WO2017181819A1 - 一种用户设备、基站中的用于中继的方法和装置 - Google Patents

一种用户设备、基站中的用于中继的方法和装置 Download PDF

Info

Publication number
WO2017181819A1
WO2017181819A1 PCT/CN2017/078242 CN2017078242W WO2017181819A1 WO 2017181819 A1 WO2017181819 A1 WO 2017181819A1 CN 2017078242 W CN2017078242 W CN 2017078242W WO 2017181819 A1 WO2017181819 A1 WO 2017181819A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
channel quality
node
wireless signal
identifier
Prior art date
Application number
PCT/CN2017/078242
Other languages
English (en)
French (fr)
Inventor
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2017181819A1 publication Critical patent/WO2017181819A1/zh
Priority to US16/162,425 priority Critical patent/US11172489B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0245Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal according to signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to transmission schemes in wireless communication systems, and more particularly to methods and apparatus for supporting wireless relay transmission.
  • a scheme of Layer 3 (Layer-3) relay base station is proposed in the 3GPP-3rd Generation Partner Project R (Release, Release) 9.
  • the relay base station has the function of a normal base station for the UE (User Equipment), and can independently schedule data and transmit a downlink HARQ-ACK (Hybrid Automatic Repeat reQuest).
  • UE User Equipment
  • HARQ-ACK Hybrid Automatic Repeat reQuest
  • a base station In a conventional 3GPP system, data transmission takes place between a base station and a User Equipment (UE).
  • UE User Equipment
  • D2D Device to Device
  • the essential feature of D2D is to allow data transmission between UEs.
  • eD2D Evolution to LTE Device to Device
  • 3GPP R13 eD2D (Enhancements to LTE Device to Device) is established, and its main feature is to introduce a UE relay function.
  • eD2D a relay user equipment (Relay UE) relays data exchange between a remote user equipment (Remote UE) and a base station.
  • Relay UE relay user equipment
  • NB-IOT Network BroadBand Internet of Things
  • Feo2D Frether Enhancements to LTE Device to Device, further enhancement of LTE D2D for IoT and wearable devices is proposed.
  • D2D communication may be implemented through an air interface similar to NB-IoT.
  • the UE periodically transmits Sidelink Synchronization Signals and PSDCH (Physical Sidelink Discovery Channel).
  • PSDCH Physical Sidelink Discovery Channel
  • how the Remote UE selects the Relay UE is implementation-related – that is, no changes to the standard are required.
  • a typical application scenario of FeD2D is that there are multiple wearable devices around a smart terminal.
  • the smart terminal relays data exchange between the wearable device and the base station, that is, the smart terminal and the wearable device are a Relay UE and a Remote UE, respectively.
  • the inventors have found through research that periodically transmitting or receiving a side-by-side synchronization signal and a PSDCH will increase the power consumption of the UE, thereby reducing the standby time. Standby time is a very important factor for low-cost UEs.
  • the selection of the traditional Relay UE is performed by the Remote UE, that is, the Remote UE is required to receive signals from the Relay UE and the base station, which increases the complexity of the Remote UE receiver.
  • the present invention provides a solution to the above problems. It should be noted that, in the case of no conflict, the features in the embodiments and the embodiments of the present application may be combined with each other arbitrarily. For example, features in embodiments and embodiments in the UE of the present application may be applied to a base station, and vice versa. For another example, the features in embodiments and embodiments in the D2D transmitting UE of the present application (ie, transmitting a wireless signal on a side link) may be applied to a D2D receiving UE (ie, receiving the wireless signal on a side link) ) and vice versa.
  • the solution of the present invention is also applicable to wideband D2D relay (i.e., D2D transmission is broadband based).
  • the invention discloses a method in a UE used for relay communication, which comprises the following steps:
  • Step B Detecting a first wireless signal in a first time window, the first wireless signal comprising at least one of ⁇ a first feature sequence, a first reference signal, a second information ⁇ .
  • the sender of the first wireless signal is a second node, and the sender of the first information and the second node are non-co-located.
  • the first information is used to determine at least one of ⁇ the first time window, a parameter of the first feature sequence, a parameter of the first reference signal ⁇ .
  • the second information includes one or more information bits.
  • the second information includes at least one of ⁇ first identifier, second identifier ⁇ .
  • the first identifier is an integer and the second identifier is an integer.
  • the first identity is used to determine the second node, and the second identity is used to determine a first cell.
  • the first cell is a serving cell of the second node.
  • the first information is indicated by physical layer signaling.
  • the first information is by DCI (Downlink Control) Information, Downstream Control Information) indication.
  • DCI Downlink Control Information
  • Downstream Control Information Downstream Control Information
  • the sender of the first information and the second node are non-co-located: the sender of the first information and the second node are two different communications. device.
  • the sender of the first information and the second node are non-co-located: that there is no wired connection between the sender of the first information and the second node. .
  • the sender of the first information and the second node are non-co-located: the sender of the first information and the second node are located at different locations.
  • the base station dynamically triggers the sending of the first wireless signal, which is different from the traditional semi-static configuration.
  • the foregoing two embodiments can save the power consumption of the sender of the first wireless signal to the greatest extent.
  • the first time window is associated with a time resource occupied by the first information.
  • the first time window is indicated by the first information.
  • the sender of the first information is a serving cell of the UE.
  • the first time window includes a positive integer number of subframes.
  • the first time window includes a positive integer number of consecutive subframes.
  • the first wireless signal occupies part of the time resource in the first time window.
  • the first information is indicated by higher layer signaling.
  • the first sequence of features comprises a Zadoff-Chu sequence.
  • the first sequence of features comprises a pseudo-random sequence.
  • the first sequence of features comprises a Zadoff-Chu sequence and a pseudo-random sequence.
  • the parameters of the first feature sequence are used to generate the first feature sequence.
  • the parameter of the first reference signal is used to generate a reference signal sequence corresponding to the first reference signal.
  • the first identifier is an RNTI (RNTI Radio Network Tempory Identity) of the second node.
  • RNTI Radio Network Tempory Identity
  • the first identifier is a PLMN-ID (Public Land Mobile Network-Identifier) of the second node.
  • PLMN-ID Public Land Mobile Network-Identifier
  • the first identifier is a Layer-2 ID of the second node. .
  • the first information is used to receive the second information.
  • the first information includes a first parameter, and the first parameter is used to generate a scrambling code sequence corresponding to the second information, where the first parameter is an integer.
  • the first information includes the second information.
  • the second identifier is used to determine that the first cell is: the second identifier includes a PCI (Physical Cell Identifier) of the first cell.
  • PCI Physical Cell Identifier
  • the second identifier is used to determine that the first cell is: the second identifier includes an ECGI (E-UTRAN Cell Global Identifier) of the first cell.
  • E-UTRAN Cell Global Identifier E-UTRAN Cell Global Identifier
  • the first cell is a serving cell of the UE.
  • the first cell is a cell other than a serving cell of the UE.
  • the step B further includes the following steps:
  • Step B Determine a first channel quality based on the first wireless signal.
  • Step B2. Transmitting third information, the third information indicating at least one of ⁇ the first channel quality, the first flag bit ⁇ .
  • the first channel quality is for a channel of the second node to the UE.
  • the first flag bit includes 1 information bit, and the first flag bit is used to determine whether the UE can relay a wireless signal for the second node.
  • the UE in the above aspect as the relay node of the second node, measures the channel quality of the side link and Reported.
  • the above aspect makes the second node do not need to monitor the bypass link, which reduces the receiver complexity.
  • the first channel quality includes an RSRP (Reference Signal Received Power).
  • RSRP Reference Signal Received Power
  • the first channel quality includes an RSRQ (Reference signal) Received quality, reference signal reception quality).
  • RSRQ Reference signal
  • the first channel quality includes a CQI (Channel Quality Indicator).
  • the unit of the first channel quality is dBm.
  • the unit of the first channel quality is milliwatts.
  • the third information includes the first channel quality, and the third information is carried by high layer signaling.
  • the third information includes the first flag bit, and the third information is carried by physical layer signaling.
  • the step A further includes the following steps:
  • the sender of the fourth information is the sender of the first information.
  • the fourth information includes a second channel quality.
  • the second channel quality is for a channel of the second node to the first cell.
  • the first flag indicates whether the first channel quality is lower than the second channel quality, or the first flag indicates whether the first channel quality is higher than the second channel quality.
  • the UE reports channel quality to the base station.
  • the second channel quality is sent by the base station to the UE, and the UE can determine the first flag bit by using the second channel quality.
  • the UE sending the first flag bit can reduce uplink resource overhead and improve transmission efficiency.
  • the fourth information is carried by higher layer signaling.
  • the second channel quality comprises an RSRP.
  • the second channel quality comprises RSRQ.
  • the second channel quality comprises a CQI.
  • the unit of the second channel quality is dBm.
  • the unit of the second channel quality is milliwatts.
  • the second information includes a second channel quality
  • the second channel quality is for a channel of the second node to the first cell.
  • the first flag indicates whether the first channel quality is lower than the second channel quality, or the first flag indicates whether the first channel quality is higher than the second channel quality.
  • the second information is carried by SCI (Sidelink Control Information).
  • the UE receives the second channel quality by using a bypass link.
  • the above embodiment can speed up the UE to determine whether it is suitable as a Relay UE. Further, the foregoing embodiment is suitable for the UE and the second node to be in different serving cells.
  • the invention discloses a method in a UE used for relay communication, which comprises the following steps:
  • Step A Receive first information, the first information being used to determine at least one of ⁇ a first time window, a parameter of the first feature sequence, a parameter of the first reference signal ⁇ .
  • Step B transmitting a first wireless signal in a first time window, the first wireless signal comprising at least one of ⁇ the first characteristic sequence, the first reference signal, second information ⁇ .
  • the receiver of the first wireless signal includes a first node.
  • the sender of the first information and the first node are non-co-located.
  • the second information includes one or more information bits.
  • the second information includes at least one of ⁇ first identifier, second identifier ⁇ .
  • the first identifier is an integer and the second identifier is an integer.
  • the first identity is used to determine the UE, and the second identity is used to determine a first cell.
  • the first cell is a serving cell of the UE.
  • the step A further includes the following steps:
  • the fourth information includes a second channel quality.
  • the first wireless signal is used to determine a first channel quality.
  • the second information includes a second channel quality.
  • the first channel quality is for a channel of the UE to the first node.
  • the second channel quality is for a channel of the UE to the first cell.
  • the second channel quality is used to determine a first flag bit.
  • the first flag bit includes 1 information bit, and the receiver of the second information includes a sender of the first flag bit. The first flag is used to determine whether the first node can relay a wireless signal for the UE.
  • the first wireless signal is used to determine a second channel quality.
  • the fourth information is carried by higher layer signaling.
  • the fourth information is carried by physical layer signaling.
  • the invention discloses a method in a base station used for relay communication, which comprises the following steps:
  • Step A Send the first message.
  • the first information is used to determine at least one of ⁇ a first time window, a parameter of the first feature sequence, a parameter of the first reference signal ⁇ .
  • the first wireless signal is transmitted in the first time window, the first wireless signal comprising at least one of ⁇ the first characteristic sequence, the first reference signal, second information ⁇ .
  • the sender of the first wireless signal is a second node, and the base station and the second node are non-co-located.
  • the second information includes one or more information bits.
  • the second information includes at least one of ⁇ first identifier, second identifier ⁇ .
  • the first identifier is an integer and the second identifier is an integer.
  • the first identity is used to determine the second node, and the second identity is used to determine a first cell.
  • the first cell is a serving cell of the second node.
  • the first cell is maintained by the base station.
  • the first cell is maintained by a network device other than the base station.
  • the recipient of the first information includes a first node and a second node, the first node and the second node being non-co-located.
  • the first node is a UE and the second node is a UE.
  • the method further includes the following steps:
  • Step B2. Receiving third information, the third information indicating at least one of ⁇ first channel quality, first flag bit ⁇ .
  • the sender of the third information is a first node, and the first channel quality is for a channel of the second node to the first node.
  • the first wireless signal is used to determine the first channel quality.
  • the first flag bit includes 1 information bit, and the first flag bit is used to determine whether the first node can relay a wireless signal for the second node.
  • the Relay UE feeds back an indication of the channel quality of the bypass (third information), and the base station configures the Relay UE according to the indication of the channel quality.
  • the above aspects can ensure that the channel quality of the PC5 interface is better than the channel quality of the Uu interface of the relayed UE (ie, Remote UE).
  • the first wireless signal is used by a sender of the third information to determine the first channel quality.
  • the step A further includes The following steps:
  • the second channel quality is for a channel of the second node to the first cell.
  • step A further comprises the following steps:
  • the fourth information includes the second channel quality.
  • the recipient of the fourth information includes the first node.
  • the first flag indicates whether the first channel quality is lower than the second channel quality, or the first flag indicates whether the first channel quality is higher than the second channel quality.
  • the second channel quality is for a channel of the second node to the first cell.
  • step A further comprises the following steps:
  • Step A2. Sending backhaul information, the backhaul information including the second channel quality.
  • the first cell is maintained by the base station.
  • the serving cell of the first node is maintained by a network device other than the base station.
  • the backhaul information is transmitted through the X2 interface.
  • the backhaul information is transmitted through the SI interface.
  • step A further comprises the following steps:
  • Step A3. Receiving backhaul information, the backhaul information including the second channel quality.
  • the first cell is maintained by a network device other than the base station.
  • the serving cell of the first node is maintained by the base station.
  • the backhaul information is transmitted through the X2 interface.
  • the backhaul information is transmitted through the SI interface.
  • two UEs performing D2D communication can be in coverage of different serving cells.
  • the step A further includes the following steps:
  • Step A Receiving the first wireless signal, the first wireless signal being used by the base station to determine the second channel quality.
  • the first wireless signal is used by both the UE and the base station to measure channel quality.
  • the above aspects reduce the power consumption of the relayed UE.
  • the first flag indicates whether the first channel quality is lower than the second channel quality, or the first flag indicates the first channel Whether the quality is higher than the quality of the second channel.
  • the invention discloses a user equipment used for relay communication, which comprises the following modules:
  • the first receiving module is configured to receive the first information
  • the first processing module is configured to detect the first wireless signal in the first time window, where the first wireless signal includes at least one of ⁇ a first feature sequence, a first reference signal, and a second information ⁇ .
  • the sender of the first wireless signal is a second node, and the sender of the first information and the second node are non-co-located.
  • the first information is used to determine at least one of ⁇ the first time window, a parameter of the first feature sequence, a parameter of the first reference signal ⁇ .
  • the second information includes one or more information bits.
  • the second information includes at least one of ⁇ first identifier, second identifier ⁇ .
  • the first identifier is an integer and the second identifier is an integer.
  • the first identity is used to determine the second node, and the second identity is used to determine a first cell.
  • the first cell is a serving cell of the second node.
  • the foregoing user equipment used for relay communication is characterized in that the first processing module is further configured to:
  • the first channel quality is for a channel of the second node to the UE.
  • the first flag bit includes 1 information bit, and the first flag bit is used to determine whether the UE can relay a wireless signal for the second node.
  • the foregoing user equipment used for relay communication is characterized in that the first receiving module is further configured to receive the fourth information.
  • the sender of the fourth information is the sender of the first information.
  • the fourth information includes a second channel quality.
  • the second channel quality A quantity is directed to a channel of the second node to the first cell.
  • the first flag indicates whether the first channel quality is lower than the second channel quality, or the first flag indicates whether the first channel quality is higher than the second channel quality.
  • the foregoing user equipment used for relay communication is characterized in that the second information includes a second channel quality, and the second channel quality is for a channel of the second node to the first cell. .
  • the first flag indicates whether the first channel quality is lower than the second channel quality, or the first flag indicates whether the first channel quality is higher than the second channel quality.
  • the invention discloses a user equipment used for relay communication, which comprises the following modules:
  • the second receiving module is configured to receive the first information and the fourth information.
  • a first sending module configured to send the first wireless signal in the first time window
  • the first information is used to determine at least one of ⁇ a first time window, a parameter of the first feature sequence, a parameter of the first reference signal ⁇ .
  • the first wireless signal includes at least one of ⁇ the first feature sequence, the first reference signal, and second information ⁇ .
  • the recipient of the first wireless signal includes a first node.
  • the sender of the first information and the first node are non-co-located.
  • the second information includes one or more information bits.
  • the second information includes at least one of ⁇ first identifier, second identifier ⁇ .
  • the first identifier is an integer and the second identifier is an integer.
  • the first identity is used to determine the user equipment, and the second identity is used to determine a first cell.
  • the first cell is a serving cell of the user equipment.
  • the fourth information includes the second channel quality.
  • the first wireless signal is used to determine a first channel quality.
  • the second information includes a second channel quality.
  • the first channel quality is for a channel of the user equipment to the first node.
  • the second channel quality is for a channel of the user equipment to the first cell.
  • the second channel quality is used to determine a first flag bit.
  • the first flag bit includes 1 information bit, and the receiver of the second information includes a sender of the first flag bit.
  • the first flag is used to determine whether the first node can relay a wireless signal to the user equipment.
  • the present invention discloses a base station device used for relay communication, which includes the following modules:
  • the second processing module is configured to send the first information.
  • the first information is used to determine at least one of ⁇ a first time window, a parameter of the first feature sequence, a parameter of the first reference signal ⁇ .
  • the first wireless signal is transmitted in the first time window, the first wireless signal comprising at least one of ⁇ the first characteristic sequence, the first reference signal, second information ⁇ .
  • the sender of the first wireless signal is a second node, and the base station and the second node are non-co-located.
  • the second information includes one or more information bits.
  • the second information includes at least one of ⁇ first identifier, second identifier ⁇ .
  • the first identifier is an integer and the second identifier is an integer.
  • the first identity is used to determine the second node, and the second identity is used to determine a first cell.
  • the first cell is a serving cell of the second node.
  • the foregoing base station device used for relay communication is characterized in that:
  • the third receiving module is configured to receive third information, where the third information indicates at least one of ⁇ first channel quality, first flag bit ⁇ .
  • the sender of the third information is a first node, and the first channel quality is for a channel of the second node to the first node.
  • the first wireless signal is used to determine the first channel quality.
  • the first flag bit includes 1 information bit, and the first flag bit is used to determine whether the first node can relay a wireless signal for the second node.
  • the base station device used for relay communication is characterized in that the second processing module is further configured to determine the second channel quality.
  • the second channel quality is for a channel of the second node to the first cell.
  • the base station device used for relay communication is characterized in that the second processing module is further configured to send the fourth information.
  • the fourth information includes the second channel quality.
  • the recipient of the fourth information includes the first node.
  • the first flag indicates whether the first channel quality is lower than the second channel quality, or the first flag indicates whether the first channel quality is higher than the second channel quality.
  • the second channel quality is for a channel of the second node to the first cell.
  • the foregoing base station device used for relay communication is characterized in that the second processing module is further configured to send backhaul information, where the backhaul information includes the second channel quality.
  • the first cell is maintained by the base station.
  • the above-described base station device used for relay communication is characterized in that The second processing module is further configured to receive return information, where the backhaul information includes the second channel quality.
  • the first cell is maintained by a network device other than the base station.
  • the base station device used for relay communication is characterized in that the second processing module is further configured to receive the first wireless signal, and the first wireless signal is used by the base station to determine the first Two channel quality.
  • the foregoing base station device used for relay communication is characterized in that the first flag bit indicates whether the first channel quality is lower than the second channel quality, or the first flag bit indication Whether the first channel quality is higher than the second channel quality.
  • the present invention has the following technical advantages:
  • FIG. 1 shows a transmission flow chart of first signaling and second signaling according to an embodiment of the present invention
  • FIG. 2 shows a transmission flow chart of third signaling according to still another embodiment of the present invention.
  • FIG. 3 is a signaling flow diagram of UEs performing D2D communication in different cells according to an embodiment of the present invention
  • FIG. 4 shows a flow chart for determining channel quality of a side link, in accordance with one embodiment of the present invention
  • FIG. 5 is a flow chart showing determining channel quality of a side link according to still another embodiment of the present invention.
  • FIG. 6 shows a schematic diagram of a first information indicating a first time window in accordance with an embodiment of the present invention
  • Figure 7 shows a schematic diagram of a first time window in accordance with one embodiment of the present invention.
  • FIG. 8 is a block diagram showing the structure of a processing device in a UE according to an embodiment of the present invention.
  • FIG. 9 is a block diagram showing the structure of a processing device in a UE according to still another embodiment of the present invention.
  • Figure 10 is a block diagram showing the structure of a processing device in a base station according to an embodiment of the present invention.
  • Embodiment 1 illustrates a transmission flow chart of the first signaling and the second signaling, as shown in FIG.
  • the base station N1 is a maintenance base station of the first cell
  • the first cell is a serving cell of the UE U2
  • the first cell is a serving cell of the UE U3.
  • UE U2 is the first node and UE U3 is the second node.
  • the first signaling is transmitted in step S10, and the second signaling is transmitted in step S20.
  • the first signaling is received in step S20.
  • the second signaling is received in step S30.
  • the first signaling and the second signaling both include first information, or both the first signaling and the second signaling include fourth information.
  • the first signaling and the second signaling are respectively DCI.
  • the first signaling and the second signaling are physical layer signaling, respectively.
  • the first signaling and the second signaling are respectively high layer signaling.
  • Embodiment 2 exemplifies a transmission flow chart of the third signaling, as shown in FIG.
  • the base station N1 is a maintenance base station of the first cell
  • the first cell is a serving cell of the UE U2
  • the first cell is a serving cell of the UE U3.
  • UE U2 is the first node and UE U3 is the second node.
  • the third signaling is transmitted in step S12.
  • the third signaling is received in step S22.
  • the third signaling is received in step S32.
  • the third signaling includes first information, or the third signaling includes fourth information.
  • the third signaling is DCI.
  • the third signaling is high layer signaling.
  • Embodiment 3 exemplifies a signaling flow chart of UEs performing D2D communication in different cells, as shown in FIG.
  • the base station N4 is a maintenance base station of the first cell
  • the base station N1 is a maintenance base station of the serving cell of the UE U2
  • the first cell is a serving cell of the UE U3.
  • UE U2 is the first node and UE U3 is the second node.
  • the steps in block F4 are optional steps.
  • the fifth signaling is transmitted in step S43.
  • the fifth signaling is received in step S33.
  • the fourth signaling is transmitted in step S13.
  • the fourth signaling is received in step S23.
  • the fourth signaling and the fifth signaling respectively include first information, or the fourth signaling and the fifth signaling respectively include fourth information.
  • the fourth signaling and the fifth signaling respectively include first information
  • the base station N4 sends back signaling in step S430
  • the base station N1 receives the backhaul in step S130.
  • the backhaul signaling includes the first information.
  • the fourth signaling and the fifth signaling respectively include fourth information
  • the base station N4 sends back signaling in step S430
  • the base station N1 receives the backhaul in step S130.
  • the backhaul signaling includes the fourth information.
  • Embodiment 4 illustrates a flow chart for determining the channel quality of a side link, as shown in FIG.
  • the base station N1 is a maintenance base station of the first cell
  • the first cell is a serving cell of the UE U2
  • the first cell is a serving cell of the UE U3.
  • UE U2 is the first node and UE U3 is the second node.
  • the steps in block F1 are optional
  • the steps in block F2 are optional
  • the steps in block F3 are optional.
  • the first information is transmitted to the UE U2 in step S14, the first information is transmitted to the UE U3 in step S15, the second channel quality is determined in step S17, and the third information is received in step S19.
  • the first information is received in step S24, the first wireless signal is detected in the first time window in step S25, the first channel quality is determined according to the first wireless signal in step S26, and the first channel quality is transmitted in step S28.
  • the first information is received in step S24, the first wireless signal is detected in the first time window in step S25, the first channel quality is determined according to the first wireless signal in step S26, and the first channel quality is transmitted in step S28.
  • the first information is received in step S34, and the first wireless signal is transmitted in the first time window in step S35.
  • the base station N1 receives the first wireless signal in the first time window in step S16, and determines the second channel quality based on the first wireless signal in step S17.
  • the base station N1 transmits the fourth information in step S18, and the UE U2 receives the fourth information in step S27.
  • the third information indicates the first flag bit.
  • the base station N1 determines the second channel quality based on the uplink radio signal other than the first radio signal transmitted by the UE U2 in step S17.
  • Embodiment 5 illustrates a flow chart for determining the channel quality of a side link, as shown in FIG.
  • the base station N4 is a maintenance base station of the first cell
  • the base station N1 is a maintenance base station of the serving cell of the UE U2
  • the first cell is a serving cell of the UE U3.
  • UE U2 is the first node and UE U3 is the second node.
  • the backhaul information is received in step S101, and the second channel quality is determined based on the backhaul information.
  • the first wireless signal is detected in a first time window in step S201, and the first channel quality is determined from the first wireless signal in step S202.
  • the second channel quality is determined in step S401, and the backhaul information is transmitted in step S402.
  • the first wireless signal is transmitted in the first time window in step S301.
  • the backhaul information includes the second channel quality.
  • Embodiment 6 exemplifies a schematic diagram in which the first information indicates the first time window, as shown in FIG. In Figure 6,
  • the first subframe is the last subframe occupied by the first information
  • the second subframe is the first subframe in the first time window.
  • the time interval between the first subframe and the second subframe is default (ie, no signaling configuration is required).
  • the number of subframes in the first time window is default.
  • the number of subframes in the first time window is configured by higher layer signaling.
  • Embodiment 7 illustrates a schematic diagram of a first time window, as shown in FIG. In Figure 7, the cross line identifies the time domain resources occupied by the first wireless signal.
  • the first wireless signal occupies part of the time domain resource in the first time window.
  • Embodiment 8 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG.
  • the UE processing apparatus 200 is mainly composed of a first receiving module 201 and a first processing module 202.
  • the first receiving module 201 is configured to receive the first information.
  • the first processing module 202 is configured to detect the first wireless signal in the first time window, determine the first channel quality according to the first wireless signal, and send the third information.
  • the first wireless signal includes at least one of ⁇ a first feature sequence, a first reference signal, and a second information ⁇ .
  • the sender of the first wireless signal is a second node, and the sender of the first information and the second node are non-co-located.
  • the first information is used to determine at least one of ⁇ the first time window, a parameter of the first feature sequence, a parameter of the first reference signal ⁇ .
  • the second information includes one or more information bits.
  • the second information includes at least one of ⁇ first identifier, second identifier ⁇ .
  • the first identifier is an integer and the second identifier is an integer.
  • the first identity is used to determine the second node, and the second identity is used to determine a first cell.
  • the first cell is a serving cell of the second node.
  • the third information indicates the first channel quality, or the third information indicates the first flag bit.
  • the first channel quality is for a channel of the second node to the user equipment.
  • the first flag bit includes 1 information bit, and the first flag bit is used to determine whether the user equipment can relay a wireless signal for the second node.
  • the first feature sequence includes a Zadoff-Chu sequence and a pseudo-random sequence.
  • the first information is carried by physical layer signaling.
  • Embodiment 9 exemplifies a structural block diagram of a processing device in one UE, as shown in FIG. Attached
  • the UE processing apparatus 300 is mainly composed of a second receiving module 301 and a first transmitting module 302.
  • the second receiving module 301 is configured to receive the first information and the fourth information.
  • the first sending module 302 is configured to send the first wireless signal in the first time window,
  • the first information is used to determine at least one of ⁇ a first time window, a parameter of the first feature sequence, a parameter of the first reference signal ⁇ .
  • the first wireless signal includes at least one of ⁇ the first feature sequence, the first reference signal, and second information ⁇ .
  • the recipient of the first wireless signal includes a first node.
  • the sender of the first information and the first node are non-co-located.
  • the second information includes one or more information bits.
  • the second information includes at least one of ⁇ first identifier, second identifier ⁇ .
  • the first identifier is an integer and the second identifier is an integer.
  • the first identity is used to determine the user equipment, and the second identity is used to determine a first cell.
  • the first cell is a serving cell of the user equipment.
  • the fourth information includes the second channel quality.
  • the first wireless signal is used to determine a first channel quality.
  • the second information includes a second channel quality.
  • the first channel quality is for a channel of the user equipment to the first node.
  • the second channel quality is for a channel of the user equipment to the first cell.
  • the second channel quality is used to determine a first flag bit.
  • the first flag bit includes 1 information bit, and the receiver of the second information includes a sender of the first flag bit. The first flag is used to determine whether the first node can relay a wireless signal to the user equipment.
  • the second information is carried by higher layer signaling.
  • the first feature sequence includes a primary side link synchronization signal and a secondary side link synchronization signal
  • the first The parameters of the feature sequence are the generation parameters of the bypass synchronization signal Said Is a non-negative integer less than 336.
  • Embodiment 10 exemplifies a structural block diagram of a processing device in a base station, as shown in FIG.
  • the base station processing apparatus 400 is mainly composed of a third processing module 401 and a third receiving module 402.
  • the third processing module 401 is configured to send the first information.
  • the third receiving module 402 is configured to receive third information, where the third information indicates the first channel quality, or the third information indicates the first flag bit.
  • the first information is used to determine ⁇ first time window, first feature sequence At least one of a parameter of the column, a parameter of the first reference signal.
  • the first wireless signal is transmitted in the first time window, the first wireless signal comprising at least one of ⁇ the first characteristic sequence, the first reference signal, second information ⁇ .
  • the sender of the first wireless signal is a second node, and the base station and the second node are non-co-located.
  • the second information includes one or more information bits.
  • the second information includes at least one of ⁇ first identifier, second identifier ⁇ .
  • the first identifier is an integer and the second identifier is an integer.
  • the first identity is used to determine the second node, and the second identity is used to determine a first cell.
  • the first cell is a serving cell of the second node.
  • the sender of the third information is a first node, and the first channel quality is for a channel of the second node to the first node.
  • the first wireless signal is used to determine the first channel quality.
  • the first flag bit includes 1 information bit, and the first flag bit is used to determine whether the first node can relay a wireless signal for the second node.
  • each module unit in the above embodiment may be implemented in hardware form or in the form of a software function module.
  • the application is not limited to any specific combination of software and hardware.
  • the UE and the terminal in the present invention include but are not limited to mobile phones, tablet computers, notebooks, vehicle communication devices, wireless sensors, network cards, Internet of things terminals, RFID terminals, NB-IOT terminals, and MTC (Machine Type Communication).
  • Terminals eMTC (enhanced MTC) terminals, data cards, network cards, in-vehicle communication devices, low-cost mobile phones, low-cost tablets and other wireless communication devices.
  • the base station and network equipment in the present invention include, but are not limited to, a macro communication base station, a micro cell base station, a home base station, a relay base station, and the like.

Abstract

本发明公开了一种基于蜂窝网的窄带通信的UE和基站中的方法和装置。作为一个实施例,UE首先接收第一信息,然后在第一时间窗中检测第一无线信号,所述第一无线信号包括{第一特征序列,第一参考信号,第二信息}中的至少之一。其中,所述第一无线信号的发送者是第二节点,所述第一信息的发送者和所述第二节点是非共址的。所述第一信息被用于确定{所述第一时间窗,所述第一特征序列的参数,所述第一参考信号的参数}中的至少之一。本发明节省被中继UE的功耗,同时确保旁行链路的信道质量优于上行链路的信道质量。此外,本发明利用第一标志位减少空口开销。

Description

一种用户设备、基站中的用于中继的方法和装置 技术领域
本发明涉及无线通信系统中的传输方案,特别是涉及支持无线中继(Relay)传输(Transmission)的方法和装置。
背景技术
第三代合作伙伴项目(3GPP-3rd Generation Partner Project)R(Release,发布)9中提出了层3(Layer-3)的中继(Relay)基站的方案。中继基站对于UE(User Equipment,用户设备)而言具备普通基站的功能,能够独立的调度数据及发送下行HARQ-ACK(Hybrid Automatic Repeat reQuest,混合自动重传请求)。
传统的3GPP系统中,数据传输发生在基站和UE(User Equipment,用户设备)之间。在3GPP R12中,D2D(Device to Device,设备间)通信被立项并加以讨论,D2D的本质特点是允许UE之间的数据传输。在3GPP R13中,eD2D(Enhancements to LTE Device to Device)被立项,其主要特点是引入UE中继(Relay)功能。在eD2D中,中继用户设备(Relay UE)中继远端用户设备(Remote UE)和基站之间的数据交换。
在3GPP RAN(Radio Access Network,无线接入网)#69次全会上,NB-IOT(NarrowBand Internet of Things,窄带物联网)被立项。进一步的,在3GPP RAN#71次全会上(RP-160655),针对IoT和可穿戴设备的FeD2D(Further Enhancements to LTE Device to Device,LTE D2D的进一步增强)被立项。FeD2D中,D2D通信可能通过类似NB-IoT的空中接口实现。
现有的D2D/eD2D中,UE周期性的发送旁行同步信号(Sidelink Synchronization Signals)以及PSDCH(Physical Sidelink Discovery Channel,物理旁行发现信道)。此外,eD2D中,Remote UE如何选择Relay UE是实现相关的–即不需要对标准进行改动。
FeD2D的一个典型的应用场景就是在一个智能终端的周围存在多个可穿戴设备。智能终端中继可穿戴设备到基站的数据交换,即智能终端和可穿戴设备分别是Relay UE和Remote UE。
发明内容
发明人通过研究发现,周期性的发送或者接收旁行同步信号以及PSDCH将增大UE的功耗,进而降低待机时间。而待机时间对于低成本的UE是一个非常重要的因素。
此外,传统的Relay UE的选择是由Remote UE执行的,即要求Remote UE能接收来自Relay UE和基站的信号,这样就增加了Remote UE接收机的复杂度。
本发明针对上述问题提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。又例如,本申请的D2D发送UE(即在旁行链路上发送无线信号)中的实施例和实施例中的特征可以应用到D2D接收UE(即在旁行链路上接收所述无线信号)中,反之亦然。进一步的,虽然本发明的初衷是针对FeD2D(即D2D传输是基于窄带的),本发明的方案也适用于宽带D2D中继(即D2D传输是基于宽带的)。
本发明公开了一种被用于中继通信的UE中的方法,其中,包括如下步骤:
-步骤A.接收第一信息
-步骤B.在第一时间窗中检测第一无线信号,所述第一无线信号包括{第一特征序列,第一参考信号,第二信息}中的至少之一。
其中,所述第一无线信号的发送者是第二节点,所述第一信息的发送者和所述第二节点是非共址的。所述第一信息被用于确定{所述第一时间窗,所述第一特征序列的参数,所述第一参考信号的参数}中的至少之一。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述第二节点,所述第二标识被用于确定第一小区。第一小区是所述第二节点的服务小区。
作为一个实施例,所述第一信息由物理层信令指示。
作为一个实施例,所述第一信息由DCI(Downlink Control  Information,下行控制信息)指示。
作为一个实施例,所述所述第一信息的发送者和所述第二节点是非共址的是指:所述所述第一信息的发送者和所述第二节点是两个不同的通信设备。
作为一个实施例,所述所述第一信息的发送者和所述第二节点是非共址的是指:所述所述第一信息的发送者和所述第二节点之间不存在有线连接。
作为一个实施例,所述所述第一信息的发送者和所述第二节点是非共址的是指:所述所述第一信息的发送者和所述第二节点位于不同的地点。
上述两个实施例中,基站动态的触发所述第一无线信号的发送,和传统半静态配置不同,上述两个实施例能最大程度的节省所述第一无线信号的发送者的功耗。
作为一个实施例,所述第一时间窗是和所述第一信息所占用的时间资源关联的。
作为一个实施例,所述第一时间窗被所述第一信息指示。
作为一个实施例,所述所述第一信息的发送者是所述UE的服务小区。
作为一个实施例,所述第一时间窗中包括正整数个子帧。
作为一个实施例,所述第一时间窗中包括正整数个连续的子帧。
作为一个实施例,所述第一无线信号占用所述第一时间窗中的部分时间资源。
作为一个实施例,所述第一信息由高层信令指示。
作为一个实施例,所述第一特征序列包括Zadoff-Chu序列。
作为一个实施例,所述第一特征序列包括伪随机序列。
作为一个实施例,所述第一特征序列包括Zadoff-Chu序列和伪随机序列。
作为一个实施例,所述所述第一特征序列的参数被用于生成所述第一特征序列。
作为一个实施例,所述所述第一参考信号的参数被用于生成所述第一参考信号对应的参考信号序列。
作为一个实施例,所述第一标识是所述第二节点的RNTI(RNTI Radio Network Tempory Identity,无线网络临时标识)。
作为一个实施例,所述第一标识是所述第二节点的PLMN-ID(Public Land Mobile Network-Identifier,公共陆地移动网络标识)。
作为一个实施例,所述第一标识是所述第二节点的Layer-2ID。。
作为一个实施例,所述第一信息被用于接收第二信息。作为该实施例的一个子实施例,所述第一信息包括第一参数,所述第一参数被用于生成所述第二信息对应的扰码序列,所述第一参数是整数。
作为一个实施例,所述第一信息包括所述第二信息。
作为一个实施例,所述第二标识被用于确定第一小区是指:第二标识包括第一小区的PCI(Physical Cell Identifier,物理小区标识)。
作为一个实施例,所述第二标识被用于确定第一小区是指:第二标识包括第一小区的ECGI(E-UTRAN Cell Global Identifier,E-UTRAN小区全球标识)。
作为一个实施例,所述第一小区是所述UE的服务小区。
作为一个实施例,所述第一小区是所述UE的服务小区之外的小区。
具体的,根据本发明的一个方面,其特征在于,所述步骤B还包括如下步骤:
-步骤B1.根据所述第一无线信号确定第一信道质量。
-步骤B2.发送第三信息,第三信息指示{所述第一信道质量,第一标志位}中的至少之一。
其中,所述第一信道质量针对所述第二节点到所述UE的信道。所述第一标志位包括1个信息比特,所述第一标志位被用于确定所述UE能否为所述第二节点中继无线信号。
和已经公开方案中Remote UE测量旁行链路(Sidelink)的信道质量(并上报)不同,上述方面中的所述UE作为所述第二节点的中继节点测量旁行链路的信道质量并上报。上述方面使得所述第二节点不需要监测旁行链路,降低了接收机复杂度。
作为一个实施例,所述第一信道质量包括RSRP(Reference signal received power,参考信号接收功率)。
作为一个实施例,所述第一信道质量包括RSRQ(Reference signal  received quality,参考信号接收质量)。
作为一个实施例,所述第一信道质量包括CQI(Channel Quality Indicator,信道质量指示)。
作为一个实施例,所述第一信道质量的单位是dBm。
作为一个实施例,所述第一信道质量的单位是毫瓦。
作为一个实施例,第三信息包括所述第一信道质量,所述第三信息由高层信令携带。
作为一个实施例,第三信息包括所述第一标志位,所述第三信息由物理层信令携带。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A0.接收第四信息。所述第四信息的发送者是所述第一信息的发送者。
其中,所述第四信息包括第二信道质量。所述第二信道质量针对所述第二节点到所述第一小区的信道。所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道质量。
传统方案中,UE上报信道质量给基站。而上述方面中,第二信道质量被基站发送给UE,所述UE能够利用所述第二信道质量确定所述第一标志位。相比发送第一信道质量,UE发送所述第一标志位能够减少上行资源开销,提高传输效率。
作为一个实施例,所述第四信息由高层信令携带。
作为一个实施例,所述第二信道质量包括RSRP。
作为一个实施例,所述第二信道质量包括RSRQ。
作为一个实施例,所述第二信道质量包括CQI。
作为一个实施例,所述第二信道质量的单位是dBm。
作为一个实施例,所述第二信道质量的单位是毫瓦。
具体的,根据本发明的一个方面,其特征在于,所述第二信息包括第二信道质量,所述第二信道质量针对所述第二节点到所述第一小区的信道。所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道 质量。
作为一个实施例,所述第二信息由SCI(Sidelink Control Information,旁行控制信息)携带。
上述实施例中,所述UE通过旁行链路接收所述第二信道质量。上述实施例能加快所述UE判断是否适合作为Relay UE。进一步的,上述实施例适合所述UE和所述第二节点处于不同的服务小区。
本发明公开了一种被用于中继通信的UE中的方法,其中,包括如下步骤:
-步骤A.接收第一信息,所述第一信息被用于确定{第一时间窗,第一特征序列的参数,第一参考信号的参数}中的至少之一。
-步骤B.在第一时间窗中发送第一无线信号,所述第一无线信号包括{所述第一特征序列,所述第一参考信号,第二信息}中的至少之一。
其中,所述第一无线信号的接收者包括第一节点。所述第一信息的发送者和所述第一节点是非共址的。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述UE,所述第二标识被用于确定第一小区。第一小区是所述UE的服务小区。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A0.接收第四信息。
其中,第四信息包括第二信道质量。所述第一无线信号被用于确定第一信道质量。所述第二信息包括第二信道质量。所述第一信道质量针对所述UE到所述第一节点的信道。所述第二信道质量针对所述UE到所述第一小区的信道。所述第二信道质量被用于确定第一标志位。所述第一标志位包括1个信息比特,所述第二信息的接收者包括所述第一标志位的发送者。所述第一标志位被用于确定所述第一节点能否为所述UE中继无线信号。
作为一个实施例,所述第一无线信号被用于确定第二信道质量。
作为一个实施例,所述第四信息由高层信令携带。
作为一个实施例,所述第四信息由物理层信令携带。
本发明公开了一种被用于中继通信的基站中的方法,其中,包括如下步骤:
-步骤A.发送第一信息。
其中,所述第一信息被用于确定{第一时间窗,第一特征序列的参数,第一参考信号的参数}中的至少之一。第一无线信号在所述第一时间窗中传输,所述第一无线信号包括{所述第一特征序列,所述第一参考信号,第二信息}中的至少之一。所述第一无线信号的发送者是第二节点,所述基站和所述第二节点是非共址的。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述第二节点,所述第二标识被用于确定第一小区。第一小区是所述第二节点的服务小区。
作为一个实施例,所述第一小区由所述基站维持。
作为一个实施例,所述第一小区由所述基站之外的网络设备维持。
作为一个实施例,所述第一信息的接收者包括第一节点和第二节点,所述第一节点和所述第二节点是非共址的。作为一个实施例,所述第一节点是UE,所述第二节点是UE。
具体的,根据本发明的一个方面,其特征在于,还包括如下步骤:
-步骤B2.接收第三信息,第三信息指示{第一信道质量,第一标志位}中的至少之一。
其中,所述第三信息的发送者是第一节点,所述第一信道质量针对所述第二节点到所述第一节点的信道。所述第一无线信号被用于确定所述第一信道质量。所述第一标志位包括1个信息比特,所述第一标志位被用于确定所述第一节点能否为所述第二节点中继无线信号。
上述方面中,Relay UE反馈旁行链路的信道质量的指示(第三信息),所述基站根据所述信道质量的指示配置Relay UE。上述方面能确保PC5接口的信道质量好于被中继UE(即Remote UE)的Uu口的信道质量。
作为一个实施例,所述第一无线信号被所述第三信息的发送者用于确定所述第一信道质量。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括 如下步骤:
-步骤A0.确定第二信道质量
其中,所述第二信道质量针对所述第二节点到所述第一小区的信道。
作为一个实施例,上述方面的特征在于,所述步骤A还包括如下步骤:
-步骤A1.发送第四信息。
其中,所述第四信息包括所述第二信道质量。所述第四信息的接收者包括所述第一节点。所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道质量。所述第二信道质量针对所述第二节点到所述第一小区的信道。
作为一个实施例,上述方面的特征在于,所述步骤A还包括如下步骤:
-步骤A2.发送回传信息,所述回传信息包括所述第二信道质量。
其中,所述第一小区由所述基站维护。
作为上述实施例的一个子实施例,所述第一节点的服务小区由所述基站之外的网络设备维护。
作为上述实施例的一个子实施例,所述回传信息通过X2接口传输。
作为上述实施例的一个子实施例,所述回传信息通过SI接口传输。
作为一个实施例,上述方面的特征在于,所述步骤A还包括如下步骤:
-步骤A3.接收回传信息,所述回传信息包括所述第二信道质量。
其中,所述第一小区由所述基站之外的网络设备维护。
作为上述实施例的一个子实施例,所述第一节点的服务小区由所述基站维护。
作为上述实施例的一个子实施例,所述回传信息通过X2接口传输。
作为上述实施例的一个子实施例,所述回传信息通过SI接口传输。
上述两个实施例中,进行D2D通信的两个UE能在不同服务小区的覆盖中。
具体的,根据本发明的一个方面,其特征在于,所述步骤A还包括如下步骤:
-步骤A4.接收所述第一无线信号,所述第一无线信号被所述基站用于确定所述第二信道质量。
上述方面中,所述第一无线信号同时被UE和基站用于测量信道质量。上述方面减少了被中继UE的功耗。
具体的,根据本发明的一个方面,其特征在于,所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道质量。
本发明公开了一种被用于中继通信的用户设备,其中,包括如下模块:
第一接收模块:用于接收第一信息
第一处理模块:用于在第一时间窗中检测第一无线信号,所述第一无线信号包括{第一特征序列,第一参考信号,第二信息}中的至少之一。
其中,所述第一无线信号的发送者是第二节点,所述第一信息的发送者和所述第二节点是非共址的。所述第一信息被用于确定{所述第一时间窗,所述第一特征序列的参数,所述第一参考信号的参数}中的至少之一。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述第二节点,所述第二标识被用于确定第一小区。第一小区是所述第二节点的服务小区。
作为一个实施例,上述被用于中继通信的用户设备的特征在于,第一处理模块还用于:
-.根据所述第一无线信号确定第一信道质量。
-.发送第三信息,第三信息指示{所述第一信道质量,第一标志位}中的至少之一。
其中,所述第一信道质量针对所述第二节点到所述UE的信道。所述第一标志位包括1个信息比特,所述第一标志位被用于确定所述UE能否为所述第二节点中继无线信号。
作为一个实施例,上述被用于中继通信的用户设备的特征在于,第一接收模块还用于接收第四信息。所述第四信息的发送者是所述第一信息的发送者。其中,所述第四信息包括第二信道质量。所述第二信道质 量针对所述第二节点到所述第一小区的信道。所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道质量。
作为一个实施例,上述被用于中继通信的用户设备的特征在于,所述第二信息包括第二信道质量,所述第二信道质量针对所述第二节点到所述第一小区的信道。所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道质量。
本发明公开了一种被用于中继通信的用户设备,其中,包括如下模块:
第二接收模块:用于接收第一信息和第四信息。
第一发送模块:用于在第一时间窗中发送第一无线信号,
其中,所述第一信息被用于确定{第一时间窗,第一特征序列的参数,第一参考信号的参数}中的至少之一。所述第一无线信号包括{所述第一特征序列,所述第一参考信号,第二信息}中的至少之一。所述第一无线信号的接收者包括第一节点。所述第一信息的发送者和所述第一节点是非共址的。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述用户设备,所述第二标识被用于确定第一小区。第一小区是所述用户设备的服务小区。第四信息包括第二信道质量。所述第一无线信号被用于确定第一信道质量。所述第二信息包括第二信道质量。所述第一信道质量针对所述用户设备到所述第一节点的信道。所述第二信道质量针对所述用户设备到所述第一小区的信道。所述第二信道质量被用于确定第一标志位。所述第一标志位包括1个信息比特,所述第二信息的接收者包括所述第一标志位的发送者。所述第一标志位被用于确定所述第一节点能否为所述用户设备中继无线信号。
本发明公开了一种被用于中继通信的基站设备,其中,包括如下模块:
第二处理模块:用于发送第一信息。
其中,所述第一信息被用于确定{第一时间窗,第一特征序列的参数,第一参考信号的参数}中的至少之一。第一无线信号在所述第一时间窗中传输,所述第一无线信号包括{所述第一特征序列,所述第一参考信号,第二信息}中的至少之一。所述第一无线信号的发送者是第二节点,所述基站和所述第二节点是非共址的。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述第二节点,所述第二标识被用于确定第一小区。第一小区是所述第二节点的服务小区。
作为一个实施例,上述被用于中继通信的基站设备的特征在于,还包括:
第三接收模块:用于接收第三信息,第三信息指示{第一信道质量,第一标志位}中的至少之一。
其中,所述第三信息的发送者是第一节点,所述第一信道质量针对所述第二节点到所述第一节点的信道。所述第一无线信号被用于确定所述第一信道质量。所述第一标志位包括1个信息比特,所述第一标志位被用于确定所述第一节点能否为所述第二节点中继无线信号。
作为一个实施例,上述被用于中继通信的基站设备的特征在于,第二处理模块还用于确定第二信道质量。其中,所述第二信道质量针对所述第二节点到所述第一小区的信道。
作为一个实施例,上述被用于中继通信的基站设备的特征在于,第二处理模块还用于发送第四信息。其中,所述第四信息包括所述第二信道质量。所述第四信息的接收者包括所述第一节点。所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道质量。所述第二信道质量针对所述第二节点到所述第一小区的信道。
作为一个实施例,上述被用于中继通信的基站设备的特征在于,第二处理模块还用于发送回传信息,所述回传信息包括所述第二信道质量。其中,所述第一小区由所述基站维护。
作为一个实施例,上述被用于中继通信的基站设备的特征在于,第 二处理模块还用于接收回传信息,所述回传信息包括所述第二信道质量。其中,所述第一小区由所述基站之外的网络设备维护。
作为一个实施例,上述被用于中继通信的基站设备的特征在于,第二处理模块还用于接收所述第一无线信号,所述第一无线信号被所述基站用于确定所述第二信道质量。
作为一个实施例,上述被用于中继通信的基站设备的特征在于,所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道质量。
相比现有公开技术,本发明具有如下技术优势:
-.节省被中继UE的功耗
-.确保旁行链路的信道质量优于上行链路的信道质量
-.利用第一标志位减少空口开销
-.支持小区间的单向的D2D中继。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更加明显:
图1示出了根据本发明的一个实施例的第一信令和第二信令的传输流程图;
图2示出了根据本发明的又一个实施例的第三信令的传输流程图;
图3示出了根据本发明的一个实施例的进行D2D通信的UE位于不同小区的信令流程图;
图4示出了根据本发明的一个实施例的确定旁行链路的信道质量的流程图;
图5示出了根据本发明的又一个实施例的确定旁行链路的信道质量的流程图;
图6示出了根据本发明的一个实施例的第一信息指示第一时间窗口的示意图;
图7示出了根据本发明的一个实施例的第一时间窗口的示意图;
图8示出了根据本发明的一个实施例的UE中的处理装置的结构框图;
图9示出了根据本发明的又一个实施例的UE中的处理装置的结构框图;
图10示出了根据本发明的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本发明的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了第一信令和第二信令的传输流程图,如附图1所示。附图1中,基站N1是第一小区的维持基站,所述第一小区是UE U2的服务小区,所述第一小区是UE U3的服务小区。UE U2是第一节点,UE U3是第二节点。
对于基站N1,在步骤S10中发送第一信令,在步骤S20中发送第二信令。
对于UE U2,在步骤S20中接收第一信令。
对于UE U3,在步骤S30中接收第二信令。
实施例1中,所述第一信令和所述第二信令都包括第一信息,或者所述第一信令和所述第二信令都包括第四信息。
作为实施例1的子实施例1,所述第一信令和所述第二信令分别是DCI。
作为实施例1的子实施例2,所述第一信令和所述第二信令分别是物理层信令。
作为实施例1的子实施例3,所述第一信令和所述第二信令分别是高层信令。
实施例2
实施例2示例了第三信令的传输流程图,如附图2所示。附图2中,基站N1是第一小区的维持基站,所述第一小区是UE U2的服务小区,所述第一小区是UE U3的服务小区。UE U2是第一节点,UE U3是第二节点。
对于基站N1,在步骤S12中发送第三信令。
对于UE U2,在步骤S22中接收第三信令。
对于UE U3,在步骤S32中接收第三信令。
实施例2中,所述第三信令包括第一信息,或者所述第三信令包括第四信息。
作为实施例2的子实施例1,所述第三信令是DCI。
作为实施例2的子实施例2,所述第三信令是高层信令。
实施例3
实施例3示例了进行D2D通信的UE位于不同小区的信令流程图,如附图3所示。附图3中,基站N4是第一小区的维持基站,基站N1是UE U2的服务小区的维持基站,所述第一小区是UE U3的服务小区。UE U2是第一节点,UE U3是第二节点。方框F4中的步骤是可选步骤。
对于基站N4,在步骤S43中发送第五信令。
对于UE U3,在步骤S33中接收第五信令。
对于基站N1,在步骤S13中发送第四信令。
对于UE U2,在步骤S23中接收第四信令。
实施例3中,所述第四信令和所述第五信令分别包括第一信息,或者所述第四信令和所述第五信令分别包括第四信息。
作为实施例3的子实施例1,所述第四信令和所述第五信令分别包括第一信息,基站N4在步骤S430中发送回传信令,基站N1在步骤S130中接收回传信令。所述回传信令包括所述第一信息。
作为实施例3的子实施例2,所述第四信令和所述第五信令分别包括第四信息,基站N4在步骤S430中发送回传信令,基站N1在步骤S130中接收回传信令。所述回传信令包括所述第四信息。
实施例4
实施例4示例了确定旁行链路的信道质量的流程图,如附图4所示。附图4中,基站N1是第一小区的维持基站,所述第一小区是UE U2的服务小区,所述第一小区是UE U3的服务小区。UE U2是第一节点,UE U3是第二节点。附图4中,方框F1中的步骤是可选的,方框F2中的步骤是可选的,方框F3中的步骤是可选的。
对于基站N1,在步骤S14中发送第一信息给UE U2,在步骤S15中发送第一信息给UE U3,在步骤S17中确定第二信道质量,在步骤S19中接收第三信息。
对于UE U2,在步骤S24中接收第一信息,在步骤S25中在第一时间窗中检测第一无线信号,在步骤S26中根据第一无线信号确定第一信道质量,在步骤S28中发送第三信息。
对于UE U3,在步骤S34中接收第一信息,在步骤S35中在第一时间窗中发送第一无线信号。
作为实施例4的子实施例1,基站N1在步骤S16中在第一时间窗中接收第一无线信号,在步骤S17中根据第一无线信号确定第二信道质量。
作为实施例4的子实施例2,基站N1在步骤S18中发送第四信息,UE U2在步骤S27中接收第四信息。第三信息指示第一标志位。
作为实施例4的子实施例3,方框F1中的步骤被附图2中的步骤替代。
作为实施例4的子实施例4,基站N1在步骤S17中根据UE U2发送的第一无线信号之外的上行无线信号确定第二信道质量。
实施例5
实施例5示例了确定旁行链路的信道质量的流程图,如附图5所示。附图5中,基站N4是第一小区的维持基站,基站N1是UE U2的服务小区的维持基站,所述第一小区是UE U3的服务小区。UE U2是第一节点,UE U3是第二节点。
对于基站N1,在步骤S101中接收回传信息,根据回传信息确定第二信道质量。
对于UE U2,在步骤S201中在第一时间窗中检测第一无线信号,在步骤S202中根据第一无线信号确定第一信道质量。
对于基站N4,在步骤S401中确定第二信道质量,在步骤S402中发送回传信息。
对于UE U3,在步骤S301中在第一时间窗中发送第一无线信号。
实施例5中,回传信息包括第二信道质量。
实施例6
实施例6示例了第一信息指示第一时间窗口的示意图,如附图6所示。附图6中,
实施例6中,第一子帧是第一信息所占用的最后一个子帧,第二子帧是第一时间窗口中的第一个子帧。第一子帧和第二子帧之间的时间间隔是缺省的(即不需要信令配置)。
作为实施例6的子实施例1,第一时间窗口中的子帧的数量是缺省的。
作为实施例6的子实施例2,第一时间窗口中的子帧的数量是由高层信令配置的。
实施例7
实施例7示例了第一时间窗口的示意图,如附图7所示。附图7中,交叉线标识第一无线信号所占用的时域资源。
实施例7中,第一无线信号占用第一时间窗中的部分时域资源。
实施例8
实施例8示例了一个UE中的处理装置的结构框图,如附图8所示。附图8中,UE处理装置200主要由第一接收模块201和第一处理模块202组成。
第一接收模块201用于接收第一信息。第一处理模块202用于在第一时间窗中检测第一无线信号,根据所述第一无线信号确定第一信道质量,以及发送第三信息。
实施例8中,所述第一无线信号包括{第一特征序列,第一参考信号,第二信息}中的至少之一。所述第一无线信号的发送者是第二节点,所述第一信息的发送者和所述第二节点是非共址的。所述第一信息被用于确定{所述第一时间窗,所述第一特征序列的参数,所述第一参考信号的参数}中的至少之一。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述第二节点,所述第二标识被用于确定第一小区。第一小区是所述第二节点的服务小区。第三信息指示所述第一信道质量,或者第三信息指示第一标志位。所述第一信道质量针对所述第二节点到所述用户设备的信道。所述第一标志位包括1个信息比特,所述第一标志位被用于确定所述用户设备能否为所述第二节点中继无线信号。
作为实施例8的子实施例1,所述第一特征序列包括Zadoff-Chu序列和伪随机序列。
作为实施例8的子实施例2,第一信息被物理层信令携带。
实施例9
实施例9示例了一个UE中的处理装置的结构框图,如附图9所示。附 图9中,UE处理装置300主要由第二接收模块301和第一发送模块302组成。
第二接收模块301用于接收第一信息和第四信息。第一发送模块302用于在第一时间窗中发送第一无线信号,
实施例9中,所述第一信息被用于确定{第一时间窗,第一特征序列的参数,第一参考信号的参数}中的至少之一。所述第一无线信号包括{所述第一特征序列,所述第一参考信号,第二信息}中的至少之一。所述第一无线信号的接收者包括第一节点。所述第一信息的发送者和所述第一节点是非共址的。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述用户设备,所述第二标识被用于确定第一小区。第一小区是所述用户设备的服务小区。第四信息包括第二信道质量。所述第一无线信号被用于确定第一信道质量。所述第二信息包括第二信道质量。所述第一信道质量针对所述用户设备到所述第一节点的信道。所述第二信道质量针对所述用户设备到所述第一小区的信道。所述第二信道质量被用于确定第一标志位。所述第一标志位包括1个信息比特,所述第二信息的接收者包括所述第一标志位的发送者。所述第一标志位被用于确定所述第一节点能否为所述用户设备中继无线信号。
作为实施例9的子实施例1,第二信息是由高层信令携带的。
作为实施例9的子实施例2,所述第一特征序列包括主(Primary)旁行链路(Sidelink)同步信号(synchronization signal)和辅(Secondary)旁行链路同步信号,所述第一特征序列的参数是旁行链路同步信号的生成参数
Figure PCTCN2017078242-appb-000001
所述
Figure PCTCN2017078242-appb-000002
是小于336的非负整数。
实施例10
实施例10示例了一个基站中的处理装置的结构框图,如附图10所示。附图10中,基站处理装置400主要由第三处理模块401和第三接收模块402组成。
第三处理模块401用于发送第一信息。第三接收模块402用于接收第三信息,第三信息指示第一信道质量,或者第三信息指示第一标志位。
实施例10中,所述第一信息被用于确定{第一时间窗,第一特征序 列的参数,第一参考信号的参数}中的至少之一。第一无线信号在所述第一时间窗中传输,所述第一无线信号包括{所述第一特征序列,所述第一参考信号,第二信息}中的至少之一。所述第一无线信号的发送者是第二节点,所述基站和所述第二节点是非共址的。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述第二节点,所述第二标识被用于确定第一小区。第一小区是所述第二节点的服务小区。所述第三信息的发送者是第一节点,所述第一信道质量针对所述第二节点到所述第一节点的信道。所述第一无线信号被用于确定所述第一信道质量。所述第一标志位包括1个信息比特,所述第一标志位被用于确定所述第一节点能否为所述第二节点中继无线信号。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本发明中的UE和终端包括但不限于手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本发明中的基站和网络设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本发明的保护范围之内。

Claims (17)

  1. 一种被用于中继通信的UE中的方法,其中,包括如下步骤:
    -步骤A.接收第一信息
    -步骤B.在第一时间窗中检测第一无线信号,所述第一无线信号包括{第一特征序列,第一参考信号,第二信息}中的至少之一。
    其中,所述第一无线信号的发送者是第二节点,所述第一信息的发送者和所述第二节点是非共址的。所述第一信息被用于确定{所述第一时间窗,所述第一特征序列的参数,所述第一参考信号的参数}中的至少之一。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述第二节点,所述第二标识被用于确定第一小区。第一小区是所述第二节点的服务小区。
  2. 根据权利要求1所述的方法,其特征在于,所述步骤B还包括如下步骤:
    -步骤B1.根据所述第一无线信号确定第一信道质量。
    -步骤B2.发送第三信息,第三信息指示{所述第一信道质量,第一标志位}中的至少之一。
    其中,所述第一信道质量针对所述第二节点到所述UE的信道。所述第一标志位包括1个信息比特,所述第一标志位被用于确定所述UE能否为所述第二节点中继无线信号。
  3. 根据权利要求2所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.接收第四信息。所述第四信息的发送者是所述第一信息的发送者。
    其中,所述第四信息包括第二信道质量。所述第二信道质量针对所述第二节点到所述第一小区的信道。所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道质量。
  4. 根据权利要求2所述的方法,其特征在于,所述第二信息包括第二信道质量,所述第二信道质量针对所述第二节点到所述第一小区的信道。所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道 质量。
  5. 一种被用于中继通信的UE中的方法,其中,包括如下步骤:
    -步骤A.接收第一信息,所述第一信息被用于确定{第一时间窗,第一特征序列的参数,第一参考信号的参数}中的至少之一。
    -步骤B.在第一时间窗中发送第一无线信号,所述第一无线信号包括{所述第一特征序列,所述第一参考信号,第二信息}中的至少之一。
    其中,所述第一无线信号的接收者包括第一节点。所述第一信息的发送者和所述第一节点是非共址的。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述UE,所述第二标识被用于确定第一小区。第一小区是所述UE的服务小区。
  6. 根据权利要求5所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.接收第四信息。
    其中,第四信息包括第二信道质量。所述第一无线信号被用于确定第一信道质量。所述第二信息包括第二信道质量。所述第一信道质量针对所述UE到所述第一节点的信道。所述第二信道质量针对所述UE到所述第一小区的信道。所述第二信道质量被用于确定第一标志位。所述第一标志位包括1个信息比特,所述第二信息的接收者包括所述第一标志位的发送者。所述第一标志位被用于确定所述第一节点能否为所述UE中继无线信号。
  7. 一种被用于中继通信的基站中的方法,其中,包括如下步骤:
    -步骤A.发送第一信息。
    其中,所述第一信息被用于确定{第一时间窗,第一特征序列的参数,第一参考信号的参数}中的至少之一。第一无线信号在所述第一时间窗中传输,所述第一无线信号包括{所述第一特征序列,所述第一参考信号,第二信息}中的至少之一。所述第一无线信号的发送者是第二节点,所述基站和所述第二节点是非共址的。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述第二节点,所述第二标识被用于确定第一小区。第一小区是所述第 二节点的服务小区。
  8. 根据权利要求7所述的方法,其特征在于,还包括如下步骤:
    -步骤B2.接收第三信息,第三信息指示{第一信道质量,第一标志位}中的至少之一。
    其中,所述第三信息的发送者是第一节点,所述第一信道质量针对所述第二节点到所述第一节点的信道。所述第一无线信号被用于确定所述第一信道质量。所述第一标志位包括1个信息比特,所述第一标志位被用于确定所述第一节点能否为所述第二节点中继无线信号。
  9. 根据权利要求7,8所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A0.确定第二信道质量
    其中,所述第二信道质量针对所述第二节点到所述第一小区的信道。
  10. 根据权利要求9所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A1.发送第四信息。
    其中,所述第四信息包括所述第二信道质量。所述第四信息的接收者包括所述第一节点。所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道质量。所述第二信道质量针对所述第二节点到所述第一小区的信道。
  11. 根据权利要求9,10所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A2.发送回传信息,所述回传信息包括所述第二信道质量。
    其中,所述第一小区由所述基站维护。
  12. 根据权利要求9,10所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A3.接收回传信息,所述回传信息包括所述第二信道质量。
    其中,所述第一小区由所述基站之外的网络设备维护。
  13. 根据权利要求9-11所述的方法,其特征在于,所述步骤A还包括如下步骤:
    -步骤A4.接收所述第一无线信号,所述第一无线信号被所述基站用于确定所述第二信道质量。
  14. 根据权利要求9-13所述的方法,其特征在于,所述第一标志位指示所述第一信道质量是否低于所述第二信道质量,或者所述第一标志位指示所述第一信道质量是否高于所述第二信道质量。
  15. 一种被用于中继通信的用户设备,其中,包括如下模块:
    第一接收模块:用于接收第一信息
    第一处理模块:用于在第一时间窗中检测第一无线信号,根据所述第一无线信号确定第一信道质量,以及发送第三信息。
    其中,所述第一无线信号包括{第一特征序列,第一参考信号,第二信息}中的至少之一。所述第一无线信号的发送者是第二节点,所述第一信息的发送者和所述第二节点是非共址的。所述第一信息被用于确定{所述第一时间窗,所述第一特征序列的参数,所述第一参考信号的参数}中的至少之一。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述第二节点,所述第二标识被用于确定第一小区。第一小区是所述第二节点的服务小区。第三信息指示{所述第一信道质量,第一标志位}中的至少之一。所述第一信道质量针对所述第二节点到所述用户设备的信道。所述第一标志位包括1个信息比特,所述第一标志位被用于确定所述用户设备能否为所述第二节点中继无线信号。
  16. 一种被用于中继通信的用户设备,其中,包括如下模块:
    第二接收模块:用于接收第一信息和第四信息。
    第一发送模块:用于在第一时间窗中发送第一无线信号,
    其中,所述第一信息被用于确定{第一时间窗,第一特征序列的参数,第一参考信号的参数}中的至少之一。所述第一无线信号包括{所述第一特征序列,所述第一参考信号,第二信息}中的至少之一。所述第一无线信号的接收者包括第一节点。所述第一信息的发送者和所述第一节点是非共址的。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述用户设备,所述第二 标识被用于确定第一小区。第一小区是所述用户设备的服务小区。第四信息包括第二信道质量。所述第一无线信号被用于确定第一信道质量。所述第二信息包括第二信道质量。所述第一信道质量针对所述用户设备到所述第一节点的信道。所述第二信道质量针对所述用户设备到所述第一小区的信道。所述第二信道质量被用于确定第一标志位。所述第一标志位包括1个信息比特,所述第二信息的接收者包括所述第一标志位的发送者。所述第一标志位被用于确定所述第一节点能否为所述用户设备中继无线信号。
  17. 一种被用于中继通信的基站设备,其中,包括如下模块:
    第二处理模块:用于发送第一信息。
    第三接收模块:用于接收第三信息,第三信息指示{第一信道质量,第一标志位}中的至少之一。
    其中,所述第一信息被用于确定{第一时间窗,第一特征序列的参数,第一参考信号的参数}中的至少之一。第一无线信号在所述第一时间窗中传输,所述第一无线信号包括{所述第一特征序列,所述第一参考信号,第二信息}中的至少之一。所述第一无线信号的发送者是第二节点,所述基站和所述第二节点是非共址的。所述第二信息包括一个或者多个信息比特。第二信息包括{第一标识,第二标识}中的至少之一。所述第一标识是整数,所述第二标识是整数。所述第一标识被用于确定所述第二节点,所述第二标识被用于确定第一小区。第一小区是所述第二节点的服务小区。所述第三信息的发送者是第一节点,所述第一信道质量针对所述第二节点到所述第一节点的信道。所述第一无线信号被用于确定所述第一信道质量。所述第一标志位包括1个信息比特,所述第一标志位被用于确定所述第一节点能否为所述第二节点中继无线信号。
PCT/CN2017/078242 2016-04-17 2017-03-26 一种用户设备、基站中的用于中继的方法和装置 WO2017181819A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/162,425 US11172489B2 (en) 2016-04-17 2018-10-17 Method and device for relay in UE and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610238959.8 2016-04-17
CN201610238959.8A CN107306417B (zh) 2016-04-17 2016-04-17 一种窄带移动通信的ue和基站中的方法和装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/162,425 Continuation-In-Part US11172489B2 (en) 2016-04-17 2018-10-17 Method and device for relay in UE and base station
US16/162,425 Continuation US11172489B2 (en) 2016-04-17 2018-10-17 Method and device for relay in UE and base station

Publications (1)

Publication Number Publication Date
WO2017181819A1 true WO2017181819A1 (zh) 2017-10-26

Family

ID=60115576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/078242 WO2017181819A1 (zh) 2016-04-17 2017-03-26 一种用户设备、基站中的用于中继的方法和装置

Country Status (3)

Country Link
US (1) US11172489B2 (zh)
CN (1) CN107306417B (zh)
WO (1) WO2017181819A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545575B (zh) * 2016-04-23 2022-06-21 上海朗帛通信技术有限公司 一种窄带移动通信的方法和装置
US20190261294A1 (en) * 2018-02-19 2019-08-22 Qualcomm Incorporated System and method for energy efficient synchronization in mesh wide area network (wan) for machine-type-communication (mtc) and internet of everything (ioe) communication
CN111769929A (zh) 2018-03-21 2020-10-13 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110300454B (zh) * 2018-03-23 2023-02-03 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US10652691B2 (en) * 2018-07-20 2020-05-12 Qualcomm Incorporated Optimized positioning method for mobile devices
CN113890684A (zh) * 2018-07-31 2022-01-04 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN109041146B (zh) * 2018-08-27 2020-03-20 北京邮电大学 一种pscch上行数据包接收机制的切换方法和装置
CN112788567B (zh) * 2019-11-05 2022-06-21 上海朗帛通信技术有限公司 用于无线通信的通信节点中的方法和装置
US11570640B2 (en) * 2020-01-30 2023-01-31 Qualcomm Incorporated Techniques for coordinating scheduling wireless communications using a repeater
CN111932857A (zh) * 2020-08-14 2020-11-13 深圳市奥企科技有限公司 一种基于nb-iot的无线遥测终端机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916903A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种参考信号接收功率的测量方法及装置
CN104185247A (zh) * 2013-09-26 2014-12-03 上海朗帛通信技术有限公司 Ue装置及方法
CN105228248A (zh) * 2014-06-13 2016-01-06 上海朗帛通信技术有限公司 一种d2d传输中的资源分配方法和装置
US20160088607A1 (en) * 2014-09-19 2016-03-24 Telefonaktiebolaget L M Ericsson (Publ) Devices and methods for d2d synchronization signalling
CN105472702A (zh) * 2014-08-21 2016-04-06 上海朗帛通信技术有限公司 Laa通信中的小区搜索方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101414632B1 (ko) * 2008-03-06 2014-07-03 엘지전자 주식회사 단말의 릴레이를 통한 통신 방법 및 릴레이 시스템의 통신방법
CN101795169A (zh) * 2009-02-02 2010-08-04 夏普株式会社 中继协助通信系统及其方法
KR101274458B1 (ko) * 2009-04-17 2013-06-17 알까뗄 루슨트 중계 이용자를 선택하고 다운링크 리소스를 할당하기 위한 방법, 장치 및 디바이스

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103916903A (zh) * 2013-01-04 2014-07-09 中国移动通信集团公司 一种参考信号接收功率的测量方法及装置
CN104185247A (zh) * 2013-09-26 2014-12-03 上海朗帛通信技术有限公司 Ue装置及方法
CN105228248A (zh) * 2014-06-13 2016-01-06 上海朗帛通信技术有限公司 一种d2d传输中的资源分配方法和装置
CN105472702A (zh) * 2014-08-21 2016-04-06 上海朗帛通信技术有限公司 Laa通信中的小区搜索方法和装置
US20160088607A1 (en) * 2014-09-19 2016-03-24 Telefonaktiebolaget L M Ericsson (Publ) Devices and methods for d2d synchronization signalling

Also Published As

Publication number Publication date
US20190053249A1 (en) 2019-02-14
CN107306417A (zh) 2017-10-31
US11172489B2 (en) 2021-11-09
CN107306417B (zh) 2019-09-06

Similar Documents

Publication Publication Date Title
WO2017181819A1 (zh) 一种用户设备、基站中的用于中继的方法和装置
US11917507B2 (en) Method, apparatus and system for feedback information transmission between internet of vehicles devices
CN105210417B (zh) 用于控制网络外设备到设备通信的系统和方法
US10021536B2 (en) Communication control method and user terminal for selecting a D2D synchronization reference
CN106162777B (zh) 中继节点切换方法及系统
KR101488734B1 (ko) 채널 상태 정보 측정 및 보고
US9049666B2 (en) Method and apparatus for providing machine-to-machine communication in a wireless network
AU2013228834B2 (en) Communication control device, communication control method, and base station
WO2012134551A2 (en) Random access techniques for fixed devices in mobile broadband networks
CN101867457A (zh) 信道状态信息的处理方法及用户设备
WO2017181820A1 (zh) 一种用户设备、基站中的用于中继通信的方法和装置
WO2017206730A1 (zh) 一种下行干扰管理方法、基站及用户设备
WO2016116289A1 (en) Methods, base station, mobile node and relay node
CN110034877B (zh) 补充上行载波配置信息传递的方法及设备
JP6435399B2 (ja) 参照信号を用いるセルラ通信リンクと装置間(d2d)通信リンクとの間の選択
US9936376B2 (en) Adaptive D2D discovery operations
CN110087340B (zh) 中继传输的方法及设备
WO2017177810A1 (zh) 一种用户设备、基站中的窄带蜂窝通信的方法和装置
US9847856B2 (en) Apparatus and method for time domain ICIC with muting pattern comprising fixed and optional parts
WO2011124941A1 (en) Wireless device assisted self-positioning
KR20170062985A (ko) 사용자 협력 통신을 통한 wlan 통신 커버리지 확대를 위한 단말간 연결생성 기법
WO2017190566A1 (zh) 一种用户设备、基站中的用于中继传输的方法和装置
US20160174269A1 (en) Methods and Apparatus for Device to Device Communication
KR20120071113A (ko) 이동 통신 시스템에서 긴급 단말의 통신을 위한 단말의 중계 방법
CN102652444A (zh) 中继无线通信系统中通信方法和相关装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785304

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15.03.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17785304

Country of ref document: EP

Kind code of ref document: A1