WO2017170640A1 - Diffuser and multistage pump - Google Patents

Diffuser and multistage pump Download PDF

Info

Publication number
WO2017170640A1
WO2017170640A1 PCT/JP2017/012812 JP2017012812W WO2017170640A1 WO 2017170640 A1 WO2017170640 A1 WO 2017170640A1 JP 2017012812 W JP2017012812 W JP 2017012812W WO 2017170640 A1 WO2017170640 A1 WO 2017170640A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
blade
impeller
flow path
angle
Prior art date
Application number
PCT/JP2017/012812
Other languages
French (fr)
Japanese (ja)
Inventor
和也 平本
真志 大渕
前田 毅
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to CN201780014161.8A priority Critical patent/CN108700078B/en
Priority to BR112018069611-0A priority patent/BR112018069611B1/en
Publication of WO2017170640A1 publication Critical patent/WO2017170640A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/08Multi-stage pumps the stages being situated concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D11/00Other rotary non-positive-displacement pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers

Definitions

  • the present invention relates to a diffuser and a multistage pump device.
  • multistage pumps are widely used to transfer fluids.
  • the multi-stage pump is configured such that a plurality of impellers arranged along a drive shaft are accommodated in a diffuser that defines a fluid flow path.
  • the diffuser guides and rectifies the fluid boosted by the impeller spirally, and transfers the fluid to the next stage impeller.
  • a desired head can be obtained by changing the number of stages of the impeller and the diffuser.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-323291
  • the shape of the diffuser is designed so as to be the most energy efficient when operating at a predetermined rated discharge rate.
  • the diffuser is designed such that the angle ⁇ w of the diffuser blade that defines the internal flow path is directed in the axial direction by removing the swirl velocity component of the outlet flow.
  • it is necessary to increase the axial length of the diffuser, and there is a problem that the total length of the pump is increased.
  • the present invention has been made in view of the above problems, and an object of the present invention is to propose a small-sized and highly energy-efficient diffuser and a multi-stage pump device in a multi-stage pump device in which a plurality of diffusers are stacked.
  • the diffuser of the present invention is used in a multistage pump, and is arranged concentrically with an impeller that rotates around a rotation axis, and guides a fluid that is attracted as the impeller rotates.
  • This diffuser is arranged in a plurality of cases with a cylindrical flow path that defines a cylindrical flow path so that the diameter decreases from the fluid inflow side to the outflow side, and the cylindrical flow path is spirally formed.
  • a plurality of diffuser wing parts for a plurality of diffuser blade portions, an angle formed by the circumferential direction with respect to the rotation axis and the blade surface tangential direction of the diffuser blade portion at an arbitrary meridional surface position of the case portion is defined as a diffuser blade angle ⁇ w.
  • the diffuser blade angle ⁇ w (°) changes with a change amount ⁇ w that satisfies the relationship of ⁇ w ⁇ 2.4 ⁇ ⁇ Xc with respect to the unit change amount ⁇ Xc (mm) of the meridian plane position. Further, the diffuser blade angle ⁇ w is smaller than 90 ° in all regions.
  • the swirl velocity component remains in the outlet flow of the diffuser, the outlet flow of each diffuser can be stabilized regardless of the pump flow rate, and a small and highly efficient multi-stage pump device can be realized.
  • the maximum outer diameter ⁇ Dc of the flow path defined by the case portion and the meridional blade length Lc on the outer peripheral side of the diffuser blade portion satisfy the relationship of Lc / ⁇ Dc ⁇ 0.64.
  • the maximum inner diameter ⁇ Dh of the flow path defined by the case portion and the meridional blade length Lh on the inner peripheral side of the diffuser blade portion satisfy the relationship of Lh / ⁇ Dh ⁇ 0.63.
  • the meridian blade length Lh on the inner peripheral side is equal to or shorter than the meridian blade length Lc on the outer peripheral side.
  • the wall surface on the inner peripheral side at the outflow side end of the case portion has a maximum value ⁇ o of the angle formed with the rotation axis on the downstream side of the position where the inner diameter of the flow path is maximum, ⁇ o with respect to the specific speed Ns. It is preferable that the relationship> 1500 ⁇ Ns ⁇ 0.6 is satisfied.
  • the multi-stage pump device of the present invention includes a plurality of stages of the above-described diffuser of the present invention and an impeller that is arranged concentrically with the diffuser and attracts fluid to the diffuser.
  • the multistage pump device may further include a power source for rotating the impeller.
  • a diffuser and a multistage pump device according to an embodiment of the present invention will be described with reference to the drawings.
  • a deep well submersible motor pump including a submersible pump will be described as an example, but the present invention is not limited to such an example and can be applied to various multistage pump devices and diffusers.
  • FIG. 1 is a longitudinal sectional view schematically showing a multistage pump according to this embodiment.
  • the multistage pump device 10 includes a motor 100 as a power source and a pump unit 200 attached to the upper part of the motor 100.
  • the motor 100 is connected to an external power source (not shown) via an electric cable 102.
  • the drive shaft 104 of the motor 100 is connected to the main shaft 230 of the pump unit 200 via the joint 106.
  • the drive shaft 104 of the motor 100 and the main shaft 230 of the pump unit 200 extend in the axis (rotary shaft) Aw direction and are arranged concentrically.
  • any motor 100 may be used. Since the motor 100 does not form the core of the present invention, the description of the detailed configuration is omitted.
  • the pump unit 200 includes a suction case 210, a discharge case 220, a main shaft 230, an impeller 240, and a diffuser 250.
  • the suction case 210 is provided on the upper part of the motor 100 and is arranged as the lowermost stage of the pump unit 200.
  • the suction case 210 is fixed to the motor 100 by fastening a lower assembly portion 212 and the case 108 of the motor 100 with screws 214.
  • the suction case 210 is formed in a substantially cylindrical shape, and a suction port 216 for sucking fluid is formed in the upper portion of the assembly portion 212.
  • the assembly part 252 of the diffuser 250 is fastened to the assembly part 218 at the upper part of the suction case 210 with screws 253, and the diffuser 250 is fixed.
  • the discharge case 220 is provided on the upper part of the diffuser 250 and is disposed as the uppermost stage of the pump unit 200.
  • the discharge case 220 is fixed to the diffuser 250 by fastening a lower assembly part 222 and an assembly part 254 of the diffuser 250 with screws 255.
  • the discharge case 220 is formed in a substantially cylindrical shape, and the upper assembly portion 224 is attached to a discharge pipe (not shown).
  • the discharge case 220 includes a check valve 226 that prevents the fluid from flowing backward.
  • the main shaft 230 is connected to the motor 100 through the joint 106 and is inserted through the suction case 210 and the diffuser 250.
  • the main shaft 230 is supported by a bearing sleeve 268 of the diffuser 250.
  • a plurality of impellers 240 are attached to the main shaft 230, and the plurality of impellers 240 rotate as the main shaft 230 rotates.
  • the impeller 240 has a cylindrical insertion portion for inserting the main shaft 230 and a plurality of blades attached to the outer peripheral surface of the insertion portion.
  • the impeller 240 rotates integrally with the main shaft 230 and pumps fluid from the upstream (lower in the figure) to the downstream (upper in the figure) by a plurality of blades.
  • the diffuser 250 is made of metal or resin, and is arranged concentrically with the rotating shaft (main shaft 230) of the impeller 240.
  • FIG. 2 is an enlarged schematic view showing the periphery of the diffuser of the present embodiment. Note that FIG. 2 shows a cross section along the axis Aw, but the diffuser blade 280 shows one diffuser blade 280 along the blade surface. Further, the diffuser blade portion 280 is not a cross section, but is shaded so as to facilitate understanding.
  • a cross section along the axis Aw is referred to as a “meridian plane”.
  • the diffuser 250 accommodates the main shaft 230 and the impeller 240 and defines a fluid flow path.
  • the diffuser 250 includes a liner ring 258 between the diffuser 250 and the impeller 240 in order to prevent backflow of fluid.
  • the diffuser 250 has assembly parts 252 and 254 at the top and bottom, and can be fixed to the suction case 210 and the discharge case 220. Further, the diffuser 250 is formed so that a plurality of stages can be stacked with a pair of the diffuser 250 and the impeller 240 as one stage (in the example of FIG. 1, two stages are stacked).
  • FIG. 3 is a schematic diagram showing the inner case portion of the diffuser and the diffuser wing portion with the outer case portion omitted.
  • the blade surface of one diffuser blade portion 280 is shaded so as to correspond to FIG. 2.
  • the diffuser 250 includes an inner case part 260 that defines the inner wall of the flow path, an outer case part 270 that defines the outer wall of the flow path, an inner case part 260, and an outer case part 270. And a plurality of diffuser wings 280 for connecting the two.
  • the inner case portion 260, the outer case portion 270, and the diffuser blade portion 280 may be integrally formed by, for example, metal casting, or may be separately formed and connected.
  • the inner case portion 260 is provided with a bearing sleeve 268 into which the main shaft 230 is inserted (see FIG. 1). As shown in FIGS. 1 to 3, the inner case portion 260 is formed in a substantially cylindrical shape whose diameter decreases toward the upper side (downstream).
  • the outer case part 270 includes a space having a shape corresponding to the outline of the inner case part 260 so that a flow path is defined between the outer case part 270 and the inner case part 260. That is, the outer case portion 270 is formed in a hollow shape, and is formed in a substantially cylindrical shape whose diameter decreases toward the top.
  • the inner case portion 260 and the outer case portion 270 are arranged apart from each other, thereby defining a cylindrical flow path Fc through which a fluid attracted from the impeller 240 passes.
  • the inner case portion 260 and the outer case portion 270 are connected to each other by a plurality of (seven in this embodiment) diffuser blade portions 280 in a state of being separated from each other.
  • the plurality of diffuser blade portions 280 are disposed in the cylindrical flow path Fc with an equal positional relationship in the circumferential direction with respect to the axis Aw, and are each formed in a plate shape having a smooth curved plate surface (blade surface). ing.
  • the diffuser blade portion 280 is configured to partition a cylindrical flow path Fc defined by the inner case portion 260 and the outer case portion 270 by the blade surface while rotating in the circumferential direction. Is arranged.
  • the diffuser blade 280 has a plate surface substantially perpendicular to the axial direction of the main shaft 230 at the lower end (end on the inflow side of the flow path), and a plate surface at the upper end (end on the outflow side of the flow path). It is provided so as to be substantially parallel to the axial direction of the main shaft 230.
  • blade part 280 partitions so that the space demarcated by the inner side case part 260 and the outer side case part 270 may become a some spiral flow path.
  • the diffuser blade portion 280 is configured so that the blade angle ⁇ w changes with a small change amount ⁇ w.
  • the blade angle ⁇ w is an angle (°) formed by a tangent at the blade thickness center line Cd of the diffuser blade 280 along the fluid flow path and a circumferential tangent Rd around the axis Aw with respect to the tangent.
  • the thickness of the diffuser blade 280 is substantially constant, and the tangent of the blade thickness at the center line Cd is substantially the same as the tangent at the blade surface.
  • the blade angle ⁇ w is not the center line Cd of the blade thickness, but the tangent to the blade surface on the upstream side (lower side in the figure) or the downstream side (upper side in the figure) of the diffuser blade part 280 and the axis Aw. It is good also as an angle (degree) which the tangent line Rd of the circumferential direction makes.
  • the blade angle ⁇ w varies depending on the meridian position Xc (mm) of the inner case portion 260 and the outer case portion 270 (in the drawing, the blade angle ⁇ w (Xc1) with respect to the position Xc1 and the blade angle with respect to the position Xc2). ⁇ w (Xc2) reference).
  • the blade angle ⁇ w is small near the entrance of the diffuser 250 (downward in the figure) and large near the exit (upward in the figure).
  • the fluid containing a large amount of the circumferential flow component attracted from the impeller 240 can be rectified and guided downstream (upward in the figure).
  • the variation ⁇ w of the blade angle ⁇ w with respect to the unit variation ⁇ Xc of the meridian plane position Xc satisfies the relationship expressed by the following expression (1) in all regions.
  • the blade angle ⁇ w has a derivative that is differentiated at the meridional surface position Xc less than 2.4 (° / mm) in all regions.
  • the diffuser blade angle ⁇ w is formed smaller than 90 ° in all regions. Thereby, a swirl velocity component intentionally remains in the fluid discharged from the outlet of the diffuser 250.
  • the diffuser blade portion 280 by designing the diffuser blade portion 280 by determining the blade angle ⁇ w, it is possible to suppress the separation in the flow in the diffuser 250 even if the length of the meridian surface is reduced.
  • the flow of the fluid attracted to the diffuser 250 after the second stage can be stabilized. Thereby, energy efficiency can be improved especially in the diffuser 250 after the 2nd stage, and the energy efficiency of the multistage pump apparatus 10 can be improved.
  • the diffuser blade 280 is designed so that the swirl velocity component is not included as much as possible in the flow component of the fluid discharged from the outlet side.
  • the conventional diffuser 250 has a portion where the blade angle ⁇ w of the diffuser blade portion 280 is larger than 90 °, and the blade angle ⁇ w changes with a large change amount ⁇ w.
  • the blade angle ⁇ w has a portion larger than 90 ° or changes with a large change amount ⁇ w, the flow in the diffuser 250 is likely to be peeled off, and the energy efficiency may decrease particularly in the diffuser 250 after the second stage. I understood.
  • the relationship of the formula (1) is satisfied in all regions, the diffuser blade angle ⁇ w is set to an angle smaller than 90 °, and the swirl velocity component is intentionally added to the fluid discharged from the outlet of the diffuser 250. It is designed to remain. Thereby, it is possible to suppress the separation in the flow in the diffuser 250 and to stabilize the flow of the fluid attracted to the second and subsequent diffusers 250, thereby improving the energy efficiency of the multistage pump device 10. Can do.
  • the maximum outer diameter ⁇ Dc of the flow path Fc defined by the outer case portion 270 and the meridional blade length Lc on the outer peripheral side of the diffuser blade portion 280 satisfy the relationship of the following equation (2).
  • the maximum inner diameter ⁇ Dh of the flow path Fc defined by the inner case portion 260 and the meridional blade length Lh on the inner peripheral side of the diffuser blade portion 280 satisfy the relationship of the following equation (3).
  • the meridional surface blade lengths Lc and Lh on the outer peripheral side and inner peripheral side of the diffuser blade portion 280 are the lengths of the regions where the diffuser blade portion 280 is provided on the meridian surfaces of the outer case portion 270 and the inner case portion 260. (See FIG. 2). Further, the meridional blade lengths Lc and Lh are such that the meridional blade length Lh on the inner circumferential side is equal to or shorter than the meridian blade length Lc on the outer circumferential side (the relationship of the following expression (4) is satisfied). ).
  • the diffuser 250 having a small length in the axis Aw direction can be obtained, and by showing the relationship of the expression (1), the multistage pump device 10 having a small size and high energy efficiency can be realized. .
  • the relationship of the following formula (5) is satisfied with respect to the speed Ns.
  • Np is the rotational speed (min ⁇ 1 ) of the pump (motor)
  • Qp is the discharge amount (m 3 / min)
  • Hp is the total head (m).
  • the diffuser 250 having a small length in the axis Aw direction can be obtained, and by showing the relationship of the expression (1), the multistage pump device 10 having a small size and high energy efficiency can be realized.
  • the present invention is not limited to this example, and the outer surface of the inner case portion 260 may have a maximum angle with the axis Aw at a place that is not the outflow side end. ⁇ o> 1500 ⁇ Ns ⁇ 0.6 (5)
  • Ns (Np ⁇ Qp 1/2 ) / Hp 3/4 (6)
  • FIG. 4 is a diagram showing the efficiency curve of the impeller with respect to the discharge amount of the multistage pump
  • FIG. 5 is a diagram showing the efficiency curve of the diffuser with respect to the discharge amount of the multistage pump.
  • the thick solid line in FIG. 4 and FIG. 5 shows the first stage impeller 240 and the diffuser 250 in the multistage pump device 10 of the present embodiment that satisfies all the relationships of the above formulas (1) to (5). It is a graph.
  • the thick broken line in a figure is a graph which shows the 2nd stage
  • the thin solid lines in the figure are graphs showing the first stage impeller and the diffuser in the multistage pump device of the comparative example that does not satisfy any of the relationships of the above formulas (1) to (5).
  • the thin broken line in a figure is a graph which shows the 2nd stage
  • the angle of the diffuser blade 280 is designed so as to be most efficient with a specific discharge amount as the rated Md. When the discharge amount departs from the rated Md, the fluid flow and the angle of the diffuser blade 280 are not matched and energy efficiency is lowered.
  • the diffuser 250 is designed so that the same object is stacked in a plurality of stages, and the energy efficiency of the diffuser 250 is designed to be most efficient for the one-stage diffuser 250.
  • the energy efficiency of the diffuser 250 is designed to be most efficient for the one-stage diffuser 250.
  • high energy efficiency can be achieved for the first stage impeller and the diffuser (see the thin solid line in the figure).
  • the energy efficiency of the impeller and diffuser is reduced (see the thin broken line in the figure). This is because the flow of fluid that has passed through the first stage impeller and the diffuser includes turbulence, and this turbulence affects the second stage and subsequent impellers and the diffuser.
  • the diffuser 250 is designed so as to satisfy the relationships of the above-described formulas (1) to (5).
  • the energy efficiency of the second stage impeller 240 and the diffuser 250 can be increased in the diffuser 250 having a small length in the axis Aw direction. This is based on intentionally leaving a swirl velocity component in the fluid discharged from the outlet of the diffuser 250.
  • the flow of the fluid attracted to the impeller 240 and the diffuser 250 after the second stage can be stabilized, and the energy efficiency can be improved as compared with the multistage pump device of the comparative example.
  • the energy efficiency with respect to the discharge amount was similar to the relationship shown in FIGS. 4 and 5 even when the number of stages of the diffuser 250 and the impeller 240 was changed. Further, when the number of stages of the diffuser 250 and the impeller 240 is three or more, the efficiency curves of the third and subsequent impellers 240 and the diffuser 250 are the efficiency curves of the second stage shown in FIGS. It was the same as the thick broken line in the figure).
  • the blade angle ⁇ w of the plurality of diffuser blade portions 280 is in all regions with respect to the unit variation ⁇ Xc (mm) of the meridional surface position on the outer peripheral side or the inner peripheral side.
  • the amount of change ⁇ w that satisfies the relationship of the expression (1) changes.
  • the blade angle ⁇ w of the diffuser blade portion 280 is formed to be smaller than 90 ° in all regions.
  • the maximum outer diameter ⁇ Dc and the maximum inner diameter ⁇ Dh of the flow path defined by the outer case portion 270 and the inner case portion 260 and the meridian blade lengths Lc, Lh on the outer peripheral side and inner peripheral side of the diffuser blade portion 280 are expressed by the formulas.
  • the relationships shown in (2) to (4) were satisfied.
  • the outer peripheral surface at the outflow side end of the inner case portion 260 is such that the angle ⁇ o formed with the axis Aw satisfies the relationship of the formula (5) with respect to the specific speed Ns.
  • the diffuser blade portion 280 is not limited to such an example, and among the above relationships, the expressions (2) to (5) may satisfy at least one.
  • the motor 100 is installed below, and the pump unit 200 is installed above the motor 100.
  • the motor 100 may be installed above the pump unit 200.
  • the pump unit 200 is not limited to the vertical placement as shown in FIG.
  • the multistage pump device 10 may be used in water or on land.
  • seven diffuser blade portions 280 are provided between the inner case portion 260 and the outer case portion 270. However, one to six, or more than eight diffuser blade portions 280 are provided. It may be.
  • the above-described diffuser 250 accommodates the impeller 240, a case for accommodating the impeller 240 may be provided separately from the diffuser 250.
  • the two-stage diffuser 250 and the impeller 240 are provided.
  • the diffuser 250 and the impeller 240 may be provided with three or more stages.
  • Multistage pump device 100 motor, 102 electrical cable, 104 drive shaft, 106 joint, 108 case, 200 pump part, 210 suction case, 212 assembly part, 214 screw, 216 suction port, 218 assembly part, 220 discharge case , 222 assembly part, 224 assembly part, 226 check valve, 230 main shaft, 240 impeller, 250 diffuser, 252 assembly part, 253 screw, 254 assembly part, 255 screw, 258 liner ring, 260 inner case part 268 bearing sleeve, 270 outer case, 280 diffuser blade, Aw axis, ⁇ w diffuser blade angle, Rd circumferential tangent, Cd center line, Fc flow path, Xc meridian position, ⁇ Dc maximum outer diameter, ⁇ Dh maximum inner diameter , Ns specific speed, Dh maximum inner diameter .

Abstract

This diffuser (250) is provided with: a case part (260, 270) for demarcating a cylindrical passage so that the diameter thereof is narrowed from a fluid inflow side toward an outflow side; and a plurality of diffuser blade parts (280) for helicoidally partitioning the cylindrical passage, the plurality of diffuser blade parts (280) being disposed in the cylindrical passage. In the plurality of diffuser blade parts (280), the angle formed by a circumferential direction and the blade surface tangential direction of the diffuser parts with respect to a revolving shaft at a discretionary meridian position of the case part (260, 270) is defined as a diffuser blade angle βw. This diffuser blade angle βw(°) changes by a change amount Δβw that satisfies the relationship Δβw < 2.4 × ΔXc with respect to the unit change amount ΔXc (mm) of the meridian position. Also, the diffuse blade angle βw is less than 90° in all areas.

Description

ディフューザ、及び多段ポンプ装置Diffuser and multistage pump device
 本発明は、ディフューザ、及び多段ポンプ装置に関するものである。 The present invention relates to a diffuser and a multistage pump device.
 従来から、流体を移送するために多段ポンプが広く用いられている。多段ポンプは、駆動軸に沿って配置された複数段の羽根車が、流体の流路を画定するディフューザに収容されて構成される。ディフューザは、羽根車が昇圧した流体を螺旋状に案内して整流し、次の段の羽根車へと移送する。多段ポンプでは、羽根車とディフューザとの段数を変更することにより、所望の揚程を得ることができる。 Conventionally, multistage pumps are widely used to transfer fluids. The multi-stage pump is configured such that a plurality of impellers arranged along a drive shaft are accommodated in a diffuser that defines a fluid flow path. The diffuser guides and rectifies the fluid boosted by the impeller spirally, and transfers the fluid to the next stage impeller. In a multistage pump, a desired head can be obtained by changing the number of stages of the impeller and the diffuser.
  特許文献1: 特開平6-323291号公報 Patent Document 1: Japanese Patent Laid-Open No. 6-323291
 多段ポンプ装置では、所定の定格吐出量で運転するときに最もエネルギ効率が高くなるようにディフューザの形状が設計される。例えば一般に、ディフューザは、内部の流路を区画するディフューザ翼の角度βwが、出口流れの旋回速度成分を除去して軸方向に向かうように設計される。しかし、ディフューザ内の流れの剥離を抑制しながら出口流れの旋回速度成分を除去するためには、ディフューザの軸方向長さを大きくする必要があり、ポンプ全長が大きくなるという問題がある。 In the multistage pump device, the shape of the diffuser is designed so as to be the most energy efficient when operating at a predetermined rated discharge rate. For example, in general, the diffuser is designed such that the angle βw of the diffuser blade that defines the internal flow path is directed in the axial direction by removing the swirl velocity component of the outlet flow. However, in order to remove the swirl velocity component of the outlet flow while suppressing the separation of the flow in the diffuser, it is necessary to increase the axial length of the diffuser, and there is a problem that the total length of the pump is increased.
 また、軸方向の長さの短いディフューザで、出口流れの旋回速度成分をなくすためには、ディフューザ翼の角度βwを大きくする必要があり、入口から出口にかけて翼角度βwの増加も大きくなる。この場合には、ディフューザ内の流れに剥離が発生しやすくなり、ディフューザ内の二次流れ(流れの乱れ)によってディフューザの効率が低下してしまう。さらに、羽根車とディフューザとを複数段重ねた場合には、前段のディフューザで発生した剥離が次段以降の羽根車およびディフューザに影響し、エネルギ効率が低下してしまう。 Also, in order to eliminate the swirl velocity component of the outlet flow with a diffuser having a short axial length, it is necessary to increase the angle βw of the diffuser blade, and the blade angle βw increases from the inlet to the outlet. In this case, separation tends to occur in the flow in the diffuser, and the efficiency of the diffuser decreases due to the secondary flow (flow disturbance) in the diffuser. Further, when the impeller and the diffuser are stacked in a plurality of stages, the separation generated in the preceding diffuser affects the impeller and the diffuser in the subsequent stages, resulting in a reduction in energy efficiency.
 本発明は上記課題に鑑みてなされたものであり、ディフューザが複数段重ねられる多段ポンプ装置において、小型でエネルギ効率が高いディフューザ、及び多段ポンプ装置を提案することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to propose a small-sized and highly energy-efficient diffuser and a multi-stage pump device in a multi-stage pump device in which a plurality of diffusers are stacked.
 本発明のディフューザは、多段ポンプに用いられ、回転軸回りに回転する羽根車と同心上に配置されて羽根車の回転に伴って誘引される流体を案内する。このディフューザは、流体の流入側から流出側に向けて径が細くなるように円筒状の流路を画定するケース部と、円筒状の流路に複数配置され、円筒状の流路を螺旋状に区画する複数のディフューザ翼部と、を備える。複数のディフューザ翼部について、ケース部の任意の子午面位置において、回転軸に対する周方向とディフューザ翼部の翼面接線方向とのなす角度をディフューザ翼角度βwと定義する。このディフューザ翼角度βw(°)は、子午面位置の単位変化量ΔXc(mm)に対して、Δβw<2.4・ΔXcの関係を満たす変化量Δβwで変化する。また、ディフューザ翼角度βwは、すべての領域において、90°より小さくなっている。 これにより、ディフューザの出口流れに旋回速度成分が残り、ポンプ流量によらず各ディフューザの出口流れを安定させることができ、小型でエネルギ効率の高い多段ポンプ装置を実現することができる。 The diffuser of the present invention is used in a multistage pump, and is arranged concentrically with an impeller that rotates around a rotation axis, and guides a fluid that is attracted as the impeller rotates. This diffuser is arranged in a plurality of cases with a cylindrical flow path that defines a cylindrical flow path so that the diameter decreases from the fluid inflow side to the outflow side, and the cylindrical flow path is spirally formed. And a plurality of diffuser wing parts. For a plurality of diffuser blade portions, an angle formed by the circumferential direction with respect to the rotation axis and the blade surface tangential direction of the diffuser blade portion at an arbitrary meridional surface position of the case portion is defined as a diffuser blade angle βw. The diffuser blade angle βw (°) changes with a change amount Δβw that satisfies the relationship of Δβw <2.4 · ΔXc with respect to the unit change amount ΔXc (mm) of the meridian plane position. Further, the diffuser blade angle βw is smaller than 90 ° in all regions. Thus, the swirl velocity component remains in the outlet flow of the diffuser, the outlet flow of each diffuser can be stabilized regardless of the pump flow rate, and a small and highly efficient multi-stage pump device can be realized.
 また、ケース部が画定する流路の最大外径φDcと、ディフューザ翼部の外周側の子午面翼長さLcとは、Lc/φDc<0.64の関係を満たすことが好ましい。 Further, it is preferable that the maximum outer diameter φDc of the flow path defined by the case portion and the meridional blade length Lc on the outer peripheral side of the diffuser blade portion satisfy the relationship of Lc / φDc <0.64.
 また、ケース部が画定する流路の最大内径φDhと、ディフューザ翼部の内周側の子午面翼長さLhとは、Lh/φDh<0.63の関係を満たすことが好ましい。 Further, it is preferable that the maximum inner diameter φDh of the flow path defined by the case portion and the meridional blade length Lh on the inner peripheral side of the diffuser blade portion satisfy the relationship of Lh / φDh <0.63.
 また、ディフューザ翼部は、内周側の子午面翼長さLhが外周側の子午面翼長さLc以下であることが好ましい。 Further, in the diffuser blade portion, it is preferable that the meridian blade length Lh on the inner peripheral side is equal to or shorter than the meridian blade length Lc on the outer peripheral side.
 また、ケース部の流出側端部における内周側の壁面は、流路の内径が最大となる位置よりも下流側において、回転軸となす角の最大値θoが比速度Nsに対して、θo>1500・Ns-0.6の関係を満たすことが好ましい。ここで、比速度Nsは、ポンプの回転速度(min-1)をNp、吐出し量(m/min)をQp、全揚程(m)をHpとして、Ns=(Np・Qp1/2)/Hp3/4で表される。 In addition, the wall surface on the inner peripheral side at the outflow side end of the case portion has a maximum value θo of the angle formed with the rotation axis on the downstream side of the position where the inner diameter of the flow path is maximum, θo with respect to the specific speed Ns. It is preferable that the relationship> 1500 · Ns −0.6 is satisfied. Here, the specific speed Ns is defined as Ns = (Np · Qp 1/2 ) where Np is the rotational speed (min −1 ) of the pump, Qp is the discharge amount (m 3 / min), and Hp is the total head (m). ) / Hp 3/4 .
 本発明の多段ポンプ装置は、上記の本発明のディフューザと、このディフューザと同心円状に配置され、ディフューザに流体を誘引する羽根車と、を複数段備える。 The multi-stage pump device of the present invention includes a plurality of stages of the above-described diffuser of the present invention and an impeller that is arranged concentrically with the diffuser and attracts fluid to the diffuser.
 この多段ポンプ装置によれば、本発明のディフューザと同様の効果を奏することができる。 According to this multistage pump device, the same effect as the diffuser of the present invention can be obtained.
 また、多段ポンプ装置は、羽根車を回転させる動力源を、更に備えてもよい。 Moreover, the multistage pump device may further include a power source for rotating the impeller.
本実施形態の多段ポンプ装置を模式的に示す縦断面図である。It is a longitudinal section showing the multi stage pump device of this embodiment typically. 本実施形態のディフューザ周辺を拡大して示す模式図である。It is a schematic diagram which expands and shows the diffuser periphery of this embodiment. 外側ケース部を省略してディフューザの内側ケース部とディフューザ翼部とを示す模式図である。It is a schematic diagram which shows the inner case part and diffuser wing | blade part of a diffuser, omitting an outer case part. 多段ポンプの吐き出し量に対する羽根車の効率曲線を示す図である。It is a figure which shows the efficiency curve of an impeller with respect to the discharge amount of a multistage pump. 多段ポンプの吐き出し量に対するディフューザの効率曲線を示す図である。It is a figure which shows the efficiency curve of a diffuser with respect to the discharge amount of a multistage pump.
 以下、本願発明の一実施形態に係るディフューザ及び多段ポンプ装置を図面に基づいて説明する。以下の実施形態では、一例として、水中ポンプを備える深井戸水中モータポンプについて説明するが、本発明は、こうした例に限定されず種々の多段ポンプ装置およびディフューザに適用することができる。 Hereinafter, a diffuser and a multistage pump device according to an embodiment of the present invention will be described with reference to the drawings. In the following embodiments, a deep well submersible motor pump including a submersible pump will be described as an example, but the present invention is not limited to such an example and can be applied to various multistage pump devices and diffusers.
 図1は、本実施形態の多段ポンプを模式的に示す縦断面図である。図中、太線矢印は、流体の流れを模式的に示すものである。図1に示すように、多段ポンプ装置10は、動力源としてのモータ100と、モータ100の上部に取り付けられるポンプ部200とを備える。 FIG. 1 is a longitudinal sectional view schematically showing a multistage pump according to this embodiment. In the figure, bold arrows schematically show the flow of fluid. As shown in FIG. 1, the multistage pump device 10 includes a motor 100 as a power source and a pump unit 200 attached to the upper part of the motor 100.
 モータ100は、電気ケーブル102を介して図示しない外部電源に接続されている。モータ100は、その駆動軸104が、継手106を介してポンプ部200の主軸230に接続されている。本実施形態では、モータ100の駆動軸104およびポンプ部200の主軸230は、軸線(回転軸)Aw方向に伸びて同心に配置されている。モータ100は、ポンプ部200の主軸230を回転させることができるものであれば、如何なるものを用いてもよい。モータ100は、本発明の中核をなさないため、詳細な構成については説明を省略する。 The motor 100 is connected to an external power source (not shown) via an electric cable 102. The drive shaft 104 of the motor 100 is connected to the main shaft 230 of the pump unit 200 via the joint 106. In the present embodiment, the drive shaft 104 of the motor 100 and the main shaft 230 of the pump unit 200 extend in the axis (rotary shaft) Aw direction and are arranged concentrically. As long as the motor 100 can rotate the main shaft 230 of the pump unit 200, any motor 100 may be used. Since the motor 100 does not form the core of the present invention, the description of the detailed configuration is omitted.
 ポンプ部200は、吸込ケース210と、吐出ケース220と、主軸230と、羽根車240と、ディフューザ250と、を備える。 The pump unit 200 includes a suction case 210, a discharge case 220, a main shaft 230, an impeller 240, and a diffuser 250.
 吸込ケース210は、モータ100の上部に設けられ、ポンプ部200の最下段として配置される。吸込ケース210は、下部の組付部212とモータ100のケース108とがビス214により締結されて、モータ100に固定される。吸込ケース210は、略円筒状に形成され、流体を吸い込むための吸込口216が組付部212の上部に形成されている。吸込ケース210の上部の組付部218には、ディフューザ250の組付部252がビス253により締結されて、ディフューザ250が固定される。 The suction case 210 is provided on the upper part of the motor 100 and is arranged as the lowermost stage of the pump unit 200. The suction case 210 is fixed to the motor 100 by fastening a lower assembly portion 212 and the case 108 of the motor 100 with screws 214. The suction case 210 is formed in a substantially cylindrical shape, and a suction port 216 for sucking fluid is formed in the upper portion of the assembly portion 212. The assembly part 252 of the diffuser 250 is fastened to the assembly part 218 at the upper part of the suction case 210 with screws 253, and the diffuser 250 is fixed.
 吐出ケース220は、ディフューザ250の上部に設けられ、ポンプ部200の最上段として配置される。吐出ケース220は、下部の組付部222とディフューザ250の組付部254とがビス255により締結されて、ディフューザ250に固定される。吐出ケース220は、略円筒状に形成され、上部の組付部224が図示しない吐出配管に取り付けられる。吐出ケース220は、流体が逆流するのを抑制する逆止弁226を内部に備える。 The discharge case 220 is provided on the upper part of the diffuser 250 and is disposed as the uppermost stage of the pump unit 200. The discharge case 220 is fixed to the diffuser 250 by fastening a lower assembly part 222 and an assembly part 254 of the diffuser 250 with screws 255. The discharge case 220 is formed in a substantially cylindrical shape, and the upper assembly portion 224 is attached to a discharge pipe (not shown). The discharge case 220 includes a check valve 226 that prevents the fluid from flowing backward.
 主軸230は、モータ100に継手106を介して接続され、吸込ケース210およびディフューザ250の内部を挿通する。主軸230は、ディフューザ250の軸受スリーブ268によって軸支される。主軸230には、複数の羽根車240が取り付けられ、主軸230の回転に伴って複数の羽根車240が回転する。 The main shaft 230 is connected to the motor 100 through the joint 106 and is inserted through the suction case 210 and the diffuser 250. The main shaft 230 is supported by a bearing sleeve 268 of the diffuser 250. A plurality of impellers 240 are attached to the main shaft 230, and the plurality of impellers 240 rotate as the main shaft 230 rotates.
 羽根車240は、主軸230を挿入するための円筒状の挿入部と、挿入部の外周面に取り付けられた複数の羽根と、を有する。羽根車240は、主軸230と一体に回転し、複数の羽根により流体を上流(図中下方)から下流(図中上方)に圧送する。 The impeller 240 has a cylindrical insertion portion for inserting the main shaft 230 and a plurality of blades attached to the outer peripheral surface of the insertion portion. The impeller 240 rotates integrally with the main shaft 230 and pumps fluid from the upstream (lower in the figure) to the downstream (upper in the figure) by a plurality of blades.
 ディフューザ250は、金属または樹脂などにより形成され、羽根車240の回転軸(主軸230)と同心に配置されている。図2は、本実施形態のディフューザ周辺を拡大して示す模式図である。なお、図2は、軸線Awに沿った断面を示しているが、ディフューザ翼部280については、翼面に沿って1枚のディフューザ翼部280を示している。また、ディフューザ翼部280については、断面ではないが理解が容易となるように網掛けを付している。以下、軸線Awに沿った断面を「子午面」という。 The diffuser 250 is made of metal or resin, and is arranged concentrically with the rotating shaft (main shaft 230) of the impeller 240. FIG. 2 is an enlarged schematic view showing the periphery of the diffuser of the present embodiment. Note that FIG. 2 shows a cross section along the axis Aw, but the diffuser blade 280 shows one diffuser blade 280 along the blade surface. Further, the diffuser blade portion 280 is not a cross section, but is shaded so as to facilitate understanding. Hereinafter, a cross section along the axis Aw is referred to as a “meridian plane”.
 ディフューザ250は、この実施形態では、主軸230と、羽根車240とを収容し、流体の流路を画定する。ディフューザ250は、流体の逆流を防ぐために、羽根車240との間にライナリング258を備える。ディフューザ250は、上下に組付部252、254を有し、吸込ケース210および吐出ケース220との固定が可能である。また、ディフューザ250は、ディフューザ250と羽根車240との組を1段として、複数段を積層可能に形成されている(図1の例では、2段が積層されている)。 In this embodiment, the diffuser 250 accommodates the main shaft 230 and the impeller 240 and defines a fluid flow path. The diffuser 250 includes a liner ring 258 between the diffuser 250 and the impeller 240 in order to prevent backflow of fluid. The diffuser 250 has assembly parts 252 and 254 at the top and bottom, and can be fixed to the suction case 210 and the discharge case 220. Further, the diffuser 250 is formed so that a plurality of stages can be stacked with a pair of the diffuser 250 and the impeller 240 as one stage (in the example of FIG. 1, two stages are stacked).
 図3は、外側ケース部を省略してディフューザの内側ケース部とディフューザ翼部とを示す模式図である。なお、図3では、図2と対応するように、1枚のディフューザ翼部280の翼面に網掛けを付している。図2及び図3に示すように、ディフューザ250は、流路の内壁を画定する内側ケース部260と、流路の外壁を画定する外側ケース部270と、内側ケース部260と外側ケース部270とを接続する複数のディフューザ翼部280と、を備える。なお、内側ケース部260、外側ケース部270、およびディフューザ翼部280は、例えば金属の鋳造などにより一体に形成されてもよいし、別々に形成されて接続されてもよい。 FIG. 3 is a schematic diagram showing the inner case portion of the diffuser and the diffuser wing portion with the outer case portion omitted. In FIG. 3, the blade surface of one diffuser blade portion 280 is shaded so as to correspond to FIG. 2. As shown in FIGS. 2 and 3, the diffuser 250 includes an inner case part 260 that defines the inner wall of the flow path, an outer case part 270 that defines the outer wall of the flow path, an inner case part 260, and an outer case part 270. And a plurality of diffuser wings 280 for connecting the two. The inner case portion 260, the outer case portion 270, and the diffuser blade portion 280 may be integrally formed by, for example, metal casting, or may be separately formed and connected.
 内側ケース部260には、主軸230が挿入される軸受スリーブ268が設けられる(図1参照)。図1~図3に示すように、内側ケース部260は、上方(下流)に向かうほど径が小さくなる略円筒形状に形成されている。外側ケース部270は、内側ケース部260との間に流路が画定されるように、内側ケース部260の外郭に対応した形状の空間を内部に有する。つまり、外側ケース部270は、中空の形状に形成され、上方に向かうほど径が小さくなる略円筒形状に形成されている。内側ケース部260と外側ケース部270とは、互いに離間して配置されることにより、羽根車240から誘引される流体が通過する円筒状の流路Fcを画定する。 The inner case portion 260 is provided with a bearing sleeve 268 into which the main shaft 230 is inserted (see FIG. 1). As shown in FIGS. 1 to 3, the inner case portion 260 is formed in a substantially cylindrical shape whose diameter decreases toward the upper side (downstream). The outer case part 270 includes a space having a shape corresponding to the outline of the inner case part 260 so that a flow path is defined between the outer case part 270 and the inner case part 260. That is, the outer case portion 270 is formed in a hollow shape, and is formed in a substantially cylindrical shape whose diameter decreases toward the top. The inner case portion 260 and the outer case portion 270 are arranged apart from each other, thereby defining a cylindrical flow path Fc through which a fluid attracted from the impeller 240 passes.
 内側ケース部260と外側ケース部270とは、互いに離間した状態で複数(本実施形態では、7つ)のディフューザ翼部280によって接続されている。複数のディフューザ翼部280は、軸線Awに対して周方向に均等な位置関係で円筒状の流路Fcに配置され、それぞれ滑らかな曲面状の板面(翼面)を有する板状に形成されている。 The inner case portion 260 and the outer case portion 270 are connected to each other by a plurality of (seven in this embodiment) diffuser blade portions 280 in a state of being separated from each other. The plurality of diffuser blade portions 280 are disposed in the cylindrical flow path Fc with an equal positional relationship in the circumferential direction with respect to the axis Aw, and are each formed in a plate shape having a smooth curved plate surface (blade surface). ing.
 ディフューザ翼部280は、図2及び図3に示すように、周方向に回転しながら、内側ケース部260と外側ケース部270とにより画定される円筒状の流路Fcを翼面によって区画するように配置されている。ディフューザ翼部280は、下端部(流路の流入側の端部)では、板面が主軸230の軸方向と略垂直となり、上端部(流路の流出側の端部)では、板面が主軸230の軸方向と略並行となるように設けられている。これにより、ディフューザ翼部280は、内側ケース部260と外側ケース部270とにより画定される空間が複数の螺旋状の流路となるように区画する。 As shown in FIGS. 2 and 3, the diffuser blade portion 280 is configured to partition a cylindrical flow path Fc defined by the inner case portion 260 and the outer case portion 270 by the blade surface while rotating in the circumferential direction. Is arranged. The diffuser blade 280 has a plate surface substantially perpendicular to the axial direction of the main shaft 230 at the lower end (end on the inflow side of the flow path), and a plate surface at the upper end (end on the outflow side of the flow path). It is provided so as to be substantially parallel to the axial direction of the main shaft 230. Thereby, the diffuser wing | blade part 280 partitions so that the space demarcated by the inner side case part 260 and the outer side case part 270 may become a some spiral flow path.
 本実施形態では、ディフューザ翼部280は、翼角度βwが小さい変化量Δβwで変化するように構成されている。ここで、翼角度βwは、流体の流路に沿ったディフューザ翼部280の翼厚中心線Cdにおける接線と、当該接線に対する軸線Aw回りの周方向の接線Rdとのなす角度(°)である。また、本実施形態では、ディフューザ翼部280の厚さは略一定であり、翼厚の中心線Cdにおける接線は、翼面における接線と略同一となる。ただし、翼角度βwは、翼厚の中心線Cdに代えて、ディフューザ翼部280の上流側(図中、下側)または下流側(図中、上側)における翼面の接線と、軸線Aw回りの周方向の接線Rdとのなす角度(°)としてもよい。この翼角度βwは、内側ケース部260および外側ケース部270の子午面の位置Xc(mm)に応じて変化している(図中、位置Xc1に対する翼角度βw(Xc1)および位置Xc2に対する翼角度βw(Xc2)参照)。具体的には、翼角度βwは、ディフューザ250の入口付近(図中、下方)では小さく、出口付近(図中、上方)では大きくなっている。これにより、羽根車240から誘引された周方向の流れ成分が多く含まれる流体を整流して下流(図中、上方)へ案内することができる。そして、本実施形態のディフューザ翼部280は、子午面の位置Xcの単位変化量ΔXcに対する翼角度βwの変化量Δβwが、すべての領域において、次式(1)に示す関係を満たす。換言すれば、翼角度βwは、子午面位置Xcで微分した導関数がすべての領域において値2.4(°/mm)未満となっている。また、ディフューザ翼角度βwは、すべての領域において、90°より小さく形成される。これにより、ディフューザ250の出口から吐出される流体に意図的に旋回速度成分が残る。このように、翼角度βwを定めてディフューザ翼部280を設計することにより、子午面の長さを小さくしてもディフューザ250内の流れに剥離が生じるのを抑制することができる。また、2段目以降のディフューザ250に誘引される流体の流れを安定させることができる。これにより、特に2段目以降のディフューザ250においてエネルギ効率を向上させることができ、多段ポンプ装置10のエネルギ効率を向上することができる。
 Δβw<2.4・ΔXc   ・・・(1)
In the present embodiment, the diffuser blade portion 280 is configured so that the blade angle βw changes with a small change amount Δβw. Here, the blade angle βw is an angle (°) formed by a tangent at the blade thickness center line Cd of the diffuser blade 280 along the fluid flow path and a circumferential tangent Rd around the axis Aw with respect to the tangent. . In the present embodiment, the thickness of the diffuser blade 280 is substantially constant, and the tangent of the blade thickness at the center line Cd is substantially the same as the tangent at the blade surface. However, the blade angle βw is not the center line Cd of the blade thickness, but the tangent to the blade surface on the upstream side (lower side in the figure) or the downstream side (upper side in the figure) of the diffuser blade part 280 and the axis Aw. It is good also as an angle (degree) which the tangent line Rd of the circumferential direction makes. The blade angle βw varies depending on the meridian position Xc (mm) of the inner case portion 260 and the outer case portion 270 (in the drawing, the blade angle βw (Xc1) with respect to the position Xc1 and the blade angle with respect to the position Xc2). βw (Xc2) reference). Specifically, the blade angle βw is small near the entrance of the diffuser 250 (downward in the figure) and large near the exit (upward in the figure). As a result, the fluid containing a large amount of the circumferential flow component attracted from the impeller 240 can be rectified and guided downstream (upward in the figure). In the diffuser blade portion 280 of the present embodiment, the variation Δβw of the blade angle βw with respect to the unit variation ΔXc of the meridian plane position Xc satisfies the relationship expressed by the following expression (1) in all regions. In other words, the blade angle βw has a derivative that is differentiated at the meridional surface position Xc less than 2.4 (° / mm) in all regions. Further, the diffuser blade angle βw is formed smaller than 90 ° in all regions. Thereby, a swirl velocity component intentionally remains in the fluid discharged from the outlet of the diffuser 250. In this way, by designing the diffuser blade portion 280 by determining the blade angle βw, it is possible to suppress the separation in the flow in the diffuser 250 even if the length of the meridian surface is reduced. Moreover, the flow of the fluid attracted to the diffuser 250 after the second stage can be stabilized. Thereby, energy efficiency can be improved especially in the diffuser 250 after the 2nd stage, and the energy efficiency of the multistage pump apparatus 10 can be improved.
Δβw <2.4 · ΔXc (1)
 一般に、ディフューザ250は、出口側から吐出される流体の流れ成分に旋回速度成分ができるだけ含まれないようにディフューザ翼部280が設計される。このために、従来のディフューザ250は、ディフューザ翼部280の翼角度βwが90°より大きい部分を有すると共に、翼角度βwが大きい変化量Δβwで変化する。しかし、翼角度βwが90°より大きい部分を有したり大きい変化量Δβwで変化すると、ディフューザ250内の流れに剥離が生じやすく、特に2段目以降のディフューザ250においてエネルギ効率が低下することが分かった。このため、本実施形態では、すべての領域において式(1)の関係を満たすと共にディフューザ翼角度βwを90°より小さい角度とし、ディフューザ250の出口から吐出される流体に意図的に旋回速度成分が残るように設計している。これにより、ディフューザ250内の流れに剥離が生じるのを抑制できるとともに、2段目以降のディフューザ250に誘引される流体の流れを安定させることができ、多段ポンプ装置10のエネルギ効率を向上することができる。 Generally, in the diffuser 250, the diffuser blade 280 is designed so that the swirl velocity component is not included as much as possible in the flow component of the fluid discharged from the outlet side. For this reason, the conventional diffuser 250 has a portion where the blade angle βw of the diffuser blade portion 280 is larger than 90 °, and the blade angle βw changes with a large change amount Δβw. However, if the blade angle βw has a portion larger than 90 ° or changes with a large change amount Δβw, the flow in the diffuser 250 is likely to be peeled off, and the energy efficiency may decrease particularly in the diffuser 250 after the second stage. I understood. For this reason, in this embodiment, the relationship of the formula (1) is satisfied in all regions, the diffuser blade angle βw is set to an angle smaller than 90 °, and the swirl velocity component is intentionally added to the fluid discharged from the outlet of the diffuser 250. It is designed to remain. Thereby, it is possible to suppress the separation in the flow in the diffuser 250 and to stabilize the flow of the fluid attracted to the second and subsequent diffusers 250, thereby improving the energy efficiency of the multistage pump device 10. Can do.
 さらに、ディフューザ250は、外側ケース部270が画定する流路Fcの最大外径φDcと、ディフューザ翼部280の外周側の子午面翼長さLcとが次式(2)の関係を満たしている。また、ディフューザ250は、内側ケース部260が画定する流路Fcの最大内径φDhと、ディフューザ翼部280の内周側の子午面翼長さLhとが次式(3)の関係を満たしている。ここで、ディフューザ翼部280の外周側および内周側の子午面翼長さLc、Lhは、外側ケース部270および内側ケース部260の子午面におけるディフューザ翼部280が設けられている領域の長さである(図2参照)。さらに、この子午面翼長さLc、Lhは、内周側の子午面翼長さLhが外周側の子午面翼長さLc以下となっている(次式(4)の関係を満たしている)。こうした関係を満たすことにより、軸線Aw方向の長さが小さいディフューザ250とすることができ、式(1)の関係を示すことで、小型でエネルギ効率の高い多段ポンプ装置10を実現することができる。
  Lc/φDc<0.64   ・・・(2)
  Lh/φDh<0.63   ・・・(3)
  Lh≦Lc   ・・・(4)
Further, in the diffuser 250, the maximum outer diameter φDc of the flow path Fc defined by the outer case portion 270 and the meridional blade length Lc on the outer peripheral side of the diffuser blade portion 280 satisfy the relationship of the following equation (2). . In the diffuser 250, the maximum inner diameter φDh of the flow path Fc defined by the inner case portion 260 and the meridional blade length Lh on the inner peripheral side of the diffuser blade portion 280 satisfy the relationship of the following equation (3). . Here, the meridional surface blade lengths Lc and Lh on the outer peripheral side and inner peripheral side of the diffuser blade portion 280 are the lengths of the regions where the diffuser blade portion 280 is provided on the meridian surfaces of the outer case portion 270 and the inner case portion 260. (See FIG. 2). Further, the meridional blade lengths Lc and Lh are such that the meridional blade length Lh on the inner circumferential side is equal to or shorter than the meridian blade length Lc on the outer circumferential side (the relationship of the following expression (4) is satisfied). ). By satisfying such a relationship, the diffuser 250 having a small length in the axis Aw direction can be obtained, and by showing the relationship of the expression (1), the multistage pump device 10 having a small size and high energy efficiency can be realized. .
Lc / φDc <0.64 (2)
Lh / φDh <0.63 (3)
Lh ≦ Lc (4)
 そして、内側ケース部260の子午断面における外周面は、流路Fcの内径が最大(=φDh)となる位置よりも吐出し側に位置する部分において、軸線Awとなす角の最大値θoが比速度Nsに対して、次式(5)の関係を満たしている。ここで、比速度Nsは、ポンプ(モータ)の回転速度(min-1)をNp、吐出し量(m/min)をQp、全揚程(m)をHpとして、次式(6)で表される。こうした関係を満たすことにより、軸線Aw方向の長さが小さいディフューザ250とすることができ、式(1)の関係を示すことで、小型でエネルギ効率の高い多段ポンプ装置10を実現することができる。なお、本実施形態では、内側ケース部260の外周面は、流出側端部(図中、上側端部)において、軸線Awとのなす角が最大(=θo)となっている(図2参照)。ただし、こうした例に限定されず、内側ケース部260の外周面は、流出側端部ではない場所において、軸線Awとのなす角が最大となってもよい。
  θo>1500・Ns-0.6   ・・・(5)
  Ns=(Np・Qp1/2)/Hp3/4   ・・・(6)
The outer peripheral surface of the inner case portion 260 in the meridional section has a ratio of the maximum value θo of the angle formed with the axis Aw in the portion located on the discharge side from the position where the inner diameter of the flow path Fc is maximum (= φDh). The relationship of the following formula (5) is satisfied with respect to the speed Ns. Here, the specific speed Ns is expressed by the following equation (6), where Np is the rotational speed (min −1 ) of the pump (motor), Qp is the discharge amount (m 3 / min), and Hp is the total head (m). expressed. By satisfying such a relationship, the diffuser 250 having a small length in the axis Aw direction can be obtained, and by showing the relationship of the expression (1), the multistage pump device 10 having a small size and high energy efficiency can be realized. . In the present embodiment, the outer peripheral surface of the inner case portion 260 has the maximum angle (= θo) formed with the axis Aw at the outflow side end (upper end in the drawing) (see FIG. 2). ). However, the present invention is not limited to this example, and the outer surface of the inner case portion 260 may have a maximum angle with the axis Aw at a place that is not the outflow side end.
θo> 1500 · Ns −0.6 (5)
Ns = (Np · Qp 1/2 ) / Hp 3/4 (6)
 図4は、多段ポンプの吐き出し量に対する羽根車の効率曲線を示す図であり、図5は、多段ポンプの吐き出し量に対するディフューザの効率曲線を示す図である。ここで、図4および図5中の太い実線は、上記した式(1)~(5)の関係をすべて満たす本実施形態の多段ポンプ装置10について1段目の羽根車240およびディフューザ250を示すグラフである。また、図中の太い破線は、本実施形態の多段ポンプ装置10について2段目の羽根車240およびディフューザ250を示すグラフである。図中の細い実線は、上記した式(1)~(5)の関係をいずれも満たさない比較例の多段ポンプ装置について1段目の羽根車およびディフューザを示すグラフである。また、図中の細い破線は、比較例の多段ポンプ装置について2段目の羽根車およびディフューザを示すグラフである。図4および図5に示すように、多段ポンプ装置10は、特定の吐き出し量を定格Mdとして、最も効率がよくなるようにディフューザ翼部280の角度が設計されている。そして、吐き出し量が定格Mdから離れると流体の流れとディフューザ翼部280の角度が合わなくなってエネルギ効率が低下する。 FIG. 4 is a diagram showing the efficiency curve of the impeller with respect to the discharge amount of the multistage pump, and FIG. 5 is a diagram showing the efficiency curve of the diffuser with respect to the discharge amount of the multistage pump. Here, the thick solid line in FIG. 4 and FIG. 5 shows the first stage impeller 240 and the diffuser 250 in the multistage pump device 10 of the present embodiment that satisfies all the relationships of the above formulas (1) to (5). It is a graph. Moreover, the thick broken line in a figure is a graph which shows the 2nd stage | wheel impeller 240 and the diffuser 250 about the multistage pump apparatus 10 of this embodiment. The thin solid lines in the figure are graphs showing the first stage impeller and the diffuser in the multistage pump device of the comparative example that does not satisfy any of the relationships of the above formulas (1) to (5). Moreover, the thin broken line in a figure is a graph which shows the 2nd stage | wheel impeller and diffuser about the multistage pump apparatus of a comparative example. As shown in FIGS. 4 and 5, in the multistage pump device 10, the angle of the diffuser blade 280 is designed so as to be most efficient with a specific discharge amount as the rated Md. When the discharge amount departs from the rated Md, the fluid flow and the angle of the diffuser blade 280 are not matched and energy efficiency is lowered.
 一般に、ディフューザ250は、同一の物が複数段重ねられ、そのエネルギ効率については1段のディフューザ250を対象として最も効率がよくなるように設計される。しかし、この場合には、図4および図5の比較例に示すように、1段目の羽根車およびディフューザについては高いエネルギ効率を実現できるが(図中、細い実線参照)、2段目の羽根車およびディフューザについてはエネルギ効率が低下してしまう(図中、細い破線参照)。これは、1段目の羽根車およびディフューザを通過した流体の流れに乱れが含まれ、この流れの乱れが2段目以降の羽根車およびディフューザに影響するためである。特に、ポンプの吐き出し量が大きいときにはディフューザ内の流れに剥離が生じ、羽根車およびディフューザのエネルギ効率の低下が顕著になる。また、ディフューザの子午面が短いほど、つまりディフューザの軸線Aw方向の長さが短いほど、ディフューザ内の流れに乱れが生じやすく、2段目以降の羽根車およびディフューザのエネルギ効率が低下する。 Generally, the diffuser 250 is designed so that the same object is stacked in a plurality of stages, and the energy efficiency of the diffuser 250 is designed to be most efficient for the one-stage diffuser 250. However, in this case, as shown in the comparative examples of FIGS. 4 and 5, high energy efficiency can be achieved for the first stage impeller and the diffuser (see the thin solid line in the figure). The energy efficiency of the impeller and diffuser is reduced (see the thin broken line in the figure). This is because the flow of fluid that has passed through the first stage impeller and the diffuser includes turbulence, and this turbulence affects the second stage and subsequent impellers and the diffuser. In particular, when the pump discharge amount is large, separation occurs in the flow in the diffuser, and the energy efficiency of the impeller and diffuser is significantly reduced. Further, the shorter the meridian surface of the diffuser, that is, the shorter the length of the diffuser in the axis Aw direction, the more easily the flow in the diffuser is disturbed, and the energy efficiency of the second and subsequent impellers and the diffuser decreases.
 一方、本実施形態の多段ポンプ装置10では、上記した式(1)~(5)の関係を満たすようにディフューザ250が設計されている。これにより、図4および図5中の太い実線および破線に示すように、軸線Aw方向の長さが小さいディフューザ250において2段目の羽根車240およびディフューザ250のエネルギ効率を高くすることができる。これは、ディフューザ250の出口から吐出される流体に意図的に旋回速度成分が残されることに基づく。これにより、2段目以降の羽根車240およびディフューザ250に誘引される流体の流れを安定させることができ、比較例の多段ポンプ装置に比べてエネルギ効率を向上させることができる。なお、吐き出し量に対するエネルギ効率は、ディフューザ250と羽根車240との段数を変更した場合にも、図4及び図5に示す関係と同様の結果が得られた。また、ディフューザ250と羽根車240との段数を3段以上にした場合、3段目以降の羽根車240およびディフューザ250の効率曲線については、図4及び図5に示す2段目の効率曲線(図中、太い破線参照)と同様であった。 On the other hand, in the multistage pump device 10 of the present embodiment, the diffuser 250 is designed so as to satisfy the relationships of the above-described formulas (1) to (5). Thereby, as shown by the thick solid line and the broken line in FIGS. 4 and 5, the energy efficiency of the second stage impeller 240 and the diffuser 250 can be increased in the diffuser 250 having a small length in the axis Aw direction. This is based on intentionally leaving a swirl velocity component in the fluid discharged from the outlet of the diffuser 250. Thereby, the flow of the fluid attracted to the impeller 240 and the diffuser 250 after the second stage can be stabilized, and the energy efficiency can be improved as compared with the multistage pump device of the comparative example. In addition, the energy efficiency with respect to the discharge amount was similar to the relationship shown in FIGS. 4 and 5 even when the number of stages of the diffuser 250 and the impeller 240 was changed. Further, when the number of stages of the diffuser 250 and the impeller 240 is three or more, the efficiency curves of the third and subsequent impellers 240 and the diffuser 250 are the efficiency curves of the second stage shown in FIGS. It was the same as the thick broken line in the figure).
 以上説明した本実施形態の多段ポンプ装置10では、複数のディフューザ翼部280の翼角度βwが、外周側または内周側における子午面位置の単位変化量ΔXc(mm)に対して、すべての領域において、式(1)の関係を満たす変化量Δβwで変化する。また、ディフューザ翼部280の翼角度βwは、すべての領域において、90°より小さく形成される。これにより、ディフューザ250の出口流れに旋回速度成分が残り、ポンプ流量によらず各ディフューザ250の出口流れを安定させることができ、小型でエネルギ効率の高い多段ポンプ装置10を実現することができる。 In the multistage pump device 10 of the present embodiment described above, the blade angle βw of the plurality of diffuser blade portions 280 is in all regions with respect to the unit variation ΔXc (mm) of the meridional surface position on the outer peripheral side or the inner peripheral side. In FIG. 5, the amount of change Δβw that satisfies the relationship of the expression (1) changes. Further, the blade angle βw of the diffuser blade portion 280 is formed to be smaller than 90 ° in all regions. As a result, the swirl velocity component remains in the outlet flow of the diffuser 250, the outlet flow of each diffuser 250 can be stabilized regardless of the pump flow rate, and the multistage pump device 10 having a small size and high energy efficiency can be realized.
 また、外側ケース部270および内側ケース部260が画定する流路の最大外径φDc及び最大内径φDhと、ディフューザ翼部280の外周側および内周側の子午面翼長さLc、Lhとが式(2)~(4)に示す関係を満たすものとした。さらに、内側ケース部260の流出側端部における外周面は、軸線Awとなす角θoが比速度Nsに対して、式(5)の関係を満たすものとした。しかし、ディフューザ翼部280は、こうした例に限定されず、上記した関係のうち、式(2)~(5)は、少なくとも1つを満たすものとしてもよい。 Further, the maximum outer diameter φDc and the maximum inner diameter φDh of the flow path defined by the outer case portion 270 and the inner case portion 260 and the meridian blade lengths Lc, Lh on the outer peripheral side and inner peripheral side of the diffuser blade portion 280 are expressed by the formulas. The relationships shown in (2) to (4) were satisfied. Furthermore, the outer peripheral surface at the outflow side end of the inner case portion 260 is such that the angle θo formed with the axis Aw satisfies the relationship of the formula (5) with respect to the specific speed Ns. However, the diffuser blade portion 280 is not limited to such an example, and among the above relationships, the expressions (2) to (5) may satisfy at least one.
 上記した多段ポンプ装置10では、モータ100が下方に設置され、その上方にポンプ部200が設置されるものとしたが、ポンプ部200の上方にモータ100が設置されてもよい。また、ポンプ部200は、図1に示すように縦置きに限定されるものではなく、横置きなどとしてもよい。また、多段ポンプ装置10は、水中で使用してもよいし、陸上で使用してもよい。 In the multistage pump device 10 described above, the motor 100 is installed below, and the pump unit 200 is installed above the motor 100. However, the motor 100 may be installed above the pump unit 200. Further, the pump unit 200 is not limited to the vertical placement as shown in FIG. Moreover, the multistage pump device 10 may be used in water or on land.
 上記したディフューザ250では、内側ケース部260と外側ケース部270との間に、7つのディフューザ翼部280が設けられるものとしたが、ディフューザ翼部280は、1つ~6つ、又は8つ以上であってもよい。 In the diffuser 250 described above, seven diffuser blade portions 280 are provided between the inner case portion 260 and the outer case portion 270. However, one to six, or more than eight diffuser blade portions 280 are provided. It may be.
 上記したディフューザ250は、羽根車240を収容するものとしたが、ディフューザ250とは別に羽根車240を収容するケースを備えてもよい。 Although the above-described diffuser 250 accommodates the impeller 240, a case for accommodating the impeller 240 may be provided separately from the diffuser 250.
 上記した多段ポンプ装置10では、2段のディフューザ250と羽根車240とが設けられるものとしたが、ディフューザ250と羽根車240とは、3段以上が設けられてもよい。 In the multistage pump device 10 described above, the two-stage diffuser 250 and the impeller 240 are provided. However, the diffuser 250 and the impeller 240 may be provided with three or more stages.
 以上、本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、実施形態および変形例の任意の組み合わせが可能であり、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。 Although the embodiments of the present invention have been described above, the above-described embodiments of the present invention are for facilitating understanding of the present invention and are not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and the present invention includes the equivalents thereof. In addition, any combination of the embodiment and the modified example is possible within a range where at least a part of the above-described problems can be solved or a range where at least a part of the effect can be achieved, and is described in the claims and the specification. Any combination or omission of each component is possible.
 本願は、2016年3月29日出願の日本特許出願番号第2016-066008号に基づく優先権を主張する。日本特許出願番号第2016-066008号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に援用される。特開平6-323291号公報(特許文献1)の明細書、特許請求の範囲、図面及び要約書を含む全ての開示は、参照により全体として本願に援用される。 This application claims priority based on Japanese Patent Application No. 2016-066008 filed on Mar. 29, 2016. The entire disclosure including the specification, claims, drawings and abstract of Japanese Patent Application No. 2016-066008 is incorporated herein by reference in its entirety. The entire disclosure including the specification, claims, drawings, and abstract of JP-A-6-323291 is incorporated herein by reference in its entirety.
 10 多段ポンプ装置、100 モータ、102 電気ケーブル、104 駆動軸、106 継手、108 ケース、200 ポンプ部、210 吸込ケース、212 組付部、214 ビス、216 吸込口、218 組付部、220 吐出ケース、222 組付部、224 組付部、226 逆止弁、230 主軸、240 羽根車、250 ディフューザ、252 組付部、253 ビス、254 組付部、255 ビス、258 ライナリング、260 内側ケース部、268 軸受スリーブ、270 外側ケース部、280 ディフューザ翼部、Aw 軸線、βw ディフューザ翼角度、Rd 周方向の接線、Cd 中心線、Fc 流路、Xc 子午面位置、φDc 最大外径、φDh 最大内径、Ns 比速度、Dh 最大内径φ。 10 Multistage pump device, 100 motor, 102 electrical cable, 104 drive shaft, 106 joint, 108 case, 200 pump part, 210 suction case, 212 assembly part, 214 screw, 216 suction port, 218 assembly part, 220 discharge case , 222 assembly part, 224 assembly part, 226 check valve, 230 main shaft, 240 impeller, 250 diffuser, 252 assembly part, 253 screw, 254 assembly part, 255 screw, 258 liner ring, 260 inner case part 268 bearing sleeve, 270 outer case, 280 diffuser blade, Aw axis, βw diffuser blade angle, Rd circumferential tangent, Cd center line, Fc flow path, Xc meridian position, φDc maximum outer diameter, φDh maximum inner diameter , Ns specific speed, Dh maximum inner diameter .

Claims (7)

  1.  多段ポンプに用いられ、回転軸回りに回転する羽根車と同心上に配置されて前記羽根車の回転に伴って誘引される流体を案内するディフューザであって、
     流体の流入側から流出側に向けて径が細くなるように円筒状の流路を画定するケース部と、
     前記円筒状の流路に複数配置され、前記円筒状の流路を螺旋状に区画する複数のディフューザ翼部と、
     を備え、
     前記複数のディフューザ翼部は、前記ケース部の任意の子午面位置において、前記ディフューザ翼部の翼面接線方向と前記回転軸に対する周方向とのなす角度であるディフューザ翼角度βw(°)が、前記子午面位置の単位変化量ΔXc(mm)に対して、
     Δβw<2.4・ΔXc
     の関係を満たす変化量Δβwで変化し、
     前記ディフューザ翼角度βwは、すべての領域において、90°より小さい、
     ディフューザ。
    A diffuser that is used in a multistage pump, is arranged concentrically with an impeller that rotates about a rotation axis, and guides a fluid that is attracted as the impeller rotates,
    A case portion that defines a cylindrical flow path so that the diameter decreases from the fluid inflow side to the outflow side;
    A plurality of diffuser blades arranged in a plurality of the cylindrical flow paths, and spirally dividing the cylindrical flow path;
    With
    The plurality of diffuser blades have a diffuser blade angle βw (°) that is an angle formed between a blade surface tangential direction of the diffuser blade and a circumferential direction with respect to the rotation axis at an arbitrary meridional surface position of the case portion. For the unit change ΔXc (mm) of the meridional surface position,
    Δβw <2.4 · ΔXc
    Changes with the amount of change Δβw that satisfies the relationship
    The diffuser blade angle βw is less than 90 ° in all regions,
    Diffuser.
  2.  前記ケース部が画定する流路の最大外径φDcと、前記ディフューザ翼部の外周側の子午面翼長さLcとは、
     Lc/φDc<0.64
     の関係を満たす、
     請求項1に記載のディフューザ。
    The maximum outer diameter φDc of the flow path defined by the case part and the meridional wing length Lc on the outer peripheral side of the diffuser wing part are:
    Lc / φDc <0.64
    Satisfy the relationship
    The diffuser according to claim 1.
  3.  前記ケース部が画定する流路の最大内径φDhと、前記ディフューザ翼部の内周側の子午面翼長さLhとは、
     Lh/φDh<0.63
     の関係を満たす、
     請求項1又は2に記載のディフューザ。
    The maximum inner diameter φDh of the flow path defined by the case portion and the meridional blade length Lh on the inner peripheral side of the diffuser blade portion are:
    Lh / φDh <0.63
    Satisfy the relationship
    The diffuser according to claim 1 or 2.
  4.  前記ディフューザ翼部は、内周側の子午面翼長さLhが外周側の子午面翼長さLc以下である、
     請求項1から3の何れか1項に記載のディフューザ。
    The diffuser wing portion has an inner meridian wing length Lh that is equal to or less than an outer meridian wing length Lc.
    The diffuser according to any one of claims 1 to 3.
  5.  前記ケース部の流出側端部における内周側の壁面は、前記流路の内径が最大となる位置よりも下流側において、前記回転軸となす角の最大値θo(°)が、ポンプの回転速度(min-1)をNp、吐出し量(m/min)をQp、全揚程(m)をHpとして、Ns=(Np・Qp1/2)/Hp3/4で表される比速度Nsに対して、
     θo>1500・Ns-0.6
     の関係を満たす、
     請求項1から4の何れか1項に記載のディフューザ。
    The wall surface on the inner peripheral side at the outflow side end of the case portion has a maximum angle θo (°) with respect to the rotation axis on the downstream side of the position where the inner diameter of the flow path is maximized. A ratio expressed as Ns = (Np · Qp 1/2 ) / Hp 3/4 where Np is the speed (min −1 ), Qp is the discharge amount (m 3 / min), and Hp is the total head (m). For speed Ns
    θo> 1500 · Ns −0.6
    Satisfy the relationship
    The diffuser according to any one of claims 1 to 4.
  6.  請求項1から5の何れか1項に記載のディフューザと、
     前記ディフューザと同心円状に配置され、前記ディフューザに流体を誘引する羽根車と、
     を複数段備える多段ポンプ装置。
    A diffuser according to any one of claims 1 to 5;
    An impeller arranged concentrically with the diffuser and attracting fluid to the diffuser;
    A multistage pump device comprising a plurality of stages.
  7.  前記羽根車を回転させる動力源を更に備える、
     請求項6に記載の多段ポンプ装置。
    A power source for rotating the impeller;
    The multistage pump device according to claim 6.
PCT/JP2017/012812 2016-03-29 2017-03-29 Diffuser and multistage pump WO2017170640A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780014161.8A CN108700078B (en) 2016-03-29 2017-03-29 Diffuser and multistage pump device
BR112018069611-0A BR112018069611B1 (en) 2016-03-29 2017-03-29 DIFFUSER AND MULTISTAGE PUMP DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-066008 2016-03-29
JP2016066008A JP6712159B2 (en) 2016-03-29 2016-03-29 Diffuser and multi-stage pump device

Publications (1)

Publication Number Publication Date
WO2017170640A1 true WO2017170640A1 (en) 2017-10-05

Family

ID=59964877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/012812 WO2017170640A1 (en) 2016-03-29 2017-03-29 Diffuser and multistage pump

Country Status (5)

Country Link
JP (1) JP6712159B2 (en)
CN (1) CN108700078B (en)
BR (1) BR112018069611B1 (en)
TW (1) TWI716571B (en)
WO (1) WO2017170640A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180347584A1 (en) * 2017-06-06 2018-12-06 Elliott Company Extended Sculpted Twisted Return Channel Vane Arrangement
CN114688045A (en) * 2020-12-25 2022-07-01 广东美的白色家电技术创新中心有限公司 Fan assembly and dust collector

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11181123B2 (en) * 2019-03-22 2021-11-23 Apergy Esp Systems, Llc Downhole centrifugal pump diffuser with protuberant vanes
KR102573264B1 (en) * 2021-05-24 2023-09-01 한국생산기술연구원 Multi-stage centrifugal pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323291A (en) * 1993-05-17 1994-11-22 Ebara Corp Multistage pump
JP2002513117A (en) * 1998-04-24 2002-05-08 株式会社荏原製作所 Mixed flow pump
CN103591051A (en) * 2013-11-07 2014-02-19 江苏大学 Space guide blade with auxiliary vanes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109602B2 (en) * 2011-05-13 2015-08-18 Baker Hughes Incorporated Diffuser bump vane profile
KR20130060778A (en) * 2011-11-30 2013-06-10 에스티엑스중공업 주식회사 Diffuser pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323291A (en) * 1993-05-17 1994-11-22 Ebara Corp Multistage pump
JP2002513117A (en) * 1998-04-24 2002-05-08 株式会社荏原製作所 Mixed flow pump
CN103591051A (en) * 2013-11-07 2014-02-19 江苏大学 Space guide blade with auxiliary vanes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180347584A1 (en) * 2017-06-06 2018-12-06 Elliott Company Extended Sculpted Twisted Return Channel Vane Arrangement
US10760587B2 (en) * 2017-06-06 2020-09-01 Elliott Company Extended sculpted twisted return channel vane arrangement
CN114688045A (en) * 2020-12-25 2022-07-01 广东美的白色家电技术创新中心有限公司 Fan assembly and dust collector

Also Published As

Publication number Publication date
CN108700078B (en) 2020-10-27
BR112018069611A2 (en) 2019-01-29
CN108700078A (en) 2018-10-23
TWI716571B (en) 2021-01-21
JP2017180193A (en) 2017-10-05
BR112018069611B1 (en) 2023-11-07
TW201738462A (en) 2017-11-01
JP6712159B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2017170640A1 (en) Diffuser and multistage pump
US9719523B2 (en) Apparatus, system and method for pumping gaseous fluid
US8801360B2 (en) Centrifugal pump with thrust balance holes in diffuser
US6854517B2 (en) Electric submersible pump with specialized geometry for pumping viscous crude oil
US10371154B2 (en) Apparatus, system and method for pumping gaseous fluid
CN110662881B (en) Diverter system and apparatus for an electrical submersible gas separator
RU2591754C2 (en) Blade profile diffuser with local bulge
WO2015119140A1 (en) Diaphragm and centrifugal rotating machine
JP4951418B2 (en) Multistage centrifugal pump
JP2006291917A (en) Impeller for centrifugal pump and centrifugal pump having the same
TWI324221B (en)
JP4713066B2 (en) Impeller and sewage treatment pump equipped therewith
WO2019176426A1 (en) Centrifugal pump
CN107965473B (en) Diffuser for a fluid compression device comprising at least one blade with an opening
KR102582061B1 (en) multistage centrifugal fluid machine
JP2018091317A (en) Multi-stage pump
WO2010007780A1 (en) Centrifugal pump impeller and centrifugal pump
JP2007239674A (en) Impeller and centrifugal pump
JP2009144531A (en) Centrifugal pump impeller and centrifugal pump
JP4731122B2 (en) Liquid pump
JP2016148306A (en) Guide body and pump device
JP6269447B2 (en) Centrifugal pump
CA2938192A1 (en) Horizontal pumping system with primary stage assembly and separate npsh stage assembly
JP6700893B2 (en) Impeller, rotating machine
KR20230081030A (en) Screw type noise reduction air circulator

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018069611

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775177

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018069611

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180925

122 Ep: pct application non-entry in european phase

Ref document number: 17775177

Country of ref document: EP

Kind code of ref document: A1