicle M acquired from the navigation device 50 or the processing result by the INS may be added.
  • road division lines for example, an array of solid lines and broken lines
  • FIG. 4 is a diagram showing how the vehicle position recognition unit 140 recognizes the relative position of the vehicle M with respect to the traveling lane L1.
  • the host vehicle position recognition unit 140 makes a line connecting a deviation OS of the reference point (for example, the center of gravity) of the host vehicle M from the center CL of the travel lane and a center CL of the travel lane in the traveling direction of the host vehicle M.
  • the angle ⁇ is recognized as the relative position of the host vehicle M with respect to the driving lane L1.
  • the vehicle position recognition unit 140 recognizes the position of the reference point of the vehicle M relative to any one side end of the vehicle lane L1 as the relative position of the vehicle M relative to the traveling lane. It is also good.
  • the relative position of the host vehicle M recognized by the host vehicle position recognition unit 140 is provided to the target lane determination unit 110.
  • the external world recognition unit 142 recognizes the position of the surrounding vehicle and the state of the speed, acceleration, and the like based on the information input from the finder 20, the radar 30, the camera 40, and the like.
  • the surrounding vehicle is, for example, a vehicle traveling around the host vehicle M and traveling in the same direction as the host vehicle M.
  • the position of the surrounding vehicle may be represented by a representative point such as the center of gravity or a corner of the other vehicle, or may be represented by an area represented by the contour of the other vehicle.
  • the "state" of the surrounding vehicle may include the acceleration of the surrounding vehicle, whether it is changing lanes (or whether it is going to change lanes), which is grasped based on the information of the various devices.
  • the outside world recognition unit 142 may also recognize positions of guardrails, utility poles, parked vehicles, pedestrians, and other objects.
  • the action plan generation unit 144 sets a start point of the autonomous driving and / or a destination of the autonomous driving.
  • the starting point of the autonomous driving may be the current position of the host vehicle M or a point at which the operation for instructing the autonomous driving is performed.
  • the action plan generation unit 144 generates an action plan in the section between the start point and the destination of the automatic driving. Not limited to this, the action plan generation unit 144 may generate an action plan for any section.
  • the action plan is composed of, for example, a plurality of events that are sequentially executed.
  • Events include, for example, a deceleration event for decelerating the host vehicle M, an acceleration event for accelerating the host vehicle M, a lane keep event for traveling the host vehicle M not to deviate from the lane, and a lane change event for changing the lane
  • an overtaking event that causes the host vehicle M to overtake the preceding vehicle
  • a branch event that changes the lane to a desired lane at a branch point, or causes the host vehicle M to travel so as not to deviate from the current traveling lane.
  • the action plan generation unit 144 sets a lane change event, a branch event, or a merging event at a point where the target lane determined by the target lane determination unit 110 is switched.
  • Information indicating the action plan generated by the action plan generation unit 144 is stored in the storage unit 180 as the action plan information 186.
  • FIG. 5 is a diagram showing an example of an action plan generated for a certain section.
  • the action plan generation unit 144 generates an action plan necessary for the host vehicle M to travel on the target lane indicated by the target lane information 184.
  • the action plan generation unit 144 may dynamically change the action plan according to the change in the situation of the host vehicle M, regardless of the target lane information 184. For example, in the action plan generation unit 144, the speed of the surrounding vehicle recognized by the external world recognition unit 142 exceeds the threshold while the vehicle is traveling, or the moving direction of the surrounding vehicle traveling in the lane adjacent to the own lane In the case of turning, the event set in the driving section where the host vehicle M is to travel is changed.
  • the recognition result of the external world recognition unit 142 causes the vehicle to exceed the threshold from behind the lane in the lane change destination during the lane keep event. If it is determined that the vehicle has progressed at the speed of 1, the action plan generation unit 144 may change the event following the lane keeping event from a lane change event to a deceleration event, a lane keeping event, or the like. As a result, the vehicle control system 100 can safely cause the host vehicle M to travel automatically even when a change occurs in the state of the outside world.
  • FIG. 6 is a diagram showing an example of the configuration of the trajectory generation unit 146.
  • the track generation unit 146 includes, for example, a traveling mode determination unit 146A, a track candidate generation unit 146B, and an evaluation / selection unit 146C.
  • the traveling mode determination unit 146A determines one of the traveling modes among constant speed traveling, follow-up traveling, low-speed follow-up traveling, deceleration traveling, curve traveling, obstacle avoidance traveling, and the like. For example, when there is no other vehicle ahead of the host vehicle M, the traveling mode determination unit 146A determines the traveling mode as constant speed traveling. In addition, the traveling mode determination unit 146A determines the traveling mode as the following traveling when following the traveling vehicle. In addition, the traveling mode determination unit 146A determines the traveling mode as low-speed following traveling in a traffic jam scene or the like.
  • the traveling mode determining unit 146A determines the traveling mode to be the decelerating traveling when the external world recognition unit 142 recognizes the deceleration of the leading vehicle, or when an event such as stopping or parking is performed. Further, the traveling mode determination unit 146A determines the traveling mode to be a curve traveling when the external world recognition unit 142 recognizes that the host vehicle M is approaching a curved road. In addition, when the external world recognition unit 142 recognizes an obstacle ahead of the host vehicle M, the traveling mode determination unit 146A determines the traveling mode as obstacle avoidance traveling. In addition, when the lane change event, the overtaking event, the branch event, the merging event, the handover event and the like are performed, the traveling mode determination unit 146A determines the traveling mode according to each event.
  • the traveling mode is determined to be low-speed following traveling.
  • the traveling mode is determined to be constant speed traveling.
  • the track candidate generation unit 146B generates track candidates based on the traveling mode determined by the traveling mode determination unit 146A.
  • FIG. 7 is a diagram showing an example of trajectory candidates generated by the trajectory candidate generation unit 146B.
  • FIG. 7 shows track candidates generated when the host vehicle M changes lanes from the lane L1 to the lane L2.
  • the trajectory candidate generation unit 146B sets the trajectory shown in FIG. 7 to, for example, a target position (trajectory point K) that the reference position (for example, the center of gravity or the rear wheel axis center) should reach at predetermined future time intervals.
  • a target position for example, the center of gravity or the rear wheel axis center
  • the reference position for example, the center of gravity or the rear wheel axis center
  • FIG. 8 is a diagram in which the trajectory candidate generated by the trajectory candidate generation unit 146B is represented by the trajectory point K.
  • the trajectory candidate generation unit 146B needs to provide the target velocity for each of the trajectory points K.
  • the target speed is determined according to the traveling mode determined by the traveling mode determination unit 146A.
  • the track candidate generation unit 146B first sets a lane change target position (or a merging target position).
  • the lane change target position is set as a relative position with respect to surrounding vehicles, and determines “between which surrounding vehicles the lane change is to be performed”.
  • the trajectory candidate generation unit 146B focuses on the three surrounding vehicles with reference to the lane change target position, and determines a target speed when changing lanes.
  • FIG. 9 shows the lane change target position TA.
  • L1 represents the own lane
  • L2 represents the adjacent lane.
  • a vehicle traveling ahead of the host vehicle M is a forward vehicle mA
  • a peripheral vehicle traveling immediately before the lane change target position TA is a front reference vehicle mB
  • a lane change target position TA A surrounding vehicle traveling immediately after is defined as a rear reference vehicle mC.
  • the host vehicle M needs to accelerate and decelerate in order to move to the side of the lane change target position TA, but at this time it is necessary to avoid catching up with the preceding vehicle mA. Therefore, the track candidate generation unit 146B predicts the future states of the three surrounding vehicles, and determines the target speed so as not to interfere with each surrounding vehicle.
  • FIG. 10 is a diagram showing a speed generation model when it is assumed that the speeds of three surrounding vehicles are constant.
  • the straight lines extending from mA, mB and mC indicate the displacement in the traveling direction when assuming that each of the surrounding vehicles traveled at a constant speed.
  • the host vehicle M must be between the front reference vehicle mB and the rear reference vehicle mC at the point CP at which the lane change is completed, and be behind the front vehicle mA before that point.
  • the trajectory candidate generator 146B derives a plurality of time-series patterns of the target velocity until the lane change is completed. Then, a plurality of trajectory candidates as shown in FIG.
  • the motion patterns of the three surrounding vehicles are not limited to the constant velocity as shown in FIG. 10, and may be predicted on the assumption of constant acceleration and constant jerk (jump).
  • the evaluation / selection unit 146C evaluates the track candidates generated by the track candidate generation unit 146B, for example, from the two viewpoints of planability and safety, and selects a track to be output to the traveling control unit 160. .
  • the track is highly evaluated if the trackability to the already generated plan (for example, the action plan) is high and the total length of the track is short. For example, if it is desired to change lanes to the right, a track that once changes lanes to the left and then back is a low rating.
  • viewpoint of safety for example, at each track point, the distance between the host vehicle M and an object (such as a surrounding vehicle) is longer, and the smaller the acceleration / deceleration or the change amount of the steering angle, the higher the evaluation.
  • the switching control unit 150 switches between the automatic operation mode and the manual operation mode on the basis of the signal input from the automatic operation switching switch 87 and others. Further, the switching control unit 150 switches from the automatic driving mode to the manual driving mode based on an operation for instructing acceleration, deceleration or steering on the configuration of the driving operation system in the HMI 70. For example, the switching control unit 150 switches from the automatic operation mode to the manual operation mode when the state in which the operation amount indicated by the signal input from the configuration of the operation operation system in the HMI 70 exceeds the threshold continues for the reference time or more override).
  • the switching control unit 150 may return to the automatic operation mode when an operation on the configuration of the operation operation system in the HMI 70 is not detected for a predetermined time. Further, for example, when performing switching control to shift from the automatic driving mode to the manual driving mode at the scheduled end point of the automatic driving, the switching control unit 150 notifies the vehicle occupant of the handover request in advance. The information is output to the HMI control unit 170.
  • the traveling control unit 160 controls the traveling driving force output device 200, the steering device 210, and the braking device 220 so that the vehicle M passes the track generated by the track generating unit 146 at a scheduled time.
  • FIG. 11 is a diagram showing an example of the configuration of the HMI control unit 170.
  • the HMI control unit 170 includes a mode-based control unit 170A, a future state prediction unit 170B, a pairing control unit 170C, and a radio wave transmission control unit 170D.
  • the pairing control unit 170C and the radio wave transmission control unit 170D are examples of the “interference control unit”.
  • the mode-dependent control unit 170A controls the HMI 70 according to the type of the automatic operation mode with reference to the mode-specific operation availability information 188.
  • FIG. 12 is a diagram showing an example of the mode-specific operation availability information 188.
  • the mode-specific operation availability information 188 shown in FIG. 12 has “manual operation mode” and “automatic operation mode” as items of the operation mode.
  • the “automatic operation mode” the “mode A”, the “mode B”, the “mode C” and the like described above are provided.
  • the mode-by-mode operation availability information 188 includes a “navigation operation” which is an operation on the navigation device 50, a “content reproduction operation” which is an operation on the content reproduction device 85, and an operation on the display device 82 as items of non-driving operation system. It has a certain "instrument panel operation” etc.
  • whether the vehicle occupant can operate the non-drive operation system is set for each of the above-described operation modes, but the target interface device is limited to this. is not.
  • the mode-specific control unit 170A refers to the mode-specific operation availability information 188 based on the mode information acquired from the automatic driving control unit 120 to allow the use (part or all of the navigation device 50 and the HMI 70). ) And devices that are not authorized for use. In addition, based on the determination result, the mode-dependent control unit 170A controls whether to accept an operation from the vehicle occupant on the non-driving operation system HMI 70 or the navigation device 50.
  • the vehicle occupant when the operation mode executed by the vehicle control system 100 is the manual operation mode, the vehicle occupant operates the operation operation system (for example, the accelerator pedal 71, the brake pedal 74, the shift lever 76, the steering wheel 78, etc.) of the HMI 70 Do.
  • the operation mode executed by the vehicle control system 100 is mode B, mode C or the like in the automatic operation mode, the vehicle occupant is obligated to monitor the surroundings of the host vehicle M.
  • the mode-specific control unit 170A Control is performed so as not to accept some or all operations.
  • the mode-specific control unit 170A displays the presence of the peripheral vehicle of the own vehicle M recognized by the external world recognition unit 142 and the state of the peripheral vehicle thereof in order to cause the vehicle occupant to monitor the periphery of the own vehicle M. While making it display on a device 82 by an image etc., you may make HMI70 receive confirmation operation according to the scene at the time of traveling of self-vehicles M.
  • the mode-specific control unit 170A performs control of relaxing the restriction of driver distraction and receiving the vehicle occupant's operation to the non-driving operation system which has not received the operation.
  • the mode-dependent control unit 170A causes the display device 82 to display an image, causes the speaker 83 to output sound, and causes the content reproduction device 85 to reproduce content from a DVD or the like.
  • the content reproduced by the content reproduction apparatus 85 may include, for example, various contents relating to entertainment such as television programs and entertainment in addition to the content stored in a DVD or the like.
  • the “content reproduction operation” shown in FIG. 12 described above may mean such content operation relating to entertainment and entertainment.
  • mode-specific control unit 170A does not operate navigation device 50 or non-driving.
  • the predetermined information is output to the HMI 70 of the operation system.
  • the predetermined information is information indicating that the peripheral monitoring duty is increased, and information indicating that the operation allowance for the navigation apparatus 50 or the HMI 70 of the non-driving operation system is low (operation is restricted).
  • predetermined information is not limited to these, For example, the information which promotes preparation for handover control may be sufficient.
  • the mode-specific control unit 170A warns the vehicle occupant of the vehicle occupant, for example, before a predetermined time when the operation mode transitions from mode A to mode B or mode C or before the host vehicle M reaches a predetermined speed.
  • the vehicle occupant By notifying the vehicle occupant, it is possible to notify the vehicle occupant that the duty of monitoring the periphery of the host vehicle M is imposed on the vehicle occupant at an appropriate timing. As a result, it is possible to give the vehicle occupant a preparation period for switching of the automatic driving.
  • the future state prediction unit 170B performs the operation of the vehicle occupant on the HMI 70, the recognition result by the external world recognition unit 142, the event of the action plan changed by the action plan generation unit 144, the traveling mode determined by the traveling mode determination unit 146A, Based on the selection result of the trajectory by the selection unit 146C and the like, it is predicted whether or not the degree of the automatic operation is reduced at a certain time in the future.
  • the state in which the degree of automatic operation decreases is the state where the peripheral monitoring duty is required under the automatic operation mode like the transition from mode A to mode B, and the event for performing the automatic operation by the action plan generation unit 144 is It refers to a state where it is necessary to switch from the automatic operation mode to the manual operation mode by being changed to a handover event or the like.
  • the future state prediction unit 170B cancels the traffic jam based on traffic information Predict whether or not.
  • the automatic driving mode control unit 130 switches the traveling mode (for example, constant speed traveling) in which the speed of the host vehicle M can be more output compared to the low speed following traveling.
  • the automatic operation mode is switched from mode A to mode B in which the peripheral monitoring duty is further increased.
  • the future state prediction unit 170 ⁇ / b> B predicts that the degree of automatic driving will be reduced at a certain point in the future.
  • the action plan generation unit 144 changes the merging event currently being implemented to a handover event.
  • the future state prediction unit 170 ⁇ / b> B predicts that the degree of automatic driving will be reduced at a certain point in the future.
  • the trajectory generation unit 146 when none of the trajectory candidates generated by the trajectory candidate generation unit 146B satisfies the evaluation by the evaluation / selection unit 146C, the trajectory generation unit 146 generates the trajectory for the lane change. It is determined that the lane change is not possible because In such a situation, when the lane change event can not be changed to another event such as a lane keep event, the action plan generation unit 144 changes the lane change event to a handover event. In this case, as in the example described above, the future state prediction unit 170B predicts that the degree of automatic driving will be reduced at a certain point in the future.
  • the future state prediction unit 170B may also switch the manual operation mode to the automatic operation mode when the obstacle recognition unit 142 recognizes an obstacle or the HMI 70 switches the operation to the manual operation mode. At some point in the future, it may be predicted that the degree of automatic driving will be reduced.
  • the pairing control unit 170C transmits radio waves (for example, radio waves in different frequency bands) which are not disturbed by the jamming radio wave transmitted from the radio wave transmitter 98 using, for example, the in-vehicle communication device 96, and performs pairing with the terminal device. Establish a connection
  • the radio wave transmission control unit 170D transmits a jamming wave or a warning signal using the radio wave transmission device 98 when it is predicted by the state prediction unit 170B that the degree of automatic driving will be reduced at a certain time in the future. . At this time, the radio wave transmission control unit 170D transmits a jamming wave having directivity such that it is radiated only around the driver's seat so as not to disturb communication of a terminal device operated by a vehicle occupant sitting in a passenger seat or a rear seat. It is suitable.
  • FIG. 13 is a diagram showing an example of the correspondence relationship of transmission radio waves in each automatic driving mode. As shown in the figure, for example, in mode A, both the jamming signal and the warning signal are not transmitted under normal conditions in which the degree of automatic driving does not shift to a state where the degree of automatic driving decreases. The warning signal and / or the jamming signal is transmitted at the timing when the switching from mode A to mode B or mode C occurs.
  • modes B and C in which a surrounding area monitoring duty occurs transmission of various radio waves may be performed at normal times.
  • a warning signal and / or jamming signal is transmitted.
  • the communication of the terminal device is disturbed before the duty to monitor surroundings is imposed or before switching to the manual operation.
  • viewing of a television program or the like by a vehicle occupant is stopped, and attention of the vehicle occupant can be guided around the host vehicle M, and preparation for manual driving can be promoted.
  • FIG. 14 is a flowchart showing an example of the flow of processing performed by the vehicle control system 100.
  • the vehicle control system 100 shifts to the automatic driving mode, and starts the automatic driving (step S100).
  • the future state prediction unit 170B determines whether or not the automatic operation mode transitions to a mode requiring a surrounding area monitoring duty at a certain point in the future (step S102).
  • the future state prediction unit 170B shifts the processing to S110 described later, when the automatic operation mode does not transition to a mode requiring a surrounding area monitoring duty.
  • the radio wave transmission control unit 170D determines whether a pairing connection with one or more terminal devices has been established (step S104). ).
  • the establishment of the pairing connection with the terminal device is performed, for example, at a predetermined timing such as a timing before transition to the automatic operation mode.
  • the radio wave transmission control unit 170D transmits a jamming wave into the vehicle cabin before the state of the automatic driving becomes a predetermined state, using the radio wave transmission device 98 ( Step S106). At this time, it is preferable that the radio wave transmission control unit 170D continuously or intermittently transmit jamming radio waves in order to make the vehicle occupants continue to refrain from using the terminal device.
  • the radio wave transmission control unit 170D transmits a warning signal to the paired terminal 97 using the in-vehicle communication device 96 (step S108). At this time, the radio wave transmission control unit 170D may transmit the jamming radio wave together with the warning signal using the radio wave transmission device 98.
  • the future state prediction unit 170B predicts whether the automatic operation mode is switched to the manual operation mode at a certain point in the future (step S110). If the automatic operation mode is not switched to the manual operation mode, the radio wave transmission control unit 170D returns to the process of S102 described above, for example, the radio wave transmission device 98 when a mode requiring periphery monitoring duty such as mode B is continued. In the case of continuing to transmit jamming waves and transitioning to mode A where there is no need to monitor surrounding areas, the transmission of jamming waves may be stopped.
  • the radio wave transmission control unit 170D transmits one or both of the jamming signal and the warning signal (step S112).
  • the radio wave transmission control unit 170D performs one or both of the jamming signal and the warning signal as the process of S112. Continue to send.
  • the wave transmission control unit 170D resumes sending of one or both of the jamming signal and the warning signal as the process of S112. Good.
  • the radio wave transmission control unit 170D may transmit jamming radio waves into the vehicle compartment using the radio wave transmission device 98 before the timing when the automatic operation mode is switched to the manual operation mode, as in the processing of S106 and S108 described above.
  • a warning signal may be sent to the paired terminal 97 using the in-vehicle communication device 96.
  • the transmission of the warning signal may be omitted, and the pairing connection with the terminal device is established. In the case, the transmission of the jamming signal may be omitted.
  • the process of S104 may be omitted.
  • the radio wave transmission control unit 170D uses the radio wave transmission device 98 regardless of the presence or absence of pairing connection with the terminal device, and interferes with the radio wave when the automatic operation mode transitions to a mode requiring peripheral monitoring duty. Send out.
  • the radio wave transmission control unit 170D may transmit a warning signal along with the transmission of the jamming radio wave in the process of S108, or may transmit only the jamming radio wave and omit the transmission of the warning signal.
  • the radio wave transmission control unit 170D is not limited to continuously transmitting jamming radio waves, and, for example, a predetermined time after the timing when the automatic operation mode transitions to a mode requiring a surrounding monitoring duty For example, the jamming signal may be transmitted only until a few seconds have passed. That is, the radio wave transmission control unit 170D may temporarily transmit the jamming wave at the timing when the automatic operation mode transitions to a mode requiring a surrounding area monitoring duty.
  • the radio wave used for pairing connection and the interfering radio wave may interfere with each other.
  • the pairing connection with the terminal device is released due to the interference with the jamming signal, the content reproduction is stopped, and the object of the present application to urge the driver to monitor the surroundings is achieved.
  • the communication of the terminal device can be disturbed without considering the interference between the radio wave used for pairing connection and the jamming radio wave.
  • FIG. 15 is a flowchart showing an example of the flow of processing performed by the paired terminal 97.
  • the flowchart shows, as an example, processing performed when the paired terminal 97 is operated to reproduce a television program using One Seg or the like.
  • the paired terminal 97 stands by until a broadcast wave is received (step S200), and when the broadcast wave is received, the television program is reproduced (step S202).
  • the paired terminal 97 determines whether a warning signal has been received from the radio wave transmission device 98 (step S204). When the warning signal is not received, the paired terminal 97 continues to receive the airwaves. On the other hand, when the warning signal is received, the paired terminal 97 displays a screen based on the warning signal, for example, when the warning signal is a radio wave for notifying a danger (step S206).
  • FIG. 16 is a diagram showing an example of a screen based on a warning signal. As shown in the figure, on the screen of the paired terminal 97, information is displayed as a letter or an image to indicate that it is necessary to monitor the surroundings or refrain from using the terminal device.
  • the paired terminal 97 restricts reception of the broadcast radio wave as the process of S206. You may That is, if the warning signal is a radio wave for suppressing the use of the terminal device, the paired terminal 97 temporarily restricts its own communication.
  • the radio wave transmission device 98 may transmit jamming waves even at a normal time when the automatic operation mode does not transition to a mode requiring a surrounding area monitoring at a certain point in the future. In this case, when the pairing connection is established between the terminal device to be disturbed and the in-room communication device 96, the radio wave transmission control unit 170D stops the jamming wave.
  • FIG. 17 is a diagram showing another example of the correspondence relationship of the transmission radio wave in each automatic driving mode.
  • mode A when the pairing connection is not normally established, the jamming radio wave is transmitted, and when the pairing connection is normally established, any radio wave is also transmitted. I will not.
  • mode transition from mode A to manual operation mode or mode A to mode B or mode C occurs and a pairing connection is not established, a jamming signal is emitted and mode transition occurs. If a pairing connection is established at, a warning signal is issued.
  • modes B and C in which a surrounding area monitoring duty occurs transmission of various radio waves may be performed at normal times. Also, when mode transition from modes B and C to the manual operation mode occurs, the jamming radio wave is emitted when the pairing connection is not established, and the warning signal is generated when the pairing connection is established. It is sent out.
  • FIG. 18 is a flowchart showing another example of the flow of processing performed by the vehicle control system 100, and the processing of S302, S304, and S306 described later is added to the flowchart of FIG. When not established, it represents a configuration for transmitting jammers at all times.
  • the processes shown in the flowchart of FIG. 18 the processes other than the above-described S302 to S306 are the same as those in the flowchart of FIG.
  • the vehicle control system 100 shifts to the automatic driving mode, and starts the automatic driving (step S300).
  • the radio wave transmission control unit 170D transmits jamming radio waves, for example, continuously or intermittently using the radio wave transmission device 98 (step S302).
  • the radio wave transmission control unit 170D determines whether the in-room wireless communication device 96 has established a pairing connection with the terminal device (step S304), and the pairing connection with the terminal device is established. The jamming radio wave is stopped using the radio wave transmission device 98 (step S306).
  • the future state prediction unit 170B predicts whether the automatic operation mode transitions to a mode requiring a surrounding area monitoring duty at a certain point in the future (step S308).
  • the future state prediction unit 170B shifts the processing to S316 described later, when the automatic operation mode does not transition to a mode requiring a surrounding area monitoring duty.
  • the radio wave transmission control unit 170D determines whether a pairing connection is established between the in-vehicle wireless communication device 96 and the terminal device. (Step S310). When the pairing connection is established, the radio wave transmission control unit 170D issues a warning to the paired terminal 97 before transitioning the automatic operation mode to a mode requiring a surrounding area monitoring duty using the in-vehicle communication device 96. A signal is emitted (step S312).
  • the radio wave transmission control unit 170D continues to transmit jamming radio waves using the radio wave transmission device 98 (step S314).
  • the future state prediction unit 170B predicts whether the automatic operation mode is switched to the manual operation mode at a certain point in the future (step S316).
  • the future state prediction unit 170B shifts the processing to S304 described above.
  • the radio wave transmission control unit 170D transmits one or both of the jamming signal and the warning signal (step S318).
  • the process of this flowchart is complete
  • the radio wave transmission control unit 170D uses the radio wave transmission device 98 to disturb the inside of the vehicle compartment by using the radio wave transmission device 98 before the timing when the automatic operation mode switches to the manual operation mode. And a warning signal may be sent to the paired terminal 97 using the in-vehicle communication device 96. Also, when the pairing connection with the terminal device is not established at the timing of switching to the manual operation mode, the transmission of the warning signal may be omitted, and the pairing connection with the terminal device is established. In the case, the transmission of the jamming signal may be omitted.
  • the processing of S302 to S306 is not limited to that performed with the start of the automatic operation mode, for example, the timing when the occupant approaches within a predetermined range centered on the host vehicle M, the timing when the door of the vehicle is unlocked, It may be started at a timing when a power source such as an engine starts by an ignition switch or a key, or may be started at a predetermined timing in the manual operation mode.
  • a power source such as an engine starts by an ignition switch or a key
  • the communication of the terminal device can be interrupted in advance, and it is necessary to monitor the surroundings in advance. Can be notified.
  • the vehicle M when the automatic driving is performed, the vehicle M is brought into the cabin of the vehicle M based on the situation around the vehicle M recognized by the external world recognition unit 142, and the vehicle M It is possible to interrupt the use of the terminal device by transmitting a jamming signal which interferes with the communication of the terminal device operable by the passenger of the vehicle into the vehicle cabin. As a result, the vehicle control system 100 can guide the vehicle occupant's attention to the periphery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A vehicle control system, provided with: a recognition unit for recognizing the status of the periphery of a host vehicle; an automatic driving control unit for implementing automatic driving that automatically controls at least one of the acceleration and deceleration, and the steering, of the host vehicle; and a jamming control unit for, on the basis of the status recognized by the recognition unit, jamming communication of a terminal device that is brought into the vehicle cabin of the host vehicle and can be operated by an occupant of the host vehicle when the automatic driving is implemented by the automatic driving control unit.

Description

車両制御システム、車両用通信システム、車両制御方法、および車両制御プログラムVehicle control system, communication system for vehicle, vehicle control method, and vehicle control program
 本発明は、車両制御システム、車両用通信システム、車両制御方法、および車両制御プログラムに関する。 The present invention relates to a vehicle control system, a communication system for a vehicle, a vehicle control method, and a vehicle control program.
 従来、車両の走行状況に応じて操舵輪の舵角及び車両の制駆動力の少なくとも一方を自動的に制御するための目標制御量を演算し、目標制御量に基づいて操舵輪の舵角及び車両の制駆動力の少なくとも一方を自動的に制御する車両の自動運転制御方法が開示されている(例えば、特許文献1参照)。 Conventionally, a target control amount for automatically controlling at least one of the steering angle of the steering wheel and the braking / driving force of the vehicle is calculated according to the traveling condition of the vehicle, and the steering angle of the steering wheel is calculated based on the target control amount. An automatic driving control method of a vehicle is disclosed which automatically controls at least one of the braking / driving force of the vehicle (see, for example, Patent Document 1).
特開2015-157513号公報JP, 2015-157513, A
 自動運転中であっても、車両の乗員が周辺を監視する必要が生じる場合が想定される。従来の技術では、車両の乗員が周辺を監視するように誘導することができない場合があった。 Even during automatic driving, it may be necessary for the occupants of the vehicle to monitor the surroundings. In the prior art, there were cases where the vehicle occupant could not be guided to monitor the surroundings.
 本発明は、このような事情を考慮してなされたものであり、車両乗員の注意を周辺に誘導することを目的の一つとする。 The present invention has been made in consideration of such circumstances, and has as its object to guide the attention of a vehicle occupant around.
 請求項1記載の発明は、自車両の周辺の状況を認識する認識部と、前記自車両の加減速と操舵との少なくとも一方を自動的に制御する自動運転を実施する自動運転制御部と、前記自動運転制御部により前記自動運転が実施される場合に、前記認識部により認識された状況に基づいて、前記自車両の車室内に持ち込まれ、前記自車両の乗員によって操作可能な端末装置の通信を妨害する妨害制御部と、を備える車両制御システムである。 The invention according to claim 1 comprises a recognition unit that recognizes a situation around the host vehicle, and an automatic driving control unit that performs automatic driving that automatically controls at least one of acceleration and deceleration of the host vehicle and steering. When the automatic driving control unit performs the automatic driving, the terminal device is brought into the compartment of the host vehicle and can be operated by an occupant of the host vehicle based on the situation recognized by the recognition unit. And a jamming control unit for jamming communication.
 請求項2記載の発明は、請求項1記載の車両制御システムにおいて、前記認識部により認識された状況に基づいて前記自動運転の度合が低下することを予測する予測部を備え、前記妨害制御部が、前記予測部により、前記自動運転の度合が低下することが予測された場合に、前記端末装置の通信を妨害するものである。 The vehicle control system according to a second aspect of the present invention is the vehicle control system according to the first aspect, further comprising: a prediction unit that predicts that the degree of the automatic driving is reduced based on the situation recognized by the recognition unit; However, when it is predicted by the prediction unit that the degree of the automatic driving decreases, the communication of the terminal device is interrupted.
 請求項3記載の発明は、請求項1または2記載の車両制御システムにおいて、電波を発信する電波発信部を更に備え、前記妨害制御部が、前記前記電波発信部を用いて、前記端末装置の通信を妨害する妨害電波を発信するものである。 According to a third aspect of the present invention, in the vehicle control system according to the first or second aspect, the vehicle control system further includes a radio wave transmission unit for transmitting a radio wave, and the jamming control unit uses the radio wave transmission unit. It sends out jamming waves that disturb communication.
 請求項4記載の発明は、請求項1から3のうちいずれか1項に記載の車両制御システムにおいて、前記端末装置との間でペアリング接続を行う車室内用通信部を更に備え、前記妨害制御部が、前記認識部により認識された状況に基づいて、前記車室内用通信部による前記ペアリング接続によって、危険を知らせる信号を前記端末装置に送信するものである。 The invention according to a fourth aspect is the vehicle control system according to any one of the first to third aspects, further comprising a vehicle interior communication unit that performs pairing connection with the terminal device; The control unit transmits a signal notifying a danger to the terminal device by the pairing connection by the in-room communication unit based on the situation recognized by the recognition unit.
 請求項5記載の発明は、請求項1から3のうちいずれか1項に記載の車両制御システムにおいて、前記端末装置との間でペアリング接続を行う車室内用通信部を更に備え、前記妨害制御部が、前記認識部により認識された状況に基づいて、前記車室内用通信部による前記ペアリング接続によって、前記端末装置の使用を抑制する信号を前記端末装置に送信するものである。 The invention according to claim 5 is the vehicle control system according to any one of claims 1 to 3, further comprising a vehicle interior communication unit for performing pairing connection with the terminal device, the disturbance The control unit transmits a signal for suppressing the use of the terminal device to the terminal device by the pairing connection by the communication unit for the inside of the room based on the situation recognized by the recognition unit.
 請求項6記載の発明は、請求項4または5に記載の車両制御システムにおいて、前記妨害制御部が、前記車室内用通信部と前記端末装置との間でペアリング接続が確立していない場合に、前記電波発信部を用いて前記妨害電波を発信するものである。 The invention according to claim 6 is the vehicle control system according to claim 4 or 5, wherein the interference control unit does not establish a pairing connection between the in-room communication unit and the terminal device. Further, the jamming radio wave is transmitted using the radio wave transmission unit.
 請求項7記載の発明は、請求項4から6のうちいずれか1項に記載の車両制御システムにおいて、前記車室内用通信部が、前記妨害電波によって妨害されない電磁波を用いてペアリング接続を行うものである。 The invention according to claim 7 is the vehicle control system according to any one of claims 4 to 6, wherein the in-vehicle communication unit performs pairing connection using an electromagnetic wave that is not disturbed by the jamming radio wave. It is a thing.
 請求項8記載の発明は、請求項7に記載の車両制御システムにおいて、前記妨害電波によって妨害されない電磁波とは、前記妨害電波と異なる周波数帯の電波である。 According to an eighth aspect of the present invention, in the vehicle control system according to the seventh aspect, the electromagnetic wave not disturbed by the jamming wave is a wave of a frequency band different from that of the jamming wave.
 請求項9記載の発明は、自車両の車室内に持ち込まれ、前記自車両の乗員によって操作可能な端末装置とペアリング接続を行う車室内用通信部と、前記端末装置の通信を妨害する妨害電波であって、前記車室内用通信部による前記ペアリング接続を妨害しない妨害電波を発信し、前記車室内用通信部と前記端末装置との間でペアリング接続が確立した場合、前記妨害電波の発信を停止する電波発信部と、を備える車両用通信システムである。 According to a ninth aspect of the present invention, there is provided an in-vehicle communication section which is brought into a vehicle compartment of a host vehicle and performs pairing connection with a terminal device operable by an occupant of the host vehicle, and interference that interferes with communication of the terminal device. A jamming radio wave which is a radio wave and does not disturb the pairing connection by the in-room communication unit is transmitted, and the pairing connection is established between the in-room communication unit and the terminal device; And a radio wave transmission unit for stopping transmission of the vehicle.
 請求項10記載の発明は、車載コンピュータが、自車両の周辺の状況を認識し、前記自車両の加減速と操舵との少なくとも一方を自動的に制御する自動運転を実施し、前記自動運転を実施する場合に、前記認識した状況に基づいて、前記自車両の車室内に持ち込まれ、前記自車両の乗員によって操作可能な端末装置の通信を妨害する車両制御方法である。 In the invention according to claim 10, the on-vehicle computer executes an automatic operation in which a situation around the own vehicle is recognized, and at least one of acceleration and deceleration of the own vehicle and steering is automatically controlled. It is a vehicle control method which is brought into the compartment of the host vehicle and interferes with communication of a terminal device operable by an occupant of the host vehicle based on the recognized situation.
 請求項11記載の発明は、車載コンピュータに、自車両の周辺の状況を認識させ、前記自車両の加減速と操舵との少なくとも一方を自動的に制御する自動運転を実施させ、前記自動運転を実施させる場合に、前記認識させた状況に基づいて、前記自車両の車室内に持ち込まれ、前記自車両の乗員によって操作可能な端末装置の通信を妨害させる車両制御プログラムである。 The invention according to claim 11 causes the on-vehicle computer to recognize the situation around the host vehicle, and to execute automatic driving to automatically control at least one of acceleration and deceleration and steering of the host vehicle, and to execute the automatic driving. It is a vehicle control program which is brought into the compartment of the host vehicle and interferes with communication of a terminal device operable by an occupant of the host vehicle based on the recognized situation, in the case of implementation.
 各請求項に記載の発明によれば、車両乗員の注意を周辺に誘導することができる。 According to the invention described in each claim, the attention of the vehicle occupant can be guided to the periphery.
自車両Mの構成要素を示す図である。It is a figure which shows the component of the own vehicle M. FIG. 車両制御システム100を中心とした機能構成図である。自車両Mの機能構成図である。FIG. 2 is a functional configuration diagram centering on a vehicle control system 100. FIG. 2 is a functional configuration diagram of a host vehicle M. HMI70の構成図である。It is a block diagram of HMI70. 自車位置認識部140により走行車線L1に対する自車両Mの相対位置が認識される様子を示す図である。It is a figure which shows a mode that the relative position of the own vehicle M with respect to the traffic lane L1 is recognized by the own vehicle position recognition part 140. FIG. ある区間について生成された行動計画の一例を示す図である。It is a figure which shows an example of the action plan produced | generated about a certain area. 軌道生成部146の構成の一例を示す図である。It is a figure which shows an example of a structure of the track | orbit production | generation part 146. As shown in FIG. 軌道候補生成部146Bにより生成される軌道の候補の一例を示す図である。It is a figure which shows an example of the candidate of the track | orbit produced | generated by the track | orbit candidate production | generation part 146B. 軌道候補生成部146Bにより生成される軌道の候補を軌道点Kで表現した図である。It is a figure which expressed the candidate of the track generated by track candidate generation part 146B with track point K. 車線変更ターゲット位置TAを示す図である。It is a figure which shows lane change target position TA. 3台の周辺車両の速度を一定と仮定した場合の速度生成モデルを示す図である。It is a figure which shows the speed generation model at the time of assuming that the speed of three surrounding vehicles is constant. HMI制御部170の構成の一例を示す図である。FIG. 6 is a diagram showing an example of the configuration of an HMI control unit 170. HMI70から出力される情報の一例を示す図である。It is a figure which shows an example of the information output from HMI70. 自動運転モードごとにおける発信電波の対応関係の一例を示す図である。It is a figure which shows an example of the correspondence of the transmission electromagnetic wave in every automatic driving | running | working mode. 車両制御システム100により行われる処理の流れの一例を示すフローチャートである。5 is a flowchart showing an example of the flow of processing performed by the vehicle control system 100. ペアリング済み端末97により行われる処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the process performed by the paired terminal 97. FIG. ワーニング信号に基づく画面の一例を示す図である。It is a figure which shows an example of the screen based on a warning signal. 自動運転モードごとにおける発信電波の対応関係の他の例を示す図である。It is a figure which shows the other example of the correspondence of the transmission electromagnetic wave in every automatic driving mode. 車両制御システム100により行われる処理の流れの他の例を示すフローチャートである。5 is a flowchart illustrating another example of the flow of processing performed by the vehicle control system 100.
 以下、図面を参照し、本発明の車両制御システム、車両用通信システム、車両制御方法、および車両制御プログラムの実施形態について説明する。 Hereinafter, embodiments of a vehicle control system, a communication system for a vehicle, a vehicle control method, and a vehicle control program according to the present invention will be described with reference to the drawings.
 図1は、実施形態の車両制御システム100が搭載される車両(以下、自車両Mと称する)の構成要素を示す図である。車両制御システム100が搭載される車両は、例えば、二輪や三輪、四輪等の自動車であり、ディーゼルエンジンやガソリンエンジン等の内燃機関を動力源とした自動車や、電動機を動力源とした電気自動車、内燃機関および電動機を兼ね備えたハイブリッド自動車等を含む。電気自動車は、例えば、二次電池、水素燃料電池、金属燃料電池、アルコール燃料電池等の電池により放電される電力を使用して駆動される。 FIG. 1 is a diagram showing components of a vehicle (hereinafter referred to as a host vehicle M) on which the vehicle control system 100 of the embodiment is mounted. The vehicle on which the vehicle control system 100 is mounted is, for example, a two-, three-, or four-wheeled vehicle, such as a vehicle powered by an internal combustion engine such as a diesel engine or gasoline engine, or an electric vehicle powered by an electric motor. And hybrid vehicles having an internal combustion engine and an electric motor. An electric car is driven using electric power discharged by cells, such as a secondary battery, a hydrogen fuel cell, a metal fuel cell, and an alcohol fuel cell, for example.
 図1に示すように、自車両Mには、ファインダ20-1から20-7、レーダ30-1から30-6、およびカメラ40等のセンサと、ナビゲーション装置50と、車両制御システム100とが搭載される。 As shown in FIG. 1, in the host vehicle M, sensors such as finders 20-1 to 20-7, radars 30-1 to 30-6, and a camera 40, a navigation device 50, and a vehicle control system 100 are provided. Will be mounted.
 ファインダ20-1から20-7は、例えば、照射光に対する散乱光を測定し、対象までの距離を測定するLIDAR(Light Detection and Ranging、或いはLaser Imaging Detection and Ranging)である。例えば、ファインダ20-1は、フロントグリル等に取り付けられ、ファインダ20-2および20-3は、車体の側面やドアミラー、前照灯内部、側方灯付近等に取り付けられる。ファインダ20-4は、トランクリッド等に取り付けられ、ファインダ20-5および20-6は、車体の側面や尾灯内部等に取り付けられる。上述したファインダ20-1から20-6は、例えば、水平方向に関して150度程度の検出領域を有している。また、ファインダ20-7は、ルーフ等に取り付けられる。ファインダ20-7は、例えば、水平方向に関して360度の検出領域を有している。 The finders 20-1 to 20-7 are, for example, LIDAR (Light Detection and Ranging, or Laser Imaging Detection and Ranging) which measures the scattered light with respect to the irradiation light and measures the distance to the object. For example, the finder 20-1 is attached to a front grill or the like, and the finders 20-2 and 20-3 are attached to the side of a vehicle body, a door mirror, the inside of a headlight, the vicinity of a side light, or the like. The finder 20-4 is attached to the trunk lid or the like, and the finders 20-5 and 20-6 are attached to the side of the vehicle body, the inside of the taillight, or the like. The finders 20-1 to 20-6 described above have, for example, a detection area of about 150 degrees in the horizontal direction. The finder 20-7 is attached to the roof or the like. The finder 20-7 has, for example, a detection area of 360 degrees in the horizontal direction.
 レーダ30-1および30-4は、例えば、奥行き方向の検出領域が他のレーダよりも広い長距離ミリ波レーダである。また、レーダ30-2、30-3、30-5、30-6は、レーダ30-1および30-4よりも奥行き方向の検出領域が狭い中距離ミリ波レーダである。 The radars 30-1 and 30-4 are, for example, long-distance millimeter-wave radars whose detection region in the depth direction is wider than other radars. The radars 30-2, 30-3, 30-5, and 30-6 are middle-range millimeter-wave radars that have a narrower detection area in the depth direction than the radars 30-1 and 30-4.
 以下、ファインダ20-1から20-7を特段区別しない場合は、単に「ファインダ20」と記載し、レーダ30-1から30-6を特段区別しない場合は、単に「レーダ30」と記載する。レーダ30は、例えば、FM-CW(Frequency Modulated Continuous Wave)方式によって物体を検出する。 Hereinafter, when the finders 20-1 to 20-7 are not particularly distinguished, they are simply described as "finder 20", and when the radars 30-1 to 30-6 are not distinguished particularly, they are simply described as "radar 30". The radar 30 detects an object by, for example, a frequency modulated continuous wave (FM-CW) method.
 カメラ40は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ40は、フロントウインドシールド上部やルームミラー裏面等に取り付けられる。カメラ40は、例えば、周期的に繰り返し自車両Mの前方を撮像する。カメラ40は、複数のカメラを含むステレオカメラであってもよい。 The camera 40 is a digital camera using a solid-state imaging device such as, for example, a charge coupled device (CCD) or a complementary metal oxide semiconductor (CMOS). The camera 40 is attached to the top of the front windshield, the rear of the rearview mirror, and the like. The camera 40, for example, periodically and repeatedly images the front of the host vehicle M. The camera 40 may be a stereo camera including a plurality of cameras.
 なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。 The configuration shown in FIG. 1 is merely an example, and a part of the configuration may be omitted, or another configuration may be added.
 図2は、実施形態に係る車両制御システム100を中心とした機能構成図である。自車両Mには、ファインダ20、レーダ30、およびカメラ40などを含む検知デバイスDDと、ナビゲーション装置50と、無線通信装置55と、車両センサ60と、HMI(Human Machine Interface)70と、車両制御システム100と、走行駆動力出力装置200と、ステアリング装置210と、ブレーキ装置220とが搭載される。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、特許請求の範囲における車両制御システムは、「車両制御システム100」のみを指しているのではなく、車両制御システム100以外の構成(検知デバイスDDやHMI70など)を含んでもよい。また車両制御システム100は、車両用通信システムの一例でもある。 FIG. 2 is a functional configuration diagram centering on the vehicle control system 100 according to the embodiment. The host vehicle M includes a detection device DD including a finder 20, a radar 30, and a camera 40, a navigation device 50, a wireless communication device 55, a vehicle sensor 60, an HMI (Human Machine Interface) 70, and vehicle control. A system 100, a traveling driving force output device 200, a steering device 210, and a braking device 220 are mounted. These devices and devices are mutually connected by a multiplex communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network or the like. Note that the vehicle control system in the claims does not refer to only the "vehicle control system 100", but may include configurations other than the vehicle control system 100 (such as the detection device DD and the HMI 70). The vehicle control system 100 is also an example of a vehicular communication system.
 ナビゲーション装置50は、GNSS(Global Navigation Satellite System)受信機や地図情報(ナビ地図)、ユーザインターフェースとして機能するタッチパネル式表示装置、スピーカ、マイク等を有する。ナビゲーション装置50は、GNSS受信機によって自車両Mの位置を特定し、その位置からユーザによって指定された目的地までの経路を導出する。ナビゲーション装置50により導出された経路は、車両制御システム100の目標車線決定部110に提供される。自車両Mの位置は、車両センサ60の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。また、ナビゲーション装置50は、車両制御システム100が手動運転モードを実行している際に、目的地に至る経路について音声やナビ表示によって案内を行う。なお、自車両Mの位置を特定するための構成は、ナビゲーション装置50とは独立して設けられてもよい。また、ナビゲーション装置50は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。この場合、端末装置と車両制御システム100との間で、無線または有線による通信によって情報の送受信が行われる。 The navigation device 50 has a GNSS (Global Navigation Satellite System) receiver, map information (navigation map), a touch panel display device functioning as a user interface, a speaker, a microphone, and the like. The navigation device 50 specifies the position of the host vehicle M by the GNSS receiver, and derives the route from the position to the destination specified by the user. The route derived by the navigation device 50 is provided to the target lane determination unit 110 of the vehicle control system 100. The position of the host vehicle M may be identified or supplemented by an INS (Inertial Navigation System) using the output of the vehicle sensor 60. In addition, when the vehicle control system 100 is executing the manual operation mode, the navigation device 50 provides guidance by voice or navigation display on the route to the destination. The configuration for specifying the position of the host vehicle M may be provided independently of the navigation device 50. In addition, the navigation device 50 may be realized by, for example, the function of a terminal device such as a smartphone or a tablet terminal owned by the user. In this case, transmission and reception of information are performed between the terminal device and the vehicle control system 100 by wireless or wired communication.
 無線通信装置55は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用した無線通信を行う。無線通信装置55は、例えば、VICS(登録商標)(Vehicle Information and Communication System)などの道路の交通状況を監視するシステムの情報提供用サーバと無線通信を行い、自車両Mが走行している道路や走行予定の道路の交通状況を示す情報(以下、交通情報と称する)を取得する。交通情報には、前方の渋滞情報、渋滞地点の所要時間、事故・故障車・工事情報、速度規制・車線規制情報、駐車場の位置、駐車場・サービスエリア・パーキングエリアの満車・空車情報などの情報が含まれる。また、無線通信装置55は、道路の側帯などに設けられた無線ビーコンと通信を行ったり、自車両Mの周囲を走行する他車両と車車間通信を行ったりすることで、上記交通情報を取得してもよい。 The wireless communication device 55 performs wireless communication using, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), or the like. The wireless communication device 55 performs wireless communication with a server for providing information of a system for monitoring the traffic condition of a road, such as VICS (registered trademark) (Vehicle Information and Communication System), for example. And information (hereinafter, referred to as traffic information) indicating the traffic condition of the road scheduled to travel. Traffic information includes traffic congestion information ahead, time required for traffic congestion points, accident / faulty car / construction information, speed regulation / lane regulation information, location of parking lot, full / empty car information of parking lot / service area / parking area etc. Information is included. In addition, the wireless communication device 55 acquires the above traffic information by communicating with a wireless beacon provided on a side band of a road or the like and performing inter-vehicle communication with other vehicles traveling around the host vehicle M. You may
 車両センサ60は、車速を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。 The vehicle sensor 60 includes a vehicle speed sensor that detects a vehicle speed, an acceleration sensor that detects an acceleration, a yaw rate sensor that detects an angular velocity about a vertical axis, an orientation sensor that detects the direction of the host vehicle M, and the like.
 図3は、HMI70の構成図である。HMI70は、例えば、運転操作系の構成と、非運転操作系の構成とを備える。これらの境界は明確なものでは無く、運転操作系の構成が非運転操作系の機能を備える(或いはその逆)ことがあってもよい。 FIG. 3 is a block diagram of the HMI 70. As shown in FIG. The HMI 70 has, for example, a configuration of a driving operation system and a configuration of a non-driving operation system. These boundaries are not clear and the configuration of the driving system may have the function of the non-driving system (or vice versa).
 HMI70は、運転操作系の構成として、例えば、アクセルペダル71、アクセル開度センサ72およびアクセルペダル反力出力装置73と、ブレーキペダル74およびブレーキ踏量センサ(或いはマスター圧センサなど)75と、シフトレバー76およびシフト位置センサ77と、ステアリングホイール78、ステアリング操舵角センサ79およびステアリングトルクセンサ80と、その他運転操作デバイス81とを含む。 The HMI 70 shifts, for example, an accelerator pedal 71, an accelerator opening sensor 72, an accelerator pedal reaction force output device 73, a brake pedal 74 and a brake depression amount sensor (or a master pressure sensor or the like) 75 as a configuration of a driving operation system. It includes a lever 76 and a shift position sensor 77, a steering wheel 78, a steering angle sensor 79 and a steering torque sensor 80, and other driving operation devices 81.
 アクセルペダル71は、車両乗員による加速指示(或いは戻し操作による減速指示)を受け付けるための操作子である。アクセル開度センサ72は、アクセルペダル71の踏み込み量を検出し、踏み込み量を示すアクセル開度信号を車両制御システム100に出力する。なお、車両制御システム100に出力するのに代えて、走行駆動力出力装置200、ステアリング装置210、またはブレーキ装置220に直接出力することがあってもよい。以下に説明する他の運転操作系の構成についても同様である。アクセルペダル反力出力装置73は、例えば車両制御システム100からの指示に応じて、アクセルペダル71に対して操作方向と反対向きの力(操作反力)を出力する。 The accelerator pedal 71 is an operation element for receiving an acceleration instruction (or a deceleration instruction by a return operation) by a vehicle occupant. The accelerator opening sensor 72 detects the amount of depression of the accelerator pedal 71 and outputs an accelerator opening signal indicating the amount of depression to the vehicle control system 100. In place of the output to the vehicle control system 100, the output may be directly output to the traveling driving force output device 200, the steering device 210, or the brake device 220. The same applies to the configurations of other driving operation systems described below. The accelerator pedal reaction force output device 73 outputs a force (operation reaction force) in the opposite direction to the operation direction to the accelerator pedal 71, for example, in accordance with an instruction from the vehicle control system 100.
 ブレーキペダル74は、車両乗員による減速指示を受け付けるための操作子である。ブレーキ踏量センサ75は、ブレーキペダル74の踏み込み量(或いは踏み込み力)を検出し、検出結果を示すブレーキ信号を車両制御システム100に出力する。 The brake pedal 74 is an operating element for receiving a deceleration instruction from a vehicle occupant. The brake depression amount sensor 75 detects the depression amount (or depression force) of the brake pedal 74 and outputs a brake signal indicating the detection result to the vehicle control system 100.
 シフトレバー76は、車両乗員によるシフト段の変更指示を受け付けるための操作子である。シフト位置センサ77は、車両乗員により指示されたシフト段を検出し、検出結果を示すシフト位置信号を車両制御システム100に出力する。 The shift lever 76 is an operating element for receiving an instruction to change the shift position by the vehicle occupant. The shift position sensor 77 detects a shift position instructed by the vehicle occupant, and outputs a shift position signal indicating the detection result to the vehicle control system 100.
 ステアリングホイール78は、車両乗員による旋回指示を受け付けるための操作子である。ステアリング操舵角センサ79は、ステアリングホイール78の操作角を検出し、検出結果を示すステアリング操舵角信号を車両制御システム100に出力する。ステアリングトルクセンサ80は、ステアリングホイール78に加えられたトルクを検出し、検出結果を示すステアリングトルク信号を車両制御システム100に出力する。 The steering wheel 78 is an operating element for receiving a turning instruction from the vehicle occupant. The steering angle sensor 79 detects an operation angle of the steering wheel 78, and outputs a steering angle signal indicating the detection result to the vehicle control system 100. The steering torque sensor 80 detects a torque applied to the steering wheel 78, and outputs a steering torque signal indicating the detection result to the vehicle control system 100.
 その他運転操作デバイス81は、例えば、ジョイスティック、ボタン、ダイヤルスイッチ、GUI(Graphical User Interface)スイッチなどである。その他運転操作デバイス81は、加速指示、減速指示、旋回指示などを受け付け、車両制御システム100に出力する。 The other driving operation device 81 is, for example, a joystick, a button, a dial switch, a graphical user interface (GUI) switch, or the like. The other driving operation device 81 receives an acceleration instruction, a deceleration instruction, a turning instruction, and the like, and outputs the instruction to the vehicle control system 100.
 HMI70は、非運転操作系の構成として、例えば、表示装置82、スピーカ83、接触操作検出装置84およびコンテンツ再生装置85と、各種操作スイッチ86と、シート88およびシート駆動装置89と、ウインドウガラス90およびウインドウ駆動装置91と、車室内カメラ95と、車両室内通信装置96と、ペアリング済み端末97と、電波発信装置98とを含む。 The HMI 70 has, for example, a display 82, a speaker 83, a touch operation detection device 84 and a content reproduction device 85, various operation switches 86, a sheet 88 and a sheet drive device 89, and a window glass 90 as a configuration of the non-operation operation system. And a window drive device 91, a car interior camera 95, a car interior communication device 96, a paired terminal 97, and a radio wave transmission device 98.
 表示装置82は、例えば、インストルメントパネルの各部、助手席や後部座席に対向する任意の箇所などに取り付けられる、LCD(Liquid Crystal Display)や有機EL(Electroluminescence)表示装置などである。また、表示装置82は、フロントウインドシールドやその他のウインドウに画像を投影するHUD(Head Up Display)であってもよい。スピーカ83は、音声を出力する。接触操作検出装置84は、表示装置82がタッチパネルである場合に、表示装置82の表示画面における接触位置(タッチ位置)を検出して、車両制御システム100に出力する。なお、表示装置82がタッチパネルでない場合、接触操作検出装置84は省略されてよい。 The display device 82 is, for example, an LCD (Liquid Crystal Display), an organic EL (Electroluminescence) display device, or the like which is attached to each part of an instrument panel, an assistant seat, an arbitrary position facing a rear seat, or the like. Also, the display device 82 may be a HUD (Head Up Display) that projects an image on a front windshield or other windows. The speaker 83 outputs an audio. When the display device 82 is a touch panel, the touch operation detection device 84 detects a touch position (touch position) on the display screen of the display device 82 and outputs the touch position to the vehicle control system 100. When the display device 82 is not a touch panel, the touch operation detection device 84 may be omitted.
 コンテンツ再生装置85は、例えば、DVD(Digital Versatile Disc)再生装置、CD(Compact Disc)再生装置、テレビジョン受信機、各種案内画像の生成装置などを含む。表示装置82、スピーカ83、接触操作検出装置84およびコンテンツ再生装置85は、一部または全部がナビゲーション装置50と共通する構成であってもよい。 The content reproduction device 85 includes, for example, a DVD (Digital Versatile Disc) reproduction device, a CD (Compact Disc) reproduction device, a television receiver, and various guidance image generation devices. The display device 82, the speaker 83, the touch operation detection device 84, and the content reproduction device 85 may have a configuration in which a part or all of them is common to the navigation device 50.
 各種操作スイッチ86は、車室内の任意の箇所に配置される。各種操作スイッチ86には、自動運転の開始(或いは将来の開始)および停止を指示する自動運転切替スイッチ87を含む。自動運転切替スイッチ87は、GUI(Graphical User Interface)スイッチ、機械式スイッチのいずれであってもよい。また、各種操作スイッチ86は、シート駆動装置89やウインドウ駆動装置91を駆動するためのスイッチを含んでもよい。 The various operation switches 86 are disposed at arbitrary places in the vehicle compartment. The various operation switches 86 include an automatic operation switching switch 87 for instructing start (or future start) and stop of automatic operation. The automatic driving changeover switch 87 may be either a graphical user interface (GUI) switch or a mechanical switch. The various operation switches 86 may also include switches for driving the sheet driving device 89 and the window driving device 91.
 シート88は、車両乗員が着座するシートである。シート駆動装置89は、シート88のリクライニング角、前後方向位置、ヨー角などを自在に駆動する。ウインドウガラス90は、例えば各ドアに設けられる。ウインドウ駆動装置91は、ウインドウガラス90を開閉駆動する。 The seat 88 is a seat on which a vehicle occupant sits. The seat driving device 89 freely drives the reclining angle, the longitudinal direction position, the yaw angle, and the like of the seat 88. The window glass 90 is provided, for example, on each door. The window drive device 91 opens and closes the window glass 90.
 車室内カメラ95は、CCDやCMOS等の固体撮像素子を利用したデジタルカメラである。車室内カメラ95は、バックミラーやステアリングボス部、インストルメントパネルなど、運転操作を行う車両乗員の少なくとも頭部を撮像可能な位置に取り付けられる。カメラ40は、例えば、周期的に繰り返し車両乗員を撮像する。 The in-vehicle camera 95 is a digital camera using a solid-state imaging device such as a CCD or a CMOS. The in-vehicle camera 95 is attached to a position such as a rear view mirror, a steering boss, an instrument panel, etc., at which the head of at least a head of a vehicle occupant who performs driving operation can be imaged. The camera 40, for example, periodically and repeatedly captures an image of a vehicle occupant.
 車両室内通信装置96は、例えば、車室内に持ち込まれ、車両乗員が操作可能な端末装置と無線通信を行い、ペアリング接続を確立する。端末装置は、無線通信装置55と同様に、例えば、セルラー網やWi-Fi網、Bluetooth、DSRCなどを利用した無線通信を行う。端末装置は、例えば、ワイヤレス型の携帯ゲーム機、ポータブルディスプレイ、タブレット端末、VR(Virtual Reality)グラス、ヘッドマウントディスプレイなどの娯楽・エンターテイメント機器である。端末装置とのペアリング接続は、アドホックネットワークにより確立されてもよいし、インターネットなどの既存のインフラストラクチャーを利用することで確立されてもよい。なお、車両室内通信装置96は、電波によるペアリング接続に限られず、赤外線やレーザなどの光無線通信によって端末装置とペアリング接続を確立してもよい。 A vehicle indoor communication device 96 is brought into, for example, a vehicle cabin, performs wireless communication with a terminal device operable by a vehicle occupant, and establishes a pairing connection. Similar to the wireless communication device 55, the terminal device performs wireless communication using, for example, a cellular network, a Wi-Fi network, Bluetooth, DSRC, or the like. The terminal device is, for example, an entertainment and entertainment device such as a wireless type portable game machine, a portable display, a tablet terminal, a VR (Virtual Reality) glass, and a head mounted display. The pairing connection with the terminal device may be established by an ad hoc network, or may be established by using an existing infrastructure such as the Internet. The vehicle indoor communication device 96 is not limited to the pairing connection by radio waves, and may establish the pairing connection with the terminal device by optical wireless communication such as infrared light or laser.
 また、車両室内通信装置96は、HMI制御部170の制御を受けて、ペアリング済み端末97に、ワーニング信号を発信する。ワーニング信号は、ペアリング済み端末97を利用する車両乗員に、危険を報知するための信号、または端末装置の使用を抑制するための信号(端末装置の機能を制限する信号)である。 Further, under the control of the HMI control unit 170, the in-vehicle communication device 96 transmits a warning signal to the paired terminal 97. The warning signal is a signal for reporting a danger to a vehicle occupant using the paired terminal 97, or a signal for suppressing the use of the terminal device (a signal for limiting the function of the terminal device).
 ペアリング済み端末97は、車両室内通信装置96とペアリング接続が確立した端末装置である。 The paired terminal 97 is a terminal device in which a pairing connection has been established with the in-vehicle communication device 96.
 電波発信装置98は、後述するHMI制御部170の制御を受けて、端末装置の通信を妨害する妨害電波を発信する。妨害電波の周波数帯は、例えば、セルラー網で利用する電波の周波数帯(例えば、2.1GHz帯や1.5GHz帯)やWi-Fi網などで利用する電波の周波数帯(例えば2.4GHz帯や5GHz帯)、或いはテレビジョン放送波と同じ周波数帯である。なお、妨害電波の周波数帯とワーニング信号の周波数帯とは、互いに異なることが好ましいが、重複していてもよい。 The radio wave transmission device 98 transmits jamming radio waves that interfere with the communication of the terminal device under the control of the HMI control unit 170 described later. The frequency band of jamming radio waves is, for example, the frequency band of radio waves used in the cellular network (for example, 2.1 GHz band or 1.5 GHz band) or the frequency band of radio waves used in the Wi-Fi network (for example, 2.4 GHz band) Or 5 GHz band) or the same frequency band as a television broadcast wave. The frequency band of jamming radio waves and the frequency band of the warning signal are preferably different from each other, but may be overlapping.
 なお、上述した車両室内通信装置96と、電波発信装置98とは互いに独立した装置として説明したがこれに限られず、車両室内通信装置96の一部または全部の機能は、電波発信装置98が備えていてもよいし、電波発信装置98の一部または全部の機能は、車両室内通信装置96が備えていてもよい。例えば、端末装置とのペアリング接続は、電波発信装置98が行ってもよいし、妨害電波やワーニング信号は車両室内通信装置96が発信してもよい。 Although the above-described vehicle indoor communication device 96 and the radio wave transmission device 98 have been described as independent devices, the present invention is not limited to this. The radio wave transmission device 98 is provided with a part or all of the functions of the vehicle indoor communication device 96 The in-vehicle communication device 96 may have some or all of the functions of the radio wave transmission device 98. For example, the radio transmission device 98 may perform pairing connection with the terminal device, and the in-vehicle communication device 96 may transmit the jamming radio signal or the warning signal.
 車両制御システム100の説明に先立って、走行駆動力出力装置200、ステアリング装置210、およびブレーキ装置220について説明する。 Prior to the description of the vehicle control system 100, the traveling drive power output device 200, the steering device 210, and the brake device 220 will be described.
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、自車両Mが内燃機関を動力源とした自動車である場合、エンジン、変速機、およびエンジンを制御するエンジンECU(Electronic Control Unit)を備え、自車両Mが電動機を動力源とした電気自動車である場合、走行用モータおよび走行用モータを制御するモータECUを備え、自車両Mがハイブリッド自動車である場合、エンジン、変速機、およびエンジンECUと走行用モータおよびモータECUとを備える。走行駆動力出力装置200がエンジンのみを含む場合、エンジンECUは、後述する走行制御部160から入力される情報に従って、エンジンのスロットル開度やシフト段等を調整する。走行駆動力出力装置200が走行用モータのみを含む場合、モータECUは、走行制御部160から入力される情報に従って、走行用モータに与えるPWM信号のデューティ比を調整する。走行駆動力出力装置200がエンジンおよび走行用モータを含む場合、エンジンECUおよびモータECUは、走行制御部160から入力される情報に従って、互いに協調して走行駆動力を制御する。 The traveling driving force output device 200 outputs traveling driving force (torque) for the vehicle to travel to the driving wheels. For example, when the host vehicle M is an automobile using an internal combustion engine as a motive power source, the traveling drive power output device 200 includes an engine, a transmission, and an engine ECU (Electronic Control Unit) for controlling the engine. In the case of an electric vehicle using an electric motor as a power source, a traveling motor and a motor ECU for controlling the traveling motor are provided, and when the host vehicle M is a hybrid vehicle, an engine, a transmission, an engine ECU, a traveling motor, And a motor ECU. When travel driving force output device 200 includes only the engine, the engine ECU adjusts the throttle opening degree, shift stage, and the like of the engine according to the information input from travel control unit 160 described later. When traveling driving force output device 200 includes only the traveling motor, motor ECU adjusts the duty ratio of the PWM signal given to the traveling motor according to the information input from traveling control unit 160. When traveling driving force output device 200 includes an engine and a traveling motor, engine ECU and motor ECU control the traveling driving force in coordination with each other in accordance with the information input from traveling control unit 160.
 ステアリング装置210は、例えば、ステアリングECUと、電動モータとを備える。電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、車両制御システム100から入力される情報、或いは入力されるステアリング操舵角またはステアリングトルクの情報に従って電動モータを駆動し、転舵輪の向きを変更させる。 The steering device 210 includes, for example, a steering ECU and an electric motor. The electric motor, for example, applies a force to the rack and pinion mechanism to change the direction of the steered wheels. The steering ECU drives the electric motor according to the information input from the vehicle control system 100 or the information of the steering angle or steering torque input, and changes the direction of the steered wheels.
 ブレーキ装置220は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、制動制御部とを備える電動サーボブレーキ装置である。電動サーボブレーキ装置の制動制御部は、走行制御部160から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。電動サーボブレーキ装置は、ブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置220は、上記説明した電動サーボブレーキ装置に限らず、電子制御式油圧ブレーキ装置であってもよい。電子制御式油圧ブレーキ装置は、走行制御部160から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する。また、ブレーキ装置220は、走行駆動力出力装置200に含まれ得る走行用モータによる回生ブレーキを含んでもよい。 The brake device 220 is, for example, an electric servo brake device that includes a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a braking control unit. The braking control unit of the electric servo brake device controls the electric motor in accordance with the information input from the traveling control unit 160 so that the brake torque corresponding to the braking operation is output to each wheel. The electric servo brake device may be provided with a mechanism for transmitting the hydraulic pressure generated by the operation of the brake pedal to the cylinder via the master cylinder as a backup. The brake device 220 is not limited to the above-described electric servo brake device, and may be an electronically controlled hydraulic brake device. The electronically controlled hydraulic brake device controls the actuator according to the information input from the travel control unit 160 to transmit the hydraulic pressure of the master cylinder to the cylinder. In addition, the brake device 220 may include a regenerative brake by a traveling motor that may be included in the traveling driving force output device 200.
 [車両制御システム]
 以下、車両制御システム100について説明する。車両制御システム100は、例えば、一以上のプロセッサまたは同等の機能を有するハードウェアにより実現される。車両制御システム100は、CPU(Central Processing Unit)などのプロセッサ、記憶装置、および通信インターフェースが内部バスによって接続されたECU(Electronic Control Unit)、或いはMPU(Micro-Processing Unit)などが組み合わされた構成であってよい。
[Vehicle control system]
Hereinafter, the vehicle control system 100 will be described. The vehicle control system 100 is realized by, for example, one or more processors or hardware having equivalent functions. The vehicle control system 100 is configured by combining a processor such as a central processing unit (CPU), a storage device, and an electronic control unit (ECU) having a communication interface connected by an internal bus, or an MPU (micro-processing unit). It may be.
 図2に戻り、車両制御システム100は、例えば、目標車線決定部110と、自動運転制御部120と、走行制御部160と、HMI制御部170と、記憶部180とを備える。自動運転制御部120は、例えば、自動運転モード制御部130と、自車位置認識部140と、外界認識部142と、行動計画生成部144と、軌道生成部146と、切替制御部150とを備える。上述した検知デバイスDDと、無線通信装置55と、外界認識部142とを合わせたものは、「認識部」の一例である。また、自動運転制御部120および走行制御部160は、「自動運転制御部」の一例である。 Returning to FIG. 2, the vehicle control system 100 includes, for example, a target lane determination unit 110, an automatic driving control unit 120, a travel control unit 160, an HMI control unit 170, and a storage unit 180. The automatic driving control unit 120 includes, for example, an automatic driving mode control unit 130, a host vehicle position recognition unit 140, an external world recognition unit 142, an action plan generation unit 144, a track generation unit 146, and a switching control unit 150. Prepare. The combination of the detection device DD, the wireless communication device 55, and the external world recognition unit 142 described above is an example of the “recognition unit”. The automatic driving control unit 120 and the traveling control unit 160 are examples of the “automatic driving control unit”.
 目標車線決定部110、自動運転制御部120の各部、および走行制御部160のうち一部または全部は、プロセッサがプログラム(ソフトウェア)を実行することにより実現される。また、これらのうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの組み合わせによって実現されてもよい。 The processor executes a program (software) to realize part or all of the target lane determination unit 110, the units of the automatic driving control unit 120, and the travel control unit 160. Also, some or all of these may be realized by hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit), or may be realized by a combination of software and hardware.
 記憶部180には、例えば、高精度地図情報182、目標車線情報184、行動計画情報186、モード別操作可否情報188などの情報が格納される。記憶部180は、ROM(Read Only Memory)やRAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリ等で実現される。プロセッサが実行するプログラムは、予め記憶部180に格納されていてもよいし、車載インターネット設備等を介して外部装置からダウンロードされてもよい。また、プログラムは、そのプログラムを格納した可搬型記憶媒体が図示しないドライブ装置に装着されることで記憶部180にインストールされてもよい。また、車両制御システム100は、複数のコンピュータ装置によって分散化されたものであってもよい。 The storage unit 180 stores, for example, information such as high-accuracy map information 182, target lane information 184, action plan information 186, mode-specific operation availability information 188, and the like. The storage unit 180 is realized by a read only memory (ROM), a random access memory (RAM), a hard disk drive (HDD), a flash memory, or the like. The program executed by the processor may be stored in advance in the storage unit 180, or may be downloaded from an external device via an in-vehicle Internet facility or the like. The program may be installed in the storage unit 180 by mounting a portable storage medium storing the program in a drive device (not shown). In addition, the vehicle control system 100 may be distributed by a plurality of computer devices.
 目標車線決定部110は、例えば、MPUにより実現される。目標車線決定部110は、ナビゲーション装置50から提供された経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、高精度地図情報182を参照してブロックごとに目標車線を決定する。目標車線決定部110は、例えば、左から何番目の車線を走行するといった決定を行う。目標車線決定部110は、例えば、経路において分岐箇所や合流箇所などが存在する場合、自車両Mが、分岐先に進行するための合理的な走行経路を走行できるように、目標車線を決定する。目標車線決定部110により決定された目標車線は、目標車線情報184として記憶部180に記憶される。 The target lane determination unit 110 is realized by, for example, an MPU. The target lane determination unit 110 divides the route provided from the navigation device 50 into a plurality of blocks (for example, in units of 100 [m] in the traveling direction of the vehicle), and refers to the high accuracy map information 182 to each block Determine your target lane. The target lane determination unit 110 determines, for example, which lane from the left the vehicle should travel. The target lane determination unit 110 determines the target lane so that the host vehicle M can travel on a rational travel route for advancing to the branch destination, for example, when there is a branch point or a junction point in the route. . The target lane determined by the target lane determination unit 110 is stored in the storage unit 180 as target lane information 184.
 高精度地図情報182は、ナビゲーション装置50が有するナビ地図よりも高精度な地図情報である。高精度地図情報182は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、高精度地図情報182には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。道路情報には、高速道路、有料道路、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐ポイントの位置、道路に設けられた標識等の情報が含まれる。交通規制情報には、工事や交通事故、渋滞等によって車線が封鎖されているといった情報が含まれる。 The high accuracy map information 182 is map information with higher accuracy than the navigation map of the navigation device 50. The high accuracy map information 182 includes, for example, information on the center of the lane or information on the boundary of the lane. Also, the high accuracy map information 182 may include road information, traffic regulation information, address information (address / zip code), facility information, telephone number information, and the like. The road information includes information indicating the type of road such as expressways, toll roads, national roads, and prefectural roads, the number of lanes of the road, the width of each lane, the slope of the road, the position of the road (longitude, latitude, height 3) (including three-dimensional coordinates), curvature of a curve of a lane, locations of merging and branching points of lanes, and information such as signs provided on roads. The traffic regulation information includes information that the lane is blocked due to construction work, traffic accident, traffic jam or the like.
 自動運転モード制御部130は、自動運転制御部120が実施する自動運転のモードを決定する。本実施形態における自動運転のモードには、以下のモードが含まれる。なお、以下はあくまで一例であり、自動運転のモード数は任意に決定されてよい。 The automatic driving mode control unit 130 determines the mode of the automatic driving performed by the automatic driving control unit 120. The modes of the automatic driving in this embodiment include the following modes. The following is merely an example, and the number of modes of the automatic driving may be arbitrarily determined.
 [モードA]
 モードAは、最も自動運転の度合が高いモードである。モードAが実施されている場合、複雑な合流制御など、全ての車両制御が自動的に行われるため、車両乗員は自車両Mの周辺や状態を監視する必要が無い(周辺監視義務が生じない)。
[Mode A]
Mode A is the mode in which the degree of automatic operation is the highest. When the mode A is implemented, all vehicle control such as complicated merging control is automatically performed, so that the vehicle occupant does not have to monitor the surroundings or the state of the own vehicle M (there is no obligation to monitor the surroundings) ).
 ここで、モードAで選択される走行態様の一例としては、渋滞時に前走車両に追従する低速追従走行(TJP;Traffic Jam Pilot)がある。低速追従走行では、混雑した高速道路上で前走車両に追従することで安全な自動運転を実現することができる。低速追従走行は、例えば自車両Mの走行速度が所定速度以上(例えば、60km/h以上)になった場合に解除される。また、低速追従走行の終了するタイミングでモードAから他の走行態様に切り替わる場合もあるが、モードAにおいて選択可能な他の走行態様に切り替わってもよい。 Here, as an example of the traveling mode selected in the mode A, there is a low speed following traveling (TJP; Traffic Jam Pilot) which follows the preceding vehicle in a traffic jam. In low-speed follow-up driving, safe automatic driving can be realized by following a preceding vehicle on a crowded freeway. The low-speed following traveling is canceled, for example, when the traveling speed of the host vehicle M becomes equal to or higher than a predetermined speed (for example, 60 km / h or higher). In addition, there is a case where the mode A is switched to another traveling mode at the timing when the low speed following traveling ends, but may be switched to another traveling mode selectable in the mode A.
 [モードB]
 モードBは、モードAの次に自動運転の度合が高いモードである。モードBが実施されている場合、原則として全ての車両制御が自動的に行われるが、場面に応じて自車両Mの運転操作が車両乗員に委ねられる。このため、車両乗員は自車両Mの周辺や状態を監視している必要がある(モードAと比べて周辺監視義務が増加する)。
[Mode B]
Mode B is a mode in which the degree of automatic operation is the second highest after mode A. When the mode B is performed, all vehicle control is performed automatically in principle, but the driving operation of the host vehicle M is entrusted to the vehicle occupant according to the scene. For this reason, it is necessary for the vehicle occupant to monitor the surroundings and the state of the own vehicle M (the duty to monitor the surroundings is increased compared to mode A).
 [モードC]
 モードCは、モードBの次に自動運転の度合が高いモードである。モードCが実施されている場合、車両乗員は、場面に応じた確認操作をHMI70に対して行う必要がある。モードCでは、例えば、車線変更のタイミングが車両乗員に通知され、車両乗員がHMI70に対して車線変更を指示する操作を行った場合に、自動的な車線変更が行われる。このため、車両乗員は自車両Mの周辺や状態を監視している必要がある。
[Mode C]
Mode C is a mode in which the degree of automatic operation is the second highest after mode B. When the mode C is performed, the vehicle occupant needs to perform a confirmation operation according to the scene on the HMI 70. In mode C, for example, when the lane change timing is notified to the vehicle occupant and the vehicle occupant instructs the HMI 70 to change the lane, an automatic lane change is performed. Therefore, the vehicle occupant needs to monitor the surroundings and the state of the host vehicle M.
 自動運転モード制御部130は、HMI70に対する車両乗員の操作、行動計画生成部144により決定されたイベント、軌道生成部146により決定された走行態様などに基づいて、自動運転のモードを上記いずれかのモードに決定する。自動運転のモードは、HMI制御部170に通知される。また、自動運転のモードには、自車両Mの検知デバイスDDの性能等に応じた限界が設定されてもよい。例えば、検知デバイスDDの性能が低い場合には、モードAは実施されないものとしてよい。 The automatic driving mode control unit 130 selects one of the automatic driving modes based on the operation of the vehicle occupant on the HMI 70, the event determined by the action plan generating unit 144, the traveling mode determined by the trajectory generating unit 146, and the like. Determine the mode. The mode of the automatic operation is notified to the HMI control unit 170. Moreover, the limit according to the performance etc. of the detection device DD of the own vehicle M may be set to the mode of automatic driving | operation. For example, if the performance of the sensing device DD is low, mode A may not be implemented.
 何れの自動運転のモードにおいても、HMI70における運転操作系の構成に対する操作によって、手動運転モードに切り替えること(オーバーライド)は可能である。オーバーライドは、例えば自車両Mの車両乗員によるHMI70の運転操作系に対する操作力が閾値を超える状態が所定時間以上継続した場合、所定の操作変化量(例えばアクセルペダル71のアクセル開度、ブレーキペダル74のブレーキ踏量、ステアリングホイール78のステアリング操舵角)以上の場合、または運転操作系に対する操作を所定回数以上行った場合などに開始される。 In any of the modes of automatic operation, it is possible to switch to the manual operation mode (override) by an operation on the configuration of the operation control system in the HMI 70. Overriding is performed when, for example, a state in which the operating force of the vehicle occupant of the own vehicle M with respect to the driving operation system of the HMI 70 exceeds the threshold continues for a predetermined time or more, a predetermined operation change amount (for example Or the steering operation angle of the steering wheel 78) or when the operation on the driving operation system is performed a predetermined number of times or more.
 自動運転制御部120の自車位置認識部140は、記憶部180に格納された高精度地図情報182と、ファインダ20、レーダ30、カメラ40、ナビゲーション装置50、または車両センサ60から入力される情報とに基づいて、自車両Mが走行している車線(走行車線)、および、走行車線に対する自車両Mの相対位置を認識する。 The vehicle position recognition unit 140 of the automatic driving control unit 120 receives information from the high accuracy map information 182 stored in the storage unit 180 and the finder 20, the radar 30, the camera 40, the navigation device 50, or the vehicle sensor 60. And recognizes the relative position of the host vehicle M with respect to the travel lane and the lane in which the host vehicle M is traveling (traveling lane).
 自車位置認識部140は、例えば、高精度地図情報182から認識される道路区画線のパターン(例えば実線と破線の配列)と、カメラ40によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。 For example, the vehicle position recognition unit 140 recognizes the pattern of road division lines (for example, an array of solid lines and broken lines) recognized from the high accuracy map information 182 and the surroundings of the vehicle M recognized from an image captured by the camera 40 The traveling lane is recognized by comparing with the pattern of the road division lines. In this recognition, the position of the host vehicle M acquired from the navigation device 50 or the processing result by the INS may be added.
 図4は、自車位置認識部140により走行車線L1に対する自車両Mの相対位置が認識される様子を示す図である。自車位置認識部140は、例えば、自車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および自車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する自車両Mの相対位置として認識する。なお、これに代えて、自車位置認識部140は、自車線L1のいずれかの側端部に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。自車位置認識部140により認識される自車両Mの相対位置は、目標車線決定部110に提供される。 FIG. 4 is a diagram showing how the vehicle position recognition unit 140 recognizes the relative position of the vehicle M with respect to the traveling lane L1. For example, the host vehicle position recognition unit 140 makes a line connecting a deviation OS of the reference point (for example, the center of gravity) of the host vehicle M from the center CL of the travel lane and a center CL of the travel lane in the traveling direction of the host vehicle M. The angle θ is recognized as the relative position of the host vehicle M with respect to the driving lane L1. Instead of this, the vehicle position recognition unit 140 recognizes the position of the reference point of the vehicle M relative to any one side end of the vehicle lane L1 as the relative position of the vehicle M relative to the traveling lane. It is also good. The relative position of the host vehicle M recognized by the host vehicle position recognition unit 140 is provided to the target lane determination unit 110.
 外界認識部142は、ファインダ20、レーダ30、カメラ40等から入力される情報に基づいて、周辺車両の位置、および速度、加速度等の状態を認識する。周辺車両とは、例えば、自車両Mの周辺を走行する車両であって、自車両Mと同じ方向に走行する車両である。周辺車両の位置は、他車両の重心やコーナー等の代表点で表されてもよいし、他車両の輪郭で表現された領域で表されてもよい。周辺車両の「状態」とは、上記各種機器の情報に基づいて把握される、周辺車両の加速度、車線変更をしているか否か(あるいは車線変更をしようとしているか否か)を含んでもよい。また、外界認識部142は、周辺車両に加えて、ガードレールや電柱、駐車車両、歩行者その他の物体の位置を認識してもよい。 The external world recognition unit 142 recognizes the position of the surrounding vehicle and the state of the speed, acceleration, and the like based on the information input from the finder 20, the radar 30, the camera 40, and the like. The surrounding vehicle is, for example, a vehicle traveling around the host vehicle M and traveling in the same direction as the host vehicle M. The position of the surrounding vehicle may be represented by a representative point such as the center of gravity or a corner of the other vehicle, or may be represented by an area represented by the contour of the other vehicle. The "state" of the surrounding vehicle may include the acceleration of the surrounding vehicle, whether it is changing lanes (or whether it is going to change lanes), which is grasped based on the information of the various devices. In addition to the surrounding vehicles, the outside world recognition unit 142 may also recognize positions of guardrails, utility poles, parked vehicles, pedestrians, and other objects.
 行動計画生成部144は、自動運転のスタート地点、および/または自動運転の目的地を設定する。自動運転のスタート地点は、自車両Mの現在位置であってもよいし、自動運転を指示する操作がなされた地点でもよい。行動計画生成部144は、そのスタート地点と自動運転の目的地との間の区間において、行動計画を生成する。なお、これに限らず、行動計画生成部144は、任意の区間について行動計画を生成してもよい。 The action plan generation unit 144 sets a start point of the autonomous driving and / or a destination of the autonomous driving. The starting point of the autonomous driving may be the current position of the host vehicle M or a point at which the operation for instructing the autonomous driving is performed. The action plan generation unit 144 generates an action plan in the section between the start point and the destination of the automatic driving. Not limited to this, the action plan generation unit 144 may generate an action plan for any section.
 行動計画は、例えば、順次実行される複数のイベントで構成される。イベントには、例えば、自車両Mを減速させる減速イベントや、自車両Mを加速させる加速イベント、走行車線を逸脱しないように自車両Mを走行させるレーンキープイベント、走行車線を変更させる車線変更イベント、自車両Mに前走車両を追い越させる追い越しイベント、分岐ポイントにおいて所望の車線に変更させたり、現在の走行車線を逸脱しないように自車両Mを走行させたりする分岐イベント、本線に合流するための合流車線において自車両Mを加減速させ、走行車線を変更させる合流イベント、自動運転の開始地点で手動運転モードから自動運転モードに移行させたり、自動運転の終了予定地点で自動運転モードから手動運転モードに移行させたりするハンドオーバイベント等が含まれる。行動計画生成部144は、目標車線決定部110により決定された目標車線が切り替わる箇所において、車線変更イベント、分岐イベント、または合流イベントを設定する。行動計画生成部144によって生成された行動計画を示す情報は、行動計画情報186として記憶部180に格納される。 The action plan is composed of, for example, a plurality of events that are sequentially executed. Events include, for example, a deceleration event for decelerating the host vehicle M, an acceleration event for accelerating the host vehicle M, a lane keep event for traveling the host vehicle M not to deviate from the lane, and a lane change event for changing the lane In order to join the main line, an overtaking event that causes the host vehicle M to overtake the preceding vehicle, a branch event that changes the lane to a desired lane at a branch point, or causes the host vehicle M to travel so as not to deviate from the current traveling lane. In the confluence lane, accelerate or decelerate the host vehicle M and change the traffic lane, transition from the manual operation mode to the automatic operation mode at the start point of automatic driving, or manually from the automatic operation mode at the scheduled end point of automatic operation A handover event or the like for shifting to the operation mode is included. The action plan generation unit 144 sets a lane change event, a branch event, or a merging event at a point where the target lane determined by the target lane determination unit 110 is switched. Information indicating the action plan generated by the action plan generation unit 144 is stored in the storage unit 180 as the action plan information 186.
 図5は、ある区間について生成された行動計画の一例を示す図である。図示するように、行動計画生成部144は、目標車線情報184が示す目標車線上を自車両Mが走行するために必要な行動計画を生成する。なお、行動計画生成部144は、自車両Mの状況変化に応じて、目標車線情報184に拘わらず、動的に行動計画を変更してもよい。例えば、行動計画生成部144は、車両走行中に外界認識部142によって認識された周辺車両の速度が閾値を超えたり、自車線に隣接する車線を走行する周辺車両の移動方向が自車線方向に向いたりした場合に、自車両Mが走行予定の運転区間に設定されたイベントを変更する。例えば、レーンキープイベントの後に車線変更イベントが実行されるようにイベントが設定されている場合において、外界認識部142の認識結果によって当該レーンキープイベント中に車線変更先の車線後方から車両が閾値以上の速度で進行してきたことが判明した場合、行動計画生成部144は、レーンキープイベントの次のイベントを、車線変更イベントから減速イベントやレーンキープイベント等に変更してよい。この結果、車両制御システム100は、外界の状態に変化が生じた場合においても、安全に自車両Mを自動走行させることができる。 FIG. 5 is a diagram showing an example of an action plan generated for a certain section. As illustrated, the action plan generation unit 144 generates an action plan necessary for the host vehicle M to travel on the target lane indicated by the target lane information 184. The action plan generation unit 144 may dynamically change the action plan according to the change in the situation of the host vehicle M, regardless of the target lane information 184. For example, in the action plan generation unit 144, the speed of the surrounding vehicle recognized by the external world recognition unit 142 exceeds the threshold while the vehicle is traveling, or the moving direction of the surrounding vehicle traveling in the lane adjacent to the own lane In the case of turning, the event set in the driving section where the host vehicle M is to travel is changed. For example, when an event is set such that a lane change event is executed after a lane keep event, the recognition result of the external world recognition unit 142 causes the vehicle to exceed the threshold from behind the lane in the lane change destination during the lane keep event. If it is determined that the vehicle has progressed at the speed of 1, the action plan generation unit 144 may change the event following the lane keeping event from a lane change event to a deceleration event, a lane keeping event, or the like. As a result, the vehicle control system 100 can safely cause the host vehicle M to travel automatically even when a change occurs in the state of the outside world.
 図6は、軌道生成部146の構成の一例を示す図である。軌道生成部146は、例えば、走行態様決定部146Aと、軌道候補生成部146Bと、評価・選択部146Cとを備える。 FIG. 6 is a diagram showing an example of the configuration of the trajectory generation unit 146. As shown in FIG. The track generation unit 146 includes, for example, a traveling mode determination unit 146A, a track candidate generation unit 146B, and an evaluation / selection unit 146C.
 走行態様決定部146Aは、レーンキープイベントを実施する際に、定速走行、追従走行、低速追従走行、減速走行、カーブ走行、障害物回避走行などのうちいずれかの走行態様を決定する。例えば、走行態様決定部146Aは、自車両Mの前方に他車両が存在しない場合に、走行態様を定速走行に決定する。また、走行態様決定部146Aは、前走車両に対して追従走行するような場合に、走行態様を追従走行に決定する。また、走行態様決定部146Aは、渋滞場面などにおいて、走行態様を低速追従走行に決定する。また、走行態様決定部146Aは、外界認識部142により前走車両の減速が認識された場合や、停車や駐車などのイベントを実施する場合に、走行態様を減速走行に決定する。また、走行態様決定部146Aは、外界認識部142により自車両Mがカーブ路に差し掛かったことが認識された場合に、走行態様をカーブ走行に決定する。また、走行態様決定部146Aは、外界認識部142により自車両Mの前方に障害物が認識された場合に、走行態様を障害物回避走行に決定する。また、走行態様決定部146Aは、車線変更イベント、追い越しイベント、分岐イベント、合流イベント、ハンドオーバイベントなどを実施する場合に、それぞれのイベントに応じた走行態様を決定する。 When the lane keeping event is performed, the traveling mode determination unit 146A determines one of the traveling modes among constant speed traveling, follow-up traveling, low-speed follow-up traveling, deceleration traveling, curve traveling, obstacle avoidance traveling, and the like. For example, when there is no other vehicle ahead of the host vehicle M, the traveling mode determination unit 146A determines the traveling mode as constant speed traveling. In addition, the traveling mode determination unit 146A determines the traveling mode as the following traveling when following the traveling vehicle. In addition, the traveling mode determination unit 146A determines the traveling mode as low-speed following traveling in a traffic jam scene or the like. In addition, the traveling mode determining unit 146A determines the traveling mode to be the decelerating traveling when the external world recognition unit 142 recognizes the deceleration of the leading vehicle, or when an event such as stopping or parking is performed. Further, the traveling mode determination unit 146A determines the traveling mode to be a curve traveling when the external world recognition unit 142 recognizes that the host vehicle M is approaching a curved road. In addition, when the external world recognition unit 142 recognizes an obstacle ahead of the host vehicle M, the traveling mode determination unit 146A determines the traveling mode as obstacle avoidance traveling. In addition, when the lane change event, the overtaking event, the branch event, the merging event, the handover event and the like are performed, the traveling mode determination unit 146A determines the traveling mode according to each event.
 また、走行態様決定部146Aは、例えば、外界認識部142により認識された周辺車両(例えば前方車両)の速度が一定速度以下であり、且つ周辺車両までの車間距離が一定値以下であれば、上述したモードAにおいて、例えば、走行態様を低速追従走行に決定する。また、走行態様決定部146Aは、例えば、周辺車両(例えば前方車両)の速度が一定速度以上であり、且つ周辺車両までの車間距離が一定値以上であれば、上述したモードBにおいて、例えば、走行態様を定速走行に決定する。 In addition, for example, if the speed of the nearby vehicle (for example, a forward vehicle) recognized by the external world recognition unit 142 is equal to or less than a predetermined speed and the inter-vehicle distance to the adjacent vehicle is equal to or less than a predetermined value In mode A described above, for example, the traveling mode is determined to be low-speed following traveling. In addition, in the mode B described above, for example, if the speed of the surrounding vehicle (for example, a forward vehicle) is equal to or higher than a predetermined speed and the inter-vehicle distance to the peripheral vehicle is equal to or higher than a predetermined value, for example The traveling mode is determined to be constant speed traveling.
 軌道候補生成部146Bは、走行態様決定部146Aにより決定された走行態様に基づいて、軌道の候補を生成する。図7は、軌道候補生成部146Bにより生成される軌道の候補の一例を示す図である。図7は、自車両Mが車線L1から車線L2に車線変更する場合に生成される軌道の候補を示している。 The track candidate generation unit 146B generates track candidates based on the traveling mode determined by the traveling mode determination unit 146A. FIG. 7 is a diagram showing an example of trajectory candidates generated by the trajectory candidate generation unit 146B. FIG. 7 shows track candidates generated when the host vehicle M changes lanes from the lane L1 to the lane L2.
 軌道候補生成部146Bは、図7に示すような軌道を、例えば、将来の所定時間ごとに、自車両Mの基準位置(例えば重心や後輪軸中心)が到達すべき目標位置(軌道点K)の集まりとして決定する。図8は、軌道候補生成部146Bにより生成される軌道の候補を軌道点Kで表現した図である。軌道点Kの間隔が広いほど、自車両Mの速度は速くなり、軌道点Kの間隔が狭いほど、自車両Mの速度は遅くなる。従って、軌道候補生成部146Bは、加速したい場合には軌道点Kの間隔を徐々に広くし、減速したい場合は軌道点の間隔を徐々に狭くする。 The trajectory candidate generation unit 146B sets the trajectory shown in FIG. 7 to, for example, a target position (trajectory point K) that the reference position (for example, the center of gravity or the rear wheel axis center) should reach at predetermined future time intervals. Determined as a collection of FIG. 8 is a diagram in which the trajectory candidate generated by the trajectory candidate generation unit 146B is represented by the trajectory point K. The greater the distance between the track points K, the faster the speed of the host vehicle M, and the narrower the distance between the track points K, the slower the speed of the host vehicle M. Therefore, the trajectory candidate generation unit 146B gradually widens the distance between the track points K when it is desired to accelerate, and gradually narrows the distance between the track points when it is desired to decelerate.
 このように、軌道点Kは速度成分を含むものであるため、軌道候補生成部146Bは、軌道点Kのそれぞれに対して目標速度を与える必要がある。目標速度は、走行態様決定部146Aにより決定された走行態様に応じて決定される。 As described above, since the trajectory point K includes a velocity component, the trajectory candidate generation unit 146B needs to provide the target velocity for each of the trajectory points K. The target speed is determined according to the traveling mode determined by the traveling mode determination unit 146A.
 ここで、車線変更(分岐を含む)を行う場合の目標速度の決定手法について説明する。軌道候補生成部146Bは、まず、車線変更ターゲット位置(或いは合流ターゲット位置)を設定する。車線変更ターゲット位置は、周辺車両との相対位置として設定されるものであり、「どの周辺車両の間に車線変更するか」を決定するものである。軌道候補生成部146Bは、車線変更ターゲット位置を基準として3台の周辺車両に着目し、車線変更を行う場合の目標速度を決定する。図9は、車線変更ターゲット位置TAを示す図である。図中、L1は自車線を表し、L2は隣接車線を表している。ここで、自車両Mと同じ車線で、自車両Mの直前を走行する周辺車両を前走車両mA、車線変更ターゲット位置TAの直前を走行する周辺車両を前方基準車両mB、車線変更ターゲット位置TAの直後を走行する周辺車両を後方基準車両mCと定義する。自車両Mは、車線変更ターゲット位置TAの側方まで移動するために加減速を行う必要があるが、この際に前走車両mAに追いついてしまうことを回避しなければならない。このため、軌道候補生成部146Bは、3台の周辺車両の将来の状態を予測し、各周辺車両と干渉しないように目標速度を決定する。 Here, a method of determining the target speed when changing lanes (including branching) will be described. The track candidate generation unit 146B first sets a lane change target position (or a merging target position). The lane change target position is set as a relative position with respect to surrounding vehicles, and determines “between which surrounding vehicles the lane change is to be performed”. The trajectory candidate generation unit 146B focuses on the three surrounding vehicles with reference to the lane change target position, and determines a target speed when changing lanes. FIG. 9 shows the lane change target position TA. In the figure, L1 represents the own lane and L2 represents the adjacent lane. Here, in the same lane as the host vehicle M, a vehicle traveling ahead of the host vehicle M is a forward vehicle mA, a peripheral vehicle traveling immediately before the lane change target position TA is a front reference vehicle mB, and a lane change target position TA A surrounding vehicle traveling immediately after is defined as a rear reference vehicle mC. The host vehicle M needs to accelerate and decelerate in order to move to the side of the lane change target position TA, but at this time it is necessary to avoid catching up with the preceding vehicle mA. Therefore, the track candidate generation unit 146B predicts the future states of the three surrounding vehicles, and determines the target speed so as not to interfere with each surrounding vehicle.
 図10は、3台の周辺車両の速度を一定と仮定した場合の速度生成モデルを示す図である。図中、mA、mBおよびmCから延出する直線は、それぞれの周辺車両が定速走行したと仮定した場合の進行方向における変位を示している。自車両Mは、車線変更が完了するポイントCPにおいて、前方基準車両mBと後方基準車両mCとの間にあり、且つ、それ以前において前走車両mAよりも後ろにいなければならない。このような制約の下、軌道候補生成部146Bは、車線変更が完了するまでの目標速度の時系列パターンを、複数導出する。そして、目標速度の時系列パターンをスプライン曲線等のモデルに適用することで、図8に示すような軌道の候補を複数導出する。なお、3台の周辺車両の運動パターンは、図10に示すような定速度に限らず、定加速度、定ジャーク(躍度)を前提として予測されてもよい。 FIG. 10 is a diagram showing a speed generation model when it is assumed that the speeds of three surrounding vehicles are constant. In the figure, the straight lines extending from mA, mB and mC indicate the displacement in the traveling direction when assuming that each of the surrounding vehicles traveled at a constant speed. The host vehicle M must be between the front reference vehicle mB and the rear reference vehicle mC at the point CP at which the lane change is completed, and be behind the front vehicle mA before that point. Under such constraints, the trajectory candidate generator 146B derives a plurality of time-series patterns of the target velocity until the lane change is completed. Then, a plurality of trajectory candidates as shown in FIG. 8 are derived by applying the time-series pattern of the target velocity to a model such as a spline curve. The motion patterns of the three surrounding vehicles are not limited to the constant velocity as shown in FIG. 10, and may be predicted on the assumption of constant acceleration and constant jerk (jump).
 評価・選択部146Cは、軌道候補生成部146Bにより生成された軌道の候補に対して、例えば、計画性と安全性の二つの観点で評価を行い、走行制御部160に出力する軌道を選択する。計画性の観点からは、例えば、既に生成されたプラン(例えば行動計画)に対する追従性が高く、軌道の全長が短い場合に軌道が高く評価される。例えば、右方向に車線変更することが望まれる場合に、一旦左方向に車線変更して戻るといった軌道は、低い評価となる。安全性の観点からは、例えば、それぞれの軌道点において、自車両Mと物体(周辺車両等)との距離が遠く、加減速度や操舵角の変化量などが小さいほど高く評価される。 The evaluation / selection unit 146C evaluates the track candidates generated by the track candidate generation unit 146B, for example, from the two viewpoints of planability and safety, and selects a track to be output to the traveling control unit 160. . From the viewpoint of planability, for example, the track is highly evaluated if the trackability to the already generated plan (for example, the action plan) is high and the total length of the track is short. For example, if it is desired to change lanes to the right, a track that once changes lanes to the left and then back is a low rating. From the viewpoint of safety, for example, at each track point, the distance between the host vehicle M and an object (such as a surrounding vehicle) is longer, and the smaller the acceleration / deceleration or the change amount of the steering angle, the higher the evaluation.
 切替制御部150は、自動運転切替スイッチ87から入力される信号、その他に基づいて自動運転モードと手動運転モードとを相互に切り替える。また、切替制御部150は、HMI70における運転操作系の構成に対する加速、減速または操舵を指示する操作に基づいて、自動運転モードから手動運転モードに切り替える。例えば、切替制御部150は、HMI70における運転操作系の構成から入力された信号の示す操作量が閾値を超えた状態が、基準時間以上継続した場合に、自動運転モードから手動運転モードに切り替える(オーバーライド)。また、切替制御部150は、オーバーライドによる手動運転モードへの切り替えの後、所定時間の間、HMI70における運転操作系の構成に対する操作が検出されなかった場合に、自動運転モードに復帰させてもよい。また、切替制御部150は、例えば自動運転の終了予定地点で自動運転モードから手動運転モードに移行するハンドオーバ制御を行う場合に、車両乗員に対して事前にハンドオーバリクエストを通知するため、その旨の情報を、HMI制御部170に出力する。 The switching control unit 150 switches between the automatic operation mode and the manual operation mode on the basis of the signal input from the automatic operation switching switch 87 and others. Further, the switching control unit 150 switches from the automatic driving mode to the manual driving mode based on an operation for instructing acceleration, deceleration or steering on the configuration of the driving operation system in the HMI 70. For example, the switching control unit 150 switches from the automatic operation mode to the manual operation mode when the state in which the operation amount indicated by the signal input from the configuration of the operation operation system in the HMI 70 exceeds the threshold continues for the reference time or more override). In addition, after switching to the manual operation mode by overriding, the switching control unit 150 may return to the automatic operation mode when an operation on the configuration of the operation operation system in the HMI 70 is not detected for a predetermined time. . Further, for example, when performing switching control to shift from the automatic driving mode to the manual driving mode at the scheduled end point of the automatic driving, the switching control unit 150 notifies the vehicle occupant of the handover request in advance. The information is output to the HMI control unit 170.
 走行制御部160は、軌道生成部146によって生成された軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200、ステアリング装置210、およびブレーキ装置220を制御する。 The traveling control unit 160 controls the traveling driving force output device 200, the steering device 210, and the braking device 220 so that the vehicle M passes the track generated by the track generating unit 146 at a scheduled time.
 図11は、HMI制御部170の構成の一例を示す図である。HMI制御部170は、モード別制御部170Aと、将来状態予測部170Bと、ペアリング制御部170Cと、電波発信制御部170Dとを備える。ペアリング制御部170Cおよび電波発信制御部170Dは、「妨害制御部」の一例である。 FIG. 11 is a diagram showing an example of the configuration of the HMI control unit 170. As shown in FIG. The HMI control unit 170 includes a mode-based control unit 170A, a future state prediction unit 170B, a pairing control unit 170C, and a radio wave transmission control unit 170D. The pairing control unit 170C and the radio wave transmission control unit 170D are examples of the “interference control unit”.
 モード別制御部170Aは、自動運転制御部120により自動運転のモードの情報が通知されると、モード別操作可否情報188を参照して、自動運転のモードの種別に応じてHMI70を制御する。 When the information on the mode of the automatic operation is notified by the automatic operation control unit 120, the mode-dependent control unit 170A controls the HMI 70 according to the type of the automatic operation mode with reference to the mode-specific operation availability information 188.
 図12は、モード別操作可否情報188の一例を示す図である。図12に示すモード別操作可否情報188は、運転モードの項目として「手動運転モード」、「自動運転モード」とを有する。また、「自動運転モード」として、上述した「モードA」、「モードB」、および「モードC」等を有する。また、モード別操作可否情報188は、非運転操作系の項目として、ナビゲーション装置50に対する操作である「ナビゲーション操作」、コンテンツ再生装置85に対する操作である「コンテンツ再生操作」、表示装置82に対する操作である「インストルメントパネル操作」等を有する。図12に示すモード別操作可否情報188の例では、上述した運転モードごとに非運転操作系に対する車両乗員の操作の可否が設定されているが、対象のインターフェース装置は、これに限定されるものではない。 FIG. 12 is a diagram showing an example of the mode-specific operation availability information 188. As shown in FIG. The mode-specific operation availability information 188 shown in FIG. 12 has “manual operation mode” and “automatic operation mode” as items of the operation mode. In addition, as the “automatic operation mode”, the “mode A”, the “mode B”, the “mode C” and the like described above are provided. The mode-by-mode operation availability information 188 includes a “navigation operation” which is an operation on the navigation device 50, a “content reproduction operation” which is an operation on the content reproduction device 85, and an operation on the display device 82 as items of non-driving operation system. It has a certain "instrument panel operation" etc. In the example of the mode-by-mode operation availability information 188 shown in FIG. 12, whether the vehicle occupant can operate the non-drive operation system is set for each of the above-described operation modes, but the target interface device is limited to this. is not.
 モード別制御部170Aは、自動運転制御部120から取得したモードの情報に基づいてモード別操作可否情報188を参照することで、使用が許可される装置(ナビゲーション装置50およびHMI70の一部または全部)と、使用が許可されない装置とを判定する。また、モード別制御部170Aは、判定した結果に基づいて、非運転操作系のHMI70、またはナビゲーション装置50に対する車両乗員からの操作の受け付けの可否を制御する。 The mode-specific control unit 170A refers to the mode-specific operation availability information 188 based on the mode information acquired from the automatic driving control unit 120 to allow the use (part or all of the navigation device 50 and the HMI 70). ) And devices that are not authorized for use. In addition, based on the determination result, the mode-dependent control unit 170A controls whether to accept an operation from the vehicle occupant on the non-driving operation system HMI 70 or the navigation device 50.
 例えば、車両制御システム100が実行する運転モードが手動運転モードの場合、車両乗員は、HMI70の運転操作系(例えば、アクセルペダル71、ブレーキペダル74、シフトレバー76、およびステアリングホイール78等)を操作する。また、車両制御システム100が実行する運転モードが自動運転モードのモードB、モードC等である場合、車両乗員には、自車両Mの周辺監視義務が生じる。このような場合、車両乗員の運転以外の行動(例えばHMI70の操作等)により注意が散漫になること(ドライバーディストラクション)を防止するため、モード別制御部170Aは、HMI70の非運転操作系の一部または全部に対する操作を受け付けないように制御を行う。この際、モード別制御部170Aは、車両乗員に自車両Mの周辺監視を行わせるために、外界認識部142により認識された自車両Mの周辺車両の存在やその周辺車両の状態を、表示装置82に画像などで表示させると共に、自車両Mの走行時の場面に応じた確認操作をHMI70に受け付けさせてよい。 For example, when the operation mode executed by the vehicle control system 100 is the manual operation mode, the vehicle occupant operates the operation operation system (for example, the accelerator pedal 71, the brake pedal 74, the shift lever 76, the steering wheel 78, etc.) of the HMI 70 Do. When the operation mode executed by the vehicle control system 100 is mode B, mode C or the like in the automatic operation mode, the vehicle occupant is obligated to monitor the surroundings of the host vehicle M. In such a case, in order to prevent distraction (driver distraction) due to an action (for example, the operation of the HMI 70) other than the driving of the vehicle occupant, the mode-specific control unit 170A Control is performed so as not to accept some or all operations. At this time, the mode-specific control unit 170A displays the presence of the peripheral vehicle of the own vehicle M recognized by the external world recognition unit 142 and the state of the peripheral vehicle thereof in order to cause the vehicle occupant to monitor the periphery of the own vehicle M. While making it display on a device 82 by an image etc., you may make HMI70 receive confirmation operation according to the scene at the time of traveling of self-vehicles M.
 また、モード別制御部170Aは、運転モードが自動運転のモードAである場合、ドライバーディストラクションの規制を緩和し、操作を受け付けていなかった非運転操作系に対する車両乗員の操作を受け付ける制御を行う。例えば、モード別制御部170Aは、表示装置82に映像を表示させたり、スピーカ83に音声を出力させたり、コンテンツ再生装置85にDVDなどからコンテンツを再生させたりする。なお、コンテンツ再生装置85が再生するコンテンツには、DVDなどに格納されたコンテンツの他、例えば、テレビ番組等の娯楽、エンターテイメントに関する各種コンテンツが含まれてよい。また、上述した図12に示す「コンテンツ再生操作」は、このような娯楽、エンターテイメントに関するコンテンツ操作を意味するものであってよい。 In addition, when the operation mode is the automatic driving mode A, the mode-specific control unit 170A performs control of relaxing the restriction of driver distraction and receiving the vehicle occupant's operation to the non-driving operation system which has not received the operation. . For example, the mode-dependent control unit 170A causes the display device 82 to display an image, causes the speaker 83 to output sound, and causes the content reproduction device 85 to reproduce content from a DVD or the like. The content reproduced by the content reproduction apparatus 85 may include, for example, various contents relating to entertainment such as television programs and entertainment in addition to the content stored in a DVD or the like. Also, the “content reproduction operation” shown in FIG. 12 described above may mean such content operation relating to entertainment and entertainment.
 また、モードAからモードBまたはモードCに遷移される場合、すなわち車両乗員の周辺監視義務が増加する自動運転のモードの変更が行われる場合、モード別制御部170Aは、ナビゲーション装置50または非運転操作系のHMI70に所定の情報を出力させる。所定の情報とは、周辺監視義務が増加すること示す情報や、ナビゲーション装置50または非運転操作系のHMI70に対する操作許容度が低くなる(操作が制限される)ことを示す情報である。なお、所定の情報は、これらに限定されるものではなく、例えばハンドオーバ制御への準備を促すような情報であってもよい。 In addition, when mode A is changed to mode B or mode C, that is, when a change in the mode of automatic driving in which the vehicle occupant's duty to monitor the surroundings increases is performed, mode-specific control unit 170A does not operate navigation device 50 or non-driving. The predetermined information is output to the HMI 70 of the operation system. The predetermined information is information indicating that the peripheral monitoring duty is increased, and information indicating that the operation allowance for the navigation apparatus 50 or the HMI 70 of the non-driving operation system is low (operation is restricted). In addition, predetermined information is not limited to these, For example, the information which promotes preparation for handover control may be sufficient.
 上述したように、モード別制御部170Aは、例えば運転モードが上述したモードAからモードBまたはモードCへ遷移する所定時間前や自車両Mが所定速度に至る前に車両乗員に対して警告等を報知することで、自車両Mの周辺監視義務が車両乗員に課されることを、適切なタイミングで車両乗員に通知することができる。この結果、自動運転の切り替わりへの準備期間を車両乗員に与えることができる。 As described above, the mode-specific control unit 170A warns the vehicle occupant of the vehicle occupant, for example, before a predetermined time when the operation mode transitions from mode A to mode B or mode C or before the host vehicle M reaches a predetermined speed. By notifying the vehicle occupant, it is possible to notify the vehicle occupant that the duty of monitoring the periphery of the host vehicle M is imposed on the vehicle occupant at an appropriate timing. As a result, it is possible to give the vehicle occupant a preparation period for switching of the automatic driving.
 将来状態予測部170Bは、HMI70に対する車両乗員の操作、外界認識部142による認識結果、行動計画生成部144により変更された行動計画のイベント、走行態様決定部146Aにより決定された走行態様、評価・選択部146Cによる軌道の選択結果などに基づいて、将来のある時点において自動運転の度合が低下する状態になるかどうかを予測する。自動運転の度合が低下する状態とは、モードAからモードBへの遷移のように自動運転モード下において周辺監視義務が必要になる状態、行動計画生成部144により自動運転を行うためのイベントがハンドオーバイベントに変更されるなどして、自動運転モードから手動運転モードへの切替が必要になる状態などをいう。 The future state prediction unit 170B performs the operation of the vehicle occupant on the HMI 70, the recognition result by the external world recognition unit 142, the event of the action plan changed by the action plan generation unit 144, the traveling mode determined by the traveling mode determination unit 146A, Based on the selection result of the trajectory by the selection unit 146C and the like, it is predicted whether or not the degree of the automatic operation is reduced at a certain time in the future. The state in which the degree of automatic operation decreases is the state where the peripheral monitoring duty is required under the automatic operation mode like the transition from mode A to mode B, and the event for performing the automatic operation by the action plan generation unit 144 is It refers to a state where it is necessary to switch from the automatic operation mode to the manual operation mode by being changed to a handover event or the like.
 例えば、走行態様が低速追従走行であるモードAに設定された状態で自車両Mが渋滞の中を走行している際に、将来状態予測部170Bは、交通情報に基づいて渋滞が解消されるかどうかを予測する。渋滞が解消されることが予測された場合、自動運転モード制御部130は、低速追従走行に比して自車両Mの速度をより出力可能な走行態様(例えば定速走行)に切り替えるために、自動運転モードを、モードAから周辺監視義務が更に増すモードBに切り替える。この場合、将来状態予測部170Bは、将来のある時点において自動運転の度合が低下する状態になると予測する。 For example, when the host vehicle M travels in a traffic jam in a state where the travel mode is set to mode A, which is low-speed follow-up travel, the future state prediction unit 170B cancels the traffic jam based on traffic information Predict whether or not. When it is predicted that the traffic congestion is eliminated, the automatic driving mode control unit 130 switches the traveling mode (for example, constant speed traveling) in which the speed of the host vehicle M can be more output compared to the low speed following traveling. The automatic operation mode is switched from mode A to mode B in which the peripheral monitoring duty is further increased. In this case, the future state prediction unit 170 </ b> B predicts that the degree of automatic driving will be reduced at a certain point in the future.
 また、例えば、合流イベント中に、合流先の車線を走行する周辺車両の車間間隔が十分確保できない場合、行動計画生成部144は、現在実施している合流イベントをハンドオーバイベントに変更する。この場合、将来状態予測部170Bは、将来のある時点において自動運転の度合が低下する状態になると予測する。 Also, for example, when the inter-vehicle interval of the peripheral vehicles traveling in the merging destination lane can not be secured sufficiently during the merging event, the action plan generation unit 144 changes the merging event currently being implemented to a handover event. In this case, the future state prediction unit 170 </ b> B predicts that the degree of automatic driving will be reduced at a certain point in the future.
 また、例えば、車線変更イベント中に、軌道候補生成部146Bにより生成された軌道候補のいずれもが、評価・選択部146Cによる評価を満たさなかった場合、軌道生成部146は車線変更のための軌道を生成しないことから、当該車線変更は可能でないと判断される。このような状況において、車線変更イベントをレーンキープイベントなどの他のイベントに変更できない場合、行動計画生成部144は車線変更イベントをハンドオーバイベントに変更する。この場合、上述した例と同様に、将来状態予測部170Bは、将来のある時点において自動運転の度合が低下する状態になると予測する。 In addition, for example, during the lane change event, when none of the trajectory candidates generated by the trajectory candidate generation unit 146B satisfies the evaluation by the evaluation / selection unit 146C, the trajectory generation unit 146 generates the trajectory for the lane change. It is determined that the lane change is not possible because In such a situation, when the lane change event can not be changed to another event such as a lane keep event, the action plan generation unit 144 changes the lane change event to a handover event. In this case, as in the example described above, the future state prediction unit 170B predicts that the degree of automatic driving will be reduced at a certain point in the future.
 なお、外界認識部142により障害物が認識されたり、HMI70に対して手動運転モードへの切替操作がなされたりした場合に自動運転モードが手動運転モードに切り替わる場合も、将来状態予測部170Bは、将来のある時点において自動運転の度合が低下する状態になると予測してよい。 Note that the future state prediction unit 170B may also switch the manual operation mode to the automatic operation mode when the obstacle recognition unit 142 recognizes an obstacle or the HMI 70 switches the operation to the manual operation mode. At some point in the future, it may be predicted that the degree of automatic driving will be reduced.
 ペアリング制御部170Cは、例えば、車両室内通信装置96を用いて、電波発信装置98から発信される妨害電波によって妨害されない電波(例えば周波数帯の異なる電波)を発信し、端末装置とのペアリング接続を確立する。 The pairing control unit 170C transmits radio waves (for example, radio waves in different frequency bands) which are not disturbed by the jamming radio wave transmitted from the radio wave transmitter 98 using, for example, the in-vehicle communication device 96, and performs pairing with the terminal device. Establish a connection
 電波発信制御部170Dは、将来状態予測部170Bにより将来のある時点において自動運転の度合が低下する状態になると予測された場合に、電波発信装置98を用いて、妨害電波やワーニング信号を発信する。この際、電波発信制御部170Dは、助手席や後部座席に座る車両乗員が操作する端末装置の通信を妨害しないよう、運転席周辺のみに放射されるような指向性を有する妨害電波を発信すると好適である。 The radio wave transmission control unit 170D transmits a jamming wave or a warning signal using the radio wave transmission device 98 when it is predicted by the state prediction unit 170B that the degree of automatic driving will be reduced at a certain time in the future. . At this time, the radio wave transmission control unit 170D transmits a jamming wave having directivity such that it is radiated only around the driver's seat so as not to disturb communication of a terminal device operated by a vehicle occupant sitting in a passenger seat or a rear seat. It is suitable.
 図13は、自動運転モードごとにおける発信電波の対応関係の一例を示す図である。図示のように、例えば、モードAにおいて、自動運転の度合が低下する状態に移行しない通常時には、妨害電波およびワーニング信号の双方は発信されず、モードAから手動運転モードへの切替が生じるタイミングや、モードAからモードBまたはモードCへの切替が生じるタイミングで、ワーニング信号および/または妨害電波が発信される。 FIG. 13 is a diagram showing an example of the correspondence relationship of transmission radio waves in each automatic driving mode. As shown in the figure, for example, in mode A, both the jamming signal and the warning signal are not transmitted under normal conditions in which the degree of automatic driving does not shift to a state where the degree of automatic driving decreases. The warning signal and / or the jamming signal is transmitted at the timing when the switching from mode A to mode B or mode C occurs.
 また、周辺監視義務が生じるモードBおよびCにおいては、通常時には各種電波の発信は任意に行われてよい。また、モードBおよびCにおいて手動運転モードへの切替が生じるタイミングにおいて、ワーニング信号および/または妨害電波が発信される。 In addition, in modes B and C in which a surrounding area monitoring duty occurs, transmission of various radio waves may be performed at normal times. In addition, at the timing when switching to the manual operation mode occurs in modes B and C, a warning signal and / or jamming signal is transmitted.
 上記タイミングにおいて各種電波が発信されることにより、周辺監視義務が課される前や、手動運転に切り替わる前に、端末装置の通信は妨害される。この結果、車両乗員によるテレビジョン番組などの視聴は中止され、車両乗員の注意を自車両Mの周辺に誘導することができると共に、手動運転への準備を促すことができる。 By transmitting various radio waves at the above-mentioned timing, the communication of the terminal device is disturbed before the duty to monitor surroundings is imposed or before switching to the manual operation. As a result, viewing of a television program or the like by a vehicle occupant is stopped, and attention of the vehicle occupant can be guided around the host vehicle M, and preparation for manual driving can be promoted.
 図14は、車両制御システム100により行われる処理の流れの一例を示すフローチャートである。まず、車両制御システム100は、自動運転モードに移行し、自動運転を開始する(ステップS100)。次に、将来状態予測部170Bは、将来のある時点において自動運転モードが周辺監視義務の必要なモードに遷移するかどうかを判定する(ステップS102)。将来状態予測部170Bは、自動運転モードが周辺監視義務の必要なモードに遷移しない場合、後述するS110に処理を移す。 FIG. 14 is a flowchart showing an example of the flow of processing performed by the vehicle control system 100. First, the vehicle control system 100 shifts to the automatic driving mode, and starts the automatic driving (step S100). Next, the future state prediction unit 170B determines whether or not the automatic operation mode transitions to a mode requiring a surrounding area monitoring duty at a certain point in the future (step S102). The future state prediction unit 170B shifts the processing to S110 described later, when the automatic operation mode does not transition to a mode requiring a surrounding area monitoring duty.
 一方、自動運転モードが周辺監視義務の必要なモードに遷移する場合、電波発信制御部170Dは、一または複数の端末装置とのペアリング接続が確立済みであるか否かを判定する(ステップS104)。端末装置とのペアリング接続の確立は、例えば、自動運転モードに移行前のタイミングなどの所定のタイミングで行われる。 On the other hand, when the automatic operation mode transitions to a mode requiring a peripheral monitoring duty, the radio wave transmission control unit 170D determines whether a pairing connection with one or more terminal devices has been established (step S104). ). The establishment of the pairing connection with the terminal device is performed, for example, at a predetermined timing such as a timing before transition to the automatic operation mode.
 端末装置とのペアリング接続が確立済みでない場合、電波発信制御部170Dは、電波発信装置98を用いて、自動運転の状態が所定の状態になる前に、車両室内に妨害電波を発信する(ステップS106)。この際、電波発信制御部170Dは、車両乗員に端末装置の使用を継続して控えさせるために、妨害電波を連続的、或いは断続的に発信し続けると好適である。 When the pairing connection with the terminal device has not been established, the radio wave transmission control unit 170D transmits a jamming wave into the vehicle cabin before the state of the automatic driving becomes a predetermined state, using the radio wave transmission device 98 ( Step S106). At this time, it is preferable that the radio wave transmission control unit 170D continuously or intermittently transmit jamming radio waves in order to make the vehicle occupants continue to refrain from using the terminal device.
 一方、端末装置とのペアリング接続が確立済みである場合、電波発信制御部170Dは、車両室内通信装置96を用いて、ペアリング済み端末97にワーニング信号を発信する(ステップS108)。この際、電波発信制御部170Dは、電波発信装置98を用いて、ワーニング信号と共に妨害電波を発信してもよい。 On the other hand, when the pairing connection with the terminal device is already established, the radio wave transmission control unit 170D transmits a warning signal to the paired terminal 97 using the in-vehicle communication device 96 (step S108). At this time, the radio wave transmission control unit 170D may transmit the jamming radio wave together with the warning signal using the radio wave transmission device 98.
 次に、将来状態予測部170Bは、将来のある時点において自動運転モードが手動運転モードに切り替わるかどうかを予測する(ステップS110)。自動運転モードが手動運転モードに切り替わらない場合、電波発信制御部170Dは、上述したS102の処理に戻り、例えばモードBなどの周辺監視義務の必要なモードが継続される場合は、電波発信装置98を用いて、妨害電波を発信し続け、周辺監視義務の必要がないモードAに遷移する場合は、妨害電波の発信を停止してよい。 Next, the future state prediction unit 170B predicts whether the automatic operation mode is switched to the manual operation mode at a certain point in the future (step S110). If the automatic operation mode is not switched to the manual operation mode, the radio wave transmission control unit 170D returns to the process of S102 described above, for example, the radio wave transmission device 98 when a mode requiring periphery monitoring duty such as mode B is continued. In the case of continuing to transmit jamming waves and transitioning to mode A where there is no need to monitor surrounding areas, the transmission of jamming waves may be stopped.
 一方、自動運転モードが手動運転モードに切り替わる場合、電波発信制御部170Dは、妨害電波およびワーニング信号の一方または双方を発信する(ステップS112)。例えば、S106およびS108の処理において妨害電波およびワーニング信号を連続的、または断続的に発信し続ける場合には、電波発信制御部170Dは、S112の処理として、妨害電波およびワーニング信号の一方または双方を継続して発信する。なお、S106およびS108の処理において妨害電波およびワーニング信号を一時的に発信する場合には、電波発信制御部170Dは、S112の処理として、妨害電波およびワーニング信号の一方または双方の発信を再開してよい。これによって本フローチャートの処理が終了する。 On the other hand, when the automatic operation mode is switched to the manual operation mode, the radio wave transmission control unit 170D transmits one or both of the jamming signal and the warning signal (step S112). For example, in the process of S106 and S108, when the jamming signal and the warning signal are continuously or intermittently transmitted, the radio wave transmission control unit 170D performs one or both of the jamming signal and the warning signal as the process of S112. Continue to send. When transmitting the jamming signal and the warning signal temporarily in the processes of S106 and S108, the wave transmission control unit 170D resumes sending of one or both of the jamming signal and the warning signal as the process of S112. Good. The process of this flowchart is complete | finished by this.
 なお、自動運転モードが手動運転モードに切り替わるタイミング以前に、電波発信制御部170Dは、上述したS106およびS108の処理と同様に、電波発信装置98を用いて車室内に妨害電波を発信してよいし、車両室内通信装置96を用いてペアリング済み端末97にワーニング信号を発信してよい。なお、手動運転モードへの切り替えのタイミングで端末装置とのペアリング接続が確立されていない場合には、ワーニング信号の発信は省略されてよいし、端末装置とのペアリング接続が確立されている場合には、妨害電波の発信が省略されてよい。 Note that the radio wave transmission control unit 170D may transmit jamming radio waves into the vehicle compartment using the radio wave transmission device 98 before the timing when the automatic operation mode is switched to the manual operation mode, as in the processing of S106 and S108 described above. A warning signal may be sent to the paired terminal 97 using the in-vehicle communication device 96. When the pairing connection with the terminal device is not established at the timing of switching to the manual operation mode, the transmission of the warning signal may be omitted, and the pairing connection with the terminal device is established. In the case, the transmission of the jamming signal may be omitted.
 なお、上述したフローチャートにおいて、S104の処理は省略されてもよい。この場合、電波発信制御部170Dは、端末装置とのペアリング接続の有無に関わらずに、電波発信装置98を用いて、自動運転モードが周辺監視義務の必要なモードに遷移する際に妨害電波を発信する。この場合、電波発信制御部170Dは、S108の処理において妨害電波の発信に伴ってワーニング信号を発信してもよいし、妨害電波のみを発信してワーニング信号の発信については省略してもよい。 In the above-described flowchart, the process of S104 may be omitted. In this case, the radio wave transmission control unit 170D uses the radio wave transmission device 98 regardless of the presence or absence of pairing connection with the terminal device, and interferes with the radio wave when the automatic operation mode transitions to a mode requiring peripheral monitoring duty. Send out. In this case, the radio wave transmission control unit 170D may transmit a warning signal along with the transmission of the jamming radio wave in the process of S108, or may transmit only the jamming radio wave and omit the transmission of the warning signal.
 また、S106やS108、S112の処理において、電波発信制御部170Dは、妨害電波を発信し続けることに限られず、例えば、自動運転モードが周辺監視義務の必要なモードに遷移するタイミングから所定時間(例えば数秒程度)経過するまでの間のみ、妨害電波を発信してもよい。すなわち、電波発信制御部170Dは、自動運転モードが周辺監視義務の必要なモードに遷移するタイミングにおいて一時的に妨害電波を発信してよい。 Further, in the processing of S106, S108, and S112, the radio wave transmission control unit 170D is not limited to continuously transmitting jamming radio waves, and, for example, a predetermined time after the timing when the automatic operation mode transitions to a mode requiring a surrounding monitoring duty For example, the jamming signal may be transmitted only until a few seconds have passed. That is, the radio wave transmission control unit 170D may temporarily transmit the jamming wave at the timing when the automatic operation mode transitions to a mode requiring a surrounding area monitoring duty.
 また、端末装置にコンテンツ再生を行わせない点のみを実現するにあたっては、上述したフローチャートにおいて、ペアリング接続に用いる電波と妨害電波とは干渉してもよい。この場合、妨害電波との干渉によって端末装置とのペアリング接続は解除されるものの、コンテンツ再生は停止するため、運転者に周辺監視を促すという本願の目的は達成される。この結果、ペアリング接続に用いる電波と妨害電波との干渉を考慮せずに、端末装置の通信を妨害することができる。 Further, in order to realize only the point that the terminal device does not perform the content reproduction, in the above-mentioned flowchart, the radio wave used for pairing connection and the interfering radio wave may interfere with each other. In this case, although the pairing connection with the terminal device is released due to the interference with the jamming signal, the content reproduction is stopped, and the object of the present application to urge the driver to monitor the surroundings is achieved. As a result, the communication of the terminal device can be disturbed without considering the interference between the radio wave used for pairing connection and the jamming radio wave.
 図15は、ペアリング済み端末97により行われる処理の流れの一例を示すフローチャートである。本フローチャートは、一例として、ペアリング済み端末97が、ワンセグなどを利用してテレビジョン番組を再生するように操作された場合に行う処理を表している。 FIG. 15 is a flowchart showing an example of the flow of processing performed by the paired terminal 97. The flowchart shows, as an example, processing performed when the paired terminal 97 is operated to reproduce a television program using One Seg or the like.
 まず、ペアリング済み端末97は、放送電波を受信するまで待機し(ステップS200)、放送電波を受信するとテレビジョン番組を再生する(ステップS202)。次に、ペアリング済み端末97は、電波発信装置98からワーニング信号を受信したか否かを判定する(ステップS204)。ワーニング信号を受信しない場合、ペアリング済み端末97は、放送電波の受信を継続して行う。一方、ワーニング信号を受信した場合、ペアリング済み端末97は、例えば、ワーニング信号が危険を報知するための電波である場合にはワーニング信号に基づく画面を表示する(ステップS206)。 First, the paired terminal 97 stands by until a broadcast wave is received (step S200), and when the broadcast wave is received, the television program is reproduced (step S202). Next, the paired terminal 97 determines whether a warning signal has been received from the radio wave transmission device 98 (step S204). When the warning signal is not received, the paired terminal 97 continues to receive the airwaves. On the other hand, when the warning signal is received, the paired terminal 97 displays a screen based on the warning signal, for example, when the warning signal is a radio wave for notifying a danger (step S206).
 図16は、ワーニング信号に基づく画面の一例を示す図である。図示のように、ペアリング済み端末97の画面には、周辺を監視する必要があることや端末装置の使用を控える必要があることを訴えるための情報が文字や画像として表示される。 FIG. 16 is a diagram showing an example of a screen based on a warning signal. As shown in the figure, on the screen of the paired terminal 97, information is displayed as a letter or an image to indicate that it is necessary to monitor the surroundings or refrain from using the terminal device.
 また、受信したワーニング信号が端末装置の使用を抑制するための電波(端末装置の機能を制限する電波)である場合、ペアリング済み端末97は、S206の処理として、放送電波の受信を制限してよい。すなわち、ペアリング済み端末97は、ワーニング信号が端末装置の使用を抑制するための電波である場合には、自身の通信を一時的に制限する。 If the received warning signal is a radio wave for suppressing the use of the terminal device (a radio wave for restricting the function of the terminal device), the paired terminal 97 restricts reception of the broadcast radio wave as the process of S206. You may That is, if the warning signal is a radio wave for suppressing the use of the terminal device, the paired terminal 97 temporarily restricts its own communication.
 なお、上述した例では、妨害電波やワーニング信号の発信は、将来状態予測部170Bの予測結果に応じたタイミングで行われるものとして説明したがこれに限られない。例えば、電波発信装置98は、将来のある時点において自動運転モードが周辺監視義務の必要なモードに遷移しない通常時においても妨害電波を発信してよい。この場合、電波発信制御部170Dは、妨害対象の端末装置と車室内通信装置96との間でペアリング接続が確立した場合に、妨害電波を停波する。 In the example described above, transmission of jamming radio waves and warning signals has been described as being performed at timing according to the prediction result of the future state prediction unit 170B, but the present invention is not limited to this. For example, the radio wave transmission device 98 may transmit jamming waves even at a normal time when the automatic operation mode does not transition to a mode requiring a surrounding area monitoring at a certain point in the future. In this case, when the pairing connection is established between the terminal device to be disturbed and the in-room communication device 96, the radio wave transmission control unit 170D stops the jamming wave.
 図17は、自動運転モードごとにおける発信電波の対応関係の他の例を示す図である。図示のように、例えば、モードAにおいて、通常時においてペアリング接続が確立していない場合には、妨害電波が発信され、通常時においてペアリング接続が確立した場合には、いずれの電波も発信されない。また、モードAから手動運転モードへ、またはモードAからモードBまたはモードCへのモード遷移が生じる場合においてペアリング接続が確立していない場合には、妨害電波が発信され、モード遷移が生じる場合においてペアリング接続が確立した場合には、ワーニング信号が発信される。 FIG. 17 is a diagram showing another example of the correspondence relationship of the transmission radio wave in each automatic driving mode. As illustrated, for example, in mode A, when the pairing connection is not normally established, the jamming radio wave is transmitted, and when the pairing connection is normally established, any radio wave is also transmitted. I will not. In the case where mode transition from mode A to manual operation mode or mode A to mode B or mode C occurs and a pairing connection is not established, a jamming signal is emitted and mode transition occurs. If a pairing connection is established at, a warning signal is issued.
 また、周辺監視義務が生じるモードBおよびCにおいては、通常時には各種電波の発信は任意に行われてよい。また、モードBおよびCから手動運転モードへのモード遷移が生じる場合において、ペアリング接続が確立していない場合には、妨害電波が発信され、ペアリング接続が確立した場合には、ワーニング信号が発信される。 In addition, in modes B and C in which a surrounding area monitoring duty occurs, transmission of various radio waves may be performed at normal times. Also, when mode transition from modes B and C to the manual operation mode occurs, the jamming radio wave is emitted when the pairing connection is not established, and the warning signal is generated when the pairing connection is established. It is sent out.
 上記タイミングにおいて各種電波が発信されることにより、例えば、ペアリング接続をせずに端末装置を車両乗員が使用する場合であっても、ペアリング接続前の段階では常時妨害電波が発信されるため、端末装置の使用を制限することができる。この結果、自動運転中に車両乗員の注意が散漫になるのを防ぐことができる。また、ペアリング接続後の段階ではモード遷移時にワーニング信号が発信されるため、車両乗員の注意を自車両Mの周辺に向かうよう誘導したり、手動運転への準備を促したりすることができる。また、妨害電波とワーニング信号との周波数帯が重複している場合であっても、いずれかの電波のみを発信するため、例えば、Wi-Fi網用の電波と、Bluetooth用の電波を両立して使用することができ、これら電波を干渉せずに端末装置に発信することができる。 By transmitting various radio waves at the above timing, for example, even when the vehicle occupant uses the terminal device without pairing connection, jamming radio waves are always transmitted at the stage before pairing connection. The use of the terminal can be restricted. As a result, it is possible to prevent the distraction of the vehicle occupant during automatic driving. In addition, since a warning signal is transmitted at the time of mode transition at the stage after pairing connection, the attention of the vehicle occupant can be guided to the periphery of the host vehicle M or preparation for manual driving can be urged. In addition, even if the frequency bands of the jamming signal and the warning signal overlap, only one of the radio waves is transmitted. For example, the radio wave for Wi-Fi network and the radio wave for Bluetooth are compatible. These radio waves can be transmitted to the terminal without interference.
 図18は、車両制御システム100により行われる処理の流れの他の例を示すフローチャートであり、図14のフローチャートに対して、後述するS302、S304、およびS306の処理を追加してペアリング接続が確立されていない場合は常に妨害電波を発信する構成を表している。図18のフローチャートに示す処理のうち、上述したS302からS306を除く他の処理に関しては図14のフローチャートと同様である。 FIG. 18 is a flowchart showing another example of the flow of processing performed by the vehicle control system 100, and the processing of S302, S304, and S306 described later is added to the flowchart of FIG. When not established, it represents a configuration for transmitting jammers at all times. Among the processes shown in the flowchart of FIG. 18, the processes other than the above-described S302 to S306 are the same as those in the flowchart of FIG.
 まず、車両制御システム100は、自動運転モードに移行し、自動運転を開始する(ステップS300)。次に、電波発信制御部170Dは、電波発信装置98を用いて、例えば、連続的或いは断続的に妨害電波を発信する(ステップS302)。次に、電波発信制御部170Dは、車室内無線通信装置96により端末装置とのペアリング接続が確立されたか否かを判定し(ステップS304)、端末装置とのペアリング接続が確立されると、電波発信装置98を用いて、妨害電波を停波する(ステップS306)。 First, the vehicle control system 100 shifts to the automatic driving mode, and starts the automatic driving (step S300). Next, the radio wave transmission control unit 170D transmits jamming radio waves, for example, continuously or intermittently using the radio wave transmission device 98 (step S302). Next, the radio wave transmission control unit 170D determines whether the in-room wireless communication device 96 has established a pairing connection with the terminal device (step S304), and the pairing connection with the terminal device is established. The jamming radio wave is stopped using the radio wave transmission device 98 (step S306).
 次に、将来状態予測部170Bは、将来のある時点において自動運転モードが周辺監視義務の必要なモードに遷移するかどうかを予測する(ステップS308)。将来状態予測部170Bは、自動運転モードが周辺監視義務の必要なモードに遷移しない場合、後述するS316に処理を移す。 Next, the future state prediction unit 170B predicts whether the automatic operation mode transitions to a mode requiring a surrounding area monitoring duty at a certain point in the future (step S308). The future state prediction unit 170B shifts the processing to S316 described later, when the automatic operation mode does not transition to a mode requiring a surrounding area monitoring duty.
 一方、自動運転モードが周辺監視義務の必要なモードに遷移する場合、電波発信制御部170Dは、車室内無線通信装置96と端末装置との間でペアリング接続が確立されているか否かを判定する(ステップS310)。ペアリング接続が確立されている場合、電波発信制御部170Dは、車両室内通信装置96を用いて、自動運転モードが周辺監視義務の必要なモードに遷移する前に、ペアリング済み端末97にワーニング信号を発信する(ステップS312)。 On the other hand, when the automatic driving mode is shifted to a mode requiring the peripheral monitoring duty, the radio wave transmission control unit 170D determines whether a pairing connection is established between the in-vehicle wireless communication device 96 and the terminal device. (Step S310). When the pairing connection is established, the radio wave transmission control unit 170D issues a warning to the paired terminal 97 before transitioning the automatic operation mode to a mode requiring a surrounding area monitoring duty using the in-vehicle communication device 96. A signal is emitted (step S312).
 一方、ペアリング接続が確立されていない場合、電波発信制御部170Dは、電波発信装置98を用いて、妨害電波を継続して発信し続ける(ステップS314)。 On the other hand, when the pairing connection is not established, the radio wave transmission control unit 170D continues to transmit jamming radio waves using the radio wave transmission device 98 (step S314).
 次に、将来状態予測部170Bは、将来のある時点において自動運転モードが手動運転モードに切り替わるかどうかを予測する(ステップS316)。自動運転モードが手動運転モードに切り替わらない場合、将来状態予測部170Bは、上述したS304に処理を移す。 Next, the future state prediction unit 170B predicts whether the automatic operation mode is switched to the manual operation mode at a certain point in the future (step S316). When the automatic operation mode is not switched to the manual operation mode, the future state prediction unit 170B shifts the processing to S304 described above.
 一方、自動運転モードが手動運転モードに切り替わる場合、電波発信制御部170Dは、妨害電波およびワーニング信号の一方または双方を発信する(ステップS318)。これによって本フローチャートの処理が終了する。 On the other hand, when the automatic operation mode is switched to the manual operation mode, the radio wave transmission control unit 170D transmits one or both of the jamming signal and the warning signal (step S318). The process of this flowchart is complete | finished by this.
 なお、上述したフローチャートにおいて、自動運転モードが手動運転モードに切り替わるタイミング以前に、電波発信制御部170Dは、上述したS312およびS314の処理と同様に、電波発信装置98を用いて車室内に妨害電波を発信してよいし、車両室内通信装置96を用いてペアリング済み端末97にワーニング信号を発信してよい。また、手動運転モードへの切り替えのタイミングで端末装置とのペアリング接続が確立されていない場合には、ワーニング信号の発信は省略されてよいし、端末装置とのペアリング接続が確立されている場合には、妨害電波の発信が省略されてよい。 In the above-described flowchart, the radio wave transmission control unit 170D uses the radio wave transmission device 98 to disturb the inside of the vehicle compartment by using the radio wave transmission device 98 before the timing when the automatic operation mode switches to the manual operation mode. And a warning signal may be sent to the paired terminal 97 using the in-vehicle communication device 96. Also, when the pairing connection with the terminal device is not established at the timing of switching to the manual operation mode, the transmission of the warning signal may be omitted, and the pairing connection with the terminal device is established. In the case, the transmission of the jamming signal may be omitted.
 また、S302からS306の処理は、自動運転モードの開始と共に行われるものに限られず、例えば自車両Mを中心とした所定範囲内に乗員が接近したタイミング、車両のドアが開錠されたタイミング、イグニッションスイッチやキーによってエンジンなどの動力源が始動するタイミングなどで開始されてもよいし、手動運転モード時の所定のタイミングで開始されてもよい。これによって、例えば、乗員が車両に乗り込んだ時や自動運転または手動運転が開始される前に予め端末装置の通信を妨害しておくことができ、事前に周辺監視が必要になるという旨を乗員に報知することができる。 Further, the processing of S302 to S306 is not limited to that performed with the start of the automatic operation mode, for example, the timing when the occupant approaches within a predetermined range centered on the host vehicle M, the timing when the door of the vehicle is unlocked, It may be started at a timing when a power source such as an engine starts by an ignition switch or a key, or may be started at a predetermined timing in the manual operation mode. By this, for example, when the passenger gets in the vehicle or before automatic driving or manual driving is started, the communication of the terminal device can be interrupted in advance, and it is necessary to monitor the surroundings in advance. Can be notified.
 以上説明した実施形態によれば、自動運転が実施される場合に、外界認識部142により認識された自車両Mの周囲の状況に基づいて、自車両Mの車室内に持ち込まれ、自車両Mの乗員によって操作可能な端末装置の通信を妨害する妨害電波を車両室内に発信することにより、端末装置の使用を中断させることができる。この結果、車両制御システム100は、車両乗員の注意を周辺に誘導することができる。 According to the embodiment described above, when the automatic driving is performed, the vehicle M is brought into the cabin of the vehicle M based on the situation around the vehicle M recognized by the external world recognition unit 142, and the vehicle M It is possible to interrupt the use of the terminal device by transmitting a jamming signal which interferes with the communication of the terminal device operable by the passenger of the vehicle into the vehicle cabin. As a result, the vehicle control system 100 can guide the vehicle occupant's attention to the periphery.
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。 As mentioned above, although the form for carrying out the present invention was explained using an embodiment, the present invention is not limited at all by such an embodiment, and various modification and substitution within the range which does not deviate from the gist of the present invention Can be added.
 20…ファインダ、30…レーダ、40…カメラ、DD…検知デバイス、50…ナビゲーション装置、55…無線通信装置、60…車両センサ、70…HMI、100…車両制御システム、110…目標車線決定部、120…自動運転制御部、130…自動運転モード制御部、140…自車位置認識部、142…外界認識部、144…行動計画生成部、146…軌道生成部、146A…走行態様決定部、146B…軌道候補生成部、146C…評価・選択部、150…切替制御部、160…走行制御部、170…HMI制御部、180…記憶部、200…走行駆動力出力装置、210…ステアリング装置、220…ブレーキ装置、M…自車両 20: finder, 30: radar, 40: camera, DD: detection device, 50: navigation device, 55: wireless communication device, 60: vehicle sensor, 70: HMI, 100: vehicle control system, 110: target lane determination unit, 120 ... automatic driving control unit, 130 ... automatic driving mode control unit, 140 ... vehicle position recognition unit, 142 ... external world recognition unit, 144 ... action plan generating unit, 146 ... track generation unit, 146A ... traveling mode determining unit, 146B ... Trajectory candidate generation unit, 146C ... Evaluation / selection unit, 150 ... Switching control unit, 160 ... Traveling control unit, 170 ... HMI control unit, 180 ... Storage unit, 200 ... Traveling driving force output device, 210 ... Steering device, 220 ... brake device, M ... own vehicle

Claims (11)

  1.  自車両の周辺の状況を認識する認識部と、
     前記自車両の加減速と操舵との少なくとも一方を自動的に制御する自動運転を実施する自動運転制御部と、
     前記自動運転制御部により前記自動運転が実施される場合に、前記認識部により認識された状況に基づいて、前記自車両の車室内に持ち込まれ、前記自車両の乗員によって操作可能な端末装置の通信を妨害する妨害制御部と、
     を備える車両制御システム。
    A recognition unit that recognizes the situation around the host vehicle,
    An automatic driving control unit for performing automatic driving that automatically controls at least one of acceleration / deceleration and steering of the host vehicle;
    When the automatic driving control unit performs the automatic driving, the terminal device is brought into the compartment of the host vehicle and can be operated by an occupant of the host vehicle based on the situation recognized by the recognition unit. An interference control unit that interferes with communication;
    Vehicle control system comprising:
  2.  前記認識部により認識された状況に基づいて前記自動運転の度合が低下することを予測する予測部を備え、
     前記妨害制御部は、前記予測部により、前記自動運転の度合が低下することが予測された場合に、前記端末装置の通信を妨害する、
     請求項1記載の車両制御システム。
    And a prediction unit configured to predict that the degree of the automatic driving is reduced based on the situation recognized by the recognition unit.
    The interference control unit interferes with the communication of the terminal device when the prediction unit predicts that the degree of the automatic operation is reduced.
    The vehicle control system according to claim 1.
  3.  電波を発信する電波発信部を更に備え、
     前記妨害制御部は、前記前記電波発信部を用いて、前記端末装置の通信を妨害する妨害電波を発信する、
     請求項1または2に記載の車両制御システム。
    It is further equipped with a radio wave transmission unit that transmits radio waves,
    The jamming control unit transmits jamming radio waves that disturb communication of the terminal device using the radio wave transmission unit.
    A vehicle control system according to claim 1 or 2.
  4.  前記端末装置との間でペアリング接続を行う車室内用通信部を更に備え、
     前記妨害制御部は、前記認識部により認識された状況に基づいて、前記車室内用通信部による前記ペアリング接続によって、危険を知らせる信号を前記端末装置に送信する、
     請求項1から3のうちいずれか1項に記載の車両制御システム。
    It further comprises a communication unit for the interior of the room for pairing connection with the terminal device,
    The interference control unit transmits a signal indicating a danger to the terminal device through the pairing connection by the in-room communication unit based on the situation recognized by the recognition unit.
    The vehicle control system according to any one of claims 1 to 3.
  5.  前記端末装置との間でペアリング接続を行う車室内用通信部を更に備え、
     前記妨害制御部は、前記認識部により認識された状況に基づいて、前記車室内用通信部による前記ペアリング接続によって、前記端末装置の使用を抑制する信号を前記端末装置に送信する、
     請求項1から3のうちいずれか1項に記載の車両制御システム。
    It further comprises a communication unit for the interior of the room for pairing connection with the terminal device,
    The interference control unit transmits, to the terminal device, a signal for suppressing the use of the terminal device by the pairing connection by the in-room communication unit, based on the situation recognized by the recognition unit.
    The vehicle control system according to any one of claims 1 to 3.
  6.  前記妨害制御部は、前記車室内用通信部と前記端末装置との間でペアリング接続が確立していない場合に、前記電波発信部を用いて前記妨害電波を発信する、
     請求項4または5に記載の車両制御システム。
    The jamming control unit transmits the jamming radio wave using the radio wave transmitting unit when a pairing connection is not established between the communication unit for the passenger compartment and the terminal device.
    A vehicle control system according to claim 4 or 5.
  7.  前記車室内用通信部は、前記妨害電波によって妨害されない電磁波を用いてペアリング接続を行う、
     請求項4から6のうちいずれか1項に記載の車両制御システム。
    The in-vehicle communication unit performs pairing connection using an electromagnetic wave that is not disturbed by the jamming wave.
    The vehicle control system according to any one of claims 4 to 6.
  8.  前記妨害電波によって妨害されない電磁波とは、前記妨害電波と異なる周波数帯の電波である、
     請求項7に記載の車両制御システム。
    The electromagnetic waves not disturbed by the jamming waves are waves of a frequency band different from that of the jamming waves.
    The vehicle control system according to claim 7.

  9.  自車両の車室内に持ち込まれ、前記自車両の乗員によって操作可能な端末装置とペアリング接続を行う車室内用通信部と、
     前記端末装置の通信を妨害する妨害電波であって、前記車室内用通信部による前記ペアリング接続を妨害しない妨害電波を発信し、前記車室内用通信部と前記端末装置との間でペアリング接続が確立した場合、前記妨害電波の発信を停止する電波発信部と、
     を備える車両用通信システム。
    ,
    A communication unit for a vehicle interior that is brought into a cabin of the host vehicle and performs pairing connection with a terminal device operable by an occupant of the host vehicle;
    A jamming radio wave that interferes with the communication of the terminal device, and transmits a jamming radio wave that does not disturb the pairing connection by the in-room communication unit, and pairing is performed between the in-room communication unit and the terminal device A radio wave transmission unit that stops the transmission of the jamming signal when a connection is established;
    Communication system for vehicles provided with.
  10.  車載コンピュータが、
     自車両の周辺の状況を認識し、
     前記自車両の加減速と操舵との少なくとも一方を自動的に制御する自動運転を実施し、
     前記自動運転を実施する場合に、前記認識した状況に基づいて、前記自車両の車室内に持ち込まれ、前記自車両の乗員によって操作可能な端末装置の通信を妨害する、
     車両制御方法。
    The in-vehicle computer
    Recognize the situation around your vehicle,
    Implement automatic driving to automatically control at least one of acceleration / deceleration and steering of the vehicle.
    When the automatic driving is carried out, it is brought into the vehicle compartment of the host vehicle based on the recognized situation, and interferes with communication of a terminal device operable by an occupant of the host vehicle.
    Vehicle control method.
  11.  車載コンピュータに、
     自車両の周辺の状況を認識させ、
     前記自車両の加減速と操舵との少なくとも一方を自動的に制御する自動運転を実施させ、
     前記自動運転を実施させる場合に、前記認識させた状況に基づいて、前記自車両の車室内に持ち込まれ、前記自車両の乗員によって操作可能な端末装置の通信を妨害させる、
     車両制御プログラム。
    In-vehicle computers,
    Make them aware of the situation around your vehicle,
    The automatic driving is performed to automatically control at least one of acceleration / deceleration and steering of the vehicle.
    When the automatic driving is performed, the terminal device is brought into the vehicle compartment of the host vehicle based on the recognized situation, and interferes with communication of a terminal device operable by an occupant of the host vehicle.
    Vehicle control program.
PCT/JP2016/062220 2016-04-18 2016-04-18 Vehicle control system, vehicle communication system, vehicle control method, and vehicle control program WO2017183072A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/062220 WO2017183072A1 (en) 2016-04-18 2016-04-18 Vehicle control system, vehicle communication system, vehicle control method, and vehicle control program
JP2018512651A JP6572506B2 (en) 2016-04-18 2016-04-18 Vehicle control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/062220 WO2017183072A1 (en) 2016-04-18 2016-04-18 Vehicle control system, vehicle communication system, vehicle control method, and vehicle control program

Publications (1)

Publication Number Publication Date
WO2017183072A1 true WO2017183072A1 (en) 2017-10-26

Family

ID=60116659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062220 WO2017183072A1 (en) 2016-04-18 2016-04-18 Vehicle control system, vehicle communication system, vehicle control method, and vehicle control program

Country Status (2)

Country Link
JP (1) JP6572506B2 (en)
WO (1) WO2017183072A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110126822A (en) * 2018-02-08 2019-08-16 本田技研工业株式会社 Vehicle control system, control method for vehicle and storage medium
CN110217231A (en) * 2018-03-01 2019-09-10 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110239549A (en) * 2018-03-08 2019-09-17 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110239548A (en) * 2018-03-07 2019-09-17 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110341703A (en) * 2018-04-02 2019-10-18 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
JPWO2020202377A1 (en) * 2019-03-29 2020-10-08
WO2023171458A1 (en) * 2022-03-07 2023-09-14 株式会社デンソー Vehicular notification control device and vehicular notification control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171898A1 (en) * 2012-05-18 2013-11-21 トヨタ自動車株式会社 Vehicle information display device
WO2015162764A1 (en) * 2014-04-24 2015-10-29 三菱電機株式会社 Vehicle-mounted information device and function limiting method for vehicle-mounted information device
JP2015210660A (en) * 2014-04-25 2015-11-24 日産自動車株式会社 Information presentation device and information presentation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1446891B1 (en) * 2001-10-24 2013-08-21 Mouhamad Ahmad Naboulsi Safety control system for vehicles
JP2014065428A (en) * 2012-09-26 2014-04-17 Hitoshi Fujiwara Safe driving support system of vehicle
JP6417703B2 (en) * 2014-05-07 2018-11-07 株式会社デンソー Hands-free communication device and jamming radio wave control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171898A1 (en) * 2012-05-18 2013-11-21 トヨタ自動車株式会社 Vehicle information display device
WO2015162764A1 (en) * 2014-04-24 2015-10-29 三菱電機株式会社 Vehicle-mounted information device and function limiting method for vehicle-mounted information device
JP2015210660A (en) * 2014-04-25 2015-11-24 日産自動車株式会社 Information presentation device and information presentation method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110126822A (en) * 2018-02-08 2019-08-16 本田技研工业株式会社 Vehicle control system, control method for vehicle and storage medium
CN110217231A (en) * 2018-03-01 2019-09-10 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110239548A (en) * 2018-03-07 2019-09-17 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110239549A (en) * 2018-03-08 2019-09-17 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110239549B (en) * 2018-03-08 2022-07-01 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
CN110341703A (en) * 2018-04-02 2019-10-18 本田技研工业株式会社 Controller of vehicle, control method for vehicle and storage medium
CN110341703B (en) * 2018-04-02 2022-03-29 本田技研工业株式会社 Vehicle control device, vehicle control method, and storage medium
JPWO2020202377A1 (en) * 2019-03-29 2020-10-08
JP7252320B2 (en) 2019-03-29 2023-04-04 本田技研工業株式会社 Control device, control method and program
JP7425911B2 (en) 2019-03-29 2024-01-31 本田技研工業株式会社 Control device, control method and program
WO2023171458A1 (en) * 2022-03-07 2023-09-14 株式会社デンソー Vehicular notification control device and vehicular notification control method

Also Published As

Publication number Publication date
JP6572506B2 (en) 2019-09-11
JPWO2017183072A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
US10967877B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6692898B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6540983B2 (en) Vehicle control system, vehicle control method, and vehicle control program
CN108883765B (en) Vehicle control system, vehicle control method, and storage medium
CN107415830B (en) Vehicle control system, vehicle control method, and vehicle control program
JP6275187B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6291680B2 (en) Vehicle control system, vehicle control method, and vehicle control program
JP6246844B2 (en) Vehicle control system, vehicle control method, and vehicle control program
CN108701414B (en) Vehicle control device, vehicle control method, and storage medium
WO2017158768A1 (en) Vehicle control system, vehicle control method, and vehicle control program
US20170267238A1 (en) Vehicle control system, vehicle control method, and vehicle control program
CN108883776B (en) Vehicle control system, vehicle control method, and storage medium
WO2017187622A1 (en) Vehicle control system, vehicle control method, and vehicle control program
WO2017158726A1 (en) Vehicle control system, vehicle control method, and vehicle control program
WO2017179209A1 (en) Vehicle control system, vehicle control method and vehicle control program
WO2017183072A1 (en) Vehicle control system, vehicle communication system, vehicle control method, and vehicle control program
JP6758911B2 (en) Vehicle control system, vehicle control method, and vehicle control program
WO2017158764A1 (en) Vehicle control system, vehicle control method, and vehicle control program
JP2017214035A (en) Vehicle control system, vehicle control method, and vehicle control program
JP2017199317A (en) Vehicle control system, vehicle control method, and vehicle control program
JP2018037100A (en) Vehicle control system, vehicle control method and vehicle control program
JP2017191551A (en) Vehicle control system, vehicle control method, and vehicle control program
JP2017226253A (en) Vehicle control system, vehicle control method and vehicle control program
JP2017206120A (en) Vehicle control system, vehicle control method and vehicle control program
JP6938713B2 (en) Vehicle control systems, vehicle control methods, and vehicle control programs

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018512651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899346

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16899346

Country of ref document: EP

Kind code of ref document: A1