WO2017145369A1 - Hot-water supply system, and control method for water heater - Google Patents

Hot-water supply system, and control method for water heater Download PDF

Info

Publication number
WO2017145369A1
WO2017145369A1 PCT/JP2016/055862 JP2016055862W WO2017145369A1 WO 2017145369 A1 WO2017145369 A1 WO 2017145369A1 JP 2016055862 W JP2016055862 W JP 2016055862W WO 2017145369 A1 WO2017145369 A1 WO 2017145369A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
output
surplus
instruction
hot water
Prior art date
Application number
PCT/JP2016/055862
Other languages
French (fr)
Japanese (ja)
Inventor
正之 小松
圭 ▲柳▼本
雄喜 小川
啓輔 ▲高▼山
孝 小川
直樹 茨田
野村 智
忠彦 稲葉
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to GB1811333.2A priority Critical patent/GB2562926C/en
Priority to PCT/JP2016/055862 priority patent/WO2017145369A1/en
Priority to JP2018501538A priority patent/JP6641455B2/en
Publication of WO2017145369A1 publication Critical patent/WO2017145369A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1078Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump and solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/106Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump and solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/02Photovoltaic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a hot water supply system and a method for controlling a water heater.
  • the supply and demand balance of the commercial power system may be disrupted by a reverse power flow in which power is supplied from the power generation facility of the customer to the commercial power system.
  • a reverse power flow in which power is supplied from the power generation facility of the customer to the commercial power system.
  • the demand for power to the commercial power system decreases, and the amount of power generated by sunlight increases, so the supply of power from the power generation facility of the consumer to the commercial power system increases.
  • Patent Literature 1 discloses a technique for predicting a time zone in which a large amount of reverse power is generated and operating a heat pump hot water supply / room heating device including a hot water storage tank in the predicted time zone. Since the power consumption of a water heater provided with a hot water storage tank is generally large, according to the technique disclosed in Patent Document 1, the reverse power can be effectively reduced.
  • Patent Document 1 does not reduce the reverse power flow according to the instruction for suppressing the reverse power flow as described above.
  • the output of the power generated by the power generation facility is suppressed, so that a power generation loss occurs. For this reason, it is required to reduce power generation loss during a period in which suppression of reverse power flow is instructed and to improve power utilization efficiency.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a hot water supply system or the like that can improve the power use efficiency.
  • a hot water supply system includes: A hot water supply system including a power conditioner and a water heater,
  • the inverter is Instruction acquisition means for acquiring an instruction to suppress supply of the power generated by the power generation means to the commercial power system;
  • a power output means for outputting less power than the generated power out of the power generated by the power generation means in a period determined by the instruction when the instruction acquisition means acquires the instruction;
  • the water heater is Surplus power information acquisition means for acquiring surplus power information indicating surplus power based on a difference between the power generated by the power generation means and the power output by the power output means in the period;
  • the surplus power information acquisition means acquires the surplus power information
  • the surplus power information acquisition means comprises boiling means for boiling hot water with the capacity corresponding to the surplus power.
  • the power conditioner when the power conditioner obtains an instruction to suppress the supply of the electric power generated by the power generation means to the commercial power system, the power conditioner includes the power generated by the power generation means in a period determined by the instruction. Then, the electric power that is less than the generated electric power is output, and the hot water heater boils hot water with the capability according to the difference between the electric power generated by the electric power generation means and the electric power output by the power conditioner. Therefore, according to the present invention, the power use efficiency can be improved.
  • FIG. 1 It is a figure showing the whole hot-water supply system composition concerning Embodiment 1 of the present invention. It is a block diagram which shows the structure of a power conditioner. It is a block diagram which shows the structure of a hot water supply controller. It is a block diagram which shows the functional structure of the hot water supply system which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the measurement data memorize
  • FIG. 1 shows the 1st example of the display screen of a remote control at the time of PV suppression. It is a figure which shows the 2nd example of the display screen of a remote control at the time of PV suppression. It is a sequence diagram which shows the outline
  • the hot water supply system 1 is a system that manages the power consumed in the house H by controlling the operation of the water heater 5 installed in the house H.
  • the house H is a so-called general residential building, and is a demand place (consumption place) of power supplied from the commercial power system 8 and the power generation equipment 3.
  • the hot water supply system 1 includes a hot water heater 5, a power generation facility 3, a plurality of devices 7 (devices 7-1, 7-2,...), And a router 12.
  • the router 12 is connected to the power server 14 via a wide area network N such as the Internet.
  • the power generation facility 3 is a facility that is installed in the house H and generates power using sunlight, which is natural energy. Whereas the commercial power system 8 supplies power to an unspecified number of demand areas including the house H, the power generation facility 3 is owned by a customer in a specific demand area, and is supplied to the house H that is a specific demand area. It is a facility that supplies power. Such a power generation facility 3 is also referred to as a distributed power source.
  • the power generation facility 3 includes a PV panel 30 that performs photovoltaic power generation (PV: Photovoltaic) and a power conditioner (power conditioning system) 31 for PV.
  • the PV panel 30 is, for example, a polycrystalline silicon type solar panel.
  • the PV panel 30 is installed on the roof of the house H, and generates solar power by converting solar energy into electric energy.
  • the PV panel 30 functions as power generation means (power generation unit).
  • the power conditioner 31 receives supply of electric power generated by the PV panel 30 and outputs the supplied electric power to the distribution board 9 via the power line D2.
  • FIG. 2 shows the configuration of the power conditioner 31.
  • the power conditioner 31 includes an inverter 32, a control unit 33, a storage unit 36, and a communication unit 37.
  • the inverter 32 functions as a power conversion unit that converts power.
  • the inverter 32 converts the DC power supplied from the PV panel 30 into AC power with a specified conversion efficiency so that it can be used in the house H, and outputs the AC power to the power line D2. Thereby, the inverter 32 supplies the electric power generated by the PV panel 30 to the house H and the commercial power system 8 which are power demand areas (consumption areas).
  • the control unit 33 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an RTC (Real Time Clock), although not shown.
  • the CPU is also called a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like.
  • the control unit 33 includes a generated power calculation unit 34 that calculates the power generated by the PV panel 30 and a state management unit 35 that manages the state of the power conditioner 31.
  • the CPU reads the program and data stored in the ROM, and performs overall control of the power conditioner 31 using the RAM as a work area.
  • the storage unit 36 is a non-volatile semiconductor memory such as a flash memory, an EPROM (Erasable Programmable ROM), or an EEPROM (Electrically Erasable Programmable ROM), and serves as a so-called secondary storage device (auxiliary storage device). .
  • the storage unit 36 stores various programs and data used by the control unit 33 for performing various processes, and various data generated or acquired by the control unit 33 performing various processes.
  • the communication unit 37 is connected to the communication adapter 38 under the control of the control unit 33 and includes a communication interface for communicating with the outside through the communication adapter 38.
  • the communication unit 37 communicates with the hot water supply controller 54 and the router 12 of the water heater 5 through a communication network built in the house H.
  • the communication network is, for example, a home appliance network that conforms to ECHONET Lite or a serial communication network that conforms to the RS232C standard.
  • the communication unit 37 is connected to the wide area network N via the router 12 and communicates with the power server 14 via the wide area network N. For example, the communication unit 37 acquires a PV suppression instruction distributed from the power server 14 via the router 12 and the wide area network N.
  • the communication unit 37 is connected via a communication adapter 38 to CT (Current Transformer) 1 and CT 2 which are sensors for measuring an alternating current.
  • CT1 and CT2 are installed on a power line D1 disposed between the commercial power system 8 and the distribution board 9, and a power line D2 disposed between the power generation facility 3 and the distribution board 9, respectively. ing.
  • CT1 disposed on the power line D1 measures the power P1 supplied from the commercial power system 8 to the house H.
  • This electric power P1 corresponds to electric power (electric power purchased) purchased from an electric power company by a consumer who demands electric power in the house H.
  • CT2 disposed on the power line D2 measures the power P2 output from the power generation facility 3 to the distribution board 9.
  • the electric power P ⁇ b> 2 is supplied to the house H among the electric power generated by the power generation facility 3, and corresponds to electric power that can be used in the house H.
  • the communication part 37 acquires the measured value of electric power P1, P2 measured by CT1 and CT2.
  • the hot water heater 5 is a hot water storage type hot water heater including a heat pump unit 50 and a tank unit 51.
  • the heat pump unit 50 and the tank unit 51 are connected by a pipe 52 through which hot water flows.
  • the water heater 5 is electrically connected to the commercial power system 8 and the power generation equipment 3 via the power line D3 branched by the distribution board 9, and is supplied from either the commercial power system 8 or the power generation equipment 3 Get the power you need to work.
  • the water heater 5 will be described.
  • the heat pump unit 50 of the water heater 5 includes a compressor, a first heat exchanger, an expansion valve, a second heat exchanger, a blower, a control board, and the like, although not shown in the figure.
  • the compressor, the first heat exchanger, the expansion valve, and the second heat exchanger are annularly connected to form a refrigeration cycle circuit for circulating the refrigerant.
  • the refrigeration cycle circuit is also called a refrigerant circuit.
  • Compressor increases temperature and pressure by compressing refrigerant.
  • the compressor includes an inverter circuit that can change a capacity (a delivery amount per unit) according to a driving frequency.
  • the compressor changes the capacity according to the instruction from the control board.
  • the first heat exchanger is a heating source for heating the city water up to the target boiling temperature.
  • the boiling temperature is also called hot water storage temperature.
  • the first heat exchanger is a plate-type or double-tube type heat exchanger, and performs heat exchange between the refrigerant and water (low-temperature water). By heat exchange in the first heat exchanger, the refrigerant dissipates heat and the water absorbs heat.
  • the expansion valve expands the refrigerant to lower the temperature and pressure.
  • the expansion valve changes the valve opening according to an instruction from the control board.
  • the second heat exchanger performs heat exchange between the outside air sent by the blower and the refrigerant.
  • the refrigerant absorbs heat and the outside air dissipates heat by heat exchange in the second heat exchanger.
  • the control board includes a CPU, a ROM, a RAM, a communication interface, a readable / writable nonvolatile semiconductor memory, and the like.
  • the control board is communicably connected to each of the compressor, the expansion valve, and the blower via a communication line, and controls these operations. Further, the control board is communicably connected to the hot water supply controller 54 of the tank unit 51 via a communication line (not shown).
  • the tank unit 51 includes a hot water storage tank 53, a hot water supply controller 54, a mixing valve 56, and the like. These components are housed in a metal outer case.
  • the hot water storage tank 53 is made of metal such as stainless steel or resin.
  • a heat insulating material (not shown) is disposed outside the hot water storage tank 53. Thereby, in hot water storage tank 53, hot water (henceforth high temperature water) can be kept warm for a long time.
  • the temperature of the high-temperature water is, for example, 60 degrees or 70 degrees.
  • the hot water controller 54 is a control device that controls the hot water heater 5 in an integrated manner.
  • the hot water controller 54 is communicably connected to the control board of the heat pump unit 50 via a communication line (not shown).
  • the hot water supply controller 54 is communicably connected to the remote controller 55 via the communication line 59.
  • FIG. 3 shows the configuration of the hot water controller 54.
  • the hot water supply controller 54 includes a control unit 61, a storage unit 62, a timer unit 63, and a communication unit 64. These units are connected via a bus 69.
  • the control unit 61 includes a CPU, a ROM, a RAM, and the like (not shown).
  • the CPU is also called a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, or a DSP.
  • the CPU reads out the program and data stored in the ROM, and controls the hot water supply controller 54 using the RAM as a work area.
  • the storage unit 62 is, for example, a nonvolatile semiconductor memory such as a flash memory, EPROM, or EEPROM, and plays a role as a so-called secondary storage device (auxiliary storage device).
  • the storage unit 62 stores various programs and data used by the control unit 61 to perform various processes, and various data generated or acquired by the control unit 61 performing various processes.
  • the timekeeping unit 63 includes an RTC, and is a timekeeping device that keeps timekeeping even when the hot water supply controller 54 is turned off.
  • the communication unit 64 includes a communication interface for communicating via the communication network described above built in the house H under the control of the control unit 61.
  • the communication unit 64 communicates with the power conditioner 31 and the router 12 of the power generation facility 3 via a communication network.
  • the communication unit 64 is connected to the wide area network N via the router 12 and communicates with the power server 14 via the wide area network N.
  • the communication unit 64 includes an interface for communicating with the remote control 55 and the control board of the heat pump unit 50.
  • the communication unit 64 receives an operation command from the remote controller 55 and transmits display data to the remote controller 55.
  • the communication unit 64 transmits an operation command to the heat pump unit 50.
  • the hot water supply controller 54 may be connected to a communication network via an external communication adapter (not shown).
  • the communication unit 64 is connected to CT3 which is a sensor for measuring an alternating current.
  • CT3 is installed on a power line D3 disposed between the distribution board 9 and the water heater 5, and measures the power P3 supplied from the distribution board 9 to the water heater 5.
  • the electric power P3 corresponds to electric power consumed in the water heater 5.
  • the remote controller 55 is a terminal device for displaying the operating state and hot water storage state of the water heater 5 and presenting them to the user.
  • the remote controller 55 is installed in a bathroom, a washroom, a kitchen, or the like in the house H, and receives an operation input related to boiling or hot water supply from the user.
  • the remote controller 55 is not shown, but includes a CPU, ROM, RAM, a readable / writable nonvolatile semiconductor memory, an input device such as a push button, a touch panel or a touch pad, a display device such as an organic EL display or a liquid crystal display, and A communication interface is provided.
  • the hot water in the hot water storage tank 53 is consumed, and low temperature water close to the city water temperature is stored in the lower part of the hot water storage tank 53.
  • this low-temperature water enters the above-described first heat exchanger of the heat pump unit 50, and the temperature is raised by heat exchange with the refrigerant to become high-temperature water.
  • This high temperature water is returned to the upper part of the hot water storage tank 53, and in the hot water storage tank 53, high temperature water stays in the upper part and low temperature water stays in the lower part to form a temperature stratification, and a temperature boundary is formed between the high temperature water and the low temperature water. A layer is generated.
  • the temperature boundary layer approaches the lower part of the hot water storage tank 53, and the temperature of the water entering the first heat exchanger (incoming water temperature) gradually increases.
  • a hot water discharge pipe is connected to the upper part of the hot water storage tank 53, and hot water discharged from the hot water storage tank 53 through the hot water discharge pipe is mixed with city water by the mixing valve 56. Thereby, it becomes hot water of the temperature (for example, 40 degreeC) which a user desires, for example, is supplied to hot-water supply terminals, such as the shower 57 or the faucet 58 arrange
  • hot-water supply terminals such as the shower 57 or the faucet 58 arrange
  • city water is supplied from the water supply pipe connected to the lower part by the volume of the hot water flowing out from the upper part and the water pressure.
  • the temperature boundary layer moves upward in the hot water storage tank 53.
  • the water heater 5 performs additional boiling.
  • the device 7 (devices 7-1, 7-2,...) Is an electric device such as an air conditioner, an illuminator, a floor heating system, a refrigerator, an IH (Induction Heating) cooker, or a television.
  • the devices 7-1, 7-2,... are installed in the house H (including its site) and are connected to the commercial power system 8 and the power generation facilities via the power lines D4, D5,. 3 is electrically connected.
  • the router 12 is a device that can communicate with the power server 14 via the wide area network N, and is, for example, a broadband router.
  • the hot water controller 54 and the power conditioner 31 communicate with the power server 14 via the router 12.
  • the power server 14 is a server operated by an electric power company that provides commercial power to each consumer by the commercial power system 8.
  • the power server 14 is communicably connected to the power conditioner 31 of the power generation facility 3 installed in the demand area of each consumer via the wide area network N.
  • the power conditioner 31 functionally includes a measurement value acquisition unit 301, an instruction acquisition unit 303, an instruction information transmission unit 304, a power output unit 305, a surplus power calculation unit 306, A surplus information transmission unit 307 and a display control unit 309 are provided.
  • Each of these functions is realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are described as programs and stored in the ROM or the storage unit 36.
  • the power conditioner 31 includes a measurement DB (Database) 310 and an instruction DB 320.
  • the measurement DB 310 and the instruction DB 320 are constructed in the storage area of the storage unit 36.
  • the measurement value acquisition unit 301 acquires the measurement value of the power P1 supplied from the commercial power system 8 to the house H and the measurement value of the power P2 output from the power generation facility 3.
  • the power P1 supplied from the commercial power system 8 to the house H is measured by CT1 disposed on the power line D1.
  • the electric power P2 output from the electric power generation equipment 3 is measured by CT2 arrange
  • the measured value acquisition unit 301 acquires the measured value of the electric power P1 supplied from the commercial power system 8 to the house H, so that the reverse power ( ⁇ P1) supplied to the commercial power system 8 out of the generated power Pa. Can also be obtained.
  • the measurement value acquisition unit 301 acquires the measurement values of the electric powers P1 and P2 obtained by CT1 and CT2 periodically or as needed via the communication unit 37.
  • the measurement value acquisition unit 301 is realized by the control unit 33 cooperating with the communication unit 37.
  • Measurement DB310 memorize
  • FIG. The measurement DB 310 stores the acquired measurement values each time the measurement value acquisition unit 301 acquires the measurement values of the electric powers P1 and P2, and constructs a database.
  • FIG. 5 shows a specific example of measurement data stored in the measurement DB 310.
  • the measurement DB 310 stores the power amount of the purchased power P1, the power amount of the output power P2, and the phase angle of the output power P2 in chronological order.
  • the electric energy is an integrated value of electric power over a predetermined time.
  • the phase angle is a phase difference between the voltage and current at the output power P2, and is also called a power factor angle.
  • the measurement value acquisition unit 301 acquires the measurement values of the powers P1 and P2 from the power measurement device 4
  • the measurement value acquisition unit 301 calculates the power amounts of the powers P1 and P2 and the phase angle of the power P2, and sequentially stores the power amount and the phase angle in the measurement DB 310. Store it.
  • the instruction acquisition unit 303 acquires an instruction for suppressing supply of the power generated by the PV panel 30 to the commercial power system 8.
  • the instruction to suppress the supply of power to the commercial power system 8 is a PV suppression instruction (suppression instruction) distributed by the power server 14.
  • the suppression instruction delivered by the power server 14 will be described.
  • the power server 14 supplies power to the commercial power system 8 from the power generation equipment 3 of each consumer during a specific period, for each consumer who owns the power generation equipment 3. That is, an instruction to suppress reverse power flow is distributed.
  • the reason for suppressing the reverse flow in this way is to prevent the supply and demand balance of the commercial power system 8 from being disrupted due to excessive supply of power from the consumer to the commercial power system 8.
  • indication which suppresses the reverse power flow delivered by the electric power server 14 is called "suppression instruction
  • the output of the power generation equipment 3 is controlled and the reverse power flow is suppressed "PV suppression”. PV suppression is also referred to as “output suppression” or “output control”.
  • the power server 14 obtains weather information such as weather forecast, solar radiation amount, and sunshine duration at the place where the power generation equipment 3 of each consumer is installed from a weather operator, and creates a PV suppression schedule. To do. And the electric power server 14 delivers a suppression instruction
  • the implementation period of PV suppression is usually a period in which the power generated by the power generation facility 3 is excessive with respect to the supply and demand situation of the commercial power system 8, for example, a daytime period in a fine day when a large amount of solar radiation is expected.
  • the electric power server 14 does not distribute a suppression instruction
  • the suppression instruction distributed by the power server 14 includes time information indicating a specific period for performing PV suppression and instruction value information indicating an instruction value for output restriction of the power generation facility 3 at the time of PV suppression. More specifically, the suppression instruction is information on a specific time zone on a specific day, that is, date and time (start time and end time) at which PV suppression is performed, as a specific period for performing PV suppression. Is specified.
  • indication is the electric power output by the power generation equipment 3 of the electric power output from the power conditioner 31 of the power generation equipment 3 to the distribution board 9 of the house H as an instruction
  • the rated value of the generated power of the power generation facility 3 means the maximum power value that the power generation facility 3 can safely output under appropriate conditions, and specifically, the rated capacity and power of the PV panel 30. This corresponds to the smaller of the rated capacity of the conditioner 31.
  • FIG. 6 shows a specific example of the suppression instruction distributed by the power server 14.
  • a solid line La in FIG. 6 represents a transition of the generated power by the power generation facility 3 when PV suppression is not instructed, and shows a large value in the daytime with a peak at noon when the amount of solar radiation increases.
  • the broken line Lp in FIG. 6 represents the transition of the instruction value for the output restriction of the power generation facility 3 specified by the suppression instruction.
  • the power output from the power generation equipment 3 is set to 40% of the rated value (for example, 2% with respect to the rated value of 5.0 kW) in the time zone from 9:00 to 11:00 and from 13:00 to 15:00. .0.0 kW) is specified.
  • the power output from the power generation facility 3 is suppressed to 0% of the rated value in the time zone from 11:00 to 13:00, that is, the power generated by the power generation facility 3 is not output at all. .
  • the power output from the power generation facility 3 is suppressed during the time period from 9:00 to 15:00 when the indicated value is less than 100%.
  • the power output from the power generation facility 3 is not substantially suppressed.
  • the PV suppression schedule is specified in units of 30 minutes, for example, and the output instruction value of the power generation facility 3 is specified in units of 1%, for example.
  • the instruction value may be specified in units of power (for example, kW units) instead of the ratio of the generated power to the rated value. For example, as shown in FIG. 6, when the indicated value of 40% corresponds to the output power of 2.0 kW and the indicated value of 0% corresponds to the output power of 0 kW, the suppression instruction is output from the power generation facility 3.
  • an instruction value of power to be transmitted it may be specified as 2.0 kW and 0 kW.
  • the command power corresponds to a value obtained by multiplying the rated value of the generated power by the command value when the command value is specified as a percentage, and corresponds to the command value itself when the command value is specified as power. .
  • the instruction acquisition unit 303 acquires the distributed suppression instruction via the wide area network N and the communication unit 37.
  • the instruction acquisition unit 303 stores the content of PV suppression such as the schedule and the instruction value specified by the acquired suppression instruction in the instruction DB 320.
  • the instruction acquisition unit 303 is realized by the control unit 33 cooperating with the communication unit 37.
  • the instruction DB 320 stores the content of the suppression instruction acquired by the instruction acquisition unit 303.
  • the content of the suppression instruction is a PV suppression schedule and an instruction value specified by the suppression instruction.
  • the instruction DB 320 updates the stored PV suppression schedule and instruction value each time the instruction acquisition unit 303 acquires a suppression instruction from the power server 14.
  • the instruction information transmission unit 304 transmits instruction information indicating the content of the suppression instruction to the water heater 5 when the instruction acquisition unit 303 acquires the suppression instruction.
  • the content of the suppression instruction includes the fact that PV suppression has been instructed and the date and time.
  • the instruction information transmission unit 304 generates instruction information indicating the content of such a suppression instruction.
  • the instruction information transmission part 304 transmits the produced
  • the instruction information transmission unit 304 is realized by the control unit 33 cooperating with the communication unit 37.
  • the power output unit 305 When the instruction acquisition unit 303 acquires the suppression instruction, the power output unit 305 outputs less power than the generated power among the power generated by the PV panel 30 during the period determined by the suppression instruction.
  • the period determined by the suppression instruction is a PV suppression execution period instructed by the suppression instruction.
  • the power output unit 305 controls the inverter 32 to suppress the power output to the power line D2 from the generated power supplied from the PV panel 30 to the power conditioner 31. .
  • not all of the power generated by the PV panel 30 is output to the power line D2, less power than the generated power is output, and the remaining power is not output.
  • output of less power than the generated power includes that no power is output.
  • the power output unit 305 is realized by the control unit 33 cooperating with the inverter 32.
  • the power output unit 305 executes phase advance phase control as a method of suppressing output power. More specifically, the power output unit 305 suppresses the output power by controlling the phase of the power. In other words, the power output unit 305 decreases the output active power by shifting the phase of the current from the phase of the voltage during the PV suppression period.
  • FIG. 7 shows the transition of output power from the power conditioner 31 when PV is suppressed.
  • a one-dot chain line Lc in FIG. 7 represents a transition of the total power consumption of the house H, and generally shows a large value from the afternoon to the evening when the power consumption amount in the home increases.
  • the thick solid line L2 in FIG. 7 represents the transition of the power output from the power conditioner 31 among the power generated by the PV panel 30, that is, the power P2 flowing through the power line D2.
  • the power output unit 305 does not suppress the output from the power conditioner 31 in the periods T1 and T4 in which PV suppression is not performed. Therefore, the output power P2 from the power conditioner 31 represented by the thick solid line L2 is equal to the generated power that can be output by the power conditioner 31 represented by the thin solid line La.
  • the generated electric power that can be output by the power conditioner 31 is electric power obtained by multiplying the electric power generated in the PV panel 30 (panel generated electric power) by a specified conversion efficiency.
  • the electric power (generated electric power) generated by the PV panel 30 and the electric power that can be output from the power conditioner 31 is represented as Pa, and the electric power (output electric power) P2 actually output from the power conditioner 31 is expressed as Pa.
  • the generated power Pa that can be output by the power conditioner 31 is simply referred to as “generated power Pa” or the like.
  • the power output unit 305 suppresses the output from the power conditioner 31. Therefore, the output power P2 represented by the thick solid line L2 is smaller than the generated power Pa represented by the thin solid line La.
  • the power output unit 305 suppresses the output power P2 from the power conditioner 31 to the command power as represented by the thick solid line L2.
  • Such an operation mode of the power output unit 305 is referred to as an “output suppression mode”.
  • the power output unit 305 suppresses the output power P2 from the power conditioner 31 only to the power equal to the total power consumption Pc, not to the indicated power, as represented by the thick solid line L2.
  • the power output unit 305 suppresses the output power P2 to be equal to the generated power Pa in a period in which the generated power Pa is smaller than the total power consumption Pc, for example, as in the period immediately before 15:00 in FIG. .
  • Such an operation mode of the power output unit 305 is referred to as “reverse flow zero mode”.
  • the loss power is a power generation loss and is a power (Pa ⁇ P2) that is not output from the power conditioner 31 even though it is generated by the PV panel 30.
  • the output power P2 is suppressed to the command power, so the power loss is relatively large.
  • the output power P2 is suppressed only to power equal to the total power consumption Pc, so the power loss of the power generation facility 3 is relatively small. For this reason, at the time of PV suppression, if the total power consumption Pc is increased so as to exceed the command power, the power loss can be reduced.
  • the output power P2 suppressed up to the command power is larger than the total power consumption Pc, so that the power corresponding to the difference (P2-Pc) is used as surplus power. Surplus. This surplus power is sold to the commercial power system 8 as reverse power.
  • time t2 included in the period T3 since the output power P2 and the total power consumption Pc are equal, neither power purchase nor power sale occurs.
  • the surplus power calculator 306 calculates the surplus power.
  • the surplus power is the surplus power that can be output by the power conditioner 31 among the power Pa generated by the PV panel 30.
  • the surplus power is power that is not output from the power conditioner 31 due to output suppression even though the equipment in the house H including the water heater 5 can be consumed during the PV suppression period. More specifically, the surplus power corresponds to the loss power shown in the lower part of FIG.
  • the surplus power calculation unit 306 is realized by the generated power calculation unit 34 in the control unit 33.
  • the surplus power calculation unit 306 calculates the surplus power based on the difference between the power Pa generated by the PV panel 30 and the power P2 output by the power output unit 305 in the PV suppression implementation period.
  • the generated power Pa by the PV panel 30 cannot be directly measured while the PV suppression is being performed. Therefore, the surplus power calculation unit 306 uses the phase angle of the output power P2 in the period before the PV suppression execution period in order to acquire the generated power Pa.
  • the surplus power calculation unit 306 multiplies the rated value of the generated power Pa by the power factor of the power P2 output by the power output unit 305 before the PV suppression implementation period, thereby reducing the PV suppression.
  • Generated power Pa in the implementation period is calculated.
  • the power factor of the output power P2 is obtained by calculating from the phase difference between the voltage and current at the output power P2.
  • the rated value of the generated power Pa is the maximum power value that the power generation facility 3 can safely output under appropriate conditions.
  • the rated value of the generated power Pa is stored in advance in the ROM or the storage unit 36.
  • the surplus power calculation unit 306 refers to the phase angle data stored in the measurement DB 310 and calculates the average value of the phase angle in a predetermined period immediately before the PV suppression execution period starts.
  • the predetermined period is, for example, 5 minutes or 10 minutes.
  • the surplus power calculation unit 306 calculates the power factor of the output power P2 by calculating the cosine of the average value of the phase angles, and multiplies the rated value of the generated power Pa by the obtained power factor to suppress the PV.
  • the estimated value of the generated power Pa in the implementation period is calculated.
  • the surplus power calculation unit 306 calculates the surplus power by subtracting the power P2 output by the power output unit 305 during the PV suppression period from the calculated generated power Pa.
  • the output power P ⁇ b> 2 during the PV suppression implementation period can be acquired as a measurement value by the measurement value acquisition unit 301.
  • the surplus power information transmission unit 307 transmits surplus power information indicating the surplus power calculated by the surplus power calculation unit 306 to the water heater 5. More specifically, the surplus power information transmission unit 307 averages the surplus power calculated by the surplus power calculation unit 306 in a predetermined period during the PV suppression period, and indicates surplus power indicating the averaged surplus power. Is generated. The predetermined period is, for example, 30 minutes. Then, the surplus power information transmission unit 307 transmits the generated surplus information to the water heater 5 via the communication network built in the house H.
  • the surplus information transmitting unit 307 is realized by the control unit 33 cooperating with the communication unit 37.
  • the display control unit 309 communicates with a user interface (not shown) via the communication unit 37, and displays a display screen corresponding to the situation on the display device of the user interface.
  • the display control unit 309 is realized by the control unit 33 cooperating with the communication unit 37.
  • FIG. 8 shows an example of a display screen by the power conditioner 31.
  • the display control unit 309 Based on the measurement value stored in the measurement DB 310 and the result of the suppression process by the power output unit 305, the display control unit 309 displays the current power generation amount, the suppression amount suppressed by the power conditioner 31 during PV suppression, and the like. And displayed on the display unit 40 of the user interface.
  • the hot water supply controller 54 functionally includes an instruction information acquisition unit 601, a plan generation unit 602, a remaining power information acquisition unit 605, a boiling unit 604, a display control unit 608, and an operation reception. Unit 609.
  • Each of these functions is realized by software, firmware, or a combination of software and firmware.
  • the software and firmware are described as programs and stored in the ROM or the storage unit 62.
  • the hot water supply controller 54 includes a learning DB 610.
  • the learning DB 610 is constructed in a storage area in the storage unit 62.
  • the instruction information acquisition unit 601 acquires instruction information transmitted from the power conditioner 31.
  • the instruction information is information transmitted by the instruction information transmission unit 304, such as the fact that PV suppression has been instructed and the date and time.
  • the instruction information acquisition unit 601 acquires instruction information through a communication network built in the house H.
  • the instruction information acquisition unit 601 is realized by the control unit 61 cooperating with the communication unit 64.
  • the plan generation unit 602 generates a boiling plan based on the instruction information when the instruction information acquisition unit 601 acquires the instruction information.
  • the boiling plan defines a start time, an end time, a boiling time, a boiling amount, a boiling capacity, and the like of a boiling operation.
  • the plan generating unit 602 refers to the learning DB 610 and generates the next day's boiling plan.
  • the generated plan is stored in the RAM or the storage unit 62.
  • the plan generation unit 602 is realized by the control unit 61 cooperating with the storage unit 62.
  • the learning DB 610 is a database that stores data such as the amount of boiling water and the amount used (hot water supply amount) up to the previous day.
  • the plan generation unit 602 predicts the amount of hot water to be used on the next day with reference to the boiling amount and usage amount up to the previous day stored in the learning DB 610. Then, the control unit 61 determines a target boiling amount from the predicted amount of hot water used the next day and the amount of hot water remaining in the hot water storage tank 53.
  • the plan generation unit 602 determines the time for boiling the hot water. Usually, the water heater 5 boils up the amount of hot water required for one day at night when the power purchase unit price is low, and boils hot water only when the amount of hot water is insufficient at other times. Therefore, when PV suppression is not performed on the next day, the plan generation unit 602 generates a plan for boiling all the determined boiling amount of hot water at night as a boiling plan.
  • the power loss generated during PV suppression can be reduced by performing the boiling operation during the daytime when PV suppression is performed. Therefore, when the instruction information acquisition unit 601 acquires instruction information indicating that PV suppression will be performed the next day, the plan generation unit 602 boils a part of the determined amount of hot water at night as a boiling plan. Generate a plan to raise and boil the rest during daytime PV suppression.
  • Fig. 9 schematically shows a plan for shifting boiling operation from night to daytime.
  • the plan generation unit 602 plans to boil up all of the target boiling amount of hot water during the night time including the portion indicated by the dotted line in FIG. Generate.
  • the plan generation unit 602 indicates a part of the boiling operation to be performed at night when PV suppression is not performed on the next day (indicated by a broken line in FIG. 9). Generate a plan to shift the part) in the daytime.
  • the boiling unit 604 communicates with the control board of the heat pump unit 50 to boil hot water by controlling the heat pump unit 50.
  • Boiling hot water means that the low temperature water in the hot water storage tank 53 is heated to high temperature water by the heat pump unit 50 and the high temperature water is supplied to the hot water storage tank 53.
  • the boiling unit 604 is realized by the control unit 61 cooperating with the time measuring unit 63 and the communication unit 64.
  • the boiling unit 604 boils hot water according to the boiling plan generated by the plan generating unit 602. More specifically, when the instruction information acquisition unit 601 does not acquire instruction information on which PV suppression is performed on the next day, the boiling unit 604 follows the night boiling plan generated by the plan generation unit 602 according to the target. Boil all the boiling water at night.
  • the boiling unit 604 performs the first operation at night before the PV suppression execution period determined by the instruction information.
  • An amount of hot water is boiled, and a second amount of hot water is boiled with the capacity corresponding to the remaining power in the daytime, which is the implementation period of PV suppression.
  • the first amount is a night boiling amount determined in the night boiling plan.
  • the second amount is the daytime boiling amount determined in the daytime boiling plan, and corresponds to an amount obtained by subtracting the first amount from the target boiling amount.
  • the boiling unit 604 boils the target boiling amount of hot water in two portions according to the night boiling plan and the day boiling plan generated by the plan generating unit 602.
  • the surplus power information acquisition unit 605 acquires surplus information from the power conditioner 31 in a period determined by the suppression instruction.
  • the surplus power information is information based on the difference between the power Pa generated by the PV panel 30 and the power P2 output by the power output unit 305 transmitted by the surplus information transmitting unit 307, Specifically, it is information indicating the surplus power of the power generation facility 3.
  • the surplus information acquisition unit 605 acquires surplus information via a communication network built in the house H.
  • the surplus power information acquisition unit 605 is realized by the control unit 61 cooperating with the communication unit 64.
  • the boiling unit 604 determines the difference between the capacity according to the surplus power, in other words, the power Pa generated by the PV panel 30 and the power P2 output by the power output unit 305. Boiling hot water with the ability according to.
  • boiling capacity is an index indicating how fast the water heater 5 can boil hot water.
  • the boiling capacity is also called a boiling level.
  • the water heater 5 is preset with a plurality of stages of boiling capacity. The higher the boiling capacity, the shorter the time for boiling hot water at a desired temperature, and the power consumption of the water heater 5 increases. The lower the boiling capacity is, the longer the time for boiling hot water at a desired temperature is, and the power consumption of the water heater 5 is reduced.
  • the boiling unit 604 controls the driving frequency of the compressor in the heat pump unit 50, and changes the boiling capacity by changing the amount of feed per unit from the compressor.
  • the capacity according to the surplus power means a boiling capacity that can be set in a range where the increase in power consumption in the water heater 5 is smaller than the surplus power.
  • the boiling unit 604 increases the power consumption in the water heater 5 by an amount smaller than the surplus power, and boils hot water. If demonstrating it concretely, the boiling part 604 will use electric power which reduced the value of the predetermined margin from the surplus power shown by the acquired surplus power information as upper limit electric power which can increase consumption in the water heater 5. calculate. For example, when the surplus power is 1.0 kW and the margin is 0.2 kW, the boiling unit 604 calculates the upper limit power as 0.8 kW.
  • the boiling unit 604 determines the boiling capacity so that the increase in power consumption in the water heater 5 is less than the upper limit power. For example, when the water heater 5 is in a standby state and does not consume power, the boiling unit 604 has a boiling point at which the increase in power consumption from 0 kW in the water heater 5 is smaller than the maximum power and maximized. Determine the raising ability. In addition, when the water heater 5 is in a boiling operation and has already consumed power, the boiling unit 604 is configured such that the amount of increase from the current power consumption in the water heater 5 is smaller than the upper limit power and is the maximum. Determine the boiling capacity to become.
  • the boiling unit 604 reduces the power consumption of the water heater 5 when the remaining power becomes smaller than a predetermined threshold while boiling the hot water.
  • the boiling unit 604 decreases the boiling capacity in accordance with the decrease in the surplus power.
  • the boiling unit 604 has a boiling capacity within a possible range (for example, one step or two steps) in order to suppress the occurrence of power purchase. ) Lower.
  • the threshold value can be set as appropriate depending on how much power generation is allowed.
  • the display control unit 608 communicates with the remote controller 55 via the communication unit 64, and displays a display screen corresponding to the situation on the display device of the remote controller 55.
  • the operation accepting unit 609 communicates with the remote controller 55 via the communication unit 64 and accepts information input by the user operating the remote controller 55.
  • the display control unit 608 and the operation reception unit 609 are realized by the control unit 61 cooperating with the communication unit 64, respectively.
  • the display control unit 608 is configured to display information related to the water heater 5 such as the current set temperature, the amount of stored hot water, and the boiling capacity level, as shown in FIGS. Information about the current power generation output amount, suppression amount, and power such as load is displayed together with various operation buttons.
  • the load is the total power consumption Pc of the house H.
  • the display control unit 608 displays a message “The boiling capacity can be increased to level 4”. Thereby, the display control unit 608 informs the user that there is sufficient power that can be consumed by the water heater 5, and prompts the user to increase the boiling capacity.
  • the display control unit 608 displays a message “Purchasing power has been generated. Electricity can be avoided by lowering the boiling capacity to level 2.” Thereby, the display control unit 608 notifies the user that power purchase has occurred, and prompts the user to lower the boiling capacity.
  • the user can input an operation by selecting a button for raising or lowering the boiling capacity of the water heater 5.
  • the operation accepting unit 609 accepts an operation for increasing or decreasing the boiling capacity input by the user from the remote controller 55.
  • the boiling unit 604 changes the boiling capacity of the water heater 5 according to the operation received by the operation receiving unit 609.
  • FIG. 12 shows an outline of processing executed in the hot water supply system 1.
  • FIG. 12 shows the hot water controller of the power server 14, the power conditioner 31 of the power generation equipment 3, and the hot water controller 5 after the PV restraint instruction is delivered from the power server 14 until the end of the PV restraint. The flow of the process performed by 54 is shown. If a plurality of PV suppression instructions are delivered from the power server 14, the processes shown in FIG. 12 are executed in parallel for each of the multiple PV suppressions.
  • the power server 14 distributes a PV suppression instruction (suppression instruction) to each consumer (step S1).
  • the suppression instruction is distributed from the power server 14, the power conditioner 31 executes processing for acquiring the distributed suppression instruction (step S2).
  • FIG. 13 shows details of the suppression instruction acquisition process executed in step S2.
  • control unit 33 of the power conditioner 31 acquires the suppression instruction distributed from the power server 14 via the wide area network N (step S21).
  • control unit 33 functions as the instruction acquisition unit 303.
  • the control unit 33 may acquire the suppression instruction at the timing when the suppression instruction is distributed from the power server 14.
  • the control unit 33 may acquire a suppression instruction from the power server 14 by accessing the power server 14 by itself when a predetermined timing such as once or twice a day arrives.
  • the control unit 33 waits until the day before the day when the PV suppression is performed (step S22). And when it becomes the day before the day when PV suppression is carried out, the control unit 33 determines whether the value obtained by subtracting the command power determined by the acquired suppression command from the rated value of the generated power exceeds a predetermined threshold value. It is determined whether or not (step S23).
  • step S23 when the value obtained by subtracting the command power from the rated value of the generated power exceeds the threshold (step S23; YES), the control unit 33 provides the hot water heater 5 with the command information indicating the content of the acquired suppression command. Transmit (step S24). If demonstrating it concretely, the control part 33 will produce
  • step S22 to step S24 the control unit 33 functions as the instruction information transmission unit 304.
  • step S23 when the value obtained by subtracting the command power from the rated value of the generated power does not exceed the threshold (step S23; NO), the control unit 33 does not transmit the command information. If the value obtained by subtracting the indicated power from the rated value of the generated power does not exceed the threshold value, the power loss is not relatively large, and it is estimated that the water heater 5 does not need to perform the boiling operation during PV suppression. It is. Thus, the suppression instruction acquisition process illustrated in FIG. 13 ends.
  • step S24 when the power conditioner 31 transmits the instruction information in step S24, the hot water supply controller 54 acquires the transmitted instruction information (step S3).
  • step S ⁇ b> 3 the control unit 61 of the hot water supply controller 54 functions as the instruction information acquisition unit 601.
  • step S4 the hot water controller 54 executes a boiling plan process according to the acquired instruction information (step S4).
  • step S ⁇ b> 4 the control unit 61 of the hot water supply controller 54 functions as the plan generation unit 602.
  • FIG. 14 the detail of the boiling plan production
  • the controller 61 of the hot water supply controller 54 learns the amount of hot water the previous day (step S41) and updates the learning DB 610.
  • the amount of hot water is, for example, the amount of boiling and the amount used.
  • the control part 61 determines the amount of boiling based on the learning result memorize
  • control unit 61 predicts the amount of hot water to be used on the next day from the amount of boiling and the amount used up to the previous day stored in the learning DB 610. And the control part 61 determines the amount of boiling from the usage-amount of the hot water of the predicted next day, and the amount of the hot water remaining in the hot water storage tank 53.
  • control unit 61 determines whether or not PV suppression is performed on the next day based on the instruction information acquired from the power conditioner 31 (step S43).
  • Step S43 If the instruction information indicating that the PV suppression is instructed on the next day is not acquired from the power conditioner 31 by a predetermined time (for example, 23:00), the control unit 61 does not perform the PV suppression on the next day.
  • Step S43 the control unit 61 generates a nighttime boiling plan as a boiling plan (step S44), and does not generate a daytime boiling plan.
  • the control unit 61 when the PV suppression is not performed on the next day, the control unit 61 generates a plan for boiling all of the determined boiling amount of hot water at night.
  • the control unit 61 determines that the PV suppression is performed on the next day (step S43; YES). ). In this case, the control part 61 produces
  • the boiling plan generation process shown in FIG. 14 ends.
  • the hot water supply controller 54 when the hot water supply controller 54 generates a boiling plan, it performs boiling at night according to the generated plan (step S5). Specifically, the hot water supply controller 54 boils up the planned amount of hot water at the planned time according to the night boiling plan generated in step S44 or step S45. In step S ⁇ b> 5, the control unit 61 of the hot water supply controller 54 functions as the boiling unit 604.
  • the display control unit 608 displays a message or an image indicating that boiling is being performed on the remote controller 55 while the boiling is being performed at night. When the night boiling is completed, the display control unit 608 displays a message or an image indicating that on the remote controller 55.
  • step S6 the power conditioner 31 executes output suppression of the generated power.
  • FIG. 15 shows details of the output suppression process of the power conditioner 31 executed in step S6. The output suppression process starts when the PV suppression start time determined by the suppression instruction acquired from the power server 14 arrives.
  • step S601 the control unit 33 of the power conditioner 31 acquires the measured values of the electric powers P1 and P2 acquired by CT1 and CT2 (step S601). And the control part 33 suppresses the output electric power P2 by controlling the phase of the electric power output from the power conditioner 31 based on the measured value of acquired electric power P1, P2 (step S602).
  • step S601 the control unit 33 functions as the measurement value acquisition unit 301.
  • step S602 the control unit 33 functions as the power output unit 305.
  • FIG. 16 shows details of the phase control processing executed in step S602.
  • the control unit 33 first determines whether or not the current output power P2 is greater than the command power (step S621). For example, when the current output power P2 is not greater than the command power (step S621; NO), as in the case where the current weather is cloudy or rainy and the amount of power generated by sunlight is small in the first place (step S621; NO), the output from the power conditioner 31 There is no need to suppress the power P2. Therefore, the control unit 33 does not suppress output (step S622). In this case, all of the generated power that can be output from the power conditioner 31 is supplied to the house H or the commercial power system 8.
  • step S621 when it determines with the present output electric power P2 from the power conditioner 31 being larger than instruction
  • the control unit 33 suppresses the output power P2 in the output suppression mode (step S624).
  • the output suppression mode is a mode for suppressing the output power P2 from the power conditioner 31 up to the limit value instructed by the suppression instruction. In this case, for example, as in the period T2 shown in FIG. 7, the total power consumption Pc of the house H is smaller than the limit value, which corresponds to the case where surplus power is generated.
  • the control unit 33 suppresses the output power P2 in the reverse power flow zero mode (step S625).
  • the reverse power flow zero mode is a mode in which the output power P2 is adjusted so that the reverse power flow approaches zero as much as possible. This case corresponds to a case where the total power consumption Pc of the house H is larger than the command power, for example, during a period T3 shown in FIG. In this case, the control unit 33 adjusts the output power P2 to be equal to the total power consumption Pc. Thereby, the purchased power (reverse power) P1 becomes zero as much as possible, and neither power purchase nor power sale occurs.
  • the control unit 33 After executing the processing of steps S622, S624, and S625, the control unit 33 updates the measurement DB 310 (step S626). For example, when the output is suppressed in the output suppression mode or the reverse power flow zero mode, the control unit 33 updates the measurement DB 310 with the measured values of the power P1, P2 after the output suppression and the data of the phase angle. Thus, the phase control process shown in FIG. 16 ends.
  • the control unit 33 determines whether the total time has elapsed since the start of PV suppression or the previous calculation of surplus power It is determined whether or not (step S603).
  • the total time is a time for calculating the surplus power, and is set to 3 minutes or 5 minutes, for example.
  • step S603 If the counting time has not elapsed (step S603; NO), the control unit 33 returns the process to step S601. Until the total time elapses, the control unit 33 acquires the measured values of the powers P1 and P2 and repeats the process of suppressing the output power P2.
  • the control unit 33 proceeds to a calculation process of surplus power. Specifically, the control unit 33 calculates an average value of the phase angles before the output suppression (step S604). Specifically, the control unit 33 refers to the phase angle data stored in the measurement DB 310 and determines a predetermined period (for example, 5 minutes or 10 minutes) immediately before the PV suppression execution period is started. ) To calculate the average phase angle.
  • a predetermined period for example, 5 minutes or 10 minutes
  • the control unit 33 calculates the generated power based on the calculation result (step S605). Specifically, the control unit 33 calculates the power factor of the output power P2 by calculating the cosine of the average value of the phase angles, and multiplies the rated value of the generated power Pa by the obtained power factor. Thereby, the control part 33 calculates the estimated value of the generated electric power Pa in the implementation period of PV suppression.
  • the control unit 33 calculates the surplus power by subtracting the measured value of the output power P2 from the calculated estimated value of the generated power Pa (step S606). Thereby, the control part 33 estimates the electric power which is not output from the power conditioner 31, although the apparatus in the house H containing the water heater 5 can be consumed in the implementation period of PV suppression. In steps S ⁇ b> 603 to S ⁇ b> 606, the control unit 33 functions as a surplus power calculation unit 306.
  • the control unit 33 determines whether or not the specified period has elapsed (step S607).
  • the specified period is a time set to determine the transmission timing of the surplus information to the hot water heater 5, and is set to 30 minutes, for example.
  • the control unit 33 skips the processes of steps S608 and S609.
  • step S607 When the specified period has elapsed from the immediately preceding transmission timing (step S607; YES), the control unit 33 averages the surplus power calculated from the immediately preceding transmission timing to the present (step S608). And the control part 33 produces
  • step S608 and step S609 the control unit 33 functions as a surplus power information transmission unit 307.
  • control unit 33 determines whether or not the output suppression is finished (step S610). When output suppression is not complete
  • step S610 when the output suppression ends (step S610; YES), the control unit 33 notifies the water heater 5 of the cancellation of the output suppression (step S611).
  • the output suppression process of the power conditioner 31 illustrated in FIG. 15 ends.
  • step S7 the hot water supply controller 54 executes a daytime boiling process (step S7).
  • step S ⁇ b> 7 the control unit 61 of the hot water supply controller 54 functions as the boiling unit 604.
  • FIG. 17 shows details of the daytime boiling process of the hot water supply controller 54 executed in step S7. This daytime boiling process starts when the PV suppression start time determined by the instruction information acquired from the power conditioner 31 arrives.
  • the control unit 61 of the hot water supply controller 54 acquires the surplus information transmitted from the power conditioner 31 in step S609 (step S701).
  • the control unit 61 determines whether or not the surplus power indicated by the acquired surplus power information is larger than a preset boiling startable power (step S702).
  • step S702 When the surplus power is not larger than the startable power (step S702; NO), the control unit 61 does not start boiling and waits until the next surplus information is acquired in step S701.
  • step S702 when the surplus power is larger than the startable power (step S702; YES), the control unit 61 proceeds to a process of starting boiling. Before starting boiling, the controller 61 determines the boiling capacity based on the surplus power (step S703). More specifically, the control unit 61 calculates an upper limit power obtained by subtracting a predetermined margin value from the surplus power, and determines the boiling capacity at which the power consumption of the water heater 5 is less than the upper limit power and becomes the maximum. .
  • the controller 61 starts the boiling operation with the determined boiling capacity (step S704). Specifically, the control unit 61 drives the heat pump unit 50 with the determined boiling capacity, and starts supplying hot water to the hot water storage tank 53.
  • the control unit 61 determines whether or not the boiling operation is completed (step S705). When the boiling operation is finished (step S705; YES), the control unit 61 displays a message or an image indicating that the daytime boiling is finished on the remote controller 55, and finishes the daytime boiling process.
  • step S705 when the boiling operation has not ended (step S705; NO), the control unit 61 determines whether new surplus information has been acquired from the power conditioner 31 (step S706). When new remaining power information is not acquired (step S706; NO), the control part 61 returns a process to step S704, and continues the boiling operation in execution.
  • step S706 when new surplus information is acquired from the power conditioner 31 (step S706; YES), the control unit 61 changes the boiling capacity based on the new surplus power indicated by the new surplus information. It is determined whether or not it is necessary (step S707). More specifically, the controller 61 determines whether or not the boiling capacity can be increased when the surplus power increases. In addition, when the surplus power is reduced, the control unit 61 determines whether it is necessary to lower the boiling capacity. The controller 61 determines that the boiling capacity needs to be lowered when the surplus power becomes smaller than the threshold value described above.
  • step S707 If it is determined that there is no need to change the boiling capacity (step S707; NO), the control unit 61 returns the process to step S704 and continues the boiling operation being performed without changing the boiling capacity. .
  • step S707 if it is determined that the boiling capacity needs to be changed (step S707; YES), the control unit 61 notifies the user to that effect (step S708). More specifically, when it is determined that the boiling capacity can be increased, the control unit 61 notifies the user that there is sufficient power that can be consumed by the water heater 5, as shown in FIG. , Prompt the user to increase the boiling ability. When it is determined that it is necessary to lower the boiling capacity, the control unit 61 notifies the user that power purchase has occurred and urges the user to lower the boiling capacity as shown in FIG. . In step S708, the control unit 61 functions as the display control unit 608.
  • the control unit 61 determines whether or not an operation for changing the boiling capacity has been received from the user (step S709). When an operation for changing the boiling capacity is not received (step S709; NO), the control unit 61 waits until an operation for changing the boiling capacity is received in step S709. In step S709, the control unit 61 functions as the operation reception unit 609.
  • step S709 When an operation for changing the boiling capacity is received (step S709; YES), the control unit 61 changes the boiling capacity according to the received operation (step S710). And the control part 61 returns a process to step S704, and performs a boiling operation by the boiling capability after a change. In this way, the control unit 61 performs the boiling operation until boiling of the amount of hot water determined in the daytime boiling plan is completed.
  • controller 61 is not limited to changing the boiling capacity when an operation for changing the boiling capacity is received from the user, but also when the operation for changing the boiling capacity is not received, In response to this, the boiling capacity may be changed spontaneously.
  • the power conditioner 31 generates the power P1 generated by the PV panel 30 and the power output from the power conditioner 31 during the PV suppression period.
  • the difference from P2 is calculated as the surplus power of the power generation facility 3, and the water heater 5 boils hot water with the capacity corresponding to the surplus power.
  • the power conditioner 31 calculates surplus power and the power conditioner 31 transmits surplus information to the water heater 5, it is necessary to have a configuration of a control device or server other than the power conditioner 31 and the water heater 5. Absent. Therefore, the remaining power can be efficiently utilized with the minimum configuration of the power conditioner 31 and the water heater 5.
  • the power conditioner 31 has a function of calculating the surplus power.
  • the power conditioner 31 does not have a function of calculating the surplus power
  • the server connected via the wide area network N calculates the surplus power
  • the hot water supply controller 54 receives the surplus power from the server. Get information.
  • FIG. 18 shows a functional configuration of the hot water supply system 1a according to the second embodiment.
  • the hot water supply system 1a includes a power conditioner 31a, a hot water supply controller 54, and a server 80.
  • the power conditioner 31a functionally includes a measurement value acquisition unit 301, an instruction acquisition unit 303, an instruction information transmission unit 304, a power output unit 305, an output information transmission unit 308, A display control unit 309. Since functions other than the output information transmission unit 308 are the same as those in the first embodiment, description thereof is omitted.
  • the output information transmission unit 308 transmits first output information indicating the power P2 output by the power output unit 305 to the server 80 via the wide area network N during the PV suppression implementation period.
  • the output information transmission unit 308 is realized by the control unit 33 cooperating with the communication unit 37.
  • the server 80 is a server that operates in cooperation with the power conditioner 31a and the hot water supply controller 54, and is a server that provides resources in, for example, cloud computing.
  • the server 80 is communicably connected to the power conditioner 31a and the hot water supply controller 54 via the wide area network N.
  • the server 80 may be the power server 14 or a server different from the power server 14.
  • the server 80 includes a CPU, a ROM, a RAM, a communication interface, a readable / writable nonvolatile semiconductor memory, and the like, although not shown.
  • the server 80 functionally includes a first output information acquisition unit 801, a second output information acquisition unit 802, a surplus power calculation unit 803, and a surplus power information transmission unit 804.
  • Each of these functions is realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are described as programs and stored in a ROM or a storage unit. And in a control part, CPU implement
  • the first output information acquisition unit 801 acquires the transmitted first output information.
  • the 2nd output information acquisition part 802 acquires the 2nd output information which shows the electric power output in the implementation period of PV suppression from the power conditioner 31b of the power generation equipment which is not the object of suppression instructions.
  • the power generation equipment that is not the target of the suppression instruction is a power generation equipment that is connected to the server 80 via the wide area network N and is installed in a demand area other than the house H, and the power generation equipment 3 installed in the house H outputs This is a power generation facility that does not suppress output during the period of suppression.
  • the 2nd output information acquisition part 802 is the 1st which shows the electric power output in the implementation period of PV suppression from the power conditioner of the several power generation equipment which is not the object of suppression instructions, for example in the neighborhood area of house H, or a similar location environment. 2 Output information is acquired.
  • the surplus power calculation unit 803 is based on the first output information acquired by the first output information acquisition unit 801 and the second output information acquired by the second output information acquisition unit 802, and the surplus power of the power conditioner 31a. Calculate
  • the surplus power calculation unit 803 calculates the ratio of the output power from the power conditioner of the power generation facility whose output is not suppressed, which is indicated by the second output information, to the rated value of this power generation facility.
  • the surplus power calculation unit 803 averages this ratio for a plurality of power generation facilities whose outputs are not suppressed.
  • the surplus power calculation unit 803 multiplies the averaged ratio and a predetermined correction coefficient by the rated value of the power generation facility 3 that suppresses the output, thereby generating output power Pa that can be output from the power generation facility 3. Calculate the estimate of.
  • the surplus power calculation unit 803 subtracts the output power P2 of the power conditioner 31a, which is indicated by the first output power, from which the output is suppressed, from the estimated value of the calculated generated power Pa, so that the power conditioner 31a Calculate surplus power.
  • the surplus power information transmission unit 804 transmits surplus power information indicating the surplus power calculated by the surplus power calculation unit 803 to the water heater 5 via the wide area network N.
  • the surplus information acquisition unit 605 acquires the transmitted surplus information.
  • the boiling unit 604 performs day-time boiling in the same manner as in the first embodiment, according to the surplus power acquired by the surplus power information acquisition unit 605.
  • illustration is abbreviate
  • the server 80 has the remaining power of the power conditioner 31a whose output is suppressed based on the output power from the other power conditioner whose output is not suppressed. Calculate Then, the hot water supply controller 54 acquires remaining power information from the server 80. Since the power conditioner 31a does not have a function of calculating the surplus power, the configuration of the power conditioner 31a can be simplified.
  • the surplus power calculation unit 306 calculates the difference between the generated power Pa and the output power P2 during the PV suppression period, that is, the loss power itself in the power generation facility 3 as the surplus power.
  • the surplus power can be determined as power obtained by subtracting a predetermined margin value from the difference (loss power) between the generated power Pa and the output power P2 during the PV suppression period.
  • the surplus power calculation unit 306 may calculate the power obtained by adding the reverse power to the difference (loss power) between the generated power Pa and the output power P2 during the PV suppression implementation period as the surplus power. For example, when the output is suppressed while generating a reverse power flow as in the “output suppression mode” in the period T2 shown in FIG. 7, both the loss power and the reverse power are present. In such a case, not only the power loss in the power generation equipment 3 but also the reverse power can be used for the boiling operation of the water heater 5. More specifically, the surplus power calculation unit 306 calculates the reverse tide power acquired by the measurement value acquisition unit 301 in the difference between the power Pa generated by the PV panel 30 and the power P2 output by the power output unit 305.
  • the surplus power may be calculated by adding the measured value of ( ⁇ P1). As described above, the surplus power calculation unit 306 calculates the surplus power including the reverse power, and the surplus power information transmission unit 307 transmits the surplus information indicating the surplus power to the water heater 5, so that more power can be obtained. It can be used for boiling operation of the water heater 5. This is more effective particularly when the economic effect of power sales is not important.
  • the power output unit 305 of the power conditioner 31 selects the output suppression mode or the reverse power flow zero mode according to the measured value of the purchased power (reverse power) P1, and outputs in the selected mode. Power was suppressed.
  • the power output unit 305 may suppress the output power by another method as long as it can be controlled so that the reverse power does not exceed the instruction power determined by the suppression instruction. For example, the power output unit 305 increases the output power if the reverse power is smaller than the command power, and decreases the output power if the reverse power is larger than the command power, so that the reverse power is equal to the command power. The output power may be controlled so that it is maintained.
  • the capability according to the surplus power was demonstrated as the boiling capability which can be set in the range where the increase amount of the power consumption in the hot water heater 5 is smaller than the surplus power so that no power purchase occurs.
  • the ability according to the surplus power may be determined by other methods. For example, when it is allowed to generate a certain amount of power, the capacity corresponding to the remaining power can be set so that the amount of increase in power consumption in the water heater 5 is larger than the remaining power.
  • the boiling unit 604 of the hot water supply controller 54 reduces the power consumption of the hot water heater 5 when the remaining power becomes smaller than the threshold value while boiling the hot water.
  • the boiling unit 604 may change the threshold according to the electric power P1 purchased from the commercial power system 8. For example, the boiling unit 604 can increase the threshold value as the purchased power P1 is larger, and decrease the threshold value as the purchased power P1 is smaller. Thereby, since the power consumption by the boiling operation of the water heater 5 is adjusted in accordance with the amount of the purchased power P1, it is possible to suppress power purchase more accurately.
  • the hot water supply controller 54 may acquire the measured value of the purchased power P1 from the power conditioner 31 or may measure the purchased power P1 by itself.
  • the power generation equipment 3 is installed in the house H.
  • the power generation facility 3 may be installed on a site separate from the house H and supply power to the house H from a remote location. In this case, it is called a demand area including the place where the power generation equipment 3 is installed.
  • the demand area is not limited to a general house such as the house H described above, but is an apartment house, a facility, a building, or a factory as long as it is a demand place of power from the power generation equipment 3 and the commercial power system 8. Etc.
  • the CPU executes a program stored in the ROM or the storage unit 36, whereby the measurement value acquisition unit 301, the instruction acquisition unit 303, the instruction information transmission unit 304, The power output unit 305, the surplus power calculation unit 306, the surplus power information transmission unit 307, and the display control unit 309 functioned.
  • the CPU executes a program stored in the ROM or the storage unit 62, whereby the instruction information acquisition unit 601, the plan generation unit 602, the remaining power information acquisition unit 605, and the boiling unit 604. And the display control unit 608.
  • the control unit 33 and the control unit 61 may be dedicated hardware.
  • the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated ⁇ Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated ⁇ Circuit
  • FPGA Field-Programmable Gate Array
  • each unit may be realized by dedicated hardware, and the other part may be realized by software or firmware.
  • the control unit 33 and the control unit 61 can realize the functions described above by hardware, software, firmware, or a combination thereof.
  • the operation program that defines the operation of the power conditioner 31, the hot water supply controller 54, and the server 80 according to the present invention to an existing personal computer or information terminal device, the personal computer or information terminal device, etc. It is also possible to function as the power conditioner 31, the hot water supply controller 54, and the server 80 according to the above.
  • a program distribution method is arbitrary.
  • a computer-readable record such as a CD-ROM (Compact Disk ROM), a DVD (Digital Versatile Disk), an MO (Magneto Optical Disk), or a memory card. It may be distributed by being stored in a medium or distributed via a communication network such as the Internet.
  • the present invention can be suitably employed in a system for managing power.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

A hot-water supply system (1) is equipped with a power conditioner (31) and a water heater. The power conditioner (31) is equipped with: an instruction acquisition unit (303) that acquires an instruction for suppressing the supply of power generated by a generating means to a commercial power system; and a power output unit (305) that, when the instruction acquisition unit (303) receives an instruction, outputs part of the power generated by the generating means, which is less than the generated power, for a period specified by the instruction. The water heater is equipped with: a surplus power information acquisition unit (605) that acquires surplus power information showing surplus power based on the difference between the power generated by the generating means and the power output by the power output unit (305) during the period specified by the instruction; and a boiling unit (604) that, when the surplus power information acquisition unit (605) acquires the surplus power information, boils water with a capacity corresponding to the surplus power.

Description

給湯システム及び給湯機の制御方法Hot water supply system and method for controlling hot water heater
 この発明は、給湯システム及び給湯機の制御方法に関する。 The present invention relates to a hot water supply system and a method for controlling a water heater.
 近年、太陽光及び風力に代表される自然エネルギーを活用する技術が注目されており、自然エネルギーにより発電する発電設備を需要家自身が所有するケースが多くなっている。このような需要家は、発電設備による発電電力を自ら消費することができ、また余剰電力を商用電力系統へ供給して電気事業者に売ることができる。これにより、需要家は、商用電力系統から購入する電力を減少させて、経済的利益を得ることができる。 In recent years, technology utilizing natural energy represented by sunlight and wind power has attracted attention, and customers themselves often have power generation facilities that generate electricity using natural energy. Such a consumer can consume the power generated by the power generation facility by itself, and can supply surplus power to the commercial power system and sell it to the electric utility. Thereby, a consumer can reduce the electric power purchased from a commercial power grid, and can obtain an economic profit.
 ところで、需要家の発電設備から商用電力系統へ電力が供給される逆潮流により、商用電力系統の需給バランスが崩れることがある。例えば、快晴の休日には、商用電力系統に対する電力の需要が減少すると共に、太陽光による発電量が増加するため需要家の発電設備から商用電力系統への電力の供給が増加する。 By the way, the supply and demand balance of the commercial power system may be disrupted by a reverse power flow in which power is supplied from the power generation facility of the customer to the commercial power system. For example, on a sunny holiday, the demand for power to the commercial power system decreases, and the amount of power generated by sunlight increases, so the supply of power from the power generation facility of the consumer to the commercial power system increases.
 そこで、商用電力系統の需給バランスを保つために、電気事業者が需要家に対して期間を指定して逆潮流の抑制を予め指示するための制度の整備が進められている。例えば、2014年には日本の資源エネルギー庁から、太陽光発電に対する出力制御ルールが公示されている。この出力制御ルールは、発電設備による発電電力の出力を調整して、需要家による商用電力系統への売電を抑制するためのものである。 Therefore, in order to maintain the supply and demand balance of the commercial power system, the development of a system is in progress for an electric power company to specify a period for the consumer and to instruct the suppression of reverse power flow in advance. For example, in 2014, Japan's Agency for Natural Resources and Energy announced an output control rule for photovoltaic power generation. This output control rule is for adjusting the output of the power generated by the power generation facility to suppress the power sale to the commercial power system by the consumer.
 また、発電電力を需要家で極力消費して、逆潮流を減少させるための技術が提案されている。例えば特許文献1は、逆潮電力が多く発生する時間帯を予測し、予測した時間帯に、貯湯タンクを備えるヒートポンプ式給湯暖房装置を運転させる技術を開示している。貯湯タンクを備える給湯機の消費電力は一般的に大きいため、特許文献1に開示された技術によれば、逆潮電力を効果的に減少させることができる。 Also, a technique for reducing the reverse power flow by consuming as much power as possible at the consumer has been proposed. For example, Patent Literature 1 discloses a technique for predicting a time zone in which a large amount of reverse power is generated and operating a heat pump hot water supply / room heating device including a hot water storage tank in the predicted time zone. Since the power consumption of a water heater provided with a hot water storage tank is generally large, according to the technique disclosed in Patent Document 1, the reverse power can be effectively reduced.
国際公開第2012/090365号International Publication No. 2012/090365
 しかしながら、特許文献1に開示された技術は、上述のような逆潮流を抑制する指示に応じて逆潮流を減少させるものではない。逆潮流の抑制が指示された期間では、発電設備によって発電された電力の出力が抑制されるため、発電ロスが生じる。そのため、逆潮流の抑制が指示された期間における発電ロスを減らし、電力の利用効率を向上させることが求められている。 However, the technique disclosed in Patent Document 1 does not reduce the reverse power flow according to the instruction for suppressing the reverse power flow as described above. In the period in which the suppression of reverse power flow is instructed, the output of the power generated by the power generation facility is suppressed, so that a power generation loss occurs. For this reason, it is required to reduce power generation loss during a period in which suppression of reverse power flow is instructed and to improve power utilization efficiency.
 この発明は、上述のような課題を解決するためになされたものであり、電力の利用効率を向上させることが可能な給湯システム等を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a hot water supply system or the like that can improve the power use efficiency.
 上記目的を達成するため、本発明に係る給湯システムは、
 パワーコンディショナと給湯機とを備える給湯システムであって、
 前記パワーコンディショナは、
 発電手段によって発電された電力の、商用電力系統への供給を抑制する指示を取得する指示取得手段と、
 前記指示取得手段が前記指示を取得した場合、前記指示によって定められる期間において、前記発電手段によって発電された電力のうちの、前記発電された電力より少ない電力を出力する電力出力手段と、を備え、
 前記給湯機は、
 前記期間における前記発電手段によって発電された電力と前記電力出力手段によって出力された電力との差に基づく余力電力を示す余力情報を取得する余力情報取得手段と、
 前記余力情報取得手段が前記余力情報を取得すると、前記余力電力に応じた能力で湯を沸き上げる沸上げ手段と、を備える。
In order to achieve the above object, a hot water supply system according to the present invention includes:
A hot water supply system including a power conditioner and a water heater,
The inverter is
Instruction acquisition means for acquiring an instruction to suppress supply of the power generated by the power generation means to the commercial power system;
A power output means for outputting less power than the generated power out of the power generated by the power generation means in a period determined by the instruction when the instruction acquisition means acquires the instruction; ,
The water heater is
Surplus power information acquisition means for acquiring surplus power information indicating surplus power based on a difference between the power generated by the power generation means and the power output by the power output means in the period;
When the surplus power information acquisition means acquires the surplus power information, the surplus power information acquisition means comprises boiling means for boiling hot water with the capacity corresponding to the surplus power.
 本発明は、パワーコンディショナが、発電手段によって発電された電力の、商用電力系統への供給を抑制する指示を取得した場合、指示によって定められる期間において、発電手段によって発電された電力のうちの、発電された電力より少ない電力を出力し、給湯機が、発電手段によって発電された電力とパワーコンディショナによって出力された電力との差に応じた能力で湯を沸き上げる。従って、本発明によれば、電力の利用効率を向上させることができる。 In the present invention, when the power conditioner obtains an instruction to suppress the supply of the electric power generated by the power generation means to the commercial power system, the power conditioner includes the power generated by the power generation means in a period determined by the instruction. Then, the electric power that is less than the generated electric power is output, and the hot water heater boils hot water with the capability according to the difference between the electric power generated by the electric power generation means and the electric power output by the power conditioner. Therefore, according to the present invention, the power use efficiency can be improved.
本発明の実施形態1に係る給湯システムの全体構成を示す図である。It is a figure showing the whole hot-water supply system composition concerning Embodiment 1 of the present invention. パワーコンディショナの構成を示すブロック図である。It is a block diagram which shows the structure of a power conditioner. 給湯コントローラの構成を示すブロック図である。It is a block diagram which shows the structure of a hot water supply controller. 実施形態1に係る給湯システムの機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the hot water supply system which concerns on Embodiment 1. FIG. 計測DBに記憶された計測データの一例を示す図である。It is a figure which shows an example of the measurement data memorize | stored in measurement DB. 電力サーバによって配信される抑制指示を説明するための図である。It is a figure for demonstrating the control instruction | indication delivered by an electric power server. PV抑制時における発電設備からの出力電力の推移を示す図である。It is a figure which shows transition of the output electric power from the power generation equipment at the time of PV suppression. パワーコンディショナによる表示画面の一例を示す図である。It is a figure which shows an example of the display screen by a power conditioner. 沸上げ運転を夜間から昼間にシフトする計画の模式図である。It is a schematic diagram of the plan which shifts boiling operation from night to daytime. PV抑制時におけるリモコンの表示画面の第1の例を示す図である。It is a figure which shows the 1st example of the display screen of a remote control at the time of PV suppression. PV抑制時におけるリモコンの表示画面の第2の例を示す図である。It is a figure which shows the 2nd example of the display screen of a remote control at the time of PV suppression. 電力サーバ、パワーコンディショナ及び給湯コントローラの間において実行される処理の概要を示すシーケンス図である。It is a sequence diagram which shows the outline | summary of the process performed among an electric power server, a power conditioner, and a hot water supply controller. パワーコンディショナによって実行される抑制指示取得処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the suppression instruction | indication acquisition process performed by a power conditioner. 給湯コントローラによって実行される沸上げ計画生成処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the boiling plan production | generation process performed by the hot water supply controller. パワーコンディショナによって実行される出力抑制処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the output suppression process performed by a power conditioner. パワーコンディショナによって実行される位相制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the phase control process performed by a power conditioner. 給湯コントローラによって実行される昼間沸上げ処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the daytime boiling process performed by the hot water controller. 実施形態2に係る給湯システムの機能的な構成を示すブロック図である。It is a block diagram which shows the functional structure of the hot water supply system which concerns on Embodiment 2. FIG.
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、図中同一又は相当部分には同一符号を付す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals.
 (実施形態1)
 図1に、本発明の実施形態1に係る給湯システム1の全体構成を示す。給湯システム1は、家屋Hに設置された給湯機5の運転を制御することで、家屋Hで消費される電力を管理するシステムである。家屋Hは、いわゆる一般的な住宅建物であって、商用電力系統8と発電設備3とから供給される電力の需要地(消費地)である。
(Embodiment 1)
In FIG. 1, the whole structure of the hot water supply system 1 which concerns on Embodiment 1 of this invention is shown. The hot water supply system 1 is a system that manages the power consumed in the house H by controlling the operation of the water heater 5 installed in the house H. The house H is a so-called general residential building, and is a demand place (consumption place) of power supplied from the commercial power system 8 and the power generation equipment 3.
 図1に示すように、給湯システム1は、給湯機5と、発電設備3と、複数の機器7(機器7-1,7-2,…)と、ルータ12と、を備える。ルータ12は、例えばインターネット等である広域ネットワークNを介して電力サーバ14と接続されている。 As shown in FIG. 1, the hot water supply system 1 includes a hot water heater 5, a power generation facility 3, a plurality of devices 7 (devices 7-1, 7-2,...), And a router 12. The router 12 is connected to the power server 14 via a wide area network N such as the Internet.
 発電設備3は、家屋Hに設置され、自然エネルギーである太陽光によって発電する設備である。商用電力系統8が家屋Hを含む不特定多数の需要地に電力を供給するのに対して、発電設備3は、特定の需要地の需要家によって所有され、特定の需要地である家屋Hに電力を供給する設備である。このような発電設備3は、分散型電源ともいう。 The power generation facility 3 is a facility that is installed in the house H and generates power using sunlight, which is natural energy. Whereas the commercial power system 8 supplies power to an unspecified number of demand areas including the house H, the power generation facility 3 is owned by a customer in a specific demand area, and is supplied to the house H that is a specific demand area. It is a facility that supplies power. Such a power generation facility 3 is also referred to as a distributed power source.
 発電設備3は、太陽光発電(PV:Photovoltaic)するPVパネル30と、PV用のパワーコンディショナ(パワーコンディショニングシステム)31と、を備える。PVパネル30は、例えば多結晶シリコン型のソーラーパネルである。PVパネル30は、家屋Hの屋根の上に設置され、太陽光エネルギーを電気エネルギーに変換することで太陽光発電する。PVパネル30は、発電手段(発電部)として機能する。パワーコンディショナ31は、PVパネル30において発電された電力の供給を受け、供給された電力を、電力線D2を介して分電盤9に出力する。 The power generation facility 3 includes a PV panel 30 that performs photovoltaic power generation (PV: Photovoltaic) and a power conditioner (power conditioning system) 31 for PV. The PV panel 30 is, for example, a polycrystalline silicon type solar panel. The PV panel 30 is installed on the roof of the house H, and generates solar power by converting solar energy into electric energy. The PV panel 30 functions as power generation means (power generation unit). The power conditioner 31 receives supply of electric power generated by the PV panel 30 and outputs the supplied electric power to the distribution board 9 via the power line D2.
 図2に、パワーコンディショナ31の構成を示す。図2に示すように、パワーコンディショナ31は、インバータ32と、制御部33と、記憶部36と、通信部37と、を備える。 FIG. 2 shows the configuration of the power conditioner 31. As shown in FIG. 2, the power conditioner 31 includes an inverter 32, a control unit 33, a storage unit 36, and a communication unit 37.
 インバータ32は、電力を変換する電力変換部として機能する。インバータ32は、PVパネル30から供給された直流電力を、家屋H内で使用できるように、規定の変換効率で交流電力に変換し、電力線D2に出力する。これにより、インバータ32は、電力の需要地(消費地)である家屋H及び商用電力系統8に、PVパネル30によって発電された電力を供給する。 The inverter 32 functions as a power conversion unit that converts power. The inverter 32 converts the DC power supplied from the PV panel 30 into AC power with a specified conversion efficiency so that it can be used in the house H, and outputs the AC power to the power line D2. Thereby, the inverter 32 supplies the electric power generated by the PV panel 30 to the house H and the commercial power system 8 which are power demand areas (consumption areas).
 制御部33は、いずれも図示しないが、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)及びRTC(Real Time Clock)等を備える。CPUは、中央処理装置、中央演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ又はDSP(Digital Signal Processor)等ともいう。また、制御部33は、PVパネル30によって発電された電力を計算する発電電力計算部34と、パワーコンディショナ31の状態を管理する状態管理部35と、を含む。制御部33において、CPUは、ROMに格納されたプログラム及びデータを読み出し、RAMをワークエリアとして用いて、パワーコンディショナ31を統括制御する。 The control unit 33 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an RTC (Real Time Clock), although not shown. The CPU is also called a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, a DSP (Digital Signal Processor), or the like. The control unit 33 includes a generated power calculation unit 34 that calculates the power generated by the PV panel 30 and a state management unit 35 that manages the state of the power conditioner 31. In the control unit 33, the CPU reads the program and data stored in the ROM, and performs overall control of the power conditioner 31 using the RAM as a work area.
 記憶部36は、例えば、フラッシュメモリ、EPROM(Erasable Programmable ROM)又はEEPROM(Electrically Erasable Programmable ROM)等の不揮発性の半導体メモリであって、いわゆる二次記憶装置(補助記憶装置)としての役割を担う。記憶部36は、制御部33が各種処理を行うために使用する各種プログラム及びデータ、並びに、制御部33が各種処理を行うことにより生成又は取得する各種データを記憶する。 The storage unit 36 is a non-volatile semiconductor memory such as a flash memory, an EPROM (Erasable Programmable ROM), or an EEPROM (Electrically Erasable Programmable ROM), and serves as a so-called secondary storage device (auxiliary storage device). . The storage unit 36 stores various programs and data used by the control unit 33 for performing various processes, and various data generated or acquired by the control unit 33 performing various processes.
 通信部37は、制御部33の制御の下、通信アダプタ38に接続されており、通信アダプタ38を介して外部と通信するための通信インタフェースを備える。通信部37は、家屋H内に構築された通信ネットワークを介して、給湯機5の給湯コントローラ54及びルータ12と通信する。通信ネットワークは、例えば、エコーネットライト(ECHONET Lite)に準じた家電ネットワーク、又は、RS232Cの規格に準じたシリアル通信ネットワーク等である。 The communication unit 37 is connected to the communication adapter 38 under the control of the control unit 33 and includes a communication interface for communicating with the outside through the communication adapter 38. The communication unit 37 communicates with the hot water supply controller 54 and the router 12 of the water heater 5 through a communication network built in the house H. The communication network is, for example, a home appliance network that conforms to ECHONET Lite or a serial communication network that conforms to the RS232C standard.
 また、通信部37は、ルータ12を介して広域ネットワークNに接続し、広域ネットワークNを介して電力サーバ14と通信する。例えば、通信部37は、ルータ12及び広域ネットワークNを介して、電力サーバ14から配信されるPV抑制の指示を取得する。 Further, the communication unit 37 is connected to the wide area network N via the router 12 and communicates with the power server 14 via the wide area network N. For example, the communication unit 37 acquires a PV suppression instruction distributed from the power server 14 via the router 12 and the wide area network N.
 通信部37は、通信アダプタ38を介して、交流電流を計測するセンサであるCT(Current Transformer)1及びCT2と接続される。CT1及びCT2は、それぞれ、商用電力系統8と分電盤9との間に配設された電力線D1、及び、発電設備3と分電盤9との間に配設された電力線D2に設置されている。 The communication unit 37 is connected via a communication adapter 38 to CT (Current Transformer) 1 and CT 2 which are sensors for measuring an alternating current. CT1 and CT2 are installed on a power line D1 disposed between the commercial power system 8 and the distribution board 9, and a power line D2 disposed between the power generation facility 3 and the distribution board 9, respectively. ing.
 電力線D1に配設されたCT1は、商用電力系統8から家屋Hに供給される電力P1を計測する。この電力P1は、家屋Hにおいて電力を需要する需要家が電気事業者から買った電力(買電電力)に相当する。電力線D2に配設されたCT2は、発電設備3から分電盤9に出力される電力P2を計測する。この電力P2は、発電設備3によって発電された電力のうち、家屋H内に供給され、家屋H内で使用可能な電力に相当する。通信部37は、CT1及びCT2によって計測された電力P1,P2の計測値を取得する。 CT1 disposed on the power line D1 measures the power P1 supplied from the commercial power system 8 to the house H. This electric power P1 corresponds to electric power (electric power purchased) purchased from an electric power company by a consumer who demands electric power in the house H. CT2 disposed on the power line D2 measures the power P2 output from the power generation facility 3 to the distribution board 9. The electric power P <b> 2 is supplied to the house H among the electric power generated by the power generation facility 3, and corresponds to electric power that can be used in the house H. The communication part 37 acquires the measured value of electric power P1, P2 measured by CT1 and CT2.
 電力線D1を流れる電力P1と電力線D2を流れる電力P2との和は、家屋Hに定置型の蓄電池又は電気自動車等の蓄電設備が設置されていない場合には、電力の需要地である家屋Hの総消費電力に相当する。すなわち、家屋Hの総消費電力をPcと表すと、Pc=P1+P2の関係式が成立する。なお、家屋Hの総消費電力という場合、家屋Hの敷地において消費される電力も含むものとして説明する。 The sum of the electric power P1 flowing through the electric power line D1 and the electric power P2 flowing through the electric power line D2 is that of the house H, which is a place where electric power is demanded, when a storage battery such as a stationary storage battery or an electric vehicle is not installed in the house H. It corresponds to the total power consumption. That is, when the total power consumption of the house H is expressed as Pc, a relational expression of Pc = P1 + P2 is established. The total power consumption of the house H will be described as including power consumed at the site of the house H.
 発電設備3から出力される電力P2が、家屋Hの総消費電力Pcを超えると、家屋Hでは余剰電力が生じる。余剰電力が生じると、家屋Hの需要家は、余剰電力を逆潮電力として商用電力系統8へ供給することで、電気事業者に電力を売る(売電する)ことができる。このように、家屋Hから商用電力系統8へ電力が供給されることで電力が需要家側から電気事業者側へ戻ることを、「逆潮流」という。逆潮流が生じている間は、電力線D1を流れるP1は、負の値になる。 When the power P2 output from the power generation facility 3 exceeds the total power consumption Pc of the house H, surplus power is generated in the house H. When surplus power is generated, a consumer of the house H can sell (sell) power to an electric power company by supplying surplus power to the commercial power system 8 as reverse power. Thus, returning power from the consumer side to the electric utility side by supplying power from the house H to the commercial power grid 8 is referred to as “reverse power flow”. While the reverse power flow is occurring, P1 flowing through the power line D1 has a negative value.
 続いて図1に戻って、給湯機5の説明に移る。給湯機5は、ヒートポンプユニット50とタンクユニット51とを備える貯湯式の給湯機である。ヒートポンプユニット50とタンクユニット51とは、湯水が流れる配管52で接続されている。給湯機5は、分電盤9により分岐された電力線D3を介して、商用電力系統8及び発電設備3と電気的に接続されており、商用電力系統8と発電設備3とのいずれかから供給された電力を得て動作する。以下、給湯機5について説明する。 Subsequently, returning to FIG. 1, the explanation of the water heater 5 is started. The hot water heater 5 is a hot water storage type hot water heater including a heat pump unit 50 and a tank unit 51. The heat pump unit 50 and the tank unit 51 are connected by a pipe 52 through which hot water flows. The water heater 5 is electrically connected to the commercial power system 8 and the power generation equipment 3 via the power line D3 branched by the distribution board 9, and is supplied from either the commercial power system 8 or the power generation equipment 3 Get the power you need to work. Hereinafter, the water heater 5 will be described.
 給湯機5のヒートポンプユニット50は、いずれも図示しないが、圧縮機、第1の熱交換器、膨張弁、第2の熱交換器、送風機及び制御基板等を備える。圧縮機、第1の熱交換器、膨張弁及び第2の熱交換器は、環状に接続され、冷媒を循環させるための冷凍サイクル回路が形成されている。冷凍サイクル回路は、冷媒回路ともいう。 The heat pump unit 50 of the water heater 5 includes a compressor, a first heat exchanger, an expansion valve, a second heat exchanger, a blower, a control board, and the like, although not shown in the figure. The compressor, the first heat exchanger, the expansion valve, and the second heat exchanger are annularly connected to form a refrigeration cycle circuit for circulating the refrigerant. The refrigeration cycle circuit is also called a refrigerant circuit.
 圧縮機は、冷媒を圧縮して温度及び圧力を上昇させる。圧縮機は、駆動周波数に応じて容量(単位当たりの送り出し量)を変化させることができるインバータ回路を備える。圧縮機は、制御基板からの指示に従って上記の容量を変更する。 Compressor increases temperature and pressure by compressing refrigerant. The compressor includes an inverter circuit that can change a capacity (a delivery amount per unit) according to a driving frequency. The compressor changes the capacity according to the instruction from the control board.
 第1の熱交換器は、市水を目標の沸上げ温度まで昇温加熱するための加熱源である。沸上げ温度は、貯湯温度ともいう。第1の熱交換器は、プレート式又は二重管式等の熱交換器であり、冷媒と水(低温水)との間の熱交換を行う。第1の熱交換器における熱交換により、冷媒は放熱し、水は吸熱する。 The first heat exchanger is a heating source for heating the city water up to the target boiling temperature. The boiling temperature is also called hot water storage temperature. The first heat exchanger is a plate-type or double-tube type heat exchanger, and performs heat exchange between the refrigerant and water (low-temperature water). By heat exchange in the first heat exchanger, the refrigerant dissipates heat and the water absorbs heat.
 膨張弁は、冷媒を膨張させて温度及び圧力を下降させる。膨張弁は、制御基板からの指示に従って弁開度を変更する。 The expansion valve expands the refrigerant to lower the temperature and pressure. The expansion valve changes the valve opening according to an instruction from the control board.
 第2の熱交換器は、送風機により送られてきた外気と冷媒との間の熱交換を行う。第2の熱交換器における熱交換により冷媒は吸熱し、外気は放熱する。 The second heat exchanger performs heat exchange between the outside air sent by the blower and the refrigerant. The refrigerant absorbs heat and the outside air dissipates heat by heat exchange in the second heat exchanger.
 制御基板は、CPU、ROM、RAM、通信インタフェース及び読み書き可能な不揮発性の半導体メモリ等を備える。制御基板は、圧縮機、膨張弁及び送風機のそれぞれと通信線を介して通信可能に接続し、これらの動作を制御する。また、制御基板は、図示しない通信線を介してタンクユニット51の給湯コントローラ54と通信可能に接続されている。 The control board includes a CPU, a ROM, a RAM, a communication interface, a readable / writable nonvolatile semiconductor memory, and the like. The control board is communicably connected to each of the compressor, the expansion valve, and the blower via a communication line, and controls these operations. Further, the control board is communicably connected to the hot water supply controller 54 of the tank unit 51 via a communication line (not shown).
 タンクユニット51は、貯湯タンク53、給湯コントローラ54及び混合弁56等を備える。これらの構成部品は、金属製の外装ケース内に収められている。 The tank unit 51 includes a hot water storage tank 53, a hot water supply controller 54, a mixing valve 56, and the like. These components are housed in a metal outer case.
 貯湯タンク53は、ステンレス等の金属又は樹脂等で形成されている。貯湯タンク53の外側には断熱材(図示せず)が配置されている。これにより、貯湯タンク53内で、高温の湯(以下、高温水という。)を長時間に亘って保温することができる。高温水の温度は、例えば60度又は70度等である。 The hot water storage tank 53 is made of metal such as stainless steel or resin. A heat insulating material (not shown) is disposed outside the hot water storage tank 53. Thereby, in hot water storage tank 53, hot water (henceforth high temperature water) can be kept warm for a long time. The temperature of the high-temperature water is, for example, 60 degrees or 70 degrees.
 給湯コントローラ54は、給湯機5を統括的に制御する制御装置である。給湯コントローラ54は、ヒートポンプユニット50の制御基板と図示しない通信線を介して通信可能に接続されている。また、給湯コントローラ54は、通信線59を介してリモコン55と通信可能に接続されている。 The hot water controller 54 is a control device that controls the hot water heater 5 in an integrated manner. The hot water controller 54 is communicably connected to the control board of the heat pump unit 50 via a communication line (not shown). The hot water supply controller 54 is communicably connected to the remote controller 55 via the communication line 59.
 図3に、給湯コントローラ54の構成を示す。図3に示すように、給湯コントローラ54は、制御部61と、記憶部62と、計時部63と、通信部64と、を備える。これら各部はバス69を介して接続されている。 FIG. 3 shows the configuration of the hot water controller 54. As shown in FIG. 3, the hot water supply controller 54 includes a control unit 61, a storage unit 62, a timer unit 63, and a communication unit 64. These units are connected via a bus 69.
 制御部61は、いずれも図示しないが、CPU、ROM及びRAM等を備える。CPUは、中央処理装置、中央演算装置、プロセッサ、マイクロプロセッサ、マイクロコンピュータ又はDSP等ともいう。制御部61において、CPUは、ROMに格納されたプログラム及びデータを読み出し、RAMをワークエリアとして用いて、給湯コントローラ54を統括制御する。 The control unit 61 includes a CPU, a ROM, a RAM, and the like (not shown). The CPU is also called a central processing unit, a central processing unit, a processor, a microprocessor, a microcomputer, or a DSP. In the controller 61, the CPU reads out the program and data stored in the ROM, and controls the hot water supply controller 54 using the RAM as a work area.
 記憶部62は、例えば、フラッシュメモリ、EPROM又はEEPROM等の不揮発性の半導体メモリであって、いわゆる二次記憶装置(補助記憶装置)としての役割を担う。記憶部62は、制御部61が各種処理を行うために使用する各種プログラム及びデータ、並びに、制御部61が各種処理を行うことにより生成又は取得する各種データを記憶する。 The storage unit 62 is, for example, a nonvolatile semiconductor memory such as a flash memory, EPROM, or EEPROM, and plays a role as a so-called secondary storage device (auxiliary storage device). The storage unit 62 stores various programs and data used by the control unit 61 to perform various processes, and various data generated or acquired by the control unit 61 performing various processes.
 計時部63は、RTCを備えており、給湯コントローラ54の電源がオフの間も計時を継続する計時デバイスである。 The timekeeping unit 63 includes an RTC, and is a timekeeping device that keeps timekeeping even when the hot water supply controller 54 is turned off.
 通信部64は、制御部61の制御の下、家屋H内に構築された前述の通信ネットワークを介して通信するための通信インタフェースを備える。通信部64は、発電設備3のパワーコンディショナ31及びルータ12と通信ネットワークを介して通信する。また、通信部64は、ルータ12を介して広域ネットワークNに接続し、広域ネットワークNを介して電力サーバ14と通信する。 The communication unit 64 includes a communication interface for communicating via the communication network described above built in the house H under the control of the control unit 61. The communication unit 64 communicates with the power conditioner 31 and the router 12 of the power generation facility 3 via a communication network. The communication unit 64 is connected to the wide area network N via the router 12 and communicates with the power server 14 via the wide area network N.
 また、通信部64は、リモコン55及びヒートポンプユニット50の制御基板と通信するためのインタフェースを備える。通信部64は、リモコン55から操作指令を受信し、リモコン55に表示データを送信する。また、通信部64は、ヒートポンプユニット50に動作指令を送信する。なお、給湯コントローラ54は、外付けの通信アダプタ(図示せず)を介して、通信ネットワークに接続される仕様であってもよい。 In addition, the communication unit 64 includes an interface for communicating with the remote control 55 and the control board of the heat pump unit 50. The communication unit 64 receives an operation command from the remote controller 55 and transmits display data to the remote controller 55. In addition, the communication unit 64 transmits an operation command to the heat pump unit 50. The hot water supply controller 54 may be connected to a communication network via an external communication adapter (not shown).
 通信部64は、交流電流を計測するセンサであるCT3と接続される。CT3は、分電盤9と給湯機5の間に配設された電力線D3に設置されており、分電盤9から給湯機5に供給される電力P3を計測する。この電力P3は、給湯機5において消費される電力に相当する。 The communication unit 64 is connected to CT3 which is a sensor for measuring an alternating current. CT3 is installed on a power line D3 disposed between the distribution board 9 and the water heater 5, and measures the power P3 supplied from the distribution board 9 to the water heater 5. The electric power P3 corresponds to electric power consumed in the water heater 5.
 図1に示した給湯機5の説明に戻る。リモコン55は、給湯機5の運転状態及び貯湯状態等を表示してユーザに提示するための端末装置である。リモコン55は、家屋Hにおける浴室、洗面所又は台所等に設置され、ユーザから沸上げ又は給湯等に関する操作入力を受け付ける。 Returning to the description of the water heater 5 shown in FIG. The remote controller 55 is a terminal device for displaying the operating state and hot water storage state of the water heater 5 and presenting them to the user. The remote controller 55 is installed in a bathroom, a washroom, a kitchen, or the like in the house H, and receives an operation input related to boiling or hot water supply from the user.
 リモコン55は、いずれも図示しないが、CPU、ROM、RAM、読み書き可能な不揮発性の半導体メモリ、押しボタン、タッチパネル又はタッチパッド等の入力デバイス、有機ELディスプレイ又は液晶ディスプレイ等の表示デバイス、及び、通信インタフェース等を備える。 The remote controller 55 is not shown, but includes a CPU, ROM, RAM, a readable / writable nonvolatile semiconductor memory, an input device such as a push button, a touch panel or a touch pad, a display device such as an organic EL display or a liquid crystal display, and A communication interface is provided.
 沸上げ動作(沸上げ運転)の開始時には、貯湯タンク53内の高温水は消費されており、貯湯タンク53の下部には市水の温度に近い低温水が貯留している。図示しないポンプを作動させることで、この低温水がヒートポンプユニット50の上述した第1の熱交換器へ入水され、冷媒との熱交換により昇温し、高温水となる。この高温水は貯湯タンク53の上部に戻され、貯湯タンク53内では、上部に高温水、下部に低温水が滞留して温度成層が形成され、高温水と低温水との間には温度境界層が生成される。 At the start of the boiling operation (boiling operation), the hot water in the hot water storage tank 53 is consumed, and low temperature water close to the city water temperature is stored in the lower part of the hot water storage tank 53. By operating a pump (not shown), this low-temperature water enters the above-described first heat exchanger of the heat pump unit 50, and the temperature is raised by heat exchange with the refrigerant to become high-temperature water. This high temperature water is returned to the upper part of the hot water storage tank 53, and in the hot water storage tank 53, high temperature water stays in the upper part and low temperature water stays in the lower part to form a temperature stratification, and a temperature boundary is formed between the high temperature water and the low temperature water. A layer is generated.
 沸上げ量が増えて、高温水の領域が大きくなると貯湯タンク53の下部に温度境界層が近づき、第1の熱交換器へ入水する水の温度(入水温度)が次第に上昇する。 When the boiling amount increases and the area of the high-temperature water increases, the temperature boundary layer approaches the lower part of the hot water storage tank 53, and the temperature of the water entering the first heat exchanger (incoming water temperature) gradually increases.
 貯湯タンク53の上部には出湯管が接続されており、貯湯タンク53からこの出湯管を介して出湯した高温水が、混合弁56にて市水と混合される。これにより、ユーザが所望する温度(例えば40℃)の湯水となって、例えば浴室、洗面所又は台所等に配設されたシャワー57又は蛇口58等の給湯端末に供給される。このとき、貯湯タンク53では、上部から流出した高温水の体積分、水道圧により、下部に接続された給水管から市水が供給される。これにより、貯湯タンク53内では温度境界層が上方へ移動する。高温水が少なくなると、給湯機5は、追加沸上げを行う。 A hot water discharge pipe is connected to the upper part of the hot water storage tank 53, and hot water discharged from the hot water storage tank 53 through the hot water discharge pipe is mixed with city water by the mixing valve 56. Thereby, it becomes hot water of the temperature (for example, 40 degreeC) which a user desires, for example, is supplied to hot-water supply terminals, such as the shower 57 or the faucet 58 arrange | positioned in a bathroom, a washroom, or a kitchen. At this time, in the hot water storage tank 53, city water is supplied from the water supply pipe connected to the lower part by the volume of the hot water flowing out from the upper part and the water pressure. As a result, the temperature boundary layer moves upward in the hot water storage tank 53. When hot water decreases, the water heater 5 performs additional boiling.
 機器7(機器7-1,7-2,…)は、例えば、エアコン、照明器、床暖房システム、冷蔵庫、IH(Induction Heating)調理器又はテレビ等の電気機器である。機器7-1,7-2,…は、家屋H(その敷地も含む)内に設置され、分電盤9により分岐された電力線D4,D5,…を介して、商用電力系統8及び発電設備3と電気的に接続されている。 The device 7 (devices 7-1, 7-2,...) Is an electric device such as an air conditioner, an illuminator, a floor heating system, a refrigerator, an IH (Induction Heating) cooker, or a television. The devices 7-1, 7-2,... Are installed in the house H (including its site) and are connected to the commercial power system 8 and the power generation facilities via the power lines D4, D5,. 3 is electrically connected.
 ルータ12は、広域ネットワークNを介して電力サーバ14と通信することができる装置であって、例えばブロードバンドルータである。給湯コントローラ54及びパワーコンディショナ31は、ルータ12を介して、電力サーバ14と通信する。 The router 12 is a device that can communicate with the power server 14 via the wide area network N, and is, for example, a broadband router. The hot water controller 54 and the power conditioner 31 communicate with the power server 14 via the router 12.
 電力サーバ14は、商用電力系統8によって各需要家に商用電源を提供する電気事業者によって運営されるサーバである。電力サーバ14は、各需要家の需要地に設置された発電設備3のパワーコンディショナ31と、広域ネットワークNを介して通信可能に接続されている。 The power server 14 is a server operated by an electric power company that provides commercial power to each consumer by the commercial power system 8. The power server 14 is communicably connected to the power conditioner 31 of the power generation facility 3 installed in the demand area of each consumer via the wide area network N.
 次に、図4を参照して、給湯システム1の機能的な構成について説明する。 Next, a functional configuration of the hot water supply system 1 will be described with reference to FIG.
 図4に示すように、パワーコンディショナ31は、機能的に、計測値取得部301と、指示取得部303と、指示情報送信部304と、電力出力部305と、余力電力計算部306と、余力情報送信部307と、表示制御部309と、を備える。これらの各機能は、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、ROM又は記憶部36に格納される。そして、制御部33において、CPUが、ROM又は記憶部36に記憶されたプログラムを実行することによって、各部の機能を実現する。 As shown in FIG. 4, the power conditioner 31 functionally includes a measurement value acquisition unit 301, an instruction acquisition unit 303, an instruction information transmission unit 304, a power output unit 305, a surplus power calculation unit 306, A surplus information transmission unit 307 and a display control unit 309 are provided. Each of these functions is realized by software, firmware, or a combination of software and firmware. The software and firmware are described as programs and stored in the ROM or the storage unit 36. And in the control part 33, CPU implement | achieves the function of each part by executing the program memorize | stored in ROM or the memory | storage part 36. FIG.
 また、パワーコンディショナ31は、計測DB(Database)310と、指示DB320と、を備える。計測DB310及び指示DB320は、記憶部36の記憶領域に構築される。 In addition, the power conditioner 31 includes a measurement DB (Database) 310 and an instruction DB 320. The measurement DB 310 and the instruction DB 320 are constructed in the storage area of the storage unit 36.
 計測値取得部301は、商用電力系統8から家屋Hに供給される電力P1の計測値、及び、発電設備3から出力される電力P2の計測値を取得する。前述したように、商用電力系統8から家屋Hに供給される電力P1は、電力線D1に配設されたCT1によって計測される。また、発電設備3から出力される電力P2は、電力線D2に配設されたCT2によって計測される。計測値取得部301は、商用電力系統8から家屋Hに供給される電力P1の計測値を取得することで、発電電力Paのうちの商用電力系統8に供給される逆潮電力(-P1)の計測値も取得することができる。 The measurement value acquisition unit 301 acquires the measurement value of the power P1 supplied from the commercial power system 8 to the house H and the measurement value of the power P2 output from the power generation facility 3. As described above, the power P1 supplied from the commercial power system 8 to the house H is measured by CT1 disposed on the power line D1. Moreover, the electric power P2 output from the electric power generation equipment 3 is measured by CT2 arrange | positioned by the electric power line D2. The measured value acquisition unit 301 acquires the measured value of the electric power P1 supplied from the commercial power system 8 to the house H, so that the reverse power (−P1) supplied to the commercial power system 8 out of the generated power Pa. Can also be obtained.
 計測値取得部301は、CT1,CT2によって得られた電力P1,P2の計測値を、定期的に又は必要に応じて通信部37を介して取得する。計測値取得部301は、制御部33が通信部37と協働することによって実現される。 The measurement value acquisition unit 301 acquires the measurement values of the electric powers P1 and P2 obtained by CT1 and CT2 periodically or as needed via the communication unit 37. The measurement value acquisition unit 301 is realized by the control unit 33 cooperating with the communication unit 37.
 計測DB310は、計測値取得部301によって取得された電力P1,P2の計測値を記憶する。計測DB310は、電力P1,P2の計測値を計測値取得部301が取得する度に、取得された計測値を格納し、データベースを構築する。 Measurement DB310 memorize | stores the measured value of electric power P1 and P2 which were acquired by the measured value acquisition part 301. FIG. The measurement DB 310 stores the acquired measurement values each time the measurement value acquisition unit 301 acquires the measurement values of the electric powers P1 and P2, and constructs a database.
 図5に、計測DB310に記憶される計測データの具体例を示す。図5に示すように、計測DB310は、買電電力P1の電力量、出力電力P2の電力量、及び出力電力P2の位相角を時系列順に記憶する。電力量は、予め定められた時間に亘る電力の積算値である。位相角は、出力電力P2における電圧と電流との位相差であって、力率角ともいう。計測値取得部301は、電力計測装置4から電力P1,P2の計測値を取得すると、電力P1,P2の電力量及び電力P2の位相角を計算し、電力量及び位相角を計測DB310に順次格納していく。 FIG. 5 shows a specific example of measurement data stored in the measurement DB 310. As illustrated in FIG. 5, the measurement DB 310 stores the power amount of the purchased power P1, the power amount of the output power P2, and the phase angle of the output power P2 in chronological order. The electric energy is an integrated value of electric power over a predetermined time. The phase angle is a phase difference between the voltage and current at the output power P2, and is also called a power factor angle. When the measurement value acquisition unit 301 acquires the measurement values of the powers P1 and P2 from the power measurement device 4, the measurement value acquisition unit 301 calculates the power amounts of the powers P1 and P2 and the phase angle of the power P2, and sequentially stores the power amount and the phase angle in the measurement DB 310. Store it.
 指示取得部303は、PVパネル30によって発電された電力の、商用電力系統8への供給を抑制する指示を取得する。商用電力系統8への電力の供給を抑制する指示とは、電力サーバ14によって配信されるPV抑制の指示(抑制指示)である。以下、電力サーバ14によって配信される抑制指示について説明する。 The instruction acquisition unit 303 acquires an instruction for suppressing supply of the power generated by the PV panel 30 to the commercial power system 8. The instruction to suppress the supply of power to the commercial power system 8 is a PV suppression instruction (suppression instruction) distributed by the power server 14. Hereinafter, the suppression instruction delivered by the power server 14 will be described.
 電力サーバ14は、特定の条件が満たされた場合に、発電設備3を所有する各需要家に対して、特定の期間における各需要家の発電設備3から商用電力系統8への電力の供給、すなわち逆潮流を抑制する指示を配信する。このように逆潮流を抑制する理由は、需要家から商用電力系統8へ多くの電力が供給されすぎて、商用電力系統8の需給バランスが崩れることを防止するためである。以下では、電力サーバ14によって配信される逆潮流を抑制する指示を「抑制指示」といい、発電設備3の出力を制御して逆潮流を抑制することを「PV抑制」という。PV抑制は、「出力抑制」又は「出力制御」等ともいう。 When a specific condition is satisfied, the power server 14 supplies power to the commercial power system 8 from the power generation equipment 3 of each consumer during a specific period, for each consumer who owns the power generation equipment 3. That is, an instruction to suppress reverse power flow is distributed. The reason for suppressing the reverse flow in this way is to prevent the supply and demand balance of the commercial power system 8 from being disrupted due to excessive supply of power from the consumer to the commercial power system 8. Below, the instruction | indication which suppresses the reverse power flow delivered by the electric power server 14 is called "suppression instruction | indication", and the output of the power generation equipment 3 is controlled and the reverse power flow is suppressed "PV suppression". PV suppression is also referred to as “output suppression” or “output control”.
 具体的に説明すると、電力サーバ14は、各需要家の発電設備3が設置された場所における天気予報、日射量及び日照時間等の気象情報を気象事業者から取得し、PV抑制のスケジュールを作成する。そして、電力サーバ14は、作成したスケジュールに従って、PV抑制を実施する日の前日までに、抑制指示を各需要家へ配信する。PV抑制の実施期間は、通常、商用電力系統8の需給状況に対して発電設備3による発電電力が過剰となる期間、例えば多くの日射量が見込まれる晴天時の昼間の時間帯である。なお、PV抑制を実施する必要がない日には、電力サーバ14は、抑制指示を配信しない。 Specifically, the power server 14 obtains weather information such as weather forecast, solar radiation amount, and sunshine duration at the place where the power generation equipment 3 of each consumer is installed from a weather operator, and creates a PV suppression schedule. To do. And the electric power server 14 delivers a suppression instruction | indication to each consumer by the day before the day which implements PV suppression according to the created schedule. The implementation period of PV suppression is usually a period in which the power generated by the power generation facility 3 is excessive with respect to the supply and demand situation of the commercial power system 8, for example, a daytime period in a fine day when a large amount of solar radiation is expected. In addition, the electric power server 14 does not distribute a suppression instruction | indication on the day when it is not necessary to implement PV suppression.
 電力サーバ14によって配信される抑制指示は、PV抑制を実施する特定の期間を示す時間情報と、PV抑制時における発電設備3の出力制限の指示値を示す指示値情報と、を含んでいる。具体的に説明すると、抑制指示は、PV抑制を実施する特定の期間として、特定の日における特定の時間帯、すなわちPV抑制を実施する年月日と時刻(開始時刻及び終了時刻)との情報を指定する。 The suppression instruction distributed by the power server 14 includes time information indicating a specific period for performing PV suppression and instruction value information indicating an instruction value for output restriction of the power generation facility 3 at the time of PV suppression. More specifically, the suppression instruction is information on a specific time zone on a specific day, that is, date and time (start time and end time) at which PV suppression is performed, as a specific period for performing PV suppression. Is specified.
 また、抑制指示は、PV抑制時における発電設備3の出力制限の指示値として、発電設備3のパワーコンディショナ31から家屋Hの分電盤9へ出力される電力の、発電設備3による発電電力の定格値に対する割合(%)を指定する。ここで、発電設備3の発電電力の定格値とは、発電設備3が適正な条件の下で安全に出力可能な最大の電力値を意味し、具体的にはPVパネル30の定格容量とパワーコンディショナ31の定格容量とのうちの小さい方に相当する。 Moreover, the suppression instruction | indication is the electric power output by the power generation equipment 3 of the electric power output from the power conditioner 31 of the power generation equipment 3 to the distribution board 9 of the house H as an instruction | indication value of the output restriction of the power generation equipment 3 at the time of PV suppression Specify the ratio (%) to the rated value of. Here, the rated value of the generated power of the power generation facility 3 means the maximum power value that the power generation facility 3 can safely output under appropriate conditions, and specifically, the rated capacity and power of the PV panel 30. This corresponds to the smaller of the rated capacity of the conditioner 31.
 図6に、電力サーバ14によって配信される抑制指示の具体例を示す。図6中の実線Laは、PV抑制が指示されなかった場合における発電設備3による発電電力の推移を表しており、日射量が多くなる正午をピークとして昼間に大きな値を示す。これに対して、図6中の破線Lpは、抑制指示によって指定される発電設備3の出力制限の指示値の推移を表している。 FIG. 6 shows a specific example of the suppression instruction distributed by the power server 14. A solid line La in FIG. 6 represents a transition of the generated power by the power generation facility 3 when PV suppression is not instructed, and shows a large value in the daytime with a peak at noon when the amount of solar radiation increases. On the other hand, the broken line Lp in FIG. 6 represents the transition of the instruction value for the output restriction of the power generation facility 3 specified by the suppression instruction.
 図6の例では、9時から11時まで及び13時から15時までの時間帯で、発電設備3から出力される電力を定格値の40%(例えば5.0kWの定格値に対して2.0kW)に抑制することが指定されている。また、11時から13時までの時間帯で、発電設備3から出力される電力を定格値の0%に抑制する、すなわち発電設備3によって発電された電力を全く出力しないことが指定されている。言い換えると、指示値が100%未満となる9時から15時までの時間帯において、発電設備3から出力される電力は抑制される。これに対して、指示値が100%となる0時から9時まで及び15時から24時までの時間帯では、発電設備3から出力される電力は実質的に抑制されない。 In the example of FIG. 6, the power output from the power generation equipment 3 is set to 40% of the rated value (for example, 2% with respect to the rated value of 5.0 kW) in the time zone from 9:00 to 11:00 and from 13:00 to 15:00. .0.0 kW) is specified. In addition, it is specified that the power output from the power generation facility 3 is suppressed to 0% of the rated value in the time zone from 11:00 to 13:00, that is, the power generated by the power generation facility 3 is not output at all. . In other words, the power output from the power generation facility 3 is suppressed during the time period from 9:00 to 15:00 when the indicated value is less than 100%. On the other hand, in the time zone from 0 o'clock to 9 o'clock and 15 o'clock to 24 o'clock when the indicated value is 100%, the power output from the power generation facility 3 is not substantially suppressed.
 抑制指示は、PV抑制のスケジュールを例えば30分単位で指定し、また、発電設備3の出力の指示値を例えば1%単位で指定する。なお、抑制指示は、指示値を、発電電力の定格値に対する割合の代わりに、電力の単位(例えばkW単位)で指定してもよい。例えば図6に示したように、40%の指示値が2.0kWの出力電力に対応し、0%の指示値が0kWの出力電力に対応する場合、抑制指示は、発電設備3から出力される電力の指示値として、2.0kW及び0kWのように指定してもよい。 In the suppression instruction, the PV suppression schedule is specified in units of 30 minutes, for example, and the output instruction value of the power generation facility 3 is specified in units of 1%, for example. In the suppression instruction, the instruction value may be specified in units of power (for example, kW units) instead of the ratio of the generated power to the rated value. For example, as shown in FIG. 6, when the indicated value of 40% corresponds to the output power of 2.0 kW and the indicated value of 0% corresponds to the output power of 0 kW, the suppression instruction is output from the power generation facility 3. As an instruction value of power to be transmitted, it may be specified as 2.0 kW and 0 kW.
 以下では、指示値を電力の単位で表した値を、「指示電力」という。指示電力は、指示値が割合で指定された場合には、発電電力の定格値に指示値を乗じた値に相当し、指示値が電力で指定された場合には、指示値そのものに相当する。 Hereinafter, the value indicating the indicated value in the unit of electric power is referred to as “indicated electric power”. The command power corresponds to a value obtained by multiplying the rated value of the generated power by the command value when the command value is specified as a percentage, and corresponds to the command value itself when the command value is specified as power. .
 電力サーバ14が抑制指示を配信すると、指示取得部303は、配信された抑制指示を、広域ネットワークN及び通信部37を介して取得する。指示取得部303は、抑制指示を取得すると、取得した抑制指示によって指定されるスケジュール及び指示値等のPV抑制の内容を、指示DB320に格納する。指示取得部303は、制御部33が通信部37と協働することによって実現される。 When the power server 14 distributes the suppression instruction, the instruction acquisition unit 303 acquires the distributed suppression instruction via the wide area network N and the communication unit 37. When acquiring the suppression instruction, the instruction acquisition unit 303 stores the content of PV suppression such as the schedule and the instruction value specified by the acquired suppression instruction in the instruction DB 320. The instruction acquisition unit 303 is realized by the control unit 33 cooperating with the communication unit 37.
 図4に戻って、指示DB320は、指示取得部303によって取得された抑制指示の内容を記憶する。抑制指示の内容とは、具体的には抑制指示によって指定されるPV抑制のスケジュール及び指示値である。指示DB320は、指示取得部303が電力サーバ14から抑制指示を取得する度に、記憶されたPV抑制のスケジュール及び指示値を更新していく。 Returning to FIG. 4, the instruction DB 320 stores the content of the suppression instruction acquired by the instruction acquisition unit 303. Specifically, the content of the suppression instruction is a PV suppression schedule and an instruction value specified by the suppression instruction. The instruction DB 320 updates the stored PV suppression schedule and instruction value each time the instruction acquisition unit 303 acquires a suppression instruction from the power server 14.
 指示情報送信部304は、指示取得部303が抑制指示を取得した場合、抑制指示の内容を示す指示情報を給湯機5に送信する。抑制指示の内容とは、具体的には、PV抑制が指示された旨、及びその日時等である。指示情報送信部304は、指示取得部303が抑制指示を取得した場合、このような抑制指示の内容を示す指示情報を生成する。そして、指示情報送信部304は、生成した指示情報を、PV抑制の実施日の前日の23時までに、家屋H内に構築された通信ネットワークを介して給湯機5に送信する。指示情報送信部304は、制御部33が通信部37と協働することによって実現される。 The instruction information transmission unit 304 transmits instruction information indicating the content of the suppression instruction to the water heater 5 when the instruction acquisition unit 303 acquires the suppression instruction. Specifically, the content of the suppression instruction includes the fact that PV suppression has been instructed and the date and time. When the instruction acquisition unit 303 acquires a suppression instruction, the instruction information transmission unit 304 generates instruction information indicating the content of such a suppression instruction. And the instruction information transmission part 304 transmits the produced | generated instruction information to the hot water heater 5 via the communication network constructed | assembled in the house H by 23:00 on the day before the implementation day of PV suppression. The instruction information transmission unit 304 is realized by the control unit 33 cooperating with the communication unit 37.
 電力出力部305は、指示取得部303が抑制指示を取得した場合、抑制指示によって定められる期間において、PVパネル30によって発電された電力のうちの、発電された電力より少ない電力を出力する。抑制指示によって定められる期間とは、抑制指示によって指示されたPV抑制の実施期間である。電力出力部305は、PV抑制の実施期間が到来すると、インバータ32を制御することにより、PVパネル30からパワーコンディショナ31に供給された発電電力のうちの電力線D2に出力される電力を抑制する。その結果、電力線D2にはPVパネル30によって発電された電力のうちの全ては出力されず、発電された電力より少ない電力が出力され、残りの電力は出力されない。なお、発電された電力より少ない電力が出力されることは、電力が全く出力されないことを含むものとして説明する。電力出力部305は、制御部33がインバータ32と協働することによって実現される。 When the instruction acquisition unit 303 acquires the suppression instruction, the power output unit 305 outputs less power than the generated power among the power generated by the PV panel 30 during the period determined by the suppression instruction. The period determined by the suppression instruction is a PV suppression execution period instructed by the suppression instruction. When the PV suppression implementation period arrives, the power output unit 305 controls the inverter 32 to suppress the power output to the power line D2 from the generated power supplied from the PV panel 30 to the power conditioner 31. . As a result, not all of the power generated by the PV panel 30 is output to the power line D2, less power than the generated power is output, and the remaining power is not output. In the following description, output of less power than the generated power includes that no power is output. The power output unit 305 is realized by the control unit 33 cooperating with the inverter 32.
 電力出力部305は、出力電力を抑制する方法として、進相位相制御を実行する。具体的に説明すると、電力出力部305は、電力の位相を制御することによって、出力する電力を抑制する。言い換えると、電力出力部305は、PV抑制の実施期間において、電流の位相を電圧の位相からずらすことで、出力される有効電力を減少させる。 The power output unit 305 executes phase advance phase control as a method of suppressing output power. More specifically, the power output unit 305 suppresses the output power by controlling the phase of the power. In other words, the power output unit 305 decreases the output active power by shifting the phase of the current from the phase of the voltage during the PV suppression period.
 図7に、PV抑制時におけるパワーコンディショナ31からの出力電力の推移を示す。図7中の一点鎖線Lcは、家屋Hの総消費電力の推移を表しており、一般的に家庭における消費電力量が多くなる午後から夕方にかけて大きな値を示す。これに対して、図7中の太い実線L2は、PVパネル30によって発電された電力のうちパワーコンディショナ31から出力された電力、すなわち電力線D2を流れる電力P2の推移を表している。 FIG. 7 shows the transition of output power from the power conditioner 31 when PV is suppressed. A one-dot chain line Lc in FIG. 7 represents a transition of the total power consumption of the house H, and generally shows a large value from the afternoon to the evening when the power consumption amount in the home increases. On the other hand, the thick solid line L2 in FIG. 7 represents the transition of the power output from the power conditioner 31 among the power generated by the PV panel 30, that is, the power P2 flowing through the power line D2.
 図7に示す例において、PV抑制が実施されない期間T1及びT4では、電力出力部305は、パワーコンディショナ31からの出力を抑制しない。そのため、太い実線L2で表されるパワーコンディショナ31からの出力電力P2は、細い実線Laで表されるパワーコンディショナ31による出力可能な発電電力と等しくなる。このパワーコンディショナ31による出力可能な発電電力は、PVパネル30において発電された電力(パネル発電電力)に規定の変換効率を乗じて得られた電力である。以下では、PVパネル30によって発電された電力(発電電力)であって、パワーコンディショナ31から出力可能な電力をPaと表して、パワーコンディショナ31から実際に出力された電力(出力電力)P2と区別する。また、パワーコンディショナ31による出力可能な発電電力Paを、単に「発電電力Pa」等という。 In the example illustrated in FIG. 7, the power output unit 305 does not suppress the output from the power conditioner 31 in the periods T1 and T4 in which PV suppression is not performed. Therefore, the output power P2 from the power conditioner 31 represented by the thick solid line L2 is equal to the generated power that can be output by the power conditioner 31 represented by the thin solid line La. The generated electric power that can be output by the power conditioner 31 is electric power obtained by multiplying the electric power generated in the PV panel 30 (panel generated electric power) by a specified conversion efficiency. Hereinafter, the electric power (generated electric power) generated by the PV panel 30 and the electric power that can be output from the power conditioner 31 is represented as Pa, and the electric power (output electric power) P2 actually output from the power conditioner 31 is expressed as Pa. To distinguish. The generated power Pa that can be output by the power conditioner 31 is simply referred to as “generated power Pa” or the like.
 これに対して、PV抑制が実施される期間T2及びT3では、電力出力部305は、パワーコンディショナ31からの出力を抑制する。そのため、太い実線L2で表される出力電力P2は、細い実線Laで表される発電電力Paよりも小さくなる。 On the other hand, in the periods T2 and T3 in which PV suppression is performed, the power output unit 305 suppresses the output from the power conditioner 31. Therefore, the output power P2 represented by the thick solid line L2 is smaller than the generated power Pa represented by the thin solid line La.
 より詳細に説明すると、PV抑制が実施される期間T2及びT3のうち、期間T2では、一点鎖線Lcで表される家屋Hの総消費電力Pcが、破線Lpで表される指示電力(2.0kW)より小さい。この場合、電力出力部305は、太い実線L2で表されるように、パワーコンディショナ31からの出力電力P2を、指示電力まで抑制する。電力出力部305のこのような動作モードを「出力抑制モード」という。 More specifically, among the periods T2 and T3 in which the PV suppression is performed, in the period T2, the total power consumption Pc of the house H represented by the alternate long and short dash line Lc is the command power (2. 0 kW). In this case, the power output unit 305 suppresses the output power P2 from the power conditioner 31 to the command power as represented by the thick solid line L2. Such an operation mode of the power output unit 305 is referred to as an “output suppression mode”.
 これに対して、PV抑制が実施される期間T2及びT3のうち、期間T3では、一点鎖線Lcで表される家屋Hの総消費電力Pcが、破線Lpで表される指示電力(2.0kW)より大きい。この場合、電力出力部305は、太い実線L2で表されるように、パワーコンディショナ31からの出力電力P2を、指示電力までではなく、総消費電力Pcに等しい電力までしか抑制しない。ただし、例えば図7中の15時直前の期間のように、発電電力Paが総消費電力Pcより小さい期間では、電力出力部305は、出力電力P2を、発電電力Paに等しくなるように抑制する。電力出力部305のこのような動作モードを「逆潮流ゼロモード」という。 On the other hand, among the periods T2 and T3 in which PV suppression is performed, in the period T3, the total power consumption Pc of the house H represented by the alternate long and short dash line Lc is indicated power (2.0 kW) represented by the broken line Lp. Larger) In this case, the power output unit 305 suppresses the output power P2 from the power conditioner 31 only to the power equal to the total power consumption Pc, not to the indicated power, as represented by the thick solid line L2. However, the power output unit 305 suppresses the output power P2 to be equal to the generated power Pa in a period in which the generated power Pa is smaller than the total power consumption Pc, for example, as in the period immediately before 15:00 in FIG. . Such an operation mode of the power output unit 305 is referred to as “reverse flow zero mode”.
 図7下部に、期間T2に含まれる時刻t1及び期間T3に含まれる時刻t2における、発電電力Paと損失電力との関係を示す。ここで、損失電力とは、発電ロスであって、PVパネル30によって発電されたにも拘わらずパワーコンディショナ31から出力されない電力(Pa-P2)である。期間T2に含まれる時刻t1(出力抑制モード)では、出力電力P2が指示電力まで抑制されるため、損失電力は比較的大きくなる。これに対して、期間T3に含まれる時刻t2(逆潮流ゼロモード)では、出力電力P2が総消費電力Pcに等しい電力までしか抑制されないため、発電設備3の損失電力は比較的小さくなる。このため、PV抑制時において、指示電力を超えるように総消費電力Pcを増加させれば、損失電力を低減させることができる。 7 shows the relationship between generated power Pa and lost power at time t1 included in period T2 and time t2 included in period T3. Here, the loss power is a power generation loss and is a power (Pa−P2) that is not output from the power conditioner 31 even though it is generated by the PV panel 30. At time t1 (output suppression mode) included in the period T2, the output power P2 is suppressed to the command power, so the power loss is relatively large. On the other hand, at time t2 (reverse power flow zero mode) included in the period T3, the output power P2 is suppressed only to power equal to the total power consumption Pc, so the power loss of the power generation facility 3 is relatively small. For this reason, at the time of PV suppression, if the total power consumption Pc is increased so as to exceed the command power, the power loss can be reduced.
 また、期間T2に含まれる時刻t1(出力抑制モード)では、指示電力まで抑制された出力電力P2は総消費電力Pcよりも大きいため、その差分(P2-Pc)に相当する電力が余剰電力として余る。この余剰電力は、逆潮電力として商用電力系統8に売電される。これに対して、期間T3に含まれる時刻t2では、出力電力P2と総消費電力Pcとが等しいため、買電も売電も発生しない。 In addition, at time t1 (output suppression mode) included in the period T2, the output power P2 suppressed up to the command power is larger than the total power consumption Pc, so that the power corresponding to the difference (P2-Pc) is used as surplus power. Surplus. This surplus power is sold to the commercial power system 8 as reverse power. On the other hand, at time t2 included in the period T3, since the output power P2 and the total power consumption Pc are equal, neither power purchase nor power sale occurs.
 図4に戻って、余力電力計算部306は、余力電力を計算する。余力電力とは、PVパネル30によって発電された電力Paのうち、パワーコンディショナ31が出力可能な電力の余力である。言い換えると、余力電力は、PV抑制の実施期間において、給湯機5を含む家屋H内の機器が消費可能であるにも拘わらず、出力抑制によりパワーコンディショナ31から出力されていない電力である。具体的に説明すると、余力電力は、図7下部に示した損失電力に相当する。余力電力計算部306は、制御部33における発電電力計算部34によって実現される。 Returning to FIG. 4, the surplus power calculator 306 calculates the surplus power. The surplus power is the surplus power that can be output by the power conditioner 31 among the power Pa generated by the PV panel 30. In other words, the surplus power is power that is not output from the power conditioner 31 due to output suppression even though the equipment in the house H including the water heater 5 can be consumed during the PV suppression period. More specifically, the surplus power corresponds to the loss power shown in the lower part of FIG. The surplus power calculation unit 306 is realized by the generated power calculation unit 34 in the control unit 33.
 余力電力計算部306は、PV抑制の実施期間におけるPVパネル30によって発電された電力Paと電力出力部305によって出力された電力P2との差に基づいて、余力電力を計算する。ここで、PVパネル30による発電電力Paは、PV抑制が実施されている間は、直接計測することができない。そのため、余力電力計算部306は、発電電力Paを取得するために、PV抑制の実施期間より前の期間における出力電力P2の位相角を用いる。 The surplus power calculation unit 306 calculates the surplus power based on the difference between the power Pa generated by the PV panel 30 and the power P2 output by the power output unit 305 in the PV suppression implementation period. Here, the generated power Pa by the PV panel 30 cannot be directly measured while the PV suppression is being performed. Therefore, the surplus power calculation unit 306 uses the phase angle of the output power P2 in the period before the PV suppression execution period in order to acquire the generated power Pa.
 具体的に説明すると、余力電力計算部306は、PV抑制の実施期間より前において電力出力部305によって出力された電力P2の力率を、発電電力Paの定格値に乗じることによって、PV抑制の実施期間における発電電力Paを計算する。出力電力P2の力率は、出力電力P2における電圧と電流との位相差から計算することで得られる。発電電力Paの定格値は、前述したように、発電設備3が適正な条件の下で安全に出力可能な最大の電力値である。発電電力Paの定格値は、ROM又は記憶部36等に予め記憶されている。 Specifically, the surplus power calculation unit 306 multiplies the rated value of the generated power Pa by the power factor of the power P2 output by the power output unit 305 before the PV suppression implementation period, thereby reducing the PV suppression. Generated power Pa in the implementation period is calculated. The power factor of the output power P2 is obtained by calculating from the phase difference between the voltage and current at the output power P2. As described above, the rated value of the generated power Pa is the maximum power value that the power generation facility 3 can safely output under appropriate conditions. The rated value of the generated power Pa is stored in advance in the ROM or the storage unit 36.
 余力電力計算部306は、計測DB310に記憶された位相角のデータを参照して、PV抑制の実施期間が開始される直前の予め定められた期間における位相角の平均値を計算する。予め定められた期間は、例えば5分又は10分等である。そして、余力電力計算部306は、位相角の平均値の余弦を計算することで出力電力P2の力率を計算し、得られた力率を発電電力Paの定格値に乗じることによって、PV抑制の実施期間における発電電力Paの推定値を計算する。 The surplus power calculation unit 306 refers to the phase angle data stored in the measurement DB 310 and calculates the average value of the phase angle in a predetermined period immediately before the PV suppression execution period starts. The predetermined period is, for example, 5 minutes or 10 minutes. Then, the surplus power calculation unit 306 calculates the power factor of the output power P2 by calculating the cosine of the average value of the phase angles, and multiplies the rated value of the generated power Pa by the obtained power factor to suppress the PV. The estimated value of the generated power Pa in the implementation period is calculated.
 余力電力計算部306は、計算した発電電力Paから、PV抑制の実施期間において電力出力部305によって出力された電力P2を減じることによって、余力電力を計算する。PV抑制の実施期間における出力電力P2は、計測値取得部301によって計測値として取得することができる。余力電力計算部306は、発電電力Paの推定値と出力電力P2の計測値との差を、余力電力と計算する。例えば、発電電力Paの定格値が6.0kW、力率が0.9、及び出力電力P2の計測値が4.0kWである場合、1.4kW(=6.0kW×0.9-4.0kW)の電力が余力電力として計算される。 The surplus power calculation unit 306 calculates the surplus power by subtracting the power P2 output by the power output unit 305 during the PV suppression period from the calculated generated power Pa. The output power P <b> 2 during the PV suppression implementation period can be acquired as a measurement value by the measurement value acquisition unit 301. The surplus power calculation unit 306 calculates the difference between the estimated value of the generated power Pa and the measured value of the output power P2 as the surplus power. For example, when the rated value of the generated power Pa is 6.0 kW, the power factor is 0.9, and the measured value of the output power P2 is 4.0 kW, 1.4 kW (= 6.0 kW × 0.9-4. 0 kW) is calculated as surplus power.
 余力情報送信部307は、余力電力計算部306によって計算された余力電力を示す余力情報を給湯機5に送信する。具体的に説明すると、余力情報送信部307は、PV抑制の実施期間において、余力電力計算部306によって計算された余力電力を予め定められた期間で平均化し、平均化した余力電力を示す余力情報を生成する。予め定められた期間は、例えば30分等である。そして、余力情報送信部307は、生成された余力情報を、家屋H内に構築された通信ネットワークを介して給湯機5に送信する。余力情報送信部307は、制御部33が通信部37と協働することによって実現される。 The surplus power information transmission unit 307 transmits surplus power information indicating the surplus power calculated by the surplus power calculation unit 306 to the water heater 5. More specifically, the surplus power information transmission unit 307 averages the surplus power calculated by the surplus power calculation unit 306 in a predetermined period during the PV suppression period, and indicates surplus power indicating the averaged surplus power. Is generated. The predetermined period is, for example, 30 minutes. Then, the surplus power information transmission unit 307 transmits the generated surplus information to the water heater 5 via the communication network built in the house H. The surplus information transmitting unit 307 is realized by the control unit 33 cooperating with the communication unit 37.
 表示制御部309は、通信部37を介して図示しないユーザインターフェースと通信し、状況に応じた表示画面をユーザインターフェースの表示デバイスに表示する。表示制御部309は、制御部33が通信部37と協働することによって実現される。 The display control unit 309 communicates with a user interface (not shown) via the communication unit 37, and displays a display screen corresponding to the situation on the display device of the user interface. The display control unit 309 is realized by the control unit 33 cooperating with the communication unit 37.
 図8に、パワーコンディショナ31による表示画面の一例を示す。表示制御部309は、計測DB310に記憶された計測値、及び電力出力部305による抑制処理の結果に基づいて、現在の発電量、及びPV抑制時にパワーコンディショナ31によって抑制された抑制量等を、ユーザインターフェースの表示部40に表示する。 FIG. 8 shows an example of a display screen by the power conditioner 31. Based on the measurement value stored in the measurement DB 310 and the result of the suppression process by the power output unit 305, the display control unit 309 displays the current power generation amount, the suppression amount suppressed by the power conditioner 31 during PV suppression, and the like. And displayed on the display unit 40 of the user interface.
 次に、給湯コントローラ54の機能的な構成について説明する。図4に示すように、給湯コントローラ54は、機能的に、指示情報取得部601と、計画生成部602と、余力情報取得部605と、沸上げ部604と、表示制御部608と、操作受付部609と、を備える。これらの各機能は、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、ROM又は記憶部62に格納される。そして、制御部61において、CPUが、ROM又は記憶部62に記憶されたプログラムを実行することによって、各部の機能を実現する。 Next, the functional configuration of the hot water supply controller 54 will be described. As shown in FIG. 4, the hot water supply controller 54 functionally includes an instruction information acquisition unit 601, a plan generation unit 602, a remaining power information acquisition unit 605, a boiling unit 604, a display control unit 608, and an operation reception. Unit 609. Each of these functions is realized by software, firmware, or a combination of software and firmware. The software and firmware are described as programs and stored in the ROM or the storage unit 62. And in the control part 61, CPU implement | achieves the function of each part by executing the program memorize | stored in ROM or the memory | storage part 62. FIG.
 また、給湯コントローラ54は、学習DB610を備える。学習DB610は、記憶部62内の記憶領域に構築される。 In addition, the hot water supply controller 54 includes a learning DB 610. The learning DB 610 is constructed in a storage area in the storage unit 62.
 指示情報取得部601は、パワーコンディショナ31から送信された指示情報を取得する。指示情報は、指示情報送信部304によって送信された、PV抑制が指示された旨、及びその日時等の情報である。指示情報取得部601は、指示情報を家屋H内に構築された通信ネットワークを介して取得する。指示情報取得部601は、制御部61が通信部64と協働することによって実現される。 The instruction information acquisition unit 601 acquires instruction information transmitted from the power conditioner 31. The instruction information is information transmitted by the instruction information transmission unit 304, such as the fact that PV suppression has been instructed and the date and time. The instruction information acquisition unit 601 acquires instruction information through a communication network built in the house H. The instruction information acquisition unit 601 is realized by the control unit 61 cooperating with the communication unit 64.
 計画生成部602は、指示情報取得部601が指示情報を取得すると、指示情報に基づいて、沸上げ計画を生成する。沸上げ計画とは、沸上げ運転の開始時刻、終了時刻、沸上げ時間、沸上げ量、及び沸上げ能力等を定めたものである。計画生成部602は、1日のうちの予め定められた時刻(例えば23時)が到来すると、学習DB610を参照して、翌日の沸上げ計画を生成する。生成された計画は、RAM又は記憶部62等に記憶される。計画生成部602は、制御部61が記憶部62と協働することによって実現される。 The plan generation unit 602 generates a boiling plan based on the instruction information when the instruction information acquisition unit 601 acquires the instruction information. The boiling plan defines a start time, an end time, a boiling time, a boiling amount, a boiling capacity, and the like of a boiling operation. When a predetermined time of the day (for example, 23:00) arrives, the plan generating unit 602 refers to the learning DB 610 and generates the next day's boiling plan. The generated plan is stored in the RAM or the storage unit 62. The plan generation unit 602 is realized by the control unit 61 cooperating with the storage unit 62.
 学習DB610は、前日までの湯の沸上げ量及び使用量(給湯量)等のデータを格納したデータベースである。計画生成部602は、学習DB610に記憶された前日までの沸上げ量及び使用量等を参照して、翌日に使用される湯の量を予測する。そして、制御部61は、予測される翌日の湯の使用量と貯湯タンク53に残った湯の量とから、目標となる沸上げ量を決定する。 The learning DB 610 is a database that stores data such as the amount of boiling water and the amount used (hot water supply amount) up to the previous day. The plan generation unit 602 predicts the amount of hot water to be used on the next day with reference to the boiling amount and usage amount up to the previous day stored in the learning DB 610. Then, the control unit 61 determines a target boiling amount from the predicted amount of hot water used the next day and the amount of hot water remaining in the hot water storage tank 53.
 沸上げ量を決定すると、計画生成部602は、湯を沸き上げる時刻を決定する。通常、給湯機5は、買電単価が安くなる夜間に1日間に必要な量の湯を沸き上げて、夜間以外の時間には湯量が不足した場合に限り湯を沸き上げる。そのため、計画生成部602は、翌日にPV抑制が実施されない場合、沸上げ計画として、決定した沸上げ量の湯の全てを夜間に沸き上げる計画を生成する。 When the boiling amount is determined, the plan generation unit 602 determines the time for boiling the hot water. Usually, the water heater 5 boils up the amount of hot water required for one day at night when the power purchase unit price is low, and boils hot water only when the amount of hot water is insufficient at other times. Therefore, when PV suppression is not performed on the next day, the plan generation unit 602 generates a plan for boiling all the determined boiling amount of hot water at night as a boiling plan.
 これに対して、翌日にPV抑制が実施される場合には、PV抑制が実施される昼間にも沸上げ運転を実行することで、PV抑制中に発生する損失電力を低減させることができる。そのため、指示情報取得部601が翌日にPV抑制が実施される旨の指示情報を取得した場合、計画生成部602は、沸上げ計画として、決定した沸上げ量の湯の一部を夜間に沸き上げ、残りを昼間のPV抑制中に沸き上げる計画を生成する。 On the other hand, when PV suppression is performed the next day, the power loss generated during PV suppression can be reduced by performing the boiling operation during the daytime when PV suppression is performed. Therefore, when the instruction information acquisition unit 601 acquires instruction information indicating that PV suppression will be performed the next day, the plan generation unit 602 boils a part of the determined amount of hot water at night as a boiling plan. Generate a plan to raise and boil the rest during daytime PV suppression.
 図9に、沸上げ運転を夜間から昼間にシフトする計画を模式的に示す。翌日にPV抑制を実施しない場合には、計画生成部602は、図9において点線で示される部分を含む夜間の時間帯で、目標となる沸上げ量の湯の全てを夜間に沸き上げる計画を生成する。これに対して、翌日にPV抑制が実施される場合には、計画生成部602は、翌日にPV抑制を実施しない場合には夜間に実行すべき沸上げ運転の一部分(図9において破線で示す部分)を、昼間にシフトする計画を生成する。 Fig. 9 schematically shows a plan for shifting boiling operation from night to daytime. In the case where PV suppression is not performed on the next day, the plan generation unit 602 plans to boil up all of the target boiling amount of hot water during the night time including the portion indicated by the dotted line in FIG. Generate. On the other hand, when PV suppression is performed on the next day, the plan generation unit 602 indicates a part of the boiling operation to be performed at night when PV suppression is not performed on the next day (indicated by a broken line in FIG. 9). Generate a plan to shift the part) in the daytime.
 図4に戻って、沸上げ部604は、ヒートポンプユニット50の制御基板と通信し、ヒートポンプユニット50を制御することにより、湯を沸き上げる。湯を沸き上げるとは、貯湯タンク53内の低温水がヒートポンプユニット50によって高温水に沸き上げられ、高温水が貯湯タンク53に供給されることを意味する。沸上げ部604は、制御部61が計時部63及び通信部64と協働することによって実現される。 Returning to FIG. 4, the boiling unit 604 communicates with the control board of the heat pump unit 50 to boil hot water by controlling the heat pump unit 50. Boiling hot water means that the low temperature water in the hot water storage tank 53 is heated to high temperature water by the heat pump unit 50 and the high temperature water is supplied to the hot water storage tank 53. The boiling unit 604 is realized by the control unit 61 cooperating with the time measuring unit 63 and the communication unit 64.
 具体的に説明すると、沸上げ部604は、計画生成部602によって生成された沸上げ計画に従って、湯を沸き上げる。具体的に説明すると、翌日にPV抑制が実施される指示情報を指示情報取得部601が取得していない場合、沸上げ部604は、計画生成部602によって生成された夜間沸上げ計画に従って、目標となる沸上げ量の湯の全てを夜間に沸き上げる。 More specifically, the boiling unit 604 boils hot water according to the boiling plan generated by the plan generating unit 602. More specifically, when the instruction information acquisition unit 601 does not acquire instruction information on which PV suppression is performed on the next day, the boiling unit 604 follows the night boiling plan generated by the plan generation unit 602 according to the target. Boil all the boiling water at night.
 これに対して、翌日にPV抑制が実施される指示情報を指示情報取得部601が取得した場合、沸上げ部604は、指示情報によって定められるPV抑制の実施期間より前の夜間に第1の量の湯を沸き上げ、PV抑制の実施期間である昼間において、余力電力に応じた能力で第2の量の湯を沸き上げる。第1の量は、夜間沸上げ計画において決められた夜間の沸上げ量である。第2の量は、昼間沸上げ計画において決められた昼間の沸上げ量であって、目標となる沸上げ量から第1の量を減じた量に相当する。このように、沸上げ部604は、計画生成部602によって生成された夜間沸上げ計画と昼間沸上げ計画に従って、目標となる沸上げ量の湯を2回に分けて沸き上げる。 On the other hand, when the instruction information acquisition unit 601 acquires instruction information on which PV suppression is performed on the next day, the boiling unit 604 performs the first operation at night before the PV suppression execution period determined by the instruction information. An amount of hot water is boiled, and a second amount of hot water is boiled with the capacity corresponding to the remaining power in the daytime, which is the implementation period of PV suppression. The first amount is a night boiling amount determined in the night boiling plan. The second amount is the daytime boiling amount determined in the daytime boiling plan, and corresponds to an amount obtained by subtracting the first amount from the target boiling amount. In this way, the boiling unit 604 boils the target boiling amount of hot water in two portions according to the night boiling plan and the day boiling plan generated by the plan generating unit 602.
 余力情報取得部605は、抑制指示によって定められる期間において、パワーコンディショナ31から余力情報を取得する。余力情報は、余力情報送信部307によって送信された、PV抑制の実施期間におけるPVパネル30によって発電された電力Paと電力出力部305によって出力された電力P2との差に基づく情報であって、具体的には発電設備3の余力電力を示す情報である。余力情報取得部605は、余力情報を家屋H内に構築された通信ネットワークを介して取得する。余力情報取得部605は、制御部61が通信部64と協働することによって実現される。 The surplus power information acquisition unit 605 acquires surplus information from the power conditioner 31 in a period determined by the suppression instruction. The surplus power information is information based on the difference between the power Pa generated by the PV panel 30 and the power P2 output by the power output unit 305 transmitted by the surplus information transmitting unit 307, Specifically, it is information indicating the surplus power of the power generation facility 3. The surplus information acquisition unit 605 acquires surplus information via a communication network built in the house H. The surplus power information acquisition unit 605 is realized by the control unit 61 cooperating with the communication unit 64.
 沸上げ部604は、余力情報取得部605が余力情報を取得すると、余力電力に応じた能力、言い換えるとPVパネル30によって発電された電力Paと電力出力部305によって出力された電力P2との差に応じた能力で、湯を沸き上げる。 When the surplus power information acquisition unit 605 acquires the surplus power information, the boiling unit 604 determines the difference between the capacity according to the surplus power, in other words, the power Pa generated by the PV panel 30 and the power P2 output by the power output unit 305. Boiling hot water with the ability according to.
 ここで、能力(以下、「沸上げ能力」という。)とは、給湯機5がいかに高速に湯を沸き上げることができるかを示す指標である。沸上げ能力は、沸上げレベルともいう。給湯機5には、予め複数段階の沸上げ能力が設定されている。沸上げ能力が高いほど、所望の温度の湯を沸き上げる時間を短縮することができ、給湯機5の消費電力は増加する。沸上げ能力が低いほど、所望の温度の湯を沸き上げる時間が増加し、給湯機5の消費電力は減少する。沸上げ部604は、ヒートポンプユニット50における圧縮機の駆動周波数を制御し、圧縮機からの単位当たりの送り出し量を変化させることで、沸上げ能力を変更する。 Here, the capacity (hereinafter referred to as “boiling capacity”) is an index indicating how fast the water heater 5 can boil hot water. The boiling capacity is also called a boiling level. The water heater 5 is preset with a plurality of stages of boiling capacity. The higher the boiling capacity, the shorter the time for boiling hot water at a desired temperature, and the power consumption of the water heater 5 increases. The lower the boiling capacity is, the longer the time for boiling hot water at a desired temperature is, and the power consumption of the water heater 5 is reduced. The boiling unit 604 controls the driving frequency of the compressor in the heat pump unit 50, and changes the boiling capacity by changing the amount of feed per unit from the compressor.
 余力電力に応じた能力とは、給湯機5における消費電力の増加量が余力電力より小さい範囲で設定可能な沸上げ能力を意味する。言い換えると、沸上げ部604は、余力情報取得部605が余力情報を取得すると、給湯機5における消費電力を余力電力より小さい量だけ増大させて、湯を沸き上げる。具体的に説明すると、沸上げ部604は、取得された余力情報によって示される余力電力から予め定められたマージンの値を減じた電力を、給湯機5において消費を増やすことが可能な上限電力として計算する。例えば、余力電力が1.0kWであって、マージンが0.2kWである場合には、沸上げ部604は、上限電力を0.8kWと計算する。 The capacity according to the surplus power means a boiling capacity that can be set in a range where the increase in power consumption in the water heater 5 is smaller than the surplus power. In other words, when the surplus power information acquisition unit 605 acquires the surplus power information, the boiling unit 604 increases the power consumption in the water heater 5 by an amount smaller than the surplus power, and boils hot water. If demonstrating it concretely, the boiling part 604 will use electric power which reduced the value of the predetermined margin from the surplus power shown by the acquired surplus power information as upper limit electric power which can increase consumption in the water heater 5. calculate. For example, when the surplus power is 1.0 kW and the margin is 0.2 kW, the boiling unit 604 calculates the upper limit power as 0.8 kW.
 沸上げ部604は、給湯機5において消費電力の増加量が上限電力未満になるように、沸上げ能力を決定する。例えば、給湯機5が待機状態にあって、電力を消費していない場合には、沸上げ部604は、給湯機5において0kWからの消費電力の増加量が上限電力より小さく且つ最大となる沸上げ能力を決定する。また、給湯機5が沸上げ運転中であって、既に電力を消費している場合には、沸上げ部604は、給湯機5において現在の消費電力からの増加量が上限電力より小さく且つ最大となる沸上げ能力を決定する。 The boiling unit 604 determines the boiling capacity so that the increase in power consumption in the water heater 5 is less than the upper limit power. For example, when the water heater 5 is in a standby state and does not consume power, the boiling unit 604 has a boiling point at which the increase in power consumption from 0 kW in the water heater 5 is smaller than the maximum power and maximized. Determine the raising ability. In addition, when the water heater 5 is in a boiling operation and has already consumed power, the boiling unit 604 is configured such that the amount of increase from the current power consumption in the water heater 5 is smaller than the upper limit power and is the maximum. Determine the boiling capacity to become.
 また、沸上げ部604は、湯を沸き上げている最中に余力電力が予め定められた閾値より小さくなると、給湯機5の消費電力を減少させる。言い換えると、沸上げ部604は、余力電力が減少すると、余力電力の減少に合わせて沸上げ能力を下げる。例えば、沸上げ部604は、湯を沸き上げている最中に余力電力が閾値より小さくなると、買電の発生を抑えるために、沸上げ能力を可能な範囲で(例えば1段階又は2段階等)下げる。閾値は、買電の発生をどの程度許容するかに応じて適宜設定することができる。 In addition, the boiling unit 604 reduces the power consumption of the water heater 5 when the remaining power becomes smaller than a predetermined threshold while boiling the hot water. In other words, when the surplus power decreases, the boiling unit 604 decreases the boiling capacity in accordance with the decrease in the surplus power. For example, when the remaining power becomes smaller than a threshold value during boiling of hot water, the boiling unit 604 has a boiling capacity within a possible range (for example, one step or two steps) in order to suppress the occurrence of power purchase. ) Lower. The threshold value can be set as appropriate depending on how much power generation is allowed.
 このように余力電力に応じて沸上げ能力を変更することにより、商用電力系統8からの買電が発生せず、且つ、余力電力を最大限に有効に活用することができる。 As described above, by changing the boiling capacity according to the surplus power, no power is purchased from the commercial power system 8, and the surplus power can be effectively utilized to the maximum extent.
 表示制御部608は、通信部64を介してリモコン55と通信し、状況に応じた表示画面をリモコン55の表示デバイスに表示する。操作受付部609は、通信部64を介してリモコン55と通信し、ユーザがリモコン55を操作して入力した情報を受け付ける。表示制御部608及び操作受付部609は、それぞれ制御部61が通信部64と協働することによって実現される。 The display control unit 608 communicates with the remote controller 55 via the communication unit 64, and displays a display screen corresponding to the situation on the display device of the remote controller 55. The operation accepting unit 609 communicates with the remote controller 55 via the communication unit 64 and accepts information input by the user operating the remote controller 55. The display control unit 608 and the operation reception unit 609 are realized by the control unit 61 cooperating with the communication unit 64, respectively.
 図10及び図11に、PV抑制時にリモコン55に表示される表示画面の具体例を示す。表示制御部608は、PV抑制が実施されている期間において、図10及び図11に示すように、現在の設定温度、貯湯量、及び沸上げ能力のレベル等の給湯機5に関する情報、並びに、現在の発電出力量、抑制量及び負荷等の電力に関する情報を、各種操作ボタンと共に表示する。なお、負荷とは、家屋Hの総消費電力Pcである。 10 and 11 show specific examples of display screens displayed on the remote controller 55 when PV is suppressed. As shown in FIGS. 10 and 11, the display control unit 608 is configured to display information related to the water heater 5 such as the current set temperature, the amount of stored hot water, and the boiling capacity level, as shown in FIGS. Information about the current power generation output amount, suppression amount, and power such as load is displayed together with various operation buttons. The load is the total power consumption Pc of the house H.
 図10に示すように、現在の負荷が発電出力量と抑制量との和より小さい場合、余力電力が存在している。余力電力によって給湯機5の沸上げ能力を上げることができる場合、表示制御部608は、「沸上げ能力をレベル4まで上げられます。」とのメッセージを表示する。これにより、表示制御部608は、給湯機5が消費可能な電力に余力があることをユーザに報知し、沸上げ能力を上げることをユーザに促す。 As shown in FIG. 10, when the current load is smaller than the sum of the power generation output amount and the suppression amount, there is surplus power. When the boiling capacity of the water heater 5 can be increased by the remaining power, the display control unit 608 displays a message “The boiling capacity can be increased to level 4”. Thereby, the display control unit 608 informs the user that there is sufficient power that can be consumed by the water heater 5, and prompts the user to increase the boiling capacity.
 これに対して、図11に示すように、現在の負荷が発電出力量を超えている場合、余力電力は存在せず、買電が発生している。この場合、表示制御部608は、「買電が発生しています。沸上げ能力をレベル2に下げることで買電を回避できます。」とのメッセージを表示する。これにより、表示制御部608は、買電が発生していることをユーザに報知し、沸上げ能力を下げることをユーザに促す。 On the other hand, as shown in FIG. 11, when the current load exceeds the power generation output amount, there is no surplus power and power purchase occurs. In this case, the display control unit 608 displays a message “Purchasing power has been generated. Electricity can be avoided by lowering the boiling capacity to level 2.” Thereby, the display control unit 608 notifies the user that power purchase has occurred, and prompts the user to lower the boiling capacity.
 図10又は図11に示した表示画面において、ユーザは、給湯機5の沸上げ能力を上げる又は下げるボタンを選択することで、操作を入力することができる。操作受付部609は、ユーザによって入力された沸上げ能力を上げる又は下げる操作をリモコン55から受け付ける。沸上げ部604は、操作受付部609によって受け付けられた操作に従って、給湯機5の沸上げ能力を変更する。 On the display screen shown in FIG. 10 or FIG. 11, the user can input an operation by selecting a button for raising or lowering the boiling capacity of the water heater 5. The operation accepting unit 609 accepts an operation for increasing or decreasing the boiling capacity input by the user from the remote controller 55. The boiling unit 604 changes the boiling capacity of the water heater 5 according to the operation received by the operation receiving unit 609.
 以上のように構成された給湯システム1において実行される処理の流れについて、図12から図17を参照して、説明する。 The flow of processing executed in the hot water supply system 1 configured as described above will be described with reference to FIGS.
 図12に、給湯システム1において実行される処理の概要を示す。図12は、一回のPV抑制の指示が電力サーバ14から配信されてからそのPV抑制の実施が終了するまでの、電力サーバ14、発電設備3のパワーコンディショナ31及び給湯機5の給湯コントローラ54によって実行される処理の流れを示している。もし複数回のPV抑制の指示が電力サーバ14から配信された場合には、複数回のPV抑制のそれぞれについて、図12に示す処理が並列に実行される。 FIG. 12 shows an outline of processing executed in the hot water supply system 1. FIG. 12 shows the hot water controller of the power server 14, the power conditioner 31 of the power generation equipment 3, and the hot water controller 5 after the PV restraint instruction is delivered from the power server 14 until the end of the PV restraint. The flow of the process performed by 54 is shown. If a plurality of PV suppression instructions are delivered from the power server 14, the processes shown in FIG. 12 are executed in parallel for each of the multiple PV suppressions.
 電力サーバ14は、PV抑制を実施することが決定し、そのスケジュール及び詳細な内容が確定すると、PV抑制の指示(抑制指示)を各需要家に配信する(ステップS1)。電力サーバ14から抑制指示が配信されると、パワーコンディショナ31は、配信された抑制指示の取得処理を実行する(ステップS2)。図13に、ステップS2において実行される抑制指示取得処理の詳細を示す。 When it is determined that the PV suppression is to be performed and the schedule and detailed contents are confirmed, the power server 14 distributes a PV suppression instruction (suppression instruction) to each consumer (step S1). When the suppression instruction is distributed from the power server 14, the power conditioner 31 executes processing for acquiring the distributed suppression instruction (step S2). FIG. 13 shows details of the suppression instruction acquisition process executed in step S2.
 図13に示す抑制指示取得処理において、パワーコンディショナ31の制御部33は、電力サーバ14から配信された抑制指示を、広域ネットワークNを介して取得する(ステップS21)。ステップS21において、制御部33は、指示取得部303として機能する。 In the suppression instruction acquisition process shown in FIG. 13, the control unit 33 of the power conditioner 31 acquires the suppression instruction distributed from the power server 14 via the wide area network N (step S21). In step S <b> 21, the control unit 33 functions as the instruction acquisition unit 303.
 ステップS21において、制御部33は、電力サーバ14から抑制指示が配信されたタイミングで、抑制指示を取得してもよい。或いは、制御部33は、1日1回又は2回等のように予め定められたタイミングが到来すると、自ら電力サーバ14にアクセスすることにより、電力サーバ14から抑制指示を取得してもよい。 In step S21, the control unit 33 may acquire the suppression instruction at the timing when the suppression instruction is distributed from the power server 14. Alternatively, the control unit 33 may acquire a suppression instruction from the power server 14 by accessing the power server 14 by itself when a predetermined timing such as once or twice a day arrives.
 抑制指示を取得すると、制御部33は、PV抑制が実施される日の前日まで待機する(ステップS22)。そして、PV抑制が実施される日の前日になると、制御部33は、発電電力の定格値から、取得した抑制指示によって定められる指示電力を減じた値が、予め定められた閾値を超えているか否かを判定する(ステップS23)。 When the suppression instruction is acquired, the control unit 33 waits until the day before the day when the PV suppression is performed (step S22). And when it becomes the day before the day when PV suppression is carried out, the control unit 33 determines whether the value obtained by subtracting the command power determined by the acquired suppression command from the rated value of the generated power exceeds a predetermined threshold value. It is determined whether or not (step S23).
 判定の結果、発電電力の定格値から指示電力を減じた値が閾値を超えている場合(ステップS23;YES)、制御部33は、取得した抑制指示の内容を示す指示情報を給湯機5に送信する(ステップS24)。具体的に説明すると、制御部33は、PV抑制が指示された旨、及びその日時等を示す指示情報を生成し、給湯機5に送信する。ステップS22からステップS24において、制御部33は、指示情報送信部304として機能する。 As a result of the determination, when the value obtained by subtracting the command power from the rated value of the generated power exceeds the threshold (step S23; YES), the control unit 33 provides the hot water heater 5 with the command information indicating the content of the acquired suppression command. Transmit (step S24). If demonstrating it concretely, the control part 33 will produce | generate the instruction information which shows that PV suppression was instruct | indicated, the date, etc., and transmits to the water heater 5. FIG. In step S22 to step S24, the control unit 33 functions as the instruction information transmission unit 304.
 これに対して、発電電力の定格値から指示電力を減じた値が閾値を超えていない場合(ステップS23;NO)、制御部33は、指示情報を送信しない。発電電力の定格値から指示電力を減じた値が閾値を超えていない場合、損失電力が相対的に大きくなく、PV抑制中に給湯機5が沸上げ運転を実行する必要がないと見積もられるからである。以上により、図13に示した抑制指示取得処理は終了する。 On the other hand, when the value obtained by subtracting the command power from the rated value of the generated power does not exceed the threshold (step S23; NO), the control unit 33 does not transmit the command information. If the value obtained by subtracting the indicated power from the rated value of the generated power does not exceed the threshold value, the power loss is not relatively large, and it is estimated that the water heater 5 does not need to perform the boiling operation during PV suppression. It is. Thus, the suppression instruction acquisition process illustrated in FIG. 13 ends.
 図12に戻って、ステップS24においてパワーコンディショナ31が指示情報を送信した場合、給湯コントローラ54は、送信された指示情報を取得する(ステップS3)。ステップS3において、給湯コントローラ54の制御部61は、指示情報取得部601として機能する。 Returning to FIG. 12, when the power conditioner 31 transmits the instruction information in step S24, the hot water supply controller 54 acquires the transmitted instruction information (step S3). In step S <b> 3, the control unit 61 of the hot water supply controller 54 functions as the instruction information acquisition unit 601.
 指示情報を取得すると、給湯コントローラ54は、取得した指示情報に従って、沸上げ計画処理を実行する(ステップS4)。ステップS4において、給湯コントローラ54の制御部61は、計画生成部602として機能する。図14に、ステップS4において実行される沸上げ計画生成処理の詳細を示す。 When the instruction information is acquired, the hot water controller 54 executes a boiling plan process according to the acquired instruction information (step S4). In step S <b> 4, the control unit 61 of the hot water supply controller 54 functions as the plan generation unit 602. In FIG. 14, the detail of the boiling plan production | generation process performed in step S4 is shown.
 図14に示す沸上げ計画生成処理において、給湯コントローラ54の制御部61は、前日の湯量を学習し(ステップS41)、学習DB610を更新する。湯量とは、例えば沸上げ量及び使用量等である。そして、制御部61は、学習DB610に記憶された学習結果に基づいて、沸上げ量を決定する(ステップS42)。 In the boiling plan generation process shown in FIG. 14, the controller 61 of the hot water supply controller 54 learns the amount of hot water the previous day (step S41) and updates the learning DB 610. The amount of hot water is, for example, the amount of boiling and the amount used. And the control part 61 determines the amount of boiling based on the learning result memorize | stored in learning DB610 (step S42).
 具体的に説明すると、制御部61は、学習DB610に記憶された前日までの沸上げ量と使用量とから、翌日に使用される湯の量を予測する。そして、制御部61は、予測される翌日の湯の使用量と貯湯タンク53に残った湯の量とから、沸上げ量を決定する。 More specifically, the control unit 61 predicts the amount of hot water to be used on the next day from the amount of boiling and the amount used up to the previous day stored in the learning DB 610. And the control part 61 determines the amount of boiling from the usage-amount of the hot water of the predicted next day, and the amount of the hot water remaining in the hot water storage tank 53. FIG.
 沸上げ量を決定すると、制御部61は、パワーコンディショナ31から取得した指示情報に基づいて、翌日にPV抑制が実施されるか否かを判定する(ステップS43)。 When the boiling amount is determined, the control unit 61 determines whether or not PV suppression is performed on the next day based on the instruction information acquired from the power conditioner 31 (step S43).
 仮に、翌日にPV抑制が指示された旨の指示情報を予め定められた時刻(例えば23時)までにパワーコンディショナ31から取得していない場合、制御部61は、翌日にPV抑制が実施されないと判定する(ステップS43;NO)。この場合、制御部61は、沸上げ計画として、夜間沸上げ計画を生成し(ステップS44)、昼間沸上げ計画については生成しない。言い換えると、制御部61は、翌日にPV抑制が実施されない場合、決定した沸上げ量の湯の全てを夜間に沸き上げる計画を生成する。 If the instruction information indicating that the PV suppression is instructed on the next day is not acquired from the power conditioner 31 by a predetermined time (for example, 23:00), the control unit 61 does not perform the PV suppression on the next day. (Step S43; NO). In this case, the control unit 61 generates a nighttime boiling plan as a boiling plan (step S44), and does not generate a daytime boiling plan. In other words, when the PV suppression is not performed on the next day, the control unit 61 generates a plan for boiling all of the determined boiling amount of hot water at night.
 これに対して、翌日にPV抑制が指示された旨の指示情報を予め定められた時刻までに取得した場合、制御部61は、翌日にPV抑制が実施されると判定する(ステップS43;YES)。この場合、制御部61は、沸上げ計画として、夜間沸上げ計画及び昼間沸上げ計画を生成する(ステップS45,S46)。言い換えると、制御部61は、沸上げ計画として、決定した沸上げ量の湯の一部を夜間に沸き上げ、残りを昼間のPV抑制中に沸き上げる計画を生成する。以上により、図14に示した沸上げ計画生成処理は終了する。 On the other hand, when the instruction information indicating that the PV suppression is instructed on the next day is acquired by a predetermined time, the control unit 61 determines that the PV suppression is performed on the next day (step S43; YES). ). In this case, the control part 61 produces | generates a night boiling plan and a daytime boiling plan as a boiling plan (step S45, S46). In other words, the control unit 61 generates a plan for boiling a part of the determined boiling amount of hot water at night and boiling the rest during the daytime PV suppression as a boiling plan. Thus, the boiling plan generation process shown in FIG. 14 ends.
 図12に戻って、給湯コントローラ54は、沸上げ計画を生成すると、生成した計画に従って、夜間沸上げを実行する(ステップS5)。具体的に説明すると、給湯コントローラ54は、ステップS44又はステップS45において生成した夜間沸上げ計画に従って、計画された時刻に計画された量の湯を沸き上げる。ステップS5において、給湯コントローラ54の制御部61は、沸上げ部604として機能する。 Returning to FIG. 12, when the hot water supply controller 54 generates a boiling plan, it performs boiling at night according to the generated plan (step S5). Specifically, the hot water supply controller 54 boils up the planned amount of hot water at the planned time according to the night boiling plan generated in step S44 or step S45. In step S <b> 5, the control unit 61 of the hot water supply controller 54 functions as the boiling unit 604.
 なお、夜間沸上げを実行している最中、表示制御部608は、沸上げ中であることを示すメッセージ又は画像等を、リモコン55に表示する。また、夜間沸上げが終了すると、表示制御部608は、その旨を示すメッセージ又は画像等をリモコン55に表示する。 Note that the display control unit 608 displays a message or an image indicating that boiling is being performed on the remote controller 55 while the boiling is being performed at night. When the night boiling is completed, the display control unit 608 displays a message or an image indicating that on the remote controller 55.
 その後、PV抑制が開始される時刻が到来すると、パワーコンディショナ31は、発電電力の出力抑制を実行する(ステップS6)。図15に、ステップS6において実行されるパワーコンディショナ31の出力抑制処理の詳細を示す。この出力抑制処理は、電力サーバ14から取得した抑制指示によって定められるPV抑制の開始時刻が到来すると、開始する。 Thereafter, when the time at which PV suppression starts is reached, the power conditioner 31 executes output suppression of the generated power (step S6). FIG. 15 shows details of the output suppression process of the power conditioner 31 executed in step S6. The output suppression process starts when the PV suppression start time determined by the suppression instruction acquired from the power server 14 arrives.
 図15に示す出力抑制処理が開始すると、パワーコンディショナ31の制御部33は、CT1及びCT2によって取得された電力P1,P2の計測値を取得する(ステップS601)。そして、制御部33は、取得した電力P1,P2の計測値に基づいて、パワーコンディショナ31から出力される電力の位相を制御することにより、出力電力P2を抑制する(ステップS602)。ステップS601において、制御部33は計測値取得部301として機能し、ステップS602において、制御部33は電力出力部305として機能する。図16に、ステップS602において実行される位相制御処理の詳細を示す。 When the output suppression process shown in FIG. 15 is started, the control unit 33 of the power conditioner 31 acquires the measured values of the electric powers P1 and P2 acquired by CT1 and CT2 (step S601). And the control part 33 suppresses the output electric power P2 by controlling the phase of the electric power output from the power conditioner 31 based on the measured value of acquired electric power P1, P2 (step S602). In step S601, the control unit 33 functions as the measurement value acquisition unit 301. In step S602, the control unit 33 functions as the power output unit 305. FIG. 16 shows details of the phase control processing executed in step S602.
 図16に示す位相制御処理において、制御部33は、第1に、現在の出力電力P2が指示電力より大きいか否かを判定する(ステップS621)。例えば現在の天気が曇り又は雨であって太陽光による発電量がそもそも小さい場合のように、現在の出力電力P2が指示電力より大きくない場合(ステップS621;NO)、パワーコンディショナ31からの出力電力P2を抑制する必要がない。そのため、制御部33は、出力抑制しない(ステップS622)。この場合、パワーコンディショナ31の出力可能な発電電力は全て家屋H又は商用電力系統8に供給される。 In the phase control process shown in FIG. 16, the control unit 33 first determines whether or not the current output power P2 is greater than the command power (step S621). For example, when the current output power P2 is not greater than the command power (step S621; NO), as in the case where the current weather is cloudy or rainy and the amount of power generated by sunlight is small in the first place (step S621; NO), the output from the power conditioner 31 There is no need to suppress the power P2. Therefore, the control unit 33 does not suppress output (step S622). In this case, all of the generated power that can be output from the power conditioner 31 is supplied to the house H or the commercial power system 8.
 一方、パワーコンディショナ31からの現在の出力電力P2が指示電力より大きいと判定した場合(ステップS621;YES)、制御部33は、第2に、現在の買電電力P1が正か否か、すなわち商用電力系統8から買電しているか否かを判定する(ステップS623)。 On the other hand, when it determines with the present output electric power P2 from the power conditioner 31 being larger than instruction | indication electric power (step S621; YES), the control part 33 2ndly, whether the present electric power purchase power P1 is positive, That is, it is determined whether or not power is purchased from the commercial power system 8 (step S623).
 買電されていないと判定した場合(ステップS623;NO)、制御部33は、出力抑制モードで出力電力P2を抑制する(ステップS624)。出力抑制モードは、抑制指示により指示された制限値まで、パワーコンディショナ31からの出力電力P2を抑制するモードである。この場合は、例えば図7に示した期間T2のように、家屋Hの総消費電力Pcが制限値よりも小さくて余剰電力が生じている場合に相当する。 If it is determined that the power has not been purchased (step S623; NO), the control unit 33 suppresses the output power P2 in the output suppression mode (step S624). The output suppression mode is a mode for suppressing the output power P2 from the power conditioner 31 up to the limit value instructed by the suppression instruction. In this case, for example, as in the period T2 shown in FIG. 7, the total power consumption Pc of the house H is smaller than the limit value, which corresponds to the case where surplus power is generated.
 買電されていると判定した場合(ステップS623;YES)、制御部33は、逆潮流ゼロモードで出力電力P2を抑制する(ステップS625)。逆潮流ゼロモードは、逆潮電力が極力ゼロに近づくように、出力電力P2を調整するモードである。この場合は、例えば図7に示した期間T3のように、家屋Hの総消費電力Pcが指示電力よりも大きい場合に相当する。この場合、制御部33は、出力電力P2を総消費電力Pcに等しくなるように調整する。これにより、買電電力(逆潮電力)P1が極力ゼロになり、買電も売電も発生しないようになる。 If it is determined that power is being purchased (step S623; YES), the control unit 33 suppresses the output power P2 in the reverse power flow zero mode (step S625). The reverse power flow zero mode is a mode in which the output power P2 is adjusted so that the reverse power flow approaches zero as much as possible. This case corresponds to a case where the total power consumption Pc of the house H is larger than the command power, for example, during a period T3 shown in FIG. In this case, the control unit 33 adjusts the output power P2 to be equal to the total power consumption Pc. Thereby, the purchased power (reverse power) P1 becomes zero as much as possible, and neither power purchase nor power sale occurs.
 ステップS622,S624,S625の処理を実行した後、制御部33は、計測DB310を更新する(ステップS626)。制御部33は、例えば出力抑制モード又は逆潮流ゼロモードで出力抑制した場合には、出力抑制後の電力P1,P2の計測値、及び位相角のデータで計測DB310を更新する。以上により、図16に示した位相制御処理は終了する。 After executing the processing of steps S622, S624, and S625, the control unit 33 updates the measurement DB 310 (step S626). For example, when the output is suppressed in the output suppression mode or the reverse power flow zero mode, the control unit 33 updates the measurement DB 310 with the measured values of the power P1, P2 after the output suppression and the data of the phase angle. Thus, the phase control process shown in FIG. 16 ends.
 図15に戻って、電力の位相を制御することでパワーコンディショナ31から出力される電力を抑制すると、制御部33は、PV抑制の開始又は前回の余力電力計算時から集計時間が経過したか否かを判定する(ステップS603)。集計時間とは、余力電力を計算するための時間であって、例えば3分又は5分等に設定される。 Returning to FIG. 15, when the power output from the power conditioner 31 is suppressed by controlling the phase of the power, the control unit 33 determines whether the total time has elapsed since the start of PV suppression or the previous calculation of surplus power It is determined whether or not (step S603). The total time is a time for calculating the surplus power, and is set to 3 minutes or 5 minutes, for example.
 集計時間が経過していない場合(ステップS603;NO)、制御部33は、処理をステップS601に戻す。集計時間が経過するまで、制御部33は、電力P1,P2の計測値を取得し、出力電力P2を抑制する処理を繰り返す。 If the counting time has not elapsed (step S603; NO), the control unit 33 returns the process to step S601. Until the total time elapses, the control unit 33 acquires the measured values of the powers P1 and P2 and repeats the process of suppressing the output power P2.
 集計時間が経過すると(ステップS603;YES)、制御部33は、余力電力の計算処理に移行する。具体的に説明すると、制御部33は、出力抑制前における位相角の平均値を計算する(ステップS604)。具体的に説明すると、制御部33は、計測DB310に記憶された位相角のデータを参照して、PV抑制の実施期間が開始される直前の予め定められた期間(例えば5分又は10分等)における位相角の平均値を計算する。 When the total time has elapsed (step S603; YES), the control unit 33 proceeds to a calculation process of surplus power. Specifically, the control unit 33 calculates an average value of the phase angles before the output suppression (step S604). Specifically, the control unit 33 refers to the phase angle data stored in the measurement DB 310 and determines a predetermined period (for example, 5 minutes or 10 minutes) immediately before the PV suppression execution period is started. ) To calculate the average phase angle.
 出力抑制前における位相角の平均値を計算すると、制御部33は、計算結果に基づいて、発電電力を計算する(ステップS605)。具体的に説明すると、制御部33は、位相角の平均値の余弦を計算することで出力電力P2の力率を計算し、得られた力率を発電電力Paの定格値に乗じる。これにより、制御部33は、PV抑制の実施期間における発電電力Paの推定値を計算する。 When calculating the average value of the phase angles before output suppression, the control unit 33 calculates the generated power based on the calculation result (step S605). Specifically, the control unit 33 calculates the power factor of the output power P2 by calculating the cosine of the average value of the phase angles, and multiplies the rated value of the generated power Pa by the obtained power factor. Thereby, the control part 33 calculates the estimated value of the generated electric power Pa in the implementation period of PV suppression.
 発電電力Paを計算すると、制御部33は、計算された発電電力Paの推定値から出力電力P2の計測値を減じることで、余力電力を計算する(ステップS606)。これにより、制御部33は、PV抑制の実施期間において、給湯機5を含む家屋H内の機器が消費可能であるにも拘わらず、パワーコンディショナ31から出力されていない電力を見積もる。ステップS603からステップS606において、制御部33は、余力電力計算部306として機能する。 When calculating the generated power Pa, the control unit 33 calculates the surplus power by subtracting the measured value of the output power P2 from the calculated estimated value of the generated power Pa (step S606). Thereby, the control part 33 estimates the electric power which is not output from the power conditioner 31, although the apparatus in the house H containing the water heater 5 can be consumed in the implementation period of PV suppression. In steps S <b> 603 to S <b> 606, the control unit 33 functions as a surplus power calculation unit 306.
 余力電力を計算すると、制御部33は、規定周期が経過したか否かを判定する(ステップS607)。規定周期は、給湯機5への余力情報の送信タイミングを決めるために設定された時間であって、例えば30分に設定される。直前の送信タイミングから規定周期が経過していない場合(ステップS607;NO)、制御部33は、ステップS608及びステップS609の処理をスキップする。 When calculating the surplus power, the control unit 33 determines whether or not the specified period has elapsed (step S607). The specified period is a time set to determine the transmission timing of the surplus information to the hot water heater 5, and is set to 30 minutes, for example. When the specified period has not elapsed since the immediately preceding transmission timing (step S607; NO), the control unit 33 skips the processes of steps S608 and S609.
 直前の送信タイミングから規定周期が経過すると(ステップS607;YES)、制御部33は、直前の送信タイミングから現在までにおいて計算された余力電力を平均化する(ステップS608)。そして、制御部33は、平均化された余力電力を示す余力情報を生成して、余力情報を給湯機5に送信する(ステップS609)。ステップS608及びステップS609において、制御部33は、余力情報送信部307として機能する。 When the specified period has elapsed from the immediately preceding transmission timing (step S607; YES), the control unit 33 averages the surplus power calculated from the immediately preceding transmission timing to the present (step S608). And the control part 33 produces | generates the surplus power information which shows the average surplus power, and transmits surplus power information to the water heater 5 (step S609). In step S608 and step S609, the control unit 33 functions as a surplus power information transmission unit 307.
 その後、制御部33は、出力抑制が終了したか否かを判定する(ステップS610)。出力抑制が終了していない場合(ステップS610;NO)、制御部33は、処理をステップS601に戻す。出力抑制が終了するまで、制御部33は、ステップS601からSステップS610までの処理を繰り返す。 Thereafter, the control unit 33 determines whether or not the output suppression is finished (step S610). When output suppression is not complete | finished (step S610; NO), the control part 33 returns a process to step S601. Until the output suppression is completed, the control unit 33 repeats the processing from step S601 to step S610.
 最終的に、出力抑制が終了すると(ステップS610;YES)、制御部33は、出力抑制の解除を給湯機5に通知する(ステップS611)。以上で、図15に示したパワーコンディショナ31の出力抑制処理は終了する。 Finally, when the output suppression ends (step S610; YES), the control unit 33 notifies the water heater 5 of the cancellation of the output suppression (step S611). Thus, the output suppression process of the power conditioner 31 illustrated in FIG. 15 ends.
 ステップS6におけるパワーコンディショナ31の出力抑制処理と並行して、給湯コントローラ54は、昼間沸上げ処理を実行する(ステップS7)。ステップS7において、給湯コントローラ54の制御部61は、沸上げ部604として機能する。図17に、ステップS7において実行される給湯コントローラ54の昼間沸上げ処理の詳細を示す。この昼間沸上げ処理は、パワーコンディショナ31から取得した指示情報によって定められるPV抑制の開始時刻が到来すると、開始する。 In parallel with the output suppression process of the power conditioner 31 in step S6, the hot water supply controller 54 executes a daytime boiling process (step S7). In step S <b> 7, the control unit 61 of the hot water supply controller 54 functions as the boiling unit 604. FIG. 17 shows details of the daytime boiling process of the hot water supply controller 54 executed in step S7. This daytime boiling process starts when the PV suppression start time determined by the instruction information acquired from the power conditioner 31 arrives.
 図17に示す昼間沸上げ処理が開始すると、給湯コントローラ54の制御部61は、ステップS609においてパワーコンディショナ31から送信された余力情報を取得する(ステップS701)。余力情報を取得すると、制御部61は、取得した余力情報によって示される余力電力が、予め設定された沸上げの開始可能電力より大きいか否かを判定する(ステップS702)。 When the daytime boiling process shown in FIG. 17 is started, the control unit 61 of the hot water supply controller 54 acquires the surplus information transmitted from the power conditioner 31 in step S609 (step S701). When the surplus power information is acquired, the control unit 61 determines whether or not the surplus power indicated by the acquired surplus power information is larger than a preset boiling startable power (step S702).
 余力電力が開始可能電力より大きくない場合(ステップS702;NO)、制御部61は、沸上げを開始せず、ステップS701において次の余力情報を取得するまで待機する。 When the surplus power is not larger than the startable power (step S702; NO), the control unit 61 does not start boiling and waits until the next surplus information is acquired in step S701.
 これに対して、余力電力が開始可能電力より大きい場合(ステップS702;YES)、制御部61は、沸上げを開始する処理に移行する。沸上げを開始する前に、制御部61は、余力電力に基づいて、沸上げ能力を決定する(ステップS703)。具体的に説明すると、制御部61は余力電力から予め定められたマージンの値を減じた上限電力を計算し、給湯機5の消費電力が上限電力未満で且つ最大となる沸上げ能力を決定する。 On the other hand, when the surplus power is larger than the startable power (step S702; YES), the control unit 61 proceeds to a process of starting boiling. Before starting boiling, the controller 61 determines the boiling capacity based on the surplus power (step S703). More specifically, the control unit 61 calculates an upper limit power obtained by subtracting a predetermined margin value from the surplus power, and determines the boiling capacity at which the power consumption of the water heater 5 is less than the upper limit power and becomes the maximum. .
 沸上げ能力を決定すると、制御部61は、決定した沸上げ能力で沸上げ運転を開始する(ステップS704)。具体的に説明すると、制御部61は、決定した沸上げ能力でヒートポンプユニット50を駆動させ、貯湯タンク53に高温水を供給し始める。 When the boiling capacity is determined, the controller 61 starts the boiling operation with the determined boiling capacity (step S704). Specifically, the control unit 61 drives the heat pump unit 50 with the determined boiling capacity, and starts supplying hot water to the hot water storage tank 53.
 沸上げ運転を実行している間、制御部61は、沸上げ運転が終了したか否かを判定する(ステップS705)。沸上げ運転が終了した場合には(ステップS705;YES)、制御部61は、昼間沸上げが終了した旨を示すメッセージ又は画像等をリモコン55に表示し、昼間沸上げ処理を終了する。 While performing the boiling operation, the control unit 61 determines whether or not the boiling operation is completed (step S705). When the boiling operation is finished (step S705; YES), the control unit 61 displays a message or an image indicating that the daytime boiling is finished on the remote controller 55, and finishes the daytime boiling process.
 これに対して、沸上げ運転が終了していない場合には(ステップS705;NO)、制御部61は、パワーコンディショナ31から新たな余力情報を取得したか否かを判定する(ステップS706)。新たな余力情報を取得していない場合(ステップS706;NO)、制御部61は、処理をステップS704に戻し、実行中の沸上げ運転を継続する。 On the other hand, when the boiling operation has not ended (step S705; NO), the control unit 61 determines whether new surplus information has been acquired from the power conditioner 31 (step S706). . When new remaining power information is not acquired (step S706; NO), the control part 61 returns a process to step S704, and continues the boiling operation in execution.
 これに対して、パワーコンディショナ31から新たな余力情報を取得すると(ステップS706;YES)、制御部61は、新たな余力情報によって示される新たな余力電力に基づいて、沸上げ能力を変更する必要があるか否かを判定する(ステップS707)。具体的に説明すると、制御部61は、余力電力が増えた場合、沸上げ能力を上げることができるか否かを判定する。また、制御部61は、余力電力が減った場合、沸上げ能力を下げる必要があるか否かを判定する。制御部61は、余力電力が前述した閾値より小さくなると、沸上げ能力を下げる必要があると判定する。 On the other hand, when new surplus information is acquired from the power conditioner 31 (step S706; YES), the control unit 61 changes the boiling capacity based on the new surplus power indicated by the new surplus information. It is determined whether or not it is necessary (step S707). More specifically, the controller 61 determines whether or not the boiling capacity can be increased when the surplus power increases. In addition, when the surplus power is reduced, the control unit 61 determines whether it is necessary to lower the boiling capacity. The controller 61 determines that the boiling capacity needs to be lowered when the surplus power becomes smaller than the threshold value described above.
 沸上げ能力を変更する必要がないと判定した場合(ステップS707;NO)、制御部61は、処理をステップS704に戻し、沸上げ能力を変更せずに、実行中の沸上げ運転を継続する。 If it is determined that there is no need to change the boiling capacity (step S707; NO), the control unit 61 returns the process to step S704 and continues the boiling operation being performed without changing the boiling capacity. .
 これに対して、沸上げ能力を変更する必要があると判定した場合(ステップS707;YES)、制御部61は、その旨をユーザに報知する(ステップS708)。具体的に説明すると、沸上げ能力を上げることができると判定した場合、制御部61は、図10に示したように、給湯機5が消費可能な電力に余力があることをユーザに報知し、沸上げ能力を上げることをユーザに促す。沸上げ能力を下げる必要があると判定した場合、制御部61は、図11に示したように、買電が発生していることをユーザに報知し、沸上げ能力を下げることをユーザに促す。ステップS708において、制御部61は、表示制御部608として機能する。 On the other hand, if it is determined that the boiling capacity needs to be changed (step S707; YES), the control unit 61 notifies the user to that effect (step S708). More specifically, when it is determined that the boiling capacity can be increased, the control unit 61 notifies the user that there is sufficient power that can be consumed by the water heater 5, as shown in FIG. , Prompt the user to increase the boiling ability. When it is determined that it is necessary to lower the boiling capacity, the control unit 61 notifies the user that power purchase has occurred and urges the user to lower the boiling capacity as shown in FIG. . In step S708, the control unit 61 functions as the display control unit 608.
 ユーザへの報知を実行すると、制御部61は、ユーザから沸上げ能力を変更する操作を受け付けたか否かを判定する(ステップS709)。沸上げ能力を変更する操作を受け付けていない場合(ステップS709;NO)、制御部61は、ステップS709において、沸上げ能力を変更する操作を受け付けるまで待機する。ステップS709において、制御部61は、操作受付部609として機能する。 When the notification to the user is executed, the control unit 61 determines whether or not an operation for changing the boiling capacity has been received from the user (step S709). When an operation for changing the boiling capacity is not received (step S709; NO), the control unit 61 waits until an operation for changing the boiling capacity is received in step S709. In step S709, the control unit 61 functions as the operation reception unit 609.
 沸上げ能力を変更する操作を受け付けると(ステップS709;YES)、制御部61は、受け付けた操作に従って、沸上げ能力を変更する(ステップS710)。そして、制御部61は、処理をステップS704に戻し、変更後の沸上げ能力で沸上げ運転を実行する。このように、制御部61は、昼間沸上げ計画で決められた量の湯を沸き上げ終えるまで、沸上げ運転を実行する。以上で、図17に示した給湯コントローラ54の昼間沸上げ処理は終了する。 When an operation for changing the boiling capacity is received (step S709; YES), the control unit 61 changes the boiling capacity according to the received operation (step S710). And the control part 61 returns a process to step S704, and performs a boiling operation by the boiling capability after a change. In this way, the control unit 61 performs the boiling operation until boiling of the amount of hot water determined in the daytime boiling plan is completed. The daytime boiling process of the hot water supply controller 54 shown in FIG.
 なお、制御部61は、沸上げ能力を変更する操作をユーザから受け付けた場合に沸上げ能力を変更することに限らず、沸上げ能力を変更する操作を受け付けていない場合にも、余力電力に応じて自発的に沸上げ能力を変更してもよい。 Note that the controller 61 is not limited to changing the boiling capacity when an operation for changing the boiling capacity is received from the user, but also when the operation for changing the boiling capacity is not received, In response to this, the boiling capacity may be changed spontaneously.
 以上説明したように、実施形態1に係る給湯システム1によれば、パワーコンディショナ31が、PV抑制の実施期間において、PVパネル30によって発電された電力P1とパワーコンディショナ31から出力された電力P2との差を発電設備3の余力電力として計算し、給湯機5が、余力電力に応じた能力で湯を沸き上げる。その結果、PV抑制時に生じる発電ロスを減少させることができ、電力の利用効率を向上させることができる。 As described above, according to the hot water supply system 1 according to the first embodiment, the power conditioner 31 generates the power P1 generated by the PV panel 30 and the power output from the power conditioner 31 during the PV suppression period. The difference from P2 is calculated as the surplus power of the power generation facility 3, and the water heater 5 boils hot water with the capacity corresponding to the surplus power. As a result, it is possible to reduce the power generation loss that occurs during PV suppression, and to improve the power utilization efficiency.
 特に、パワーコンディショナ31が余力電力を計算し、パワーコンディショナ31が給湯機5に余力情報を送信するため、パワーコンディショナ31及び給湯機5以外の制御装置又はサーバ等の構成を備える必要がない。そのため、パワーコンディショナ31及び給湯機5という最低限の構成で、余力電力を効率的に活用することができる。 In particular, since the power conditioner 31 calculates surplus power and the power conditioner 31 transmits surplus information to the water heater 5, it is necessary to have a configuration of a control device or server other than the power conditioner 31 and the water heater 5. Absent. Therefore, the remaining power can be efficiently utilized with the minimum configuration of the power conditioner 31 and the water heater 5.
 (実施形態2)
 次に、本発明の実施形態2について説明する。
(Embodiment 2)
Next, Embodiment 2 of the present invention will be described.
 上記実施形態1では、パワーコンディショナ31が余力電力を計算する機能を備えていた。これに対して、実施形態2では、パワーコンディショナ31は余力電力を計算する機能を備えず、広域ネットワークNを介して接続されたサーバが余力電力を計算し、給湯コントローラ54は、サーバから余力情報を取得する。 In the first embodiment, the power conditioner 31 has a function of calculating the surplus power. In contrast, in the second embodiment, the power conditioner 31 does not have a function of calculating the surplus power, the server connected via the wide area network N calculates the surplus power, and the hot water supply controller 54 receives the surplus power from the server. Get information.
 図18に、実施形態2に係る給湯システム1aの機能的な構成を示す。給湯システム1aは、パワーコンディショナ31aと、給湯コントローラ54と、サーバ80と、を備える。 FIG. 18 shows a functional configuration of the hot water supply system 1a according to the second embodiment. The hot water supply system 1a includes a power conditioner 31a, a hot water supply controller 54, and a server 80.
 図18に示すように、パワーコンディショナ31aは、機能的に、計測値取得部301と、指示取得部303と、指示情報送信部304と、電力出力部305と、出力情報送信部308と、表示制御部309と、を備える。出力情報送信部308以外の機能は実施形態1と同様であるため、説明を省略する。 As shown in FIG. 18, the power conditioner 31a functionally includes a measurement value acquisition unit 301, an instruction acquisition unit 303, an instruction information transmission unit 304, a power output unit 305, an output information transmission unit 308, A display control unit 309. Since functions other than the output information transmission unit 308 are the same as those in the first embodiment, description thereof is omitted.
 出力情報送信部308は、PV抑制の実施期間において電力出力部305によって出力された電力P2を示す第1出力情報を、広域ネットワークNを介してサーバ80に送信する。出力情報送信部308は、制御部33が通信部37と協働することによって実現される。 The output information transmission unit 308 transmits first output information indicating the power P2 output by the power output unit 305 to the server 80 via the wide area network N during the PV suppression implementation period. The output information transmission unit 308 is realized by the control unit 33 cooperating with the communication unit 37.
 サーバ80は、パワーコンディショナ31a及び給湯コントローラ54と連携して動作するサーバであって、例えばクラウドコンピューティングにおけるリソースを提供するサーバである。サーバ80は、広域ネットワークNを介してパワーコンディショナ31a及び給湯コントローラ54と通信可能に接続されている。サーバ80は、電力サーバ14であってもよいし、電力サーバ14とは異なるサーバであってもよい。サーバ80は、いずれも図示しないが、CPU、ROM、RAM、通信インタフェース及び読み書き可能な不揮発性の半導体メモリ等を備える。 The server 80 is a server that operates in cooperation with the power conditioner 31a and the hot water supply controller 54, and is a server that provides resources in, for example, cloud computing. The server 80 is communicably connected to the power conditioner 31a and the hot water supply controller 54 via the wide area network N. The server 80 may be the power server 14 or a server different from the power server 14. The server 80 includes a CPU, a ROM, a RAM, a communication interface, a readable / writable nonvolatile semiconductor memory, and the like, although not shown.
 図18に示すように、サーバ80は、機能的に、第1出力情報取得部801と、第2出力情報取得部802と、余力電力計算部803と、余力情報送信部804と、を備える。これらの各機能は、ソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、ROM又は記憶部に格納される。そして、制御部において、CPUが、ROM又は記憶部に記憶されたプログラムを実行することによって、各部の機能を実現する。 As shown in FIG. 18, the server 80 functionally includes a first output information acquisition unit 801, a second output information acquisition unit 802, a surplus power calculation unit 803, and a surplus power information transmission unit 804. Each of these functions is realized by software, firmware, or a combination of software and firmware. Software and firmware are described as programs and stored in a ROM or a storage unit. And in a control part, CPU implement | achieves the function of each part by executing the program memorize | stored in ROM or the memory | storage part.
 第1出力情報取得部801は、パワーコンディショナ31aから広域ネットワークNを介して第1出力情報が送信されると、送信された第1出力情報を取得する。 When the first output information is transmitted from the power conditioner 31a via the wide area network N, the first output information acquisition unit 801 acquires the transmitted first output information.
 第2出力情報取得部802は、抑制指示の対象でない発電設備のパワーコンディショナ31bから、PV抑制の実施期間において出力された電力を示す第2出力情報を取得する。抑制指示の対象でない発電設備とは、サーバ80と広域ネットワークNを介して接続された、家屋H以外の需要地に設置された発電設備であって、家屋Hに設置された発電設備3が出力抑制している期間において出力抑制しない発電設備である。第2出力情報取得部802は、例えば家屋Hの近隣地域又は類似した立地環境における、抑制指示の対象でない複数の発電設備のパワーコンディショナから、PV抑制の実施期間において出力された電力を示す第2出力情報を取得する。 The 2nd output information acquisition part 802 acquires the 2nd output information which shows the electric power output in the implementation period of PV suppression from the power conditioner 31b of the power generation equipment which is not the object of suppression instructions. The power generation equipment that is not the target of the suppression instruction is a power generation equipment that is connected to the server 80 via the wide area network N and is installed in a demand area other than the house H, and the power generation equipment 3 installed in the house H outputs This is a power generation facility that does not suppress output during the period of suppression. The 2nd output information acquisition part 802 is the 1st which shows the electric power output in the implementation period of PV suppression from the power conditioner of the several power generation equipment which is not the object of suppression instructions, for example in the neighborhood area of house H, or a similar location environment. 2 Output information is acquired.
 余力電力計算部803は、第1出力情報取得部801によって取得された第1出力情報と第2出力情報取得部802によって取得された第2出力情報とに基づいて、パワーコンディショナ31aの余力電力を計算する。 The surplus power calculation unit 803 is based on the first output information acquired by the first output information acquisition unit 801 and the second output information acquired by the second output information acquisition unit 802, and the surplus power of the power conditioner 31a. Calculate
 具体的に説明すると、余力電力計算部803は、第2出力情報によって示される、出力抑制していない発電設備のパワーコンディショナからの出力電力の、この発電設備の定格値に対する比率を計算する。余力電力計算部803は、この比率を、出力抑制していない複数の発電設備について平均化する。そして、余力電力計算部803は、平均化した比率と予め定められた補正係数とを、出力抑制している発電設備3の定格値に乗じることで、この発電設備3の出力可能な発電電力Paの推定値を計算する。更に、余力電力計算部803は、第1出力電力によって示される、出力抑制しているパワーコンディショナ31aの出力電力P2を、計算した発電電力Paの推定値から減じることで、パワーコンディショナ31aの余力電力を計算する。 Specifically, the surplus power calculation unit 803 calculates the ratio of the output power from the power conditioner of the power generation facility whose output is not suppressed, which is indicated by the second output information, to the rated value of this power generation facility. The surplus power calculation unit 803 averages this ratio for a plurality of power generation facilities whose outputs are not suppressed. The surplus power calculation unit 803 multiplies the averaged ratio and a predetermined correction coefficient by the rated value of the power generation facility 3 that suppresses the output, thereby generating output power Pa that can be output from the power generation facility 3. Calculate the estimate of. Further, the surplus power calculation unit 803 subtracts the output power P2 of the power conditioner 31a, which is indicated by the first output power, from which the output is suppressed, from the estimated value of the calculated generated power Pa, so that the power conditioner 31a Calculate surplus power.
 余力情報送信部804は、余力電力計算部803によって計算された余力電力を示す余力情報を、広域ネットワークNを介して給湯機5に送信する。 The surplus power information transmission unit 804 transmits surplus power information indicating the surplus power calculated by the surplus power calculation unit 803 to the water heater 5 via the wide area network N.
 給湯コントローラ54において、余力情報取得部605は、サーバ80から広域ネットワークNを介して余力情報が送信されると、送信された余力情報を取得する。沸上げ部604は、余力情報取得部605によって取得された余力電力に応じて、実施形態1と同様に、昼間沸上げを実行する。なお、給湯コントローラ54の機能的な構成は実施形態1と同様であるため、図示を省略している。 In the hot water supply controller 54, when the surplus information is transmitted from the server 80 via the wide area network N, the surplus information acquisition unit 605 acquires the transmitted surplus information. The boiling unit 604 performs day-time boiling in the same manner as in the first embodiment, according to the surplus power acquired by the surplus power information acquisition unit 605. In addition, since the functional structure of the hot water supply controller 54 is the same as that of Embodiment 1, illustration is abbreviate | omitted.
 このように、実施形態2に係る給湯システム1aによれば、サーバ80が、出力抑制していない他のパワーコンディショナからの出力電力に基づいて、出力抑制しているパワーコンディショナ31aの余力電力を計算する。そして、給湯コントローラ54は、サーバ80から余力情報を取得する。パワーコンディショナ31aが余力電力を計算する機能を備えないため、パワーコンディショナ31aの構成を簡略化することができる。 As described above, according to the hot water supply system 1a according to the second embodiment, the server 80 has the remaining power of the power conditioner 31a whose output is suppressed based on the output power from the other power conditioner whose output is not suppressed. Calculate Then, the hot water supply controller 54 acquires remaining power information from the server 80. Since the power conditioner 31a does not have a function of calculating the surplus power, the configuration of the power conditioner 31a can be simplified.
 (変形例)
 以上、本発明の実施形態を説明したが、本発明を実施するにあたっては、種々の形態による変形及び応用が可能である。
(Modification)
As mentioned above, although embodiment of this invention was described, when implementing this invention, a deformation | transformation and application with a various form are possible.
 例えば、上記実施形態では、余力電力計算部306は、PV抑制の実施期間における発電電力Paと出力電力P2との差、すなわち発電設備3における損失電力そのものを、余力電力として計算した。しかしながら、本発明において、PV抑制の実施期間における発電電力Paと出力電力P2との差に基づく電力であれば、別の方法で定義されるものであってもよい。例えばマージンを確保するため、余力電力を、PV抑制の実施期間における発電電力Paと出力電力P2との差(損失電力)から予め定められたマージンの値を減じた電力として定めることができる。 For example, in the above-described embodiment, the surplus power calculation unit 306 calculates the difference between the generated power Pa and the output power P2 during the PV suppression period, that is, the loss power itself in the power generation facility 3 as the surplus power. However, in the present invention, as long as the power is based on the difference between the generated power Pa and the output power P2 during the PV suppression period, it may be defined by another method. For example, in order to secure a margin, the surplus power can be determined as power obtained by subtracting a predetermined margin value from the difference (loss power) between the generated power Pa and the output power P2 during the PV suppression period.
 或いは、余力電力計算部306は、PV抑制の実施期間における発電電力Paと出力電力P2との差(損失電力)に逆潮電力を加えた電力を、余力電力として計算してもよい。例えば、図7に示した期間T2における「出力抑制モード」のように、逆潮流を発生させながら出力抑制される場合には、損失電力と逆潮電力とがいずれも存在している。このような場合、発電設備3における損失電力だけでなく、逆潮電力も給湯機5の沸上げ運転に利用することができる。具体的に説明すると、余力電力計算部306は、PVパネル30によって発電された電力Paと電力出力部305によって出力された電力P2との差に、計測値取得部301によって取得された逆潮電力(-P1)の計測値を加えることによって、余力電力を計算してもよい。このように、余力電力計算部306が逆潮電力を含めて余力電力を計算し、余力情報送信部307がその余力電力を示す余力情報を給湯機5に送信することで、より多くの電力を給湯機5の沸上げ運転に利用することができる。これは、特に売電による経済的効果を重視しない場合には、より効果的である。 Alternatively, the surplus power calculation unit 306 may calculate the power obtained by adding the reverse power to the difference (loss power) between the generated power Pa and the output power P2 during the PV suppression implementation period as the surplus power. For example, when the output is suppressed while generating a reverse power flow as in the “output suppression mode” in the period T2 shown in FIG. 7, both the loss power and the reverse power are present. In such a case, not only the power loss in the power generation equipment 3 but also the reverse power can be used for the boiling operation of the water heater 5. More specifically, the surplus power calculation unit 306 calculates the reverse tide power acquired by the measurement value acquisition unit 301 in the difference between the power Pa generated by the PV panel 30 and the power P2 output by the power output unit 305. The surplus power may be calculated by adding the measured value of (−P1). As described above, the surplus power calculation unit 306 calculates the surplus power including the reverse power, and the surplus power information transmission unit 307 transmits the surplus information indicating the surplus power to the water heater 5, so that more power can be obtained. It can be used for boiling operation of the water heater 5. This is more effective particularly when the economic effect of power sales is not important.
 また、上記実施形態では、パワーコンディショナ31の電力出力部305は、買電電力(逆潮電力)P1の計測値に応じて出力抑制モード又は逆潮流ゼロモードを選択し、選択したモードで出力電力を抑制した。しかしながら、本発明において、電力出力部305は、逆潮電力が抑制指示によって定められる指示電力を超えないように制御できれば、他の方法で出力電力を抑制してもよい。例えば、電力出力部305は、逆潮電力が指示電力よりも小さければ出力電力を増加させ、逆潮電力が指示電力よりも大きければ出力電力を減少させることで、逆潮電力が指示電力と等しく保たれるように、出力電力を制御してもよい。 In the above embodiment, the power output unit 305 of the power conditioner 31 selects the output suppression mode or the reverse power flow zero mode according to the measured value of the purchased power (reverse power) P1, and outputs in the selected mode. Power was suppressed. However, in the present invention, the power output unit 305 may suppress the output power by another method as long as it can be controlled so that the reverse power does not exceed the instruction power determined by the suppression instruction. For example, the power output unit 305 increases the output power if the reverse power is smaller than the command power, and decreases the output power if the reverse power is larger than the command power, so that the reverse power is equal to the command power. The output power may be controlled so that it is maintained.
 また、上記実施形態では、余力電力に応じた能力を、買電が発生しないように、給湯機5における消費電力の増加量が余力電力より小さい範囲で設定可能な沸上げ能力として説明した、しかしながら、余力電力に応じた能力を他の方法で決めてもよい。例えば、多少の買電が発生することを許容する場合には、余力電力に応じた能力を給湯機5における消費電力の増加量が余力電力より大きくなるように設定することもできる。 Moreover, in the said embodiment, the capability according to the surplus power was demonstrated as the boiling capability which can be set in the range where the increase amount of the power consumption in the hot water heater 5 is smaller than the surplus power so that no power purchase occurs. The ability according to the surplus power may be determined by other methods. For example, when it is allowed to generate a certain amount of power, the capacity corresponding to the remaining power can be set so that the amount of increase in power consumption in the water heater 5 is larger than the remaining power.
 また、上記実施形態では、給湯コントローラ54の沸上げ部604は、湯を沸き上げている最中に余力電力が閾値より小さくなると、給湯機5の消費電力を減少させた。このとき、沸上げ部604は、商用電力系統8から買電された電力P1に応じて、閾値を変更してもよい。例えば、沸上げ部604は、買電電力P1が大きいほど閾値を上げ、買電電力P1が小さいほど閾値を下げることができる。これにより、買電電力P1の量に合わせて、給湯機5の沸上げ運転による消費電力が調整されるため、より的確に買電を抑えることができる。このとき、給湯コントローラ54は、買電電力P1の計測値を、パワーコンディショナ31から取得してもよいし、自身で買電電力P1を計測してもよい。 Further, in the above embodiment, the boiling unit 604 of the hot water supply controller 54 reduces the power consumption of the hot water heater 5 when the remaining power becomes smaller than the threshold value while boiling the hot water. At this time, the boiling unit 604 may change the threshold according to the electric power P1 purchased from the commercial power system 8. For example, the boiling unit 604 can increase the threshold value as the purchased power P1 is larger, and decrease the threshold value as the purchased power P1 is smaller. Thereby, since the power consumption by the boiling operation of the water heater 5 is adjusted in accordance with the amount of the purchased power P1, it is possible to suppress power purchase more accurately. At this time, the hot water supply controller 54 may acquire the measured value of the purchased power P1 from the power conditioner 31 or may measure the purchased power P1 by itself.
 また、上記実施形態では、発電設備3は、家屋Hに設置されていた。しかしながら、発電設備3は、商用電力系統8とは別の電力系統であれば、家屋Hとは離れた敷地に設置され、遠隔から家屋Hに電力を供給するものであってもよい。この場合、発電設備3が設置された場所を含めて需要地という。また、需要地は、上述した家屋Hのような一般住宅であることに限らず、発電設備3及び商用電力系統8からの電力の需要地であれば、集合住宅、施設、ビル、又は、工場等であってもよい。 Further, in the above embodiment, the power generation equipment 3 is installed in the house H. However, if the power generation facility 3 is a power system different from the commercial power system 8, the power generation facility 3 may be installed on a site separate from the house H and supply power to the house H from a remote location. In this case, it is called a demand area including the place where the power generation equipment 3 is installed. Further, the demand area is not limited to a general house such as the house H described above, but is an apartment house, a facility, a building, or a factory as long as it is a demand place of power from the power generation equipment 3 and the commercial power system 8. Etc.
 上記実施形態では、パワーコンディショナ31の制御部33において、CPUがROM又は記憶部36に記憶されたプログラムを実行することによって、計測値取得部301、指示取得部303、指示情報送信部304、電力出力部305、余力電力計算部306、余力情報送信部307及び表示制御部309のそれぞれとして機能した。また、給湯コントローラ54の制御部61において、CPUがROM又は記憶部62に記憶されたプログラムを実行することによって、指示情報取得部601、計画生成部602、余力情報取得部605、沸上げ部604及び表示制御部608のそれぞれとして機能した。しかしながら、本発明において、制御部33及び制御部61は、専用のハードウェアであってもよい。専用のハードウェアとは、例えば単一回路、複合回路、プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらの組み合わせ等である。制御部33及び制御部61が専用のハードウェアである場合、各部の機能それぞれを個別のハードウェアで実現してもよいし、各部の機能をまとめて単一のハードウェアで実現してもよい。 In the above embodiment, in the control unit 33 of the power conditioner 31, the CPU executes a program stored in the ROM or the storage unit 36, whereby the measurement value acquisition unit 301, the instruction acquisition unit 303, the instruction information transmission unit 304, The power output unit 305, the surplus power calculation unit 306, the surplus power information transmission unit 307, and the display control unit 309 functioned. Further, in the control unit 61 of the hot water supply controller 54, the CPU executes a program stored in the ROM or the storage unit 62, whereby the instruction information acquisition unit 601, the plan generation unit 602, the remaining power information acquisition unit 605, and the boiling unit 604. And the display control unit 608. However, in the present invention, the control unit 33 and the control unit 61 may be dedicated hardware. The dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated 、 Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. When the control unit 33 and the control unit 61 are dedicated hardware, the functions of the respective units may be realized by individual hardware, or the functions of the respective units may be collectively realized by a single hardware. .
 また、各部の機能のうち、一部を専用のハードウェアによって実現し、他の一部をソフトウェア又はファームウェアによって実現してもよい。このように、制御部33及び制御部61は、ハードウェア、ソフトウェア、ファームウェア、又は、これらの組み合わせによって、上述の各機能を実現することができる。 Also, some of the functions of each unit may be realized by dedicated hardware, and the other part may be realized by software or firmware. As described above, the control unit 33 and the control unit 61 can realize the functions described above by hardware, software, firmware, or a combination thereof.
 本発明に係るパワーコンディショナ31、給湯コントローラ54及びサーバ80の動作を規定する動作プログラムを既存のパーソナルコンピュータ又は情報端末装置等に適用することで、当該パーソナルコンピュータ又は情報端末装置等を、本発明に係るパワーコンディショナ31、給湯コントローラ54及びサーバ80として機能させることも可能である。 By applying the operation program that defines the operation of the power conditioner 31, the hot water supply controller 54, and the server 80 according to the present invention to an existing personal computer or information terminal device, the personal computer or information terminal device, etc. It is also possible to function as the power conditioner 31, the hot water supply controller 54, and the server 80 according to the above.
 また、このようなプログラムの配布方法は任意であり、例えば、CD-ROM(Compact Disk ROM)、DVD(Digital Versatile Disk)、MO(Magneto Optical Disk)、又は、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布してもよいし、インターネット等の通信ネットワークを介して配布してもよい。 Further, such a program distribution method is arbitrary. For example, a computer-readable record such as a CD-ROM (Compact Disk ROM), a DVD (Digital Versatile Disk), an MO (Magneto Optical Disk), or a memory card. It may be distributed by being stored in a medium or distributed via a communication network such as the Internet.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施形態ではなく、請求の範囲によって示される。そして請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications made within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本発明は、電力の管理を行うシステム等に好適に採用され得る。 The present invention can be suitably employed in a system for managing power.
1,1a 給湯システム、3 発電設備、5 給湯機、7(7-1,7-2,…) 機器、8 商用電力系統、9 分電盤、12 ルータ、14 電力サーバ、30 PVパネル、31,31a,31b パワーコンディショナ、32 インバータ、33,61 制御部、34 発電電力計算部、35 状態管理部、36,62 記憶部、37,64 通信部、38 通信アダプタ、40 表示部、50 ヒートポンプユニット、51 タンクユニット、52 配管、53 貯湯タンク、54 給湯コントローラ、55 リモコン、56 混合弁、57 シャワー、58 蛇口、59 通信線、63 計時部、69 バス、80 サーバ、301 計測値取得部、303 指示取得部、304 指示情報送信部、305 電力出力部、306,803 余力電力計算部、307,804 余力情報送信部、308 出力情報送信部、309,608 表示制御部、310 計測DB、320 指示DB、601 指示情報取得部、602 計画生成部、604 沸上げ部、605 余力情報取得部、609 操作受付部、610 学習DB、801 第1出力情報取得部、802 第2出力情報取得部、D1~D5 電力線、H 家屋、N 広域ネットワーク 1, 1a hot water supply system, 3 power generation equipment, 5 hot water heater, 7 (7-1, 7-2, ...) equipment, 8 commercial power system, 9 distribution board, 12 router, 14 power server, 30 PV panel, 31 , 31a, 31b, power conditioner, 32 inverter, 33, 61 control unit, 34 generated power calculation unit, 35 state management unit, 36, 62 storage unit, 37, 64 communication unit, 38 communication adapter, 40 display unit, 50 heat pump Unit, 51 tank unit, 52 piping, 53 hot water storage tank, 54 hot water supply controller, 55 remote control, 56 mixing valve, 57 shower, 58 faucet, 59 communication line, 63 timekeeping section, 69 bus, 80 server, 301 measurement value acquisition section, 303 instruction acquisition unit, 304 instruction information transmission unit, 305 power output unit, 306 803 surplus power calculation unit, 307,804 surplus information transmission unit, 308 output information transmission unit, 309, 608 display control unit, 310 measurement DB, 320 instruction DB, 601 instruction information acquisition unit, 602 plan generation unit, 604 boiling unit , 605 surplus information acquisition unit, 609 operation reception unit, 610 learning DB, 801 first output information acquisition unit, 802 second output information acquisition unit, D1 to D5 power line, H house, N wide area network

Claims (10)

  1.  パワーコンディショナと給湯機とを備える給湯システムであって、
     前記パワーコンディショナは、
     発電手段によって発電された電力の、商用電力系統への供給を抑制する指示を取得する指示取得手段と、
     前記指示取得手段が前記指示を取得した場合、前記指示によって定められる期間において、前記発電手段によって発電された電力のうちの、前記発電された電力より少ない電力を出力する電力出力手段と、を備え、
     前記給湯機は、
     前記期間における前記発電手段によって発電された電力と前記電力出力手段によって出力された電力との差に基づく余力電力を示す余力情報を取得する余力情報取得手段と、
     前記余力情報取得手段が前記余力情報を取得すると、前記余力電力に応じた能力で湯を沸き上げる沸上げ手段と、を備える、
     給湯システム。
    A hot water supply system including a power conditioner and a water heater,
    The inverter is
    Instruction acquisition means for acquiring an instruction to suppress supply of the power generated by the power generation means to the commercial power system;
    A power output means for outputting less power than the generated power out of the power generated by the power generation means in a period determined by the instruction when the instruction acquisition means acquires the instruction; ,
    The water heater is
    Surplus power information acquisition means for acquiring surplus power information indicating surplus power based on a difference between the power generated by the power generation means and the power output by the power output means in the period;
    When the surplus power information acquisition means acquires the surplus power information, it comprises boiling means for boiling hot water with the capacity according to the surplus power.
    Hot water system.
  2.  前記パワーコンディショナは、
     前記余力電力を計算する余力電力計算手段と、
     前記余力電力計算手段によって計算された前記余力電力を示す前記余力情報を前記給湯機に送信する余力情報送信手段と、を更に備え、
     前記給湯機において、
     前記余力情報取得手段は、前記パワーコンディショナから送信された前記余力情報を取得する、
     請求項1に記載の給湯システム。
    The inverter is
    Surplus power calculating means for calculating the surplus power;
    Surplus power information transmitting means for transmitting the surplus power information indicating the surplus power calculated by the surplus power calculating means to the water heater;
    In the water heater,
    The surplus power information acquisition unit acquires the surplus power information transmitted from the power conditioner.
    The hot water supply system according to claim 1.
  3.  前記パワーコンディショナにおいて、
     前記余力電力計算手段は、前記期間より前において前記電力出力手段によって出力された電力の力率を、前記発電手段による発電電力の定格値に乗じることによって、前記期間において前記発電手段によって発電された電力を計算し、計算した電力から、前記期間において前記電力出力手段によって出力された電力を減じることによって、前記余力電力を計算する、
     請求項2に記載の給湯システム。
    In the inverter,
    The surplus power calculation means is generated by the power generation means in the period by multiplying a power factor of power output by the power output means before the period by a rated value of power generated by the power generation means. Calculating power, and calculating the remaining power by subtracting the power output by the power output means in the period from the calculated power;
    The hot water supply system according to claim 2.
  4.  前記パワーコンディショナは、
     前記発電手段によって発電された電力の、商用電力系統へ供給される電力の計測値を取得する計測値取得手段、を更に備え、
     前記余力電力計算手段は、前記発電手段によって発電された電力と前記電力出力手段によって出力された電力との差に、前記計測値取得手段によって取得された前記電力の計測値を加えることによって、前記余力電力を計算する、
     請求項2又は3に記載の給湯システム。
    The inverter is
    A measurement value acquisition means for acquiring a measurement value of the power supplied to the commercial power grid of the power generated by the power generation means;
    The surplus power calculation means adds the measurement value of the power acquired by the measurement value acquisition means to the difference between the power generated by the power generation means and the power output by the power output means, thereby Calculating the surplus power,
    The hot water supply system according to claim 2 or 3.
  5.  前記給湯システムは、サーバを更に備え、
     前記パワーコンディショナは、
     前記期間において前記電力出力手段によって出力された電力を示す第1出力情報を、前記サーバに送信する出力情報送信手段、を更に備え、
     前記サーバは、
     前記パワーコンディショナから送信された前記第1出力情報を取得する第1出力情報取得手段と、
     前記指示の対象でない発電設備から前記期間において出力された電力を示す第2出力情報を取得する第2出力情報取得手段と、
     前記第1出力情報取得手段によって取得された前記第1出力情報と前記第2出力情報取得手段によって取得された前記第2出力情報とに基づいて、前記余力電力を計算する余力電力計算手段と、
     前記余力電力計算手段によって計算された前記余力電力を示す前記余力情報を前記給湯機に送信する余力情報送信手段と、を備え、
     前記給湯機において、
     前記余力情報取得手段は、前記サーバから送信された前記余力情報を取得する、
     請求項1に記載の給湯システム。
    The hot water supply system further includes a server,
    The inverter is
    Output information transmitting means for transmitting, to the server, first output information indicating the power output by the power output means in the period;
    The server
    First output information acquisition means for acquiring the first output information transmitted from the inverter;
    Second output information acquisition means for acquiring second output information indicating the power output in the period from the power generation equipment that is not the target of the instruction;
    Surplus power calculating means for calculating the surplus power based on the first output information acquired by the first output information acquiring means and the second output information acquired by the second output information acquiring means;
    Surplus power information transmitting means for transmitting the surplus power information indicating the surplus power calculated by the surplus power calculating means to the water heater,
    In the water heater,
    The surplus information acquisition means acquires the surplus information transmitted from the server.
    The hot water supply system according to claim 1.
  6.  前記給湯機において、
     前記沸上げ手段は、前記余力情報取得手段が前記余力情報を取得すると、前記給湯機における消費電力を前記余力電力より小さい量だけ増大させて、前記湯を沸き上げる、
     請求項1から5のいずれか1項に記載の給湯システム。
    In the water heater,
    The boiling means, when the remaining power information acquisition means acquires the remaining power information, increases the power consumption in the water heater by an amount smaller than the remaining power, to boil the hot water,
    The hot water supply system according to any one of claims 1 to 5.
  7.  前記給湯機において、
     前記沸上げ手段は、前記湯を沸き上げている最中に前記余力電力が閾値より小さくなると、前記給湯機の消費電力を減少させる、
     請求項1から6のいずれか1項に記載の給湯システム。
    In the water heater,
    The boiling means reduces the power consumption of the water heater when the remaining power becomes smaller than a threshold value during boiling the hot water,
    The hot water supply system according to any one of claims 1 to 6.
  8.  前記給湯機は、
     前記沸上げ手段は、前記商用電力系統から買電された電力に応じて、前記閾値を変更する、
     請求項7に記載の給湯システム。
    The water heater is
    The boiling means changes the threshold according to the electric power purchased from the commercial power system.
    The hot water supply system according to claim 7.
  9.  前記パワーコンディショナは、
     前記指示取得手段が前記指示を取得した場合、前記指示取得手段によって取得された前記指示の内容を示す指示情報を前記給湯機に送信する指示情報送信手段、を更に備え、
     前記給湯機は、
     前記パワーコンディショナから送信された前記指示情報を取得する指示情報取得手段、を更に備え、
     前記沸上げ手段は、前記指示情報取得手段が前記指示情報を取得した場合、前記期間より前に第1の量の湯を沸き上げ、前記期間において、前記余力電力に応じた能力で第2の量の湯を沸き上げる、
     請求項1から8のいずれか1項に記載の給湯システム。
    The inverter is
    When the instruction acquisition means acquires the instruction, the instruction acquisition means further includes instruction information transmission means for transmitting instruction information indicating the content of the instruction acquired by the instruction acquisition means to the water heater,
    The water heater is
    Instruction information acquisition means for acquiring the instruction information transmitted from the inverter, further comprising:
    When the instruction information acquisition means acquires the instruction information, the boiling means boils a first amount of hot water before the period, and in the period, the second power with the capacity according to the surplus power Boil a quantity of hot water,
    The hot water supply system according to any one of claims 1 to 8.
  10.  発電手段によって発電された電力の、商用電力系統への供給を抑制する指示を取得し、
     前記指示を取得した場合、前記指示によって定められる期間において、前記発電手段によって発電された電力のうちの、パワーコンディショナから出力される電力を抑制し、
     前記期間における前記発電手段によって発電された電力と前記パワーコンディショナから出力された電力との差に応じた能力で、給湯機によって湯を沸き上げる、
     給湯機の制御方法。
    Obtain an instruction to suppress the supply of power generated by the power generation means to the commercial power system,
    When acquiring the instruction, in a period determined by the instruction, of the electric power generated by the power generation means, to suppress the power output from the power conditioner,
    Boiling hot water with a water heater, with the capability according to the difference between the power generated by the power generation means and the power output from the power conditioner in the period,
    Control method for water heater.
PCT/JP2016/055862 2016-02-26 2016-02-26 Hot-water supply system, and control method for water heater WO2017145369A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1811333.2A GB2562926C (en) 2016-02-26 2016-02-26 Hot-water supply system, and control method for water heater
PCT/JP2016/055862 WO2017145369A1 (en) 2016-02-26 2016-02-26 Hot-water supply system, and control method for water heater
JP2018501538A JP6641455B2 (en) 2016-02-26 2016-02-26 Hot water supply system and water heater control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055862 WO2017145369A1 (en) 2016-02-26 2016-02-26 Hot-water supply system, and control method for water heater

Publications (1)

Publication Number Publication Date
WO2017145369A1 true WO2017145369A1 (en) 2017-08-31

Family

ID=59684878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055862 WO2017145369A1 (en) 2016-02-26 2016-02-26 Hot-water supply system, and control method for water heater

Country Status (3)

Country Link
JP (1) JP6641455B2 (en)
GB (1) GB2562926C (en)
WO (1) WO2017145369A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163631A (en) * 2016-03-07 2017-09-14 シャープ株式会社 Power monitor, display control method, and display control program
JP2019118180A (en) * 2017-12-26 2019-07-18 シャープ株式会社 Control device, power control system, boiling control method, and control program
JP2019121016A (en) * 2017-12-28 2019-07-22 パナソニックIpマネジメント株式会社 Hot water supply method and control device
JP2019168133A (en) * 2018-03-22 2019-10-03 三菱電機株式会社 Hot water storage type hot water system
WO2020017035A1 (en) * 2018-07-20 2020-01-23 三菱電機株式会社 Control device, control system, control method, and program
WO2020225905A1 (en) * 2019-05-09 2020-11-12 三菱電機株式会社 Storage type hot water supply system
JP2021139555A (en) * 2020-03-05 2021-09-16 三菱電機株式会社 Heat pump water heater
CN114069833A (en) * 2020-07-31 2022-02-18 珠海优特智厨科技有限公司 Electric energy control method, device and system
JP2022066217A (en) * 2017-12-28 2022-04-28 パナソニックIpマネジメント株式会社 Hot water supply method and control device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111829175A (en) * 2020-07-14 2020-10-27 广州天空能科技有限公司 Solar-driven air energy heat pump water heating all-in-one machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194485A (en) * 2002-12-13 2004-07-08 Hitachi Home & Life Solutions Inc Energy system
JP2011004476A (en) * 2009-06-16 2011-01-06 Tokyo Electric Power Co Inc:The Power load controller and power load control method
WO2012063409A1 (en) * 2010-11-10 2012-05-18 パナソニック株式会社 Operation planning method, operation planning device, method for operating heat pump hot-water supply system, and method for operating heat pump hot-water supply and heating system
WO2012090365A1 (en) * 2010-12-27 2012-07-05 パナソニック株式会社 Operation planning method and method for operating heat-pump hot-water supply heating system
WO2012169115A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Operating method for heat pump, and heat pump system
JP2014095501A (en) * 2012-11-08 2014-05-22 Denso Corp Hot water supply device, and hot water supply system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3903360B2 (en) * 1999-06-28 2007-04-11 パイオニア株式会社 Edge detection method, edge detection apparatus, and image encoding apparatus
US9494373B2 (en) * 2011-06-06 2016-11-15 Panasonic Intellectual Property Management Co., Ltd. Heat pump operation method and heat pump system
JP6074868B2 (en) * 2011-10-24 2017-02-08 パナソニックIpマネジメント株式会社 Load control system, load control device, and load control method
JP5891455B2 (en) * 2011-12-20 2016-03-23 パナソニックIpマネジメント株式会社 Power measuring apparatus, power measuring system, power measuring method and program
JP6009976B2 (en) * 2013-03-07 2016-10-19 株式会社東芝 Energy management system, energy management method, program, and server
WO2017109947A1 (en) * 2015-12-25 2017-06-29 三菱電機株式会社 Control device, control method for water heater, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004194485A (en) * 2002-12-13 2004-07-08 Hitachi Home & Life Solutions Inc Energy system
JP2011004476A (en) * 2009-06-16 2011-01-06 Tokyo Electric Power Co Inc:The Power load controller and power load control method
WO2012063409A1 (en) * 2010-11-10 2012-05-18 パナソニック株式会社 Operation planning method, operation planning device, method for operating heat pump hot-water supply system, and method for operating heat pump hot-water supply and heating system
WO2012090365A1 (en) * 2010-12-27 2012-07-05 パナソニック株式会社 Operation planning method and method for operating heat-pump hot-water supply heating system
WO2012169115A1 (en) * 2011-06-06 2012-12-13 パナソニック株式会社 Operating method for heat pump, and heat pump system
JP2014095501A (en) * 2012-11-08 2014-05-22 Denso Corp Hot water supply device, and hot water supply system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163631A (en) * 2016-03-07 2017-09-14 シャープ株式会社 Power monitor, display control method, and display control program
JP2019118180A (en) * 2017-12-26 2019-07-18 シャープ株式会社 Control device, power control system, boiling control method, and control program
JP7073097B2 (en) 2017-12-26 2022-05-23 シャープ株式会社 Control device, power control system, boiling control method, and control program
JP2022066217A (en) * 2017-12-28 2022-04-28 パナソニックIpマネジメント株式会社 Hot water supply method and control device
JP2019121016A (en) * 2017-12-28 2019-07-22 パナソニックIpマネジメント株式会社 Hot water supply method and control device
JP7285492B2 (en) 2017-12-28 2023-06-02 パナソニックIpマネジメント株式会社 Hot water supply method and control device
JP2019168133A (en) * 2018-03-22 2019-10-03 三菱電機株式会社 Hot water storage type hot water system
JPWO2020017035A1 (en) * 2018-07-20 2021-03-11 三菱電機株式会社 Control devices, control systems, control methods and programs
WO2020017035A1 (en) * 2018-07-20 2020-01-23 三菱電機株式会社 Control device, control system, control method, and program
JPWO2020225905A1 (en) * 2019-05-09 2021-11-04 三菱電機株式会社 Hot water storage type hot water supply system
WO2020225905A1 (en) * 2019-05-09 2020-11-12 三菱電機株式会社 Storage type hot water supply system
JP2021139555A (en) * 2020-03-05 2021-09-16 三菱電機株式会社 Heat pump water heater
JP7251499B2 (en) 2020-03-05 2023-04-04 三菱電機株式会社 heat pump water heater
CN114069833A (en) * 2020-07-31 2022-02-18 珠海优特智厨科技有限公司 Electric energy control method, device and system

Also Published As

Publication number Publication date
JPWO2017145369A1 (en) 2018-10-25
GB2562926B (en) 2020-07-15
GB2562926A (en) 2018-11-28
GB2562926C (en) 2020-08-12
GB201811333D0 (en) 2018-08-29
JP6641455B2 (en) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6641455B2 (en) Hot water supply system and water heater control method
JP5204819B2 (en) Energy management system and energy management method
JP6599558B2 (en) Hot water supply system, water heater, and control method of water heater
WO2016088761A1 (en) Electric power control system, electric power control method, and program
JP7146035B2 (en) Hot water supply system, boiling schedule creation device, boiling schedule creation method and program
US11859833B2 (en) Control device, control method for water heater, and program
JP2013242125A (en) Hot water supply system
WO2018154727A1 (en) Water heater, control device, hot water supply system, and heating operation method
JP6719669B2 (en) Control device, power management system, device control method and program
JP6719672B2 (en) Control device, power management system, information presentation method and program
JP6833001B2 (en) Hot water supply system, water heater and control method of water heater
JP5799250B2 (en) Device control apparatus and device control method
JP6914446B2 (en) Control devices, control systems, control methods and programs
JP7267149B2 (en) Control device, hot water system, hot water heater control method and program
JP7251507B2 (en) Storage hot water heater
JP2021085600A (en) Hot water storage type hot water supply device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018501538

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201811333

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160226

WWE Wipo information: entry into national phase

Ref document number: 1811333.2

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891526

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891526

Country of ref document: EP

Kind code of ref document: A1