WO2017175312A1 - Measurement system and measurement method - Google Patents

Measurement system and measurement method Download PDF

Info

Publication number
WO2017175312A1
WO2017175312A1 PCT/JP2016/061154 JP2016061154W WO2017175312A1 WO 2017175312 A1 WO2017175312 A1 WO 2017175312A1 JP 2016061154 W JP2016061154 W JP 2016061154W WO 2017175312 A1 WO2017175312 A1 WO 2017175312A1
Authority
WO
WIPO (PCT)
Prior art keywords
shelf
data
shape data
warehouse
area
Prior art date
Application number
PCT/JP2016/061154
Other languages
French (fr)
Japanese (ja)
Inventor
紅山 史子
敬介 藤本
健二 上松
Original Assignee
株式会社日立物流
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立物流 filed Critical 株式会社日立物流
Priority to JP2018510157A priority Critical patent/JP6605711B2/en
Priority to PCT/JP2016/061154 priority patent/WO2017175312A1/en
Publication of WO2017175312A1 publication Critical patent/WO2017175312A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management

Definitions

  • the present invention relates to a measurement system for managing a space in a distribution warehouse.
  • the luggage handled in the distribution warehouse has become smaller.
  • merchandise management in a distribution warehouse There are two types of merchandise management in a distribution warehouse: a fixed location system that fixes the storage location of merchandise and a free location system that does not fix the storage location of merchandise.
  • the fixed location method is easy to grasp the location because a certain product is always in the same storage location, but if a free space is assigned as a storage location, other products can not be stored, so it is flexible Lack.
  • the free location method can store luggage in a vacant place and can effectively use the storage space. In order to adopt the free location method, it is necessary to grasp the inventory status of each shelf.
  • Patent Document 1 there is, for example, Patent Document 1 as a prior art in this field.
  • a sensor that measures a distance to an object a moving mechanism that moves the sensor, an object information database that stores at least the shape of the object, and an object arrangement that stores an object arrangement pattern connected to the sensor.
  • the database and sensor data obtained by measuring the distance from the sensor to the object accompanying the movement of the sensor by the moving mechanism and the position of the sensor from which the sensor data was obtained are input, and the sensor data is stored in a three-dimensional space according to the sensor position.
  • Sensor data integration unit that outputs integrated data indicating the outline of the object, and an object model created from the shape of the object stored in the object information database, and refer to the object arrangement pattern stored in the object arrangement database Compare the created object model with the integrated data, and output the actual object placement data indicating the actual placement of the object. It describes a computer "having the parts.
  • Patent Document 1 described above describes a technology for recognizing the existence of a product from the three-dimensional shape data in the warehouse and recognizing the number of the products. Although it is necessary to extract the position of the shelf and the product installation area in the shelf from the shape data, the specific method is not described. In addition, the calculation of the rate at which the product occupies the product installation area in the shelf is not considered. If the product occupancy rate is not grasped, it is impossible to make a plan for bringing packages stored in a plurality of places, and the storage space cannot be used effectively.
  • the object of the present invention is to extract a shelf area and a luggage installation area from shape measurement data.
  • the measurement system is configured by a computer
  • the computer includes a processor that executes a program and a storage device that stores the program
  • the storage device includes shelf shape data and an area occupied by the shelf.
  • Storage area data representing the area in the shelf that can store luggage
  • the processor receives the shape data in the warehouse measured by the measurement sensor, the shape of the shelf
  • the data is compared with the shape data in the warehouse, the position of the shelf in the warehouse is specified, and the shape of the shelf is determined from the shape data in the warehouse based on the position of the specified shelf and the shelf area data.
  • Data is extracted, and shape data of the luggage area in the shelf is extracted from the shape data of the shelf based on the luggage area data.
  • the shelf area and the luggage installation area can be extracted from the shape measurement data.
  • FIG. 1 is a diagram showing the configuration of the measurement system of the first embodiment.
  • the measurement system of the present embodiment is configured by the computer 100.
  • the computer 100 measures the amount of luggage at each level of each shelf based on the data acquired by the shape measurement sensor, and updates and saves the luggage information.
  • the computer 100 has a processor (CPU) 110, a memory (RAM, ROM), and an auxiliary storage device (HDD, SSD) as a basic configuration, and provides functions to be described later when the processor executes a program stored in the memory. .
  • An operator operates the computer 100 through an input device 115 such as a mouse, a keyboard, or a touch screen.
  • the processor 110 executes a program stored in the memory.
  • the memory includes a ROM that is a nonvolatile storage device and a RAM that is a volatile storage device.
  • the ROM stores an immutable program (for example, BIOS).
  • BIOS basic input/output
  • the RAM is a high-speed and volatile storage device such as DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor 110 and data used when the program is executed.
  • the auxiliary storage device 200 is a large-capacity non-volatile storage device such as a magnetic storage device (HDD) or a flash memory (SSD), and stores a program executed by the processor 110 and data used when the program is executed. To do. That is, the program is read from the auxiliary storage device 200, loaded into the memory, and executed by the processor 110.
  • HDD magnetic storage device
  • SSD flash memory
  • the measurement system may include an output device 116.
  • the output device is a display device or a printer, and is an interface that outputs the execution result of the program in a format that can be visually recognized by the operator.
  • the communication interface is a network interface device that controls communication with other devices according to a predetermined protocol.
  • the measurement system may be connected to a terminal (not shown) via a communication interface, may operate according to an instruction input from the terminal, and output a calculation result to the terminal.
  • the computer 100 is connected to the warehouse management system 400 through the Internet 300 and transfers data to each other through both transmission / reception units (network interfaces).
  • the collation processing unit 101 accurately calculates the installation position and the installation direction of the shelf in the entire warehouse shape data 201 by superimposing the entire warehouse shape data 201 and the shelf CAD data 202.
  • the shelf area shape data extraction unit 102 uses the shelf area data 203 including the position and orientation of the shelf calculated by the matching processing unit 101 and the shelf and the luggage installation area inside the shelf area shape data 204 to obtain the shelf area shape data 204. Extract.
  • the luggage placement area shape data extraction unit 103 uses the extracted shelf area shape data 204 and the luggage placement area data 205 indicating where the luggage is placed in the shelf area, and the luggage at each level of the shelf. Installation area shape data 206 is extracted.
  • the location data acquisition unit 104 acquires the location data assigned to the shelf.
  • the location data is, for example, a character string such as “A-1-2-3” affixed to the shelf, a barcode or the like, and is identification information that can uniquely identify the shelf.
  • the location data acquisition unit 104 acquires location data by character recognition or barcode reading.
  • the package information acquisition unit 105 makes an inquiry to the warehouse management system 400 using the read location data 209 to acquire the package information 210 of the packages stored on the shelf to which the location data is assigned.
  • the package information 210 includes, for example, a product ID, the number of inventory, a package size, and the like.
  • the package amount measuring unit 106 calculates the package volume 211 from the shape data 206 in the package installation area 205.
  • the package information storage / update unit 107 stores and updates the calculated package volume, the coordinate value in the warehouse of the shelf where the package is installed, and the coordinate value in the shelf of the package installation area in the package volume 211 and updates it. . Further, the update result of the package information is transmitted to the warehouse management system 400 through the data transmitting / receiving unit 108 and stored in the product management DB 401.
  • the auxiliary storage device 200 for storing data includes warehouse whole shape data 201, shelf CAD data 202, shelf area data 203, shelf area shape data 204, luggage installation area data 205, luggage installation area shape data 206, and shelf area warehouse coordinates.
  • a value 207, a storage area coordinate value 208 of the luggage area, location data 209, luggage information 210, and a luggage volume 211 are stored.
  • the warehouse whole shape data 201 is shape data of the whole warehouse obtained by integrating the data acquired by the shape measurement sensor at a plurality of points into one.
  • the shelf CAD data 202 is data indicating the shape and size of the shelf installed in the warehouse.
  • the shelf area data 203 is data indicating a shelf area including an area occupied by the shelf and a luggage installation area inside the area.
  • the shelf area shape data 204 is shape data in the shelf area data 203.
  • the luggage installation area data 205 is data indicating the position and size of the luggage installation area, which is a space in which luggage can be installed.
  • the luggage installation area shape data 206 is shape data in the luggage installation area data 205.
  • the in-shelf coordinate value 208 is a coordinate value in the shelf of the luggage installation area indicated by the luggage installation area data 205.
  • the location data 209 is data representing the location in the warehouse attached to each shelf.
  • the package information 210 is information related to packages, for example, product ID, number of inventory, package size, and the like.
  • the luggage volume 211 is the volume of the luggage on the shelf calculated for each shelf.
  • the warehouse management system 400 includes a product management database 401 that stores product information, and a data transmission / reception unit 402 that is an interface for transmitting / receiving information about the product to / from the computer 100.
  • the program executed by the processor 110 is provided to the measurement system via a removable medium (CD-ROM, flash memory, etc.) or a network, and is stored in the auxiliary storage device 200 which is a non-temporary storage medium. For this reason, the measurement system may have an interface for reading data from a removable medium.
  • a measurement system is a computer system that is configured on a single computer or a plurality of computers that are logically or physically configured, and can operate on separate threads on the same computer. It is also possible to operate on a virtual machine constructed on a plurality of physical computer resources.
  • FIG. 2 is a functional block diagram showing the flow of the quantity measurement in the measurement system of the first embodiment.
  • the computer 100 receives the input of the entire warehouse shape data 201 that is measured by the shape measurement sensor and represents the surface shape in the warehouse.
  • the shape data is, for example, data obtained by measurement using a laser distance sensor, and is shape data that is an aggregate of three-dimensional coordinate values of a large number of points representing the shape of the object surface.
  • the shape data will be described using point cloud data as an example, but mesh data or image data may be used.
  • the shape data may be, for example, a stereo camera image, an RGB-D camera image, or sonar data using sound waves as long as it represents the surrounding shape. An example of acquiring the entire warehouse shape data 201 using a laser distance sensor will be described later with reference to FIG.
  • the collation processing unit 101 superimposes the entire warehouse shape data 201 and the shelf CAD data 202, and performs a collation process for searching for a place where they match.
  • a specific portion of the shelf is extracted from the entire shape data, and the coordinate value 207 (X, Y, Z, ⁇ ) of the shelf area in the coordinate system of the entire warehouse shape data 201 is output.
  • the coordinate value of the storage location in the warehouse of the package can be obtained.
  • the storage location of the package as a coordinate value, for example, when the autonomous vehicle moves in the warehouse and performs inventory inspection or picking of the package, it can move based on the coordinate value.
  • the shelf area shape data extraction unit 102 extracts the shelf area shape data 204 from the entire warehouse shape data 201 based on the shelf area warehouse coordinate value 207 and the shelf area data 203 calculated by the matching processing unit 101.
  • the shelf area data 203 is an area including the shelf CAD data 202 and the baggage placement area data 205.
  • the shelf area data 203d is based on the origin of the shelf CAD data 202. Width w, depth d, and height h.
  • the luggage installation area shape data extraction unit 103 extracts the luggage installation area shape data 206 from the shelf area shape data 204 based on the luggage installation area data 205 indicating the area where the luggage is installed in the shelf area.
  • the location data acquisition unit 104 acquires location data indicating the address of the shelf from the shelf area shape data 204.
  • the location data indicates an approximate area in the warehouse, a shelf number, and the like, and is described by a barcode or a letter (alphabet, number, etc.) in a place where the shelf is easy to see (for example, the front).
  • the location data acquisition unit 104 acquires shelf location data, and reads the location number assigned to the shelf by barcode recognition or character recognition.
  • location data can be acquired by extracting an area corresponding to the predetermined location.
  • the location data can be acquired by extracting a portion having a color different from that of the shelf body from the shelf image.
  • the package information acquisition unit 105 queries the warehouse management system 400 for the acquired location data 209 and acquires the package information 210 stored at the location.
  • the package information 210 stores, for example, a product ID, a storage location, a stock quantity, a package size, and the like.
  • the package amount measuring unit 106 outputs the package volume 211 from the package installation area data 205 and the package installation area shape data 206.
  • the load placement area shape data 206 is not data obtained by measuring the load from all directions, but data representing a surface shape in a range visible from a place measured by the shape measurement sensor. For this reason, the baggage placement region shape data 206 includes surface irregularity data, but does not include baggage depth data. Therefore, the innermost surface of the luggage installation area is set using the luggage installation area data 205 indicating the area where the luggage can be installed in each shelf, and the luggage is installed from the innermost surface of the luggage installation area to the surface of the luggage. Can be calculated.
  • the load occupancy rate in the corresponding step of the corresponding shelf is calculated by dividing the calculated load amount by the load setting area volume.
  • the package information storage / update unit 107 stores and updates the package information 210.
  • the package information 210 includes, for example, a product ID, a storage location, a stock quantity, and a package size, and may include a package volume 211, a shelf area warehouse coordinate value 207, and a luggage area intra-shelf coordinate value 208. Further, the baggage occupation rate may be stored together with the baggage volume 211.
  • the update result of the package information 210 is stored in the product management DB 401 of the warehouse management system 400 through the data transmission / reception unit 108.
  • the three-dimensional coordinate value in the warehouse of the luggage area can be calculated.
  • the display mode for example, color
  • the load region is displayed in the three-dimensional space in the warehouse, It is possible to easily grasp a region with a large occupation rate or a region with a small occupation rate.
  • FIG. 3 is a flowchart illustrating the basic processing of the measurement system according to the first embodiment, and illustrates the processing for measuring the amount of goods on the shelf executed by the computer 100 according to the first embodiment. This processing is provided by execution of a program by the computer 100.
  • step S101 the warehouse whole shape data 201 representing the surface shape in the warehouse measured by the shape measurement sensor 30 is received. Further, the entire warehouse shape data is a set of points representing the position of the surface of the object, for example, as shown in FIG.
  • shelf data is input.
  • the input shelf data includes shelf CAD data 202, shelf area data 203 in the shelf CAD data coordinate system, and a luggage installation area 205 for each shelf (see FIG. 4).
  • the shelf area data 203 is an area that is first extracted from the entire warehouse shape data 201, and is an area that includes a shelf and a luggage installation area, as shown in FIG.
  • the shelf area data 203d is represented by a width w, a depth d, and a height h with reference to the origin 202a of the shelf CAD data.
  • the luggage installation area 205 is an area in which luggage can be installed at each level of the shelf.
  • the luggage installation area data 205d (see FIG. 4C), It is represented by the number of shelves, the xyz coordinate value based on the origin 202a of the shelf CAD data, the width w, the depth d, and the height h.
  • step S103 shape data of the shelf installation area is extracted.
  • the entire warehouse shape data 201 input in step S101 and the shelf CAD data 202 input in step S102 are collated to search for a place where the entire warehouse shape data 201 and the shelf CAD data 202 match.
  • the process of collating the entire warehouse shape data 201 and the shelf CAD data 202, calculating the coordinate value 207 of the shelf area in the warehouse, and extracting the shelf area shape data 204 will be described.
  • the search range can be limited and the calculation time can be shortened by using the condition that the shelf is installed in contact with the floor and perpendicular to the floor.
  • the method of searching all within the limited range requires a lot of calculation cost. Therefore, by setting an approximate shelf position in advance and giving an initial value, the calculation cost Can be greatly reduced. An example of the setting method of the approximate shelf position will be described later with reference to FIG.
  • the shape data in the range described in the shelf region data 203d is extracted, and the shelf region shape data 204 is extracted.
  • the extracted shelf area shape data 204 is used to calculate the luggage installation area data 205 at each stage and to acquire location data.
  • step S104 the shape data of the luggage installation area in each stage of the shelf is extracted from the extracted shelf area shape data 204.
  • the number of the shelf installation area shapes Data 206 is extracted.
  • FIG. 7 is a diagram showing the extraction of the luggage placement area shape data 206 from the shelf area shape data 204 and the luggage placement area data 205. Specifically, the shape data 206 in the luggage installation area 205 at each stage is extracted from the shelf area shape data 204.
  • shelf location data 209 is acquired.
  • data relating to a location attached to the shelf is read by character recognition or barcode recognition.
  • the warehouse whole shape data 201 needs to be colored data.
  • the surface shape of the installed object in the warehouse is acquired with a laser beam or the like, and color information is acquired by photographing the inside of the warehouse with a camera.
  • FIG. 8 shows an example of the location data 209 pasted on the shelf 10.
  • step S106 the package information 210 is acquired using the acquired location data 209.
  • the warehouse management system 400 is inquired through the data transmission / reception unit 108.
  • the warehouse management system 400 extracts information on the packages installed at the corresponding location from the package information stored in the product management DB 401.
  • the computer 100 receives the package information through the data transmitting / receiving unit 108 and stores it in the package information 210.
  • step S104 and steps S105 to S106 may be executed in parallel, or one may be executed first and the other after.
  • the luggage volume 211 is calculated from the luggage installation area shape data 206 and the luggage installation area data 205.
  • FIG. 9A a process for calculating the load volume 211 from the load placement area shape data 206 (FIG. 9A) will be described.
  • the plane 206a perpendicular to the xy plane is detected using the luggage placement area shape data 206 (FIG. 9B). Since the shape measurement sensor measures the surface shape from the front of the shelf, the laser beam does not reach the upper surface of the luggage, and the shape data of the upper surface of the luggage cannot be acquired.
  • a plane that is horizontal to the xy plane is also detected in the plane detection, but is deleted, leaving a plane 206a perpendicular to the xy plane.
  • a space generated by extending the detected plane 206a to the innermost surface in the x-axis direction of the load placement area 205 is calculated as a load volume 211 and output (FIG. 9C).
  • FIG. 9 shows a method of obtaining the luggage volume 211 from the luggage installation area shape data 206 and the luggage installation area data 205.
  • the luggage information 210 is used together to determine the luggage volume.
  • a more accurate method is shown in FIG.
  • the package information 210 the missing portion is compensated by using the package size (width w, depth d, height h) 210_7 (see FIG. 11).
  • the plane 206a perpendicular to the xy plane is detected using the load placement area shape data 206 (FIG. 10A) (FIG. 10B).
  • the extracted plane 206a is divided for each package size (height h) (FIG.
  • the plane 206a is such that the width of the plane 206a is a multiple of the package size (width w). Is adjusted (FIG. 10D). Using the adjusted flat surface 206a, a space that can be extended to the innermost surface in the x-axis direction of the load placement area 205 is calculated as a load volume 211 and output (FIG. 10E).
  • step S108 the shelf area warehouse coordinate value 207 calculated in step S103, the luggage area shelf coordinate value 208 used in step S104, and the package volume 211 calculated in step S107 are stored in the package information 210. Update.
  • FIG. 11 shows an example of the data structure of the package information 210.
  • the package information 210 includes, for example, a package ID 210_1, a location 210_2, a warehouse area coordinate value 210_3, a package area information 210_4, an inventory quantity 210_5, a package volume 210_6, a package size 210_7, and an update date and time 210_8.
  • the package ID 210_1 is identification information for uniquely identifying the package.
  • Location 210_2 indicates the location of the luggage in the warehouse.
  • the in-warehouse coordinate value 210_3 of the shelf area is a coordinate value in the warehouse of the shelf where the luggage is installed.
  • the luggage area information 210_4 is information on an area where the luggage is installed in the shelf, and is represented by a three-dimensional coordinate value in the shelf, a width, a depth, and a height.
  • the inventory number 210_5 is the number that the package is in stock.
  • the load volume 210_6 is the total volume of the load.
  • the package size 210_7 is the size of each package, and is represented by a width, a depth, and a height.
  • the update date 210_8 is the date and time when the package information is updated.
  • the update date / time 210_8 may be one value for each package ID 210_1, but the update date / time may be recorded separately for the number of stocks and the package size
  • step S109 the next shelf is searched from the entire warehouse shape data 201.
  • step S110 it is determined whether or not there is a next shelf. If there is a next shelf, the process returns to step S103 to extract shape data of the shelf area. If there is no next shelf, the process ends.
  • FIG. 12 is a diagram illustrating an example of acquisition of the entire warehouse shape data 201.
  • a method of measuring the shape measuring sensor 30 by moving it with the carriage 50 will be described, but other methods may be used.
  • a shape measurement sensor is mounted on a mobile robot and automatically measured while moving
  • a shape measurement sensor is mounted on a UAV (unmanned aerial vehicle) and automatically measured while moving
  • a shape measurement sensor is used.
  • a method of measuring at a plurality of stationary points may be used.
  • the shape measurement sensor 30 acquires data for creating the entire warehouse shape data 201, and the shape measurement sensor 40 sequentially acquires measurement positions measured by the shape measurement sensor 30.
  • the shape measurement sensor 30 is mounted on the carriage 50 so that the scan surface is perpendicular to the floor surface, and is irradiated with a laser beam in a specified direction while moving on the carriage 50, so that the shelf 10, the luggage 20, etc. Measure the distance to the object. Thereafter, the entire warehouse shape data 201 can be created by connecting the measurement data. In order to connect measurement data, it is necessary to know the position and orientation at which the data was measured. For this reason, for example, the shape measurement sensor 40 is installed on the carriage 50 such that the scan surface is horizontal with the floor surface, and measures the distance from the surroundings at a certain height. Based on the measured data, the self-position and posture are sequentially estimated while creating a two-dimensional map.
  • the shape measurement sensor 30 may be provided with a camera 60.
  • the entire warehouse shape data 201 can be colored by the color image of the visible light region captured by the camera 60, and the location data of the shelf 10 can be acquired.
  • a shape measurement sensor 30 with a built-in camera may be used.
  • FIG. 13 is a diagram illustrating estimation of the sensor position and orientation using the data measured by the shape measurement sensor 40.
  • the shape measurement sensor 40 obtains distance data 41-1, 41-2,... To the object for each position to be moved and measured.
  • the distance data 41-1 and the like represent the contours of objects (objects and obstacles) indicated by solid lines (strictly speaking, a set of points as will be described later).
  • the shape measurement sensor 40 obtains distance data 41 such as 41-1, 41-2, 41-3,... For each moving position.
  • the respective measurement positions and postures are obtained from the distance data 41 obtained sequentially.
  • a SLAM (Simultaneous Localization And Mapping) technique that executes these two calculations simultaneously is used. Specifically, by performing a collation process between the distance data 41 and the two-dimensional plane map 42 created so far, the position and orientation of the shape measurement sensor 40 on the two-dimensional plane map 42 are obtained, and based on these. Thus, the two-dimensional planar map 42 is sequentially expanded / updated.
  • the creation of the two-dimensional planar map 42 will be described with reference to FIG. First, the distance data 41-1 and the distance data 41-2 are overlapped at a position where the contours of the objects coincide with each other to obtain a two-dimensional planar map. Further, the two-dimensional planar map 42 is formed by superimposing the distance data 41-3 on the two-dimensional planar map 42 created from the distance data 41-1 and the distance data 41-2 at a position where the contour of the object matches. Extend / update. The two-dimensional planar map 42 is created by repeating the process of integrating the distance data into the two-dimensional planar map 42 in this way.
  • the two-dimensional planar map 42 that is sequentially updated and the current distance data 41 are collated, thereby performing the two-dimensional measurement of the shape measurement sensor 40.
  • a two-dimensional position and orientation 43 (x, y, ⁇ ) on the planar map 42 can be estimated.
  • the shape measurement sensor 30 is obtained by adding the difference between the position and posture of the shape measurement sensor 40 and the position and posture of the shape measurement sensor 30 to the estimated position and posture 43 (x, y, ⁇ ) of the shape measurement sensor 40. Can be estimated.
  • FIG. 14 is a diagram illustrating an example of creation of the entire warehouse shape data 201 from the data measured by the shape measurement sensor 30.
  • the distance and angle (L, ⁇ ) to an object such as an object or an obstacle measured by the shape measurement sensor 30 and the position and orientation (x, y, z) of the shape measurement sensor 30 , ⁇ ), the three-dimensional coordinate value (x1, y1, z1) of the object is calculated.
  • the position and orientation of the shape measurement sensor 30 are represented by a set of measurement position (x, y, z) and direction ⁇ , and as described above, the position and orientation 43 of the shape measurement sensor 40 and the position of the shape measurement sensor 30 and It can be calculated by the posture. Since the distance data is measured while moving the shape measurement sensor 30, the distance data acquired at different positions as the movement is obtained as a collection of points 31-1 to 31-5 as shown in FIG.
  • data 32 can be generated (see FIG. 14C). By performing this integration process on the entire warehouse data, the entire warehouse shape data 201 can be generated.
  • FIG. 15 is a functional block diagram illustrating the flow of physical quantity measurement in the measurement system in which the shelf position is preset in the second embodiment.
  • processing related to shelf position setting is added to the measurement system shown in FIG.
  • the shelf position setting unit 109 sets an approximate position of the shelf on the entire warehouse shape data 201 by an operator input, and creates a shelf installation diagram 212. By giving the approximate position in advance, the shelf position can be grasped quickly and accurately.
  • the matching processing unit 101 performs matching processing in the vicinity of the coordinate values shown in the shelf installation diagram 212 to facilitate the extraction of the shelf area and the grasp of the position. Since the processing after the verification processing unit 101 is the same as that in the above-described embodiment, the description thereof is omitted.
  • the shelf position is set by creating a plan view 201a obtained by cutting the entire warehouse shape data 201 at a certain height. Then, as shown in FIG. 16B, a rectangle 212a representing a shelf is arranged at the extreme end position of each column of the shelf on the plan view 201a. A direction 212b in which the installed shelves are arranged adjacent to each other may be shown in the plan view 201a. Although not shown, all rectangles representing shelves may be arranged. If a shelf layout diagram is held, it may be used.
  • the entire warehouse shape data 201 represents the shape of the object surface viewed from the measurement position, it is difficult to obtain the shape of the side surface of the shelf other than the endmost position among the adjacently arranged shelves. For this reason, the front surface shape of many shelves is mainly measured. For this reason, by setting the shelf position in advance, not only the calculation time is shortened, but also the possibility that a different place is recognized as the shelf position is reduced.
  • FIG. 17 is a diagram showing a modified example of the process of comparing the entire warehouse shape data 201 and the shelf CAD data 202, calculating the coordinate value 207 of the shelf area in the warehouse, and extracting the shelf area shape data 204.
  • the process shown in FIG. 17 is different from the process shown in FIG.
  • the shelf CAD data 202 is arranged at the same location (x, y, ⁇ ) as the coordinate value of the shelf indicated by the shelf installation chart 212. There is a high possibility that the shelf CAD data 202 and the shelf area of the entire warehouse shape data 201 do not match due to an installation error. Therefore, by performing a collation process between the shelf CAD data 202 and the entire warehouse shape data 201 in the vicinity of the installed location, it is possible to output an accurate warehouse coordinate value (x1, y1, ⁇ 1) of the shelf area.
  • FIG. 18 is a functional block diagram showing the flow of measuring the quantity in the measurement system for correcting the load volume according to the third embodiment.
  • processing for correcting the load volume by using the inventory difference is added to the measurement system shown in FIG. 2.
  • the measuring unit 120 measures the shape data in the warehouse and stores the measurement time in the data measurement time 220.
  • the measurement data integration unit 121 integrates the measurement data using, for example, the method illustrated in FIGS. 13 and 14 and creates the entire warehouse shape data 201.
  • the measurement area / time association unit 122 associates the measurement time with the measured area. For example, as shown in FIG. 19A, in the plan view 201a extracted at a certain height from the entire warehouse shape data 201, the area is divided at each measurement time, and the coordinate value indicating the range of each area, Measurement area / time correspondence data 221 (FIG. 19B) including the measurement time of the area is created.
  • the package information acquisition unit 105 acquires the package information 210 at the time of quantity measurement and the package information 222 at the time of shape measurement by making an inquiry to the product management DB 401 of the warehouse management system 400.
  • the package information 222 at the time of shape measurement is obtained by acquiring the measurement time of the area corresponding to the coordinate value of the shelf area by using the coordinate value 207 in the shelf area warehouse and the measurement area / time correspondence data 221, and the package information at a time equal to the time To get. For this reason, the merchandise management DB 401 holds data for a predetermined period in the past.
  • the package volume correction unit 123 compares the inventory quantity of the luggage information 210 at the time of physical quantity measurement with the inventory quantity of the luggage information 222 at the time of shape measurement, calculates the luggage quantity difference, The load volume difference is calculated from the box size and the load amount difference. Then, the load volume difference is added to the load volume 211a calculated by the load amount measuring unit 106 to create a corrected load volume 211b.
  • the package information storage / update unit 107 updates the package information 210 using the corrected package volume 211b.
  • the difference between the inventory quantity and the luggage volume 211 at the time of shape measurement has a predetermined threshold even though the inventory quantity of the luggage information 210 at the time of quantity measurement is the same as the inventory quantity of the luggage information 222 at the time of quantity measurement.
  • a warning (a specific character, a figure, a color, a sound, blinking, etc.) may be emitted and notified to the operator.
  • warehouse operations In warehouses that have time periods when warehouse operations are not performed, warehouse operations (entry work and delivery work) can be separated from warehouse shape measurement and physical quantity measurement. However, in warehouses that operate 24 hours, entry and exit work and measurement work are separated from each other. Is difficult to separate. At the time of measuring the shape in the warehouse, it is necessary to avoid the shelves and products to be measured from being shielded by an operator or a loading robot. For this reason, in a 24-hour warehouse, it is preferable to avoid simultaneous execution of the loading / unloading work and the measurement work by adjusting the measurement schedule and the work schedule.
  • the measurement system collates the shelf CAD data 202 and the entire warehouse shape data 201 and specifies the position of the shelf in the warehouse, A shelf area shape data extraction unit 102 for extracting the shelf area shape data 204 from the entire warehouse shape data 201 based on the coordinate values 207 in the shelf area and the shelf area data 203, and a shelf area based on the luggage installation area data 205 Since the load placement area shape data extraction unit 103 extracts the load placement area shape data 206 from the data 203, the load is placed from the shape data acquired by the measurement sensor without specifying the position of the shelf in detail. The area can be extracted automatically.
  • the measurement system has the load amount measuring unit 106 that estimates the load volume 211 using the load setting area shape data 206 and the load setting area data 205, the amount of the load stored on the shelf can be estimated.
  • the load amount measuring unit 106 may calculate the occupancy rate of the load at each level of the shelf by dividing the estimated load volume by the volume of the load setting area. Whether or not shelving is possible can be determined based on the occupation ratio.
  • the load amount measuring unit 106 estimates the load volume 211 using the load size 210_7, the load setting area shape data 206, and the load setting area data 205 acquired from the warehouse management system 400, and thus is extracted from the shape data. Even if there is a missing part in the packaged area, it is possible to complement the luggage area and obtain the volume of the package with high accuracy.
  • the load amount measuring unit 106 may calculate the occupancy rate of the load at each level of the shelf by dividing the estimated load volume by the volume of the load setting area.
  • the measurement system issues a warning when the inventory quantity 210_5 of the luggage acquired from the warehouse management system 400 and the luggage volume 211 are different, the measurement system gives an opportunity to notice the difference between the current inventory quantity and the estimated volume value. be able to.
  • the package information acquisition unit 105 uses the location data 209 assigned to the shelf to acquire the package information stored in the shelf from the warehouse management system 400, so that the location of the shelf in the warehouse is known. Can do. It can also be determined whether the shelves are close when shelving.
  • the measurement system has the luggage volume correction unit 123 that corrects the volume of the luggage using the luggage information at the time equal to the measurement time of the entire warehouse shape data 201 and the information of the luggage acquired at the time of the quantity measurement,
  • the load volume can be estimated with high accuracy.
  • the measurement system has a shelf position setting unit 109 that accepts setting of a shelf position on a plan view 201a configured by extracting a shape at a certain height from the entire warehouse shape data 201, and a collation processing unit
  • the search range is set in the vicinity of the received shelf position, so that the shelf CAD data and the entire warehouse shape data 201 are collated, so that the collation range can be narrowed and the calculation can be speeded up.
  • the present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment may be replaced with the configuration of another embodiment.
  • another configuration may be added, deleted, or replaced.
  • each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
  • Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Operations Research (AREA)
  • Development Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Mechanical Engineering (AREA)
  • Quality & Reliability (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)

Abstract

Provided is a measurement system formed by a computing machine, the measurement system characterized in that: the computing machine includes a processor that executes a program, and a storage device that stores the program; the storage device holds shelf shape data, shelf area data showing the area occupied by a shelf, and load area data showing the area on the shelf where a load can be stored; and the processor receives input of warehouse-internal shape data measured by a measurement sensor, matches the shelf shape data and the warehouse-internal shape data, specifies a warehouse-internal position of the shelf, extracts the shelf shape data from the warehouse-internal shape data on the basis of the specified shelf position and the shelf area data, and extracts load area shape data on the shelf from the shelf shape data on the basis of the load area data.

Description

計測システム及び計測方法Measuring system and measuring method
 本発明は、物流倉庫において空間を管理する計測システムに関する。 The present invention relates to a measurement system for managing a space in a distribution warehouse.
 近年における通販市場の拡大と顧客ニーズの多様化に伴い、物流倉庫で扱う荷物が小口化している。物流倉庫における商品管理には、商品の保管場所を固定する固定ロケーション方式と、商品の保管場所を固定しないフリーロケーション方式とがある。固定ロケーション方式は、ある商品は常に同じ保管場所にあるためロケーションを把握しやすいが、空いている場所が保管場所として割り当てられている場合、他の商品を格納することができず、柔軟性に欠ける。一方、フリーロケーション方式は、空いている場所に荷物を保管することができ、保管スペースを有効活用できる。フリーロケーション方式を採用するためには、各棚の在庫状況を把握する必要がある。倉庫管理システムを導入している物流倉庫では、商品と在庫とロケーションとが関連付けて管理されているので、各棚の在庫(商品の数)を把握できる。倉庫にある在庫数を実際に確認する棚卸作業では、一般的には、作業員が倉庫内を歩き目視やバーコード等で数を確認する。 In recent years, with the expansion of the mail order market and the diversification of customer needs, the luggage handled in the distribution warehouse has become smaller. There are two types of merchandise management in a distribution warehouse: a fixed location system that fixes the storage location of merchandise and a free location system that does not fix the storage location of merchandise. The fixed location method is easy to grasp the location because a certain product is always in the same storage location, but if a free space is assigned as a storage location, other products can not be stored, so it is flexible Lack. On the other hand, the free location method can store luggage in a vacant place and can effectively use the storage space. In order to adopt the free location method, it is necessary to grasp the inventory status of each shelf. In a distribution warehouse that has introduced a warehouse management system, products, inventory, and locations are managed in association with each other, so that the inventory (number of products) of each shelf can be grasped. In inventory work for actually confirming the number of stocks in a warehouse, generally, an operator walks in the warehouse and confirms the number by visual observation or bar code.
 この分野の先行技術として、例えば特許文献1がある。特許文献1には、「物体までの距離を計測するセンサと、センサを移動させる移動機構と、センサと接続し、物体の少なくとも形状を格納する物体情報データベース、物体の配置パタンを格納する物体配置データベース、移動機構によるセンサの移動に伴うセンサからの、物体までの距離を計測したセンサデータとセンサデータを得たセンサの位置とを入力とし、センサの位置に応じてセンサデータを3次元空間内に統合した、物体の輪郭を示す統合データを出力するセンサデータ統合部、及び物体情報データベースに格納された物体の形状から物体モデルを作成し、物体配置データベースに格納された物体の配置パタンを参照して、作成した物体モデルと統合データとを比較して物体の実配置を示す物体実配置データを出力する物体比較演算部を有する計算機」が記載されている。 There is, for example, Patent Document 1 as a prior art in this field. In Patent Document 1, “a sensor that measures a distance to an object, a moving mechanism that moves the sensor, an object information database that stores at least the shape of the object, and an object arrangement that stores an object arrangement pattern connected to the sensor. The database and sensor data obtained by measuring the distance from the sensor to the object accompanying the movement of the sensor by the moving mechanism and the position of the sensor from which the sensor data was obtained are input, and the sensor data is stored in a three-dimensional space according to the sensor position. Sensor data integration unit that outputs integrated data indicating the outline of the object, and an object model created from the shape of the object stored in the object information database, and refer to the object arrangement pattern stored in the object arrangement database Compare the created object model with the integrated data, and output the actual object placement data indicating the actual placement of the object. It describes a computer "having the parts.
特開2010-23950公報JP 2010-23950 A
 前述した特許文献1は、倉庫内三次元形状データから、商品の存否を認識し、商品の個数を認識する技術を記載しているが、商品の数を認識するためには、倉庫内3次元形データから棚の位置及び棚の中の商品設置領域を抽出する必要があるが、その具体的方法は記載されていない。また、棚の中の商品設置領域を商品が占有している率の算出は考慮されていない。商品占有率を把握しないと、複数の場所に格納されている荷物を寄せるための計画を立てられず、保管スペースを有効活用することができない。 Patent Document 1 described above describes a technology for recognizing the existence of a product from the three-dimensional shape data in the warehouse and recognizing the number of the products. Although it is necessary to extract the position of the shelf and the product installation area in the shelf from the shape data, the specific method is not described. In addition, the calculation of the rate at which the product occupies the product installation area in the shelf is not considered. If the product occupancy rate is not grasped, it is impossible to make a plan for bringing packages stored in a plurality of places, and the storage space cannot be used effectively.
 本発明は、形状計測データから棚領域及び荷物設置領域を抽出することを目的とする。 The object of the present invention is to extract a shelf area and a luggage installation area from shape measurement data.
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、計算機によって構成される計測システムであって、前記計算機は、プログラムを実行するプロセッサ及び前記プログラムを格納する記憶装置を有し、前記記憶装置は、棚の形状データと、棚が占有する領域を表す棚領域データと、棚の中で荷物を格納可能な領域を表す荷物領域データとを保持し、前記プロセッサは、計測センサが計測した倉庫内の形状データの入力を受け、前記棚の形状データと前記倉庫内の形状データとを照合し、前記棚の倉庫内の位置を特定し、前記特定された棚の位置及び前記棚領域データに基づいて、前記倉庫内の形状データから棚の形状データを抽出し、前記荷物領域データに基づいて、前記棚の形状データから前記棚の中の荷物領域の形状データを抽出する。 A typical example of the invention disclosed in the present application is as follows. That is, the measurement system is configured by a computer, and the computer includes a processor that executes a program and a storage device that stores the program, and the storage device includes shelf shape data and an area occupied by the shelf. Storage area data representing the area in the shelf that can store luggage, and the processor receives the shape data in the warehouse measured by the measurement sensor, the shape of the shelf The data is compared with the shape data in the warehouse, the position of the shelf in the warehouse is specified, and the shape of the shelf is determined from the shape data in the warehouse based on the position of the specified shelf and the shelf area data. Data is extracted, and shape data of the luggage area in the shelf is extracted from the shape data of the shelf based on the luggage area data.
 本発明の一態様によれば、形状計測データから棚領域及び荷物設置領域を抽出できる。前述した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to one aspect of the present invention, the shelf area and the luggage installation area can be extracted from the shape measurement data. Problems, configurations, and effects other than those described above will become apparent from the description of the following embodiments.
第1実施例の計測システムの構成を示す図である。It is a figure which shows the structure of the measurement system of 1st Example. 第1実施例の計測システムにおける物量計測の流れを示す機能ブロック図である。It is a functional block diagram which shows the flow of the quantity measurement in the measurement system of 1st Example. 第1実施例の計測システムの基本的な処理を例示するフローチャートである。It is a flowchart which illustrates the basic process of the measurement system of 1st Example. 第1実施例の棚のCADデータ、棚設置領域、荷物設置領域の一例を示す図である。It is a figure which shows an example of the CAD data of the shelf of 1st Example, a shelf installation area | region, and a luggage installation area | region. 第1実施例の倉庫全体形状データの一例を示す図である。It is a figure which shows an example of the whole warehouse shape data of 1st Example. 第1実施例の棚領域形状データを抽出する処理を示す図である。It is a figure which shows the process which extracts the shelf area | region shape data of 1st Example. 第1実施例の荷物設置領域形状データの抽出を示す図である。It is a figure which shows extraction of the luggage installation area | region shape data of 1st Example. 第1実施例の棚に貼付されたロケーションデータの一例を示す図である。It is a figure which shows an example of the location data stuck on the shelf of 1st Example. 第1実施例の荷物体積を算出する処理を示す図である。It is a figure which shows the process which calculates the package volume of 1st Example. 第1実施例の形状データが欠けている状態において、荷物体積を算出する処理を示す図である。It is a figure which shows the process which calculates a load volume in the state in which the shape data of 1st Example are missing. 第1実施例の荷物情報のデータ構造の一例を示す図である。It is a figure which shows an example of the data structure of the package information of 1st Example. 第1実施例の倉庫全体形状データの取得の一例を示す図である。It is a figure which shows an example of acquisition of the whole warehouse shape data of 1st Example. 第1実施例のセンサ位置及び姿勢の推定を示す図である。It is a figure which shows the estimation of the sensor position and attitude | position of 1st Example. 第1実施例の倉庫全体形状データの作成を示す図である。It is a figure which shows creation of the whole warehouse shape data of 1st Example. 第2実施例の計測システムにおける物量計測の流れを示す機能ブロック図である。It is a functional block diagram which shows the flow of quantity measurement in the measurement system of 2nd Example. 第2実施例の棚位置の設定方法の一例を示す図である。It is a figure which shows an example of the setting method of the shelf position of 2nd Example. 第2実施例の棚領域形状データを抽出する処理の変形例を示す図である。It is a figure which shows the modification of the process which extracts the shelf area | region shape data of 2nd Example. 第3実施例の荷物体積を補正する計測システムにおける物量計測の流れを示す機能ブロック図である。It is a functional block diagram which shows the flow of the quantity measurement in the measurement system which correct | amends the load volume of 3rd Example. 第3実施例の計測領域・時刻対応データの一例を示す図である。It is a figure which shows an example of the measurement area | region time corresponding data of 3rd Example. 第3実施例の荷物体積修正処理を示す図である。It is a figure which shows the package volume correction process of 3rd Example.
 以下、図面を用いて、本発明の実施の形態を説明する。なお、本発明の実施の態様は、後述する実施例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment of the present invention is not limited to the examples described later, and various modifications are possible within the scope of the technical idea.
 <第1実施例>
 図1は、第1実施例の計測システムの構成を示す図である。
<First embodiment>
FIG. 1 is a diagram showing the configuration of the measurement system of the first embodiment.
 本実施例の計測システムは計算機100によって構成される。計算機100は、形状計測センサが取得したデータに基づいて各棚の各段における荷物量を計測し、荷物情報を更新及び保存する。計算機100は、プロセッサ(CPU)110、メモリ(RAM、ROM)及び補助記憶装置(HDD、SSD)を基本構成とし、プロセッサがメモリに格納されたプログラムを実行することによって、後述する機能を提供する。オペレータは、マウス、キーボード、タッチスクリーンなどの入力装置115を通じて、計算機100を操作する。 The measurement system of the present embodiment is configured by the computer 100. The computer 100 measures the amount of luggage at each level of each shelf based on the data acquired by the shape measurement sensor, and updates and saves the luggage information. The computer 100 has a processor (CPU) 110, a memory (RAM, ROM), and an auxiliary storage device (HDD, SSD) as a basic configuration, and provides functions to be described later when the processor executes a program stored in the memory. . An operator operates the computer 100 through an input device 115 such as a mouse, a keyboard, or a touch screen.
 具体的には、プロセッサ110は、メモリに格納されたプログラムを実行する。メモリは、不揮発性の記憶装置であるROM及び揮発性の記憶装置であるRAMを含む。ROMは、不変のプログラム(例えば、BIOS)などを格納する。RAMは、DRAM(Dynamic Random Access Memory)のような高速かつ揮発性の記憶装置であり、プロセッサ110が実行するプログラム及びプログラムの実行時に使用されるデータを一時的に格納する。 Specifically, the processor 110 executes a program stored in the memory. The memory includes a ROM that is a nonvolatile storage device and a RAM that is a volatile storage device. The ROM stores an immutable program (for example, BIOS). The RAM is a high-speed and volatile storage device such as DRAM (Dynamic Random Access Memory), and temporarily stores a program executed by the processor 110 and data used when the program is executed.
 補助記憶装置200は、例えば、磁気記憶装置(HDD)、フラッシュメモリ(SSD)等の大容量かつ不揮発性の記憶装置であり、プロセッサ110が実行するプログラム及びプログラムの実行時に使用されるデータを格納する。すなわち、プログラムは、補助記憶装置200から読み出されて、メモリにロードされて、プロセッサ110によって実行される。 The auxiliary storage device 200 is a large-capacity non-volatile storage device such as a magnetic storage device (HDD) or a flash memory (SSD), and stores a program executed by the processor 110 and data used when the program is executed. To do. That is, the program is read from the auxiliary storage device 200, loaded into the memory, and executed by the processor 110.
 計測システムは、出力装置116を有してもよい。出力装置は、ディスプレイ装置やプリンタであり、プログラムの実行結果をオペレータが視認可能な形式で出力するインターフェースである。 The measurement system may include an output device 116. The output device is a display device or a printer, and is an interface that outputs the execution result of the program in a format that can be visually recognized by the operator.
 通信インターフェースは、所定のプロトコルに従って、他の装置との通信を制御するネットワークインターフェース装置である。計測システムは、通信インターフェースを介して端末(図示省略)と接続されてもよく、該端末から入力された指示に従って動作し、該端末に演算結果を出力してもよい。 The communication interface is a network interface device that controls communication with other devices according to a predetermined protocol. The measurement system may be connected to a terminal (not shown) via a communication interface, may operate according to an instruction input from the terminal, and output a calculation result to the terminal.
 計算機100は、インターネット300を通じて倉庫管理システム400と接続され、双方の送受信部(ネットワークインターフェース)を通じて、互いにデータを転送する。 The computer 100 is connected to the warehouse management system 400 through the Internet 300 and transfers data to each other through both transmission / reception units (network interfaces).
 照合処理部101は、倉庫全体形状データ201と棚CADデータ202とを重ね合わせることによって、倉庫全体形状データ201内で棚の設置位置及び棚の設置向きを正確に算出する。 The collation processing unit 101 accurately calculates the installation position and the installation direction of the shelf in the entire warehouse shape data 201 by superimposing the entire warehouse shape data 201 and the shelf CAD data 202.
 棚領域形状データ抽出部102は、照合処理部101が算出した棚の位置及び向きと、棚とその内部の荷物設置領域とを包含する棚領域データ203とを用いて、棚領域形状データ204を抽出する。 The shelf area shape data extraction unit 102 uses the shelf area data 203 including the position and orientation of the shelf calculated by the matching processing unit 101 and the shelf and the luggage installation area inside the shelf area shape data 204 to obtain the shelf area shape data 204. Extract.
 荷物設置領域形状データ抽出部103は、抽出された棚領域形状データ204と、棚領域の中のどこに荷物が設置されているかを示す荷物設置領域データ205とを用いて、棚の各段における荷物設置領域形状データ206を抽出する。 The luggage placement area shape data extraction unit 103 uses the extracted shelf area shape data 204 and the luggage placement area data 205 indicating where the luggage is placed in the shelf area, and the luggage at each level of the shelf. Installation area shape data 206 is extracted.
 ロケーションデータ取得部104は、棚に割り当てられているロケーションデータを取得する。ロケーションデータは、例えば、棚に貼付されている「A-1-2-3」などの文字列や、バーコード等で示されており、棚を一意に識別可能な識別情報である。ロケーションデータ取得部104は、文字認識やバーコード読み取りなどによって、ロケーションデータを取得する。 The location data acquisition unit 104 acquires the location data assigned to the shelf. The location data is, for example, a character string such as “A-1-2-3” affixed to the shelf, a barcode or the like, and is identification information that can uniquely identify the shelf. The location data acquisition unit 104 acquires location data by character recognition or barcode reading.
 荷物情報取得部105は、倉庫管理システム400に、読み取ったロケーションデータ209で問い合わせることによって、そのロケーションデータが割り当てられた棚に保管されている荷物の荷物情報210を取得する。荷物情報210は、例えば、商品ID、在庫数、荷物サイズ等を含む。 The package information acquisition unit 105 makes an inquiry to the warehouse management system 400 using the read location data 209 to acquire the package information 210 of the packages stored on the shelf to which the location data is assigned. The package information 210 includes, for example, a product ID, the number of inventory, a package size, and the like.
 荷物量計測部106は、荷物設置領域205内の形状データ206から、荷物体積211を算出する。 The package amount measuring unit 106 calculates the package volume 211 from the shape data 206 in the package installation area 205.
 荷物情報保存・更新部107は、算出された荷物の体積、荷物が設置されている棚の倉庫内の座標値、及び荷物設置領域の棚内の座標値を荷物体積211に保存し、更新する。さらに、荷物情報の更新結果は、データ送受信部108を通じて、倉庫管理システム400に送信され、商品管理DB401に格納される。 The package information storage / update unit 107 stores and updates the calculated package volume, the coordinate value in the warehouse of the shelf where the package is installed, and the coordinate value in the shelf of the package installation area in the package volume 211 and updates it. . Further, the update result of the package information is transmitted to the warehouse management system 400 through the data transmitting / receiving unit 108 and stored in the product management DB 401.
 データを格納する補助記憶装置200は、倉庫全体形状データ201、棚CADデータ202、棚領域データ203、棚領域形状データ204、荷物設置領域データ205、荷物設置領域形状データ206、棚領域倉庫内座標値207、荷物領域の棚内座標値208、ロケーションデータ209、荷物情報210及び荷物体積211を格納する。 The auxiliary storage device 200 for storing data includes warehouse whole shape data 201, shelf CAD data 202, shelf area data 203, shelf area shape data 204, luggage installation area data 205, luggage installation area shape data 206, and shelf area warehouse coordinates. A value 207, a storage area coordinate value 208 of the luggage area, location data 209, luggage information 210, and a luggage volume 211 are stored.
 倉庫全体形状データ201は、形状計測センサが複数地点で取得したデータを一つに統合した倉庫全体の形状データである。棚CADデータ202は、倉庫内に設置された棚の形状、大きさを示すデータである。棚領域データ203は、棚が占有する領域及びその内部の荷物設置領域とを包含する棚領域を示すデータである。棚領域形状データ204は、棚領域データ203内の形状データである。荷物設置領域データ205は、荷物を設置可能な空間である荷物設置領域の位置、大きさを示すデータである。荷物設置領域形状データ206は、荷物設置領域データ205内の形状データである。 The warehouse whole shape data 201 is shape data of the whole warehouse obtained by integrating the data acquired by the shape measurement sensor at a plurality of points into one. The shelf CAD data 202 is data indicating the shape and size of the shelf installed in the warehouse. The shelf area data 203 is data indicating a shelf area including an area occupied by the shelf and a luggage installation area inside the area. The shelf area shape data 204 is shape data in the shelf area data 203. The luggage installation area data 205 is data indicating the position and size of the luggage installation area, which is a space in which luggage can be installed. The luggage installation area shape data 206 is shape data in the luggage installation area data 205.
 棚領域倉庫内座標値207は、棚領域データ203が示す棚領域の倉庫内における座標値及び姿勢であり、(X,Y,Z,θ)の4パラメータで表される。なお、倉庫床面をZ=0とするなど、垂直方向の座標値一定の値に固定した場合、棚領域の座標値207は(X,Y,θ)で表わしてもよい。棚内座標値208は、荷物設置領域データ205が示す荷物設置領域の棚内における座標値である。ロケーションデータ209は、各棚に貼付されている倉庫内のロケーションを表すデータである。荷物情報210は、荷物に関する情報、例えば、商品ID、在庫数、荷物サイズ等である。荷物体積211は、各棚の段ごとに算出された棚上の荷物の体積である。 The shelf area warehouse coordinate value 207 is a coordinate value and orientation in the warehouse of the shelf area indicated by the shelf area data 203, and is represented by four parameters (X, Y, Z, θ). When the warehouse floor is fixed to a constant value in the vertical direction such as Z = 0, the coordinate value 207 of the shelf area may be expressed by (X, Y, θ). The in-shelf coordinate value 208 is a coordinate value in the shelf of the luggage installation area indicated by the luggage installation area data 205. The location data 209 is data representing the location in the warehouse attached to each shelf. The package information 210 is information related to packages, for example, product ID, number of inventory, package size, and the like. The luggage volume 211 is the volume of the luggage on the shelf calculated for each shelf.
 倉庫管理システム400は、商品の情報を格納する商品管理データベース401と、商品に関する情報を計算機100と送受信するインターフェースであるデータ送受信部402とを含む。 The warehouse management system 400 includes a product management database 401 that stores product information, and a data transmission / reception unit 402 that is an interface for transmitting / receiving information about the product to / from the computer 100.
 プロセッサ110が実行するプログラムは、リムーバブルメディア(CD-ROM、フラッシュメモリなど)又はネットワークを介して計測システムに提供され、非一時的記憶媒体である補助記憶装置200に格納される。このため、計測システムは、リムーバブルメディアからデータを読み込むインターフェースを有するとよい。 The program executed by the processor 110 is provided to the measurement system via a removable medium (CD-ROM, flash memory, etc.) or a network, and is stored in the auxiliary storage device 200 which is a non-temporary storage medium. For this reason, the measurement system may have an interface for reading data from a removable medium.
 計測システムは、物理的に一つの計算機上で、又は、論理的又は物理的に構成された複数の計算機上で構成される計算機システムであり、同一の計算機上で別個のスレッドで動作してもよく、複数の物理的計算機資源上に構築された仮想計算機上で動作してもよい。 A measurement system is a computer system that is configured on a single computer or a plurality of computers that are logically or physically configured, and can operate on separate threads on the same computer. It is also possible to operate on a virtual machine constructed on a plurality of physical computer resources.
 図2は、第1実施例の計測システムにおける物量計測の流れを示す機能ブロック図である。 FIG. 2 is a functional block diagram showing the flow of the quantity measurement in the measurement system of the first embodiment.
 まず、計算機100は、形状計測センサが計測し、倉庫内の表面形状を表す倉庫全体形状データ201の入力を受ける。形状データは、例えば、レーザ距離センサを用いた計測で得られるデータであり、物体表面の形状を表す多数の点の3次元座標値の集合体である形状データである。本実施例では、形状データは、点群データを例として説明するが、メッシュデータや画像データでもよい。また、形状データは、周囲の形状を表すものであれば、例えば、ステレオカメラ画像や、RGB-Dカメラ画像や、音波を用いたソナーデータでもよい。レーザ距離センサを用いて倉庫全体形状データ201を取得する例は、図12を用いて後述する。 First, the computer 100 receives the input of the entire warehouse shape data 201 that is measured by the shape measurement sensor and represents the surface shape in the warehouse. The shape data is, for example, data obtained by measurement using a laser distance sensor, and is shape data that is an aggregate of three-dimensional coordinate values of a large number of points representing the shape of the object surface. In this embodiment, the shape data will be described using point cloud data as an example, but mesh data or image data may be used. The shape data may be, for example, a stereo camera image, an RGB-D camera image, or sonar data using sound waves as long as it represents the surrounding shape. An example of acquiring the entire warehouse shape data 201 using a laser distance sensor will be described later with reference to FIG.
 次に、照合処理部101は、倉庫全体形状データ201と棚CADデータ202とを重ね合わせて、両者が合致する場所を探索する照合処理を行う。これにより、形状データ全体から棚の特定の部分を抽出し、倉庫全体形状データ201の座標系における棚領域の座標値207(X,Y,Z,θ)を出力する。出力される座標値を、後に荷物情報210と関連付けることによって、その荷物の倉庫内の保管場所の座標値を得ることができる。荷物の保管場所を座標値として得ることによって、例えば、自律走行車が倉庫内を移動し、荷物の棚卸しやピッキングを行う場合、座標値に基づいて移動できる。 Next, the collation processing unit 101 superimposes the entire warehouse shape data 201 and the shelf CAD data 202, and performs a collation process for searching for a place where they match. As a result, a specific portion of the shelf is extracted from the entire shape data, and the coordinate value 207 (X, Y, Z, θ) of the shelf area in the coordinate system of the entire warehouse shape data 201 is output. By associating the output coordinate value with the package information 210 later, the coordinate value of the storage location in the warehouse of the package can be obtained. By obtaining the storage location of the package as a coordinate value, for example, when the autonomous vehicle moves in the warehouse and performs inventory inspection or picking of the package, it can move based on the coordinate value.
 棚領域形状データ抽出部102は、照合処理部101が算出した棚領域倉庫内座標値207と棚領域データ203とに基づいて、倉庫全体形状データ201から棚領域形状データ204を抽出する。棚領域データ203は、図4で示すように、棚CADデータ202及び荷物設置領域データ205を包含する領域であり、例えば、棚領域データ203dに示すように、棚CADデータ202の原点を基準とした、幅w、奥行きd、高さh で表わされる。 The shelf area shape data extraction unit 102 extracts the shelf area shape data 204 from the entire warehouse shape data 201 based on the shelf area warehouse coordinate value 207 and the shelf area data 203 calculated by the matching processing unit 101. As shown in FIG. 4, the shelf area data 203 is an area including the shelf CAD data 202 and the baggage placement area data 205. For example, as shown in the shelf area data 203d, the shelf area data 203 is based on the origin of the shelf CAD data 202. Width w, depth d, and height h.
 荷物設置領域形状データ抽出部103は、棚領域の中で荷物が設置されている領域を示す荷物設置領域データ205とに基づいて、棚領域形状データ204から荷物設置領域形状データ206を抽出する。 The luggage installation area shape data extraction unit 103 extracts the luggage installation area shape data 206 from the shelf area shape data 204 based on the luggage installation area data 205 indicating the area where the luggage is installed in the shelf area.
 ロケーションデータ取得部104は、棚領域形状データ204より、その棚の番地を示すロケーションデータを取得する。ロケーションデータは、倉庫内のおおまかな領域、棚の番号などを示しており、棚の見やすい場所(例えば、正面)に、バーコードや文字(アルファベット、数字など)によって記載されている。ロケーションデータ取得部104は、棚のロケーションデータを取得し、バーコード認識又は文字認識によって、その棚に割り当てられているロケーション番号を読み取る。棚の所定の場所にロケーションデータが貼付されている場合、当該所定の場所に対応する領域を抽出することによって、ロケーションデータを取得できる。棚の未知の場所にロケーションデータが貼付されている場合、例えば、棚の画像から、棚本体と色が異なる箇所を抽出して、ロケーションデータを取得できる。 The location data acquisition unit 104 acquires location data indicating the address of the shelf from the shelf area shape data 204. The location data indicates an approximate area in the warehouse, a shelf number, and the like, and is described by a barcode or a letter (alphabet, number, etc.) in a place where the shelf is easy to see (for example, the front). The location data acquisition unit 104 acquires shelf location data, and reads the location number assigned to the shelf by barcode recognition or character recognition. When location data is affixed to a predetermined location on the shelf, location data can be acquired by extracting an area corresponding to the predetermined location. When location data is affixed to an unknown location on a shelf, for example, the location data can be acquired by extracting a portion having a color different from that of the shelf body from the shelf image.
 荷物情報取得部105は、取得したロケーションデータ209を倉庫管理システム400に問い合わせ、そのロケーションに保管されている荷物情報210を取得する。荷物情報210は、例えば、商品ID、保管先のロケーション、在庫数、荷物サイズなどを格納する。 The package information acquisition unit 105 queries the warehouse management system 400 for the acquired location data 209 and acquires the package information 210 stored at the location. The package information 210 stores, for example, a product ID, a storage location, a stock quantity, a package size, and the like.
 荷物量計測部106は、荷物設置領域データ205及び荷物設置領域形状データ206から、荷物体積211を出力する。荷物設置領域形状データ206は、荷物を全方向から計測したデータではなく、形状計測センサで計測した場所から見える範囲の表面形状を表すデータである。このため、荷物設置領域形状データ206は、表面の凹凸のデータを含むが、荷物の奥行きのデータを含まない。そこで、各棚において荷物が設置可能な領域を示す荷物設置領域データ205を用いて荷物設置領域の最奥面を設定し、荷物設置領域の最奥面から荷物の表面まで荷物が設置されていると推定することによって、荷物量を算出できる。ここで、算出した荷物量を荷物設置領域体積で除することによって、該当する棚の該当する段における荷物占有率を算出する。 The package amount measuring unit 106 outputs the package volume 211 from the package installation area data 205 and the package installation area shape data 206. The load placement area shape data 206 is not data obtained by measuring the load from all directions, but data representing a surface shape in a range visible from a place measured by the shape measurement sensor. For this reason, the baggage placement region shape data 206 includes surface irregularity data, but does not include baggage depth data. Therefore, the innermost surface of the luggage installation area is set using the luggage installation area data 205 indicating the area where the luggage can be installed in each shelf, and the luggage is installed from the innermost surface of the luggage installation area to the surface of the luggage. Can be calculated. Here, the load occupancy rate in the corresponding step of the corresponding shelf is calculated by dividing the calculated load amount by the load setting area volume.
 荷物情報保存・更新部107は、荷物情報210を保存し、更新する。荷物情報210は、例えば、商品ID、保管先のロケーション、在庫数、及び荷物サイズを含み、荷物体積211、棚領域倉庫内座標値207、荷物領域の棚内座標値208を含んでもよい。また、荷物体積211と共に、荷物占有率を格納してもよい。 The package information storage / update unit 107 stores and updates the package information 210. The package information 210 includes, for example, a product ID, a storage location, a stock quantity, and a package size, and may include a package volume 211, a shelf area warehouse coordinate value 207, and a luggage area intra-shelf coordinate value 208. Further, the baggage occupation rate may be stored together with the baggage volume 211.
 荷物情報210の更新結果は、データ送受信部108を通じて、倉庫管理システム400の商品管理DB401に格納される。 The update result of the package information 210 is stored in the product management DB 401 of the warehouse management system 400 through the data transmission / reception unit 108.
 棚領域倉庫内座標値207と荷物領域の棚内座標値208とを組み合わせることによって、荷物領域の倉庫内3次元座標値を算出できる。各荷物領域の荷物体積量及び荷物占有率の少なくとも一方に応じて、表示態様(例えば、色)を変えて、倉庫内3次元空間内に荷物領域を表示することによって、倉庫内における荷物量や占有率の多い領域や少ない領域等を容易に把握することができる。 By combining the coordinate value 207 in the shelf area warehouse and the coordinate value 208 in the shelf of the luggage area, the three-dimensional coordinate value in the warehouse of the luggage area can be calculated. By changing the display mode (for example, color) in accordance with at least one of the load volume and the load occupancy rate of each load region, the load region is displayed in the three-dimensional space in the warehouse, It is possible to easily grasp a region with a large occupation rate or a region with a small occupation rate.
 図3は、第1実施例の計測システムの基本的な処理を例示するフローチャートであり、第1実施例の計算機100で実行される棚上荷物の物量計測の処理を示す。この処理は、計算機100によるプログラムの実行によって提供される。 FIG. 3 is a flowchart illustrating the basic processing of the measurement system according to the first embodiment, and illustrates the processing for measuring the amount of goods on the shelf executed by the computer 100 according to the first embodiment. This processing is provided by execution of a program by the computer 100.
 まず、ステップS101では、形状計測センサ30が計測した、倉庫内の表面形状を表す倉庫全体形状データ201の入力を受ける。また、倉庫全体形状データは、例えば図5に示すように、物体の表面の位置を表す点の集合である。 First, in step S101, the warehouse whole shape data 201 representing the surface shape in the warehouse measured by the shape measurement sensor 30 is received. Further, the entire warehouse shape data is a set of points representing the position of the surface of the object, for example, as shown in FIG.
 次に、ステップS102では、棚データの入力を受ける。入力される棚データは、棚CADデータ202、棚CADデータ座標系における棚領域データ203及び棚毎の荷物設置領域205を含む(図4参照)。棚領域データ203は、倉庫全体形状データ201から最初に抽出される領域であり、図4(D)に示すように、棚及び荷物設置領域を包含する領域である。棚領域データ203は、例えば、棚領域データ203d(図4(B)参照)に示すように、棚CADデータの原点202aを基準とした、幅w、奥行きd、高さhで表わされる。荷物設置領域205は、図4(E)に示すように、棚の各段において荷物が設置可能な領域であり、例えば、荷物設置領域データ205d(図4(C)参照)に示すように、棚の段数、棚CADデータの原点202aを基準としたxyz座標値及び幅w、奥行きd、高さhで表わされる。 Next, in step S102, shelf data is input. The input shelf data includes shelf CAD data 202, shelf area data 203 in the shelf CAD data coordinate system, and a luggage installation area 205 for each shelf (see FIG. 4). The shelf area data 203 is an area that is first extracted from the entire warehouse shape data 201, and is an area that includes a shelf and a luggage installation area, as shown in FIG. For example, as shown in the shelf area data 203d (see FIG. 4B), the shelf area data 203 is represented by a width w, a depth d, and a height h with reference to the origin 202a of the shelf CAD data. As shown in FIG. 4E, the luggage installation area 205 is an area in which luggage can be installed at each level of the shelf. For example, as shown in the luggage installation area data 205d (see FIG. 4C), It is represented by the number of shelves, the xyz coordinate value based on the origin 202a of the shelf CAD data, the width w, the depth d, and the height h.
 ステップS103では、棚設置領域の形状データを抽出する。ステップS101で入力された倉庫全体形状データ201と、ステップS102で入力された棚CADデータ202とを照合し、倉庫全体形状データ201と棚CADデータ202とが合致する場所を探索する。 In step S103, shape data of the shelf installation area is extracted. The entire warehouse shape data 201 input in step S101 and the shelf CAD data 202 input in step S102 are collated to search for a place where the entire warehouse shape data 201 and the shelf CAD data 202 match.
 ここで、図6を参照して、倉庫全体形状データ201と棚CADデータ202とを照合し、倉庫内における棚領域の座標値207を算出し、棚領域形状データ204を抽出する処理を説明する。ここで、棚は床面に接して、床面と垂直に設置されているという条件を用いることによって、探索範囲を限定し、計算時間を短縮できる。このため、倉庫全体形状データ201は、床面がXY平面と平行であり、Z=0であることが望ましい。しかし、探索範囲を限定しても、限定した範囲内の全てを探索する方法では多くの計算コストが必要となるため、事前におおよその棚位置を設定し、初期値を与えることによって、計算コストを大幅に削減できる。棚概略位置の設定方法の例は、図15を用いて後述する。 Here, with reference to FIG. 6, the process of collating the entire warehouse shape data 201 and the shelf CAD data 202, calculating the coordinate value 207 of the shelf area in the warehouse, and extracting the shelf area shape data 204 will be described. . Here, the search range can be limited and the calculation time can be shortened by using the condition that the shelf is installed in contact with the floor and perpendicular to the floor. For this reason, the warehouse whole shape data 201 desirably has a floor surface parallel to the XY plane and Z = 0. However, even if the search range is limited, the method of searching all within the limited range requires a lot of calculation cost. Therefore, by setting an approximate shelf position in advance and giving an initial value, the calculation cost Can be greatly reduced. An example of the setting method of the approximate shelf position will be described later with reference to FIG.
 倉庫全体形状データ201と棚CADデータ202とが合致する場所が探索された後、棚領域データ203dに記載されている範囲の形状データを抽出して、棚領域形状データ204を抽出する。抽出された棚領域形状データ204は、各段における荷物設置領域データ205の算出、及び、ロケーションデータの取得に使用される。 After searching for a place where the entire warehouse shape data 201 matches the shelf CAD data 202, the shape data in the range described in the shelf region data 203d is extracted, and the shelf region shape data 204 is extracted. The extracted shelf area shape data 204 is used to calculate the luggage installation area data 205 at each stage and to acquire location data.
 ステップS104では、抽出した棚領域形状データ204から棚の各段における荷物設置領域の形状データを抽出する。予め設定された荷物設置領域データ205dに記載されている棚CADデータ座標系における荷物領域座標値及びサイズ(幅w、奥行きd、高さh)に基づいて、棚の段数分、荷物設置領域形状データ206を抽出する。図7は、棚領域形状データ204及び荷物設置領域データ205より、荷物設置領域形状データ206の抽出を示す図である。具体的には、棚領域形状データ204から、各段の荷物設置領域205内の形状データ206を抽出する。 In step S104, the shape data of the luggage installation area in each stage of the shelf is extracted from the extracted shelf area shape data 204. Based on the luggage area coordinate value and the size (width w, depth d, height h) in the shelf CAD data coordinate system described in the preset luggage installation area data 205d, the number of the shelf installation area shapes Data 206 is extracted. FIG. 7 is a diagram showing the extraction of the luggage placement area shape data 206 from the shelf area shape data 204 and the luggage placement area data 205. Specifically, the shape data 206 in the luggage installation area 205 at each stage is extracted from the shelf area shape data 204.
 ステップS105では、棚のロケーションデータ209を取得する。例えば、棚に貼付されているロケーションに関するデータを文字認識又はバーコード認識によって読み取る。このため、倉庫全体形状データ201は、色つきデータであることが必要である。倉庫全体形状データ201を取得する際、レーザ光などで倉庫内設置物の表面形状を取得すると共に、カメラで倉庫内を撮影して色情報を取得する。これによって、棚に貼付されたロケーションデータを読み取り可能とする。図8に、棚10に貼付されたロケーションデータ209の例を示す。 In step S105, shelf location data 209 is acquired. For example, data relating to a location attached to the shelf is read by character recognition or barcode recognition. For this reason, the warehouse whole shape data 201 needs to be colored data. When acquiring the warehouse whole shape data 201, the surface shape of the installed object in the warehouse is acquired with a laser beam or the like, and color information is acquired by photographing the inside of the warehouse with a camera. As a result, the location data affixed to the shelf can be read. FIG. 8 shows an example of the location data 209 pasted on the shelf 10.
 ステップS106では、取得したロケーションデータ209を用いて荷物情報210を取得する。データ送受信部108を通じて倉庫管理システム400に問い合わせる。倉庫管理システム400は、商品管理DB401に格納されている荷物情報から、該当するロケーションに設置されている荷物の情報を抽出する。計算機100(計測システム)は、データ送受信部108を通じて荷物の情報を受信し、荷物情報210に格納する。 In step S106, the package information 210 is acquired using the acquired location data 209. The warehouse management system 400 is inquired through the data transmission / reception unit 108. The warehouse management system 400 extracts information on the packages installed at the corresponding location from the package information stored in the product management DB 401. The computer 100 (measurement system) receives the package information through the data transmitting / receiving unit 108 and stores it in the package information 210.
 なお、ステップS104とステップS105からS106とは、並行して実行してもよいし、一方を先に他方を後に実行してもよい。 Note that step S104 and steps S105 to S106 may be executed in parallel, or one may be executed first and the other after.
 荷物設置領域形状データ206を抽出し、ロケーションデータ209を取得した後、ステップS107では、荷物設置領域形状データ206及び荷物設置領域データ205より、荷物体積211を算出する。図9を参照して、荷物設置領域形状データ206(図9(A))から荷物体積211を算出する処理を説明する。まず、荷物設置領域形状データ206を用いてxy平面と垂直な平面206aを検出する(図9(B))。形状計測センサは、棚正面から表面形状を計測するので、荷物の上面にはレーザ光が届かず、荷物の上面の形状データを取得できない。このため、平面検出においてxy平面と水平となる平面も検出されるが削除し、xy平面と垂直な平面206aを残す。検出した平面206aを、荷物設置領域205のx軸方向で最奥面まで延長して生成される空間を荷物体積211として算出し、出力する(図9(C))。 After extracting the luggage installation area shape data 206 and acquiring the location data 209, in step S107, the luggage volume 211 is calculated from the luggage installation area shape data 206 and the luggage installation area data 205. With reference to FIG. 9, a process for calculating the load volume 211 from the load placement area shape data 206 (FIG. 9A) will be described. First, the plane 206a perpendicular to the xy plane is detected using the luggage placement area shape data 206 (FIG. 9B). Since the shape measurement sensor measures the surface shape from the front of the shelf, the laser beam does not reach the upper surface of the luggage, and the shape data of the upper surface of the luggage cannot be acquired. For this reason, a plane that is horizontal to the xy plane is also detected in the plane detection, but is deleted, leaving a plane 206a perpendicular to the xy plane. A space generated by extending the detected plane 206a to the innermost surface in the x-axis direction of the load placement area 205 is calculated as a load volume 211 and output (FIG. 9C).
 図9では、荷物設置領域形状データ206及び荷物設置領域データ205より荷物体積211を求める方法を示したが、オクルージョン等により多少形状が欠けている場合でも、荷物情報210を併用して荷物体積をより正確に求める方法を図10に示す。荷物情報210のうち、荷物サイズ(幅w,奥行きd,高さh)210_7(図11参照)を用いて欠損している部分を補う。まず、荷物設置領域形状データ206(図10(A))を用いてxy平面と垂直な平面206aを検出する(図10(B))。抽出した平面206aを、荷物サイズ(高さh)ごとに分割し(図10(C))、高さhごとに、平面206aの幅が荷物サイズ(幅w)の倍数になるように平面206aの大きさを調整する(図10(D))。調整後の平面206aを用いて、荷物設置領域205のx軸方向最奥面まで延長してできる空間を、荷物体積211として算出し、出力する(図10(E))。 FIG. 9 shows a method of obtaining the luggage volume 211 from the luggage installation area shape data 206 and the luggage installation area data 205. However, even when the shape is somewhat missing due to occlusion or the like, the luggage information 210 is used together to determine the luggage volume. A more accurate method is shown in FIG. In the package information 210, the missing portion is compensated by using the package size (width w, depth d, height h) 210_7 (see FIG. 11). First, the plane 206a perpendicular to the xy plane is detected using the load placement area shape data 206 (FIG. 10A) (FIG. 10B). The extracted plane 206a is divided for each package size (height h) (FIG. 10C), and for each height h, the plane 206a is such that the width of the plane 206a is a multiple of the package size (width w). Is adjusted (FIG. 10D). Using the adjusted flat surface 206a, a space that can be extended to the innermost surface in the x-axis direction of the load placement area 205 is calculated as a load volume 211 and output (FIG. 10E).
 ステップS108では、ステップS103で算出した棚領域倉庫内座標値207、ステップS104で利用した荷物領域の棚内座標値208、及び、ステップS107で算出した荷物体積211を、荷物情報210に保存し、更新する。 In step S108, the shelf area warehouse coordinate value 207 calculated in step S103, the luggage area shelf coordinate value 208 used in step S104, and the package volume 211 calculated in step S107 are stored in the package information 210. Update.
 図11に、荷物情報210のデータ構造の例を示す。荷物情報210は、例えば、荷物ID210_1、ロケーション210_2、棚領域の倉庫内座標値210_3、荷物領域情報210_4、在庫数210_5、荷物体積210_6、荷物サイズ210_7及び更新日時210_8を含む。 FIG. 11 shows an example of the data structure of the package information 210. The package information 210 includes, for example, a package ID 210_1, a location 210_2, a warehouse area coordinate value 210_3, a package area information 210_4, an inventory quantity 210_5, a package volume 210_6, a package size 210_7, and an update date and time 210_8.
 荷物ID210_1は、荷物を一意に識別するための識別情報である。ロケーション210_2は、倉庫内の荷物の場所を示す。棚領域の倉庫内座標値210_3は、荷物が設置されている棚の倉庫内の座標値である。荷物領域情報210_4は、棚内で荷物が設置されている領域の情報であり、三次元の棚内座標値、幅、奥行き及び高さで表される。在庫数210_5は、当該荷物が在庫している数である。荷物体積210_6は、当該荷物の合計の体積である。荷物サイズ210_7は、一つ一つの荷物の大きさであり、幅、奥行き及び高さで表される。更新日時210_8は、荷物情報を更新した日時である。更新日時210_8は、荷物ID210_1毎に一つの値でもよいが、在庫数と荷物サイズとで別に更新日時を記録してもよい。 The package ID 210_1 is identification information for uniquely identifying the package. Location 210_2 indicates the location of the luggage in the warehouse. The in-warehouse coordinate value 210_3 of the shelf area is a coordinate value in the warehouse of the shelf where the luggage is installed. The luggage area information 210_4 is information on an area where the luggage is installed in the shelf, and is represented by a three-dimensional coordinate value in the shelf, a width, a depth, and a height. The inventory number 210_5 is the number that the package is in stock. The load volume 210_6 is the total volume of the load. The package size 210_7 is the size of each package, and is represented by a width, a depth, and a height. The update date 210_8 is the date and time when the package information is updated. The update date / time 210_8 may be one value for each package ID 210_1, but the update date / time may be recorded separately for the number of stocks and the package size.
 ステップS109では、倉庫全体形状データ201から、次の棚を探索する。 In step S109, the next shelf is searched from the entire warehouse shape data 201.
 ステップS110では、次の棚の有無を判定し、次の棚がある場合、ステップS103に戻り、棚領域の形状データを抽出する。次の棚がない場合、処理を終了する。 In step S110, it is determined whether or not there is a next shelf. If there is a next shelf, the process returns to step S103 to extract shape data of the shelf area. If there is no next shelf, the process ends.
 図12は、倉庫全体形状データ201の取得の一例を示す図である。 FIG. 12 is a diagram illustrating an example of acquisition of the entire warehouse shape data 201.
 第1実施例においては、形状計測センサ30を台車50で移動して計測する方法について説明するが、これ以外の方法でもよい。例えば、形状計測センサを移動ロボットに搭載し移動しながら自動的に計測する方法や、形状計測センサをUAV(無人航空機)に搭載し移動しながら自動的に計測する方法や、形状計測センサを用いて複数箇所の定置点で計測する方法でもよい。 In the first embodiment, a method of measuring the shape measuring sensor 30 by moving it with the carriage 50 will be described, but other methods may be used. For example, a shape measurement sensor is mounted on a mobile robot and automatically measured while moving, a shape measurement sensor is mounted on a UAV (unmanned aerial vehicle) and automatically measured while moving, or a shape measurement sensor is used. Alternatively, a method of measuring at a plurality of stationary points may be used.
 本実施例では、二つの形状計測センサ30、40を用いて、形状データを作成する方法を説明する。形状計測センサ30は、倉庫全体形状データ201を作成するためのデータを取得し、形状計測センサ40は、形状計測センサ30が計測を行った計測位置を逐次取得する。 In this embodiment, a method of creating shape data using the two shape measurement sensors 30 and 40 will be described. The shape measurement sensor 30 acquires data for creating the entire warehouse shape data 201, and the shape measurement sensor 40 sequentially acquires measurement positions measured by the shape measurement sensor 30.
 形状計測センサ30は、例えば、スキャン面が床面と垂直になるように台車50に搭載し、台車50で移動しながらレーザ光を指定の方向に照射することによって、棚10や荷物20などの物体までの距離を計測する。その後、計測データを繋ぎ合わせることで倉庫全体形状データ201が作成できる。計測データを繋ぎ合わせるためには、そのデータが計測された位置姿勢を知る必要がある。このため、形状計測センサ40は、例えば、スキャン面が床面と水平となるように台車50に設置し、一定の高さにおける周囲との距離を計測する。計測したデータに基づき、二次元地図を作成しながら逐次自己位置や姿勢を推定する。 For example, the shape measurement sensor 30 is mounted on the carriage 50 so that the scan surface is perpendicular to the floor surface, and is irradiated with a laser beam in a specified direction while moving on the carriage 50, so that the shelf 10, the luggage 20, etc. Measure the distance to the object. Thereafter, the entire warehouse shape data 201 can be created by connecting the measurement data. In order to connect measurement data, it is necessary to know the position and orientation at which the data was measured. For this reason, for example, the shape measurement sensor 40 is installed on the carriage 50 such that the scan surface is horizontal with the floor surface, and measures the distance from the surroundings at a certain height. Based on the measured data, the self-position and posture are sequentially estimated while creating a two-dimensional map.
 また、形状計測センサ30にはカメラ60を設けるとよい。カメラ60が撮影した可視光領域のカラー画像によって、倉庫全体形状データ201に着色が可能となり、棚10のロケーションデータを取得できる。なお、カメラが内蔵されている形状計測センサ30を用いてもよい。 Also, the shape measurement sensor 30 may be provided with a camera 60. The entire warehouse shape data 201 can be colored by the color image of the visible light region captured by the camera 60, and the location data of the shelf 10 can be acquired. A shape measurement sensor 30 with a built-in camera may be used.
 図13は、形状計測センサ40が計測したデータを用いたセンサ位置及び姿勢の推定を示す図である。 FIG. 13 is a diagram illustrating estimation of the sensor position and orientation using the data measured by the shape measurement sensor 40.
 形状計測センサ40は、移動して計測する位置ごとに物体までの距離データ41-1、41-2、・・・を得る。距離データ41-1等は、図において実線で示される対象物(物体や障害物)の輪郭(厳密には後述するように点の集合)を表す。 The shape measurement sensor 40 obtains distance data 41-1, 41-2,... To the object for each position to be moved and measured. The distance data 41-1 and the like represent the contours of objects (objects and obstacles) indicated by solid lines (strictly speaking, a set of points as will be described later).
 形状計測センサ40は、移動する位置ごとに、例えば、41-1、41-2、41-3、・・・のような距離データ41を得る。逐次得られる距離データ41からそれぞれの計測位置及び姿勢を求める。距離データ41を統合するためには、これら二つの計算を同時に実行するSLAM(Simultaneous Localization And Mapping)技術を用いる。具体的には、距離データ41と、それまでに作成した二次元平面地図42との照合処理を行うことで、形状計測センサ40の二次元平面地図42上の位置及び姿勢を求め、これらに基づいて二次元平面地図42を逐次拡張・更新する。 The shape measurement sensor 40 obtains distance data 41 such as 41-1, 41-2, 41-3,... For each moving position. The respective measurement positions and postures are obtained from the distance data 41 obtained sequentially. In order to integrate the distance data 41, a SLAM (Simultaneous Localization And Mapping) technique that executes these two calculations simultaneously is used. Specifically, by performing a collation process between the distance data 41 and the two-dimensional plane map 42 created so far, the position and orientation of the shape measurement sensor 40 on the two-dimensional plane map 42 are obtained, and based on these. Thus, the two-dimensional planar map 42 is sequentially expanded / updated.
 図13を用いて、二次元平面地図42の作成を説明する。まず、距離データ41-1と距離データ41-2とを対象物の輪郭が一致する位置で重ね合わせ、二次元平面地図42を得る。さらに、距離データ41-1と距離データ41-2とから作成した二次元平面地図42に、対象物の輪郭が一致する位置で距離データ41-3を重ね合わせることによって、二次元平面地図42を拡張・更新する。このように二次元平面地図42に距離データを統合する処理を繰り返すことによって、二次元平面地図42を作成する。 The creation of the two-dimensional planar map 42 will be described with reference to FIG. First, the distance data 41-1 and the distance data 41-2 are overlapped at a position where the contours of the objects coincide with each other to obtain a two-dimensional planar map. Further, the two-dimensional planar map 42 is formed by superimposing the distance data 41-3 on the two-dimensional planar map 42 created from the distance data 41-1 and the distance data 41-2 at a position where the contour of the object matches. Extend / update. The two-dimensional planar map 42 is created by repeating the process of integrating the distance data into the two-dimensional planar map 42 in this way.
 一方、一つ前の距離データ41を取得した位置・姿勢の近傍において、逐次更新される二次元平面地図42と現在の距離データ41との照合処理を行うことによって、形状計測センサ40の二次元平面地図42上の二次元の位置及び姿勢43(x,y,θ)を推定できる。推定された形状計測センサ40の位置及び姿勢43(x,y,θ)に、形状計測センサ40の位置及び姿勢と形状計測センサ30の位置及び姿勢との差を加えることによって、形状計測センサ30の位置及び姿勢を推定できる。 On the other hand, in the vicinity of the position / posture from which the previous distance data 41 is acquired, the two-dimensional planar map 42 that is sequentially updated and the current distance data 41 are collated, thereby performing the two-dimensional measurement of the shape measurement sensor 40. A two-dimensional position and orientation 43 (x, y, θ) on the planar map 42 can be estimated. The shape measurement sensor 30 is obtained by adding the difference between the position and posture of the shape measurement sensor 40 and the position and posture of the shape measurement sensor 30 to the estimated position and posture 43 (x, y, θ) of the shape measurement sensor 40. Can be estimated.
 図14は、形状計測センサ30が計測したデータから倉庫全体形状データ201の作成の例を示す図である。 FIG. 14 is a diagram illustrating an example of creation of the entire warehouse shape data 201 from the data measured by the shape measurement sensor 30.
 図14(A)に示すように、形状計測センサ30が計測した物体や障害物などの対象物までの距離及び角度(L,θ)と形状計測センサ30の位置及び姿勢(x,y,z,θ)とから、対象物の3次元座標値(x1,y1,z1)を算出する。形状計測センサ30の位置及び姿勢は、計測位置(x,y,z)及び向きθの組で表され、前述したように、形状計測センサ40の位置及び姿勢43と形状計測センサ30の位置及び姿勢とによって算出できる。形状計測センサ30を移動しながら距離データを計測するので、移動に伴って異なる位置で取得した距離データが、図14(B)に示すように、点の集まり31-1~31-5として得られる。それらの距離データを、同一座標系に変換し纏め、三次元空間における点の集合として表すと、データ32を生成できる(図14(C)参照)。この統合処理を倉庫全体のデータに対して行うことによって、倉庫全体形状データ201を生成できる。 As shown in FIG. 14A, the distance and angle (L, θ) to an object such as an object or an obstacle measured by the shape measurement sensor 30 and the position and orientation (x, y, z) of the shape measurement sensor 30 , Θ), the three-dimensional coordinate value (x1, y1, z1) of the object is calculated. The position and orientation of the shape measurement sensor 30 are represented by a set of measurement position (x, y, z) and direction θ, and as described above, the position and orientation 43 of the shape measurement sensor 40 and the position of the shape measurement sensor 30 and It can be calculated by the posture. Since the distance data is measured while moving the shape measurement sensor 30, the distance data acquired at different positions as the movement is obtained as a collection of points 31-1 to 31-5 as shown in FIG. It is done. If these distance data are converted into the same coordinate system and combined and expressed as a set of points in a three-dimensional space, data 32 can be generated (see FIG. 14C). By performing this integration process on the entire warehouse data, the entire warehouse shape data 201 can be generated.
 <第2実施例>
 図15は、第2実施例の予め棚位置が設定された計測システムにおける物量計測の流れを示す機能ブロック図である。図15に示す計測システムでは、図2に示した計測システムに棚位置設定に関する処理が追加されている。
<Second embodiment>
FIG. 15 is a functional block diagram illustrating the flow of physical quantity measurement in the measurement system in which the shelf position is preset in the second embodiment. In the measurement system shown in FIG. 15, processing related to shelf position setting is added to the measurement system shown in FIG.
 予め棚位置が設定されていたり、棚レイアウト図を保持していたりしたとしても、実際の倉庫に設置されている棚は、設置位置や角度に誤差が生じている可能性が高いため、実測データとの照合処理による棚位置の算出は有効である。 Even if shelves are set in advance or shelves are stored, actual shelves installed in actual warehouses are likely to have errors in their positions and angles. It is effective to calculate the shelf position by the matching process.
 棚位置設定部109は、オペレータの入力によって、倉庫全体形状データ201上に棚のおおよその位置を設定し、棚設置図212を作成する。おおよその位置を予め与えることによって、高速かつ正確に棚位置を把握できる。照合処理部101は、棚設置図212に示される座標値近傍において照合処理を行って、棚領域の抽出及び位置の把握を容易にする。照合処理部101による処理以降は、前述した実施例と同じであるため、それらの説明を省略する。 The shelf position setting unit 109 sets an approximate position of the shelf on the entire warehouse shape data 201 by an operator input, and creates a shelf installation diagram 212. By giving the approximate position in advance, the shelf position can be grasped quickly and accurately. The matching processing unit 101 performs matching processing in the vicinity of the coordinate values shown in the shelf installation diagram 212 to facilitate the extraction of the shelf area and the grasp of the position. Since the processing after the verification processing unit 101 is the same as that in the above-described embodiment, the description thereof is omitted.
 棚位置を設定する方法は、例えば、図16(A)に示すように、倉庫全体形状データ201をある一定の高さで切り取った平面図201aを作成する。そして、図16(B)に示すように、平面図201a上に棚の各列の最端位置に棚を表す矩形212aを配置する。設置された棚が隣接して配置される方向212bを平面図201aに示してもよい。また、図示を省略するが、棚を表す矩形を全て配置してもよい。棚レイアウト図を保持している場合、それを利用してもよい。 For example, as shown in FIG. 16A, the shelf position is set by creating a plan view 201a obtained by cutting the entire warehouse shape data 201 at a certain height. Then, as shown in FIG. 16B, a rectangle 212a representing a shelf is arranged at the extreme end position of each column of the shelf on the plan view 201a. A direction 212b in which the installed shelves are arranged adjacent to each other may be shown in the plan view 201a. Although not shown, all rectangles representing shelves may be arranged. If a shelf layout diagram is held, it may be used.
 倉庫全体形状データ201は、計測位置から見た物体表面の形状を表すため、隣接して配置された棚のうち最端位置以外の棚の側面の形状を取得するのは困難である。このため、多くの棚は主に正面の表面形状が計測される。このため、棚位置を事前に設定することによって、計算時間の短縮だけでなく、異なる場所を棚位置と認識する可能性が低減する。 Since the entire warehouse shape data 201 represents the shape of the object surface viewed from the measurement position, it is difficult to obtain the shape of the side surface of the shelf other than the endmost position among the adjacently arranged shelves. For this reason, the front surface shape of many shelves is mainly measured. For this reason, by setting the shelf position in advance, not only the calculation time is shortened, but also the possibility that a different place is recognized as the shelf position is reduced.
 図17は、倉庫全体形状データ201と棚CADデータ202とを照合し、倉庫内における棚領域の座標値207を算出し、棚領域形状データ204を抽出する処理の変形例を示す図である。 FIG. 17 is a diagram showing a modified example of the process of comparing the entire warehouse shape data 201 and the shelf CAD data 202, calculating the coordinate value 207 of the shelf area in the warehouse, and extracting the shelf area shape data 204.
 図17に示す処理は、図6に示した処理と異なり、棚設置図212を利用して照合処理を行う。 The process shown in FIG. 17 is different from the process shown in FIG.
 棚設置図212が示す棚の座標値と同じ場所(x,y,θ)に、棚CADデータ202を配置する。棚CADデータ202と倉庫全体形状データ201の棚領域とは、設置誤差によって、合致しない可能性が高い。このため、設置した近傍で棚CADデータ202と倉庫全体形状データ201の照合処理を行うことによって、棚領域の正確な倉庫内座標値(x1,y1,θ1)を出力できる。 The shelf CAD data 202 is arranged at the same location (x, y, θ) as the coordinate value of the shelf indicated by the shelf installation chart 212. There is a high possibility that the shelf CAD data 202 and the shelf area of the entire warehouse shape data 201 do not match due to an installation error. Therefore, by performing a collation process between the shelf CAD data 202 and the entire warehouse shape data 201 in the vicinity of the installed location, it is possible to output an accurate warehouse coordinate value (x1, y1, θ1) of the shelf area.
 <第3実施例>
 ここまで、倉庫内全体形状データ取得時と棚上荷物の物量計測時との間で荷物量が変化しない場合について述べた。倉庫業務を行っていない時間帯がある倉庫では、倉庫業務終了後に倉庫全体形状データ201を取得し、棚上荷物の物量を計測することによって、その日の最新荷物量情報を更新できる。しかし、24時間稼働する倉庫においては、倉庫全体形状データ201の取得後に、入庫や出庫の作業が行われ、棚上荷物の物量計測時は現状と乖離が生じる。第3実施例として、この乖離を解消する方法を以下に説明する。
<Third embodiment>
Up to this point, the case has been described where the amount of luggage does not change between the acquisition of the entire shape data in the warehouse and the measurement of the quantity of luggage on the shelf. In a warehouse with a time zone during which warehouse operations are not performed, the latest package amount information for the day can be updated by acquiring the entire warehouse shape data 201 after the warehouse operation is completed and measuring the amount of luggage on the shelf. However, in a warehouse that operates for 24 hours, after the warehouse whole shape data 201 is acquired, the work of entering and leaving is performed, and there is a discrepancy with the current state when measuring the quantity of luggage on the shelf. As a third embodiment, a method for eliminating this divergence will be described below.
 図18は、第3実施例の荷物体積を補正する計測システムにおける物量計測の流れを示す機能ブロック図である。図18に示す計測システムでは、図2に示した計測システムに在庫差分を用いることにより荷物体積を補正する処理が追加されている。 FIG. 18 is a functional block diagram showing the flow of measuring the quantity in the measurement system for correcting the load volume according to the third embodiment. In the measurement system shown in FIG. 18, processing for correcting the load volume by using the inventory difference is added to the measurement system shown in FIG. 2.
 計測部120は、倉庫内の形状データを計測し、計測時刻をデータ計測時刻220に格納する。計測データ統合部121は、例えば、図13や図14に示した方法を用いて計測データを統合し、倉庫全体形状データ201を作成する。計測領域・時刻対応付け部122は、計測時刻と計測された領域とを対応付ける。例えば、図19(A)に示すように、倉庫全体形状データ201から、ある高さで抽出した平面図201aにおいて、計測時刻毎に領域を分割し、各領域の範囲を示す座標値及び、その領域の計測時刻を含む、計測領域・時刻対応データ221(図19(B))を作成する。 The measuring unit 120 measures the shape data in the warehouse and stores the measurement time in the data measurement time 220. The measurement data integration unit 121 integrates the measurement data using, for example, the method illustrated in FIGS. 13 and 14 and creates the entire warehouse shape data 201. The measurement area / time association unit 122 associates the measurement time with the measured area. For example, as shown in FIG. 19A, in the plan view 201a extracted at a certain height from the entire warehouse shape data 201, the area is divided at each measurement time, and the coordinate value indicating the range of each area, Measurement area / time correspondence data 221 (FIG. 19B) including the measurement time of the area is created.
 物量計測時には、荷物情報取得部105は、倉庫管理システム400の商品管理DB401へ問い合わせることによって、物量計測時の荷物情報210及び形状計測時の荷物情報222を取得する。形状計測時の荷物情報222は、棚領域倉庫内座標値207及び計測領域・時刻対応データ221によって、棚領域の座標値に該当する領域の計測時刻を取得し、当該時刻と等しい時刻の荷物情報を取得する。このため、商品管理DB401は、過去の所定期間のデータを保持する。 At the time of quantity measurement, the package information acquisition unit 105 acquires the package information 210 at the time of quantity measurement and the package information 222 at the time of shape measurement by making an inquiry to the product management DB 401 of the warehouse management system 400. The package information 222 at the time of shape measurement is obtained by acquiring the measurement time of the area corresponding to the coordinate value of the shelf area by using the coordinate value 207 in the shelf area warehouse and the measurement area / time correspondence data 221, and the package information at a time equal to the time To get. For this reason, the merchandise management DB 401 holds data for a predetermined period in the past.
 荷物情報210と形状計測時荷物情報222の在庫数とに差が生じている場合、形状計測後に入出庫作業が生じたと推定して、荷物体積を修正する。荷物体積修正部123では、図20に示すように、物量計測時の荷物情報210の在庫数と形状計測時荷物情報222の在庫数とを比較し、荷物量差分を算出し、荷物情報210の箱サイズ及び荷物量差分から荷物体積差分を算出する。そして、荷物量計測部106が算出した荷物体積211aに荷物体積差分を追加し、修正荷物体積211bを作成する。荷物情報保存・更新部107は、修正後の荷物体積211bを用いて、荷物情報210を更新する。 If there is a difference between the inventory information 210 of the package information 210 and the package information 222 at the time of shape measurement, it is estimated that an entry / exit operation has occurred after the shape measurement, and the package volume is corrected. As shown in FIG. 20, the package volume correction unit 123 compares the inventory quantity of the luggage information 210 at the time of physical quantity measurement with the inventory quantity of the luggage information 222 at the time of shape measurement, calculates the luggage quantity difference, The load volume difference is calculated from the box size and the load amount difference. Then, the load volume difference is added to the load volume 211a calculated by the load amount measuring unit 106 to create a corrected load volume 211b. The package information storage / update unit 107 updates the package information 210 using the corrected package volume 211b.
 なお、物量計測時の荷物情報210の在庫数と、物量計測時の荷物情報222の在庫数とが同じにもかかわらず、在庫数と形状計測時の荷物体積211との差異が所定の閾値を超える場合、警告(特定の文字、図形、色、音、点滅など)を発して、オペレータに報知してもよい。 Note that the difference between the inventory quantity and the luggage volume 211 at the time of shape measurement has a predetermined threshold even though the inventory quantity of the luggage information 210 at the time of quantity measurement is the same as the inventory quantity of the luggage information 222 at the time of quantity measurement. When exceeding, a warning (a specific character, a figure, a color, a sound, blinking, etc.) may be emitted and notified to the operator.
 倉庫業務を行っていない時間帯がある倉庫では、倉庫業務(入庫作業や出庫作業)と倉庫内形状計測や物量計測とを分離できるが、24時間稼働する倉庫では、入出庫作業と計測作業との分離が困難である。倉庫内形状計測時には、計測対象となる棚や商品が、作業者や荷運びロボットなどによる遮蔽を回避する必要がある。このため、24時間稼働倉庫においては、計測スケジュールと作業スケジュールとを調整することによって、入出庫作業と計測作業との同時実行を回避するとよい。 In warehouses that have time periods when warehouse operations are not performed, warehouse operations (entry work and delivery work) can be separated from warehouse shape measurement and physical quantity measurement. However, in warehouses that operate 24 hours, entry and exit work and measurement work are separated from each other. Is difficult to separate. At the time of measuring the shape in the warehouse, it is necessary to avoid the shelves and products to be measured from being shielded by an operator or a loading robot. For this reason, in a 24-hour warehouse, it is preferable to avoid simultaneous execution of the loading / unloading work and the measurement work by adjusting the measurement schedule and the work schedule.
 以上に説明したように、本発明の実施例によると、計測システムは、棚CADデータ202と倉庫全体形状データ201とを照合し、前記棚の倉庫内の位置を特定する照合処理部101と、棚領域倉庫内座標値207及び棚領域データ203に基づいて、倉庫全体形状データ201から棚領域形状データ204を抽出する棚領域形状データ抽出部102と、荷物設置領域データ205に基づいて、棚領域データ203から荷物設置領域形状データ206を抽出する荷物設置領域形状データ抽出部103とを有するので、棚の位置を詳細に指定することなく、計測センサが取得した形状データから、荷物が設置される領域を自動的に抽出できる。 As described above, according to the embodiment of the present invention, the measurement system collates the shelf CAD data 202 and the entire warehouse shape data 201 and specifies the position of the shelf in the warehouse, A shelf area shape data extraction unit 102 for extracting the shelf area shape data 204 from the entire warehouse shape data 201 based on the coordinate values 207 in the shelf area and the shelf area data 203, and a shelf area based on the luggage installation area data 205 Since the load placement area shape data extraction unit 103 extracts the load placement area shape data 206 from the data 203, the load is placed from the shape data acquired by the measurement sensor without specifying the position of the shelf in detail. The area can be extracted automatically.
 また、計測システムは、荷物設置領域形状データ206及び荷物設置領域データ205を用いて、荷物体積211を推定する荷物量計測部106を有するので、棚に格納された荷物の量を推定できる。また、荷物量計測部106は、推定した荷物体積を荷物設置領域の体積で除することによって、棚の各段における荷物の占有率を算出してもよい。占有率によって、棚寄せの可否を判定できる。 Further, since the measurement system has the load amount measuring unit 106 that estimates the load volume 211 using the load setting area shape data 206 and the load setting area data 205, the amount of the load stored on the shelf can be estimated. In addition, the load amount measuring unit 106 may calculate the occupancy rate of the load at each level of the shelf by dividing the estimated load volume by the volume of the load setting area. Whether or not shelving is possible can be determined based on the occupation ratio.
 また、荷物量計測部106は、倉庫管理システム400から取得した荷物の大きさ210_7、荷物設置領域形状データ206及び荷物設置領域データ205を用いて、荷物体積211を推定するので、形状データから抽出された荷物領域に欠落がある場合でも、荷物領域を補完して、荷物の体積を高精度で求めることができる。また、荷物量計測部106は、推定した荷物体積を荷物設置領域の体積で除することによって、棚の各段における荷物の占有率を算出してもよい。 In addition, the load amount measuring unit 106 estimates the load volume 211 using the load size 210_7, the load setting area shape data 206, and the load setting area data 205 acquired from the warehouse management system 400, and thus is extracted from the shape data. Even if there is a missing part in the packaged area, it is possible to complement the luggage area and obtain the volume of the package with high accuracy. In addition, the load amount measuring unit 106 may calculate the occupancy rate of the load at each level of the shelf by dividing the estimated load volume by the volume of the load setting area.
 また、計測システムは、倉庫管理システム400から取得した荷物の在庫数210_5と荷物体積211とが異なる場合、警告を報知するので、現在の在庫数と体積の推定値との違いを気付く契機を与えることができる。 In addition, since the measurement system issues a warning when the inventory quantity 210_5 of the luggage acquired from the warehouse management system 400 and the luggage volume 211 are different, the measurement system gives an opportunity to notice the difference between the current inventory quantity and the estimated volume value. be able to.
 また、荷物情報取得部105は、棚に割り当てられたロケーションデータ209を用いて、当該棚に格納されている荷物の情報を倉庫管理システム400から取得するので、倉庫内の棚の位置を知ることができる。また、棚寄せ時に棚が近いかを判定できる。 Further, the package information acquisition unit 105 uses the location data 209 assigned to the shelf to acquire the package information stored in the shelf from the warehouse management system 400, so that the location of the shelf in the warehouse is known. Can do. It can also be determined whether the shelves are close when shelving.
 また、計測システムは、倉庫全体形状データ201の計測時刻と等しい時刻の荷物情報及び物量計測の時刻に取得した荷物の情報を用いて、荷物の体積を修正する荷物体積修正部123を有するので、荷物体積を高精度に推定できる。また、荷物の現状を正確に把握して、過剰在庫や品切れリスクを減らすことができる。さらに、棚の空きを減らして、効率的に荷物を棚に格納できる。 In addition, since the measurement system has the luggage volume correction unit 123 that corrects the volume of the luggage using the luggage information at the time equal to the measurement time of the entire warehouse shape data 201 and the information of the luggage acquired at the time of the quantity measurement, The load volume can be estimated with high accuracy. In addition, it is possible to accurately grasp the current state of luggage and reduce the risk of excess inventory and out of stock. Furthermore, it is possible to efficiently store luggage on the shelf by reducing the space available on the shelf.
 また、計測システムは、倉庫全体形状データ201から一定の高さで形状を抽出して構成した平面図201aの上で、棚の位置の設定を受け付ける棚位置設定部109を有し、照合処理部101は、受け付けた棚の位置の近傍に探索範囲を設定することによって、棚CADデータと倉庫全体形状データ201とを照合するので、照合範囲を狭くすることができ、計算を高速化できる。 In addition, the measurement system has a shelf position setting unit 109 that accepts setting of a shelf position on a plan view 201a configured by extracting a shape at a certain height from the entire warehouse shape data 201, and a collation processing unit In 101, the search range is set in the vicinity of the received shelf position, so that the shelf CAD data and the entire warehouse shape data 201 are collated, so that the collation range can be narrowed and the calculation can be speeded up.
 なお、本発明は前述した実施例に限定されるものではなく、添付した特許請求の範囲の趣旨内における様々な変形例及び同等の構成が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに本発明は限定されない。また、ある実施例の構成の一部を他の実施例の構成に置き換えてもよい。また、ある実施例の構成に他の実施例の構成を加えてもよい。また、各実施例の構成の一部について、他の構成の追加・削除・置換をしてもよい。 The present invention is not limited to the above-described embodiments, and includes various modifications and equivalent configurations within the scope of the appended claims. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and the present invention is not necessarily limited to those having all the configurations described. A part of the configuration of one embodiment may be replaced with the configuration of another embodiment. Moreover, you may add the structure of another Example to the structure of a certain Example. In addition, for a part of the configuration of each embodiment, another configuration may be added, deleted, or replaced.
 また、前述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等により、ハードウェアで実現してもよく、プロセッサがそれぞれの機能を実現するプログラムを解釈し実行することにより、ソフトウェアで実現してもよい。 In addition, each of the above-described configurations, functions, processing units, processing means, etc. may be realized in hardware by designing a part or all of them, for example, with an integrated circuit, and the processor realizes each function. It may be realized by software by interpreting and executing the program to be executed.
 各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリ、ハードディスク、SSD(Solid State Drive)等の記憶装置、又は、ICカード、SDカード、DVD等の記録媒体に格納することができる。 Information such as programs, tables, and files that realize each function can be stored in a storage device such as a memory, a hard disk, and an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, and a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、実装上必要な全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and do not necessarily indicate all control lines and information lines necessary for mounting. In practice, it can be considered that almost all the components are connected to each other.

Claims (14)

  1.  計算機によって構成される計測システムであって、
     前記計算機は、プログラムを実行するプロセッサ及び前記プログラムを格納する記憶装置を有し、
     前記記憶装置は、棚の形状データと、棚が占有する領域を表す棚領域データと、棚の中で荷物を格納可能な領域を表す荷物領域データとを保持し、
     前記プロセッサは、
     計測センサが計測した倉庫内の形状データの入力を受け、
     前記棚の形状データと前記倉庫内の形状データとを照合し、前記棚の倉庫内の位置を特定し、
     前記特定された棚の位置及び前記棚領域データに基づいて、前記倉庫内の形状データから棚の形状データを抽出し、
     前記荷物領域データに基づいて、前記棚の形状データから前記棚の中の荷物領域の形状データを抽出することを特徴とする計測システム。
    A measuring system comprising a computer,
    The computer has a processor that executes a program and a storage device that stores the program,
    The storage device holds shelf shape data, shelf area data representing an area occupied by the shelf, and luggage area data representing an area where the luggage can be stored in the shelf,
    The processor is
    Receives input of shape data in the warehouse measured by the measurement sensor,
    Collating the shape data of the shelf with the shape data in the warehouse, and specifying the position of the shelf in the warehouse,
    Based on the position of the specified shelf and the shelf area data, extract the shape data of the shelf from the shape data in the warehouse,
    A measurement system, wherein shape data of a luggage area in the shelf is extracted from shape data of the shelf based on the luggage area data.
  2.  請求項1に記載の計測システムであって、
     前記プロセッサは、前記抽出された荷物領域の形状データ及び前記荷物領域データを用いて、棚の中の荷物の体積を推定することを特徴とする計測システム。
    The measurement system according to claim 1,
    The measurement system, wherein the processor estimates a volume of a load in a shelf using the extracted shape data of the load region and the load region data.
  3.  請求項2に記載の計測システムであって、
     商品管理データベースを保持する倉庫管理システムに接続されており、
     前記プロセッサは、
     荷物の大きさの情報を前記倉庫管理システムから取得し、
     前記取得した荷物の大きさの情報、前記抽出された荷物領域の形状データ及び前記荷物領域データを用いて、棚の中の荷物の体積を推定することを特徴とする計測システム。
    The measurement system according to claim 2,
    Connected to the warehouse management system that holds the product management database,
    The processor is
    Information on the size of the luggage is obtained from the warehouse management system;
    A measurement system for estimating a volume of a package in a shelf using the acquired information on the size of the package, the shape data of the extracted package region, and the package region data.
  4.  請求項3に記載の計測システムであって、
     前記プロセッサは、
     荷物の在庫数の情報を前記倉庫管理システムから取得し、
     前記取得した荷物の在庫数の情報と前記推定された荷物の体積とが異なる場合、警告を報知することを特徴とする計測システム。
    The measurement system according to claim 3,
    The processor is
    Obtain information on the number of items in stock from the warehouse management system,
    A warning system is provided, wherein a warning is notified when the acquired information on the inventory number of packages differs from the estimated volume of packages.
  5.  請求項3に記載の計測システムであって、
     前記プロセッサは、
     棚に割り当てられた識別情報を取得し、
     前記取得した識別情報を用いて、当該棚に格納されている荷物の情報を前記倉庫管理システムから取得することを特徴とする計測システム。
    The measurement system according to claim 3,
    The processor is
    Get the identification information assigned to the shelf,
    Using the acquired identification information, the information of the package stored on the shelf is acquired from the warehouse management system.
  6.  請求項2に記載の計測システムであって、
     前記プロセッサは、
     前記計測センサが倉庫内の形状データを計測した時刻を取得可能であって、
     前記計測時刻と等しい時刻の荷物情報及び物量計測の時刻に取得した荷物の情報を用いて、荷物の体積を修正することを特徴とする計測システム。
    The measurement system according to claim 2,
    The processor is
    The measurement sensor can acquire the time when the shape data in the warehouse is measured,
    A measurement system for correcting a volume of a package using package information at a time equal to the measurement time and information on the package acquired at the time of measuring the quantity.
  7.  請求項1に記載の計測システムであって、
     前記プロセッサは、
     前記倉庫内の形状データから一定の高さで形状を抽出して構成した平面上で、棚の位置の設定を受け付け、
     前記受け付けた棚の位置の近傍に探索範囲を設定することによって、前記棚の形状データと前記倉庫内の形状データとを照合することを特徴とする計測システム。
    The measurement system according to claim 1,
    The processor is
    On the plane configured by extracting the shape at a certain height from the shape data in the warehouse, accepting the setting of the position of the shelf,
    A measuring system which collates shape data of the shelf with shape data in the warehouse by setting a search range in the vicinity of the position of the accepted shelf.
  8.  計算機が実行する計測方法であって、
     前記計算機は、プログラムを実行するプロセッサ及び前記プログラムを格納する記憶装置を有し、
     前記記憶装置は、棚の形状データと、棚が占有する領域を表す棚領域データと、棚の中で荷物を格納可能な領域を表す荷物領域データとを保持し、
     前記計測方法は、
     前記プロセッサが、計測センサによって計測された倉庫内の形状データの入力を受けるステップと、
     前記プロセッサが、前記棚の形状データと前記倉庫内の形状データとを照合し、前記棚の倉庫内の位置を特定する照合ステップと、
     前記プロセッサが、前記特定された棚の位置及び前記棚領域データに基づいて、前記倉庫内の形状データから棚の形状データを抽出するステップと、
     前記プロセッサが、前記荷物領域データに基づいて、前記棚の形状データから前記棚の中の荷物領域の形状データを抽出するステップとを含むことを特徴とする計測方法。
    A measurement method performed by a computer,
    The computer has a processor that executes a program and a storage device that stores the program,
    The storage device holds shelf shape data, shelf area data representing an area occupied by the shelf, and luggage area data representing an area where the luggage can be stored in the shelf,
    The measurement method is:
    The processor receives input of shape data in a warehouse measured by a measurement sensor;
    The processor compares the shape data of the shelf with the shape data in the warehouse, and specifies a position of the shelf in the warehouse;
    The processor extracting shelf shape data from shape data in the warehouse based on the specified shelf position and the shelf area data; and
    And a step of extracting the shape data of the luggage area in the shelf from the shape data of the shelf based on the luggage area data.
  9.  請求項8に記載の計測方法であって、
     前記プロセッサが、前記抽出された荷物領域の形状データ及び前記荷物領域データを用いて、棚の中の荷物の体積を推定する推定ステップを含むことを特徴とする計測方法。
    The measurement method according to claim 8,
    A measurement method comprising: an estimation step in which the processor estimates a volume of a load in a shelf using the extracted shape data of the load region and the load region data.
  10.  請求項9に記載の計測方法であって、
     前記計算機は、商品管理データベースを保持する倉庫管理システムに接続されており、
     前記計測方法は、
     前記プロセッサが、荷物の大きさの情報を前記倉庫管理システムから取得する取得ステップを含み、
     前記推定ステップでは、前記取得した荷物の大きさの情報、前記抽出された荷物領域の形状データ及び前記荷物領域データを用いて、棚の中の荷物の体積を推定することを特徴とする計測方法。
    The measurement method according to claim 9,
    The computer is connected to a warehouse management system that holds a product management database,
    The measurement method is:
    The processor includes an obtaining step of obtaining information on a size of a package from the warehouse management system;
    In the estimation step, the volume of the luggage in the shelf is estimated using the acquired luggage size information, the extracted luggage area shape data, and the luggage area data. .
  11.  請求項10に記載の計測方法であって、
     前記プロセッサが、荷物の在庫数の情報を前記倉庫管理システムから取得する取得ステップと、
     前記取得した荷物の在庫数の情報と前記推定された荷物の体積とが異なる場合、前記プロセッサが警告を報知するステップとを含むことを特徴とする計測方法。
    It is the measuring method of Claim 10, Comprising:
    An acquisition step in which the processor acquires information on a stock quantity of packages from the warehouse management system;
    A measurement method, comprising: a step of notifying a warning when the information on the acquired inventory quantity of the package is different from the estimated volume of the package.
  12.  請求項10に記載の計測方法であって、
     前記プロセッサが、棚に割り当てられた識別情報を取得するステップを含み、
     前記取得ステップでは、前記取得した識別情報を用いて、当該棚に格納されている荷物の情報を前記倉庫管理システムから取得することを特徴とする計測方法。
    It is the measuring method of Claim 10, Comprising:
    The processor includes obtaining identification information assigned to the shelf;
    In the obtaining step, the information on the luggage stored on the shelf is obtained from the warehouse management system using the obtained identification information.
  13.  請求項9に記載の計測方法であって、
     前記プロセッサが、前記計測センサが倉庫内の形状データを計測した時刻を取得するステップと、
     前記プロセッサが、前記計測時刻と等しい時刻の荷物情報及び物量計測の時刻に取得した荷物の情報を用いて、荷物の体積を修正するステップとを含むことを特徴とする計測方法。
    The measurement method according to claim 9,
    The processor obtains the time when the measurement sensor measured shape data in a warehouse;
    The processor includes a step of correcting the volume of the package using the package information at the time equal to the measurement time and the information on the package acquired at the time of measuring the quantity.
  14.  請求項8に記載の計測方法であって、
     前記プロセッサが、前記倉庫内の形状データから一定の高さで形状を抽出して構成した平面上で、棚の位置の設定を受け付けるステップを含み、
     前記照合ステップでは、前記受け付けた棚の位置の近傍に探索範囲を設定することによって、前記棚の形状データと前記倉庫内の形状データとを照合することを特徴とする計測方法。
    The measurement method according to claim 8,
    The processor includes receiving a setting of a shelf position on a plane configured by extracting a shape at a certain height from the shape data in the warehouse,
    In the collating step, the shape data of the shelf and the shape data in the warehouse are collated by setting a search range in the vicinity of the received shelf position.
PCT/JP2016/061154 2016-04-05 2016-04-05 Measurement system and measurement method WO2017175312A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018510157A JP6605711B2 (en) 2016-04-05 2016-04-05 Measuring system and measuring method
PCT/JP2016/061154 WO2017175312A1 (en) 2016-04-05 2016-04-05 Measurement system and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/061154 WO2017175312A1 (en) 2016-04-05 2016-04-05 Measurement system and measurement method

Publications (1)

Publication Number Publication Date
WO2017175312A1 true WO2017175312A1 (en) 2017-10-12

Family

ID=60000948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061154 WO2017175312A1 (en) 2016-04-05 2016-04-05 Measurement system and measurement method

Country Status (2)

Country Link
JP (1) JP6605711B2 (en)
WO (1) WO2017175312A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019114126A (en) * 2017-12-25 2019-07-11 富士通株式会社 Object recognition device, object recognition method, and object recognition program
US20200111228A1 (en) * 2018-10-05 2020-04-09 Zebra Technologies Corporation Method, system and apparatus for object detection in point clouds
JP2020060451A (en) * 2018-10-10 2020-04-16 日野自動車株式会社 Luggage space monitoring system and luggage space monitoring method
WO2020105669A1 (en) * 2018-11-21 2020-05-28 日本電気通信システム株式会社 Volume measurement device, system, method, and program
JP2020172400A (en) * 2019-04-14 2020-10-22 炬星科技(深▲せん▼)有限公司Syrius Robotics Co., Ltd. Warehouse high speed arrangement method, machine and memory medium
JP2020172401A (en) * 2019-04-14 2020-10-22 炬星科技(深▲せん▼)有限公司Syrius Robotics Co., Ltd. High speed establishing method of warehouse storage map, machine, memory medium and robot
JP2021509883A (en) * 2018-07-02 2021-04-08 北京極智嘉科技有限公司 Order processing method and equipment, product volume estimation method and equipment
CN112960319A (en) * 2021-01-29 2021-06-15 苏州寻迹智行机器人技术有限公司 Method for assisting in driving of submerging and jacking type AGV into goods shelf by using light reflecting units
CN113447936A (en) * 2020-12-07 2021-09-28 兰剑智能科技股份有限公司 AGV intelligent forklift and method and device for detecting platform state of ground pile inventory area
WO2021220783A1 (en) * 2020-04-28 2021-11-04 パナソニックIpマネジメント株式会社 Filling rate measurement method, information processing device, and program
WO2022054497A1 (en) * 2020-09-08 2022-03-17 パナソニックIpマネジメント株式会社 Filling rate measurement method, information processing device, and program
US11402846B2 (en) 2019-06-03 2022-08-02 Zebra Technologies Corporation Method, system and apparatus for mitigating data capture light leakage
US11416000B2 (en) 2018-12-07 2022-08-16 Zebra Technologies Corporation Method and apparatus for navigational ray tracing
JP2022538458A (en) * 2019-08-16 2022-09-02 霊動科技(北京)有限公司 Inventory equipment, back-end equipment, inventory management system and inventory method
US11449059B2 (en) 2017-05-01 2022-09-20 Symbol Technologies, Llc Obstacle detection for a mobile automation apparatus
US11450024B2 (en) 2020-07-17 2022-09-20 Zebra Technologies Corporation Mixed depth object detection
US11507103B2 (en) 2019-12-04 2022-11-22 Zebra Technologies Corporation Method, system and apparatus for localization-based historical obstacle handling
US11506483B2 (en) 2018-10-05 2022-11-22 Zebra Technologies Corporation Method, system and apparatus for support structure depth determination
WO2022254992A1 (en) * 2021-06-01 2022-12-08 村田機械株式会社 Angle detection method and angle detection system
US11592826B2 (en) 2018-12-28 2023-02-28 Zebra Technologies Corporation Method, system and apparatus for dynamic loop closure in mapping trajectories
US11593915B2 (en) 2020-10-21 2023-02-28 Zebra Technologies Corporation Parallax-tolerant panoramic image generation
US11662739B2 (en) 2019-06-03 2023-05-30 Zebra Technologies Corporation Method, system and apparatus for adaptive ceiling-based localization
CN116198898A (en) * 2023-04-20 2023-06-02 巴斯夫一体化基地(广东)有限公司 Warehouse for storing goods
US11822333B2 (en) 2020-03-30 2023-11-21 Zebra Technologies Corporation Method, system and apparatus for data capture illumination control
US11954882B2 (en) 2021-06-17 2024-04-09 Zebra Technologies Corporation Feature-based georegistration for mobile computing devices
US11978011B2 (en) 2017-05-01 2024-05-07 Symbol Technologies, Llc Method and apparatus for object status detection
JP7483236B2 (en) 2022-07-26 2024-05-15 ワタ インク Method, device and computer program for providing logistics management solutions using 3D geofences based on LIDAR point cloud

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023148940A1 (en) * 2022-02-04 2023-08-10 日本電気株式会社 Disposition control system, disposition control device, and disposition control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338889A (en) * 2003-05-16 2004-12-02 Hitachi Ltd Image recognition device
JP2010023950A (en) * 2008-07-16 2010-02-04 Hitachi Ltd Three-dimensional object recognition system and inventory system using the same
WO2015059740A1 (en) * 2013-10-21 2015-04-30 株式会社日立製作所 Position displacement correction device, and position displacement correction system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338889A (en) * 2003-05-16 2004-12-02 Hitachi Ltd Image recognition device
JP2010023950A (en) * 2008-07-16 2010-02-04 Hitachi Ltd Three-dimensional object recognition system and inventory system using the same
WO2015059740A1 (en) * 2013-10-21 2015-04-30 株式会社日立製作所 Position displacement correction device, and position displacement correction system

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11978011B2 (en) 2017-05-01 2024-05-07 Symbol Technologies, Llc Method and apparatus for object status detection
US11449059B2 (en) 2017-05-01 2022-09-20 Symbol Technologies, Llc Obstacle detection for a mobile automation apparatus
JP2019114126A (en) * 2017-12-25 2019-07-11 富士通株式会社 Object recognition device, object recognition method, and object recognition program
JP7081140B2 (en) 2017-12-25 2022-06-07 富士通株式会社 Object recognition device, object recognition method and object recognition program
JP2021509883A (en) * 2018-07-02 2021-04-08 北京極智嘉科技有限公司 Order processing method and equipment, product volume estimation method and equipment
AU2019351689B2 (en) * 2018-10-05 2022-03-31 Zebra Technologies Corporation Method, system and apparatus for object detection in point clouds
US20200111228A1 (en) * 2018-10-05 2020-04-09 Zebra Technologies Corporation Method, system and apparatus for object detection in point clouds
US11506483B2 (en) 2018-10-05 2022-11-22 Zebra Technologies Corporation Method, system and apparatus for support structure depth determination
US11010920B2 (en) * 2018-10-05 2021-05-18 Zebra Technologies Corporation Method, system and apparatus for object detection in point clouds
US20210272316A1 (en) * 2018-10-05 2021-09-02 Zebra Technologies Corporation Method, System and Apparatus for Object Detection in Point Clouds
JP2020060451A (en) * 2018-10-10 2020-04-16 日野自動車株式会社 Luggage space monitoring system and luggage space monitoring method
JP7191630B2 (en) 2018-10-10 2022-12-19 日野自動車株式会社 Luggage room monitoring system and luggage room monitoring method
US20220252443A1 (en) * 2018-11-21 2022-08-11 Nec Communication Systems, Ltd. Volume measurement apparatus, system, method, and program
WO2020105669A1 (en) * 2018-11-21 2020-05-28 日本電気通信システム株式会社 Volume measurement device, system, method, and program
US11416000B2 (en) 2018-12-07 2022-08-16 Zebra Technologies Corporation Method and apparatus for navigational ray tracing
US11592826B2 (en) 2018-12-28 2023-02-28 Zebra Technologies Corporation Method, system and apparatus for dynamic loop closure in mapping trajectories
JP2020172401A (en) * 2019-04-14 2020-10-22 炬星科技(深▲せん▼)有限公司Syrius Robotics Co., Ltd. High speed establishing method of warehouse storage map, machine, memory medium and robot
JP2020172400A (en) * 2019-04-14 2020-10-22 炬星科技(深▲せん▼)有限公司Syrius Robotics Co., Ltd. Warehouse high speed arrangement method, machine and memory medium
US11402846B2 (en) 2019-06-03 2022-08-02 Zebra Technologies Corporation Method, system and apparatus for mitigating data capture light leakage
US11662739B2 (en) 2019-06-03 2023-05-30 Zebra Technologies Corporation Method, system and apparatus for adaptive ceiling-based localization
JP2022538458A (en) * 2019-08-16 2022-09-02 霊動科技(北京)有限公司 Inventory equipment, back-end equipment, inventory management system and inventory method
US11507103B2 (en) 2019-12-04 2022-11-22 Zebra Technologies Corporation Method, system and apparatus for localization-based historical obstacle handling
US11822333B2 (en) 2020-03-30 2023-11-21 Zebra Technologies Corporation Method, system and apparatus for data capture illumination control
WO2021220783A1 (en) * 2020-04-28 2021-11-04 パナソニックIpマネジメント株式会社 Filling rate measurement method, information processing device, and program
US11450024B2 (en) 2020-07-17 2022-09-20 Zebra Technologies Corporation Mixed depth object detection
WO2022054497A1 (en) * 2020-09-08 2022-03-17 パナソニックIpマネジメント株式会社 Filling rate measurement method, information processing device, and program
US11593915B2 (en) 2020-10-21 2023-02-28 Zebra Technologies Corporation Parallax-tolerant panoramic image generation
CN113447936A (en) * 2020-12-07 2021-09-28 兰剑智能科技股份有限公司 AGV intelligent forklift and method and device for detecting platform state of ground pile inventory area
CN112960319A (en) * 2021-01-29 2021-06-15 苏州寻迹智行机器人技术有限公司 Method for assisting in driving of submerging and jacking type AGV into goods shelf by using light reflecting units
CN112960319B (en) * 2021-01-29 2024-02-02 苏州寻迹智行机器人技术有限公司 Method for assisting submerged jacking AGV to drill into goods shelf by utilizing light reflecting unit
WO2022254992A1 (en) * 2021-06-01 2022-12-08 村田機械株式会社 Angle detection method and angle detection system
US11954882B2 (en) 2021-06-17 2024-04-09 Zebra Technologies Corporation Feature-based georegistration for mobile computing devices
JP7483236B2 (en) 2022-07-26 2024-05-15 ワタ インク Method, device and computer program for providing logistics management solutions using 3D geofences based on LIDAR point cloud
CN116198898B (en) * 2023-04-20 2023-07-25 巴斯夫一体化基地(广东)有限公司 Warehouse for storing goods
CN116198898A (en) * 2023-04-20 2023-06-02 巴斯夫一体化基地(广东)有限公司 Warehouse for storing goods

Also Published As

Publication number Publication date
JPWO2017175312A1 (en) 2018-11-22
JP6605711B2 (en) 2019-11-13

Similar Documents

Publication Publication Date Title
JP6605711B2 (en) Measuring system and measuring method
JP6746819B1 (en) High-speed warehouse placement method, equipment and storage medium
US9928438B2 (en) High accuracy localization system and method for retail store profiling via product image recognition and its corresponding dimension database
US11100300B2 (en) Systems and methods for tracking items
JP5259286B2 (en) 3D object recognition system and inventory system using the same
US9280757B2 (en) Automated inventory management
US20190354923A1 (en) Shelf management system and program
KR102056664B1 (en) Method for work using the sensor and system for performing thereof
JP4960025B2 (en) Work management system
CN103782247A (en) Method and apparatus for using pre-positioned objects to localize an industrial vehicle
US20200143315A1 (en) Inventory Management System With Position Determination of Storage Goods and Associated Storage Regions
US20150066550A1 (en) Flow line data analysis device, system, non-transitory computer readable medium and method
DE112015003933T5 (en) Apparatus and method for performing a things selection process
US20210049542A1 (en) Systems, devices, and methods for estimating stock level with depth sensor
CN103946758A (en) Method and apparatus for using unique landmarks to locate industrial vehicles at start-up
US8762111B2 (en) Method for inputting a spatial layout of production devices to a computer-aided planning program and for optimizing the latter
US11654571B2 (en) Three-dimensional data generation device and robot control system
CN108430713A (en) Estimating pose of an object in an environment using sensor-based observations of agents in the environment and estimating uncertainty metrics of the pose
US20230092401A1 (en) Systems and methods for tracking items
US20150066551A1 (en) Flow line data analysis device, system, program and method
JP2015043175A (en) Article recognition device and article recognition facility
US20170132561A1 (en) Product delivery unloading assistance systems and methods
Wojciechowski et al. Optical scanner assisted robotic assembly
JP6730091B2 (en) Loading procedure determination device and loading procedure determination program
CA3151917A1 (en) Error correction using combination rfid signals

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018510157

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16897871

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16897871

Country of ref document: EP

Kind code of ref document: A1