WO2017160040A1 - Antifreeze additive for simultaneous removal of nitrogen oxides and particulate materials and antifreeze containing same - Google Patents

Antifreeze additive for simultaneous removal of nitrogen oxides and particulate materials and antifreeze containing same Download PDF

Info

Publication number
WO2017160040A1
WO2017160040A1 PCT/KR2017/002687 KR2017002687W WO2017160040A1 WO 2017160040 A1 WO2017160040 A1 WO 2017160040A1 KR 2017002687 W KR2017002687 W KR 2017002687W WO 2017160040 A1 WO2017160040 A1 WO 2017160040A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
particle size
antifreeze
mesh
Prior art date
Application number
PCT/KR2017/002687
Other languages
French (fr)
Korean (ko)
Inventor
신충교
Original Assignee
(주)그리닉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)그리닉스 filed Critical (주)그리닉스
Publication of WO2017160040A1 publication Critical patent/WO2017160040A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids

Definitions

  • the present invention relates to an antifreeze additive for removing nitrogen oxide and particulate matter at the same time and an antifreeze comprising the same, and more specifically, using an additive which is added directly to an antifreeze unlike the prior art by a mechanical construction or aftertreatment device.
  • the present invention relates to an antifreeze additive for simultaneously removing nitrogen oxide and particulate matter and an antifreeze comprising the same, which can effectively remove nitrogen oxide and particulate matter.
  • Pollutants emitted from diesel engines include carbon monoxide, hydrocarbons, nitrogen oxides (NOx) and particulate matter (PM). Diesel engines operate with relatively sufficient air, so carbon monoxide and hydrocarbons are less problematic than gasoline vehicles. However, since nitrogen oxides and particulate matters are a big problem as diesel vehicle pollutants, an effective treatment is required. Nitrogen oxides (NOx) and particulate matter (PM) discharged together with the exhaust gas are inversely related to each other. Therefore, when the amount of NOx is decreased, the amount of PM is increased. This increases the phenomenon.
  • NOx nitrogen oxides
  • PM particulate matter
  • Known methods for treating nitrogen oxides include fuel denitrification, which preliminarily removes nitrogen compounds contained in the fuel using catalysts, combustion modifications for reducing them during combustion, and post-treatment for treating exhaust gases. The most researched among these is the method of decomposing nitrogen oxide using a catalyst among post-treatment methods. Since the development of the three-way catalyst of gasoline cars, many studies have been conducted, and metal-substituted zeolite or metal oxide catalysts have been developed.
  • the particulate matter that is emitted a lot from the diesel engine is largely composed of Soluble Organic Fraction (SOF), soot and sulfide. Therefore, it is necessary to remove SOF, gaseous hydrocarbons, carbon monoxide and odor components which are composed mostly of hydrocarbons in the exhaust gas components.
  • SOF Soluble Organic Fraction
  • the technology for purifying the exhaust gas largely includes high quality of diesel, improvement of engine performance, and attachment of aftertreatment devices, which are complementary to each other.
  • Post-treatment technology is a technology that continuously removes pollutants contained in exhaust gas emitted from diesel engines under operating conditions. It is a filtration technology that filters and collects soot in exhaust gas with a filter and continuously collects particulate matter under operating conditions. It is divided into regeneration technology that burns and regenerates the filtration device.
  • the filter trap method shows very high filtration efficiency, and therefore, active research is being conducted worldwide, and the development of actual vehicle experiment and commercialization stage is also being promoted.
  • the particulate matter removing device of the filter trap method has problems such as complexity, durability and price of the control device.
  • catalytic converters for reducing particulate matter emitted from diesel vehicles using catalysts are not only harmful to particulate matter but also harmful to gaseous or particulate matter such as carbon monoxide, hydrocarbons, odorants, aldehydes, PAH, and nitro-PAH. Remove the material.
  • the device structure is simple, inexpensive, and the fuel consumption rate is relatively low, so it is not necessary to change the vehicle, so it can be easily installed. Therefore, if only a catalyst having high activity is developed and used on a carrier, it is possible to solve the problems of complexity, difficulty and high cost of a regeneration system that require regeneration after filtering particulate matter such as a trap system.
  • the present applicant has applied for an antifreeze additive for improving the performance of a vehicle and an antifreeze prepared by using the same (Korea Patent Publication No. 10-0866919, Nov. 4, 2008).
  • the antifreeze additive has an advantage of increasing fuel efficiency and improving output, but has a disadvantage in that the effect of reducing nitrogen oxide and particulate matter (Particulate Matters) is not sufficient.
  • Patent Document 1 KR 10-0866919 B1 2008.11.04.
  • the present invention provides the following means.
  • the present invention is based on 100 parts by weight of tourmaline 1,000 to 2,000 parts by weight of ganbanite, 7 to 14 parts by weight of rare earth metal, 10 to 20 parts by weight of electromagnetic wave enhancing enhancer, 10 to 20 parts by weight of far infrared ray generating enhancer and 10 to about hydrogen generating enhancer 20 parts by weight, wherein the rare earth metal is at least one selected from the group consisting of lanthanum (La), cerium (Ce) and neodymium (Nd), provides an antifreeze additive for simultaneously removing nitrogen oxide and particulate matter.
  • the rare earth metal is at least one selected from the group consisting of lanthanum (La), cerium (Ce) and neodymium (Nd)
  • the electromagnetic wave generation enhancing material is mixed with germanium 40 to 60% by weight, selenium 20 to 40% by weight, zeolite 5 to 15% by weight and ferrite 5 to 15% by weight.
  • the far-infrared ray-enhancing substance is mixed with 40 to 60% by weight of potassium feldspar, 10 to 30% by weight of illite, 10 to 30% by weight of diorite and 5 to 15% by weight of dolomite.
  • the hydrogen generating strengthening material is mixed 40 to 60% by weight of zirconium, 20 to 40% by weight of strontium and 10 to 30% by weight of yttrium.
  • SiO 2 silicon dioxide
  • TiO 2 titanium dioxide
  • cooling water activating material is additionally included with respect to 100 parts by weight of the tourmaline, wherein the cooling water activating material is mixed 50 to 70% by weight of zirconia, 20 to 40% by weight of silicon carbide and 5 to 15% by weight of sodium carbonate.
  • anion emitting material is additionally included with respect to 100 parts by weight of tourmaline, wherein the anion emitting material is 50 to 70% by weight of bentonite, 10 to 30% by weight of kaolinite, 5 to 15% by weight of jade gemstone and 5 to 15% by weight of yellow gemstone. Mix%.
  • this invention provides the antifreeze containing 0.1-2 weight part of antifreeze additives of Claim 1 with respect to 100 weight part of antifreeze liquids.
  • Antifreeze additive for simultaneously removing the nitrogen oxides and particulate matter according to the present invention has the advantage that can effectively remove the nitrogen oxides and particulate matter as well as fuel economy and output increase.
  • Example 3 is a photograph of the inventor injecting the antifreeze additive of Example 1 into the vehicle under test.
  • Example 5 is a result of testing the light absorption coefficient before injecting the antifreeze additive of Example 1 into the test vehicle.
  • Example 6 is a test result of the light absorption coefficient after injecting the antifreeze additive of Example 1 into the test vehicle.
  • Antifreeze additive for simultaneously removing the nitrogen oxide and particulate matter of the present invention
  • Tourmaline elvan, rare earth metals, electromagnetic wave enhancing materials, far infrared ray generating materials, and hydrogen generating materials.
  • the antifreeze additive for simultaneously removing the nitrogen oxides and particulate matter
  • the tourmaline generates a lot of energy when heat is applied.
  • the coolant inside the radiator is ionized by the energy, and positive charges are generated in the coolant in the vicinity of the cylinder at the highest temperature.
  • a negative charge is generated inside the cylinder by the movement of the piston which rotates at a high speed. Since there is a potential difference between the positive charge of the cooling water and the negative charge inside the cylinder, an electron flow occurs. Since the electrons move faster as the temperature increases, electromagnetic waves are generated by high-speed electron movement in the vicinity of the high-temperature cylinder, and the electromagnetic waves can be completely burned by subdividing the fuel in the combustion chamber to make it easier to burn.
  • the tourmaline is preferably used having a particle size of 3,000 ⁇ 12,000 mesh (mesh).
  • the elvan releases far infrared rays when heat is applied.
  • the far infrared generates electrical wave energy to activate fuel.
  • Automotive fuel is a semiacid hydrocarbon, which emits far-infrared rays, and the spin motion of the hydrocarbon's electrons acts in the opposite direction to the wave energy of the far-infrared rays due to the energy generated by the change of the dipole moment caused by the vibration and rotational motion of the far infrared rays.
  • the molecules lose their connection to each other and become particulate.
  • the elvan is preferably used having a particle size of 800 ⁇ 1,200 mesh (mesh).
  • the elvan has the elements containing 54% by weight of SiO 2 , 14% by weight of MgO, 13% by weight of Al 2 O 3 , 8% by weight of Fe 2 O 3 , 7% by weight of CaO, 2 % by weight of K 2 O and 2% by weight of Na 2 O 2 May contain%.
  • the rare earth metal emits fine radiation to reform petroleum-based hydrocarbon fuels, generates OH groups at the time of combustion with negative air ions, and reduces harmful exhaust gases such as CO and HC.
  • the rare earth metal is a metal capable of effectively storing a large amount of hydrogen to generate hydrogen in hot cooling water to improve the efficiency of combustion through the recycling function of hydrogen.
  • rare earth lanthanide (La), cerium (Ce), and neodymium (Nd) which is easy to release hydrogen from the rare earth metal, have high purity of released hydrogen, and can also play a role as an essential element of brown motion. Is preferably used. These can be used individually by 1 type or in mixture of 2 or more types of these. It is preferable to use the rare earth metal having a particle size of 15,000 mesh to 100 nanometers (nm).
  • the electromagnetic wave generation enhancing material is preferably mixed with germanium 40 to 60% by weight, selenium 20 to 40% by weight, zeolite 5 to 15% by weight and ferrite 5 to 15% by weight.
  • the germanium serves to match an unbalanced electron number. Nanocombination of the germanium and silicon greatly improves the property of converting heat into electricity.
  • the selenium serves as a photosensitive member to help increase the function of other elements by interfering with electrical conduction along with functions such as heat absorption and heat dissipation.
  • the skeleton of the zeolite is a three-dimensional inorganic polymer in which silicon and aluminum are connected through four cross-linked oxygen, respectively, wherein aluminum has a negative charge as it bonds to four oxygen. Various cations exist to counteract this negative charge.
  • the ferrite has a high temperature coefficient and can operate in the vicinity of an internal combustion engine of an automobile, and is a permanent magnet of BaO ⁇ 6Fe 2 O 3 and SrO ⁇ 6Fe 2 O 3 components.
  • the far-infrared reinforcing material is preferably mixed with 40 to 60% by weight of potassium feldspar, 10 to 30% by weight of illite, 10 to 30% by weight of diorite and 5 to 15% by weight of dolomite.
  • Potassium feldspar is a feldspar group mineral containing potassium as a main component is a chemical component KAlSi 3 O 8 . Such potassium feldspar radiates beneficial far-infrared rays and is excellent in removing heavy metals.
  • the illite (K, H 3 O) Al 2 (Si, Al) 4 O 10 (H 2 O, OH) 2 ) is a fine hydrous silicate mineral that is a clay material, a rare mica having a centered structure of Montmorillonite and Muscovite Micalikeclay Minerals. Illite emits 89 ⁇ 92% of far infrared rays with 2 ⁇ 25 ⁇ m wavelength at room temperature.
  • the deodorizing power is very strong, by activating water molecules to secure more than three times the dissolved oxygen and strong oxygen cohesion.
  • Kiyoseki is a new material that emits a large amount of anions and emits the best far-infrared rays at room temperature, and exists in a mine formed by high temperature and warm water action due to the earthquake fluctuation of about 65 million years ago, and condensed the energy of the natural world. As a substance, it is the only natural stone produced in Gunma Prefecture in Japan.
  • the dolomite is a trigonal mineral, which is formed by dolomite of calcite and is similar to calcite. Dolomite has a property of emitting a large amount of far infrared rays.
  • the hydrogen generating strengthening material is preferably mixed 40 to 60% by weight of zirconium, 20 to 40% by weight of strontium and 10 to 30% by weight of yttrium.
  • the zirconium and strontium are constituent elements for maximizing the hydrogen storage function and have a high hydrogen storage rate and are materials capable of generating hydrogen in the cooling water effectively.
  • the hydrogen storage function is further enhanced in addition to the existing rare earth metals, and it is possible to perform the catalytic function on the cast iron / titanium alloy membrane of the cylinder liner and the hydrogen (H) and carbon (C) in the cylinder, so that the same with a small amount of fuel. It can function as kinetic energy, and as a result, it is possible to significantly reduce the emission of carbon dioxide and the like.
  • the zirconium combines with hydrogen as one of the transition elements to produce a metal hydride.
  • Such hydrides include ZrH 2 , ZrH, and the like, and have a structure in which hydrogen atoms penetrate into the gaps of the metal lattice.
  • zirconium is an environmentally friendly material present in abundance in nature can be easily obtained from natural minerals and the like.
  • the strontium is one of alkaline earth metal elements belonging to Group 2 of the periodic table, and also combines with hydrogen to produce metal type hydride.
  • hydrogen since the reactivity to water is greater than that of calcium, hydrogen can be easily generated, and additional hydrogen can be easily provided. In nature, they exist mainly in the form of Celestite (SrSO 4 ) and Strontianite (SrCO 3 ).
  • the zirconium or strontium is preferably used in the form of powder of micron to nano size. This is to smoothly perform the hydrogen storage function and the catalyst function.
  • Yttrium is a rare earth yttrium-based representative element, a material capable of effectively complement the hydrogen storage function of zirconium and strontium. It is preferable to use the yttrium having a particle size of 15,000 mesh to 100 nanometers (nm).
  • the antifreeze additive for simultaneously removing nitrogen oxide and particulate matter of the present invention may further include 1 to 5 parts by weight of silicon dioxide (SiO 2 ) and 1 to 5 parts by weight of titanium dioxide (TiO 2 ) based on 100 parts by weight of tourmaline. .
  • SiO 2 with purity over 99.99% Nano-powders stabilize the ions in the cooling water to reduce the static voltage and static electricity, thereby reducing the vibration and noise of the vehicle.
  • the silicon dioxide (SiO 2 ) is preferably used having a particle size of 15,000 mesh ⁇ 100 nanometers (nm).
  • the titanium dioxide When the titanium dioxide receives ultraviolet light, electrons are formed to generate hydroxy radicals (-OH) and superoxides (O 2 ) having strong oxidizing power. These hydroxy radicals and superoxides decompose organic compounds into water and carbon dioxide. This principle breaks down pollutants in water and converts them into harmless water and carbon dioxide.
  • the titanium dioxide (TiO 2 ) is preferably used having a particle size of 15,000 mesh ⁇ 100 nanometers (nm).
  • the antifreeze additive for simultaneously removing the nitrogen oxide and the particulate matter of the present invention may further include 5 to 10 parts by weight of the cooling water activator with respect to 100 parts by weight of tourmaline.
  • the coolant activating material can induce complete combustion by activating water used for cooling the engine.
  • the cooling water performance enhancing material may activate the cooling water by forming a cluster of soft water water clusters in which water molecules are combined in contact with water to form a small cluster. Activated water circulates around the engine during combustion, affecting combustion characteristics, leading to complete combustion and reducing soot emissions.
  • the cooling water activator is preferably 50 to 70% by weight of zirconia, 20 to 40% by weight of silicon carbide and 5 to 15% by weight of sodium carbonate.
  • the antifreeze additive for simultaneously removing the nitrogen oxide and the particulate matter of the present invention may further include 5 to 10 parts by weight of anion emitting material based on 100 parts by weight of tourmaline.
  • the anion increases the combustion efficiency by activating oxygen when the fuel is mixed with the oxygen of the intake air for combustion to smoothly oxidize the fuel.
  • the anion emitting material can be a pleasant driving environment by removing the odor and purifying the air.
  • the anion emitter is preferably 50 to 70% by weight of bentonite, 10 to 30% by weight of kaolinite, 5 to 15% by weight of jade and 5 to 15% by weight of yellow gemstones.
  • Bentonite refers to clay mainly containing montmorillonite, a mineral belonging to a monoclinic system having a crystalline structure such as mica.
  • the color is white, gray, light brown, light green and the like.
  • the kaolinite is a monocrystalline mineral represented by Al 2 Si 2 O 5 (OH) 4 as a kind of clay component.
  • the clay is a clay mineral in which the Si and Al plates are alternately lined up and have a 1: 1 type crystal lattice.
  • the jade is a generic name for jadeite, which is a kind of hornblende having fine and dense fibrous crystals, and jadeite, which is a kind of alkali fluoride, which forms a hard monoclinic system. Also called Topaz). These jade and yellow gemstones contain abundant anion groups due to their chemical structure and generate a large amount of anions.
  • nano-sized particles generally have a very large surface area compared to their volume and have a strong surface tension, which may cause aggregation between nano particles. That is, when the zirconium or strontium is used in the nano-size, it is not possible to exclude the possibility of aggregation between the particles in a narrow space when the antifreeze is packaged in a predetermined container. Therefore, it is preferable to add at least one or more of a surfactant or a dispersant to the antifreeze additive to prevent aggregation between nanoparticles and to disperse uniformly in the solvent.
  • the surfactant is used to prevent agglomeration of the nanopowder mixed with the solvent, and there is no particular limitation on the kind thereof.
  • conventional surfactants used to disperse metal powder in engine lubricants can be used.
  • organic amino acids, polyethylene glycol ethers such as polyethylene glycol mono-4-nonylphenyl ether, stearic acid, sodium dodecyl sulfate (SDS) and the like are used.
  • the addition amount of the said surfactant is 0.05-10 weight part with respect to 100 weight part of total antifreeze, More preferably, 0.1-5 weight part is added. If it is less than 0.05 part by weight, it is difficult to obtain a satisfactory level of anti-aggregation effect of nanopowder, and if it exceeds 10 parts by weight, certain physical properties such as heat resistance may be lowered in the antifreeze composition.
  • the dispersant is to prevent aggregation of the nanopowder mixed with the solvent and to increase dispersibility and to suppress sedimentation of the nanopowder, and there is no particular limitation on the type.
  • an epoxy resin, oleic acid, linoleic acid, Tamol NN8906, Tween 20, or the like is used.
  • a packaging method generally employed in the art such as a plastic or glass container, may be used.
  • a plastic or glass container such as PE, PP, or PET may be used as the material of the plastic container, but is not limited thereto.
  • the antifreeze additive may be packaged in the form of capsules or ampoules or prepared in the form of granules or stick bars.
  • a solution of a certain concentration or an antifreeze additive which is a solid content (granule) of a certain content ratio convenience to supply and use to a consumer is improved.
  • the outer material of the capsule is melted in the high temperature cooling water, and the antifreeze additive is automatically distributed in the cooling water.
  • packaging in the form of ampoules it is easy to carry, there is an advantage that can be appropriately added to the coolant from time to time by cutting one end of the ampoule whenever necessary.
  • the outer material of the capsule may be gelatin or collagen, and the outer material of the ampoule may be glass or hard vinyl chloride, but is not limited thereto.
  • the present invention provides an antifreeze prepared by including the antifreeze additive.
  • the antifreeze is prepared by including 0.1 to 2 parts by weight of the antifreeze additive based on 100 parts by weight of the total antifreeze.
  • tourmaline 100 parts by weight of tourmaline, 1,500 parts by weight of ganbanite, 3 parts by weight of lanthanum, 3 parts by weight of neodymium, 3 parts by weight of cerium, 20 parts by weight of electromagnetic wave generating enhancer, 15 parts by weight of far infrared ray generating enhancer, 10 parts by weight of hydrogen generating enhancer, cooling water
  • An antifreeze additive was prepared by mixing 10 parts by weight of the activating material, 5 parts by weight of anion emitting material, 2 parts by weight of silicon dioxide (SiO 2 ) and 2 parts by weight of titanium dioxide (TiO 2 ).
  • the electromagnetic wave generating enhancement material was prepared by mixing 50% by weight of germanium, 30% by weight of selenium, 10% by weight of zeolite and 10% by weight of ferrite.
  • the far-infrared reinforcing material was prepared by mixing 50% by weight of potassium feldspar, 20% by weight of illite, 20% by weight of diorite, and 10% by weight of dolomite.
  • the hydrogen generating reinforcing material was prepared by mixing 50% by weight of zirconium, 30% by weight of strontium and 20% by weight of yttrium.
  • the cooling water activator was prepared by mixing 60% by weight of zirconia, 30% by weight of silicon carbide and 10% by weight of sodium carbonate.
  • the anion emitting material was prepared by mixing 60% by weight of bentonite, 20% by weight of kaolinite, 10% by weight of jade and 10% by weight of yellow gemstones.
  • the particle size of tourmaline is 12,000 mesh
  • the particle size of elvan is 1,200 mesh
  • the particle size of lanthanum is 100 nanometer
  • the particle size of neodymium is 100 nanometer
  • the particle size of cerium is 100 nanometer
  • the particle size is 12,000 mesh
  • the particle size of far-infrared reinforcing material is 1,200 mesh
  • the particle size of hydrogen-reinforcing material is 100 nanometer
  • the particle size of cooling water activator is 1,200 mesh
  • the particle size of anion emitting material is 1,200 mesh
  • silicon dioxide The particle size of 100 nanometer, the titanium dioxide particle size of 100 nanometer was used.
  • Example 1 In order to investigate the exhaust gas reduction amount of the antifreeze additive prepared in Example 1, a test was carried out using a 5-gas measuring instrument at Tianjin Transit Technology Co., Ltd. of China, and the measurement results of NOx are shown in Table 1.
  • the test vehicle used the old KIA SPORTAGE diesel vehicle.
  • the antifreeze additive according to the present invention reduces NOx by 91% or more.
  • the antifreeze additive according to the present invention reduces HC by 93% or more.
  • Example 3 In order to investigate the particulate matter reduction effect of the antifreeze additive prepared in Example 1, the soot measuring instrument acceleration mode test test was performed in Sangsin Engineering Co., Ltd., the suction value and the impermeability measurement results are shown in Table 3.
  • the test vehicle used a 2013 Volkswagen PASSAT 2.0 TDI diesel vehicle.
  • Example 3 According to Table 3, it can be seen that the antifreeze additive of Example 1 significantly improved the impermeability from 83.1% to 14.1%.
  • Example 4 In order to investigate the effect of reducing the particulate matter of the antifreeze additive prepared in Example 1, the test was carried out at the state inspection center of Shenyang, China, and the results of measuring the light absorption coefficient k are shown in Table 4.
  • the test vehicle used a Chinese truck (diesel).
  • the photographs of the inspection station, the photograph of the test vehicle, the antifreeze additive injection photograph and the test results are shown in FIGS.
  • the antifreeze additive according to the present invention can significantly reduce particulate matter (PM).
  • the antifreeze additive according to the present invention has an advantage of effectively removing nitrogen oxides and particulate matter.
  • the antifreeze additive rule prepared in Example 1 was commissioned by the Korea Institute of Chemical Fusion Testing to detect heavy metals and harmful substances. The test results are shown in Table 5.
  • Test items Unit Results Test methods Pd Mg / kg Not detected IEC 62321 Ed.1.0b: 2008 (AAS) CD Mg / kg Not detected IEC 62321 Ed.1.0b: 2008 (AAS) Hg Mg / kg Not detected IEC 62321 Ed.1.0b: 2008 (AAS) Cr (VI) Mg / kg Not detected IEC 62321 Ed.1.0b: 2008 (UV / Vis) Total-PBBs Mg / kg Not detected IEC 62321 Ed.1.0b: 2008 (GC / MS) Mono-bb Mg / kg Not detected IEC 62321 Ed.1.0b: 2008 (GC / MS) Di-BB Mg / kg Not detected IEC 62321 Ed.1.0b: 2008 (GC / MS) Tri-BB Mg / kg Not detected IEC 62321 Ed.1.0b: 2008 (GC / MS) Tetra-BB Mg / kg Not detected IEC 62321 Ed.1.0b: 2008 (GC / MS) Penta-bb Mg /
  • the antifreeze additive prepared in Example 1 does not contain heavy metals and harmful organic substances can be confirmed that the environment-friendly product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

The present invention relates to an antifreeze additive for simultaneous removal of nitrogen oxides and particulate materials and to antifreeze containing the same. The technical feature of the present invention is to comprise, in addition to tourmaline, elvan, a rare earth metal, an electromagnetic wave generation and reinforcement material, a far-infrared ray generation and reinforcement material, and a hydrogen generation and reinforcement material. The present invention has an advantage of increasing fuel efficiency, improving output, and effectively removing nitrogen oxides and particulate materials.

Description

질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제 및 이를 포함하는 부동액Antifreeze additives for removing nitrogen oxides and particulate matter at the same time and antifreeze comprising them
본 발명은 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제 및 이를 포함하는 부동액에 관한 것으로, 보다 상세하게는 기계적 구성 또는 후처리 장치에 의하는 종래 기술과 달리 부동액에 직접 첨가하는 첨가제를 사용하여 질소산화물과 입자상 물질을 효과적으로 제거할 수 있는, 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제 및 이를 포함하는 부동액에 관한 것이다.The present invention relates to an antifreeze additive for removing nitrogen oxide and particulate matter at the same time and an antifreeze comprising the same, and more specifically, using an additive which is added directly to an antifreeze unlike the prior art by a mechanical construction or aftertreatment device. The present invention relates to an antifreeze additive for simultaneously removing nitrogen oxide and particulate matter and an antifreeze comprising the same, which can effectively remove nitrogen oxide and particulate matter.
디젤엔진에서 배출되는 오염물질로는 일산화탄소, 탄화수소, 질소 산화물(NOx) 및 입자상 물질(PM) 등이 있다. 디젤엔진은 공기가 비교적 충분한 상태에서 운전되므로, 이들 오염물질 가운데 일산화탄소와 탄화수소는 휘발유 자동차에 비해 크게 문제가 없는 편이다. 그러나, 질소 산화물과 입자상 물질은 디젤 자동차 오염물질로 크게 문제가 되고 있으므로 이에 대한 효과적인 처리가 필요한 실정이다. 배기가스와 함께 배출되는 질소 산화물(NOx)와 입자상 물질(PM)은 서로 반비례 관계가 있기 때문에, NOx의 배출량이 감소되면 PM의 배출량이 증가되는 반면, PM의 배출량이 줄게 되면 상대적으로 NOx의 배출량이 증가되는 현상을 보이게 된다.Pollutants emitted from diesel engines include carbon monoxide, hydrocarbons, nitrogen oxides (NOx) and particulate matter (PM). Diesel engines operate with relatively sufficient air, so carbon monoxide and hydrocarbons are less problematic than gasoline vehicles. However, since nitrogen oxides and particulate matters are a big problem as diesel vehicle pollutants, an effective treatment is required. Nitrogen oxides (NOx) and particulate matter (PM) discharged together with the exhaust gas are inversely related to each other. Therefore, when the amount of NOx is decreased, the amount of PM is increased. This increases the phenomenon.
이러한 처리를 위해 연소실 개선, 연료분사의 개선, 흡기계의 개선 및 배출가스의 재순환 등을 이용하고 있으나, 아직 완벽한 기술로서 인정받지는 못하고 있는 실정이다. 질소산화물은 광화학 스모그 등 심각한 환경문제를 야기한다. 따라서, 자동차 배기가스 중의 질소산화물을 줄이려는 노력이 꾸준히 진행되어 왔었다. 현재까지 알려진 질소 산화물의 처리방법으로 주로 촉매를 이용하여 연료에 포함되어 있는 질소 화합물을 미리 제거하는 연료 탈질화법, 연소 과정에서 이를 줄이는 연소수정법 및 배기가스를 처리하는 후처리법 등이 있다. 이 중에서 가장 많은 연구가 진행되고 있는 것은 후처리법 중에서 촉매를 이용하여 질소 산화물을 분해하는 방법이다. 휘발유 자동차의 삼원촉매의 개발 이후 많은 연구가 진행되고 있으며, 금속으로 치환된 제올라이트나 금속산화물 촉매들이 개발되어 왔다.For this treatment, combustion chamber improvement, fuel injection improvement, intake system improvement, and exhaust gas recirculation are used, but they are not yet recognized as a perfect technology. Nitrogen oxides cause serious environmental problems such as photochemical smog. Therefore, efforts to reduce nitrogen oxides in automobile exhaust gas have been steadily progressed. Known methods for treating nitrogen oxides include fuel denitrification, which preliminarily removes nitrogen compounds contained in the fuel using catalysts, combustion modifications for reducing them during combustion, and post-treatment for treating exhaust gases. The most researched among these is the method of decomposing nitrogen oxide using a catalyst among post-treatment methods. Since the development of the three-way catalyst of gasoline cars, many studies have been conducted, and metal-substituted zeolite or metal oxide catalysts have been developed.
한편, 디젤엔진에서 많이 배출되는 입자상 물질은 크게 용해성 유기물질(Soluble Organic Fraction :SOF), 그을음 및 황화물로 구성된다. 따라서, 배기가스 성분 중 대부분 탄화수소로 구성되는 SOF, 기상 탄화수소, 일산화탄소 및 냄새성분의 제거가 필요하다. 이러한 배출가스를 정화시키는 기술은 크게 경유의 고품질화, 엔진성능의 개선 및 후처리장치의 부착 등을 포함하며 이들은 상호 보완되어 사용된다.On the other hand, the particulate matter that is emitted a lot from the diesel engine is largely composed of Soluble Organic Fraction (SOF), soot and sulfide. Therefore, it is necessary to remove SOF, gaseous hydrocarbons, carbon monoxide and odor components which are composed mostly of hydrocarbons in the exhaust gas components. The technology for purifying the exhaust gas largely includes high quality of diesel, improvement of engine performance, and attachment of aftertreatment devices, which are complementary to each other.
후처리 기술은 경유 엔진에서 배출되는 배기가스 내에 포함된 공해물질을 운행조건에서 연속적으로 제거하는 기술로서 배기가스 내의 매연을 여과제로 여과 및 포집하는 여과기술과 포집된 입자상 물질을 운행조건에서 연속적으로 연소시켜 여과장치를 재생시키는 재생기술로 나누어진다. 이들 후처리 기술 중에서 필터 트랩 방식은 매우 높은 여과효율을 나타내므로 세계적으로 활발한 연구가 진행되고 있으며, 현재 실차실험 및 상업화단계의 개발도 추진되고 있다. 그러나, 필터 트랩 방식의 입자상 물질 제거장치는 콘트롤 장치의 복잡성, 내구성 및 가격 등의 문제가 있다.Post-treatment technology is a technology that continuously removes pollutants contained in exhaust gas emitted from diesel engines under operating conditions. It is a filtration technology that filters and collects soot in exhaust gas with a filter and continuously collects particulate matter under operating conditions. It is divided into regeneration technology that burns and regenerates the filtration device. Among these post-treatment technologies, the filter trap method shows very high filtration efficiency, and therefore, active research is being conducted worldwide, and the development of actual vehicle experiment and commercialization stage is also being promoted. However, the particulate matter removing device of the filter trap method has problems such as complexity, durability and price of the control device.
한편, 디젤 자동차에서 배출되는 입자상 물질을 촉매를 사용하여 저감시키는 촉매전환장치는 입자상 물질의 저감 뿐 아니라 일산화탄소, 탄화수소, 냄새성분, 알데히드, PAH, 니트로-PAH와 같은 기상 또는 입자상 물질에 결합된 유해물질까지도 제거한다. 또한, 장치구조가 간단하고 가격이 저렴하며 연료소모율이 상대적으로 낮아 자동차의 변경이 필요하지 않아 쉽게 장착할 수 있다. 따라서, 높은 활성을 가진 촉매만 개발되면 담체에 담지시켜 사용할 경우, 트랩 시스템과 같이 입자상 물질을 여과한 후 재생하여야 하는 재생 시스템의 복잡성, 난점 및 고비용의 문제점을 해결할 수 있다.On the other hand, catalytic converters for reducing particulate matter emitted from diesel vehicles using catalysts are not only harmful to particulate matter but also harmful to gaseous or particulate matter such as carbon monoxide, hydrocarbons, odorants, aldehydes, PAH, and nitro-PAH. Remove the material. In addition, the device structure is simple, inexpensive, and the fuel consumption rate is relatively low, so it is not necessary to change the vehicle, so it can be easily installed. Therefore, if only a catalyst having high activity is developed and used on a carrier, it is possible to solve the problems of complexity, difficulty and high cost of a regeneration system that require regeneration after filtering particulate matter such as a trap system.
그러나, 현재까지 질소산화물과 입자상 물질을 동시에 제거하는 촉매의 실용화는 이루어지지 않은 실정이다.However, until now, practical use of a catalyst for simultaneously removing nitrogen oxide and particulate matter has not been achieved.
따라서, 상기 종래 기술이 가지는 문제점을 해결하고 보다 향상된 성능을 보여주는 매연 저감 방법이 요구된다.Accordingly, there is a need for a method for reducing soot that solves the problems of the prior art and shows more improved performance.
본 출원인은 운송수단의 성능 개선용 부동액 첨가제 및 이를 포함하여 제조된 부동액을 출원한 바 있다.(대한민국등록특허공보 제10-0866919호, 2008.11.04.)The present applicant has applied for an antifreeze additive for improving the performance of a vehicle and an antifreeze prepared by using the same (Korea Patent Publication No. 10-0866919, Nov. 4, 2008).
상기 부동액 첨가제는 연비를 상승시키고 출력을 향상시킨 장점이 있지만, 질소산화물과 입자상 물질(Particulate Matters)을 저감시키는 효과가 충분하지 않은 단점이 있다.The antifreeze additive has an advantage of increasing fuel efficiency and improving output, but has a disadvantage in that the effect of reducing nitrogen oxide and particulate matter (Particulate Matters) is not sufficient.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) KR 10-0866919 B1 2008.11.04. (Patent Document 1) KR 10-0866919 B1 2008.11.04.
본 발명의 목적은, 연비 상승 및 출력 향상뿐만 아니라 질소산화물과 입자상 물질을 효과적으로 제거할 수 있는, 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제 및 이를 포함하는 부동액을 제공하는 것이다.It is an object of the present invention to provide an antifreeze additive and an antifreeze comprising the same which simultaneously removes nitrogen oxides and particulate matter, which can effectively remove nitrogen oxides and particulate matter, as well as fuel economy and output.
상기 목적을 달성하기 위하여 본 발명은 다음과 같은 수단을 제공한다.In order to achieve the above object, the present invention provides the following means.
본 발명은 토르마린 100중량부에 대하여 맥반석 1,000~2,000중량부, 희토류 금속 7~14중량부, 전자파 발생 강화물질 10~20중량부, 원적외선 발생 강화물질 10~20중량부 및 수소 발생 강화물질 10~20중량부를 포함하되, 상기 희토류 금속은 란탄(La), 세륨(Ce) 및 네오디뮴(Nd)으로 이루어진 군으로부터 선택되는 1종 이상인, 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제을 제공한다.The present invention is based on 100 parts by weight of tourmaline 1,000 to 2,000 parts by weight of ganbanite, 7 to 14 parts by weight of rare earth metal, 10 to 20 parts by weight of electromagnetic wave enhancing enhancer, 10 to 20 parts by weight of far infrared ray generating enhancer and 10 to about hydrogen generating enhancer 20 parts by weight, wherein the rare earth metal is at least one selected from the group consisting of lanthanum (La), cerium (Ce) and neodymium (Nd), provides an antifreeze additive for simultaneously removing nitrogen oxide and particulate matter.
상기 전자파 발생 강화물질은 게르마늄 40~60중량%, 셀레늄 20~40중량%, 제올라이트 5~15중량% 및 페라이트 5~15중량%를 혼합한다. The electromagnetic wave generation enhancing material is mixed with germanium 40 to 60% by weight, selenium 20 to 40% by weight, zeolite 5 to 15% by weight and ferrite 5 to 15% by weight.
상기 원적외선 발생 강화물질은 칼륨장석 40~60중량%, 일라이트 10~30중량%, 귀양석 10~30중량% 및 돌로마이트 5~15중량%를 혼합한다. The far-infrared ray-enhancing substance is mixed with 40 to 60% by weight of potassium feldspar, 10 to 30% by weight of illite, 10 to 30% by weight of diorite and 5 to 15% by weight of dolomite.
상기 수소 발생 강화물질은 지르코늄 40~60중량%, 스트론튬 20~40중량% 및 이트륨 10~30중량%를 혼합한다. The hydrogen generating strengthening material is mixed 40 to 60% by weight of zirconium, 20 to 40% by weight of strontium and 10 to 30% by weight of yttrium.
상기 토르마린 100중량부에 대하여 이산화규소(SiO2) 1~5중량부 및 이산화티탄(TiO2) 1~5중량부를 추가적으로 포함할 수 있다.1 to 5 parts by weight of silicon dioxide (SiO 2 ) and 1 to 5 parts by weight of titanium dioxide (TiO 2 ) may be additionally included with respect to 100 parts by weight of the tourmaline.
상기 토르마린 100중량부에 대하여 냉각수 활성화물질 5~10중량부를 추가적으로 포함하되, 상기 냉각수 활성화물질은 지르코니아 50~70중량%, 탄화규소 20~40중량% 및 탄산나트륨 5~15중량%를 혼합한다. 5 to 10 parts by weight of the cooling water activating material is additionally included with respect to 100 parts by weight of the tourmaline, wherein the cooling water activating material is mixed 50 to 70% by weight of zirconia, 20 to 40% by weight of silicon carbide and 5 to 15% by weight of sodium carbonate.
상기 토르마린 100중량부에 대하여 음이온 방사물질 5~10중량부를 추가적으로 포함하되, 상기 음이온 방사물질은 벤토나이트 50~70중량%, 카올리나이트 10~30량%, 옥 5~15중량% 및 황보석 5~15중량%를 혼합한다. 5 to 10 parts by weight of anion emitting material is additionally included with respect to 100 parts by weight of tourmaline, wherein the anion emitting material is 50 to 70% by weight of bentonite, 10 to 30% by weight of kaolinite, 5 to 15% by weight of jade gemstone and 5 to 15% by weight of yellow gemstone. Mix%.
또한, 본 발명은, 부동액 100중량부에 대하여 제 1항의 부동액 첨가제를 0.1~2중량부 포함하는 부동액을 제공한다.Moreover, this invention provides the antifreeze containing 0.1-2 weight part of antifreeze additives of Claim 1 with respect to 100 weight part of antifreeze liquids.
본 발명에 따른 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제는 연비 상승 및 출력 향상뿐만 아니라 질소산화물과 입자상 물질을 효과적으로 제거할 수 있는 장점이 있다.Antifreeze additive for simultaneously removing the nitrogen oxides and particulate matter according to the present invention has the advantage that can effectively remove the nitrogen oxides and particulate matter as well as fuel economy and output increase.
도 1은 중국 심양시 국영 검사소 전경 사진이다.1 is a panoramic photo of the state inspection center of Shenyang, China.
도 2는 중국 심양시 국영 검사소에서 진행된 테스트 차량의 사진이다.2 is a photograph of a test vehicle carried out in the state inspection center of Shenyang, China.
도 3은 본 발명자가 테스트 대상 차량에 실시예 1의 부동액 첨가제를 주입하는 사진이다.3 is a photograph of the inventor injecting the antifreeze additive of Example 1 into the vehicle under test.
도 4는 Chassis Dynamo Meter 시험을 하기 위해 차량시험장치에 들어오는 테스트 차량의 사진이다.4 is a photograph of a test vehicle entering the vehicle test apparatus for the Chassis Dynamo Meter test.
도 5는 상기 테스트 차량에 실시예 1의 부동액 첨가제를 주입하기 전에 광흡수계수를 테스트한 결과이다.5 is a result of testing the light absorption coefficient before injecting the antifreeze additive of Example 1 into the test vehicle.
도 6은 상기 테스트 차량에 실시예 1의 부동액 첨가제를 주입한 후에 광흡수계수를 테스트한 결과이다.6 is a test result of the light absorption coefficient after injecting the antifreeze additive of Example 1 into the test vehicle.
이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
먼저, 본 발명에 따른 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제를 설명한다.First, an antifreeze additive for simultaneously removing nitrogen oxide and particulate matter according to the present invention will be described.
본 발명의 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제는,Antifreeze additive for simultaneously removing the nitrogen oxide and particulate matter of the present invention,
토르마린, 맥반석, 희토류 금속, 전자파 발생 강화물질, 원적외선 발생 강화물질 및 수소 발생 강화물질을 포함한다.Tourmaline, elvan, rare earth metals, electromagnetic wave enhancing materials, far infrared ray generating materials, and hydrogen generating materials.
상기 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제는,The antifreeze additive for simultaneously removing the nitrogen oxides and particulate matter,
토르마린 100중량부에 대하여 맥반석 1,000~2,000중량부, 희토류 금속 7~14중량부, 전자파 발생 강화물질 10~20중량부, 원적외선 발생 강화물질 10~20중량부 및 수소 발생 강화물질 10~20중량부를 포함하는 것이 바람직하다. 1,000 to 2,000 parts by weight of elvanite, 7 to 14 parts by weight of rare earth metal, 10 to 20 parts by weight of electromagnetic wave enhancing materials, 10 to 20 parts by weight of far-infrared light emitting materials, and 10 to 20 parts by weight of hydrogen generating materials It is preferable to include.
상기 토르마린(Tourmaline)은 열이 가해지면 많은 에너지를 발생시킨다. 상기 에너지에 의해 라디에이터 내부의 냉각수가 이온화되며, 가장 고온이 되는 실린더 부근에서는 냉각수에 양전하가 발생한다. 또한 실린더 내부는 고회전하는 피스톤의 움직임에 의해 실린더 내부에 음전하가 발생한다. 냉각수의 양전하와 실린더 내부의 음전하 사이에는 전위차가 있으므로 전자의 흐름이 발생한다. 전자는 고온이 될수록 이동 속도가 빨라지므로, 고온의 실린더 부근에 고속 전자 이동에 따라 전자파가 발생하고, 상기 전자파는 연소실 내부의 연료를 세분화해 연소하기 용이한 상태로 만들어 완전연소가 가능해진다. 상기 토르마린은 입자 크기가 3,000~12,000 메쉬(mesh)인 것을 사용하는 것이 바람직하다. The tourmaline generates a lot of energy when heat is applied. The coolant inside the radiator is ionized by the energy, and positive charges are generated in the coolant in the vicinity of the cylinder at the highest temperature. In addition, a negative charge is generated inside the cylinder by the movement of the piston which rotates at a high speed. Since there is a potential difference between the positive charge of the cooling water and the negative charge inside the cylinder, an electron flow occurs. Since the electrons move faster as the temperature increases, electromagnetic waves are generated by high-speed electron movement in the vicinity of the high-temperature cylinder, and the electromagnetic waves can be completely burned by subdividing the fuel in the combustion chamber to make it easier to burn. The tourmaline is preferably used having a particle size of 3,000 ~ 12,000 mesh (mesh).
상기 맥반석은 열이 가해지면 원적외선을 방출한다. 상기 원적외선은 전기적인 파동 에너지를 발생시켜 연료를 활성화시킨다. 자동차 연료는 반산성체인 탄화수소인데, 여기에 원적외선을 방사하면 원적외선의 진동과 회전 운동에 의한 쌍극자 모멘트의 변화로 생성되는 에너지에 의해 탄화수소의 전자의 스핀 운동이 원적외선의 파동 에너지와 반대 방향으로 활동하여 분자 상호간의 연결이 끊어져 미립자화 된다. 미립자화된 연료 분자에 원적외선의 전기적 파동에 의해 발생된 고주파가 주사되면 연료 분자의 핵 주위를 돌고 있는 전자의 움직임이 빨라져 연료가 최상의 활성화 상태가 된다. 그 결과, 연료 분자가 실린더 내에서 안정적이고 균일하게 퍼지면서 산소와의 결합력이 증가되어 같은 양의 연료로도 더 큰 엔진 출력을 얻을 수 있게 된다. 상기 맥반석은 입자 크기가 800~1,200 메쉬(mesh)인 것을 사용하는 것이 바람직하다. The elvan releases far infrared rays when heat is applied. The far infrared generates electrical wave energy to activate fuel. Automotive fuel is a semiacid hydrocarbon, which emits far-infrared rays, and the spin motion of the hydrocarbon's electrons acts in the opposite direction to the wave energy of the far-infrared rays due to the energy generated by the change of the dipole moment caused by the vibration and rotational motion of the far infrared rays. The molecules lose their connection to each other and become particulate. Injecting high-frequency waves generated by electric waves of far-infrared rays into the atomized fuel molecules accelerates the movement of electrons around the nucleus of the fuel molecules, resulting in the best possible activation of the fuel. As a result, the fuel molecules are stably and uniformly spread in the cylinder, increasing the binding force with oxygen, so that a larger engine output can be obtained with the same amount of fuel. The elvan is preferably used having a particle size of 800 ~ 1,200 mesh (mesh).
상기 맥반석은 함유원소가 SiO2 54중량%, MgO 14중량%, Al2O3 13중량%, Fe2O3 8중량%, CaO 7중량%, K2O 2중량% 및 Na2O 2중량%를 포함할 수 있다.The elvan has the elements containing 54% by weight of SiO 2 , 14% by weight of MgO, 13% by weight of Al 2 O 3 , 8% by weight of Fe 2 O 3 , 7% by weight of CaO, 2 % by weight of K 2 O and 2% by weight of Na 2 O 2 May contain%.
상기 희토류 금속은 미세한 방사선이 방출되어 석유계인 탄화수소계 연료를 개질시킴과 아울러 마이너스 공기이온과 연소시에 OH기를 발생시키며, CO, HC 등의 유해 배기가스를 저감시킬 수 있다. 또한, 상기 희토류 금속은 다량의 수소를 효과적으로 저장할 수 있는 금속으로서 뜨거운 냉각수 내에서 수소를 발생시켜 수소의 리사이클 기능을 통해 연소의 효율을 향상시킨다. 특히, 희토류 금속 중에서 수소의 방출이 용이하고, 방출되는 수소의 순도가 높으며, 브라운 운동의 요체로서의 역할도 원활하게 수행할 수 있는 희토류 란탄계열의 란탄(La), 세륨(Ce) 및 네오디뮴(Nd)을 사용하는 것이 바람직하다. 이들은 1종을 단독으로 사용하거나 이들 중 2종 이상을 혼합하여 사용할 수 있다. 상기 희토류 금속은 입자 크기가 15,000메쉬~100나노미터(㎚)인 것을 사용하는 것이 바람직하다.The rare earth metal emits fine radiation to reform petroleum-based hydrocarbon fuels, generates OH groups at the time of combustion with negative air ions, and reduces harmful exhaust gases such as CO and HC. In addition, the rare earth metal is a metal capable of effectively storing a large amount of hydrogen to generate hydrogen in hot cooling water to improve the efficiency of combustion through the recycling function of hydrogen. Particularly, rare earth lanthanide (La), cerium (Ce), and neodymium (Nd), which is easy to release hydrogen from the rare earth metal, have high purity of released hydrogen, and can also play a role as an essential element of brown motion. Is preferably used. These can be used individually by 1 type or in mixture of 2 or more types of these. It is preferable to use the rare earth metal having a particle size of 15,000 mesh to 100 nanometers (nm).
상기 전자파 발생 강화물질은 게르마늄 40~60중량%, 셀레늄 20~40중량%, 제올라이트 5~15중량% 및 페라이트 5~15중량%를 혼합하는 것이 바람직하다.The electromagnetic wave generation enhancing material is preferably mixed with germanium 40 to 60% by weight, selenium 20 to 40% by weight, zeolite 5 to 15% by weight and ferrite 5 to 15% by weight.
상기 게르마늄(germanium)은 불균형의 전자 수를 맞추는 역할을 한다. 상기 게르마늄과 규소를 나노조합시키면 열을 전기로 바꾸는 성질이 크게 향상된다.The germanium serves to match an unbalanced electron number. Nanocombination of the germanium and silicon greatly improves the property of converting heat into electricity.
상기 셀레늄(selenium)은 감광체로서 흡열 및 방열 등의 기능과 함께 전기 전도에 간섭하여 다른 원소들의 기능 증대를 돕는 역할을 한다.The selenium serves as a photosensitive member to help increase the function of other elements by interfering with electrical conduction along with functions such as heat absorption and heat dissipation.
상기 제올라이트(zeolite)의 골격은 실리콘과 알루미늄이 각각 4개의 가교산소를 통해 연결되어 있는 삼차원적인 무기고분자이며 이때 알루미늄이 4개의 산소와 결합을 하게 됨에 따라 음전하를 갖는다. 이러한 음전하를 상쇄하기 위하여 다양한 양이온이 존재한다.The skeleton of the zeolite is a three-dimensional inorganic polymer in which silicon and aluminum are connected through four cross-linked oxygen, respectively, wherein aluminum has a negative charge as it bonds to four oxygen. Various cations exist to counteract this negative charge.
상기 페라이트(ferrite)는 온도계수가 높아 자동차의 내연기관의 근처에서 작동할 수 있으며, BaO·6Fe2O3, SrO·6Fe2O3 성분의 영구자석이다.The ferrite has a high temperature coefficient and can operate in the vicinity of an internal combustion engine of an automobile, and is a permanent magnet of BaO · 6Fe 2 O 3 and SrO · 6Fe 2 O 3 components.
상기 원적외선 발생 강화물질은 칼륨장석 40~60중량%, 일라이트 10~30중량%, 귀양석 10~30중량% 및 돌로마이트 5~15중량%를 혼합하는 것이 바람직하다.The far-infrared reinforcing material is preferably mixed with 40 to 60% by weight of potassium feldspar, 10 to 30% by weight of illite, 10 to 30% by weight of diorite and 5 to 15% by weight of dolomite.
상기 칼륨장석(Potassium Feldspar)은 칼륨을 주성분으로 하는 장석족 광물로서 화학성분은 KAlSi3O8이다. 이러한 칼륨장석은 유익한 원적외선을 복사하고, 중금속 제거효과가 탁월하다.Potassium feldspar (Potassium Feldspar) is a feldspar group mineral containing potassium as a main component is a chemical component KAlSi 3 O 8 . Such potassium feldspar radiates beneficial far-infrared rays and is excellent in removing heavy metals.
상기 일라이트((K,H3O)Al2(Si,Al)4O10(H2O,OH)2)는 점토질인 미세한 함수규산염 광물로 Montmorillonite와 Muscovite의 중각 구조를 갖는 희소한 운모질 점토 광물(Micalikeclay Minerals)이다. 일라이트는 상온에서 2~25㎛ 파장의 원적외선을 89~92% 방사한다. 또한, 탈취력이 대단히 강하며, 물 분자를 활성화시켜 용존 산소를 3배 이상 확보하고 산소 응집력이 강하다. The illite ((K, H 3 O) Al 2 (Si, Al) 4 O 10 (H 2 O, OH) 2 ) is a fine hydrous silicate mineral that is a clay material, a rare mica having a centered structure of Montmorillonite and Muscovite Micalikeclay Minerals. Illite emits 89 ~ 92% of far infrared rays with 2 ~ 25㎛ wavelength at room temperature. In addition, the deodorizing power is very strong, by activating water molecules to secure more than three times the dissolved oxygen and strong oxygen cohesion.
상기 귀양석(Kiyoseki)은 다량의 음이온을 방출하고 상온에서 최고의 원적외선을 방출하는 신물질로서, 약 6,500만년 전의 지각변동에 따른 고온난수 작용에 의해 형성된 광산에 존재하며, 자연계의 에너지를 응축한 신비의 물질로서 전 세계에서 유일하게 일본 군마현에서만 생산되는 천연석이다. The Kiyoseki (Kiyoseki) is a new material that emits a large amount of anions and emits the best far-infrared rays at room temperature, and exists in a mine formed by high temperature and warm water action due to the earthquake fluctuation of about 65 million years ago, and condensed the energy of the natural world. As a substance, it is the only natural stone produced in Gunma Prefecture in Japan.
상기 돌로마이트(dolomite)는 삼방정계의 광물로, 방해석의 돌로마이트화로 형성되며, 방해석과 비슷하다. 돌로마이트는 다량의 원적외선을 방사하는 성질이 있다.The dolomite is a trigonal mineral, which is formed by dolomite of calcite and is similar to calcite. Dolomite has a property of emitting a large amount of far infrared rays.
상기 수소 발생 강화물질은 지르코늄 40~60중량%, 스트론튬 20~40중량% 및 이트륨 10~30중량%를 혼합하는 것이 바람직하다. The hydrogen generating strengthening material is preferably mixed 40 to 60% by weight of zirconium, 20 to 40% by weight of strontium and 10 to 30% by weight of yttrium.
상기 지르코늄 및 스트론튬은 수소 저장 기능을 극대화하기 위한 구성요소로서 수소저장률이 매우 높으며 냉각수 내에서 효과적으로 수소를 발생시킬 수 있는 물질이다. 즉, 기존의 희토류 금속과 더불어 수소 저장 기능을 훨씬 더 강화한 것으로서, 실린더 라이너의 주철/티탄 합금 막과 실린더 내의 수소(H) 및 탄소(C)에 촉매적 기능을 수행하도록 하여 적은 연료로도 동일한 운동에너지로서의 기능을 할 수 있게 하며, 그 결과로 이산화탄소 등의 배출을 크게 줄일 수 있다.The zirconium and strontium are constituent elements for maximizing the hydrogen storage function and have a high hydrogen storage rate and are materials capable of generating hydrogen in the cooling water effectively. In other words, the hydrogen storage function is further enhanced in addition to the existing rare earth metals, and it is possible to perform the catalytic function on the cast iron / titanium alloy membrane of the cylinder liner and the hydrogen (H) and carbon (C) in the cylinder, so that the same with a small amount of fuel. It can function as kinetic energy, and as a result, it is possible to significantly reduce the emission of carbon dioxide and the like.
상기 지르코늄은 전이원소 중 하나로서 수소와 결합하여 금속형 수소화물을 생성한다. 이러한 수소화물로는 ZrH2, ZrH 등이 있으며, 수소원자가 금속격자의 틈에 침입한 구조로 되어 있다. 한편, 지르코늄은 자연에 비교적 풍부하게 존재하는 친환경 재료로서 천연광물 등에서 용이하게 입수할 수 있다. The zirconium combines with hydrogen as one of the transition elements to produce a metal hydride. Such hydrides include ZrH 2 , ZrH, and the like, and have a structure in which hydrogen atoms penetrate into the gaps of the metal lattice. On the other hand, zirconium is an environmentally friendly material present in abundance in nature can be easily obtained from natural minerals and the like.
상기 스트론튬은 주기율표 제2족에 속하는 알칼리토금속원소의 하나로서 역시 수소와 결합하여 금속형 수소화물을 생성한다. 또한, 물에 대한 반응성이 칼슘보다도 커서 쉽게 수소를 발생시킬 수 있어, 추가적인 수소를 용이하게 제공할 수 있다. 자연계에서는 주로 셀레스타이트(celestite, SrSO4)와 스트론티아나이트(strontianite, SrCO3)의 형태로 존재한다.The strontium is one of alkaline earth metal elements belonging to Group 2 of the periodic table, and also combines with hydrogen to produce metal type hydride. In addition, since the reactivity to water is greater than that of calcium, hydrogen can be easily generated, and additional hydrogen can be easily provided. In nature, they exist mainly in the form of Celestite (SrSO 4 ) and Strontianite (SrCO 3 ).
상기 지르코늄 또는 스트론튬은 미크론 내지 나노 크기의 분말 형태인 것을 사용함이 바람직하다. 수소 저장 기능 및 촉매 기능을 원활하게 수행하도록 하기 위함이다.The zirconium or strontium is preferably used in the form of powder of micron to nano size. This is to smoothly perform the hydrogen storage function and the catalyst function.
상기 이트륨(Y)은 희토류 이트륨계의 대표적 원소로서, 지르코늄 및 스트론튬의 수소 저장 기능을 효과적으로 보완할 수 있는 물질이다. 상기 이트륨은 입자 크기가 15,000메쉬~100나노미터(㎚)인 것을 사용하는 것이 바람직하다.Yttrium (Y) is a rare earth yttrium-based representative element, a material capable of effectively complement the hydrogen storage function of zirconium and strontium. It is preferable to use the yttrium having a particle size of 15,000 mesh to 100 nanometers (nm).
본 발명의 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제는 토르마린 100중량부에 대하여 이산화규소(SiO2) 1~5중량부 및 이산화티탄(TiO2) 1~5중량부를 추가적으로 포함할 수 있다. The antifreeze additive for simultaneously removing nitrogen oxide and particulate matter of the present invention may further include 1 to 5 parts by weight of silicon dioxide (SiO 2 ) and 1 to 5 parts by weight of titanium dioxide (TiO 2 ) based on 100 parts by weight of tourmaline. .
순도 99.99% 이상의 SiO2 나노분체는 냉각수의 이온을 안정화시켜 정전압과 정전기를 감소시킴으로써 차량의 진동과 노이즈를 감소시키는 역할을 한다. 상기 이산화규소(SiO2)는 입자 크기가 15,000메쉬~100나노미터(㎚)인 것을 사용하는 것이 바람직하다.SiO 2 with purity over 99.99% Nano-powders stabilize the ions in the cooling water to reduce the static voltage and static electricity, thereby reducing the vibration and noise of the vehicle. The silicon dioxide (SiO 2 ) is preferably used having a particle size of 15,000 mesh ~ 100 nanometers (nm).
상기 이산회티탄은 자외선 광을 받으면 전자가 형성되어 강한 산화력을 가진 하이드록시 라디칼(-OH)과 슈퍼옥사이드(O2)를 생성한다. 이 하이드록시 라디칼과 슈퍼옥사이드가 유기 화합물을 분해시켜 물과 탄산가스로 변화시킨다. 이러한 원리로 수중의 오염 물질을 분해시켜 무해한 물과 탄산가스로 변화시킨다. 상기 이산화티탄(TiO2)은 입자 크기가 15,000메쉬~100나노미터(㎚)인 것을 사용하는 것이 바람직하다.When the titanium dioxide receives ultraviolet light, electrons are formed to generate hydroxy radicals (-OH) and superoxides (O 2 ) having strong oxidizing power. These hydroxy radicals and superoxides decompose organic compounds into water and carbon dioxide. This principle breaks down pollutants in water and converts them into harmless water and carbon dioxide. The titanium dioxide (TiO 2 ) is preferably used having a particle size of 15,000 mesh ~ 100 nanometers (nm).
본 발명의 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제는 토르마린 100중량부에 대하여 냉각수 활성화물질 5~10중량부를 추가적으로 포함할 수 있다. The antifreeze additive for simultaneously removing the nitrogen oxide and the particulate matter of the present invention may further include 5 to 10 parts by weight of the cooling water activator with respect to 100 parts by weight of tourmaline.
상기 냉각수 활성화물질은 엔진의 냉각에 사용되는 물을 활성화시킴으로써 완전연소를 유도할 수 있게 된다. 상기 냉각수 성능 강화물질은 물과 접촉하여 물 분자가 합쳐진 연수 물분자 덩어리(Cluster)를 작은 클러스터로 만들어 냉각수를 활성화시킬 수 있다. 활성화된 물은 연소 시 엔진 주위를 순환하면서 연소특성에 영향을 미쳐 완전연소를 유도, 매연발생의 감소를 유도하게 된다. The coolant activating material can induce complete combustion by activating water used for cooling the engine. The cooling water performance enhancing material may activate the cooling water by forming a cluster of soft water water clusters in which water molecules are combined in contact with water to form a small cluster. Activated water circulates around the engine during combustion, affecting combustion characteristics, leading to complete combustion and reducing soot emissions.
상기 냉각수 활성화물질은 지르코니아 50~70중량%, 탄화규소 20~40중량% 및 탄산나트륨 5~15중량%를 혼합하는 것이 바람직하다.The cooling water activator is preferably 50 to 70% by weight of zirconia, 20 to 40% by weight of silicon carbide and 5 to 15% by weight of sodium carbonate.
상기 지르코니아, 탄화규소 및 탄산나트륨 혼합물에 열이 가해지면 전기저항이 급히 낮아져 전기전도도가 급속하게 커지게 되고, 이에 따라 물분자 덩어리를 작은 클러스터로 만들어 냉각수를 활성화시키게 된다.When heat is applied to the zirconia, silicon carbide and sodium carbonate mixture, the electrical resistance is rapidly lowered to increase the electrical conductivity rapidly, thereby activating the cooling water by making small clusters of water molecules.
본 발명의 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제는 토르마린 100중량부에 대하여 음이온 방사물질 5~10중량부를 추가적으로 포함할 수 있다. The antifreeze additive for simultaneously removing the nitrogen oxide and the particulate matter of the present invention may further include 5 to 10 parts by weight of anion emitting material based on 100 parts by weight of tourmaline.
상기 음이온은 연료가 연소를 위하여 흡입공기의 산소와 혼합될 경우에 산소를 활성화시켜 연료가 산화작용이 원활하게 이루어지게 함으로써 연소효율을 높이게 된다. 또한, 상기 음이온 방사물질은 냄새를 없애고 공기를 정화시켜 줌으로써 쾌적한 운전 환경이 될 수 있도록 해준다.The anion increases the combustion efficiency by activating oxygen when the fuel is mixed with the oxygen of the intake air for combustion to smoothly oxidize the fuel. In addition, the anion emitting material can be a pleasant driving environment by removing the odor and purifying the air.
상기 음이온 방사물질은 벤토나이트 50~70중량%, 카올리나이트 10~30량%, 옥 5~15중량% 및 황보석 5~15중량%를 혼합하는 것이 바람직하다.The anion emitter is preferably 50 to 70% by weight of bentonite, 10 to 30% by weight of kaolinite, 5 to 15% by weight of jade and 5 to 15% by weight of yellow gemstones.
상기 벤토나이트(bentonite)는 운모와 같은 결정구조를 하는 단사정계에 속하는 광물인 몬모릴로나이트가 주로 들어있는 점토를 말한다. 빛깔은 백색, 회색, 담갈색, 담녹색 등을 나타낸다. Bentonite refers to clay mainly containing montmorillonite, a mineral belonging to a monoclinic system having a crystalline structure such as mica. The color is white, gray, light brown, light green and the like.
상기 카올리나이트(kaolinite)는 점토 성분의 일종으로 Al2Si2O5(OH)4로 표현되는 단사결정 광물이다. 결정이 Si판과 Al판이 한 줄씩 교대로 되어 있는 점토광물로서 1:1형 결정격자를 가진다.The kaolinite is a monocrystalline mineral represented by Al 2 Si 2 O 5 (OH) 4 as a kind of clay component. The clay is a clay mineral in which the Si and Al plates are alternately lined up and have a 1: 1 type crystal lattice.
상기 옥(玉)은 미세하고 치밀한 섬유상 결정을 가진 각섬석의 일종인 연옥과 경질의 단사정계를 이루는 알칼리 휘석의 일종인 경옥을 총칭하며, 황보석은 감람석과 같은 결정구조를 가진 사방정계 광물로서 토파즈(Topaz)라고도 한다. 이 옥과 황보석은 화학 구조상 풍부한 음이온 군을 포함하고 있어 많은 양의 음이온을 발생시킨다. The jade is a generic name for jadeite, which is a kind of hornblende having fine and dense fibrous crystals, and jadeite, which is a kind of alkali fluoride, which forms a hard monoclinic system. Also called Topaz). These jade and yellow gemstones contain abundant anion groups due to their chemical structure and generate a large amount of anions.
한편, 일반적으로 나노 크기의 입자는 부피에 비해 표면적이 매우 크고 표면장력이 강해 나노 입자 간의 응집이 발생할 수 있다. 즉 상기 지르코늄 또는 스트론튬을 나노 크기로 사용할 경우에는 부동액이 소정의 용기 내에 포장되어 있을 때 좁은 공간 내에서 입자 상호 간의 응집이 발생할 가능성을 배제할 수 없다. 따라서, 나노 입자 간의 응집을 방지하고 용제 내에 균일하게 분산시키기 위해 상기 부동액 첨가제에 계면활성제 또는 분산제 중 적어도 하나 이상을 첨가함이 바람직하다.On the other hand, nano-sized particles generally have a very large surface area compared to their volume and have a strong surface tension, which may cause aggregation between nano particles. That is, when the zirconium or strontium is used in the nano-size, it is not possible to exclude the possibility of aggregation between the particles in a narrow space when the antifreeze is packaged in a predetermined container. Therefore, it is preferable to add at least one or more of a surfactant or a dispersant to the antifreeze additive to prevent aggregation between nanoparticles and to disperse uniformly in the solvent.
상기 계면활성제는 용제와 혼합된 나노 분말의 응집을 방지하기 위하여 사용되는 것으로서, 그 종류에 특별한 제한은 없다. 예를 들면, 엔진용 윤활유 내에 금속분말을 분산시키기 위하여 사용되는 종래의 계면활성제가 사용가능하다. 바람직하게는, 유기 아미노산, 폴리에틸렌 글리콜 모노-4-노닐페닐 에테르와 같은 폴리에틸렌 글리콜 에테르, 스테아르산(stearic acid), SDS(sodium dodecyl sulfate) 등을 사용한다.The surfactant is used to prevent agglomeration of the nanopowder mixed with the solvent, and there is no particular limitation on the kind thereof. For example, conventional surfactants used to disperse metal powder in engine lubricants can be used. Preferably, organic amino acids, polyethylene glycol ethers such as polyethylene glycol mono-4-nonylphenyl ether, stearic acid, sodium dodecyl sulfate (SDS) and the like are used.
상기 계면활성제의 첨가량은 전체 부동액 100 중량부에 대하여 0.05 ~ 10 중량부인 것이 바람직하고, 더욱 바람직하게는 0.1 ~ 5 중량부를 첨가한다. 0.05 중량부 미만이면, 만족할 만한 수준의 나노 분말 응집 방지 효과를 얻기 어렵고, 10 중량부를 초과하면, 부동액 조성물에 있어서 내열성과 같은 특정 물성이 저하될 수도 있기 때문이다.It is preferable that the addition amount of the said surfactant is 0.05-10 weight part with respect to 100 weight part of total antifreeze, More preferably, 0.1-5 weight part is added. If it is less than 0.05 part by weight, it is difficult to obtain a satisfactory level of anti-aggregation effect of nanopowder, and if it exceeds 10 parts by weight, certain physical properties such as heat resistance may be lowered in the antifreeze composition.
상기 분산제는 용제와 혼합된 나노 분말의 응집을 방지함과 더불어, 분산성을 높여 나노 분말의 침강성을 억제하기 위한 것으로서, 그 종류에 특별한 제한은 없다. 바람직하게는, 에폭시 수지, 올레산(oleic acid), 리놀레산(linoleic acid), Tamol NN8906, Tween 20 등을 사용한다.The dispersant is to prevent aggregation of the nanopowder mixed with the solvent and to increase dispersibility and to suppress sedimentation of the nanopowder, and there is no particular limitation on the type. Preferably, an epoxy resin, oleic acid, linoleic acid, Tamol NN8906, Tween 20, or the like is used.
한편, 본 발명의 부동액 첨가제를 구성하는 물질들을 용제 내에 넣고 교반과 더불어 초음파 처리를 병행하는 방법으로 나노 분말의 응집을 방지할 수도 있다.On the other hand, it is possible to prevent the agglomeration of the nano-powder by putting a material constituting the antifreeze additive of the present invention in a solvent in parallel with the ultrasonic treatment with stirring.
상기 부동액 첨가제를 포장하는 방법과 관련해서는 플라스틱 또는 유리 재질의 용기 등 당업계에서 일반적으로 채용되는 포장 방법을 사용할 수 있다. 구체적으로, 상기 플라스틱 용기의 재질로 PE, PP, 또는 PET를 사용할 수 있으나 이에 한정되는 것은 아니다.Regarding the method for packaging the antifreeze additive, a packaging method generally employed in the art, such as a plastic or glass container, may be used. Specifically, PE, PP, or PET may be used as the material of the plastic container, but is not limited thereto.
바람직하게는, 상기 부동액 첨가제를 캡슐 또는 앰플의 형태로 포장하거나 과립 또는 스틱바의 형태로 제조할 수 있다. 일정 농도의 용액 또는 일정 함량비의 고형분(과립)인 부동액 첨가제를 소형화하여 제조함으로써 소비자에의 공급과 사용상의 편리성이 향상된다. 예를 들어, 캡슐의 형태로 포장할 경우 고온의 냉각수에서 상기 캡슐의 외부 재질이 녹아 부동액 첨가제가 자동적으로 냉각수 내에 분포하게 된다. 앰플의 형태로 포장할 경우 소지가 간편하고, 필요할 때마다 앰플 일단을 절단하여 냉각수에 수시로 적당량 부가할 수 있는 장점이 있다.Preferably, the antifreeze additive may be packaged in the form of capsules or ampoules or prepared in the form of granules or stick bars. By miniaturizing and manufacturing a solution of a certain concentration or an antifreeze additive which is a solid content (granule) of a certain content ratio, convenience to supply and use to a consumer is improved. For example, when packaging in the form of a capsule, the outer material of the capsule is melted in the high temperature cooling water, and the antifreeze additive is automatically distributed in the cooling water. When packaging in the form of ampoules, it is easy to carry, there is an advantage that can be appropriately added to the coolant from time to time by cutting one end of the ampoule whenever necessary.
상기 캡슐의 외부재질로는 젤라틴 또는 콜라겐을, 상기 앰플의 외부재질로는 유리 또는 경질염화비닐을 사용할 수 있으나 이에 한정되는 것은 아니다.The outer material of the capsule may be gelatin or collagen, and the outer material of the ampoule may be glass or hard vinyl chloride, but is not limited thereto.
한편, 본 발명은 상기 부동액 첨가제를 포함하여 제조된 부동액을 제공한다. 바람직하게는, 상기 부동액은 전체 부동액 100중량부에 대하여 상기 부동액 첨가제를 0.1~2중량부 포함시켜 제조한다.On the other hand, the present invention provides an antifreeze prepared by including the antifreeze additive. Preferably, the antifreeze is prepared by including 0.1 to 2 parts by weight of the antifreeze additive based on 100 parts by weight of the total antifreeze.
이하, 실시 예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시 예는 오로지 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들 실시 예에 의해 제한되는 것은 아니다. Hereinafter, the configuration and effects of the present invention through the embodiments will be described in more detail. These examples are only for illustrating the present invention, but the scope of the present invention is not limited by these examples.
[실시예 1]Example 1
토르마린 100중량부에 맥반석 1,500중량부, 란탄 3중량부, 네오디뮴 3중량부, 세륨 3중량부, 전자파 발생 강화물질 20중량부, 원적외선 발생 강화물질 15중량부, 수소 발생 강화물질 10중량부, 냉각수 활성화물질 10중량부, 음이온 방사물질 5중량부, 이산화규소(SiO2) 2중량부 및 이산화티탄(TiO2) 2중량부를 혼합하여 부동액 첨가제를 제조하였다. 상기 전자파 발생 강화물질은 게르마늄 50중량%, 셀레늄 30중량%, 제올라이트 10중량% 및 페라이트 10중량%를 혼합하여 제조하였다. 상기 원적외선 발생 강화물질은 칼륨장석 50중량%, 일라이트 20중량%, 귀양석 20중량% 및 돌로마이트로 10중량%를 혼합하여 제조하였다. 상기 수소 발생 강화물질은 지르코늄 50중량%, 스트론튬 30중량% 및 이트륨 20중량%를 혼합하여 제조하였다. 상기 냉각수 활성화물질은 지르코니아 60중량%, 탄화규소 30중량% 및 탄산나트륨 10중량%를 혼합하여 제조하였다. 상기 음이온 방사물질은 벤토나이트 60중량%, 카올리나이트 20량%, 옥 10중량% 및 황보석 10중량%를 혼합하여 제조하였다. 상기 토르마린의 입자크기는 12,000메쉬, 맥반석의 입자크기는 1,200메쉬, 란탄의 입자크기는 100나노미터, 네오디뮴의 입자크기는 100나노미터, 세륨의 입자크기는 100나노미터, 전자파 발생 강화물질의 입자크기는 12,000메쉬, 원적외선 발생 강화물질의 입자크기는 1,200메쉬, 수소 발생 강화물질의 입자크기는 100나노미터, 냉각수 활성화물질의 입자크기는 1,200메쉬, 음이온 방사물질의 입자크기는 1,200메쉬, 이산화규소의 입자크기는 100나노미터, 이산화티탄의 입자크기는 100나노미터인 것을 사용하였다.100 parts by weight of tourmaline, 1,500 parts by weight of ganbanite, 3 parts by weight of lanthanum, 3 parts by weight of neodymium, 3 parts by weight of cerium, 20 parts by weight of electromagnetic wave generating enhancer, 15 parts by weight of far infrared ray generating enhancer, 10 parts by weight of hydrogen generating enhancer, cooling water An antifreeze additive was prepared by mixing 10 parts by weight of the activating material, 5 parts by weight of anion emitting material, 2 parts by weight of silicon dioxide (SiO 2 ) and 2 parts by weight of titanium dioxide (TiO 2 ). The electromagnetic wave generating enhancement material was prepared by mixing 50% by weight of germanium, 30% by weight of selenium, 10% by weight of zeolite and 10% by weight of ferrite. The far-infrared reinforcing material was prepared by mixing 50% by weight of potassium feldspar, 20% by weight of illite, 20% by weight of diorite, and 10% by weight of dolomite. The hydrogen generating reinforcing material was prepared by mixing 50% by weight of zirconium, 30% by weight of strontium and 20% by weight of yttrium. The cooling water activator was prepared by mixing 60% by weight of zirconia, 30% by weight of silicon carbide and 10% by weight of sodium carbonate. The anion emitting material was prepared by mixing 60% by weight of bentonite, 20% by weight of kaolinite, 10% by weight of jade and 10% by weight of yellow gemstones. The particle size of tourmaline is 12,000 mesh, the particle size of elvan is 1,200 mesh, the particle size of lanthanum is 100 nanometer, the particle size of neodymium is 100 nanometer, the particle size of cerium is 100 nanometer, The particle size is 12,000 mesh, the particle size of far-infrared reinforcing material is 1,200 mesh, the particle size of hydrogen-reinforcing material is 100 nanometer, the particle size of cooling water activator is 1,200 mesh, the particle size of anion emitting material is 1,200 mesh, silicon dioxide The particle size of 100 nanometer, the titanium dioxide particle size of 100 nanometer was used.
[실험예 1]Experimental Example 1
실시예 1에서 제조한 부동액 첨가제의 배기가스 감소량을 조사하기 위해, 중국 천진시경위과기발전유한공사에서 5-gas 측정기를 사용하여 시험을 하였으며, NOx의 측정결과를 표 1에 나타내었다. 시험차량은 KIA 구형 SPORTAGE 디젤차량을 사용하였다.In order to investigate the exhaust gas reduction amount of the antifreeze additive prepared in Example 1, a test was carried out using a 5-gas measuring instrument at Tianjin Transit Technology Co., Ltd. of China, and the measurement results of NOx are shown in Table 1. The test vehicle used the old KIA SPORTAGE diesel vehicle.
800 rpm800 rpm 2000 rpm2000 rpm
주입 전Before injection 96 ppm96 ppm 45 ppm45 ppm
주입 후After injection 6 ppm6 ppm 4 ppm4 ppm
감소율Reduction rate -93.8%-93.8% -91.1%-91.1%
표 1에 의하면, 본 발명에 따른 부동액 첨가제는 NOx를 91% 이상 저감시키는 것을 확인할 수 있다.According to Table 1, it can be confirmed that the antifreeze additive according to the present invention reduces NOx by 91% or more.
[실험예 2]Experimental Example 2
실시예 1에서 제조한 부동액 첨가제의 배기가스 감소량을 조사하기 위해, 중국 국영 검사소(화통자동차서비스유한공사)에서 공안의 입회 하에 매연 측정 시험을 하였으며, HC 측정결과를 표 2에 나타내었다. 시험차량은 중국의 천진대발이라는 승합차량(디젤)을 사용하였다.In order to investigate the amount of reduction of the exhaust gas of the antifreeze additive prepared in Example 1, a soot measurement test was carried out in the presence of public security at the Chinese state inspection agency (Tatong Automotive Service Co., Ltd.), and the results of HC measurement are shown in Table 2. The test vehicle used a van (diesel) called Tianjin Dalian of China.
HCHC Test 1Test 1 Test 2Test 2
주입 전Before injection 670 ppm670 ppm 684 ppm684 ppm
주입 후After injection 35 ppm35 ppm 46 ppm46 ppm
감소율Reduction rate -94.8%-94.8% -93.3%-93.3%
표 2에 의하면, 본 발명에 따른 부동액 첨가제는 HC를 93% 이상 저감시키는 것을 확인할 수 있다.According to Table 2, it can be confirmed that the antifreeze additive according to the present invention reduces HC by 93% or more.
[실험예 3]Experimental Example 3
실시예 1에서 제조한 부동액 첨가제의 입자상 물질 감소 효과를 조사하기 위해, (주)상신 엔지니어링에서 매연측정기 가속모드 테스트 시험을 하였으며, 흡입값과 불투과율 측정결과를 표 3에 나타내었다. 시험차량은 2013년식 폭스바겐 PASSAT 2.0 TDI 디젤차량을 사용하였다.In order to investigate the particulate matter reduction effect of the antifreeze additive prepared in Example 1, the soot measuring instrument acceleration mode test test was performed in Sangsin Engineering Co., Ltd., the suction value and the impermeability measurement results are shown in Table 3. The test vehicle used a 2013 Volkswagen PASSAT 2.0 TDI diesel vehicle.
주입 전Before injection 주입 후After injection
횟수Count 흡입값Suction value 불투과율Impermeability 횟수Count 흡입값Suction value 불투과율Impermeability
1One 4.23(1/m)4.23 (1 / m) 83.8%83.8% 1One 0.36(1/m)0.36 (1 / m) 14.7%14.7%
22 4.19(1/m)4.19 (1 / m) 83.5%83.5% 22 0.32(1/m)0.32 (1 / m) 13.0%13.0%
33 4.06(1/m)4.06 (1 / m) 82.6%82.6% 33 0.36(1/m)0.36 (1 / m) 14.4%14.4%
44 4.02(1/m)4.02 (1 / m) 82.3%82.3% 44 0.35(1/m)0.35 (1 / m) 14.2%14.2%
평균Average 4.13(1/m)4.13 (1 / m) 83.1%83.1% 평균Average 0.35(1/m)0.35 (1 / m) 14.1%14.1%
표 3에 의하면, 실시예 1의 부동액 첨가제는 불투과율을 83.1%에서 14.1%로 현저히 개선시킨 것을 확인할 수 있다.According to Table 3, it can be seen that the antifreeze additive of Example 1 significantly improved the impermeability from 83.1% to 14.1%.
[실험예 4]Experimental Example 4
실시예 1에서 제조한 부동액 첨가제의 입자상 물질 감소 효과를 조사하기 위해, 중국 심양시 국영 검사소에서 테스트를 하였으며, 광흡수계수k치 측정결과를 표 4에 나타내었다. 시험차량은 중국의 트럭(디젤)을 사용하였다. 검사소 전경 사진, 시험차량 사진, 부동액첨가제 주입 사진 및 시험결과를 도 1 내지 도 6에 나타내었다.In order to investigate the effect of reducing the particulate matter of the antifreeze additive prepared in Example 1, the test was carried out at the state inspection center of Shenyang, China, and the results of measuring the light absorption coefficient k are shown in Table 4. The test vehicle used a Chinese truck (diesel). The photographs of the inspection station, the photograph of the test vehicle, the antifreeze additive injection photograph and the test results are shown in FIGS.
구분division 광흡수계수k치 (m-1)Light absorption coefficient k value (m -1 ) 비고Remarks
100% 점100% points 90% 점90% points 80% 점80% points
기준치Reference value ≤1.39≤1.39 ≤1.39≤1.39 ≤1.39≤1.39
주입 전Before injection 3.413.41 3.903.90 4.254.25 불합격fail
주입 후After injection 0.280.28 0.310.31 0.210.21 합격pass
표 4에 의하면, 트럭(디젤)에 실시예 1의 부동액 첨가제를 주입 전에는 광흡수계수가 기준치를 초과하여 불합격 판정을 받았지만, 실시예 1의 부동액 첨가제 주입 후에는 광흡수계수가 기준치 보다 현저히 적어 합격한 것을 확인할 수 있다.According to Table 4, before the antifreeze additive of Example 1 was injected into the truck (diesel), the light absorption coefficient exceeded the reference value, and the rejection was judged. You can see that.
따라서, 본 발명에 따른 부동액 첨가제는 입자상 물질(PM)을 현저히 저감시킬 수 있는 것을 알 수 있다.Therefore, it can be seen that the antifreeze additive according to the present invention can significantly reduce particulate matter (PM).
상기 실험을 종합해 볼 때, 본 발명에 따른 부동액 첨가제는 질소산화물과 입자상 물질을 효과적으로 제거하는 장점이 있다는 것을 알 수 있다.In summary, it can be seen that the antifreeze additive according to the present invention has an advantage of effectively removing nitrogen oxides and particulate matter.
[실험예 5]Experimental Example 5
실시예 1에서 제조한 부동액 첨가제룰 한국화학융합시험연구원에 의뢰하여 중금속 및 유해성 물질 검출여부를 실험하였다. 시험결과를 표 5에 나타내었다.The antifreeze additive rule prepared in Example 1 was commissioned by the Korea Institute of Chemical Fusion Testing to detect heavy metals and harmful substances. The test results are shown in Table 5.
Test ItemsTest items UnitUnit ResultsResults Test MethodsTest methods
PdPd ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (AAS)IEC 62321 Ed.1.0b: 2008 (AAS)
CdCD ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (AAS)IEC 62321 Ed.1.0b: 2008 (AAS)
HgHg ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (AAS)IEC 62321 Ed.1.0b: 2008 (AAS)
Cr(Ⅵ)Cr (Ⅵ) ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (UV/Vis)IEC 62321 Ed.1.0b: 2008 (UV / Vis)
Total-PBBsTotal-PBBs ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Mono-BBMono-bb ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Di-BBDi-BB ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Tri-BBTri-BB ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Tetra-BBTetra-BB ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Penta-BBPenta-bb ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Hexa-BBHexa-bb ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Hepta-BBHepta-bb ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Octa-BBOcta-bb ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Nona-BBNona-bb ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Deca-BBDeca-bb ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Total-PBDEsTotal-PBDEs ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Mono-BDEMono-BDE ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Di-BDEDi-BDE ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Tri-BDETri-BDE ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Tetra-BDETetra-BDE ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Penta-BDEPenta-bde ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Hexa-BDEHexa-bde ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Hepta-BDEHepta-bde ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Octa-BDEOcta-BDE ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Nona-BDENona-BDE ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
Deca-BDEDeca-BDE ㎎/㎏Mg / kg 검출안됨Not detected IEC 62321 Ed.1.0b : 2008 (GC/MS)IEC 62321 Ed.1.0b: 2008 (GC / MS)
표 5에 의하면, 실시예 1에서 제조한 부동액 첨가제는 중금속 및 유해한 유기물질이 포함하지 않아 친환경적인 제품임을 확인할 수 있다.According to Table 5, the antifreeze additive prepared in Example 1 does not contain heavy metals and harmful organic substances can be confirmed that the environment-friendly product.

Claims (1)

  1. 토르마린 100중량부에 맥반석 1,500중량부, 란탄 3중량부, 네오디뮴 3중량부, 세륨 3중량부, 전자파 발생 강화물질 20중량부, 원적외선 발생 강화물질 15중량부, 수소 발생 강화물질 10중량부, 냉각수 활성화물질 10중량부, 음이온 방사물질 5중량부, 이산화규소(SiO2) 2중량부 및 이산화티탄(TiO2) 2중량부를 혼합하되,100 parts by weight of tourmaline, 1,500 parts by weight of ganbanite, 3 parts by weight of lanthanum, 3 parts by weight of neodymium, 3 parts by weight of cerium, 20 parts by weight of electromagnetic wave generating enhancer, 15 parts by weight of far infrared ray generating enhancer, 10 parts by weight of hydrogen generating enhancer, cooling water 10 parts by weight of the active material, 5 parts by weight of anion emitting material, 2 parts by weight of silicon dioxide (SiO 2 ) and 2 parts by weight of titanium dioxide (TiO 2 ),
    상기 전자파 발생 강화물질은 게르마늄 50중량%, 셀레늄 30중량%, 제올라이트 10중량% 및 페라이트 10중량%를 혼합하고,The electromagnetic wave generation enhancing material is 50% by weight of germanium, 30% by weight of selenium, 10% by weight of zeolite and 10% by weight of ferrite,
    상기 원적외선 발생 강화물질은 칼륨장석 50중량%, 일라이트 20중량%, 귀양석 20중량% 및 돌로마이트로 10중량%를 혼합하고,The far-infrared ray-enhancing material is 50% by weight of potassium feldspar, 20% by weight of illite, 20% by weight of precious stone, and 10% by weight of dolomite,
    상기 수소 발생 강화물질은 지르코늄 50중량%, 스트론튬 30중량% 및 이트륨 20중량%를 혼합하여 제조하고,The hydrogen generating strengthening material is prepared by mixing 50% by weight of zirconium, 30% by weight of strontium and 20% by weight of yttrium,
    상기 냉각수 활성화물질은 지르코니아 60중량%, 탄화규소 30중량% 및 탄산나트륨 10중량%를 혼합하고,The cooling water activator is mixed with 60% by weight of zirconia, 30% by weight of silicon carbide and 10% by weight of sodium carbonate,
    상기 음이온 방사물질은 벤토나이트 60중량%, 카올리나이트 20량%, 옥 10중량% 및 황보석 10중량%를 혼합하고,The anion emitter is mixed with 60% by weight of bentonite, 20% by weight of kaolinite, 10% by weight of jade and 10% by weight of yellow gemstones,
    상기 토르마린의 입자크기는 12,000메쉬, 맥반석의 입자크기는 1,200메쉬, 란탄의 입자크기는 100나노미터, 네오디뮴의 입자크기는 100나노미터, 세륨의 입자크기는 100나노미터, 전자파 발생 강화물질의 입자크기는 12,000메쉬, 원적외선 발생 강화물질의 입자크기는 1,200메쉬, 수소 발생 강화물질의 입자크기는 100나노미터, 냉각수 활성화물질의 입자크기는 1,200메쉬, 음이온 방사물질의 입자크기는 1,200메쉬, 이산화규소의 입자크기는 100나노미터, 이산화티탄의 입자크기는 100나노미터인, The particle size of tourmaline is 12,000 mesh, the particle size of elvan is 1,200 mesh, the particle size of lanthanum is 100 nanometer, the particle size of neodymium is 100 nanometer, the particle size of cerium is 100 nanometer, The particle size is 12,000 mesh, the particle size of far-infrared reinforcing material is 1,200 mesh, the particle size of hydrogen-reinforcing material is 100 nanometer, the particle size of cooling water activator is 1,200 mesh, the particle size of anion emitting material is 1,200 mesh, silicon dioxide Particle size is 100 nanometers, titanium dioxide particle size is 100 nanometers,
    부동액 첨가제.Antifreeze additives.
PCT/KR2017/002687 2016-03-15 2017-03-13 Antifreeze additive for simultaneous removal of nitrogen oxides and particulate materials and antifreeze containing same WO2017160040A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160030942A KR101735789B1 (en) 2016-03-15 2016-03-15 Additives of Antifreeze for removing Nitrogen Oxides and Particulate Matters and Antifreeze comprising thereof
KR10-2016-0030942 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017160040A1 true WO2017160040A1 (en) 2017-09-21

Family

ID=58739545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/002687 WO2017160040A1 (en) 2016-03-15 2017-03-13 Antifreeze additive for simultaneous removal of nitrogen oxides and particulate materials and antifreeze containing same

Country Status (3)

Country Link
KR (1) KR101735789B1 (en)
CN (1) CN107189770A (en)
WO (1) WO2017160040A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109749719A (en) * 2017-11-03 2019-05-14 北京万成天泰科技发展有限责任公司 It is a kind of that can to keep radiator temperature be 85 degrees Celsius of water tank coolant liquid
CN109868120A (en) * 2017-12-01 2019-06-11 北京万成天泰科技发展有限责任公司 One kind can make radiator in subzero 45 degrees Celsius of non-icing anti-icing fluid
KR101864876B1 (en) * 2018-01-17 2018-06-11 (주)비올에너지 Engine oil additive for enhancing engine function and improving fuel efficiency
KR102250132B1 (en) * 2019-03-25 2021-05-11 김재수 Composition for soot-particle and fuel reduction
KR102441192B1 (en) * 2022-03-22 2022-09-08 주식회사 션킴모터스 Composition for cooling water additive and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010053078A (en) * 1998-06-22 2001-06-25 트롤리에 모리스, 다니엘 델로스 Method for Treating by Combustion Carbon-Containing Particles in an Internal Combustion Engine Exhaust Circuit
KR20040010009A (en) * 2002-07-23 2004-01-31 가부시키가이샤 파베스트 Far infrared radiation emitting material
KR101010935B1 (en) * 2010-03-23 2011-01-25 신충교 Additives of antifreeze for decreasing greenhouse gases and antifreeze produced using thereof
KR101252571B1 (en) * 2012-05-21 2013-04-09 주식회사 에스지코리아 Active composition for cooling water and method for manufacturing the same
KR20130127797A (en) * 2012-05-15 2013-11-25 전갑술 Acidic catalyst soulution for internal combbustion engine and method for preparing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771190B1 (en) * 2006-04-28 2007-10-29 주식회사 에스엘티테크놀리지 Addition matter for cooling water of engine
KR100942412B1 (en) * 2007-03-14 2010-02-17 김운학 Cooling water additive in car
KR100866919B1 (en) * 2007-03-19 2008-11-04 신충교 Additives of antifreezing solution and antifreezing solution produced using the additives
KR20130058143A (en) * 2011-11-25 2013-06-04 이한국 Improved perfomance matterial for vehicle
WO2014077553A1 (en) * 2012-11-14 2014-05-22 주식회사 에스지코리아 Coolant activating agent, and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010053078A (en) * 1998-06-22 2001-06-25 트롤리에 모리스, 다니엘 델로스 Method for Treating by Combustion Carbon-Containing Particles in an Internal Combustion Engine Exhaust Circuit
KR20040010009A (en) * 2002-07-23 2004-01-31 가부시키가이샤 파베스트 Far infrared radiation emitting material
KR101010935B1 (en) * 2010-03-23 2011-01-25 신충교 Additives of antifreeze for decreasing greenhouse gases and antifreeze produced using thereof
KR20130127797A (en) * 2012-05-15 2013-11-25 전갑술 Acidic catalyst soulution for internal combbustion engine and method for preparing the same
KR101252571B1 (en) * 2012-05-21 2013-04-09 주식회사 에스지코리아 Active composition for cooling water and method for manufacturing the same

Also Published As

Publication number Publication date
CN107189770A (en) 2017-09-22
KR101735789B1 (en) 2017-05-15

Similar Documents

Publication Publication Date Title
WO2017160040A1 (en) Antifreeze additive for simultaneous removal of nitrogen oxides and particulate materials and antifreeze containing same
CN1264778C (en) Ceramic material with activated fluid fuel molecule and combustion aid function and its preparing method and use
CN101033298A (en) Coiled material with environmental protection function and use thereof
CN102115146A (en) Nano-structured cerium oxide with and application thereof
Alam et al. Microwave synthesis of surface functionalized ErFeO3 nanoparticles for photoluminescence and excellent photocatalytic activity
EP2180173A1 (en) A fuel activation catalyzer for an energy saver of an internal combustion engine and a manufacture method thereof and an energy saver using the catalyzer
CN202417761U (en) Honeycomb ceramic filtering element and filter with same
Yang et al. Experimental and theoretical-based study of heavy metal capture by modified silica-alumina-based materials during thermal conversion of coal at high temperature combustion
CN206582041U (en) A kind of nano-negative ion energy-conservation card
KR101010935B1 (en) Additives of antifreeze for decreasing greenhouse gases and antifreeze produced using thereof
KR100561906B1 (en) Cooling water in radiator for vehicle
CN110527566B (en) Graphene composite material for oil saving and vehicle protection and preparation method thereof
CN102078751A (en) Bituminous pavement penetrating agent with function of purifying oxynitride (NOx) discharged from vehicles
WO2020093889A1 (en) Activated catalyst for energy conservation, vehicle energy saver comprising catalyst, and mounting method thereof
CN107353679A (en) A kind of high-efficient cleaning is except gray haze coating and preparation method thereof
CN103275772A (en) Environmentally-friendly fuel oil saving material and preparation method thereof
CN111542588B (en) Engine oil additive for enhancing engine function and improving fuel efficiency
KR101154192B1 (en) Combustion promotion system of internal combustion engine used by liquid negative ion
KR100555984B1 (en) composition for elevation of fuel ratio and cooling water in radiator utilizing the same
KR100902676B1 (en) Media for reducing pollutants and method for producing thereof
KR20230129783A (en) Method for preparing liquid composition for filter media and liquid composition for filter media
CN116790303B (en) Composite material for automobile fuel-saving purification and preparation method thereof
CN114436633A (en) Production method of inorganic porous nano ceramic material
Yan et al. Preparation and effect of rare earth composite ceramic materials on reducing exhaust emissions
KR20230133474A (en) Method for preparing liquid composition for filter media and liquid composition for filter media

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766941

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RGHTS PURSUANT TO RULE 112(1) EPC (EPO FROM 1205A DATED 28.01.19)

122 Ep: pct application non-entry in european phase

Ref document number: 17766941

Country of ref document: EP

Kind code of ref document: A1