WO2017160097A2 - Frozen fat decomposition apparatus and control method therefor - Google Patents

Frozen fat decomposition apparatus and control method therefor Download PDF

Info

Publication number
WO2017160097A2
WO2017160097A2 PCT/KR2017/002840 KR2017002840W WO2017160097A2 WO 2017160097 A2 WO2017160097 A2 WO 2017160097A2 KR 2017002840 W KR2017002840 W KR 2017002840W WO 2017160097 A2 WO2017160097 A2 WO 2017160097A2
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric element
temperature
cooling
cooling unit
electromotive force
Prior art date
Application number
PCT/KR2017/002840
Other languages
French (fr)
Korean (ko)
Other versions
WO2017160097A3 (en
Inventor
정성재
Original Assignee
(주)클래시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)클래시스 filed Critical (주)클래시스
Publication of WO2017160097A2 publication Critical patent/WO2017160097A2/en
Publication of WO2017160097A3 publication Critical patent/WO2017160097A3/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body

Definitions

  • the present invention relates to a lipolysis device, and more particularly, to a freezing lipolysis device for decomposing fat through cooling and a control method thereof.
  • Obesity is known to cause illness. There are many causes of obesity, but the most influential factor is excess fat in your body. As this fat leads to obesity, the liver, blood vessels, blood is accumulated in the liver, such as symptoms of fatty liver, arteriosclerosis, hyperlipidemia.
  • the non-invasive method of reducing the subcutaneous fat layer or fat tissue introduced to date is to apply heat to the subcutaneous lipid-rich cell region by using radiofrequency rays and light rays. Another method is to induce fat cell necrosis by direct cooling, which selectively destroys fat cells without damaging the epidermis or nerves, ie, apoptosis. There is this. This is called cryolipolysis.
  • the problem to be solved by the present invention is to provide a frozen lipolysis device that can destroy only fat cells through direct cooling without damaging the skin.
  • thermoelectric element which is in contact with the skin of the subject, one surface is attached to the cooling unit to cool the cooling unit, attached to the other surface of the thermoelectric element And a heat exchanger for cooling the heat generated by the thermoelectric element, and a controller configured to calculate a temperature of the cooling unit based on the counter electromotive force generated by the thermoelectric element.
  • the heat exchange part may circulate a cooling water for cooling the thermoelectric element.
  • the controller may be configured to measure a voltage in which the counter electromotive force and a driving voltage for driving the thermoelectric element are mixed, measure a temperature of the coolant, and measure the measured voltage based on a correlation between the driving voltage and the counter electromotive force.
  • the counter electromotive force is calculated, the temperature of the other surface of the thermoelectric element is calculated using the measured temperature of the cooling water, and the temperature of the one surface of the thermoelectric element is calculated using the calculated back electromotive force and the temperature of the other surface of the thermoelectric element. It may include a calculation unit for calculating.
  • the calculation unit may calculate the temperature of the cooling unit by correcting the calculated temperature of one surface of the thermoelectric element through a predetermined algorithm.
  • the predetermined algorithm may have a variable amount of driving energy of the thermoelectric element or a separation distance between one surface of the thermoelectric element and the skin of the subject.
  • the controller may further include a driver configured to control a driving voltage for driving the thermoelectric element based on the calculated temperature of the cooling unit and a target temperature of the cooling unit.
  • the cooling unit in contact with the skin of the subject the thermoelectric element is attached to the cooling unit to cool the cooling unit and the other surface of the thermoelectric element is attached to the thermoelectric element
  • the control method of the cryofat decomposition apparatus including a heat exchanger for cooling the generated heat, the method comprising measuring a voltage mixed with the back electromotive force generated in the thermoelectric element and a driving voltage for driving the thermoelectric element, circulating the heat exchange unit Measuring a temperature of the cooling water for cooling the heat generated by the thermoelectric element, calculating the counter electromotive force using the measured voltage based on a correlation between the driving voltage and the counter electromotive force, and calculating the temperature of the measured cooling water. Calculating a temperature of the other surface of the thermoelectric element, and calculating the inverse And a step of calculating a temperature of the thermal element surface by using the electric power and the calculated temperature of the thermoelectric element other surface.
  • the method may further include calculating a temperature of the cooling unit by correcting the calculated temperature of one surface of the thermoelectric element through a predetermined algorithm.
  • the method may further include controlling a driving voltage for driving the thermoelectric element based on the corrected temperature of the cooling unit and a target temperature of the cooling unit.
  • the frozen lipolysis device according to an embodiment of the present invention, it is possible to eliminate obesity by destroying fat cells without damaging the skin.
  • FIG. 1 is a schematic diagram of a frozen fat decomposing device according to an embodiment of the present invention.
  • FIG. 2 is a view illustrating a state in which the skin of the treatment site is inhaled in the cooling cup of the cryolipolysis device shown in FIG.
  • FIG. 3 is a view showing a detailed configuration of the cryofat decomposition device shown in FIG.
  • FIG. 4 is a flowchart provided to explain the operation of the cryolipolysis device shown in FIG. 1.
  • cooling cup 220 thermoelectric element
  • FIG. 1 is a schematic diagram of a cryolipolysis device according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating a state in which the skin of a treatment site is inhaled in a cooling cup of the cryolipolysis device shown in FIG. 1.
  • the cryofat decomposition apparatus includes a main body 100, the handpiece 200 and a cable 300 connecting them.
  • the cable 300 includes a water supply pipe, a return pipe, a signal line, a suction pipe, and the like, and connects the main body 100 to the handpiece 200.
  • the treatment area is adsorbed with the cooling cup 210 constituting the handpiece 200 and cooled to a predetermined temperature to destroy the subcutaneous fat.
  • a cryoprotectant may be applied to the treatment area of the subject in advance, and a pad or a film may be attached to maintain adsorption and maintain adsorption.
  • the main body 100 pulls the skin of the treatment site into the cooling cup 210 by the suction force through the suction tube, and the thermoelectric element attached to the cooling cup 210.
  • a driving voltage is applied to (not shown) to cool the thermoelectric element so as to destroy the fat at the treatment site.
  • the main body 100 may supply cooling water to the handpiece 200 through a water supply pipe, and return the cooling water circulated through the handpiece 200 through a return pipe.
  • the main body 100 may control the cooling cup 210 to a target temperature by calculating the temperature of the cooling cup 210 based on the counter electromotive force generated by the thermoelectric element mounted on the handpiece 200. To this end, the main body 100 may measure a voltage signal in which the counter electromotive force of the thermoelectric element and the driving voltage of the thermoelectric element are mixed from the handpiece 200 through the signal line embedded in the cable 300.
  • FIG. 3 is a view showing a detailed configuration of the cryofat decomposition device shown in FIG.
  • the body 100 includes an LCD 110, a controller 120, a pressure sensor 130, a tank 140, a cooling system 150, a valve 160, and a suction pump 170. can do.
  • the LCD 110 performs a function of displaying an operating state of the cryofat decomposing device.
  • the LCD 110 may be installed together with an input means such as a touch panel (not shown) to implement an operation command from a user.
  • the suction pump 170 for generating a suction force for adsorbing the treatment site to the cooling cup 210, the valve 160, the tank 140 is connected through the suction pipe, the suction pipe through the valve 140 is branched While being connected to the pressure sensor 130.
  • the pressure sensor 130 detects the pressure of the tank 140 and transmits the pressure to the control unit 120.
  • the tank 140 stores the cryoprotectant sucked through the suction pipe and buffers the pressure.
  • the suction pump 170 performs a function of sucking air existing between the cooling cup 210 and the treatment site through the suction pipe.
  • the valve 160 opens and closes through a suction pipe connecting the suction pump 170 and the tank 140.
  • the controller 120 controls the operation of the suction pump 170 and the valve 160 based on the pressure sensed by the pressure sensor 130 to generate an appropriate suction force in the cooling cup 210.
  • the cooling system 150 serves to supply and return cooling water to the handpiece 200.
  • Cooling water supplied from the cooling system 150 circulates inside the heat exchanger 230 of the handpiece 200 to cool the heat generated by the thermoelectric element 220 by water cooling.
  • the handpiece 200 may include a cooling cup 210, a thermoelectric element 220, and a heat exchanger 230.
  • the cooling cup 210 is in the state attached to the treatment site of the subject, when the air inside the suction through the suction tube to the tank 140 to adsorb the treatment site. And the cooling cup 210 may be cooled to a predetermined temperature through the cooling surface of the thermoelectric element 220 to destroy the subcutaneous fat of the treatment site.
  • thermoelectric element 220 is implemented as a Peltier effect device, the cooling surface is attached to the cooling cup 210, the heating surface is attached to the heat exchanger 230.
  • thermoelectric element 220 When the driving voltage is applied from the main body 100, the thermoelectric element 220 generates an endothermic phenomenon on the cooling surface to cool the cooling cup 210.
  • the heat generating surface of the thermoelectric element 220 may be cooled by cooling water circulating in the heat exchanger 230.
  • the controller 120 may calculate the temperature of the cooling cup 210 based on the counter electromotive force generated by the thermoelectric element, and control the cooling cup 210 to a target temperature.
  • thermoelectric element such as a Peltier element
  • a thermoelectric element generally has the following characteristics.
  • V a * (Th-Tc)
  • V is the counter electromotive force generated in the thermoelectric element
  • a is the temperature difference-electromotive force proportional constant provided by the thermoelectric element manufacturer
  • Th is the temperature of the heating surface
  • Tc is the temperature of the cooling surface.
  • the detector 121 may measure the voltage Vo through a signal line connected to the thermoelectric element 220.
  • the signal line is composed of two lines (GND, Signal).
  • the signal line can measure the voltage Vo from the thermoelectric element 220 through the signal line, and the driving unit 125 can also measure the thermoelectric element 220 through the signal line.
  • To drive voltage V1. Therefore, the voltage Vo that appears in the signal line is a mixture of the driving voltage V1 for driving the thermoelectric element 220 and the counter electromotive force V issued by the thermoelectric element 220.
  • the detector 121 may measure or receive a temperature Tw of the coolant through the cooling system 150.
  • the calculator 123 may calculate the temperature Tc of the cooling surface using the voltage Vo and the coolant temperature Tw provided by the detector 121 as follows.
  • the voltage Vo detected by the detector 121 includes a driving voltage V1 for driving the thermoelectric element 220 and a counter electromotive force V issued by the thermoelectric element 220.
  • the counter electromotive force V may be calculated by calculating a correlation between the thermoelectric element driving voltage V1 and the counter electromotive force V.
  • V f1 (V1) -f2 (Vo) + c
  • f1 and f2 are calculation formulas calculated based on experiment, and c is a calculation factor by experiment.
  • the heat generating surface temperature Th of the thermoelectric element 220 is adjacent to the heat exchanger 230 may be estimated as the temperature (Tw) of the cooling water passing through the heat exchanger (230).
  • the heating surface temperature Th may be calculated by Equation 3 below.
  • Th f3 (Tw) + d
  • f3 is a calculation formula calculated by experiment, and d is a calculation factor by experiment.
  • Equations 1 to 3 can be arranged as in Equation 4 by arranging the cooling surface temperature Tc. Therefore, the cooling surface temperature (Tc) can be calculated through Equation 4 below.
  • Tc f3 (Tw) + d- (f1 (V1) -f2 (Vo) + c) / a
  • the cooling cup temperature Tb may be calculated using the cooling surface temperature Tc.
  • the cooling surface temperature (Tc) is different from the cooling cup temperature (Tb) in contact with the skin of the subject by various factors.
  • the calculation unit 123 may correct the cooling surface temperature Tc through a predetermined algorithm by referring to the state information of the cooling system 150, other collection information, and the state of the thermoelectric element 220, and finally, the cooling cup temperature ( Tb) can be calculated.
  • Equation 5 shows a method of calculating the cooling cup temperature Tb by correcting the cooling surface temperature Tc.
  • Tb f4 (Tc) + Ptec * n + T1
  • f4 is a calculation formula calculated by the experiment
  • Ptec is the thermoelectric drive energy amount
  • n is the correction constant by the experiment
  • T1 is the distance between the cooling surface and the treatment site of the thermoelectric element 220 and the temperature according to the heat load
  • the correction value can be determined by experiment.
  • the driving unit 125 substitutes the cooling cup temperature Tb calculated by the calculating unit 123 into a driving control algorithm as shown in Equation 6 below, and the cooling cup temperature Tb is set to the target temperature value Tt.
  • the driving voltage driving the thermoelectric element 220 may be controlled to match.
  • Kp is the experimental proportional constant and Po is the experimental correction factor.
  • FIG. 4 is a flowchart provided to explain the operation of the cryolipolysis device shown in FIG. 1.
  • the detector 121 may measure the voltage Vo through a signal line connected to the thermoelectric element 220 (S410).
  • the detector 121 may measure or receive the temperature Tw of the coolant through the cooling system 150 (S420). Steps S410 and S420 may be performed simultaneously or their order may be changed.
  • the calculator 123 may calculate the temperature Tc of the cooling cup 210 using the voltage Vo and the coolant temperature Tw provided by the detector 121 as follows (S430).
  • the voltage Vo detected by the detector 121 includes a driving voltage V1 for driving the thermoelectric element 220 and a counter electromotive force V issued by the thermoelectric element 220.
  • the counter electromotive force V may be calculated by calculating a correlation between the voltage V 1 and the counter electromotive force V (S431).
  • the calculator 123 may calculate the heating surface temperature Th of the thermoelectric element 220 from the temperature Tw of the cooling water passing through the heat exchanger 230 (S433).
  • the calculation unit 123 may calculate the cooling surface temperature Tc using the back EMF V and the heating surface temperature Th calculated in step S431 (S435).
  • the calculation unit 123 may calculate the cooling cup temperature Tb by using the cooling surface temperature Tc calculated in step S435. It may be (S437). In operation S437, the calculation unit 123 cools the cooling surface temperature Tc by a predetermined algorithm by referring to the state information of the cooling system 150, other collection information, and the state of the thermoelectric element 220. The cup temperature Tb can be calculated.
  • the driving unit 125 substitutes the cooling cup temperature Tb calculated by the calculator 123 into a predetermined thermoelectric element driving control algorithm so that the cooling cup temperature Tb matches the set target temperature value Tt.
  • the driving voltage for driving the thermoelectric element 220 may be controlled (S440).
  • the cooling unit 210 has been described as a cooling unit for cooling the treatment portion to a predetermined temperature so far, the cooling unit is not limited thereto and may have various forms.
  • the cooling unit may be formed in a flat form.
  • the suction pump 170 may be omitted, and a separate fixing unit such as, for example, a fixing belt may be provided to fix or adhere the cooling unit to the skin. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Otolaryngology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

The present invention relates to a frozen fat decomposition apparatus and a control method therefor. The apparatus according to the present invention comprises: a cooling unit for contacting the skin of a person to be treated; a thermoelectric element having one surface, which is attached to the cooling unit to cool the cooling unit; a heat exchanging unit attached to the other surface of the thermoelectric element and to cool the heat generated in the thermoelectric element; and a control unit for calculating a temperature of the cooling unit on the basis of a counter electromotive force generated in the thermoelectric element. The frozen fat decomposition apparatus according to an embodiment of the present invention can destroy fat cells without damaging a skin so as to solve the obesity problem.

Description

냉동 지방 분해 장치 및 그 제어 방법Cryolipolysis unit and its control method
본 발명은 지방 분해 장치에 관한 것으로서, 더욱 상세하게는 냉각을 통해 지방을 분해하는 냉동 지방 분해 장치 및 그 제어 방법에 관한 것이다.The present invention relates to a lipolysis device, and more particularly, to a freezing lipolysis device for decomposing fat through cooling and a control method thereof.
비만은 만병의 원인으로 알려져 있다. 비만의 원인은 여러 가지가 있지만 가장 큰 영향을 주는 요소는 바로 신체에 과도하게 쌓인 지방이다. 이 지방이 비만으로 이어지면서, 간이나 혈관, 혈액에 고이게 되어 지방간, 동맥경화, 고지혈증 등의 증상으로 나타나게 된다.Obesity is known to cause illness. There are many causes of obesity, but the most influential factor is excess fat in your body. As this fat leads to obesity, the liver, blood vessels, blood is accumulated in the liver, such as symptoms of fatty liver, arteriosclerosis, hyperlipidemia.
비만을 해소하기 위한 다양한 다이어트 방법 및 수술과 같은 외과적 치료 방법이 존재하고 있다. 그러나 다이어트는 사람들에게 성공하기 쉽지 않으며, 수술적 방법은 위험 부담이 있다.There are a variety of surgical methods such as surgery and diet to relieve obesity. However, diets are not easy for people to succeed, and surgical methods are risky.
현재까지 소개된 피하 지방층 또는 지방 조직을 줄이는 비침습적 방법으로는 고주파, 광선 등을 이용하여 피하 지질 과다 세포 영역에 열을 가하는 방법이 있다. 또 다른 방법으로서 직접 냉각(Direct Cooling)을 통해 표피나 신경 등의 조직에는 손상을 주지 않고 지방 세포만을 선택적으로 파괴하는 원리, 즉 세포 사멸(apoptosis) 원리에 의해 지방 세포가 자연 괴사하도록 유도하는 방법이 있다. 이를 냉동지방분해술(Cryolipolysis)이라 한다.The non-invasive method of reducing the subcutaneous fat layer or fat tissue introduced to date is to apply heat to the subcutaneous lipid-rich cell region by using radiofrequency rays and light rays. Another method is to induce fat cell necrosis by direct cooling, which selectively destroys fat cells without damaging the epidermis or nerves, ie, apoptosis. There is this. This is called cryolipolysis.
본 발명이 해결하고자 하는 과제는 피부에 손상을 주지 않으면서 직접 냉각을 통해 지방 세포만을 파괴할 수 있는 냉동 지방 분해 장치를 제공하는 것이다.The problem to be solved by the present invention is to provide a frozen lipolysis device that can destroy only fat cells through direct cooling without damaging the skin.
이러한 과제를 해결하기 위한 본 발명의 한 실시예에 따른 장치는 피시술자의 피부에 접촉되는 냉각부, 일면이 상기 냉각부에 부착되어 상기 냉각부를 냉각시키는 열전소자, 상기 열전소자의 타면에 부착되어 상기 열전소자에서 발생되는 열을 냉각시키는 열교환부, 그리고 상기 열전소자에서 발생하는 역기전력을 기초로 상기 냉각부의 온도를 산출하는 제어부를 포함한다.The apparatus according to an embodiment of the present invention for solving this problem is a thermoelectric element which is in contact with the skin of the subject, one surface is attached to the cooling unit to cool the cooling unit, attached to the other surface of the thermoelectric element And a heat exchanger for cooling the heat generated by the thermoelectric element, and a controller configured to calculate a temperature of the cooling unit based on the counter electromotive force generated by the thermoelectric element.
상기 열교환부는 상기 열전소자를 냉각시키는 냉각수가 순환될 수 있다.The heat exchange part may circulate a cooling water for cooling the thermoelectric element.
상기 제어부는, 상기 역기전력과 상기 열전소자를 구동하는 구동 전압이 혼재된 전압을 측정하고, 상기 냉각수의 온도를 측정하는 검출부, 그리고 상기 구동 전압과 상기 역기전력 사이의 상관관계를 기초로 상기 측정 전압을 이용하여 상기 역기전력을 계산하고, 상기 측정된 냉각수의 온도를 이용하여 상기 열전소자 타면의 온도를 계산하며, 상기 계산된 역기전력과 상기 계산된 열전소자 타면의 온도를 이용하여 상기 열전소자 일면의 온도를 계산하는 계산부를 포함할 수 있다.The controller may be configured to measure a voltage in which the counter electromotive force and a driving voltage for driving the thermoelectric element are mixed, measure a temperature of the coolant, and measure the measured voltage based on a correlation between the driving voltage and the counter electromotive force. The counter electromotive force is calculated, the temperature of the other surface of the thermoelectric element is calculated using the measured temperature of the cooling water, and the temperature of the one surface of the thermoelectric element is calculated using the calculated back electromotive force and the temperature of the other surface of the thermoelectric element. It may include a calculation unit for calculating.
상기 계산부는, 상기 계산된 열전소자 일면의 온도를 소정의 알고리즘을 통해 보정하여 상기 냉각부의 온도를 산출할 수 있다.The calculation unit may calculate the temperature of the cooling unit by correcting the calculated temperature of one surface of the thermoelectric element through a predetermined algorithm.
상기 소정의 알고리즘은, 상기 열전소자의 구동 에너지량 또는 상기 열전소자의 일면과 상기 피시술자의 피부 사이의 이격거리를 변수로 가질 수 있다.The predetermined algorithm may have a variable amount of driving energy of the thermoelectric element or a separation distance between one surface of the thermoelectric element and the skin of the subject.
상기 제어부는, 상기 산출된 냉각부의 온도와 상기 냉각부의 목표 온도에 기초하여 상기 열전소자를 구동하는 구동 전압을 제어하는 구동부를 더 포함할 수 있다.The controller may further include a driver configured to control a driving voltage for driving the thermoelectric element based on the calculated temperature of the cooling unit and a target temperature of the cooling unit.
상기 과제를 해결하기 위한 본 발명의 한 실시예에 피시술자의 피부에 접촉되는 냉각부, 일면이 상기 냉각부에 부착되어 상기 냉각부를 냉각시키는 열전소자 및 상기 열전소자의 타면에 부착되어 상기 열전소자에서 발생되는 열을 냉각시키는 열교환부를 포함하는 냉동 지방 분해 장치의 제어 방법은, 상기 열전소자에서 발생하는 역기전력과 상기 열전소자를 구동하는 구동 전압이 혼재된 전압을 측정하는 단계, 상기 열교환부를 순환하면서 상기 열전소자에서 발생되는 열을 냉각시키는 냉각수의 온도를 측정하는 단계, 상기 구동 전압과 상기 역기전력 사이의 상관관계를 기초로 상기 측정 전압을 이용하여 상기 역기전력을 계산하는 단계, 상기 측정된 냉각수의 온도를 이용하여 상기 열전소자 타면의 온도를 계산하는 단계, 그리고 상기 계산된 역기전력과 상기 계산된 열전소자 타면의 온도를 이용하여 상기 열전소자 일면의 온도를 계산하는 단계를 포함한다.In one embodiment of the present invention for solving the above problems, the cooling unit in contact with the skin of the subject, the thermoelectric element is attached to the cooling unit to cool the cooling unit and the other surface of the thermoelectric element is attached to the thermoelectric element The control method of the cryofat decomposition apparatus including a heat exchanger for cooling the generated heat, the method comprising measuring a voltage mixed with the back electromotive force generated in the thermoelectric element and a driving voltage for driving the thermoelectric element, circulating the heat exchange unit Measuring a temperature of the cooling water for cooling the heat generated by the thermoelectric element, calculating the counter electromotive force using the measured voltage based on a correlation between the driving voltage and the counter electromotive force, and calculating the temperature of the measured cooling water. Calculating a temperature of the other surface of the thermoelectric element, and calculating the inverse And a step of calculating a temperature of the thermal element surface by using the electric power and the calculated temperature of the thermoelectric element other surface.
상기 방법은, 상기 계산된 열전소자 일면의 온도를 소정의 알고리즘을 통해 보정하여 상기 냉각부의 온도를 산출하는 단계를 더 포함할 수 있다.The method may further include calculating a temperature of the cooling unit by correcting the calculated temperature of one surface of the thermoelectric element through a predetermined algorithm.
상기 방법은, 상기 보정된 냉각부의 온도와 상기 냉각부의 목표 온도에 기초하여 상기 열전소자를 구동하는 구동 전압을 제어하는 단계를 더 포함할 수 있다.The method may further include controlling a driving voltage for driving the thermoelectric element based on the corrected temperature of the cooling unit and a target temperature of the cooling unit.
이와 같이 본 발명의 실시예에 따른 냉동 지방 분해 장치에 의하면 피부에 손상을 주지 않으면서 지방 세포를 파괴하여 비만을 해소할 수 있다.Thus, according to the frozen lipolysis device according to an embodiment of the present invention, it is possible to eliminate obesity by destroying fat cells without damaging the skin.
도 1은 본 발명의 한 실시예에 따른 냉동 지방 분해 장치의 개략도이다.1 is a schematic diagram of a frozen fat decomposing device according to an embodiment of the present invention.
도 2는 도 1에 도시한 냉동 지방 분해 장치의 냉각 컵에 치료 부위의 피부가 흡입된 상태를 예시한 도면이다.2 is a view illustrating a state in which the skin of the treatment site is inhaled in the cooling cup of the cryolipolysis device shown in FIG.
도 3은 도 1에 도시한 냉동 지방 분해 장치의 세부 구성을 나타낸 도면이다.3 is a view showing a detailed configuration of the cryofat decomposition device shown in FIG.
도 4는 도 1에 도시한 냉동 지방 분해 장치의 동작을 설명하기 위해 제공되는 흐름도이다.FIG. 4 is a flowchart provided to explain the operation of the cryolipolysis device shown in FIG. 1.
*도면 중 주요 부호에 대한 설명** Description of the major symbols in the drawings *
100: 본체100: main body
110: LCD 120: 제어부110: LCD 120: control unit
130: 압력센서 140: 탱크130: pressure sensor 140: tank
150: 냉각 시스템 160: 밸브150: cooling system 160: valve
170: 흡입 펌프170: suction pump
200: 핸드피스200: handpiece
210: 냉각 컵 220: 열전소자210: cooling cup 220: thermoelectric element
230: 열교환기230: heat exchanger
300: 케이블300: cable
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in the specification and the configuration shown in the drawings are only the most preferred embodiments of the present invention and do not represent all of the technical idea of the present invention, various equivalents that may be substituted for them at the time of the present application It should be understood that there may be variations and examples.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention;
도 1은 본 발명의 한 실시예에 따른 냉동 지방 분해 장치의 개략도이고, 도 2는 도 1에 도시한 냉동 지방 분해 장치의 냉각 컵에 치료 부위의 피부가 흡입된 상태를 예시한 도면이다.FIG. 1 is a schematic diagram of a cryolipolysis device according to an embodiment of the present invention, and FIG. 2 is a diagram illustrating a state in which the skin of a treatment site is inhaled in a cooling cup of the cryolipolysis device shown in FIG. 1.
도 1에 도시한 바와 같이, 본 발명의 실시예에 따른 냉동 지방 분해 장치는 본체(100), 핸드피스(200) 및 이들을 연결하는 케이블(300)을 포함한다.As shown in Figure 1, the cryofat decomposition apparatus according to an embodiment of the present invention includes a main body 100, the handpiece 200 and a cable 300 connecting them.
케이블(300)은 급수관, 환수관, 신호선 및 흡입관 등을 내장하고, 본체(100)와 핸드피스(200)를 연결시킨다.The cable 300 includes a water supply pipe, a return pipe, a signal line, a suction pipe, and the like, and connects the main body 100 to the handpiece 200.
도 2에 도시한 바와 같이 핸드피스(200)를 구성하는 냉각 컵(210)으로 치료부위를 흡착한 후 소정 온도로 냉각하여 피하 지방질을 파괴한다. 사전에 피시술자의 치료부위에 동결 방지제를 바르고, 기밀을 유지하여 흡착이 유지될 수 있도록 패드 또는 필름 등을 부착할 수 있다.As shown in FIG. 2, the treatment area is adsorbed with the cooling cup 210 constituting the handpiece 200 and cooled to a predetermined temperature to destroy the subcutaneous fat. A cryoprotectant may be applied to the treatment area of the subject in advance, and a pad or a film may be attached to maintain adsorption and maintain adsorption.
구체적으로 본체(100)는 냉각 컵(210)이 치료부위에 맞닿으면 흡입관을 통한 흡인력으로 치료부위의 피부를 냉각 컵(210) 내부로 끌어당기며, 냉각 컵(210)에 부착된 열전소자(도시하지 않음)에 구동 전압을 인가하여 열전소자를 냉각시켜서 치료부위의 지방을 파괴하도록 동작시킨다.Specifically, when the cooling cup 210 contacts the treatment site, the main body 100 pulls the skin of the treatment site into the cooling cup 210 by the suction force through the suction tube, and the thermoelectric element attached to the cooling cup 210. A driving voltage is applied to (not shown) to cool the thermoelectric element so as to destroy the fat at the treatment site.
그리고 본체(100)는 급수관을 통해 냉각수를 핸드피스(200)로 공급하고, 핸드피스(200)를 순환한 냉각수를 환수관을 통해 환수할 수 있다.In addition, the main body 100 may supply cooling water to the handpiece 200 through a water supply pipe, and return the cooling water circulated through the handpiece 200 through a return pipe.
*한편 본체(100)는 핸드피스(200)에 장착된 열전소자에서 발생하는 역기전력을 기초로 냉각 컵(210)의 온도를 계산하여, 냉각 컵(210)을 목표 온도로 제어할 수 있다. 이를 위해 본체(100)는 케이블(300)에 내장된 신호선을 통해 핸드피스(200)로부터 열전소자의 역기전력과 열전소자의 구동 전압이 혼재된 전압 신호를 측정할 수 있다.On the other hand, the main body 100 may control the cooling cup 210 to a target temperature by calculating the temperature of the cooling cup 210 based on the counter electromotive force generated by the thermoelectric element mounted on the handpiece 200. To this end, the main body 100 may measure a voltage signal in which the counter electromotive force of the thermoelectric element and the driving voltage of the thermoelectric element are mixed from the handpiece 200 through the signal line embedded in the cable 300.
도 3은 도 1에 도시한 냉동 지방 분해 장치의 세부 구성을 나타낸 도면이다.3 is a view showing a detailed configuration of the cryofat decomposition device shown in FIG.
도 3을 참고하면, 본체(100)는 LCD(110), 제어부(120), 압력센서(130), 탱크(140), 냉각 시스템(150), 밸브(160) 및 흡입 펌프(170)를 포함할 수 있다.Referring to FIG. 3, the body 100 includes an LCD 110, a controller 120, a pressure sensor 130, a tank 140, a cooling system 150, a valve 160, and a suction pump 170. can do.
LCD(110)는 냉동 지방 분해 장치의 동작 상태를 표시하는 기능을 수행한다. 실시예에 따라 LCD(110)는 터치 패널(도시하지 않음) 등과 같은 입력 수단과 함께 설치되어 사용자로부터 조작 명령을 입력받도록 구현하는 것도 가능하다.The LCD 110 performs a function of displaying an operating state of the cryofat decomposing device. According to an exemplary embodiment, the LCD 110 may be installed together with an input means such as a touch panel (not shown) to implement an operation command from a user.
냉각 컵(210)으로 치료부위를 흡착시키기 위한 흡인력을 생성하기 위한 흡입 펌프(170)와, 밸브(160), 탱크(140)가 흡입관을 통해 연결되어 있고, 밸브(140)를 거친 흡입관이 분기되면서 압력센서(130)와 연결된다. 압력센서(130)는 탱크(140)의 압력을 감지하여 제어부(120)로 전달한다.The suction pump 170 for generating a suction force for adsorbing the treatment site to the cooling cup 210, the valve 160, the tank 140 is connected through the suction pipe, the suction pipe through the valve 140 is branched While being connected to the pressure sensor 130. The pressure sensor 130 detects the pressure of the tank 140 and transmits the pressure to the control unit 120.
탱크(140)는 흡입관을 통해 흡인된 동결방지제를 저장함과 아울러 압력을 버퍼링하는 기능을 수행한다.The tank 140 stores the cryoprotectant sucked through the suction pipe and buffers the pressure.
흡입 펌프(170)는 흡입관을 통해 냉각 컵(210)과 치료부위 사이에 존재하는 공기를 흡입하는 기능을 수행한다.The suction pump 170 performs a function of sucking air existing between the cooling cup 210 and the treatment site through the suction pipe.
밸브(160)는 흡입 펌프(170)와 탱크(140) 사이를 연결하는 흡입관을 통해 개폐하는 기능을 수행한다.The valve 160 opens and closes through a suction pipe connecting the suction pump 170 and the tank 140.
제어부(120)는 압력센서(130)에서 감지된 압력을 기초로 흡입 펌프(170)와 밸브(160)의 동작을 제어하여 냉각 컵(210)에 적절한 흡인력을 생성시킨다.The controller 120 controls the operation of the suction pump 170 and the valve 160 based on the pressure sensed by the pressure sensor 130 to generate an appropriate suction force in the cooling cup 210.
냉각 시스템(150)은 핸드피스(200)에 냉각수를 급수 및 환수하는 기능을 수행한다.The cooling system 150 serves to supply and return cooling water to the handpiece 200.
냉각 시스템(150)에서 공급된 냉각수는 핸드피스(200)의 열교환기(230)의 내부를 순환하면서 열전소자(220)에서 발생하는 열을 수냉식으로 냉각시킨다.Cooling water supplied from the cooling system 150 circulates inside the heat exchanger 230 of the handpiece 200 to cool the heat generated by the thermoelectric element 220 by water cooling.
핸드피스(200)는 냉각 컵(210), 열전소자(220) 및 열교환기(230)를 포함할 수 있다.The handpiece 200 may include a cooling cup 210, a thermoelectric element 220, and a heat exchanger 230.
냉각 컵(210)은 피시술자의 치료부위에 부착된 상태에서, 흡입관을 통해 내부의 공기가 탱크(140)로 흡입되면 치료부위를 흡착한다. 그리고 냉각 컵(210)은 열전소자(220)의 냉각면을 통해 소정 온도로 냉각되어 치료 부위의 피하 지방질을 파괴시킬 수 있다.The cooling cup 210 is in the state attached to the treatment site of the subject, when the air inside the suction through the suction tube to the tank 140 to adsorb the treatment site. And the cooling cup 210 may be cooled to a predetermined temperature through the cooling surface of the thermoelectric element 220 to destroy the subcutaneous fat of the treatment site.
열전소자(220)는 펠티에 소자(Peltier effect device)로 구현되어, 냉각면은 냉각 컵(210)에 부착되고, 발열면은 열교환기(230)에 부착된다.The thermoelectric element 220 is implemented as a Peltier effect device, the cooling surface is attached to the cooling cup 210, the heating surface is attached to the heat exchanger 230.
열전소자(220)는 본체(100)에서 구동 전압이 인가되면, 냉각면에서 흡열 현상이 발생하여 냉각 컵(210)을 냉각시킨다. 그리고 이때 열전소자(220)의 발열면은 열교환기(230)를 순환하는 냉각수를 통해 냉각될 수 있다.When the driving voltage is applied from the main body 100, the thermoelectric element 220 generates an endothermic phenomenon on the cooling surface to cool the cooling cup 210. In this case, the heat generating surface of the thermoelectric element 220 may be cooled by cooling water circulating in the heat exchanger 230.
제어부(120)는 열전소자에서 발생하는 역기전력을 기초로 냉각 컵(210)의 온도를 계산하여, 냉각 컵(210)을 목표 온도로 제어할 수 있다.The controller 120 may calculate the temperature of the cooling cup 210 based on the counter electromotive force generated by the thermoelectric element, and control the cooling cup 210 to a target temperature.
먼저 일반적으로 펠티에 소자와 같은 열전소자는 아래 [수학식 1]과 같은 특성을 가진다.First, a thermoelectric element, such as a Peltier element, generally has the following characteristics.
[수학식 1][Equation 1]
V=a*(Th-Tc)V = a * (Th-Tc)
여기서, V는 열전소자에서 발생되는 역기전력, a는 열전소자 제조사에서 제공하는 온도차-기전력 비례상수, Th는 발열면의 온도, Tc는 냉각면의 온도를 나타낸다.Here, V is the counter electromotive force generated in the thermoelectric element, a is the temperature difference-electromotive force proportional constant provided by the thermoelectric element manufacturer, Th is the temperature of the heating surface, Tc is the temperature of the cooling surface.
검출부(121)는 열전소자(220)에 연결된 신호선을 통해 전압(Vo)을 측정할 수 있다. 이 신호선은 2개의 선(GND, Signal)으로 이루어져 있으며, 이 신호선을 통하여 열전소자(220)로부터 전압(Vo)을 측정할 수 있을 뿐만 아니라 이 신호선을 통하여 구동부(125)는 열전소자(220)로 구동 전압(V1)을 내보낸다. 따라서 이 신호선에 나타나는 전압(Vo)은 열전소자(220)를 구동하는 구동 전압(V1)과 열전소자(220)에서 발행하는 역기전력(V)이 혼재되어 있다. 그리고 검출부(121)는 냉각 시스템(150)을 통해 냉각수의 온도(Tw)를 측정하거나 전달받을 수 있다.The detector 121 may measure the voltage Vo through a signal line connected to the thermoelectric element 220. The signal line is composed of two lines (GND, Signal). The signal line can measure the voltage Vo from the thermoelectric element 220 through the signal line, and the driving unit 125 can also measure the thermoelectric element 220 through the signal line. To drive voltage V1. Therefore, the voltage Vo that appears in the signal line is a mixture of the driving voltage V1 for driving the thermoelectric element 220 and the counter electromotive force V issued by the thermoelectric element 220. In addition, the detector 121 may measure or receive a temperature Tw of the coolant through the cooling system 150.
계산부(123)는 검출부(121)에서 제공되는 전압(Vo)과 냉각수 온도(Tw)를 이용하여 다음과 같은 방법으로 냉각면의 온도(Tc)를 계산할 수 있다.The calculator 123 may calculate the temperature Tc of the cooling surface using the voltage Vo and the coolant temperature Tw provided by the detector 121 as follows.
앞서 설명한 것과 같이 검출부(121)에서 검출되는 전압(Vo)은 열전소자(220)를 구동하는 구동 전압(V1)과 열전소자(220)에서 발행하는 역기전력(V)이 혼재되어 있으므로, 아래 [수학식 2]와 같이 열전소자 구동 전압(V1)과 역기전력(V) 사이의 상관관계를 계산하여 역기전력(V)을 산출할 수 있다.As described above, the voltage Vo detected by the detector 121 includes a driving voltage V1 for driving the thermoelectric element 220 and a counter electromotive force V issued by the thermoelectric element 220. As shown in Equation 2, the counter electromotive force V may be calculated by calculating a correlation between the thermoelectric element driving voltage V1 and the counter electromotive force V. FIG.
[수학식 2][Equation 2]
V=f1(V1)-f2(Vo)+cV = f1 (V1) -f2 (Vo) + c
f1 및 f2는 실험에 근거하여 산출한 계산식이고 c는 실험에 의한 연산 팩터이다.f1 and f2 are calculation formulas calculated based on experiment, and c is a calculation factor by experiment.
한편 열전소자(220)의 발열면 온도(Th)는 열교환기(230)와 인접되어 있어 열교환기(230)를 통과하는 냉각수의 온도(Tw)로 추산할 수 있다.On the other hand, the heat generating surface temperature Th of the thermoelectric element 220 is adjacent to the heat exchanger 230 may be estimated as the temperature (Tw) of the cooling water passing through the heat exchanger (230).
발열면 온도(Th)는 아래 [수학식 3]을 통해 계산할 수 있다.The heating surface temperature Th may be calculated by Equation 3 below.
[수학식 3][Equation 3]
Th=f3(Tw)+dTh = f3 (Tw) + d
f3은 실험에 의해 산출한 계산식이고, d는 실험에 의한 연산 팩터이다.f3 is a calculation formula calculated by experiment, and d is a calculation factor by experiment.
[수학식 1] 내지 [수학식 3]을 냉각면 온도(Tc)에 대해서 정리하면 [수학식 4]와 같이 정리할 수 있다. 따라서 냉각면 온도(Tc)는 아래 [수학식 4]를 통해 계산할 수 있다.Equations 1 to 3 can be arranged as in Equation 4 by arranging the cooling surface temperature Tc. Therefore, the cooling surface temperature (Tc) can be calculated through Equation 4 below.
[수학식 4][Equation 4]
*Tc=Th-V/a* Tc = Th-V / a
Tc=f3(Tw)+d-(f1(V1)-f2(Vo)+c)/aTc = f3 (Tw) + d- (f1 (V1) -f2 (Vo) + c) / a
열전소자(220)의 냉각면은 냉각 컵(210)과 인접되어 있으므로, 냉각면 온도(Tc)를 이용하여 냉각 컵 온도(Tb)를 산출할 수 있다. 다만 냉각면 온도(Tc)는 피시술자의 피부에 접촉되는 냉각 컵 온도(Tb)와 여러 요인에 의해 차이가 있다.Since the cooling surface of the thermoelectric element 220 is adjacent to the cooling cup 210, the cooling cup temperature Tb may be calculated using the cooling surface temperature Tc. However, the cooling surface temperature (Tc) is different from the cooling cup temperature (Tb) in contact with the skin of the subject by various factors.
계산부(123)는 냉각 시스템(150)의 상태 정보 및 기타 수집 정보, 열전소자(220)의 상태 등을 참고하여 냉각면 온도(Tc)를 소정의 알고리즘을 통해 보정하여 최종적으로 냉각 컵 온도(Tb)를 산출할 수 있다.The calculation unit 123 may correct the cooling surface temperature Tc through a predetermined algorithm by referring to the state information of the cooling system 150, other collection information, and the state of the thermoelectric element 220, and finally, the cooling cup temperature ( Tb) can be calculated.
아래 [수학식 5]는 냉각면 온도(Tc)를 보정하여 냉각 컵 온도(Tb)를 산출하는 방법을 나타낸 것이다.Equation 5 below shows a method of calculating the cooling cup temperature Tb by correcting the cooling surface temperature Tc.
[수학식 5][Equation 5]
Tb=f4(Tc)+Ptec*n+T1Tb = f4 (Tc) + Ptec * n + T1
f4는 실험에 의하여 산출한 계산식이고, Ptec는 열전소자 구동 에너지량이며, n은 실험에 의한 보정상수이고, T1은 열전소자(220)의 냉각면과 치료 부위 사이의 이격거리 및 열부하에 따른 온도 보정값으로 실험에 의하여 결정될 수 있다.f4 is a calculation formula calculated by the experiment, Ptec is the thermoelectric drive energy amount, n is the correction constant by the experiment, T1 is the distance between the cooling surface and the treatment site of the thermoelectric element 220 and the temperature according to the heat load The correction value can be determined by experiment.
구동부(125)는 계산부(123)에서 산출된 냉각 컵 온도(Tb)를 아래 [수학식 6]과 같은 구동 제어 알고리즘에 대입하여, 냉각 컵 온도(Tb)가 설정된 목표 온도치(Tt)와 부합되도록 열전소자(220)를 구동하는 구동 전압을 제어할 수 있다.The driving unit 125 substitutes the cooling cup temperature Tb calculated by the calculating unit 123 into a driving control algorithm as shown in Equation 6 below, and the cooling cup temperature Tb is set to the target temperature value Tt. The driving voltage driving the thermoelectric element 220 may be controlled to match.
[수학식 6][Equation 6]
Po=Kp*(Tt-Tb)+PbPo = Kp * (Tt-Tb) + Pb
Kp는 실험에 의한 비례상수이고, Po는 실험에 의한 보정 팩터이다.Kp is the experimental proportional constant and Po is the experimental correction factor.
[수학식 2], [수학식 3] 및 [수학식 5]에서 사용된 함수 f1 내지 f4는 다항식이나, 일차, 이차, 또는 3차 이상의 함수로 나타낼 수 있으며, 필요에 따라 함수 대신 룩업 테이블(look-up table) 형식으로 입력에 대한 결과값을 기억해두고 계산에 사용할 수도 있다.The functions f1 to f4 used in [Equation 2], [Equation 3] and [Equation 5] can be expressed as polynomials, linear, quadratic, or tertiary functions. look-up table) can also be used for calculations by remembering the result of the input.
도 4는 도 1에 도시한 냉동 지방 분해 장치의 동작을 설명하기 위해 제공되는 흐름도이다.FIG. 4 is a flowchart provided to explain the operation of the cryolipolysis device shown in FIG. 1.
도 3 및 도 4를 참고하면, 먼저 검출부(121)는 열전소자(220)에 연결된 신호선을 통해 전압(Vo)을 측정할 수 있다(S410). 그리고 검출부(121)는 냉각 시스템(150)을 통해 냉각수의 온도(Tw)를 측정하거나 전달받을 수 있다(S420). 단계(S410) 및 단계(S420)는 동시에 이루어지거나 그 순서가 바뀌어도 무방하다.3 and 4, first, the detector 121 may measure the voltage Vo through a signal line connected to the thermoelectric element 220 (S410). The detector 121 may measure or receive the temperature Tw of the coolant through the cooling system 150 (S420). Steps S410 and S420 may be performed simultaneously or their order may be changed.
이후 계산부(123)는 검출부(121)에서 제공되는 전압(Vo)과 냉각수 온도(Tw)를 이용하여 다음과 같은 방법으로 냉각 컵(210)의 온도(Tc)를 계산할 수 있다(S430).Thereafter, the calculator 123 may calculate the temperature Tc of the cooling cup 210 using the voltage Vo and the coolant temperature Tw provided by the detector 121 as follows (S430).
앞서 설명한 것과 같이 검출부(121)에서 검출되는 전압(Vo)은 열전소자(220)를 구동하는 구동 전압(V1)과 열전소자(220)에서 발행하는 역기전력(V)이 혼재되어 있으므로, 열전소자 구동 전압(V1)과 역기전력(V) 사이의 상관관계를 계산하여 역기전력(V)을 산출할 수 있다(S431).As described above, the voltage Vo detected by the detector 121 includes a driving voltage V1 for driving the thermoelectric element 220 and a counter electromotive force V issued by the thermoelectric element 220. The counter electromotive force V may be calculated by calculating a correlation between the voltage V 1 and the counter electromotive force V (S431).
그리고 계산부(123)는 열교환기(230)를 통과하는 냉각수의 온도(Tw)로부터 열전소자(220)의 발열면 온도(Th)를 산출할 수 있다(S433).In addition, the calculator 123 may calculate the heating surface temperature Th of the thermoelectric element 220 from the temperature Tw of the cooling water passing through the heat exchanger 230 (S433).
다음으로 계산부(123)는 단계(S431)에서 산출된 역기전력(V)과 발열면 온도(Th)를 이용하여 냉각면 온도(Tc)를 산출할 수 있다(S435).Next, the calculation unit 123 may calculate the cooling surface temperature Tc using the back EMF V and the heating surface temperature Th calculated in step S431 (S435).
열전소자(220)의 냉각면은 냉각 컵(210)과 인접되어 있으므로, 계산부(123)는 단계(S435)에서 산출된 냉각면 온도(Tc)를 이용하여 냉각 컵 온도(Tb)를 산출할 수 있다(S437). 단계(S437)에서 계산부(123)는 냉각 시스템(150)의 상태 정보 및 기타 수집 정보, 열전소자(220)의 상태 등을 참고하여 냉각면 온도(Tc)를 소정의 알고리즘을 통해 보정하여 냉각 컵 온도(Tb)를 산출할 수 있다.Since the cooling surface of the thermoelectric element 220 is adjacent to the cooling cup 210, the calculation unit 123 may calculate the cooling cup temperature Tb by using the cooling surface temperature Tc calculated in step S435. It may be (S437). In operation S437, the calculation unit 123 cools the cooling surface temperature Tc by a predetermined algorithm by referring to the state information of the cooling system 150, other collection information, and the state of the thermoelectric element 220. The cup temperature Tb can be calculated.
마지막으로 구동부(125)는 계산부(123)에서 산출된 냉각 컵 온도(Tb)를 소정의 열전소자 구동 제어 알고리즘에 대입하여, 냉각 컵 온도(Tb)가 설정된 목표 온도치(Tt)와 부합되도록 열전소자(220)를 구동하는 구동 전압을 제어할 수 있다(S440).Finally, the driving unit 125 substitutes the cooling cup temperature Tb calculated by the calculator 123 into a predetermined thermoelectric element driving control algorithm so that the cooling cup temperature Tb matches the set target temperature value Tt. The driving voltage for driving the thermoelectric element 220 may be controlled (S440).
지금까지 치료부위를 소정 온도로 냉각하는 냉각부로서 냉각 컵(210)을 대표로 하여 설명하였으나, 냉각부는 이에 한정되지 않으며 다양한 형태를 가질 수 있다. 예를 들어 냉각부는 평평한 형태로 이루어질 수 있으며, 이 경우 흡입 펌프(170) 등이 생략될 수 있고 냉각부가 피부에 고정 또는 밀착되기 위하여 예를 들면 고정 벨트와 같은 별도의 고정 수단이 구비될 수 있다.Although the cooling unit 210 has been described as a cooling unit for cooling the treatment portion to a predetermined temperature so far, the cooling unit is not limited thereto and may have various forms. For example, the cooling unit may be formed in a flat form. In this case, the suction pump 170 may be omitted, and a separate fixing unit such as, for example, a fixing belt may be provided to fix or adhere the cooling unit to the skin. .
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내고 설명하는 것에 불과하며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 즉, 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위 내에서 변경 또는 수정이 가능하다. 전술한 실시예들은 본 발명을 실시하는데 있어 최선의 상태를 설명하기 위한 것이며, 본 발명과 같은 다른 발명을 이용하는데 당업계에 알려진 다른 상태로의 실시, 그리고 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The foregoing detailed description illustrates the present invention. In addition, the foregoing description merely shows and describes preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications, and environments. That is, changes or modifications may be made within the scope of the concept of the invention disclosed in this specification, the scope equivalent to the disclosed contents, and / or the skill or knowledge in the art. The above-described embodiments are for explaining the best state in carrying out the present invention, the use of other inventions such as the present invention in other state known in the art, and the specific fields of application and uses of the present invention. Various changes are also possible. Thus, the detailed description of the invention is not intended to limit the invention to the disclosed embodiments. Also, the appended claims should be construed to include other embodiments.

Claims (9)

  1. 피시술자의 피부에 접촉되는 냉각부,Cooling unit in contact with the skin of the subject,
    일면이 상기 냉각부에 부착되어 상기 냉각부를 냉각시키는 열전소자,A thermoelectric element having one surface attached to the cooling unit to cool the cooling unit;
    상기 열전소자의 타면에 부착되어 상기 열전소자에서 발생되는 열을 냉각시키는 열교환부, 그리고A heat exchanger attached to the other surface of the thermoelectric element to cool the heat generated by the thermoelectric element, and
    상기 열전소자에서 발생하는 역기전력을 기초로 상기 냉각부의 온도를 산출하는 제어부Control unit for calculating the temperature of the cooling unit based on the back electromotive force generated by the thermoelectric element
    를 포함하는 냉동 지방 분해 장치.Cryo lipolysis device comprising a.
  2. 제1항에서,In claim 1,
    상기 열교환부는 상기 냉각부를 냉각시키는 냉각수가 순환되고,The heat exchanger is circulated with coolant for cooling the cooling unit,
    상기 제어부는,The control unit,
    상기 역기전력과 상기 열전소자를 구동하는 구동 전압이 혼재된 전압을 측정하고, 상기 냉각수의 온도를 측정하는 검출부, 그리고A detector configured to measure a voltage mixed with the counter electromotive force and a driving voltage for driving the thermoelectric element, and measure a temperature of the coolant;
    상기 구동 전압과 상기 역기전력 사이의 상관관계를 기초로 상기 측정 전압을 이용하여 상기 역기전력을 계산하고, 상기 측정된 냉각수의 온도를 이용하여 상기 열전소자 타면의 온도를 계산하며, 상기 계산된 역기전력과 상기 계산된 열전소자 타면의 온도를 이용하여 상기 열전소자 일면의 온도를 계산하는 계산부The counter electromotive force is calculated using the measured voltage based on the correlation between the driving voltage and the counter electromotive force, the temperature of the other surface of the thermoelectric element is calculated using the measured temperature of the coolant, and the calculated counter electromotive force and the A calculation unit for calculating the temperature of one surface of the thermoelectric element using the calculated temperature of the other surface of the thermoelectric element
    를 포함하는 냉동 지방 분해 장치.Cryo lipolysis device comprising a.
  3. 제2항에서,In claim 2,
    상기 계산부는,The calculation unit,
    상기 계산된 열전소자 일면의 온도를 소정의 알고리즘을 통해 보정하여 상기 냉각부의 온도를 산출하는 냉동 지방 분해 장치.Frozen fat decomposition apparatus for calculating the temperature of the cooling unit by correcting the calculated temperature of one surface of the thermoelectric element through a predetermined algorithm.
  4. 제3항에서,In claim 3,
    상기 소정의 알고리즘은,The predetermined algorithm is
    상기 열전소자의 구동 에너지량 또는 상기 열전소자의 일면과 상기 피시술자의 피부 사이의 이격거리를 변수로 가지는 냉동 지방 분해 장치.Cryolipolysis device having a variable distance of the driving energy of the thermoelectric element or the distance between one surface of the thermoelectric element and the skin of the subject as a variable.
  5. 제3항에서,In claim 3,
    상기 제어부는,The control unit,
    상기 산출된 냉각부의 온도와 상기 냉각부의 목표 온도에 기초하여 상기 열전소자를 구동하는 구동 전압을 제어하는 구동부A driving unit controlling a driving voltage for driving the thermoelectric element based on the calculated temperature of the cooling unit and a target temperature of the cooling unit;
    를 더 포함하는 냉동 지방 분해 장치.Cryo lipolysis device further comprising.
  6. 피시술자의 피부에 접촉되는 냉각부, 일면이 상기 냉각부에 부착되어 상기 냉각부룰 냉각시키는 열전소자 및 상기 열전소자의 타면에 부착되어 상기 열전소자에서 발생되는 열을 냉각시키는 열교환부를 포함하는 냉동 지방 분해 장치의 제어 방법에 있어서,Frozen fat decomposition comprising a cooling unit in contact with the skin of the subject, one surface is attached to the cooling unit and the thermoelectric element to cool the cooling unit and a heat exchanger attached to the other surface of the thermoelectric element to cool the heat generated by the thermoelectric element. In the control method of the device,
    상기 역기전력과 상기 열전소자를 구동하는 구동 전압이 혼재된 전압을 측정하는 단계,Measuring a voltage in which the counter electromotive force and a driving voltage for driving the thermoelectric element are mixed;
    상기 냉각수의 온도를 측정하는 단계,Measuring the temperature of the cooling water,
    상기 구동 전압과 상기 역기전력 사이의 상관관계를 기초로 상기 측정 전압을 이용하여 상기 역기전력을 계산하는 단계,Calculating the counter electromotive force using the measured voltage based on a correlation between the driving voltage and the counter electromotive force;
    상기 측정된 냉각수의 온도를 이용하여 상기 열전소자 타면의 온도를 계산하는 단계, 그리고Calculating a temperature of the other surface of the thermoelectric element by using the measured temperature of the cooling water, and
    상기 계산된 역기전력과 상기 계산된 열전소자 타면의 온도를 이용하여 상기 열전소자 일면의 온도를 계산하는 단계Calculating a temperature of one surface of the thermoelectric element by using the calculated back electromotive force and the calculated temperature of the other surface of the thermoelectric element
    를 포함하는 냉동 지방 분해 장치의 제어 방법.Control method of the frozen fat decomposition apparatus comprising a.
  7. 제6항에서,In claim 6,
    상기 계산된 열전소자 일면의 온도를 소정의 알고리즘을 통해 보정하여 상기 냉각부의 온도를 산출하는 단계Computing the calculated temperature of one surface of the thermoelectric element through a predetermined algorithm to calculate the temperature of the cooling unit
    를 더 포함하는 냉동 지방 분해 장치의 제어 방법.The control method of the frozen lipolysis device further comprising.
  8. 제7항에서,In claim 7,
    상기 소정의 알고리즘은,The predetermined algorithm is
    상기 열전소자의 구동 에너지량 또는 상기 열전소의 일면과 상기 피시술자의 피부 사이의 이격거리를 변수로 가지는 냉동 지방 분해 장치의 제어 방법.And a driving distance of the thermoelectric element or a separation distance between one surface of the thermoelectric element and the skin of the subject as a variable.
  9. 제8항에서,In claim 8,
    상기 산출된 냉각부의 온도와 상기 냉각부의 목표 온도에 기초하여 상기 열전소자를 구동하는 구동 전압을 제어하는 단계Controlling a driving voltage for driving the thermoelectric element based on the calculated temperature of the cooling unit and a target temperature of the cooling unit;
    를 더 포함하는 냉동 지방 분해 장치의 제어 방법.The control method of the frozen lipolysis device further comprising.
PCT/KR2017/002840 2016-03-17 2017-03-16 Frozen fat decomposition apparatus and control method therefor WO2017160097A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160032262A KR101650155B1 (en) 2016-03-17 2016-03-17 Device for lipolysis using cooling and control method thereof
KR10-2016-0032262 2016-03-17

Publications (2)

Publication Number Publication Date
WO2017160097A2 true WO2017160097A2 (en) 2017-09-21
WO2017160097A3 WO2017160097A3 (en) 2018-09-07

Family

ID=56855064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002840 WO2017160097A2 (en) 2016-03-17 2017-03-16 Frozen fat decomposition apparatus and control method therefor

Country Status (2)

Country Link
KR (1) KR101650155B1 (en)
WO (1) WO2017160097A2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10471269B1 (en) 2015-07-01 2019-11-12 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10478633B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10596386B2 (en) 2016-07-01 2020-03-24 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10632321B2 (en) 2016-07-01 2020-04-28 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10695576B2 (en) 2015-07-01 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10709894B2 (en) 2015-07-01 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10709895B2 (en) 2016-05-10 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10821295B1 (en) 2015-07-01 2020-11-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11185690B2 (en) 2016-05-23 2021-11-30 BTL Healthcare Technologies, a.s. Systems and methods for tissue treatment
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11247063B2 (en) 2019-04-11 2022-02-15 Btl Healthcare Technologies A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11253718B2 (en) 2015-07-01 2022-02-22 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11491329B2 (en) 2020-05-04 2022-11-08 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
US11633596B2 (en) 2020-05-04 2023-04-25 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101650155B1 (en) * 2016-03-17 2016-08-22 정성재 Device for lipolysis using cooling and control method thereof
KR102506676B1 (en) * 2016-11-15 2023-03-06 주식회사 리센스메디컬 Cryoanesthesia device, method for controlling cryoanesthesia device and temperature controller of coolant in cryoanesthesia device
KR102642164B1 (en) * 2018-10-01 2024-02-29 주식회사 리센스메디컬 Cryoanesthesia device, method for controlling cryoanesthesia device and temperature controller of coolant in cryoanesthesia device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2478887C (en) * 2002-03-15 2013-08-13 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
US8702774B2 (en) 2009-04-30 2014-04-22 Zeltiq Aesthetics, Inc. Device, system and method of removing heat from subcutaneous lipid-rich cells
US20140364841A1 (en) * 2011-11-14 2014-12-11 Andrew Kornstein Cryolipolyis device having a curved applicator surface
KR101273897B1 (en) * 2013-02-06 2013-06-17 주식회사 썬닉스 Temperature control apparatus and method thereof
KR101487850B1 (en) * 2013-08-08 2015-02-02 (주)클래시스 apparatus for treating obesity by freezing fat cell
KR101650155B1 (en) * 2016-03-17 2016-08-22 정성재 Device for lipolysis using cooling and control method thereof
KR101682685B1 (en) * 2016-04-21 2016-12-06 정성재 Ice Cup, Device for Lipolysis using Cooling and Control Method thereof

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11612758B2 (en) 2012-07-05 2023-03-28 Btl Medical Solutions A.S. Device for repetitive nerve stimulation in order to break down fat tissue means of inductive magnetic fields
US10471269B1 (en) 2015-07-01 2019-11-12 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10478633B2 (en) 2015-07-01 2019-11-19 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11266850B2 (en) 2015-07-01 2022-03-08 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US10695576B2 (en) 2015-07-01 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10709894B2 (en) 2015-07-01 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
US10821295B1 (en) 2015-07-01 2020-11-03 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11253718B2 (en) 2015-07-01 2022-02-22 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US11602629B2 (en) 2016-05-03 2023-03-14 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including rf and electrical energy
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11883643B2 (en) 2016-05-03 2024-01-30 Btl Healthcare Technologies A.S. Systems and methods for treatment of a patient including RF and electrical energy
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11691024B2 (en) 2016-05-10 2023-07-04 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11464994B2 (en) 2016-05-10 2022-10-11 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11590356B2 (en) 2016-05-10 2023-02-28 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US10709895B2 (en) 2016-05-10 2020-07-14 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11458307B2 (en) 2016-05-23 2022-10-04 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11185690B2 (en) 2016-05-23 2021-11-30 BTL Healthcare Technologies, a.s. Systems and methods for tissue treatment
US11896821B2 (en) 2016-05-23 2024-02-13 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11878162B2 (en) 2016-05-23 2024-01-23 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11623083B2 (en) 2016-05-23 2023-04-11 Btl Healthcare Technologies A.S. Systems and methods for tissue treatment
US11524171B2 (en) 2016-07-01 2022-12-13 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11266852B2 (en) 2016-07-01 2022-03-08 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
US10632321B2 (en) 2016-07-01 2020-04-28 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11607556B2 (en) 2016-07-01 2023-03-21 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US10596386B2 (en) 2016-07-01 2020-03-24 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US11484727B2 (en) 2016-07-01 2022-11-01 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11628308B2 (en) 2016-07-01 2023-04-18 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11497925B2 (en) 2016-07-01 2022-11-15 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11794029B2 (en) 2016-07-01 2023-10-24 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11679270B2 (en) 2016-07-01 2023-06-20 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US11247063B2 (en) 2019-04-11 2022-02-15 Btl Healthcare Technologies A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11484725B2 (en) 2019-04-11 2022-11-01 Btl Medical Solutions A.S. Methods and devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
US11679255B2 (en) 2020-05-04 2023-06-20 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11806528B2 (en) 2020-05-04 2023-11-07 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11813451B2 (en) 2020-05-04 2023-11-14 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11826565B2 (en) 2020-05-04 2023-11-28 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11633596B2 (en) 2020-05-04 2023-04-25 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11491329B2 (en) 2020-05-04 2022-11-08 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Also Published As

Publication number Publication date
WO2017160097A3 (en) 2018-09-07
KR101650155B1 (en) 2016-08-22

Similar Documents

Publication Publication Date Title
WO2017160097A2 (en) Frozen fat decomposition apparatus and control method therefor
US11452671B2 (en) Vibration and heat generation apparatus for use with compression wraps
WO2015093753A1 (en) Portable body-contact therapeutic device
WO2012138056A1 (en) Apparatus for removing fat having excellent effects in removing fatty tissue, and method for removing fat using same
WO2015060671A1 (en) Apparatus for lipolysis
DE69925148D1 (en) PATIENT COOLING DEVICE
WO2022059992A1 (en) Backpack-type cooling aparatus for protective suit
WO2012121554A2 (en) Measurement/meridian stimulation device using electrical stimulation, and a meridian stimulation method using same
WO2011030947A1 (en) Portable device for treating atopy
WO2014182046A1 (en) Lipolysis apparatus
WO2019203519A1 (en) High frequency treatment device
US20120151951A1 (en) Cool vest
WO2018004241A1 (en) Apparatus for strengthening pelvic floor muscles
WO2020138701A1 (en) Smart electronic moxibustion treatment system
WO2012026740A2 (en) Intake fluid heating and cooling apparatus, and intake fluid supply system having same
CN208942537U (en) It is a kind of for eliminating the cold compress device and physical therapeutic system of muscular fatigue
WO2015088180A1 (en) Stimulation apparatus and method
CN108042335A (en) A kind of equipment for dispelling fatigue and the system for dispelling fatigue
WO2016003203A1 (en) Medical band
WO2017073861A1 (en) Gel-type electrode unit for high frequency treatment device
WO2018016819A1 (en) Rf energy transmitter and rf energy transmission method
CN206526163U (en) A kind of auxiliary thermal therapeutic apparatus of medicine
WO2019164173A1 (en) Skin care device and control method therefor
WO2014129690A1 (en) Device for alleviating pain of temporomandibular joint
WO2016105154A1 (en) Portable low frequency generating pad

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766998

Country of ref document: EP

Kind code of ref document: A2

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22.01.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17766998

Country of ref document: EP

Kind code of ref document: A2