WO2017149965A1 - Receiver, transmitter, and signal decoding method - Google Patents

Receiver, transmitter, and signal decoding method Download PDF

Info

Publication number
WO2017149965A1
WO2017149965A1 PCT/JP2017/001456 JP2017001456W WO2017149965A1 WO 2017149965 A1 WO2017149965 A1 WO 2017149965A1 JP 2017001456 W JP2017001456 W JP 2017001456W WO 2017149965 A1 WO2017149965 A1 WO 2017149965A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
frequency
data
signal
fourier transform
Prior art date
Application number
PCT/JP2017/001456
Other languages
French (fr)
Japanese (ja)
Inventor
正裕 青野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2017149965A1 publication Critical patent/WO2017149965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a receiver, a transmitter, and a signal decoding method.
  • orthogonal frequency division multiplexing In conventional cellular phone communication, digital modulation of orthogonal frequency division multiplexing may be employed.
  • This orthogonal frequency division multiplexing is multicarrier modulation in which data is carried on a number of subcarriers. Since these subcarriers are orthogonal to each other, they do not interfere with each other even though there is an overlap on the frequency axis, and each subcarrier can be distinguished by fast Fourier transform processing.
  • Patent Document 1 states that “a 2N-channel baseband pulse amplitude modulation signal synchronized with each other with a clock period of T seconds, a frequency difference between adjacent carriers is 1 / T cycle, and carriers are in phase or quadrature with each other.
  • a quadrature multiplexed signal transmission / reception system in which N is converted to N quadrature amplitude modulation signals by 2N carriers whose phases are set so as to maintain the same, and then these signals are multiplexed and transmitted, two in-phase channels adjacent to each other in the frequency domain And at the identification time of each baseband signal demodulated at the receiving side by giving a delay difference of T / 2 seconds between the transmitting side baseband pulse amplitude modulation signals corresponding to these two orthogonal channels only.
  • Transmission and reception of orthogonal multiplexed signals characterized by almost zero intersymbol interference and interchannel interference It has been described as expressions ".
  • Patent Document 1 describes a method of performing frequency multiplex communication using a plurality of orthogonal carrier waves. However, this method limits the frequency utilization efficiency and limits the communication speed of wireless communication. Therefore, an object of the present invention is to provide a receiver, a transmitter, and a signal decoding method that can improve the frequency utilization efficiency and improve the communication speed of wireless communication.
  • the receiver of the present invention receives a signal that is modulated with transmission data at a modulation speed equal to or higher than the predetermined frequency for each of a plurality of subcarriers that differ by a predetermined frequency.
  • a Fourier transform calculation unit that performs a discrete Fourier transform on the output signal of the reception unit, the frequency after conversion being limited to the frequency of the subcarrier, and reception from each subcarrier calculated by the Fourier transform calculation unit
  • a data acquisition unit for acquiring data Other means will be described in the embodiment for carrying out the invention.
  • 1st Embodiment is an example of the radio equipment provided with the receiver which performs the Fourier transformation which restrict
  • FIG. 1 shows the configuration of the transmitter 1.
  • the transmitter 1 includes a transmission signal generation unit 11, a D / A converter (Digital Analog Converter) 12, and a radio frequency (RF) circuit 13, and a transmission antenna 10 is connected thereto.
  • the transmission signal generated by the transmission signal generation unit 11 is converted into an analog signal by the D / A converter 12.
  • This analog signal is amplified by the high frequency circuit 13 and band-limited, and transmitted from the transmitting antenna 10.
  • the D / A converter 12 and the high frequency circuit 13 are transmission units that transmit the output of the transmission signal generation unit 11 as a signal.
  • FIG. 2 shows a configuration of the transmission signal generation unit 11.
  • the transmission signal generation unit 11 includes a first carrier wave generation unit 14a to a fifth carrier wave generation unit 14e, a first carrier wave modulation unit 15a to a fifth carrier wave modulation unit 15e, a transmission data generation unit 16, and a transmission data parallelization unit 17 And an adder 18 and a transmission signal normalization unit 19.
  • the data to be transmitted to the receiver is generated by the transmission data generation unit 16.
  • the generated data is parallelized by the transmission data parallelization unit 17 into five pieces equal to the number of subcarriers.
  • the five pieces of parallel data are simultaneously transmitted using the frequency multiplexing communication method. Note that the number of subcarriers is not limited to five, and may be any natural number n.
  • a sine wave is generated as a digital signal.
  • Each carrier generation unit is required by the number of subcarriers to be used.
  • the first carrier wave generation unit 14a generates a sine wave having a frequency (f c + f b ).
  • the second carrier wave generation unit 14b generates a sine wave having a frequency (f c + f b ⁇ 2).
  • the third carrier wave generation unit 14c generates a sine wave having a frequency (f c + f b ⁇ 3).
  • the fourth carrier wave generation unit 14d generates a sine wave having a frequency (f c + f b ⁇ 4).
  • the fifth carrier wave generation unit 14e generates a sine wave having a frequency (f c + f b ⁇ 5). Each generated sine wave is modulated by the first carrier modulation unit 15a to the fifth carrier modulation unit 15e, respectively.
  • Each carrier modulation unit is required as many as the number of subcarriers to be used in the same manner as the carrier generation unit.
  • data parallelized by the transmission data parallelization unit 17 is used.
  • the modulated five carrier waves are added by the adder 18 and then normalized by the transmission signal normalization unit 19 and output. Normalization is signal processing that amplifies and attenuates a signal so that the amplitude of the output signal is kept constant.
  • FIG. 3 shows the configuration of the receiver 2.
  • the receiver 2 includes a high frequency circuit 22, an A / D converter (Analog Digital Converter) 23, a Fourier transform calculation unit 24, and a data acquisition unit 25 connected to the reception antenna 21.
  • a reception signal received by the reception antenna 21 via the wireless communication path is amplified and band-limited by the high frequency circuit 22 and converted into a digital signal by the A / D converter 23.
  • This digital signal is Fourier-transformed by the Fourier transform calculation unit 24 and becomes reception data by the data acquisition unit 25.
  • Fourier transform is performed by limiting the frequency after the transform.
  • the reception antenna 21, the high frequency circuit 22, and the A / D converter 23 receive a signal that is modulated at a modulation speed equal to or higher than a predetermined frequency by transmission data for each of a plurality of subcarriers that differ by a predetermined frequency.
  • the Fourier transform calculation unit 24 performs a discrete Fourier transform on the output signal of the reception unit in which the frequency after conversion is limited to the frequency of the subcarrier.
  • the data acquisition unit 25 acquires reception data from each subcarrier calculated by the Fourier transform calculation unit 24.
  • Equation (1) Each of the following equations shows a transmission signal with a limited frequency.
  • the transmission signal be f (t).
  • the transmission signal f (t) is the sum of subcarriers used for transmission, as shown in Equation (1).
  • D 0 is a constant component. Ideally, there are no constant components, but they are included in equation (1) to increase the accuracy of the Fourier transform.
  • a sine wave of phase ⁇ k can be separated into a sine wave and a cosine wave with no phase difference.
  • the transmission signal f (t) is expressed by Equation (2).
  • Sine and cosine waves can be represented by complex exponential functions.
  • the transmission signal can be expressed as in Expression (3).
  • C k is defined as in equation (4).
  • E k (t) is defined as in equation (5).
  • the transmission signal can be expressed as equation (6).
  • Expression (6) When Expression (6) is converted, it can be expressed as Expression (7).
  • This is a Fourier transform calculation method in which the frequency after conversion is limited.
  • the received signal needs to be sampled over (2n + 1) points, and the sampling points are (t k, v k ) (where ⁇ n ⁇ k ⁇ n).
  • v k is the value of the sampled signal.
  • a Fourier transform matrix M is defined as in equation (8). This matrix M depends only on the time of the sampling point, and if the time is determined, the matrix M can be uniquely determined.
  • a column vector of C k is defined as C as shown in Equation (9).
  • a column vector of v k is defined as V as shown in Expression (10).
  • Equation (11) Since the received signal is Equation (7), Equation (11) is established.
  • the Fourier transform matrix M exists the inverse matrix M -1.
  • the equation (12) is obtained. That is, the column vector C can be obtained from the sampling points by calculating the inverse matrix of M.
  • Equation (3) the following Equation (15) can be derived. That is, the amplitude D k of each subcarrier can be obtained.
  • the data acquisition unit 25 can acquire data from the amplitude D k of each subcarrier.
  • the following equation (16) can be derived. That is, the phase ⁇ k of each subcarrier can be obtained.
  • the data acquisition unit 25 can acquire data from the phase ⁇ k of each subcarrier.
  • the modulation method is on-off keying (OOK)
  • f c 920 MHz
  • f b 15 kHz
  • n 5
  • the modulation speed for each carrier is 50 kbps
  • the resolution of the A / D converter 23 is In the case of 12 bits, the transmission speed is 250 kbps.
  • FIG. 4 shows the configuration of the transmission signal generation unit 11 under the above-described conditions.
  • the transmission signal generation unit 11 includes switches 151a to 151e that function as the first carrier modulation unit 15a to the fifth carrier modulation unit 15e, and is otherwise configured in the same manner as the transmission signal generation unit 11 shown in FIG. Yes.
  • the transmission data generation unit 16 generates data to be transmitted to the receiver 2 (see FIG. 3).
  • the generated data is parallelized by the transmission data parallelization unit 17 into five pieces equal to the number of subcarriers.
  • the five pieces of parallel data are simultaneously transmitted using the frequency multiplexing communication method. Since five subcarriers are used and each carrier is modulated by 1 bit, the transmission data parallelization unit 17 converts the transmission data into 5-bit parallel data.
  • the transmission data parallelization unit 17 parallelizes the data so as to avoid only zero data. Note that the number of subcarriers is not limited to five, and may be any natural number n.
  • a sine wave is generated as a digital signal.
  • the first carrier generation unit 14a generates a carrier of 920.015 MHz.
  • Each generated sine wave is modulated by switches 151a to 151e, which are carrier wave modulation units.
  • the carrier wave is modulated by turning on the corresponding switch when the data is “1” and turning off the corresponding switch when the data is “0”.
  • the five modulated carrier waves are added by the adder 18 and then normalized by the transmission signal normalization unit 19 and output.
  • the output amplitude is normalized to 1. For example, when all the switches 151a to 151e are ON, the signal is set to 1/5, and when only 3 are set, the signal is set to 1/3.
  • the modulation speed is 50 kHz
  • the modulation period is 20 ms
  • the sampling frequency is 550 kHz.
  • the data acquisition unit 25 determines a threshold value, and obtains a received signal assuming that the subcarrier amplitude D k is greater than or equal to the threshold value is “1”, and that below the threshold value is “0”. When all the five carriers are “1”, D k is about 0.2, so that the received data can be suitably obtained when the threshold is 0.1 to 0.15.
  • FIG. 5 shows a simulation result of Fourier transform in which the frequency after conversion is limited. For each of the five subcarriers, the value of the amplitude D k is shown. The data related to the first, second, and fifth subcarriers is received as “1”, and the data related to the third and fourth subcarriers is received as “0”. As shown in FIG. 5, the frequency difference between the subcarriers is smaller than the frequency at which the subcarriers are orthogonal to each other. In this simulation, the bit error rate was 10 ⁇ 6 or less.
  • FIG. 6 shows a simulation result when the received signal having the above-described condition is subjected to Fourier transform by normal FFT (Fast Fourier Transform).
  • FFT Fast Fourier Transform
  • the use efficiency of the frequency can be improved by using the wireless device including the receiver 2 that performs the Fourier transform in which the frequency after the conversion in the first embodiment is limited.
  • the matrix is low-dimensional compared to normal FFT, the received wave can be demodulated from short-time sampling data.
  • the fundamental frequency becomes the frequency resolution, a high frequency resolution can be realized by fixing the fundamental frequency in advance.
  • the transmitter and receiver of the first embodiment are suitable for a large capacity wireless communication system of several Mbps inside a substation, a wireless communication system for a factory, a traffic system, a short-range wireless communication system, and the like.
  • FIG. 7 shows the configuration of the transmitter 1A.
  • This analog signal is multiplied by the carrier wave generated by the oscillator 32 in the high frequency circuit 13, amplified and band-limited by the high frequency circuit 13, and then transmitted from the transmission antenna 10.
  • the operating frequency of the D / A converter 12 can be lowered. Therefore, an inexpensive one can be used for the D / A converter 12.
  • FIG. 8 shows a carrier modulation unit when phase modulation (Phase Shift Keying, PSK) is used.
  • a first carrier modulation unit 15a (see FIG. 2) is realized by a combination of the inverter 152a and the switch 153a. The same applies to the inverters 152b to 152e and the switches 153b to 153e.
  • the switch 153a When the data is “1”, the switch 153a outputs the carrier wave as it is, and when the data is “0”, the inverter 152a outputs the carrier wave whose phase is shifted by 180 degrees. As a result, the amplitude of the transmission signal does not change, so signal normalization is not necessary.
  • the receiver 2 of the first embodiment uses the amplitude D k as received data.
  • the receiver 2A of the second embodiment uses the phase ⁇ k .
  • the sampling time t k is relative, inversion of “1” and “0” can occur. Therefore, a method of determining “1” and “0” using a pilot signal before communication, time synchronization between the transmitter 1A and the receiver 2A, and a sampling point time t k as an absolute time. It is necessary to use the method to do.
  • each of the amplitude D k and the phase ⁇ k takes four values.
  • the data acquisition unit 25 needs to set a threshold value for each to obtain data. As described above, it is possible to simplify the circuit and improve the communication speed by using the modulation method of the second embodiment.
  • FIG. 9 shows the configuration of the receiver 2A.
  • a carrier wave is reproduced by the carrier wave reproduction circuit 26 from the reception signal output from the high frequency circuit 22.
  • the reproduced carrier wave and the received signal are multiplied by a multiplier 27, filtered by a low-pass filter 28, and down-converted. It is possible to use a detection circuit instead of the carrier wave recovery circuit 26.
  • the sampling rate is 550 kHz. This is the minimum sampling rate for performing the Fourier transform.
  • this sampling rate is doubled, the sampling points are also doubled, and received data can be obtained using two different sets of data. By obtaining and averaging a plurality of received data, communication with few errors can be performed.
  • FIG. 10 is a flowchart of processing for determining the sampling rate.
  • the receiver 2A sets the smallest value as the initial value of the sampling frequency (step S10).
  • the receiver 2A sets a variable f to 0 (step S11), and then transmits a pilot signal transmission start request to the transmitter 1A (step S12).
  • the receiver 2A receives the pilot signal (step S13) and calculates a bit error rate (BER) (step S14). If the bit error rate satisfies the regulation (step S15 ⁇ Yes), after substituting the sampling frequency into the variable f (step S16), the sampling frequency is lowered by one step (step S17), and the process of step S13 is performed. Return to.
  • step S15 If the bit error rate does not satisfy the regulation (step S15 ⁇ No), it is determined whether the variable f is 0 or not. If the variable f is 0 (step S18 ⁇ Yes), the sampling frequency is increased by one level (step S19), and the process returns to step S13.
  • step S18 If the variable f is not 0 (step S18 ⁇ No), a sampling frequency at which the pit error rate satisfies the regulation has been found.
  • the receiver 2A transmits a pilot signal transmission stop request to the transmitter 1A (step S20), sets the sampling frequency (sampling speed) to the value of the variable f, and ends the flowchart of FIG. Thereafter, the A / D converter 23 samples the signal at the frequency f and demodulates it into a digital signal.
  • the number of carrier waves and the frequency difference can be made variable.
  • the processing for determining the sampling rate shown in FIG. 10 may be performed only once before the session is established, or may be performed depending on the communication situation such as when the communication error rate deteriorates. According to the processing for determining the sampling rate of this embodiment, it is possible to select a sampling rate according to the communication environment.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other. Examples of modifications of the present invention include the following (a) to (e).
  • (A) The communication path between the transmitter and the receiver is not limited to wireless, but may be wired. Application examples may be digital television, broadcasting, broadband internet connection, and the like. According to the present invention, since clock synchronization is not necessary, data communication can be speeded up.
  • B The number of subcarriers is not limited to five.
  • Subcarrier modulation is not limited to 1-bit modulation of transmission data, and multi-level modulation such as 256QAM (256 Quadrature Amplitude Modulation) may be used. As a result, the data communication can be further speeded up.
  • the sampling frequency adjustment process is not limited to the process according to the flowchart of FIG.
  • the transmission wave may be calculated by directly adding and subtracting each carrier wave without being limited to the inverse Fourier transform.

Abstract

The purpose of the present invention is to improve frequency utilization efficiency and increase communication speed of wireless communication. A receiver (2) is provided with: a receive unit which receives a signal obtained by modulating each of a plurality of subcarriers differing by a predetermined frequency with transmission data at a modulation speed not lower than the predetermined frequency; a Fourier transform computing unit (24) which, with respect to an output signal from the receive unit, performs a discrete Fourier transform in which the frequencies after transformation are limited to the frequencies of the subcarriers; and a data acquisition unit (25) which acquires reception data from each of the subcarriers computed by the Fourier transform computing unit (24).

Description

受信機、送信機、および信号復号方法Receiver, transmitter, and signal decoding method
 本発明は、受信機、送信機、および信号復号方法に関する。 The present invention relates to a receiver, a transmitter, and a signal decoding method.
 従来の携帯電話通信では、直交周波数分割多重方式のデジタル変調が採用されていることがある。この直交周波数分割多重方式は、データを多数の副搬送波(サブキャリア)に乗せるマルチキャリア変調である。これらのサブキャリアは互いに直交しているため、周波数軸上で重なりが生じているにも関わらず互いに干渉せず、かつ高速フーリエ変換処理によって各サブキャリアを区別可能である。 In conventional cellular phone communication, digital modulation of orthogonal frequency division multiplexing may be employed. This orthogonal frequency division multiplexing is multicarrier modulation in which data is carried on a number of subcarriers. Since these subcarriers are orthogonal to each other, they do not interfere with each other even though there is an overlap on the frequency axis, and each subcarrier can be distinguished by fast Fourier transform processing.
 特許文献1には、「クロック周期T秒で互いに同期のとれた2Nチャンネルのベースバンドパルス振幅変調信号を、隣接キヤリアの周波数差が1/Tサイクルでありかつそれぞれのキャリアが互いに同相又は直交関係を保つように位相設定した2N個のキャリアによってN個の直交振幅変調信号に変換した後、これらを多重化して伝送する直交多重信号の送受信方式において、周波数領域で互いに隣接する2つの同相チャンネル同志および2つの直交チャンネル同志に対してのみこれらに対応する送信側ベースバンドパルス振幅変調信号間に互いにT/2秒の遅延差を与えることによって受信側で復調された各ベースバンド信号の識別時刻において符号間干渉およびチャンネル間干渉を殆ど零にすることを特徴とする直交多重信号の送受信方式」と記載されている。 Patent Document 1 states that “a 2N-channel baseband pulse amplitude modulation signal synchronized with each other with a clock period of T seconds, a frequency difference between adjacent carriers is 1 / T cycle, and carriers are in phase or quadrature with each other. In a quadrature multiplexed signal transmission / reception system in which N is converted to N quadrature amplitude modulation signals by 2N carriers whose phases are set so as to maintain the same, and then these signals are multiplexed and transmitted, two in-phase channels adjacent to each other in the frequency domain And at the identification time of each baseband signal demodulated at the receiving side by giving a delay difference of T / 2 seconds between the transmitting side baseband pulse amplitude modulation signals corresponding to these two orthogonal channels only. Transmission and reception of orthogonal multiplexed signals characterized by almost zero intersymbol interference and interchannel interference It has been described as expressions ".
特開昭52-151510号公報JP-A-52-151510
 特許文献1には直交する複数の搬送波を用いて周波数多重通信を行う方法が記載されている。しかしこの方法では周波数の利用効率が制限されてしまい、無線通信の通信速度に限界が生じてしまう。
 そこで、本発明は、周波数の利用効率を上げて、無線通信の通信速度を向上させることを可能とする受信機、送信機、および信号復号方法を提供することを課題とする。
Patent Document 1 describes a method of performing frequency multiplex communication using a plurality of orthogonal carrier waves. However, this method limits the frequency utilization efficiency and limits the communication speed of wireless communication.
Therefore, an object of the present invention is to provide a receiver, a transmitter, and a signal decoding method that can improve the frequency utilization efficiency and improve the communication speed of wireless communication.
 前記した課題を解決するため、本発明の受信機は、所定周波数ずつ異なる複数の副搬送波それぞれに対して、送信データにより前記所定周波数以上の変調速度で変調が行われた信号を受信する受信部と、前記受信部の出力信号に対して、変換後の周波数を前記副搬送波の周波数に制限した離散フーリエ変換を行うフーリエ変換計算部と、前記フーリエ変換計算部によって計算された各副搬送波から受信データを取得するデータ取得部とを備える。
 その他の手段については、発明を実施するための形態のなかで説明する。
In order to solve the above-described problem, the receiver of the present invention receives a signal that is modulated with transmission data at a modulation speed equal to or higher than the predetermined frequency for each of a plurality of subcarriers that differ by a predetermined frequency. A Fourier transform calculation unit that performs a discrete Fourier transform on the output signal of the reception unit, the frequency after conversion being limited to the frequency of the subcarrier, and reception from each subcarrier calculated by the Fourier transform calculation unit A data acquisition unit for acquiring data.
Other means will be described in the embodiment for carrying out the invention.
 本発明によれば、周波数の利用効率を上げて、無線通信の通信速度を向上させることが可能となる。 According to the present invention, it is possible to increase the frequency utilization efficiency and improve the communication speed of wireless communication.
第1の実施形態における送信機の例である。It is an example of the transmitter in 1st Embodiment. 送信信号生成部の例である。It is an example of a transmission signal generation part. 第1の実施形態における変換後の周波数を制限した離散フーリエ変換を行う受信機の例である。It is an example of the receiver which performs discrete Fourier transform which restricted the frequency after conversion in a 1st embodiment. オンオフ変調を行う送信信号生成部の例である。It is an example of the transmission signal production | generation part which performs on-off modulation. 変換後の周波数を制限した離散フーリエ変換のシミュレーション結果である。It is the simulation result of the discrete Fourier transform which restrict | limited the frequency after conversion. 高速フーリエ変換のシミュレーション結果である。It is a simulation result of a fast Fourier transform. 第2の実施形態における周波数変換を行う場合の送信機の例である。It is an example of the transmitter in the case of performing frequency conversion in the second embodiment. 第2の実施形態における周波数変換を行う場合の受信機の例である。It is an example of the receiver in the case of performing frequency conversion in 2nd Embodiment. 位相偏移変調を行う送信信号生成部の例である。It is an example of the transmission signal generation part which performs phase shift keying. サンプリング周波数を自動調整する場合のフローチャートである。It is a flowchart in the case of adjusting a sampling frequency automatically.
 以降、本発明を実施するための形態を、各図を参照して詳細に説明する。
(第1の実施形態)
 第1の実施形態は、変換後の周波数を制限したフーリエ変換を行う受信機を備えた無線機の例である。
 使用する搬送波の周波数をfc、副搬送波の周波数差をfb、副搬送波の数をnとする。k番目の副搬送波の周波数は(fc+fb・k)となる。周波数差fbは、各副搬送波fcが互いに直交する周波数よりも小さい。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.
(First embodiment)
1st Embodiment is an example of the radio equipment provided with the receiver which performs the Fourier transformation which restrict | limited the frequency after conversion.
It is assumed that the frequency of the carrier used is f c , the frequency difference between the sub-carriers is f b , and the number of sub-carriers is n. The frequency of the kth subcarrier is (f c + f b · k). The frequency difference f b is smaller than the frequency at which the subcarriers f c are orthogonal to each other.
 図1は、送信機1の構成である。
 送信機1は、送信信号生成部11と、D/A変換器(Digital Analog Converter)12と、高周波(Radio Frequency,RF)回路13とを備え、送信アンテナ10が接続されている。
 送信信号生成部11で生成された送信信号は、D/A変換器12でアナログ信号に変換される。このアナログ信号は、高周波回路13で増幅されると共に帯域制限され、送信アンテナ10から送信される。D/A変換器12と高周波回路13とは、送信信号生成部11の出力を信号として送信する送信部である。
FIG. 1 shows the configuration of the transmitter 1.
The transmitter 1 includes a transmission signal generation unit 11, a D / A converter (Digital Analog Converter) 12, and a radio frequency (RF) circuit 13, and a transmission antenna 10 is connected thereto.
The transmission signal generated by the transmission signal generation unit 11 is converted into an analog signal by the D / A converter 12. This analog signal is amplified by the high frequency circuit 13 and band-limited, and transmitted from the transmitting antenna 10. The D / A converter 12 and the high frequency circuit 13 are transmission units that transmit the output of the transmission signal generation unit 11 as a signal.
 図2は、送信信号生成部11の構成である。
 送信信号生成部11は、第1搬送波生成部14aから第5搬送波生成部14eと、第1搬送波変調部15a~第5搬送波変調部15eと、送信データ生成部16と、送信データ並列化部17と、加算器18と、送信信号規格化部19とを備える。
FIG. 2 shows a configuration of the transmission signal generation unit 11.
The transmission signal generation unit 11 includes a first carrier wave generation unit 14a to a fifth carrier wave generation unit 14e, a first carrier wave modulation unit 15a to a fifth carrier wave modulation unit 15e, a transmission data generation unit 16, and a transmission data parallelization unit 17 And an adder 18 and a transmission signal normalization unit 19.
 送信データ生成部16で受信機へと送信するデータが生成される。生成されたデータは、送信データ並列化部17で副搬送波の数と同じ5個に並列化される。並列化された5個のデータは、周波数多重通信方式を用いて同時に送信される。なお、副搬送波の数は、5個に限定されず、任意の自然数nであってもよい。 The data to be transmitted to the receiver is generated by the transmission data generation unit 16. The generated data is parallelized by the transmission data parallelization unit 17 into five pieces equal to the number of subcarriers. The five pieces of parallel data are simultaneously transmitted using the frequency multiplexing communication method. Note that the number of subcarriers is not limited to five, and may be any natural number n.
 第1搬送波生成部14aから第5搬送波生成部14eでは、正弦波がデジタル信号として生成される。各搬送波生成部は、使用する副搬送波の数だけ必要である。第1搬送波生成部14aでは周波数(fc+fb)の正弦波が生成される。第2搬送波生成部14bでは周波数(fc+fb・2)の正弦波が生成される。第3搬送波生成部14cでは周波数(fc+fb・3)の正弦波が生成される。第4搬送波生成部14dでは周波数(fc+fb・4)の正弦波が生成される。第5搬送波生成部14eでは周波数(fc+fb・5)の正弦波が生成される。
 生成された各正弦波は、第1搬送波変調部15a~第5搬送波変調部15eでそれぞれ変調される。各搬送波変調部も、搬送波生成部と同様に使用する副搬送波の数だけ必要である。変調には、送信データ並列化部17で並列化されたデータが用いられる。
In the first carrier generation unit 14a to the fifth carrier generation unit 14e, a sine wave is generated as a digital signal. Each carrier generation unit is required by the number of subcarriers to be used. The first carrier wave generation unit 14a generates a sine wave having a frequency (f c + f b ). The second carrier wave generation unit 14b generates a sine wave having a frequency (f c + f b · 2). The third carrier wave generation unit 14c generates a sine wave having a frequency (f c + f b · 3). The fourth carrier wave generation unit 14d generates a sine wave having a frequency (f c + f b · 4). The fifth carrier wave generation unit 14e generates a sine wave having a frequency (f c + f b · 5).
Each generated sine wave is modulated by the first carrier modulation unit 15a to the fifth carrier modulation unit 15e, respectively. Each carrier modulation unit is required as many as the number of subcarriers to be used in the same manner as the carrier generation unit. For the modulation, data parallelized by the transmission data parallelization unit 17 is used.
 変調された5個の搬送波は、加算器18で加算された後、送信信号規格化部19で規格化されて出力される。規格化とは、出力信号の振幅を一定に保つように信号を増幅・減衰させる信号処理のことである。 The modulated five carrier waves are added by the adder 18 and then normalized by the transmission signal normalization unit 19 and output. Normalization is signal processing that amplifies and attenuates a signal so that the amplitude of the output signal is kept constant.
 図3は、受信機2の構成である。
 受信機2は、受信アンテナ21に接続されて、高周波回路22と、A/D変換器(Analog Digital Converter)23と、フーリエ変換計算部24と、データ取得部25とを備える。
 無線の通信路を経て受信アンテナ21で受信された受信信号は、高周波回路22で増幅・帯域制限され、A/D変換器23でデジタル信号に変換される。このデジタル信号は、フーリエ変換計算部24でフーリエ変換され、データ取得部25で受信データとなる。フーリエ変換計算部24では、変換後の周波数を制限したフーリエ変換が行われる。
 受信アンテナ21、高周波回路22、およびA/D変換器23は、所定周波数ずつ異なる複数の副搬送波それぞれに対して、送信データにより所定周波数以上の変調速度で変調が行われた信号を受信する受信部である。フーリエ変換計算部24は、受信部の出力信号に対して、変換後の周波数を副搬送波の周波数に制限した離散フーリエ変換を行う。データ取得部25は、フーリエ変換計算部24によって計算された各副搬送波から受信データを取得する。
FIG. 3 shows the configuration of the receiver 2.
The receiver 2 includes a high frequency circuit 22, an A / D converter (Analog Digital Converter) 23, a Fourier transform calculation unit 24, and a data acquisition unit 25 connected to the reception antenna 21.
A reception signal received by the reception antenna 21 via the wireless communication path is amplified and band-limited by the high frequency circuit 22 and converted into a digital signal by the A / D converter 23. This digital signal is Fourier-transformed by the Fourier transform calculation unit 24 and becomes reception data by the data acquisition unit 25. In the Fourier transform calculation unit 24, Fourier transform is performed by limiting the frequency after the transform.
The reception antenna 21, the high frequency circuit 22, and the A / D converter 23 receive a signal that is modulated at a modulation speed equal to or higher than a predetermined frequency by transmission data for each of a plurality of subcarriers that differ by a predetermined frequency. Part. The Fourier transform calculation unit 24 performs a discrete Fourier transform on the output signal of the reception unit in which the frequency after conversion is limited to the frequency of the subcarrier. The data acquisition unit 25 acquires reception data from each subcarrier calculated by the Fourier transform calculation unit 24.
 以下の各式に、周波数を制限した送信信号を示している。送信信号をf(t)とする。変調周期よりも短い時間に限定した場合、送信信号f(t)は送信に用いる副搬送波の和となり、式(1)のようになる。ここでD0は定数成分である。理想的には定数成分は存在しないが、フーリエ変換の精度を上げるために式(1)に含めている。
Figure JPOXMLDOC01-appb-M000001
 
Each of the following equations shows a transmission signal with a limited frequency. Let the transmission signal be f (t). When limited to a time shorter than the modulation period, the transmission signal f (t) is the sum of subcarriers used for transmission, as shown in Equation (1). Here, D 0 is a constant component. Ideally, there are no constant components, but they are included in equation (1) to increase the accuracy of the Fourier transform.
Figure JPOXMLDOC01-appb-M000001
 位相αkの正弦波は、位相差のない正弦波と余弦波に分離できる。正弦波成分の振幅をAk、余弦波成分の振幅をBkとすると、送信信号f(t)は、式(2)となる。
Figure JPOXMLDOC01-appb-M000002
 
A sine wave of phase α k can be separated into a sine wave and a cosine wave with no phase difference. When the amplitude of the sine wave component is A k and the amplitude of the cosine wave component is B k , the transmission signal f (t) is expressed by Equation (2).
Figure JPOXMLDOC01-appb-M000002
 正弦波と余弦波は、複素指数関数で表せる。これにより、送信信号は式(3)のように表せる。
Figure JPOXMLDOC01-appb-M000003
 
Sine and cosine waves can be represented by complex exponential functions. As a result, the transmission signal can be expressed as in Expression (3).
Figure JPOXMLDOC01-appb-M000003
 Ckを式(4)のように定義する。
Figure JPOXMLDOC01-appb-M000004
 
C k is defined as in equation (4).
Figure JPOXMLDOC01-appb-M000004
 Ek(t)を式(5)のように定義する。
Figure JPOXMLDOC01-appb-M000005
 
E k (t) is defined as in equation (5).
Figure JPOXMLDOC01-appb-M000005
 これら式(4)と式(5)により、送信信号は式(6)のように表せる。
Figure JPOXMLDOC01-appb-M000006
 
From these equations (4) and (5), the transmission signal can be expressed as equation (6).
Figure JPOXMLDOC01-appb-M000006
 式(6)を変換すると、式(7)のように表せる。これが変換後の周波数を制限したフーリエ変換の計算方法である。
Figure JPOXMLDOC01-appb-M000007
 
When Expression (6) is converted, it can be expressed as Expression (7). This is a Fourier transform calculation method in which the frequency after conversion is limited.
Figure JPOXMLDOC01-appb-M000007
 フーリエ変換のためには、受信信号を(2n+1)点に亘ってサンプリングする必要があり、そのサンプリング点を(tk,k)とする(但し、-n≦k≦n)。tkはサンプリング点の時間である。これは相対時間で構わない。すなわちt0=0としてよい。なぜなら相対時間と絶対時間の差は位相差としてαkに含めることができるからである。vkはサンプリングされた信号の値である。 For the Fourier transform, the received signal needs to be sampled over (2n + 1) points, and the sampling points are (t k, v k ) (where −n ≦ k ≦ n). t k is the time of the sampling point. This may be relative time. That is, t 0 = 0. This is because the difference between relative time and absolute time can be included in α k as a phase difference. v k is the value of the sampled signal.
 フーリエ変換行列Mを式(8)のように定義する。この行列Mはサンプリング点の時間のみに依存し、時間が決まれば行列Mは一意に決定できる。
Figure JPOXMLDOC01-appb-M000008
 
A Fourier transform matrix M is defined as in equation (8). This matrix M depends only on the time of the sampling point, and if the time is determined, the matrix M can be uniquely determined.
Figure JPOXMLDOC01-appb-M000008
 Ckの列ベクトルを式(9)のようにCと定義する。
Figure JPOXMLDOC01-appb-M000009
 
A column vector of C k is defined as C as shown in Equation (9).
Figure JPOXMLDOC01-appb-M000009
 vkの列ベクトルを式(10)のようにVと定義する。
Figure JPOXMLDOC01-appb-M000010
 
A column vector of v k is defined as V as shown in Expression (10).
Figure JPOXMLDOC01-appb-M000010
 受信信号が式(7)であることから式(11)が成り立つ。
Figure JPOXMLDOC01-appb-M000011
 
Since the received signal is Equation (7), Equation (11) is established.
Figure JPOXMLDOC01-appb-M000011
 fb<<fcとし、サンプリングする期間がfbの周期に比べて十分短いならば、フーリエ変換行列Mには逆行列M-1が存在する。逆行列M-1を式(11)に左側から掛けると、式(12)が得られる。すなわち、Mの逆行列を計算することで、サンプリング点から列ベクトルCを求めることができる。
Figure JPOXMLDOC01-appb-M000012
 
and f b << f c, the period for sampling if sufficiently shorter than the period of f b, the Fourier transform matrix M exists the inverse matrix M -1. When the inverse matrix M −1 is multiplied by the equation (11) from the left side, the equation (12) is obtained. That is, the column vector C can be obtained from the sampling points by calculating the inverse matrix of M.
Figure JPOXMLDOC01-appb-M000012
 式(4)のk=0の条件より、以下の式(13)を導出できる。
Figure JPOXMLDOC01-appb-M000013
 
From the condition of k = 0 in the equation (4), the following equation (13) can be derived.
Figure JPOXMLDOC01-appb-M000013
 式(4)のk>0の条件とk<0の条件より、以下の式(14)を導出できる。
Figure JPOXMLDOC01-appb-M000014
 
From the condition of k> 0 and the condition of k <0 in the expression (4), the following expression (14) can be derived.
Figure JPOXMLDOC01-appb-M000014
 式(3)より、以下の式(15)を導出できる。つまり、各副搬送波の振幅Dkを求めることができる。データ取得部25は、これら各副搬送波の振幅Dkから、データを取得可能である。
Figure JPOXMLDOC01-appb-M000015
 
From Equation (3), the following Equation (15) can be derived. That is, the amplitude D k of each subcarrier can be obtained. The data acquisition unit 25 can acquire data from the amplitude D k of each subcarrier.
Figure JPOXMLDOC01-appb-M000015
 式(3)より、以下の式(16)を導出できる。つまり、各副搬送波の位相αkを求めることができる。データ取得部25は、これら各副搬送波の位相αkから、データを取得可能である。
Figure JPOXMLDOC01-appb-M000016
 
From the equation (3), the following equation (16) can be derived. That is, the phase α k of each subcarrier can be obtained. The data acquisition unit 25 can acquire data from the phase α k of each subcarrier.
Figure JPOXMLDOC01-appb-M000016
 このフーリエ変換を用いれば、fbを小さくしnを大きくすることで、理論上はいくらでも周波数の利用効率をあげることができる。しかし実際には、A/D変換器23の分解能やノイズによりこれらには限界が存在する。具体的にいうと、変調方式がオンオフ変調(On-Off Keying,OOK)、fc=920MHz、fb=15kHz、n=5、各搬送波に対する変調速度50kbps、A/D変換器23の分解能が12bitの場合、送信速度は250kbpsとなる。 By using this Fourier transform, it is theoretically possible to increase the frequency utilization efficiency by reducing f b and increasing n. However, in reality, there are limits to these due to the resolution and noise of the A / D converter 23. More specifically, the modulation method is on-off keying (OOK), f c = 920 MHz, f b = 15 kHz, n = 5, the modulation speed for each carrier is 50 kbps, and the resolution of the A / D converter 23 is In the case of 12 bits, the transmission speed is 250 kbps.
 図4は、前述の条件の場合の送信信号生成部11の構成である。
 この送信信号生成部11は、第1搬送波変調部15a~第5搬送波変調部15eとして機能するスイッチ151a~151eを備え、それ以外は図2に示した送信信号生成部11と同様に構成されている。
FIG. 4 shows the configuration of the transmission signal generation unit 11 under the above-described conditions.
The transmission signal generation unit 11 includes switches 151a to 151e that function as the first carrier modulation unit 15a to the fifth carrier modulation unit 15e, and is otherwise configured in the same manner as the transmission signal generation unit 11 shown in FIG. Yes.
 送信データ生成部16により、受信機2(図3参照)へと送信するデータが生成される。生成されたデータは、送信データ並列化部17で副搬送波の数と同じ5個に並列化される。並列化された5個のデータは、周波数多重通信方式を用いて同時に送信される。使用する副搬送波が5個であり、各搬送波は1bitずつ変調されるため、送信データ並列化部17では、送信データは、5bitのパラレルデータに変換される。の送信データ並列化部17は、0のみのデータを避けるようにデータを並列化する。なお、副搬送波の数は、5個に限定されず、任意の自然数nであってもよい。 The transmission data generation unit 16 generates data to be transmitted to the receiver 2 (see FIG. 3). The generated data is parallelized by the transmission data parallelization unit 17 into five pieces equal to the number of subcarriers. The five pieces of parallel data are simultaneously transmitted using the frequency multiplexing communication method. Since five subcarriers are used and each carrier is modulated by 1 bit, the transmission data parallelization unit 17 converts the transmission data into 5-bit parallel data. The transmission data parallelization unit 17 parallelizes the data so as to avoid only zero data. Note that the number of subcarriers is not limited to five, and may be any natural number n.
 第1搬送波生成部14aから第5搬送波生成部14eでは、正弦波がデジタル信号として生成される。例えば第1搬送波生成部14aでは920.015MHzの搬送波が生成される。生成された各正弦波は、搬送波変調部であるスイッチ151a~151eでそれぞれ変調される。変調には、送信データ並列化部17で並列化された5bitのデータが用いられる。データが“1”のときには対応するスイッチをONし、データが“0”のときには対応するスイッチをOFFにすることで、この搬送波は変調される。変調された5個の搬送波は、加算器18で加算された後、送信信号規格化部19で規格化されて出力される。送信信号規格化部19では、出力の振幅が1に規格化される。例えば全てのスイッチ151a~151eがONの場合は信号を5分の1に、3つだけの場合は3分の1にする。 In the first carrier generation unit 14a to the fifth carrier generation unit 14e, a sine wave is generated as a digital signal. For example, the first carrier generation unit 14a generates a carrier of 920.015 MHz. Each generated sine wave is modulated by switches 151a to 151e, which are carrier wave modulation units. For the modulation, 5-bit data parallelized by the transmission data parallelization unit 17 is used. The carrier wave is modulated by turning on the corresponding switch when the data is “1” and turning off the corresponding switch when the data is “0”. The five modulated carrier waves are added by the adder 18 and then normalized by the transmission signal normalization unit 19 and output. In the transmission signal normalization unit 19, the output amplitude is normalized to 1. For example, when all the switches 151a to 151e are ON, the signal is set to 1/5, and when only 3 are set, the signal is set to 1/3.
 変調速度は50kHzなので変調周期は20msであり、副搬送波は5つなのでサンプリング点は11点必要である。よってA/D変換器23のサンプリング周期は、(20/11)=1.82ms、サンプリング周波数は550kHzである。 Since the modulation speed is 50 kHz, the modulation period is 20 ms, and since there are five subcarriers, 11 sampling points are required. Therefore, the sampling period of the A / D converter 23 is (20/11) = 1.82 ms, and the sampling frequency is 550 kHz.
 データ取得部25(図3参照)では閾値を決め、副搬送波の振幅Dkが閾値以上のものは“1”、閾値以下のものは“0”として受信信号を得る。5個の搬送波すべてが“1”の場合はDkが約0.2となるので、閾値は0.1~0.15のときに好適に受信データを得ることができる。 The data acquisition unit 25 (see FIG. 3) determines a threshold value, and obtains a received signal assuming that the subcarrier amplitude D k is greater than or equal to the threshold value is “1”, and that below the threshold value is “0”. When all the five carriers are “1”, D k is about 0.2, so that the received data can be suitably obtained when the threshold is 0.1 to 0.15.
 図5は、変換後の周波数を制限したフーリエ変換のシミュレーション結果である。
 5個の副搬送波に対して、それぞれ振幅Dkの値を図示している。1番目、2番目、5番目の副搬送波に係るデータは“1”として、3,4番目の副搬送波に係るデータは“0”として受信される。この図5で示すように、副搬送波の周波数差は、副搬送波が互いに直交する周波数よりも小さい。
 このシミュレーションにおいて、ビットエラー率は10-6以下であった。
FIG. 5 shows a simulation result of Fourier transform in which the frequency after conversion is limited.
For each of the five subcarriers, the value of the amplitude D k is shown. The data related to the first, second, and fifth subcarriers is received as “1”, and the data related to the third and fourth subcarriers is received as “0”. As shown in FIG. 5, the frequency difference between the subcarriers is smaller than the frequency at which the subcarriers are orthogonal to each other.
In this simulation, the bit error rate was 10 −6 or less.
 図6は、前述した条件の受信信号を通常のFFT(Fast Fourier Transform)によりフーリエ変換した場合のシミュレーション結果である。ただしサンプリング周波数550kHzではナイキストの定理から、920MHzの信号をフーリエ変換することはできない。よって特別にサンプリング周波数を10GHzとしている。しかしfb=15kHzに対してサンプリング時間が20msであり、周波数分解能は50kHzである。よって図6から分かるとおり、各搬送波を分解することはできない。つまり第1の実施形態の条件では、通常のFFTでは受信信号を得ることができず、よって直交周波数分割多重方式ではデータを送受信することはできない。
 以上より、第1の実施形態の変換後の周波数を制限したフーリエ変換を行う受信機2を備えた無線機を用いることで、周波数の利用効率を向上することができる。また、通常のFFTと比べて行列が低次元であるため、短時間のサンプリングデータから受信波を復調できる。更に基本周波数が周波数分解能となるため、事前に基本周波数を固定することで、高い周波数分解能を実現できる。
 第1の実施形態の送信機や受信機は、例えは変電所内部における数Mbpsの大容量無線通信システムや、工場内部向け無線通信システム、交通システム、近距離無線通信システムなどに好適である。
FIG. 6 shows a simulation result when the received signal having the above-described condition is subjected to Fourier transform by normal FFT (Fast Fourier Transform). However, at a sampling frequency of 550 kHz, a 920 MHz signal cannot be Fourier transformed from the Nyquist theorem. Therefore, the sampling frequency is specifically set to 10 GHz. However, for f b = 15 kHz, the sampling time is 20 ms and the frequency resolution is 50 kHz. Therefore, as can be seen from FIG. 6, each carrier wave cannot be decomposed. That is, under the conditions of the first embodiment, a received signal cannot be obtained by normal FFT, and therefore data cannot be transmitted / received by orthogonal frequency division multiplexing.
As described above, the use efficiency of the frequency can be improved by using the wireless device including the receiver 2 that performs the Fourier transform in which the frequency after the conversion in the first embodiment is limited. In addition, since the matrix is low-dimensional compared to normal FFT, the received wave can be demodulated from short-time sampling data. Furthermore, since the fundamental frequency becomes the frequency resolution, a high frequency resolution can be realized by fixing the fundamental frequency in advance.
The transmitter and receiver of the first embodiment are suitable for a large capacity wireless communication system of several Mbps inside a substation, a wireless communication system for a factory, a traffic system, a short-range wireless communication system, and the like.
 第2の実施形態では、第1の実施形態に加えて周波数変換を用いる例を示す。
 図7は、送信機1Aの構成である。
 送信信号生成部11Aでは、搬送波周波数fc=0として、送信信号が生成され、D/A変換器12でアナログ信号に変換される。このアナログ信号は、高周波回路13で発振器32により生成された搬送波と乗算され、高周波回路13で増幅・帯域制限された後、送信アンテナ10から送信される。
 この周波数変換により、D/A変換器12の動作周波数を低くすることが可能である。よって、D/A変換器12に廉価なものを採用可能である。
In the second embodiment, an example in which frequency conversion is used in addition to the first embodiment will be described.
FIG. 7 shows the configuration of the transmitter 1A.
In the transmission signal generation unit 11A, a transmission signal is generated with the carrier frequency f c = 0, and is converted into an analog signal by the D / A converter 12. This analog signal is multiplied by the carrier wave generated by the oscillator 32 in the high frequency circuit 13, amplified and band-limited by the high frequency circuit 13, and then transmitted from the transmission antenna 10.
With this frequency conversion, the operating frequency of the D / A converter 12 can be lowered. Therefore, an inexpensive one can be used for the D / A converter 12.
 図8は、位相変調(Phase Shift Keying,PSK)を用いる場合の搬送波変調部である。反転器152aとスイッチ153aの組合せにより、第1搬送波変調部15a(図2参照)を実現する。以下、反転器152b~152eとスイッチ153b~153eも同様である。 FIG. 8 shows a carrier modulation unit when phase modulation (Phase Shift Keying, PSK) is used. A first carrier modulation unit 15a (see FIG. 2) is realized by a combination of the inverter 152a and the switch 153a. The same applies to the inverters 152b to 152e and the switches 153b to 153e.
 スイッチ153aによって、データが“1”の場合は搬送波そのままを出力し、データが“0”の場合は反転器152aによって位相が180度ずれた搬送波を出力する。これにより送信信号の振幅は変化しないので、信号の規格化は不要となる。 When the data is “1”, the switch 153a outputs the carrier wave as it is, and when the data is “0”, the inverter 152a outputs the carrier wave whose phase is shifted by 180 degrees. As a result, the amplitude of the transmission signal does not change, so signal normalization is not necessary.
 第1の実施形態の受信機2は、受信データとして振幅Dkを用いていた。第2の実施形態の受信機2Aは、位相αkを用いる。しかし、サンプリング点の時間tkが相対的であるため、“1”と“0”との反転が起こりうる。そのため、通信の前にパイロット信号を用いて“1”と“0”とを確定させる方法や、送信機1Aと受信機2Aとの間で時刻同期をとりサンプリング点の時間tkを絶対時間とする方法を用いる必要がある。 The receiver 2 of the first embodiment uses the amplitude D k as received data. The receiver 2A of the second embodiment uses the phase α k . However, since the sampling time t k is relative, inversion of “1” and “0” can occur. Therefore, a method of determining “1” and “0” using a pilot signal before communication, time synchronization between the transmitter 1A and the receiver 2A, and a sampling point time t k as an absolute time. It is necessary to use the method to do.
 また、多値変調を行うことも可能である。例えば4値の直角位相振幅変調(Quadrature Amplitude Modulation,QAM)を用いるならば、振幅Dkと位相αkそれぞれが4つの値をとる。データ取得部25にてそれぞれに閾値を設定し、データを得る必要がある。
 以上より、第2の実施形態の変調方式を用いることで回路の簡素化や通信速度の向上が可能となる。
It is also possible to perform multilevel modulation. For example, if quaternary quadrature amplitude modulation (QAM) is used, each of the amplitude D k and the phase α k takes four values. The data acquisition unit 25 needs to set a threshold value for each to obtain data.
As described above, it is possible to simplify the circuit and improve the communication speed by using the modulation method of the second embodiment.
 図9は、受信機2Aの構成である。
 高周波回路22から出力された受信信号から、搬送波再生回路26により搬送波が再生される。この再生搬送波と受信信号とが乗算器27で乗算され、ローパスフィルタ28でフィルタリングされてダウンコンバージョンされる。なお、搬送波再生回路26の代わりに検波回路を用いることも可能である。
 ダウンコンバージョンされた受信信号はその後、A/D変換器23によりデジタル変換され、フーリエ変換計算部24にてfc=0でフーリエ変換される。この周波数変換により、fc=0とすることができ、フーリエ変換の行列計算が容易になる。更にダウンコンバージョンされた信号をA/D変換するので、A/D変換器23として廉価なものを採用可能である。
 第2の実施形態の無線機を用いることで、より低速な回路・演算で帯域の利用効率を上げることができる。
FIG. 9 shows the configuration of the receiver 2A.
A carrier wave is reproduced by the carrier wave reproduction circuit 26 from the reception signal output from the high frequency circuit 22. The reproduced carrier wave and the received signal are multiplied by a multiplier 27, filtered by a low-pass filter 28, and down-converted. It is possible to use a detection circuit instead of the carrier wave recovery circuit 26.
The down-converted received signal is then digitally converted by the A / D converter 23 and Fourier-transformed by the Fourier transform calculation unit 24 with f c = 0. This frequency conversion can be a f c = 0, it is easy to matrix calculation of the Fourier transform. Further, since the down-converted signal is A / D converted, an inexpensive A / D converter 23 can be employed.
By using the wireless device of the second embodiment, the band utilization efficiency can be increased with a slower circuit / calculation.
 第1の実施形態ではサンプリング速度を550kHzとした。これはフーリエ変換を行うための最低限のサンプリング速度である。このサンプリング速度を2倍にすると、サンプリング点も2倍となり、異なった2組のデータを用いて受信データを得ることができる。複数の受信データを得て平均することにより、誤りの少ない通信をすることができる。 In the first embodiment, the sampling rate is 550 kHz. This is the minimum sampling rate for performing the Fourier transform. When this sampling rate is doubled, the sampling points are also doubled, and received data can be obtained using two different sets of data. By obtaining and averaging a plurality of received data, communication with few errors can be performed.
 図10は、サンプリング速度を決定する処理のフローチャートである。
 まず受信機2Aは、サンプリング周波数の初期値として、最も小さな値を設定する(ステップS10)。次いで受信機2Aは、変数fを0に設定(ステップS11)したのち、パイロット信号送信開始のリクエストを送信機1Aに送信する(ステップS12)。
FIG. 10 is a flowchart of processing for determining the sampling rate.
First, the receiver 2A sets the smallest value as the initial value of the sampling frequency (step S10). Next, the receiver 2A sets a variable f to 0 (step S11), and then transmits a pilot signal transmission start request to the transmitter 1A (step S12).
 受信機2Aは、パイロット信号を受信し(ステップS13)、ビットエラー率(BER)を計算する(ステップS14)。もしビットエラー率が規定を満足しているなら(ステップS15→Yes)、そのサンプリング周波数を変数fに代入(ステップS16)したのち、サンプリング周波数を1段階下げて(ステップS17)、ステップS13の処理に戻る。 The receiver 2A receives the pilot signal (step S13) and calculates a bit error rate (BER) (step S14). If the bit error rate satisfies the regulation (step S15 → Yes), after substituting the sampling frequency into the variable f (step S16), the sampling frequency is lowered by one step (step S17), and the process of step S13 is performed. Return to.
 ビットエラー率が規定を満足していないならば(ステップS15→No)、変数fが0であるか否かを判断する。変数fが0ならば(ステップS18→Yes)、サンプリング周波数を1段階上げて(ステップS19)、ステップS13の処理に戻る。 If the bit error rate does not satisfy the regulation (step S15 → No), it is determined whether the variable f is 0 or not. If the variable f is 0 (step S18 → Yes), the sampling frequency is increased by one level (step S19), and the process returns to step S13.
 変数fが0でないならば(ステップS18→No)、ピットエラー率が規定を満足するサンプリング周波数が発見されている。このとき受信機2Aは、パイロット信号送信停止のリクエストを送信機1Aに送信して(ステップS20)、サンプリング周波数(サンプリング速度)を変数fの値に設定して、図10のフローチャートを終了する。以降、A/D変換器23は、周波数fで信号をサンプリングしてデジタル信号に復調する。 If the variable f is not 0 (step S18 → No), a sampling frequency at which the pit error rate satisfies the regulation has been found. At this time, the receiver 2A transmits a pilot signal transmission stop request to the transmitter 1A (step S20), sets the sampling frequency (sampling speed) to the value of the variable f, and ends the flowchart of FIG. Thereafter, the A / D converter 23 samples the signal at the frequency f and demodulates it into a digital signal.
 また、どのようなサンプリング周波数でも通信できない場合は、搬送波の数や周波数差を可変とすることも可能である。図10に示したサンプリング速度を決定する処理は、セッションの確立前に1回だけ行ってもよく、また、通信のエラーレートが悪化したときなど、通信状況によって行ってもよい。
 本実施形態のサンプリング速度を決定する処理によれば、通信環境に応じたサンプリング速度を選択することが可能である。
In addition, when communication is not possible at any sampling frequency, the number of carrier waves and the frequency difference can be made variable. The processing for determining the sampling rate shown in FIG. 10 may be performed only once before the session is established, or may be performed depending on the communication situation such as when the communication error rate deteriorates.
According to the processing for determining the sampling rate of this embodiment, it is possible to select a sampling rate according to the communication environment.
(変形例)
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
(Modification)
The present invention is not limited to the embodiments described above, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. A part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。 The above-described configurations, functions, processing units, processing means, etc. may be partially or entirely realized by hardware such as an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function.
 各実施形態に於いて、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、殆ど全ての構成が相互に接続されていると考えてもよい。
 本発明の変形例として、例えば、次の(a)~(e)のようなものがある。
(a) 送信機と受信機との間の通信路は、無線に限られず、有線であってもよい。応用例は、デジタルテレビや放送、ブロードバンドインターネット接続などであってもよい。本発明によれば、クロック同期が必要でないため、データ通信の高速化が可能である。
(b) 副搬送波の数は、5個に限られない。
(c) 副搬送波の変調は、送信データのうち1bitの変調に限定されず、例えば256QAM(256 Quadrature Amplitude Modulation)などの多値変調を用いてもよい。これにより、データ通信の更なる高速化が可能である。
(d) サンプリング周波数の調整処理は、図10のフローチャートによる処理に限定されない。
(e) 逆フーリエ変換に限定されず、直接に各搬送波を加減算することにより、送信波を計算してもよい。
In each embodiment, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
Examples of modifications of the present invention include the following (a) to (e).
(A) The communication path between the transmitter and the receiver is not limited to wireless, but may be wired. Application examples may be digital television, broadcasting, broadband internet connection, and the like. According to the present invention, since clock synchronization is not necessary, data communication can be speeded up.
(B) The number of subcarriers is not limited to five.
(C) Subcarrier modulation is not limited to 1-bit modulation of transmission data, and multi-level modulation such as 256QAM (256 Quadrature Amplitude Modulation) may be used. As a result, the data communication can be further speeded up.
(D) The sampling frequency adjustment process is not limited to the process according to the flowchart of FIG.
(E) The transmission wave may be calculated by directly adding and subtracting each carrier wave without being limited to the inverse Fourier transform.
1,1A 送信機
10 送信アンテナ
11,11A 送信信号生成部
12 D/A変換器
13 高周波回路
14a 第1搬送波生成部
 …
14e 第5搬送波生成部
15a 第1搬送波変調部
 …
15e 第5搬送波変調部
16 送信データ生成部
17 送信データ並列化部
18 加算器
19 送信信号規格化部
2,2A 受信機
21 受信アンテナ
22 高周波回路
23 A/D変換器
24 フーリエ変換計算部
25 データ取得部
26 搬送波再生回路
27 乗算器
28 ローパスフィルタ
151a~151e スイッチ
152a~152e 反転器
153a~153e スイッチ
1, 1A Transmitter 10 Transmitting antenna 11, 11A Transmission signal generator 12 D / A converter 13 High-frequency circuit 14a First carrier wave generator ...
14e 5th carrier generation part 15a 1st carrier modulation part ...
15e 5th carrier wave modulation part 16 transmission data generation part 17 transmission data parallelization part 18 adder 19 transmission signal normalization part 2, 2A receiver 21 reception antenna 22 high frequency circuit 23 A / D converter 24 Fourier transform calculation part 25 data Acquisition unit 26 Carrier wave recovery circuit 27 Multiplier 28 Low-pass filter 151a to 151e Switch 152a to 152e Inverter 153a to 153e Switch

Claims (12)

  1.  所定周波数ずつ異なる複数の副搬送波それぞれに対して、送信データにより前記所定周波数以上の変調速度で変調が行われた信号を受信する受信部と、
     前記受信部の出力信号に対して、変換後の周波数を前記副搬送波の周波数に制限した離散フーリエ変換を行うフーリエ変換計算部と、
     前記フーリエ変換計算部によって計算された各副搬送波から受信データを取得するデータ取得部と、
     を備えることを特徴とする受信機。
    For each of a plurality of subcarriers that differ by a predetermined frequency, a receiving unit that receives a signal modulated by transmission data at a modulation speed equal to or higher than the predetermined frequency;
    A Fourier transform calculation unit that performs a discrete Fourier transform on the output signal of the reception unit, in which the frequency after conversion is limited to the frequency of the subcarrier;
    A data acquisition unit for acquiring reception data from each subcarrier calculated by the Fourier transform calculation unit;
    A receiver comprising:
  2.  前記データ取得部は、前記フーリエ変換計算部によって計算された各副搬送波の強度から受信データを取得する、
     ことを特徴とする請求項1に記載の受信機。
    The data acquisition unit acquires received data from the intensity of each subcarrier calculated by the Fourier transform calculation unit,
    The receiver according to claim 1.
  3.  前記データ取得部は、前記フーリエ変換計算部によって計算された各副搬送波の位相から受信データを取得する、
     ことを特徴とする請求項1に記載の受信機。
    The data acquisition unit acquires received data from the phase of each subcarrier calculated by the Fourier transform calculation unit,
    The receiver according to claim 1.
  4.  前記受信部は、前記データ取得部が取得した受信データのエラー率に応じてサンプリング周期を変更する、
     ことを特徴とする請求項1ないし3のうちいずれか1項に記載の受信機。
    The receiving unit changes a sampling period according to an error rate of received data acquired by the data acquiring unit,
    The receiver according to any one of claims 1 to 3, wherein
  5.  前記受信部は、通信路を介して受信した信号をA/D変換器でサンプリングする、
     ことを特徴とする請求項1ないし4のうちいずれか1項に記載の受信機。
    The receiving unit samples a signal received via a communication path with an A / D converter,
    5. The receiver according to any one of claims 1 to 4, wherein:
  6.  前記受信部は、通信路を介して受信した信号の周波数をダウンコンバートしたのちにA/D変換器でサンプリングする、
     ことを特徴とする請求項1ないし4のうちいずれか1項に記載の受信機。
    The reception unit samples the frequency of a signal received via a communication channel after down-conversion with an A / D converter,
    5. The receiver according to any one of claims 1 to 4, wherein:
  7.  所定周波数ずつ異なる複数の副搬送波を生成する複数の搬送波生成部、および当該搬送波生成部が生成した副搬送波をデータに基づいて変調する複数の搬送波変調部の組合せと、
     各前記搬送波変調部が変調した副搬送波を加算する加算部と、
     前記加算部の出力を信号として送信する送信部と、
     を備え、
     前記所定周波数は、各副搬送波が互いに直交する周波数差よりも小さい、
     ことを特徴とする送信機。
    A combination of a plurality of carrier generation units that generate a plurality of subcarriers that differ by a predetermined frequency, and a plurality of carrier modulation units that modulate the subcarriers generated by the carrier generation unit based on data;
    An adder for adding subcarriers modulated by each of the carrier modulators;
    A transmission unit that transmits the output of the addition unit as a signal;
    With
    The predetermined frequency is smaller than a frequency difference in which each subcarrier is orthogonal to each other.
    A transmitter characterized by that.
  8.  前記加算部の出力を規格化する規格化部を更に備え、
     各前記搬送波変調部は、各前記搬送波生成部が生成した副搬送波を、データに基づいてオンオフ変調する、
     ことを特徴とする請求項7に記載の送信機。
    A normalization unit for normalizing the output of the addition unit;
    Each carrier modulation unit performs on-off modulation on the subcarrier generated by each carrier generation unit based on data,
    The transmitter according to claim 7.
  9.  各前記搬送波変調部は、各前記搬送波生成部が生成した副搬送波を、データに基づいて位相偏移変調する、
     ことを特徴とする請求項7に記載の送信機。
    Each of the carrier modulation units performs phase shift keying on the subcarrier generated by each of the carrier generation units based on data.
    The transmitter according to claim 7.
  10.  前記送信部は、前記加算部の出力をD/A変換器でアナログ信号に変換し、通信路を介して送信する、
     ことを特徴とする請求項7ないし9のうちいずれか1項に記載の送信機。
    The transmission unit converts the output of the addition unit into an analog signal by a D / A converter, and transmits the analog signal through a communication path.
    The transmitter according to any one of claims 7 to 9, characterized by the above.
  11.  前記送信部は、前記加算部の出力をD/A変換器でアナログ信号に変換して周波数をアップコンバートし、通信路を介して送信する、
     ことを特徴とする請求項7ないし9のうちいずれか1項に記載の送信機。
    The transmission unit converts the output of the addition unit into an analog signal by a D / A converter, up-converts the frequency, and transmits the signal via a communication path.
    The transmitter according to any one of claims 7 to 9, characterized by the above.
  12.  所定周波数ずつ異なる複数の副搬送波それぞれに対して、送信データにより前記所定周波数以上の変調速度で変調が行われた信号を受信するステップと、
     受信した前記信号に対して、変換後の周波数を前記副搬送波の周波数に制限した離散フーリエ変換を行うステップと、
     前記離散フーリエ変換により計算された各副搬送波から受信データを復号するステップと、
     を含むことを特徴とする信号復号方法。
    Receiving a signal modulated by transmission data at a modulation speed equal to or higher than the predetermined frequency for each of a plurality of subcarriers different from each other by a predetermined frequency;
    Performing a discrete Fourier transform on the received signal with the transformed frequency limited to the frequency of the subcarrier;
    Decoding received data from each subcarrier calculated by the discrete Fourier transform;
    A signal decoding method comprising:
PCT/JP2017/001456 2016-03-01 2017-01-18 Receiver, transmitter, and signal decoding method WO2017149965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-039033 2016-03-01
JP2016039033 2016-03-01

Publications (1)

Publication Number Publication Date
WO2017149965A1 true WO2017149965A1 (en) 2017-09-08

Family

ID=59742728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001456 WO2017149965A1 (en) 2016-03-01 2017-01-18 Receiver, transmitter, and signal decoding method

Country Status (1)

Country Link
WO (1) WO2017149965A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093697A (en) * 2008-10-10 2010-04-22 Fujitsu Ltd Multi-carrier radio transmission device
JP2013126030A (en) * 2011-12-13 2013-06-24 National Institute Of Advanced Industrial & Technology Spread spectrum communication system
JP2015164257A (en) * 2014-02-28 2015-09-10 株式会社Nttドコモ Radio base station, user terminal, radio communication method, and radio communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093697A (en) * 2008-10-10 2010-04-22 Fujitsu Ltd Multi-carrier radio transmission device
JP2013126030A (en) * 2011-12-13 2013-06-24 National Institute Of Advanced Industrial & Technology Spread spectrum communication system
JP2015164257A (en) * 2014-02-28 2015-09-10 株式会社Nttドコモ Radio base station, user terminal, radio communication method, and radio communication system

Similar Documents

Publication Publication Date Title
US7881397B2 (en) Wireless communication system
EP2234277A1 (en) Phase noise correction circuit, transmission device, reception device, radio device, radio communication system, and phase noise correction method
JP2007214910A (en) Ofdm demodulating device and method
JP2000115116A (en) Orthogonal frequency division multiplex signal generator, orthogonal frequency division multiplex signal generation method and communication equipment
JP4809097B2 (en) Reception circuit and reception method
AU2830100A (en) Transmitting device and method, and providing medium
WO2016098733A1 (en) Wireless communication apparatus, integrated circuit, transmission method, receiving method and communication method
JP4809099B2 (en) Reception circuit and reception method
US8842753B2 (en) Orthogonal frequency division multiplexed (OFDM) demodulator imbalance estimation
WO2017149965A1 (en) Receiver, transmitter, and signal decoding method
JPH11289312A (en) Multicarrier radio communication device
US9838171B2 (en) Methods of data allocation in subcarriers and related apparatuses using the same
US20230396405A1 (en) Polarization Encoding for High-Density 5G/6G Communication
JP5707169B2 (en) Signal processing device, baseband processing device, and wireless communication device
JPH1198103A (en) Orthogonal frequency division multiplex signal generator, frequency controller and its method, receiver and communication equipment and its method
JP3582307B2 (en) IDFT arithmetic unit
JP2002314501A (en) Ofdm transmitter
JP4930262B2 (en) OFDM receiving apparatus and OFDM receiving method
US20130195227A1 (en) Removal of a Band-Limited Distributed Pilot from an OFDM Signal
US20140198862A1 (en) Communication device and communication system
JP6037503B2 (en) Transmission equipment
KR100881904B1 (en) Extracting the phase of an ofdm signal sample
JP5892599B2 (en) OFDM (Orthogonal Frequency Division Multiplexing) demodulator, OFDM transmission system, and OFDM demodulation method
JPH11284595A (en) Device and method for generating orthogonal frequency division multiple signal, demodulating device, and communication device
JP4998207B2 (en) Communication apparatus and method for compensating for in-phase quadrature mismatch

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759437

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17759437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP