WO2017175811A1 - Cancer detection method, cancer detection device, and cancer detection program - Google Patents

Cancer detection method, cancer detection device, and cancer detection program Download PDF

Info

Publication number
WO2017175811A1
WO2017175811A1 PCT/JP2017/014298 JP2017014298W WO2017175811A1 WO 2017175811 A1 WO2017175811 A1 WO 2017175811A1 JP 2017014298 W JP2017014298 W JP 2017014298W WO 2017175811 A1 WO2017175811 A1 WO 2017175811A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
ratio
protein
amino acid
nucleic acid
Prior art date
Application number
PCT/JP2017/014298
Other languages
French (fr)
Japanese (ja)
Inventor
宗彰 匹田
瀧 優介
福武 直樹
楓 横山
寛晃 伊藤
Original Assignee
株式会社ニコン
学校法人昭和大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016076219A external-priority patent/JP2019090611A/en
Priority claimed from JP2016076222A external-priority patent/JP2019090612A/en
Application filed by 株式会社ニコン, 学校法人昭和大学 filed Critical 株式会社ニコン
Publication of WO2017175811A1 publication Critical patent/WO2017175811A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a cancer test method, a cancer test apparatus, and a cancer test program.
  • Patent Document 1 Japanese Patent Laid-Open No. 2015-180212
  • Tumor markers have problems with sensitivity and organ specificity.
  • the amount of amino acid or protein in the examination region and the amount of nucleic acid are obtained, the ratio between the amount of amino acid or protein obtained and the amount of nucleic acid is calculated, and the calculated ratio And a cancer test method for determining the presence or absence of cancer cells based on a comparison with a predetermined first threshold.
  • a cancer test apparatus is provided that includes an information output unit that outputs information according to a ratio to the amount of nucleic acid obtained.
  • the acquisition step of acquiring the amount of amino acid or protein in the examination region and the amount of nucleic acid, the amount of amino acid or protein acquired in the acquisition step, and the nucleic acid acquired in the acquisition step There is provided a cancer test program for causing a processing device to execute an output step of outputting information corresponding to a ratio to a quantity.
  • FIG. 2 is a schematic diagram illustrating the structure of an inspection apparatus 100.
  • FIG. 3 is a block diagram of a control unit 170.
  • FIG. 3 is a flowchart showing an inspection procedure in the inspection apparatus 100. It is a figure which illustrates the display in the display image. It is a figure which illustrates the display in the display image. It is a figure which illustrates the display in the display image. It is a figure which illustrates the display in the display image. It is a figure which illustrates the display in the display image. It is a figure which illustrates the display in the display image.
  • FIG. 6 is a diagram illustrating a display in a display image 306. It is a figure which illustrates the display in the display image 307.
  • FIG. It is a figure which illustrates the display in the display image. It is an example of the display image 309 which shows a detection position. It is an example of the display image 310 which shows a detection position.
  • 5 is a flowchart showing another inspection procedure in the inspection apparatus
  • the inventors obtained knowledge that there is a difference between the ratio in cancer cells and the ratio in normal cells when focusing on the ratio between the amount of amino acid or protein in the cell and the amount of base. Therefore, in the present embodiment, the amount of amino acid or protein and the amount of base are detected in the cell to be examined, the ratio of the detected amount of amino acid or protein and the amount of base is calculated and compared with a prepared threshold value. In this case, a cancer test method has been developed for determining that cancer cells are included in a region having a ratio exceeding the threshold.
  • FIG. 1 is a schematic diagram showing an overall configuration of an inspection apparatus 100 that can be used in the above-described cancer inspection method.
  • the inspection apparatus 100 includes a stage 110, an objective optical system 120, a light source device 130, an irradiation optical system 140, a front detection system 150, a rear detection system 160, and a control unit 170.
  • the stage 110 supports the sample 101 to be inspected by the inspection apparatus 100 at the peripheral edge of the container in which the sample 101 is accommodated.
  • the stage 110 has an opening that exposes the lower surface of the sample 101 in the drawing. Thereby, the sample 101 placed on the stage 110 can be observed from the lower side in the figure.
  • Stage 110 is coupled to stage scanner 111.
  • the stage scanner 111 drives the stage 110 in parallel and perpendicular to the surface on which the sample 101 is placed, as indicated by arrows xyz in the drawing.
  • region in the sample 101 can be made into the object area
  • a region to be observed or examined may be referred to as a region of interest.
  • the objective optical system 120 includes a front objective lens 121 and a rear objective lens 122 that are arranged symmetrically with respect to the sample 101 on opposite sides of the stage 110.
  • the front objective lens 121 also plays a role of collecting excitation light, illumination light, and the like irradiated on the sample 101.
  • the light source device 130 includes a plurality of light sources 131 and 132 that generate different types of irradiation light, and a combiner 139. At least one of the light sources 131 and 132 may be a laser light source that generates excitation light used when measuring the Raman spectrum of the sample 101, for example, laser light having a wavelength of 532 nm. Further, one of the plurality of light sources 131 and 132 may be a light source of illumination light used when observing a microscopic image of the sample 101.
  • the irradiation light with which the sample 101 is irradiated is long-wavelength light that hardly invades cells, whether it is excitation light or illumination light. More specifically, a wavelength range of 400 nm to 800 nm can be exemplified.
  • the irradiation light emitted from the light sources 131 and 132 becomes a beam that passes through a single optical path by the combiner 139. Thereby, the irradiation light generated by the plurality of light sources 131 and 132 can be irradiated to the same position of the sample 101.
  • the irradiation optical system 140 includes a galvano scanner 141 and a scan lens 142.
  • the galvano scanner 141 includes a pair of reflecting mirrors that swing around two swing axes that are not parallel to each other. As a result, the optical path of the excitation light incident on the galvano scanner is displaced two-dimensionally in the direction intersecting the optical axis.
  • the scan lens 142 focuses the excitation light emitted from the galvano scanner 141 onto a predetermined primary image plane 143. Thereby, the excitation light emitted from the light source device 130 can be applied to any region of interest set in the sample 101.
  • the front detection system 150 includes a dichroic mirror 151, relay lenses 152 and 153, a band pass filter 154, and a spectroscope 155.
  • the dichroic mirror 151 transmits the excitation light irradiated toward the sample 101 with high efficiency.
  • the dichroic mirror 151 reflects the Raman scattered light generated in the sample 101 and guides it to the relay lenses 152 and 153.
  • the band pass filter 154 transmits the Raman scattered light generated from the sample 101 and enters the spectroscope 155 while absorbing or reflecting the excitation light and the Rayleigh scattered light. Thereby, the spectroscope 155 efficiently detects the Raman scattered light reflected by the sample 101 and outputs a spectral image.
  • the rear detection system 160 includes a reflecting mirror 161, relay lenses 162 and 163, a band pass filter 164, and a spectroscope 165.
  • the reflecting mirror 161 reflects the Raman scattered light generated in the sample 101 and guides it to the relay lenses 162 and 163, the band pass filter 164, and the spectroscope 165.
  • a dichroic mirror that selectively reflects the wavelength of the Raman scattered light may be provided.
  • the band-pass filter 164 transmits Raman scattered light generated from the sample 101 and makes it enter the spectroscope 165 while absorbing or reflecting Rayleigh scattered light and excitation light. Thereby, the spectroscope 165 efficiently detects Raman spectroscopy by the transmitted light of the sample 101.
  • the control unit 170 includes a processing device 171, a mouse 172, a keyboard 173, and a display unit 174.
  • the mouse 172 and the keyboard 173 are connected to the processing device 171 and are operated when a user instruction is input to the processing device 171.
  • the display unit 174 returns feedback to the user's operation using the mouse 172 and the keyboard 173, and displays the image or character string generated by the processing device 171 toward the user. Further, in the illustrated inspection apparatus, the display unit 174 displays an observation image obtained by optically observing the sample 101, characters or images representing the inspection result, and the like.
  • the processing device 171 controls the operations of the light source device 130, the stage scanner 111, and the galvano scanner 141. Further, the processing device 171 determines the state of the sample 101 based on the spectral images acquired from the spectroscopes 155 and 165 of the front detection system 150 or the rear detection system 160, that is, whether or not the sample 101 contains cancer cells. inspect. Furthermore, the processing device 171 can process the spectra acquired from the spectroscopes 155 and 165 to improve the detection accuracy of amino acids or proteins and nucleic acids.
  • the Raman scattered light detected by the front detection system 150 disposed on the same side as the irradiation optical system 140 with respect to the sample 101 is backward Raman scattered light reflected by the sample 101.
  • the Raman scattered light detected by the rear detection system 160 disposed on the opposite side of the irradiation optical system 140 with respect to the sample 101 is forward Raman scattered light that has passed through the sample 101.
  • FIG. 2 is a block diagram schematically showing the internal structure of the processing device 171 of the control unit 170 in the inspection device 100.
  • the processing device 171 includes a detection unit 271 and an information output unit 276.
  • the information output unit 276 includes a calculation unit 272, a comparison unit 273, a storage unit 274, and an output unit 275.
  • the detection unit 271 detects the amount of protein and the amount of nucleic acid present in one region of interest in the sample 101 based on the spectra acquired from the spectroscopes 155 and 165, respectively.
  • the amount of protein and the amount of nucleic acid can each be detected as the height of a particular peak in the spectrum of sample 101.
  • the amount of amino acids in the region of interest may be detected as an index of the amount of protein in the region of interest of the sample 101. Further, as will be described later, an aromatic amino acid among amino acids, more specifically, at least one of tryptophan and phenylalanine may be detected as an indicator of the amount of protein.
  • the amount of nucleobase may be detected as an index of the amount of nucleic acid in the sample 101. Further, as will be described later, at least one of cytosine and adenine may be detected in the nucleic acid.
  • the calculating unit 272 calculates the ratio between the detected amount of protein detected by the detecting unit 271 and the detected amount of nucleic acid.
  • the ratio calculated here has a value reflecting the state of the cell in the region of interest. That is, the ratio of the amount of protein and the amount of nucleic acid in the cell nucleus differs between normal cells and cancer cells.
  • the ratio value calculated by the calculation unit 272 is compared with a predetermined threshold value, it is possible to easily and reliably inspect whether or not the sample 101 to be inspected contains cancer cells.
  • the calculated ratio can be calculated as the ratio of the peak value in the spectrum.
  • a plurality of regions of interest included in a target region wider than one region of interest may be set for one sample 101, and the sample 101 may be inspected in each region of interest. This reduces the probability of missing locally generated cancer cells.
  • the comparison unit 273 executes a test for comparing the ratio value calculated by the calculation unit 272 with a threshold value stored in the threshold value storage unit 274 in advance.
  • the result of the inspection is transmitted to the user through the output unit 275.
  • the inspection result may be displayed on the display unit 174 as a character string or an image. Further, the inspection result may be output by voice or the like. Further, the inspection result may be accumulated and the user may be referred to at an arbitrary timing.
  • the information output unit 276 outputs information corresponding to the ratio of the amount of nucleic acid acquired by the detection unit 271 to the amount of protein acquired by the detection unit 271.
  • FIG. 3 is a flowchart showing an inspection procedure using the inspection apparatus 100.
  • a threshold value is stored in the threshold value storage unit 274 of the inspection apparatus 100 (step S101).
  • the threshold value to be stored is obtained, for example, by inspecting a cell sample whose state is known with the inspection apparatus 100.
  • a sample 101 to be inspected is prepared and loaded into the inspection apparatus 100 (step S102). Subsequently, a microscopic image obtained by optically enlarging the sample 101 is observed, and a region of interest to be inspected is set (step S103). Note that a microscopic image of the sample 101 including the region of interest observed in step S103 may be captured and stored (step S104).
  • a plurality of regions of interest in the sample 101 may be set for one sample 101. This reduces the probability that locally generated cancer cells are missed in the test.
  • the region of interest is irradiated with excitation light, and the spectrum of the sample 101 is obtained by the spectrometers 155 and 165 (step S105). Furthermore, the spectrum detected by the spectroscopes 155 and 165 is processed by the processing device 171 to detect the amount of protein and the amount of nucleic acid in the region of interest as, for example, the light intensity of the corresponding peak in the spectrum (step S106).
  • the ratio between the detected protein amount and the nucleic acid amount is calculated, for example, as the ratio of peak values (step S107).
  • the calculated ratio value is compared with the threshold value stored in the threshold value storage unit 274 (step S108).
  • the test result whether a cancer cell is contained in the corresponding region of interest is obtained depending on whether or not the calculated ratio value exceeds a threshold value.
  • the obtained inspection result is recorded in the inspection apparatus 100 or output to the user (step S109). Further, the control unit 170 of the inspection apparatus 100 checks whether there remains a region of interest that has been set for the sample 101 in step S103 but has not yet been inspected (step S110).
  • step S110: YES If there is a region of interest that has not been inspected yet in step S110 (step S110: YES), the control unit 170 returns the processing of the inspection apparatus 100 to step S105 and executes the inspection again. Further, in this way, the inspection apparatus 100 inspects whether cancer cells are present in the region of interest of the sample 101. If it is determined in step S110 that there is no region of interest that has not been inspected (step S110: NO), the inspection in the inspection apparatus 100 ends.
  • the spectrum of the sample 101 can be obtained without staining the sample 101.
  • operations such as setting a region of interest may be facilitated by staining the nucleus of the cells contained in the sample 101 to make the microscopic image clearer.
  • Example As an example for determining the threshold value, the sample 101 that is known to contain cancer cells was inspected by the above-described inspection apparatus 100, and the threshold value stored in the threshold value storage unit 274 was examined. Sample 101 was made from an unstained section of the human stomach.
  • a microscopic image of sample 101 was obtained using an objective lens having a magnification of 100 times.
  • the region of interest was irradiated with laser light having a wavelength of 532 nm as excitation light, and a spectrum due to Raman scattering was detected.
  • the beam diameter of the excitation light was made smaller than the cell, for example, 1 ⁇ m or less. For this reason, in each of the 10 ⁇ m ⁇ 10 ⁇ m regions of interest in the sample 101, 121 points of detection spots in each region of interest were irradiated with excitation light for 10 seconds to detect 121 points of spectra. Furthermore, the detected values detected from the spectrum of 121 points were averaged to obtain a detected value of the amount of protein or nucleic acid in the region of interest. Thereby, the detected value is a value having a spatial spread.
  • image processing was executed in the processing device 171 to remove a known glass peak from the detected spectrum in advance, thereby eliminating the influence of the container of the sample 101.
  • the effect of autofluorescence was eliminated by approximating with a fifth order polynomial. From the spectra thus obtained, the light intensity of the peaks corresponding to the nucleic acids shown in Table 1 below and the proteins shown in Table 2 below were detected as the amounts of nucleic acids and proteins.
  • FIG. 4 is a diagram illustrating an example of a graph included in the display image 301 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
  • the value on the horizontal axis indicates the amount of adenine detected from the peak light intensity of Raman shift 725 cm ⁇ 1 in the Raman spectroscopic image as an example of nucleic acid, and the peak light intensity of Raman shift 756 cm ⁇ 1 as an example of protein. It is a ratio to the amount of tryptophan.
  • the value on the vertical axis is the ratio between the amount of adenine and the amount of protein using the ⁇ helix structure as an index detected from the peak light intensity of Raman shift 1263 cm ⁇ 1 .
  • step S101 shown in FIG. 3 by setting a threshold value of 0.85 for the ratio between the amount of adenine and the amount of tryptophan, the cancer is determined based on the ratio of the amount of adenine and tryptophan detected from the Raman spectroscopic image.
  • the presence of cells can be examined.
  • normal cells and cancer cells are distinguished by black and white dots, but the display unit 174 can improve visibility by distinguishing the colors and shapes of the dots.
  • FIG. 5 is a diagram illustrating an example of a graph included in another display image 302 displayed on the display unit 174 as a result of the inspection.
  • the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
  • the value on the horizontal axis is the ratio of the amount of adenine, which is an example of nucleic acid, to the amount of tryptophan, which is an example of amino acid.
  • the value on the vertical axis is the ratio between the amount of adenine and the amount of phenylalanine detected from the peak light intensity of Raman shift of 1002 cm ⁇ 1 as an example of protein.
  • step S101 shown in FIG. 3 by setting a threshold value of 0.85 for the ratio between the amount of adenine and the amount of tryptophan, the cancer is determined based on the ratio of the amount of adenine and tryptophan detected from the Raman spectroscopic image. The presence of cells can be examined.
  • FIG. 6 is a diagram illustrating an example of a graph included in the display image 303 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
  • the value on the horizontal axis is the ratio between the amount of cytosine detected from the peak light intensity of Raman shift 782 cm ⁇ 1 in the Raman spectroscopic image as an example of nucleic acid and the amount of tryptophan, which is an example of amino acid.
  • the value on the vertical axis is the ratio between the amount of cytosine, which is an example of nucleic acid, and the amount of phenylalanine, which is an example of protein.
  • step S101 shown in FIG. 3 the threshold value 1.2 is set for the ratio between the amount of cytosine and the amount of tryptophan, and the threshold value 0.3 is set for the ratio between the amount of cytosine and the amount of phenylalanine.
  • the presence of cancer cells can be examined based on the ratio between the amount of each nucleic acid detected from the Raman spectroscopic image and the amount of protein.
  • FIG. 7 is a diagram illustrating an example of a graph included in the display image 304 displayed on the display unit 174 as a result of the inspection.
  • the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
  • the value on the horizontal axis is the ratio of the amount of cytosine, which is an example of nucleic acid, to the amount of tryptophan, which is an example of protein.
  • the value on the vertical axis indicates the amount of cytosine, which is an example of nucleic acid, and the amount of amide bond derived from a protein having a secondary structure of ⁇ sheet detected from the peak light intensity of Raman shift 1250 cm ⁇ 1 (in the following description). Is simply referred to as “amount of amide bond”).
  • the amount of amide bond is an indicator of the amount of protein.
  • cancer cells can be discriminated by the threshold 1.2 on the horizontal axis, but the threshold at which cancer cells can be discriminated on the vertical axis. It can be seen that it has risen to 0.43. Therefore, in step S101 shown in FIG. 3, by setting the threshold value 0.43, the presence of cancer cells can be examined based on the ratio between the amount of cytosine and the amount of amide bond.
  • FIG. 8 is a diagram illustrating an example of a graph included in the display image 305 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
  • the value on the horizontal axis represents the ratio between the amount of cytosine, which is an example of nucleic acid, and the amount of symmetric tryptophan, which is an example of protein.
  • the value on the vertical axis is the ratio between the amount of adenine, which is an example of nucleic acid, and the amount of symmetric tryptophan, which is an example of protein.
  • the horizontal axis can distinguish cancer cells with a threshold of 1.3, and the vertical axis can distinguish cancer cells with a threshold of 0.9. I understand that I can do it. Therefore, in step S101 shown in FIG. 3, by setting a threshold value of 1.3, the presence of cancer cells can be examined based on the ratio of cytosine to the amount of symmetric tryptophan. The presence of cancer cells can be examined on the basis of the ratio of the amount of glycine to the amount of symmetric tryptophan.
  • FIG. 9 is a diagram illustrating an example of a graph included in the display image 306 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
  • the value on the horizontal axis is the ratio between the amount of cytosine in the sample 101, which is an example of a nucleic acid, and the amount of protein using the ⁇ helix structure as an index.
  • the value on the vertical axis is the ratio between the amount of adenine, which is an example of a nucleic acid, and the amount of protein using the ⁇ helix structure as an index.
  • cancer cells can be distinguished by a threshold of 0.5 on the horizontal axis, but cancer cells are distributed alone on the vertical axis. It can be seen that the area does not exist.
  • the threshold value is 0 rather than calculating the ratio between the amount of adenine, which is a nucleic acid, and the amount of protein using ⁇ -helix structure as an index.
  • .5 is preferably set, and examination is preferably performed based on the ratio between the amount of cytosine, which is a nucleic acid, and the amount of protein using ⁇ -helix structure as an index.
  • FIG. 10 is a diagram illustrating an example of a graph included in the display image 307 displayed on the display unit 174 as a result of the inspection.
  • the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
  • the value on the horizontal axis is the ratio between the amount of cytosine in the sample 101 as an example of nucleic acid and the amount of amide bond as an example of protein.
  • the value on the vertical axis is the ratio between the amount of adenine, which is an example of nucleic acid, and the amount of amide bond, which is an example of protein. Focusing on the distribution of normal cells and cancer cells plotted in the graph, cancer cells can be distinguished by a threshold of 0.45 on the horizontal axis, but cancer cells are distributed alone on the vertical axis. It can be seen that the area does not exist.
  • step S101 shown in FIG. 3 by setting a threshold value of 0.45, the presence of cancer cells can be examined based on the ratio between the amount of cytosine and the amount of amide bond, but the amount of adenine, Even if the ratio with the amount of amide bond is calculated, the presence of cancer cells cannot be examined.
  • FIG. 11 is a diagram illustrating an example of a graph included in the display image 308 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
  • the value on the horizontal axis represents the ratio between the amount of cytosine in the sample 101 which is an example of a nucleic acid and the amount of phenylalanine which is an example of a protein.
  • the value on the vertical axis is the ratio between the amount of adenine, which is an example of nucleic acid, and the amount of phenylalanine, which is an example of protein. Focusing on the distribution of normal cells and cancer cells plotted in the graph, cancer cells can be distinguished by a threshold of 0.28 on the horizontal axis, but cancer cells are distributed alone on the vertical axis. It can be seen that the area does not exist.
  • step S101 shown in FIG. 3 by setting a threshold value of 0.28, the presence of cancer cells can be examined based on the ratio between the amount of cytosine and the amount of amide bond, but the amount of adenine, Even if the ratio with the amount of phenylalanine is calculated, the presence of cancer cells cannot be examined.
  • FIG. 12 is a diagram showing a display image 309 showing a result of performing an inspection by the inspection apparatus 100 on the sample 101 containing cancer cells.
  • the microscopic image of the cell in the figure is an image that was captured and stored in step S104 of FIG.
  • Numeral values shown in the figure correspond to the order in which the inspections are performed, and the numerical positions indicate the positions of the regions of interest in the inspection.
  • the numbers shown in white indicate that the test result at the relevant location was normal cells.
  • the numbers shown in black indicate that the test result at the relevant location was cancer cells.
  • the sample 101 that is known to contain cancer cells it can be seen that a peak ratio peculiar to the cancer cells is detected in a specific region of interest.
  • FIG. 13 is a diagram showing a display image 310 that shows a result of performing an inspection by the inspection apparatus 100 on a sample 101 that does not contain cancer cells.
  • the microscopic image of the cell in the figure is an image that was captured and stored in step S104 of FIG.
  • the meanings of the numbers shown in the figure are the same as those in FIG.
  • the peak ratio peculiar to cancer cells is not detected, and only the peak ratio of normal cells is detected. Therefore, it can be seen that the sample 101 does not contain cancer cells.
  • the numbers in italics in FIGS. 12 and 13 indicate that the test result at the relevant location could not be determined as being a normal cell or a cancer cell. When all the regions of interest in the entire sample 101 have such a test result, it means that the selection of the nucleic acid and protein types for detecting the peak value was not appropriate.
  • nucleic acid and protein may be selected to detect the peak value of the spectral waveform, and a test may be performed by setting a threshold value suitable for such nucleic acid and protein.
  • a significant detection result may be obtained by changing the detection conditions such as the wavelength of the excitation light applied to the sample 101 and executing the inspection.
  • FIG. 14 is a flowchart showing another inspection procedure.
  • the same procedures as those in FIG. 3 are denoted by the same reference numerals, and redundant description is omitted.
  • step S111 in addition to the threshold value to be compared in step S108, a second threshold value regarding the width of deviation between the calculation result and the threshold value is set. Further, after step S108, a step of checking whether or not the detection result exceeds the second threshold set in step S101 is provided (step S113). And in order to improve the certainty of cancer cell detection, when the initial threshold value is exceeded, but the second threshold value is not exceeded (step S113: NO), the same region of interest is examined. A step (step S112) of executing another re-inspection whose conditions have been changed is added.
  • step S112 the change etc. of the kind of nucleic acid and protein used as the object which calculates peak ratio can be illustrated, for example. Further, the wavelength of the excitation light for detecting the spectrum may be changed by further changing the procedure.
  • the above inspection method can be executed if a spectrum can be obtained, it may be incorporated into an existing spectroscopic measurement apparatus as a program for executing the above inspection method.
  • the amounts of nucleic acids and proteins were detected from the Raman scattering spectrum.
  • an amino acid or protein amount can be detected, and any method can be selected from measurement methods that can be calculated as a ratio of the nucleic acid amount to the amino acid or protein amount.
  • the spectrum may be detected from CARS light generated by the CARS process (Coherent Anti-Stokes Raman Scattering). Infrared spectroscopy may be used instead of or in addition to using Raman spectroscopy or CARS light.
  • inspection apparatus 100 may be made to switch each kind of nucleic acid and protein which detect quantity by a user's operation.
  • the display method of the inspection result on the display unit 174 may be switched.
  • the display format may be graphed as shown in FIGS. 4 to 11, or may be displayed superimposed on the microscopic image as shown in FIGS.
  • you may make it display combining a character string, a color, a sound, etc.
  • these display formats may be selected by a user operation.
  • the above-described inspection apparatus 100 is formed by combining an optical microscope and a spectroscope
  • the spectrum can be detected non-invasively by, for example, an endoscope. Therefore, a cancer test can be performed non-invasively by combining an endoscope capable of spectroscopic measurement with the processing device 171.
  • the inspection apparatus 100 may be configured so that a plurality of regions of interest are simultaneously irradiated with excitation light and the plurality of regions of interest are inspected in parallel. This can reduce the time required for cancer testing.
  • 100 inspection device 101 sample, 110 stage, 111 stage scanner, 120 objective optical system, 121 front objective lens, 122 rear objective lens, 130 light source device, 131, 132 light source, 139 combiner, 140 irradiation optical system, 141 galvano scanner , 142 scan lens, 143 primary image plane, 150 front detection system, 151 dichroic mirror, 152, 153, 162, 163 relay lens, 154, 164 band pass filter, 155, 165 spectroscope, 160 rear detection system, 161 reflection Mirror, 170 control unit, 171 processing device, 172 mouse, 173 keyboard, 174 display unit, 271 detection unit, 272 calculation unit, 273 comparison unit, 274 storage unit, 275 output unit, 276 information output Part, 301,302,303,304,305,306,307,308,309,310 display image

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Hematology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Provided is a cancer detection method, wherein: an amount of amino acids or proteins in a detection region, and an amount of nucleic acids are acquired; the ratio of the acquired amount of amino acids or proteins with respect to the acquired amount of nucleic acids is calculated; and the presence of cancer cells is determined on the basis of a comparison of the calculated ratio and a preset first threshold value. In the cancer detection method, a configuration may be employed such that the amount of amino acids in the detection region is detected as an indicator of the amount of proteins, the amount of nucleobases in the detection region is detected as an indicator of the amount of nucleic acids, and the ratio of the detected amount of amino acids with respect to the detected amount of nucleobases is used as the ratio.

Description

がん検査方法、がん検査装置、および、がん検査プログラムCancer examination method, cancer examination apparatus, and cancer examination program
 本発明は、がん検査方法、がん検査装置、および、がん検査プログラムに関する。 The present invention relates to a cancer test method, a cancer test apparatus, and a cancer test program.
 がん細胞存否の検査は、医師の目視によるか、腫瘍マーカを使用する(例えば特許文献1参照)。
 特許文献1 特開2015-180212号公報
The examination of the presence or absence of cancer cells is performed by visual observation by a doctor or using a tumor marker (for example, see Patent Document 1).
Patent Document 1 Japanese Patent Laid-Open No. 2015-180212
 目視による検査は医師の経験により精度が異なる。腫瘍マーカは、感度および臓器特異性に問題がある。 The accuracy of visual inspection varies depending on the experience of the doctor. Tumor markers have problems with sensitivity and organ specificity.
 本発明の第一の態様においては、検査領域におけるアミノ酸またはタンパク質の量と、核酸の量とを取得し、取得したアミノ酸またはタンパク質の量と、核酸の量との比を算出し、算出した比と予め定めた第1の閾値との比較に基づいて、がん細胞の有無を判別するがん検査方法が提供される。本発明の第二の態様においては、検査領域において検出された、アミノ酸またはタンパク質の量と、核酸の量とを取得する取得部と、取得部が取得したアミノ酸またはタンパク質の量と、取得部が取得した核酸の量との比に応じた情報を出力する情報出力部とを備えるがん検査装置が提供される。本発明の第三の態様においては、検査領域におけるアミノ酸またはタンパク質の量と、核酸の量とを取得する取得ステップと、取得ステップで取得したアミノ酸またはタンパク質の量と、取得ステップにおいて取得した核酸の量との比に応じた情報を情報出力する出力ステップとを処理装置に実行させるがん検査プログラムが提供される。 In the first aspect of the present invention, the amount of amino acid or protein in the examination region and the amount of nucleic acid are obtained, the ratio between the amount of amino acid or protein obtained and the amount of nucleic acid is calculated, and the calculated ratio And a cancer test method for determining the presence or absence of cancer cells based on a comparison with a predetermined first threshold. In the second aspect of the present invention, the acquisition unit for acquiring the amount of amino acid or protein and the amount of nucleic acid detected in the examination region, the amount of amino acid or protein acquired by the acquisition unit, and the acquisition unit A cancer test apparatus is provided that includes an information output unit that outputs information according to a ratio to the amount of nucleic acid obtained. In the third aspect of the present invention, the acquisition step of acquiring the amount of amino acid or protein in the examination region and the amount of nucleic acid, the amount of amino acid or protein acquired in the acquisition step, and the nucleic acid acquired in the acquisition step There is provided a cancer test program for causing a processing device to execute an output step of outputting information corresponding to a ratio to a quantity.
 上記の発明の概要は、本発明の特徴の全てを列挙したものではない。これらの特徴群のサブコンビネーションもまた発明となり得る。 The above summary of the invention does not enumerate all the features of the present invention. Sub-combinations of these feature groups can also be an invention.
検査装置100の構造を説明する模式図である。2 is a schematic diagram illustrating the structure of an inspection apparatus 100. FIG. 制御部170のブロック図である。3 is a block diagram of a control unit 170. FIG. 検査装置100における検査手順を示す流れ図である。3 is a flowchart showing an inspection procedure in the inspection apparatus 100. 表示画像301における表示を例示する図である。It is a figure which illustrates the display in the display image. 表示画像302における表示を例示する図である。It is a figure which illustrates the display in the display image. 表示画像303における表示を例示する図である。It is a figure which illustrates the display in the display image. 表示画像304における表示を例示する図である。It is a figure which illustrates the display in the display image. 表示画像305における表示を例示する図である。It is a figure which illustrates the display in the display image. 表示画像306における表示を例示する図である。FIG. 6 is a diagram illustrating a display in a display image 306. 表示画像307における表示を例示する図である。It is a figure which illustrates the display in the display image 307. FIG. 表示画像308における表示を例示する図である。It is a figure which illustrates the display in the display image. 検出位置を示す表示画像309の一例である。It is an example of the display image 309 which shows a detection position. 検出位置を示す表示画像310の一例である。It is an example of the display image 310 which shows a detection position. 検査装置100における他の検査手順を示す流れ図である。5 is a flowchart showing another inspection procedure in the inspection apparatus 100.
 以下、発明の実施の形態を通じて本発明を説明する。下記の実施形態は請求の範囲に係る発明を限定するものではない。実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. The following embodiments do not limit the claimed invention. Not all combinations of features described in the embodiments are essential for the solution of the invention.
 発明者等は、細胞におけるアミノ酸またはタンパク質の量と塩基の量との比率に着目すると、がん細胞における当該比率と、正常細胞における当該比率とに相違があるとの知見を得た。そこで、本実施形態では、検査対象となる細胞においてアミノ酸またはタンパク質の量と塩基の量とを検出し、検出したアミノ酸またはタンパク質の量と塩基の量の比率を算出して予め用意した閾値と比較した場合に、閾値を超えた比率を有する領域にがん細胞が含まれることを判定するがん検査方法が開発された。 The inventors obtained knowledge that there is a difference between the ratio in cancer cells and the ratio in normal cells when focusing on the ratio between the amount of amino acid or protein in the cell and the amount of base. Therefore, in the present embodiment, the amount of amino acid or protein and the amount of base are detected in the cell to be examined, the ratio of the detected amount of amino acid or protein and the amount of base is calculated and compared with a prepared threshold value. In this case, a cancer test method has been developed for determining that cancer cells are included in a region having a ratio exceeding the threshold.
 図1は、上記のがん検査方法に使用できる検査装置100の全体的な構成を示す模式図である。検査装置100は、ステージ110、対物光学系120、光源装置130、照射光学系140、前部検出系150、後部検出系160、および制御部170を備える。 FIG. 1 is a schematic diagram showing an overall configuration of an inspection apparatus 100 that can be used in the above-described cancer inspection method. The inspection apparatus 100 includes a stage 110, an objective optical system 120, a light source device 130, an irradiation optical system 140, a front detection system 150, a rear detection system 160, and a control unit 170.
 ステージ110は、検査装置100の検査対象となるサンプル101を、サンプル101を収容した容器の周縁部で支持する。また、ステージ110は、サンプル101の図中下面を露出させる開口を有する。これにより、ステージ110に置かれたサンプル101を、図中下側からも観察できる。 The stage 110 supports the sample 101 to be inspected by the inspection apparatus 100 at the peripheral edge of the container in which the sample 101 is accommodated. The stage 110 has an opening that exposes the lower surface of the sample 101 in the drawing. Thereby, the sample 101 placed on the stage 110 can be observed from the lower side in the figure.
 ステージ110は、ステージスキャナ111に結合される。ステージスキャナ111は、図中に矢印x-y-zで示すように、サンプル101が置かれた面と平行および垂直にステージ110を駆動する。これにより、検査装置100においては、光学系の光軸および励起光の光軸を固定したまま、サンプル101における立体的な領域を観察または検査の対象領域にすることができる。以降の説明において、観察または検査の対象となる領域を関心領域ということがある。 Stage 110 is coupled to stage scanner 111. The stage scanner 111 drives the stage 110 in parallel and perpendicular to the surface on which the sample 101 is placed, as indicated by arrows xyz in the drawing. Thereby, in the inspection apparatus 100, the three-dimensional area | region in the sample 101 can be made into the object area | region of observation or inspection, fixing the optical axis of an optical system, and the optical axis of excitation light. In the following description, a region to be observed or examined may be referred to as a region of interest.
 対物光学系120は、ステージ110に対して互いに反対側に、サンプル101に対して対称的に配された前側対物レンズ121および後側対物レンズ122を有する。図示の検査装置100において前側対物レンズ121は、サンプル101に対して照射される励起光および照明光等を集光する役割も担う。 The objective optical system 120 includes a front objective lens 121 and a rear objective lens 122 that are arranged symmetrically with respect to the sample 101 on opposite sides of the stage 110. In the illustrated inspection apparatus 100, the front objective lens 121 also plays a role of collecting excitation light, illumination light, and the like irradiated on the sample 101.
 光源装置130は、互いに異なる種類の照射光を発生する複数の光源131、132と、コンバイナ139とを有する。光源131、132の少なくとも一方は、サンプル101のラマン分光を測定する場合に使用する励起光、例えば、波長532nmのレーザ光を発生するレーザ光源であってもよい。また、複数の光源131、132のひとつは、サンプル101の顕微像を観察する場合に使用する照明光の光源であってもよい。 The light source device 130 includes a plurality of light sources 131 and 132 that generate different types of irradiation light, and a combiner 139. At least one of the light sources 131 and 132 may be a laser light source that generates excitation light used when measuring the Raman spectrum of the sample 101, for example, laser light having a wavelength of 532 nm. Further, one of the plurality of light sources 131 and 132 may be a light source of illumination light used when observing a microscopic image of the sample 101.
 なお、サンプル101に照射する照射光は、励起光であっても、照明光であっても、細胞を侵襲しにくい長波長の光であることが好ましい。また、より具体的には、波長400nmから800nmの範囲を例示できる。 In addition, it is preferable that the irradiation light with which the sample 101 is irradiated is long-wavelength light that hardly invades cells, whether it is excitation light or illumination light. More specifically, a wavelength range of 400 nm to 800 nm can be exemplified.
 光源131、132から射出された照射光は、コンバイナ139により単一の光路を通過するビームとなる。これにより、複数の光源131、132が発生した照射光を、サンプル101の同じ位置に照射できる。 The irradiation light emitted from the light sources 131 and 132 becomes a beam that passes through a single optical path by the combiner 139. Thereby, the irradiation light generated by the plurality of light sources 131 and 132 can be irradiated to the same position of the sample 101.
 照射光学系140は、ガルバノスキャナ141およびスキャンレンズ142を有する。ガルバノスキャナ141は、互いに平行ではない2つの揺動軸の周りを揺動する一対の反射鏡を備える。これにより、ガルバノスキャナに入射した励起光の光路は、光軸と交差する方向に二次元的に変位する。 The irradiation optical system 140 includes a galvano scanner 141 and a scan lens 142. The galvano scanner 141 includes a pair of reflecting mirrors that swing around two swing axes that are not parallel to each other. As a result, the optical path of the excitation light incident on the galvano scanner is displaced two-dimensionally in the direction intersecting the optical axis.
 スキャンレンズ142は、ガルバノスキャナ141から射出された励起光を、予め定められた一次像面143上に合焦させる。これにより、光源装置130から射出された励起光を、サンプル101に設定された任意の関心領域に照射できる。 The scan lens 142 focuses the excitation light emitted from the galvano scanner 141 onto a predetermined primary image plane 143. Thereby, the excitation light emitted from the light source device 130 can be applied to any region of interest set in the sample 101.
 前部検出系150は、ダイクロイックミラー151、リレーレンズ152、153、帯域通過フィルタ154、および分光器155を有する。ダイクロイックミラー151は、サンプル101に向かって照射した励起光を高効率に透過させる。 The front detection system 150 includes a dichroic mirror 151, relay lenses 152 and 153, a band pass filter 154, and a spectroscope 155. The dichroic mirror 151 transmits the excitation light irradiated toward the sample 101 with high efficiency.
 ダイクロイックミラー151は、サンプル101において発生したラマン散乱光を反射して、リレーレンズ152、153に導く。帯域通過フィルタ154は、励起光およびレイリー散乱光を吸収または反射しつつ、サンプル101から発生したラマン散乱光を透過させて分光器155に入射させる。これにより、分光器155は、サンプル101に反射されたラマン散乱光を効率よく検出して分光像を出力する。 The dichroic mirror 151 reflects the Raman scattered light generated in the sample 101 and guides it to the relay lenses 152 and 153. The band pass filter 154 transmits the Raman scattered light generated from the sample 101 and enters the spectroscope 155 while absorbing or reflecting the excitation light and the Rayleigh scattered light. Thereby, the spectroscope 155 efficiently detects the Raman scattered light reflected by the sample 101 and outputs a spectral image.
 後部検出系160は、反射鏡161、リレーレンズ162、163、帯域通過フィルタ164、および分光器165を有する。反射鏡161は、サンプル101において発生したラマン散乱光を反射して、リレーレンズ162、163、帯域通過フィルタ164、および分光器165に導く。なお、反射鏡161に換えて、ラマン散乱光の波長を選択的に反射するダイクロイックミラーを設けてもよい。 The rear detection system 160 includes a reflecting mirror 161, relay lenses 162 and 163, a band pass filter 164, and a spectroscope 165. The reflecting mirror 161 reflects the Raman scattered light generated in the sample 101 and guides it to the relay lenses 162 and 163, the band pass filter 164, and the spectroscope 165. Instead of the reflecting mirror 161, a dichroic mirror that selectively reflects the wavelength of the Raman scattered light may be provided.
 帯域通過フィルタ164は、レイリー散乱光および励起光を吸収または反射しつつ、サンプル101から発生したラマン散乱光を透過させて分光器165に入射させる。これにより、分光器165は、サンプル101の透過光によるラマン分光を効率よく検出する。 The band-pass filter 164 transmits Raman scattered light generated from the sample 101 and makes it enter the spectroscope 165 while absorbing or reflecting Rayleigh scattered light and excitation light. Thereby, the spectroscope 165 efficiently detects Raman spectroscopy by the transmitted light of the sample 101.
 制御部170は、処理装置171、マウス172、キーボード173、および表示部174を有する。マウス172およびキーボード173は、処理装置171に接続され、処理装置171にユーザの指示を入力する場合に操作される。表示部174は、マウス172およびキーボード173によるユーザの操作に対してフィードバックを返すと共に、処理装置171が生成した画像または文字列をユーザに向かって表示する。更に、図示の検査装置において、表示部174は、サンプル101を光学的に観察した観察像、検査結果を表す文字または画像等も表示する。 The control unit 170 includes a processing device 171, a mouse 172, a keyboard 173, and a display unit 174. The mouse 172 and the keyboard 173 are connected to the processing device 171 and are operated when a user instruction is input to the processing device 171. The display unit 174 returns feedback to the user's operation using the mouse 172 and the keyboard 173, and displays the image or character string generated by the processing device 171 toward the user. Further, in the illustrated inspection apparatus, the display unit 174 displays an observation image obtained by optically observing the sample 101, characters or images representing the inspection result, and the like.
 処理装置171は、光源装置130、ステージスキャナ111、およびガルバノスキャナ141の動作を制御する。また、処理装置171は、前部検出系150または後部検出系160の分光器155、165から取得した分光像に基づいてサンプル101の状態、すなわち、サンプル101ががん細胞を含むか否かを検査する。更に、処理装置171は、分光器155、165から取得したスペクトルを処理して、アミノ酸またはタンパク質および核酸の検出精度を向上させることができる。 The processing device 171 controls the operations of the light source device 130, the stage scanner 111, and the galvano scanner 141. Further, the processing device 171 determines the state of the sample 101 based on the spectral images acquired from the spectroscopes 155 and 165 of the front detection system 150 or the rear detection system 160, that is, whether or not the sample 101 contains cancer cells. inspect. Furthermore, the processing device 171 can process the spectra acquired from the spectroscopes 155 and 165 to improve the detection accuracy of amino acids or proteins and nucleic acids.
 なお、サンプル101に対して照射光学系140と同じ側に配置された前部検出系150により検されるラマン散乱光は、恰もサンプル101により反射された、後方ラマン散乱光である。一方、サンプル101に対して照射光学系140と反対側に配置された後部検出系160により検出されるラマン散乱光は、恰もサンプル101を透過した、前方ラマン散乱光である。 Note that the Raman scattered light detected by the front detection system 150 disposed on the same side as the irradiation optical system 140 with respect to the sample 101 is backward Raman scattered light reflected by the sample 101. On the other hand, the Raman scattered light detected by the rear detection system 160 disposed on the opposite side of the irradiation optical system 140 with respect to the sample 101 is forward Raman scattered light that has passed through the sample 101.
 図2は、検査装置100における制御部170の処理装置171の内部構造を模式的に示すブロック図である。図示のように、処理装置171は、検出部271および情報出力部276を有する。更に、情報出力部276は、算出部272、比較部273、格納部274、および出力部275を含む。 FIG. 2 is a block diagram schematically showing the internal structure of the processing device 171 of the control unit 170 in the inspection device 100. As illustrated, the processing device 171 includes a detection unit 271 and an information output unit 276. Furthermore, the information output unit 276 includes a calculation unit 272, a comparison unit 273, a storage unit 274, and an output unit 275.
 検出部271は、分光器155、165から取得したスペクトルに基づいて、サンプル101におけるひとつの関心領域に存在するタンパク質の量および核酸の量をそれぞれ検出する。タンパク質の量および核酸の量は、それぞれ、サンプル101のスペクトルにおける特定のピークの高さとして検出できる。 The detection unit 271 detects the amount of protein and the amount of nucleic acid present in one region of interest in the sample 101 based on the spectra acquired from the spectroscopes 155 and 165, respectively. The amount of protein and the amount of nucleic acid can each be detected as the height of a particular peak in the spectrum of sample 101.
 検査装置100においては、サンプル101の関心領域におけるタンパク質の量の指標として、関心領域におけるアミノ酸の量を検出してもよい。更に、後述するように、アミノ酸のうちの芳香族アミノ酸、より具体的にはトリプトファンおよびフェニルアラニンの少なくとも一方を、タンパク質の量の指標として検出してもよい。また、検査装置100においては、サンプル101における核酸の量の指標として、核酸塩基の量を検出してもよい。更に、後述するように、核酸のうち、シトシンおよびアデニンの少なくとも一方を検出してもよい。 In the inspection apparatus 100, the amount of amino acids in the region of interest may be detected as an index of the amount of protein in the region of interest of the sample 101. Further, as will be described later, an aromatic amino acid among amino acids, more specifically, at least one of tryptophan and phenylalanine may be detected as an indicator of the amount of protein. In the test apparatus 100, the amount of nucleobase may be detected as an index of the amount of nucleic acid in the sample 101. Further, as will be described later, at least one of cytosine and adenine may be detected in the nucleic acid.
 算出部272は、検出部271が検出したタンパク質の検出量と、核酸の検出量との比率を算出する。ここで算出された比率は、関心領域における細胞の状態を反映した値を有する。すなわち、細胞の核におけるタンパク質の量と核酸の量の比率は、正常な細胞とがん細胞とで異なっている。 The calculating unit 272 calculates the ratio between the detected amount of protein detected by the detecting unit 271 and the detected amount of nucleic acid. The ratio calculated here has a value reflecting the state of the cell in the region of interest. That is, the ratio of the amount of protein and the amount of nucleic acid in the cell nucleus differs between normal cells and cancer cells.
 よって、算出部272が算出した比率の値を、予め定め閾値と比較することにより、検査対象のサンプル101にがん細胞が含まれているか否かを容易且つ確実に検査できる。なお、タンパク質の量および核酸の量をスペクトルにおけるピーク値により検出した場合、算出する比率は、スペクトルにおけるピーク値の比率として算出できる。 Therefore, by comparing the ratio value calculated by the calculation unit 272 with a predetermined threshold value, it is possible to easily and reliably inspect whether or not the sample 101 to be inspected contains cancer cells. In addition, when the amount of protein and the amount of nucleic acid are detected by the peak value in the spectrum, the calculated ratio can be calculated as the ratio of the peak value in the spectrum.
 なお、ひとつのサンプル101に対して、ひとつの関心領域よりも広い対象領域に含まれる複数の関心領域を設定して、その各々の関心領域においてサンプル101の検査を実行してもよい。これにより、局部的に発生したがん細胞を見逃す確率が低減される。 Note that a plurality of regions of interest included in a target region wider than one region of interest may be set for one sample 101, and the sample 101 may be inspected in each region of interest. This reduces the probability of missing locally generated cancer cells.
 比較部273は、算出部272が算出した比率の値を、閾値格納部274に予め格納された閾値と比較する検査を実行する。検査の結果は、出力部275を通じてユーザに伝えられる。具体的には、例えば、表示部174に文字列または画像として検査結果を表示してもよい。また、音声等により検査結果を出力してもよい。更に、検査結果を蓄積して、任意のタイミングでユーザに参照を許してもよい。このように、情報出力部276は、検出部271が取得したタンパク質の量に対する、検出部271が取得した核酸の量の比に応じた情報を出力する。 The comparison unit 273 executes a test for comparing the ratio value calculated by the calculation unit 272 with a threshold value stored in the threshold value storage unit 274 in advance. The result of the inspection is transmitted to the user through the output unit 275. Specifically, for example, the inspection result may be displayed on the display unit 174 as a character string or an image. Further, the inspection result may be output by voice or the like. Further, the inspection result may be accumulated and the user may be referred to at an arbitrary timing. Thus, the information output unit 276 outputs information corresponding to the ratio of the amount of nucleic acid acquired by the detection unit 271 to the amount of protein acquired by the detection unit 271.
 図3は、検査装置100を用いた検査手順を示す流れ図である。まず、検査装置100の閾値格納部274に閾値を格納する(ステップS101)。格納する閾値は、例えば、状態が既知の細胞試料を検査装置100で検査することにより得られる。 FIG. 3 is a flowchart showing an inspection procedure using the inspection apparatus 100. First, a threshold value is stored in the threshold value storage unit 274 of the inspection apparatus 100 (step S101). The threshold value to be stored is obtained, for example, by inspecting a cell sample whose state is known with the inspection apparatus 100.
 次に、検査対象となるサンプル101を用意して、検査装置100に装填する(ステップS102)。続いて、サンプル101を光学的に拡大した顕微像を観察して、検査の対象となる関心領域を設定する(ステップS103)。なお、ステップS103において観察した関心領域を含むサンプル101の顕微像を撮像して保存してもよい(ステップS104)。 Next, a sample 101 to be inspected is prepared and loaded into the inspection apparatus 100 (step S102). Subsequently, a microscopic image obtained by optically enlarging the sample 101 is observed, and a region of interest to be inspected is set (step S103). Note that a microscopic image of the sample 101 including the region of interest observed in step S103 may be captured and stored (step S104).
 また、サンプル101における関心領域は、ひとつのサンプル101に対して複数設定してもよい。これにより、局部的に発生したがん細胞が検査で見逃される確率が減少する。 Also, a plurality of regions of interest in the sample 101 may be set for one sample 101. This reduces the probability that locally generated cancer cells are missed in the test.
 次に、関心領域において、関心領域に励起光を照射して、分光器155、165においてサンプル101のスペクトルを得る(ステップS105)。更に、分光器155、165が検出したスペクトルを処理装置171により処理して、関心領域におけるタンパク質の量と核酸の量を、例えば、スペクトルにおける対応するピークの光量として検出する(ステップS106)。 Next, in the region of interest, the region of interest is irradiated with excitation light, and the spectrum of the sample 101 is obtained by the spectrometers 155 and 165 (step S105). Furthermore, the spectrum detected by the spectroscopes 155 and 165 is processed by the processing device 171 to detect the amount of protein and the amount of nucleic acid in the region of interest as, for example, the light intensity of the corresponding peak in the spectrum (step S106).
 次に、処理装置171において、検出されたタンパク質の量と核酸の量との比率が、例えばピーク値の比として算出される(ステップS107)。次いで、算出された比率の値が、閾値格納部274に格納された閾値と比較される(ステップS108)。これにより、算出された比率の値が閾値を超えるか否かにより、対応する関心領域にがん細胞が含まれるか否かという検査結果が得られる。得られた検査結果は、検査装置100に記録されるか、ユーザに対して出力される(ステップS109)。更に、検査装置100の制御部170は、ステップS103においてサンプル101に対して設定されていながら、まだ検査されていない関心領域が残っているか否かを調べる(ステップS110)。 Next, in the processing device 171, the ratio between the detected protein amount and the nucleic acid amount is calculated, for example, as the ratio of peak values (step S107). Next, the calculated ratio value is compared with the threshold value stored in the threshold value storage unit 274 (step S108). Thereby, the test result whether a cancer cell is contained in the corresponding region of interest is obtained depending on whether or not the calculated ratio value exceeds a threshold value. The obtained inspection result is recorded in the inspection apparatus 100 or output to the user (step S109). Further, the control unit 170 of the inspection apparatus 100 checks whether there remains a region of interest that has been set for the sample 101 in step S103 but has not yet been inspected (step S110).
 ステップS110において未だ検査されていない関心領域が残っている場合(ステップS110:YES)、制御部170は、検査装置100の処理をステップS105に戻して、再び検査を実行する。また、こうして、検査装置100により、サンプル101の関心領域にがん細胞が存在するか否かが検査される。ステップS110において検査されていない関心領域が残っていないことが判った場合(ステップS110:NO)、検査装置100における検査は終了する。 If there is a region of interest that has not been inspected yet in step S110 (step S110: YES), the control unit 170 returns the processing of the inspection apparatus 100 to step S105 and executes the inspection again. Further, in this way, the inspection apparatus 100 inspects whether cancer cells are present in the region of interest of the sample 101. If it is determined in step S110 that there is no region of interest that has not been inspected (step S110: NO), the inspection in the inspection apparatus 100 ends.
 なお、サンプル101のスペクトルは、サンプル101を染色せずに取得できる。しかしながら、サンプル101に含まれる細胞の核を染色して、顕微像をより明瞭することにより、関心領域の設定等の作業を容易にしてもよい。 Note that the spectrum of the sample 101 can be obtained without staining the sample 101. However, operations such as setting a region of interest may be facilitated by staining the nucleus of the cells contained in the sample 101 to make the microscopic image clearer.
 [実施例]
 閾値を決定する実施例として、がん細胞を含むことが既知であるサンプル101を上記の検査装置100により検査して、閾値格納部274に格納する閾値の値について検討した。サンプル101は、ヒトの胃の未染色の切片からから作成した。
[Example]
As an example for determining the threshold value, the sample 101 that is known to contain cancer cells was inspected by the above-described inspection apparatus 100, and the threshold value stored in the threshold value storage unit 274 was examined. Sample 101 was made from an unstained section of the human stomach.
 まず、倍率100倍の対物レンズを用いてサンプル101の顕微像を取得した。次に、励起光として波長532nmのレーザ光を関心領域に照射してラマン散乱によるスペクトルを検出した。 First, a microscopic image of sample 101 was obtained using an objective lens having a magnification of 100 times. Next, the region of interest was irradiated with laser light having a wavelength of 532 nm as excitation light, and a spectrum due to Raman scattering was detected.
 なお、ラマン散乱の効率を向上させる目的で、励起光のビーム径を細胞よりも小さく、例えば1μm以下まで絞った。このため、サンプル101における10μm×10μmの関心領域の各々において、それぞれの関心領域内の121点の検出スポットに励起光を10秒ずつ照射して、121点のスペクトルを検出した。更に、121点のスペクトルから検出された検出値を平均して、その関心領域におけるタンパク質または核酸の量の検出値とした。これにより、検出値を空間的な広がりを有する値とした。 For the purpose of improving the efficiency of Raman scattering, the beam diameter of the excitation light was made smaller than the cell, for example, 1 μm or less. For this reason, in each of the 10 μm × 10 μm regions of interest in the sample 101, 121 points of detection spots in each region of interest were irradiated with excitation light for 10 seconds to detect 121 points of spectra. Furthermore, the detected values detected from the spectrum of 121 points were averaged to obtain a detected value of the amount of protein or nucleic acid in the region of interest. Thereby, the detected value is a value having a spatial spread.
 また、処理装置171において画像処理を実行して、検出したスペクトルから既知のガラスのピークを予め取り除き、サンプル101の容器の影響を排除した。また、5次の多項式で近似することにより、自家蛍光の影響を排除した。こうして得られたスペクトルから、下記の表1に示す核酸と、下記の表2に示すタンパク質とに対応するピークの光量を、核酸およびタンパク質の量として検出した。
Figure JPOXMLDOC01-appb-T000001
Further, image processing was executed in the processing device 171 to remove a known glass peak from the detected spectrum in advance, thereby eliminating the influence of the container of the sample 101. In addition, the effect of autofluorescence was eliminated by approximating with a fifth order polynomial. From the spectra thus obtained, the light intensity of the peaks corresponding to the nucleic acids shown in Table 1 below and the proteins shown in Table 2 below were detected as the amounts of nucleic acids and proteins.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 [実施例1]
 図4は、上記検査の結果として表示部174に表示された表示画像301に含まれるグラフの一例を示す図である。図示のグラフには、算出部272が出力した、核酸のピーク値とタンパク質のピーク値との比率がプロットされている。
[Example 1]
FIG. 4 is a diagram illustrating an example of a graph included in the display image 301 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
 図示のグラフにおいて、横軸の値は、核酸の一例としてラマン分光像におけるラマンシフト725cm-1のピーク光量から検出したアデニンの量と、同じくタンパク質の一例としてラマンシフト756cm-1のピーク光量から検出したトリプトファンの量との比率である。また、縦軸の値は、アデニンの量と、ラマンシフト1263cm-1のピーク光量から検出したαへリックス構造を指標としたタンパク質の量との比率である。 In the graph shown in the figure, the value on the horizontal axis indicates the amount of adenine detected from the peak light intensity of Raman shift 725 cm −1 in the Raman spectroscopic image as an example of nucleic acid, and the peak light intensity of Raman shift 756 cm −1 as an example of protein. It is a ratio to the amount of tryptophan. The value on the vertical axis is the ratio between the amount of adenine and the amount of protein using the α helix structure as an index detected from the peak light intensity of Raman shift 1263 cm −1 .
 グラフにプロットされた正常な細胞とがん細胞との分布に着目すると、アデニンとトリプトファンとの比率が0.85以上の範囲には、がん細胞のみが分布していることが判る。よって、図3に示したステップS101において、アデニンの量とトリプトファンの量との比率について閾値0.85を設定することにより、ラマン分光像から検出したアデニンおよびトリプトファンの量の比率に基づいてがん細胞の存在を検査できる。なお、図4では、正常細胞とがん細胞とをドットの白黒により区別しているが、表示部174においては、ドットの色や形状などで区別して視認性を向上させることができる。 Focusing on the distribution of normal cells and cancer cells plotted in the graph, it can be seen that only cancer cells are distributed in the range where the ratio of adenine and tryptophan is 0.85 or more. Therefore, in step S101 shown in FIG. 3, by setting a threshold value of 0.85 for the ratio between the amount of adenine and the amount of tryptophan, the cancer is determined based on the ratio of the amount of adenine and tryptophan detected from the Raman spectroscopic image. The presence of cells can be examined. In FIG. 4, normal cells and cancer cells are distinguished by black and white dots, but the display unit 174 can improve visibility by distinguishing the colors and shapes of the dots.
 [実施例2]
 図5は、上記検査の結果として表示部174に表示された他の表示画像302に含まれるグラフの一例を示す図である。図示のグラフには、算出部272が出力した、核酸のピーク値とタンパク質のピーク値との比率がプロットされている。
[Example 2]
FIG. 5 is a diagram illustrating an example of a graph included in another display image 302 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
 図示のグラフにおいて、横軸の値は、核酸の例であるアデニンの量と、アミノ酸の例であるトリプトファンの量との比率である。また、縦軸の値は、アデニンの量と、タンパク質の一例としてラマンシフト1002cm-1のピーク光量から検出したフェニルアラニンの量との比率である。 In the illustrated graph, the value on the horizontal axis is the ratio of the amount of adenine, which is an example of nucleic acid, to the amount of tryptophan, which is an example of amino acid. The value on the vertical axis is the ratio between the amount of adenine and the amount of phenylalanine detected from the peak light intensity of Raman shift of 1002 cm −1 as an example of protein.
 グラフにプロットされた正常な細胞とがん細胞との分布に着目すると、アデニンとトリプトファンとの比率が0.85以上の範囲には、がん細胞のみが分布していることが判る。よって、図3に示したステップS101において、アデニンの量とトリプトファンの量との比率について閾値0.85を設定することにより、ラマン分光像から検出したアデニンおよびトリプトファンの量の比率に基づいてがん細胞の存在を検査できる。 Focusing on the distribution of normal cells and cancer cells plotted in the graph, it can be seen that only cancer cells are distributed in the range where the ratio of adenine and tryptophan is 0.85 or more. Therefore, in step S101 shown in FIG. 3, by setting a threshold value of 0.85 for the ratio between the amount of adenine and the amount of tryptophan, the cancer is determined based on the ratio of the amount of adenine and tryptophan detected from the Raman spectroscopic image. The presence of cells can be examined.
 [実施例3]
 図6は、上記検査の結果として表示部174に表示された表示画像303に含まれるグラフの一例を示す図である。図示のグラフには、算出部272が出力した、核酸のピーク値とタンパク質のピーク値との比率がプロットされている。
[Example 3]
FIG. 6 is a diagram illustrating an example of a graph included in the display image 303 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
 図示のグラフおいて、横軸の値は、核酸の一例としてラマン分光像におけるラマンシフト782cm-1のピーク光量から検出したシトシンの量と、アミノ酸の一例であるトリプトファンの量との比率である。また、縦軸の値は、核酸の例であるシトシンの量と、タンパク質の例であるフェニルアラニンの量との比率である。 In the graph shown, the value on the horizontal axis is the ratio between the amount of cytosine detected from the peak light intensity of Raman shift 782 cm −1 in the Raman spectroscopic image as an example of nucleic acid and the amount of tryptophan, which is an example of amino acid. The value on the vertical axis is the ratio between the amount of cytosine, which is an example of nucleic acid, and the amount of phenylalanine, which is an example of protein.
 グラフにプロットされた正常な細胞とがん細胞との分布に着目すると、横軸については、シトシンとトリプトファンとの比率が1.2以上の範囲には、がん細胞のみが分布していることが判る。また、縦軸については、シトシンとフェニルアラニンとの比率が0.3を超える範囲においては、がん細胞のみが分布していることが判る。 Focusing on the distribution of normal cells and cancer cells plotted in the graph, on the horizontal axis, only the cancer cells are distributed in the range where the ratio of cytosine and tryptophan is 1.2 or more. I understand. Moreover, about a vertical axis | shaft, in the range where the ratio of cytosine and phenylalanine exceeds 0.3, it turns out that only a cancer cell is distributed.
 よって、図3に示したステップS101において、シトシンの量とトリプトファンの量との比率について閾値1.2を設定し、シトシンの量とフェニルアラニンの量との比率については閾値0.3を設定することにより、ラマン分光像から検出したそれぞれの核酸の量とタンパク質の量との比率に基づいてがん細胞の存在を検査できる。 Therefore, in step S101 shown in FIG. 3, the threshold value 1.2 is set for the ratio between the amount of cytosine and the amount of tryptophan, and the threshold value 0.3 is set for the ratio between the amount of cytosine and the amount of phenylalanine. Thus, the presence of cancer cells can be examined based on the ratio between the amount of each nucleic acid detected from the Raman spectroscopic image and the amount of protein.
 [実施例4]
 図7は、上記検査の結果として表示部174に表示された表示画像304に含まれるグラフの一例を示す図である。図示のグラフには、算出部272が出力した、核酸のピーク値とタンパク質のピーク値との比率がプロットされている。
[Example 4]
FIG. 7 is a diagram illustrating an example of a graph included in the display image 304 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
 図示のグラフにおいて、横軸の値は、核酸の例であるシトシンの量と、タンパク質の例であるトリプトファンの量との比率である。また、縦軸の値は、核酸の例であるシトシンの量と、ラマンシフト1250cm-1のピーク光量から検出したβシートの2次構造をもったタンパク質由来のアミド結合の量(以降の説明においては、単に「アミド結合の量」という。)との比率である。アミド結合の量は、タンパク質の量の指標となる。 In the graph shown, the value on the horizontal axis is the ratio of the amount of cytosine, which is an example of nucleic acid, to the amount of tryptophan, which is an example of protein. The value on the vertical axis indicates the amount of cytosine, which is an example of nucleic acid, and the amount of amide bond derived from a protein having a secondary structure of β sheet detected from the peak light intensity of Raman shift 1250 cm −1 (in the following description). Is simply referred to as “amount of amide bond”). The amount of amide bond is an indicator of the amount of protein.
 グラフにプロットされた正常な細胞とがん細胞との分布に着目すると、横軸については、閾値1.2によりがん細胞を判別できるが、縦軸については、がん細胞を判別できる閾値が0.43まで上昇していることが判る。よって、図3に示したステップS101において、閾値0.43を設定することにより、シトシンの量とアミド結合の量との比率に基づいてがん細胞の存在を検査できる。 Focusing on the distribution of normal cells and cancer cells plotted in the graph, cancer cells can be discriminated by the threshold 1.2 on the horizontal axis, but the threshold at which cancer cells can be discriminated on the vertical axis. It can be seen that it has risen to 0.43. Therefore, in step S101 shown in FIG. 3, by setting the threshold value 0.43, the presence of cancer cells can be examined based on the ratio between the amount of cytosine and the amount of amide bond.
 [実施例5]
 図8は、上記検査の結果として表示部174に表示された表示画像305に含まれるグラフの一例を示す図である。図示のグラフには、算出部272が出力した、核酸のピーク値とタンパク質のピーク値との比率がプロットされている。
[Example 5]
FIG. 8 is a diagram illustrating an example of a graph included in the display image 305 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
 図示のグラフにおいて、横軸の値は、核酸の例であるシトシンの量と、タンパク質の例である対称型トリプトファンの量との比率である。また、縦軸の値は、核酸の例であるアデニンの量と、タンパク質の例である対称型トリプトファンの量との比率である。 In the graph shown in the figure, the value on the horizontal axis represents the ratio between the amount of cytosine, which is an example of nucleic acid, and the amount of symmetric tryptophan, which is an example of protein. The value on the vertical axis is the ratio between the amount of adenine, which is an example of nucleic acid, and the amount of symmetric tryptophan, which is an example of protein.
 グラフにプロットされた正常な細胞とがん細胞との分布に着目すると、横軸については、閾値1.3によりがん細胞を判別でき、縦軸については閾値0.9でがん細胞を判別できることが判る。よって、図3に示したステップS101において、閾値1.3を設定することにより、シトシンの対称型トリプトファンの量との比率に基づいてがん細胞の存在を検査でき、閾値0.9で、アデニンの量と、対称型トリプトファンの量との比率に基づいてがん細胞の存在を検査できる。 Focusing on the distribution of normal cells and cancer cells plotted in the graph, the horizontal axis can distinguish cancer cells with a threshold of 1.3, and the vertical axis can distinguish cancer cells with a threshold of 0.9. I understand that I can do it. Therefore, in step S101 shown in FIG. 3, by setting a threshold value of 1.3, the presence of cancer cells can be examined based on the ratio of cytosine to the amount of symmetric tryptophan. The presence of cancer cells can be examined on the basis of the ratio of the amount of glycine to the amount of symmetric tryptophan.
 [実施例6]
 図9は、上記検査の結果として表示部174に表示された表示画像306に含まれるグラフの一例を示す図である。図示のグラフには、算出部272が出力した、核酸のピーク値とタンパク質のピーク値との比率がプロットされている。
[Example 6]
FIG. 9 is a diagram illustrating an example of a graph included in the display image 306 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
 図示のグラフにおいて、横軸の値は、核酸の例であるサンプル101におけるシトシンの量と、αヘリックス構造を指標としたタンパク質の量との比率である。また、縦軸の値は、核酸の例であるアデニンの量と、αヘリックス構造を指標としたタンパク質の量との比率である。 In the graph shown in the figure, the value on the horizontal axis is the ratio between the amount of cytosine in the sample 101, which is an example of a nucleic acid, and the amount of protein using the α helix structure as an index. The value on the vertical axis is the ratio between the amount of adenine, which is an example of a nucleic acid, and the amount of protein using the α helix structure as an index.
 グラフにプロットされた正常な細胞とがん細胞との分布に着目すると、横軸については、閾値0.5によりがん細胞を判別できるが、縦軸については、がん細胞が単独で分布する領域が存在しないことが判る。 Focusing on the distribution of normal cells and cancer cells plotted in the graph, cancer cells can be distinguished by a threshold of 0.5 on the horizontal axis, but cancer cells are distributed alone on the vertical axis. It can be seen that the area does not exist.
 よって、図3に示したステップS101においてがん細胞の存在を検査する上では、核酸であるアデニンの量と、αヘリックス構造を指標としたタンパク質の量との比率を算出するよりも、閾値0.5を設定して、核酸であるシトシンの量とαヘリックス構造を指標としたタンパク質の量との比率に基づいて検査した方が好ましい。 Therefore, in examining the presence of cancer cells in step S101 shown in FIG. 3, the threshold value is 0 rather than calculating the ratio between the amount of adenine, which is a nucleic acid, and the amount of protein using α-helix structure as an index. .5 is preferably set, and examination is preferably performed based on the ratio between the amount of cytosine, which is a nucleic acid, and the amount of protein using α-helix structure as an index.
 [実施例7]
 図10は、上記検査の結果として表示部174に表示された表示画像307に含まれるグラフの一例を示す図である。図示のグラフには、算出部272が出力した、核酸のピーク値とタンパク質のピーク値との比率がプロットされている。
[Example 7]
FIG. 10 is a diagram illustrating an example of a graph included in the display image 307 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
 図示のグラフにおいて、横軸の値は、核酸の例としてサンプル101におけるシトシンの量と、タンパク質の例としてアミド結合の量との比率である。また、縦軸の値は、核酸の例であるアデニンの量とタンパク質の例であるアミド結合の量との比率である。グラフにプロットされた正常な細胞とがん細胞との分布に着目すると、横軸については、閾値0.45によりがん細胞を判別できるが、縦軸については、がん細胞が単独で分布する領域が存在しないことが判る。 In the graph shown in the figure, the value on the horizontal axis is the ratio between the amount of cytosine in the sample 101 as an example of nucleic acid and the amount of amide bond as an example of protein. The value on the vertical axis is the ratio between the amount of adenine, which is an example of nucleic acid, and the amount of amide bond, which is an example of protein. Focusing on the distribution of normal cells and cancer cells plotted in the graph, cancer cells can be distinguished by a threshold of 0.45 on the horizontal axis, but cancer cells are distributed alone on the vertical axis. It can be seen that the area does not exist.
 よって、図3に示したステップS101において、閾値0.45を設定することにより、シトシンの量とアミド結合の量との比率に基づいてがん細胞の存在を検査できるが、アデニンの量と、アミド結合の量との比率を算出しても、がん細胞の存在を検査できない。 Therefore, in step S101 shown in FIG. 3, by setting a threshold value of 0.45, the presence of cancer cells can be examined based on the ratio between the amount of cytosine and the amount of amide bond, but the amount of adenine, Even if the ratio with the amount of amide bond is calculated, the presence of cancer cells cannot be examined.
 [実施例8]
 図11は、上記検査の結果として表示部174に表示された表示画像308に含まれるグラフの一例を示す図である。図示のグラフには、算出部272が出力した、核酸のピーク値とタンパク質のピーク値との比率がプロットされている。
[Example 8]
FIG. 11 is a diagram illustrating an example of a graph included in the display image 308 displayed on the display unit 174 as a result of the inspection. In the illustrated graph, the ratio between the peak value of the nucleic acid and the peak value of the protein output from the calculation unit 272 is plotted.
 図示のグラフにおいて、横軸の値は、核酸の例であるサンプル101におけるシトシンの量と、タンパク質の例であるフェニルアラニンの量との比率である。また、縦軸の値は、核酸の例であるアデニンの量と、タンパク質の例であるフェニルアラニンの量との比率である。グラフにプロットされた正常な細胞とがん細胞との分布に着目すると、横軸については、閾値0.28によりがん細胞を判別できるが、縦軸については、がん細胞が単独で分布する領域が存在しないことが判る。 In the graph shown in the figure, the value on the horizontal axis represents the ratio between the amount of cytosine in the sample 101 which is an example of a nucleic acid and the amount of phenylalanine which is an example of a protein. The value on the vertical axis is the ratio between the amount of adenine, which is an example of nucleic acid, and the amount of phenylalanine, which is an example of protein. Focusing on the distribution of normal cells and cancer cells plotted in the graph, cancer cells can be distinguished by a threshold of 0.28 on the horizontal axis, but cancer cells are distributed alone on the vertical axis. It can be seen that the area does not exist.
 よって、図3に示したステップS101において、閾値0.28を設定することにより、シトシンの量とアミド結合の量との比率に基づいてがん細胞の存在を検査できるが、アデニンの量と、フェニルアラニンの量との比率を算出しても、がん細胞の存在を検査できない。 Therefore, in step S101 shown in FIG. 3, by setting a threshold value of 0.28, the presence of cancer cells can be examined based on the ratio between the amount of cytosine and the amount of amide bond, but the amount of adenine, Even if the ratio with the amount of phenylalanine is calculated, the presence of cancer cells cannot be examined.
 図4から図11までに示した検査結果の検討から、上記の例で用いたサンプル101においては、核酸であるシトシンの量とタンパク質であるフェニルアラニンの量との比率において、正常な細胞とがん細胞との相違が顕著に現れることが判った。また、各グラフに示したように、縦軸と横軸とに異なる比率を割り当てた場合、アデニンおよびフェニルアラニンのピーク比を一方の軸に、シトシンとフェニルアラニンのピーク比を他方の軸に割り当てた場合に、正常な細胞とガン細胞との相違が顕著に現れることが判った。 From the examination of the test results shown in FIG. 4 to FIG. 11, in the sample 101 used in the above example, in the ratio between the amount of cytosine that is a nucleic acid and the amount of phenylalanine that is a protein, normal cells and cancer It turned out that the difference with a cell appears notably. Also, as shown in each graph, when different ratios are assigned to the vertical and horizontal axes, the peak ratio of adenine and phenylalanine is assigned to one axis, and the peak ratio of cytosine and phenylalanine is assigned to the other axis. In addition, it was found that the difference between normal cells and cancer cells appears remarkably.
 [実施例9]
 図12は、がん細胞を含むサンプル101に対して、検査装置100による検査を実行した結果を示す表示画像309を示す図である。図中の細胞の顕微像は、図3のステップS104において撮像して保存したものである。
[Example 9]
FIG. 12 is a diagram showing a display image 309 showing a result of performing an inspection by the inspection apparatus 100 on the sample 101 containing cancer cells. The microscopic image of the cell in the figure is an image that was captured and stored in step S104 of FIG.
 図中に示す数字の値は、検査を実行した順番に対応しており、数字の位置は、検査における関心領域の位置を示す。また、白抜きで示された数字は、該当箇所における検査結果が正常細胞であったことを示す。一方、黒字で示された数字は、該当箇所における検査結果ががん細胞であったことを示す。図示のように、がん細胞を含むことが判っているサンプル101においては、がん細胞に特有のピーク比が特定の関心領域において検出されていることが判る。 Numeral values shown in the figure correspond to the order in which the inspections are performed, and the numerical positions indicate the positions of the regions of interest in the inspection. In addition, the numbers shown in white indicate that the test result at the relevant location was normal cells. On the other hand, the numbers shown in black indicate that the test result at the relevant location was cancer cells. As shown, in the sample 101 that is known to contain cancer cells, it can be seen that a peak ratio peculiar to the cancer cells is detected in a specific region of interest.
 [実施例10]
 図13は、がん細胞が含まれないサンプル101に対して、検査装置100による検査を実行した結果を示す表示画像310を示す図である。図中の細胞の顕微像は、図3のステップS104において撮像して保存したものである。また、図中に示す数字の意味は、図12と共通である。
[Example 10]
FIG. 13 is a diagram showing a display image 310 that shows a result of performing an inspection by the inspection apparatus 100 on a sample 101 that does not contain cancer cells. The microscopic image of the cell in the figure is an image that was captured and stored in step S104 of FIG. The meanings of the numbers shown in the figure are the same as those in FIG.
 図示のように、このサンプル101においては、がん細胞に特有のピーク比が検出されず、正常細胞のピーク比のみが検出されている。よって、サンプル101にがん細胞が含まれていないことが判る。 As shown in the figure, in this sample 101, the peak ratio peculiar to cancer cells is not detected, and only the peak ratio of normal cells is detected. Therefore, it can be seen that the sample 101 does not contain cancer cells.
 なお、図12および図13において斜体で示された数字は、該当箇所における検査結果が、正常細胞であるともがん細胞であるとも判定し切れなかったことを示す。サンプル101全体におけるすべての関心領域がこのような検査結果になった場合は、ピーク値を検出する核酸およびタンパク質の種類の選択が適切ではなかったことを意味する。 It should be noted that the numbers in italics in FIGS. 12 and 13 indicate that the test result at the relevant location could not be determined as being a normal cell or a cancer cell. When all the regions of interest in the entire sample 101 have such a test result, it means that the selection of the nucleic acid and protein types for detecting the peak value was not appropriate.
 よって、その場合は、他の種類の核酸およびタンパク質を選択して分光波形のピーク値を検出すると共に、そのような核酸とタンパク質に適応した閾値を設定して検査を実行すればよい。また、サンプル101に照射する励起光の波長等の検出条件を変更して検査を実行することにより、有意な検出結果が得られる場合もある。 Therefore, in that case, other types of nucleic acid and protein may be selected to detect the peak value of the spectral waveform, and a test may be performed by setting a threshold value suitable for such nucleic acid and protein. In addition, a significant detection result may be obtained by changing the detection conditions such as the wavelength of the excitation light applied to the sample 101 and executing the inspection.
 図14は、他の検査手順を示す流れ図である。図14において、図3と同じ手順については、同じ参照番号を付して重複する説明を省く。 FIG. 14 is a flowchart showing another inspection procedure. In FIG. 14, the same procedures as those in FIG. 3 are denoted by the same reference numerals, and redundant description is omitted.
 図示の手順においては、ステップS111において、ステップS108において比較対象となる閾値の他に、算出結果と閾値との乖離の幅に関する第二の閾値を設定する。また、ステップS108の次に、検出結果がステップS101において設定された第二の閾値を超えるか否かを調べる段階を設ける(ステップS113)。そして、がん細胞検出の確実性を向上する目的で、当初の閾値を超えててはいるものの、第二の閾値を超えていない場合(ステップS113:NO)に、同じ関心領域に対して検査条件を変更した他の再検査を実行する段階(ステップS112)が付加される。 In the illustrated procedure, in step S111, in addition to the threshold value to be compared in step S108, a second threshold value regarding the width of deviation between the calculation result and the threshold value is set. Further, after step S108, a step of checking whether or not the detection result exceeds the second threshold set in step S101 is provided (step S113). And in order to improve the certainty of cancer cell detection, when the initial threshold value is exceeded, but the second threshold value is not exceeded (step S113: NO), the same region of interest is examined. A step (step S112) of executing another re-inspection whose conditions have been changed is added.
 これにより、検査結果による判定が保留される関心領域が減少し、検査精度をより向上することができる。なお、ステップS112において変更する検査条件としては、例えば、ピーク比の算出する対象となる核酸およびタンパク質の種類の変更等を例示できる。また、更に手順を変更して、スペクトルを検出するための励起光の波長を変更してもよい。 This makes it possible to reduce the region of interest for which the determination based on the inspection result is suspended, and to further improve the inspection accuracy. In addition, as a test condition changed in step S112, the change etc. of the kind of nucleic acid and protein used as the object which calculates peak ratio can be illustrated, for example. Further, the wavelength of the excitation light for detecting the spectrum may be changed by further changing the procedure.
 上記の検査方法は、スペクトルが取得できれば実行できるので、既存の分光測定装置に、上記検査方法を実行するプログラムとして組み込んでもよい。ここまでに説明した例では、核酸およびタンパク質の量をラマン散乱のスペクトルから検出した。しかしながら、具体的な測定方法は、アミノ酸またはタンパク質の量を検出し、アミノ酸またはタンパク質の量に対する核酸の量の比として算出することができる測定方法から任意のものを選択することができる。たとえば、CARS過程(Coherent Anti-Stokes Raman Scattering)により発生したCARS光からスペクトルを検出してもよい。ラマン分光法やCARS光を用いることに代えて、またはそれに加えて、赤外線分光法を用いてもよい。 Since the above inspection method can be executed if a spectrum can be obtained, it may be incorporated into an existing spectroscopic measurement apparatus as a program for executing the above inspection method. In the examples described so far, the amounts of nucleic acids and proteins were detected from the Raman scattering spectrum. However, as a specific measurement method, an amino acid or protein amount can be detected, and any method can be selected from measurement methods that can be calculated as a ratio of the nucleic acid amount to the amino acid or protein amount. For example, the spectrum may be detected from CARS light generated by the CARS process (Coherent Anti-Stokes Raman Scattering). Infrared spectroscopy may be used instead of or in addition to using Raman spectroscopy or CARS light.
 また、既に説明した通り、検査に用いる核酸の量とタンパク質の量との比を算出する場合に、検出の対象となる核酸の種類およびタンパク質の種類に応じて判定し易さが異なる場合がある。よって、検査装置100は、量を検出する核酸およびタンパク質のそれぞれの種類をユーザの操作により切り換えられるようにしてもよい。 In addition, as already described, when calculating the ratio between the amount of nucleic acid used for the test and the amount of protein, the ease of determination may differ depending on the type of nucleic acid to be detected and the type of protein. . Therefore, the test | inspection apparatus 100 may be made to switch each kind of nucleic acid and protein which detect quantity by a user's operation.
 更に、検査装置100においては、表示部174における検査結果の表示のしかたも、切り換えることができるようにしてもよい。表示形式は、例えば、図4から図11までに示したようにグラフ化してもよいし、図12、13に示したように顕微画像と重ねて表示してもよい。また、文字列、色、音等を組み合わせて表示するようにしてもよい。更に、それらの表示形式を、ユーザの操作により選択できるようにしてもよい。 Furthermore, in the inspection apparatus 100, the display method of the inspection result on the display unit 174 may be switched. For example, the display format may be graphed as shown in FIGS. 4 to 11, or may be displayed superimposed on the microscopic image as shown in FIGS. Moreover, you may make it display combining a character string, a color, a sound, etc. Furthermore, these display formats may be selected by a user operation.
 また更に、上記の検査装置100は、光学顕微鏡と分光器とを組み合わせて形成されているが、スペクトルは、例えば内視鏡により非侵襲的に検出できる。よって、分光測定ができる内視鏡と処理装置171とを組み合わせることにより、非侵襲的にがん検査を実行することもできる。 Furthermore, although the above-described inspection apparatus 100 is formed by combining an optical microscope and a spectroscope, the spectrum can be detected non-invasively by, for example, an endoscope. Therefore, a cancer test can be performed non-invasively by combining an endoscope capable of spectroscopic measurement with the processing device 171.
 また更に、上記の例では、関心領域をひとつずつ検査することを例にあげた。しかしながら、複数の関心領域に同時に励起光を照射して、複数の関心領域を並行して検査するように検査装置100を構成してもよい。これによりがん検査に要する時間が短縮できる。 Furthermore, in the above example, an example of inspecting each region of interest one by one was given. However, the inspection apparatus 100 may be configured so that a plurality of regions of interest are simultaneously irradiated with excitation light and the plurality of regions of interest are inspected in parallel. This can reduce the time required for cancer testing.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
100 検査装置、101 サンプル、110 ステージ、111 ステージスキャナ、120 対物光学系、121 前側対物レンズ、122 後側対物レンズ、130 光源装置、131、132 光源、139 コンバイナ、140 照射光学系、141 ガルバノスキャナ、142 スキャンレンズ、143 一次像面、150 前部検出系、151 ダイクロイックミラー、152、153、162、163 リレーレンズ、154、164 帯域通過フィルタ、155、165 分光器、160 後部検出系、161 反射鏡、170 制御部、171 処理装置、172 マウス、173 キーボード、174 表示部、271 検出部、272 算出部、273 比較部、274 格納部、275 出力部、276 情報出力部、301、302、303、304、305、306、307、308、309、310 表示画像 100 inspection device, 101 sample, 110 stage, 111 stage scanner, 120 objective optical system, 121 front objective lens, 122 rear objective lens, 130 light source device, 131, 132 light source, 139 combiner, 140 irradiation optical system, 141 galvano scanner , 142 scan lens, 143 primary image plane, 150 front detection system, 151 dichroic mirror, 152, 153, 162, 163 relay lens, 154, 164 band pass filter, 155, 165 spectroscope, 160 rear detection system, 161 reflection Mirror, 170 control unit, 171 processing device, 172 mouse, 173 keyboard, 174 display unit, 271 detection unit, 272 calculation unit, 273 comparison unit, 274 storage unit, 275 output unit, 276 information output Part, 301,302,303,304,305,306,307,308,309,310 display image

Claims (22)

  1.  検査領域におけるアミノ酸またはタンパク質の量と、核酸の量とを取得し、
     取得した前記アミノ酸またはタンパク質の量と、前記核酸の量との比を算出し、
     算出した前記比と予め定めた第1の閾値との比較に基づいて、がん細胞の有無を判別するがん検査方法。
    Obtain the amount of amino acid or protein in the test area and the amount of nucleic acid,
    Calculate the ratio of the amount of the obtained amino acid or protein and the amount of the nucleic acid,
    A cancer test method for determining the presence or absence of cancer cells based on a comparison between the calculated ratio and a predetermined first threshold.
  2.  前記タンパク質の量の指標として前記検査領域におけるアミノ酸の量を検出し、前記核酸の量の指標として前記検査領域における核酸塩基の量を検出し、前記比を、アミノ酸の検出量と核酸塩基の検出量との比とする請求項1に記載のがん検査方法。 The amount of amino acid in the test region is detected as an indicator of the amount of protein, the amount of nucleobase in the test region is detected as an indicator of the amount of nucleic acid, and the ratio is detected as the amount of amino acid detected and the amount of nucleobase detected The cancer test method according to claim 1, wherein the method is a ratio to the amount.
  3.  前記アミノ酸は芳香族アミノ酸を含み、前記核酸塩基は環状アミンを含み、前記比は、芳香族アミノ酸の検出量と環状アミンの検出量との比である請求項2に記載のがん検査方法。 3. The cancer testing method according to claim 2, wherein the amino acid includes an aromatic amino acid, the nucleobase includes a cyclic amine, and the ratio is a ratio of a detected amount of the aromatic amino acid and a detected amount of the cyclic amine.
  4.  前記アミノ酸はトリプトファンおよびフェニルアラニンの少なくとも一方を含み、前記環状アミンはシトシンおよびアデニンの少なくとも一1方を含む請求項3に記載のがん検査方法。 The cancer test method according to claim 3, wherein the amino acid includes at least one of tryptophan and phenylalanine, and the cyclic amine includes at least one of cytosine and adenine.
  5.  前記核酸の量は、第1の種類の核酸の量であり、
     前記比は、前記アミノ酸またはタンパク質の量と前記第1の種類の核酸の量との比である第1の比であり、
     前記アミノ酸またはタンパク質の量と、前記第1の種類と異なる第2の種類の核酸の量との比である第2の比を算出し、
     前記第1の比および前記第2の比と、前記第1の閾値とを比較する請求項2から4のいずれか一項に記載のがん検査方法。
    The amount of the nucleic acid is the amount of the first type of nucleic acid,
    The ratio is a first ratio that is a ratio between the amount of the amino acid or protein and the amount of the first type of nucleic acid;
    Calculating a second ratio that is a ratio of the amount of the amino acid or protein and the amount of a second type of nucleic acid different from the first type;
    The cancer test method according to any one of claims 2 to 4, wherein the first ratio and the second ratio are compared with the first threshold value.
  6.  算出した前記比が、前記第1の閾値よりも大きい第2の閾値よりも大きい場合に、前記第2の種類の核酸の量の検出と、前記第2の比の算出とを省略する請求項5に記載のがん検査方法。 The detection of the amount of the second type of nucleic acid and the calculation of the second ratio are omitted when the calculated ratio is greater than a second threshold value that is greater than the first threshold value. 5. The cancer test method according to 5.
  7.  前記アミノ酸またはタンパク質の量は、第1の種類のアミノ酸またはタンパク質の量であり、
     前記比は、前記第1の種類のアミノ酸またはタンパク質の量と前記核酸の量との比である第1の比であり、
     前記第1の種類と異なる第2の種類のアミノ酸またはタンパク質の量と、前記核酸の量との比である第2の比を算出し、
     前記第1の比および前記第2の比と、前記第1の閾値とを比較する請求項2から4のいずれか一項に記載のがん検査方法。
    The amount of the amino acid or protein is the amount of the first type of amino acid or protein;
    The ratio is a first ratio that is a ratio of the amount of the first type of amino acid or protein and the amount of the nucleic acid;
    Calculating a second ratio which is a ratio of the amount of the second type of amino acid or protein different from the first type and the amount of the nucleic acid;
    The cancer test method according to any one of claims 2 to 4, wherein the first ratio and the second ratio are compared with the first threshold value.
  8.  がん細胞が含まれることが既知であるサンプルの複数の領域における前記第1の比と前記第2の比との関係を求め、前記関係に基づいて前記第1の閾値を設定する請求項5から7のいずれか一項に記載のがん検査方法。 6. The relationship between the first ratio and the second ratio in a plurality of regions of a sample known to contain cancer cells is determined, and the first threshold value is set based on the relationship. The cancer test method according to any one of 1 to 7.
  9.  前記アミノ酸またはタンパク質の量および前記核酸の量の少なくとも一方を、ラマン分光法で検出する請求項1から8のいずれか一項に記載のがん検査方法。 The cancer testing method according to any one of claims 1 to 8, wherein at least one of the amount of the amino acid or protein and the amount of the nucleic acid is detected by Raman spectroscopy.
  10.  前記アミノ酸たまはタンパク質の量および前記核酸の量の少なくとも一方を、CARS顕微法で検出する請求項9に記載のがん検査方法。 10. The cancer test method according to claim 9, wherein at least one of an amount of the amino acid egg or protein and an amount of the nucleic acid is detected by a CARS microscopic method.
  11.  前記検査領域を、赤外帯域の光で光学観察する段階を含む請求項1から10のいずれか一項に記載のがん検査方法。 The cancer examination method according to any one of claims 1 to 10, comprising a step of optically observing the examination region with light in an infrared band.
  12.  前記アミノ酸またはタンパク質の量、および、前記核酸の量の少なくとも一方を、前記検査領域の内側に位置し、前記検査領域よりも狭く、互いに離れた複数の小領域における測定値の平均値により検出する請求項1から11のいずれか一項に記載のがん検査方法。 At least one of the amount of the amino acid or protein and the amount of the nucleic acid is detected by an average value of measured values in a plurality of small regions located inside the inspection region and narrower than the inspection region and separated from each other. The cancer test method according to any one of claims 1 to 11.
  13.  前記アミノ酸またはタンパク質の量、および、前記核酸の量を、前記検査領域よりも広い対象領域に含まれる複数の検査領域の各々において、
     検出した前記アミノ酸またはタンパク質の量に対する検出した前記核酸の量の比を算出し、
     算出した前記比と予め定めた第1の閾値との比較に基づいて、がん細胞の有無を判別する請求項1から12のいずれか一項に記載のがん検査方法。
    The amount of the amino acid or protein and the amount of the nucleic acid in each of a plurality of test regions included in a target region wider than the test region,
    Calculating the ratio of the amount of nucleic acid detected to the amount of amino acid or protein detected;
    The cancer test method according to any one of claims 1 to 12, wherein the presence or absence of cancer cells is determined based on a comparison between the calculated ratio and a predetermined first threshold value.
  14.  検査領域において検出された、アミノ酸またはタンパク質の量と、核酸の量とを取得する取得部と、
     前記取得部が取得したアミノ酸またはタンパク質の量と、前記取得部が取得した核酸の量との比に応じた情報を出力する情報出力部と
     を備えるがん検査装置。
    An acquisition unit for acquiring the amount of amino acid or protein and the amount of nucleic acid detected in the examination region;
    A cancer test apparatus comprising: an information output unit that outputs information according to a ratio between the amount of amino acid or protein acquired by the acquisition unit and the amount of nucleic acid acquired by the acquisition unit.
  15.  予め定めた第1の閾値を格納する閾値格納部を更に備え、
     前記情報出力部は、前記比と前記第1の閾値とを比較する比較部を有して、前記比較部による比較により前記比が前記第1の閾値を超えたか否かに基づくがん細胞の有無を前記情報として出力する請求項14に記載のがん検査装置。
    A threshold storage unit for storing a first threshold value determined in advance;
    The information output unit includes a comparison unit that compares the ratio with the first threshold, and the cancer cell based on whether the ratio exceeds the first threshold by the comparison by the comparison unit. The cancer test apparatus according to claim 14, wherein presence / absence is output as the information.
  16.  前記取得部は、タンパク質の量の指標として前記検査領域におけるアミノ酸の量を取得し、前記核酸の量の指標として核酸塩基の量を取得し、
     前記情報出力部は、アミノ酸の検出量と核酸塩基の検出量との比に応じた情報を出力する請求項14または15に記載のがん検査装置。
    The acquisition unit acquires the amount of amino acid in the test region as an index of the amount of protein, acquires the amount of nucleobase as an index of the amount of nucleic acid,
    The cancer test apparatus according to claim 14, wherein the information output unit outputs information according to a ratio between a detected amount of amino acid and a detected amount of nucleobase.
  17.  前記取得部は、生体の複数の箇所に励起光を照射して複数のスペクトルに基づく複数のアミノ酸またはタンパク質の量および複数の核酸の量を取得する請求項14から16のいずれか一項に記載のがん検査装置。 The said acquisition part irradiates several places of a biological body with excitation light, and acquires the quantity of several amino acids or proteins based on several spectra, and the quantity of several nucleic acids. Cancer testing equipment.
  18.  前記情報出力部が出力した情報を表示する表示部を更に備える請求項14から17のいずれか一項に記載のがん検査装置。 The cancer testing apparatus according to any one of claims 14 to 17, further comprising a display unit that displays information output by the information output unit.
  19.  前記核酸および前記アミノ酸またはタンパク質の少なくとも一方が異なる2種類の比を示す2軸のグラフを表示する表示部を更に備える請求項18に記載のがん検査装置。 The cancer test apparatus according to claim 18, further comprising a display unit that displays a biaxial graph indicating two types of ratios in which at least one of the nucleic acid and the amino acid or protein is different.
  20.  前記比の値が、予め用意された閾値よりも大きいか否かを識別させる表示画像を表示させる表示部を更に備える請求項17または19に記載のがん検査装置。 The cancer examination apparatus according to claim 17 or 19, further comprising a display unit that displays a display image for identifying whether or not the value of the ratio is larger than a threshold value prepared in advance.
  21.  前記情報出力部の複数の出力値を区別できる状態で共に表示する表示部を更に備える請求項17から20のいずれか一項に記載のがん検査装置。 The cancer test apparatus according to any one of claims 17 to 20, further comprising a display unit that displays a plurality of output values of the information output unit together in a state where the output values can be distinguished.
  22.  検査領域におけるアミノ酸またはタンパク質の量と、核酸の量とを取得する取得ステップと、
     前記取得ステップで取得したアミノ酸またはタンパク質の量と、前記取得ステップにおいて取得した核酸の量との比に応じた情報を情報出力する出力ステップと
    を処理装置に実行させるがん検査プログラム。
    An obtaining step for obtaining the amount of amino acid or protein in the examination region and the amount of nucleic acid;
    A cancer test program that causes a processing device to execute an output step of outputting information according to a ratio between the amount of amino acid or protein acquired in the acquisition step and the amount of nucleic acid acquired in the acquisition step.
PCT/JP2017/014298 2016-04-05 2017-04-05 Cancer detection method, cancer detection device, and cancer detection program WO2017175811A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-076222 2016-04-05
JP2016076219A JP2019090611A (en) 2016-04-05 2016-04-05 Cancer inspection device
JP2016076222A JP2019090612A (en) 2016-04-05 2016-04-05 Cancer inspection method
JP2016-076219 2016-04-05

Publications (1)

Publication Number Publication Date
WO2017175811A1 true WO2017175811A1 (en) 2017-10-12

Family

ID=60000437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014298 WO2017175811A1 (en) 2016-04-05 2017-04-05 Cancer detection method, cancer detection device, and cancer detection program

Country Status (1)

Country Link
WO (1) WO2017175811A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092727A1 (en) * 2016-11-16 2018-05-24 株式会社ニコン Cancer screening method, cancer screening apparatus, screening program, and cancer screening system
WO2018159833A1 (en) * 2017-03-02 2018-09-07 株式会社ニコン Method for distinguishing cells, method for inspecting cancer, measurement device, device for inspecting cancer, and inspection program
WO2021157604A1 (en) * 2020-02-04 2021-08-12 寛晃 伊藤 Tissue inspection device and tissue inspection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066034A (en) * 2001-08-22 2003-03-05 Nec Corp Prognostic examination method for removing operation of stomach cancer using tissue examination method
US20070003921A1 (en) * 2005-07-01 2007-01-04 Andrus Paul G Method of grading disease by Fourier Transform Infrared Spectroscopy
JP2011183206A (en) * 2000-08-21 2011-09-22 General Hospital Corp Method for diagnosing neurodegenerative condition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011183206A (en) * 2000-08-21 2011-09-22 General Hospital Corp Method for diagnosing neurodegenerative condition
JP2003066034A (en) * 2001-08-22 2003-03-05 Nec Corp Prognostic examination method for removing operation of stomach cancer using tissue examination method
US20070003921A1 (en) * 2005-07-01 2007-01-04 Andrus Paul G Method of grading disease by Fourier Transform Infrared Spectroscopy

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LAU, DP ET AL.: "Raman spectroscopy for optical diagnosis in normal and cancerous tissue of the nasopharynx-preliminary findings", LASERS IN SURGERY AND MEDICINE, vol. 32, 2003, pages 210 - 214, XP055429525 *
MITSUO TASUMI ET AL.: "Spectroscopic Studies on Biological Substances", BIOPHYSICS, vol. 13, no. l, 1973, pages 25 - 33 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018092727A1 (en) * 2016-11-16 2018-05-24 株式会社ニコン Cancer screening method, cancer screening apparatus, screening program, and cancer screening system
WO2018159833A1 (en) * 2017-03-02 2018-09-07 株式会社ニコン Method for distinguishing cells, method for inspecting cancer, measurement device, device for inspecting cancer, and inspection program
JPWO2018159833A1 (en) * 2017-03-02 2020-01-16 株式会社ニコン Cell discrimination method, cancer test method, measuring device, cancer test device, and test program
WO2021157604A1 (en) * 2020-02-04 2021-08-12 寛晃 伊藤 Tissue inspection device and tissue inspection method

Similar Documents

Publication Publication Date Title
US10401289B2 (en) Fluorescent image analyzer, analyzing method, and pretreatment evaluation method
US8054463B2 (en) Method and system for measuring sub-surface composition of a sample
JP6336710B2 (en) Optical device for detecting inhomogeneities in the sample, in particular the polarimeter
US20090131800A1 (en) Multimodal imaging system for tissue imaging
JP6446432B2 (en) Microspectroscope
KR20030033177A (en) Fluorescence endoscope apparatus and a method for imaging tissue within a body using the same
JP2007511739A5 (en)
US7428048B1 (en) Imaging elastic scattering spectroscopy
WO2017175811A1 (en) Cancer detection method, cancer detection device, and cancer detection program
US20090326359A1 (en) Method of in vivo detection and/or diagnosis of cancer using fluorescence based dna image cytometry
US20200300768A1 (en) Determination device, determination method, and determination program
JP3992064B2 (en) Optical analyzer
JP4868879B2 (en) Cell state detector
JP2014212876A (en) Tumor region determination device and tumor region determination method
WO2018134980A1 (en) Cartilage tissue analysis device
JP2019090612A (en) Cancer inspection method
EP3290984A1 (en) Microscope device
JP2008529091A (en) Method and apparatus for variable field illumination
JP2007101476A (en) Method of acquiring raman spectrum
JP2011196853A (en) Virtual slide inspection method and virtual slide inspection apparatus
JP2006300611A (en) Sample analyzer and sample analyzing method using it
JP2019090611A (en) Cancer inspection device
US7407286B2 (en) Device and method for performing measurements of the chemical composition of the anterior eye
US11085855B2 (en) Laser microdissection method and laser microdissection systems
US6887711B1 (en) Method of characterization of biological entities

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17779189

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17779189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP