WO2017145222A1 - Bearing deterioration diagnosis device, bearing deterioration diagnosis method, and bearing deterioration diagnosis system - Google Patents

Bearing deterioration diagnosis device, bearing deterioration diagnosis method, and bearing deterioration diagnosis system Download PDF

Info

Publication number
WO2017145222A1
WO2017145222A1 PCT/JP2016/055012 JP2016055012W WO2017145222A1 WO 2017145222 A1 WO2017145222 A1 WO 2017145222A1 JP 2016055012 W JP2016055012 W JP 2016055012W WO 2017145222 A1 WO2017145222 A1 WO 2017145222A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
vibration
deterioration
vibration value
frequency
Prior art date
Application number
PCT/JP2016/055012
Other languages
French (fr)
Japanese (ja)
Inventor
崇 佐伯
今朝明 峰村
剛志 井上
雅彦 安藝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2016/055012 priority Critical patent/WO2017145222A1/en
Publication of WO2017145222A1 publication Critical patent/WO2017145222A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings

Definitions

  • the present invention relates to a rotating device having a bearing, and relates to a bearing deterioration diagnosis device, a bearing deterioration diagnosis method, and a bearing deterioration diagnosis system suitable for diagnosing deterioration of the bearing.
  • CMS state monitoring device
  • Patent Document 1 discloses a configuration in which a plurality of ultrasonic transmitters are arranged on the outer peripheral surface of a rolling bearing, and the impedance is measured by moving in the circumferential direction of the outer peripheral surface of the bearing while being vibrated by the ultrasonic transmitter. Yes. Patent Document 1 describes that the amount of bearing misalignment is estimated based on the measured impedance.
  • an acceleration sensor is installed on the bearing, and the vibration value in the normal state of the rotating device or the vibration value in the normal state of another rotating device similar to the target rotating device is databased.
  • a configuration for diagnosing the remaining life of a bearing based on the measured vibration of the bearing and the database is disclosed.
  • Patent Document 1 since it is a configuration that measures the local resonance frequency of the bearing while being vibrated by an ultrasonic transmitter, vibration corresponding to the resonance frequency is continuously vibrated, There is a risk of damaging the bearing and even the rotating equipment having the bearing. Further, in the configuration described in Patent Document 2, it is necessary to previously acquire a vibration value in a normal state from a bearing provided in another rotating device similar to the target rotating device, and create a database. Increase. Furthermore, similarly to Patent Document 1, vibration corresponding to the resonance frequency is continuously applied to the target bearing, which may cause damage to the bearing and the rotating device having the bearing.
  • the present invention enables a bearing deterioration diagnosis apparatus, a bearing deterioration diagnosis method, and a bearing deterioration diagnosis system that enable a deterioration diagnosis of a bearing with high accuracy and that can be diagnosed while avoiding damage to a rotating device having the bearing and the bearing. I will provide a.
  • a bearing deterioration diagnosis apparatus is a rotating shaft that transmits a rotational driving force to a rotor that is a driven body, a bearing that rotatably supports the rotating shaft, or an electric motor having the rotating shaft.
  • Excitation in a frequency band including the resonance frequency of the bearing with respect to the support, and an excitation control unit that controls the frequency of the excitation, and a past vibration value of the bearing, at least with the rotational speed of the motor A vibration value database stored in association with each other; and a deterioration determination unit that determines a deterioration state of the bearing based on a measured vibration value of the bearing to be measured and a past vibration value stored in the vibration value database.
  • the bearing deterioration diagnosis method of the present invention is a rotating device having at least an electric motor having a rotating shaft that transmits a rotational driving force to a rotor that is a driven body, and a bearing that rotatably supports the rotating shaft.
  • a method for diagnosing bearing deterioration wherein the rotating shaft or the support portion supporting the bearing or the electric motor is vibrated in a frequency band including a resonance frequency of the bearing and the frequency of the vibration is controlled, and at least the With reference to a vibration value database that stores the past vibration value of the bearing in association with the rotation speed of the electric motor, based on the measured vibration value of the bearing to be measured and the past vibration value stored in the vibration value database, The deterioration state of the bearing is determined.
  • the bearing deterioration diagnosis system of the present invention supports at least an electric motor having a rotating shaft that transmits a rotational driving force to a rotor that is a driven body, a bearing that rotatably supports the rotating shaft, and the electric motor.
  • a rotating device having a support portion; and a bearing deterioration diagnosis device that determines a deterioration state of the bearing.
  • the bearing deterioration diagnosis device is configured to resonate the bearing with respect to the rotating shaft or the bearing or the support portion.
  • a vibration control unit that vibrates in a frequency band including a frequency and controls the frequency of the vibration, and a vibration value database that stores a past vibration value of the bearing in association with at least the rotational speed of the motor;
  • a deterioration determination unit that determines a deterioration state of the bearing based on a measured vibration value of the bearing to be measured and a past vibration value stored in the vibration value database.
  • a bearing deterioration diagnosis device capable of performing a deterioration diagnosis while enabling damage diagnosis of a bearing and the rotating device having the bearing while preventing deterioration of the bearing with high accuracy.
  • the rotating shaft or the bearing constituting the rotating device or the support portion of the electric motor is vibrated in a frequency band including the resonance frequency (natural frequency) of the bearing, and the frequency of the vibration is determined.
  • FIG. 2 is a cross-sectional view of the bearing shown in FIG. It is a cross-sectional view of the magnetic bearing which is an example of the vibrator shown in FIG. It is a functional block diagram of the bearing deterioration diagnostic apparatus shown in FIG. It is the schematic of the vibration control signal output to a vibrator by the vibrator control part shown in FIG. It is explanatory drawing of the data structure of vibration value DB shown in FIG. It is a relationship diagram between signal strength and frequency.
  • FIG. 5 is a processing flowchart of the vibrator control unit shown in FIG. 4.
  • FIG. 5 is a processing flowchart of the vibrator control unit shown in FIG. 4.
  • FIG. 5 is a process flow diagram of a deterioration determination unit shown in FIG. 4. It is a figure which shows an example of the screen display of the display part shown in FIG. It is a figure which shows an example of the screen display of the display part shown in FIG. It is a whole schematic block diagram of the bearing deterioration diagnostic system of Example 2 which concerns on the other Example of this invention.
  • FIG. 13 is a transverse sectional view of the bearing shown in FIG. 12 and is a sectional view taken along the line AA.
  • It is a functional block diagram of the bearing deterioration diagnostic apparatus shown in FIG. It is a whole schematic block diagram of the bearing deterioration diagnostic system of Example 3 which concerns on the other Example of this invention.
  • At least a rotor that is a driven body, an electric motor (motor) having a rotating shaft that transmits a rotational driving force to the rotor, and a rotating device having a bearing that rotatably supports the rotating shaft include, for example, a pump , A fan, a compressor, or a generator.
  • a rotating device In this specification, it is simply referred to as a rotating device.
  • the resonance frequency may be referred to as a natural frequency, and these resonance frequency and natural frequency are synonymous.
  • FIG. 1 is an overall schematic configuration diagram of a bearing deterioration diagnosis system according to a first embodiment of the present invention.
  • the bearing deterioration diagnosis system 100 can rotate a rotating shaft 4 and a rotor 5 that is a driven body, a motor 3 having a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and the rotating shaft 4.
  • a rotating device 8 having a bearing 2 to be supported, a first sensor 7 attached to the bearing 2, a vibrator 6 for vibrating the rotating shaft 4 rotatably supported by the bearing 2, at least the first sensor 7.
  • the bearing deterioration diagnosis device 1 is provided which acquires a measurement value from the motor and outputs an excitation control signal to the vibrator 6.
  • the bearing deterioration diagnostic apparatus 1 includes a vibrator 6.
  • FIG. 2 is a cross-sectional view of the bearing 2 shown in FIG.
  • the bearing 2 covers a cylindrical inner ring 21 disposed so as to cover the outer peripheral surface of the rotating shaft 4, covers the outer peripheral surface of the cylindrical inner ring 21, and is radially outward from the outer peripheral surface of the inner ring 21.
  • a cylindrical outer ring 22 which is concentrically spaced apart from each other at a predetermined interval, and a cylindrical shape which covers the outer peripheral surface of the outer ring 22 and is arranged with a slight gap in the radial direction from the outer peripheral surface of the outer ring 22
  • the housing 24 is provided.
  • a plurality of arc-shaped deep grooves are formed on the outer peripheral surface of the cylindrical inner ring 21 at predetermined intervals in the circumferential direction.
  • an arc-shaped deep groove is formed on the inner peripheral surface of the cylindrical outer ring 22 at a position facing the deep groove formed on the outer peripheral surface of the inner ring 21. That is, the deep groove formed on the outer peripheral surface of the inner ring 21 and the deep groove formed on the inner peripheral surface of the outer ring 22 are arranged so as to be aligned in the radial direction.
  • a spherical ball 23 is disposed between the deep groove formed on the outer peripheral surface of the inner ring 21 and the deep groove formed on the inner peripheral surface of the outer ring 22.
  • the bearing 2 shown in FIG. 2 is a so-called ball bearing.
  • the bearing 2 is not limited to a ball bearing, and may be a roller bearing in which a cylindrical roller is provided instead of the ball 23. Furthermore, any form may be used for the bearing 2 as long as it is a rolling bearing.
  • the number of balls 23 is ten, but the number of balls 23 is not limited to ten.
  • 2 is a deep groove ball bearing, at least a slight gap between the outer peripheral surface of the outer ring 22 and the inner peripheral surface of the housing 24, and the outer peripheral surface of the rotating shaft 4 and the inner peripheral surface of the inner ring 21. Between them, lubricating oil is filled.
  • the bearing 2 includes a lubricating oil supply path and an oil drain for discharging (removing) the lubricating oil to the outside of the bearing 2.
  • the first sensor 7 is attached to the outer peripheral surface of the cylindrical housing 24.
  • the first sensor 7 receives the vibration in the housing 24 of the bearing 2 as an input, converts it into a vibration value, and outputs it.
  • the first sensor 7 includes, for example, an acceleration sensor and a logger.
  • As the acceleration sensor for example, a three-axis acceleration sensor is used. As shown in FIG. 1, the X-axis (horizontal direction) vibration value, the Y-axis (vertical direction) vibration value, and the Z-axis (rotation shaft 4 of the rotation shaft 4). Longitudinal) Measure vibration value.
  • three uniaxial acceleration sensors are used, and at least the horizontal direction (X direction), the vertical direction (Y direction) and the longitudinal direction (Z direction) of the rotating shaft 4 shown in FIG.
  • FIG. 3 is a cross-sectional view of a magnetic bearing which is an example of the vibrator 6 shown in FIG.
  • the magnetic bearing as the vibrator 6 includes an iron core wound around a coil 31 a and extending from the inner peripheral surface of the cylindrical magnetic bearing housing toward the rotating shaft 4 disposed in the center.
  • the coil 31ba is wound, and includes a first pole formed of a pair of iron cores extending toward the rotating shaft 4 disposed in the center from the inner periphery of the magnetic bearing housing.
  • the second pole formed by a pair of an iron core around which the coil 32a is wound and an iron core around which the coil 32b is wound, and an iron core around which the coil 33a is wound and the coil 33b are wound.
  • a fourth pole formed by a pair of an iron core around which the coil 34a is wound and an iron core around which the coil 34b is wound.
  • a magnetic path is formed by energizing the coil 34a and the coil 34b, and a magnetic path is formed by energizing the current I D (not shown) to the coil 34a and the coil 34b.
  • the magnetic bearing as the vibrator 6 shown in FIG. 3 is a radial magnetic bearing.
  • the two second positions arranged at positions orthogonal to each other when viewed from the axis of the rotating shaft 4, that is, at positions perpendicular to each other in the cross section around the axis of the rotating shaft 4.
  • Two sensors 9a X-axis direction displacement sensor
  • second sensor 9b Y-axis direction displacement sensor
  • the second sensor 9a and the second sensor 9b are attached so as to extend from the inner peripheral surface of the cylindrical magnetic bearing housing toward the rotary shaft 4 disposed in the center.
  • These two second sensors 9a and 9b are displacement sensors, and for example, an overcurrent sensor, an induction sensor, an optical sensor, or a Hall sensor is used.
  • the second sensor 9 a outputs the measured value of the displacement in the X-axis direction of the rotating shaft 4 arranged at the center of the cross section of the magnetic bearing serving as the vibrator 6 to the bearing deterioration diagnosis device 1. Further, the second sensor 9 b outputs a measured value of the displacement in the Y-axis direction of the rotating shaft 4 arranged at the center of the cross section of the magnetic bearing as the vibrator 6 to the bearing deterioration diagnosis device 1.
  • FIG. 4 is a functional block diagram of the bearing deterioration diagnostic apparatus 1 shown in FIG.
  • signal lines are indicated by dotted arrows. Note that the signal line may be either wired or wireless, but it is preferable that the signal line be wireless in consideration of the routing of the signal line.
  • the bearing deterioration diagnosis device 1 inputs measurement values measured by the input unit 10 such as a mouse, the first sensor 7, the second sensor 9 a, and the second sensor 9 b and through the input unit 10.
  • the input I / F 11 for inputting setting information from the user, the measurement value acquisition unit 12 for acquiring the measurement value via the input I / F 11, and the vibrator control for generating the vibration control signal to be output to the vibrator 6 Unit 13, deterioration determination unit 14 that determines the deterioration state of bearing 2, vibration value DB (database) 15 that stores past vibration values (actual vibration values) of bearing 2, storage unit 16, display control unit 17, and output I / F18, which are connected to each other via an internal bus 20.
  • the vibrator control unit 13, the deterioration determination unit 14, and the display control unit 17 include, for example, a ROM that stores various programs, and a RAM that temporarily stores data in an arithmetic process or a program execution process.
  • the measurement value acquisition unit 12 transfers the measurement vibration value of the bearing 2 from the first sensor 7 to the deterioration determination unit 14 via the internal bus 20.
  • the measurement value acquisition unit 12 receives the measurement value of the X-axis direction displacement of the rotation shaft 4 from the second sensor 9a and the measurement value of the Y-axis direction displacement of the rotation shaft 4 from the second sensor 9b.
  • the measured value acquisition unit 12 transfers the measured rotational speed of the electric motor 3 from, for example, an encoder (not shown) installed in the electric motor 3 to the vibrator control unit 13 via the internal bus 20.
  • the bearing deterioration diagnosis device 1 receives the vibration control signal generated by the vibration exciter control unit 13 via the internal bus 20 and the output I / F 18 and rotates based on the received vibration control signal.
  • a vibration exciter 6 for exciting the shaft 4 is provided.
  • the bearing deterioration diagnosis apparatus 1 includes a display unit 19 that displays a deterioration determination result (details will be described later) of the bearing 2 from the deterioration determination unit 14 on a screen via a display control unit 17 and an output I / F 18.
  • the deterioration determination unit 14 accesses the vibration value DB 15 via the internal bus 20, and uses the past vibration values (actual vibration values) stored in the vibration value DB 15 to determine the measurement conditions at the time of diagnosis (details will be described later). Applicable or similar past vibration values are extracted. The deterioration determination unit 14 compares the extracted past vibration value with the measured vibration value of the bearing 2 acquired via the first sensor 7, the input I / F 11, and the measured value acquisition unit 12. The deterioration determination of the bearing 2 which comprises the apparatus 8 is performed. The vibrator 6 shown in FIG. 4 vibrates the rotating shaft 4 constituting the rotating device 8 based on the vibration control signal generated by the vibrator controller 13.
  • the vibration of the rotating shaft 4 by the vibrator 6 is performed in a frequency band including the resonance frequency of the bearing 2 that can detect the highest sensitivity.
  • the rotating shaft 4 is vibrated at the bearing 2 resonance frequency, as shown in FIG. 1 described above, the horizontal direction (X direction), the vertical direction (Y direction), and the longitudinal direction of the rotating shaft 4 (Z direction).
  • Natural frequency is calculated in advance from the shape and material characteristics of the bearing 2.
  • a rotor 5 as a driven body, an electric motor 3 having a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating device 8 having a bearing 2 that rotatably supports the rotating shaft 4 are installed.
  • the vibrator control unit 13 reliably modulates the vibration control signal output to the vibrator 6 back and forth (within the frequency band including the resonance frequency) around the calculated natural frequency. It is possible to vibrate at the natural frequency.
  • the vibration exciter control unit 13 controls the time of vibration at the natural frequency per unit time by controlling the frequency of modulation back and forth around the natural frequency.
  • the natural frequency in the longitudinal direction (Z direction) of the rotating shaft 4 is one in calculation or from past measurement results, and the natural frequency is 1 kHz, a linear sweep (linear sweep) )I do.
  • a sine wave of 950 Hz is generated, and the rotating shaft 4 is vibrated by the vibrator 6 to 1050 Hz while increasing the frequency by 1 Hz.
  • the rotating shaft 4 is vibrated by the vibrator 6 while decreasing the frequency by 1 Hz to 950 Hz.
  • This operation is counted as one sweep.
  • the time for exciting at the natural frequency per unit time is controlled. That is, the frequency of excitation is controlled.
  • analog modulation, pulse modulation, or the like is used as a method of controlling the frequency up and down.
  • the frequency change speed depends on the mechanical structure of the rotating device 8. Even if the vibration control signal output from the vibration exciter control 13 has a step-like signal pattern, the actual motion acts in an analog manner due to the inertial force corresponding to the magnitude of the mass. . Further, if the frequency change rate is too fast, a phenomenon in which resonance does not occur occurs if the excitation frequency included in the excitation control signal changes before the signal (vibration value) due to resonance is amplified. Therefore, a phenomenon that occurs once per rotation is defined as a rotation primary component, and n times that rotation is defined as a rotation n-order component.
  • the X-axis is the order and the Y-axis is the magnitude of the vibration noise of the order component.
  • “Rotational order ratio analysis” and “rotation-tracking analysis” for analyzing how the magnitude of vibration noise of the order component of interest changes due to an increase or decrease in rotational speed are performed in advance. Needless to say, the strength of the excitation is made as small as possible so as not to cause fatigue in the mechanical structure of the rotating device 8.
  • logarithmic sweep that is, the frequency is changed on a linear scale. After hitting the natural frequency, only the frequency band including the frequency is linearly swept.
  • FIG. 5 is a schematic diagram of an excitation control signal output from the vibrator control unit 13 shown in FIG. 4 to the vibrator 6.
  • the case where the magnetic bearing shown in FIG. 3 is used as the vibrator 6 is taken as an example.
  • the waveform of the control signal shows the time change pattern of the voltage applied to the coil wound around the iron core of each pole constituting the magnetic bearing shown in FIG. As shown in the upper diagram of FIG.
  • the vibration control signal output from the vibrator control unit 13 to the vibrator 6 via the output I / F 18 is When the ON / OFF is switched slowly, the amplitude fluctuation becomes slow and the frequency is lowered.
  • the excitation control signal is switched faster, the amplitude variation becomes faster, and the frequency becomes higher.
  • the vibration control signal output from the vibrator control unit 13 to the magnetic bearing as the vibrator 6 via the output I / F 18 is a high-frequency vibration control signal (in FIG. 5).
  • the lower diagram exemplifies a case where the frequency of the low-frequency excitation control signal (upper diagram of FIG. 5) is three times, but is not necessarily limited to this.
  • n may be a high-frequency excitation control signal having a frequency of n).
  • FIG. 6 is an explanatory diagram of the data structure of the vibration value DB 15 shown in FIG.
  • the vibration value DB 15 outputs, for example, “time” indicating the measurement time by the first sensor 7 and the second sensors 9 a and 9 b described above to the shaker 6 from the shaker control unit 13.
  • the vibration value DB 15 is a measured value of the displacement in the X-axis direction of the rotating shaft 4 measured by the second sensor 9 a installed in the magnetic bearing as the vibrator 6.
  • Dislacement “Displacement”, “Y-axis displacement” which is a measured value of the displacement in the Y-axis direction of the rotating shaft 4 measured by the second sensor 9 b installed on the magnetic bearing as the vibrator 6, the outer peripheral surface of the housing 24 of the bearing 2 “X-axis vibration value” which is an X-axis (horizontal direction) vibration value measured by the first sensor 7 installed in the same manner as “Y-axis (vertical direction) vibration value measured by the first sensor 7”.
  • the “Y-axis vibration value” and the “Z-axis vibration value” which is the vibration value in the longitudinal direction (Z direction) of the rotating shaft 4 measured by the first sensor 7 are stored in association with each other.
  • each of the above data is stored as time series data when the measurement cycle by the first sensor 7 and the second sensors 9a and 9b and an encoder or the like installed in the motor 3 (not shown) is 1 hour. As shown. Note that the measurement cycle is not limited to this.
  • X-axis displacement is X2
  • Y-axis displacement is Y2.
  • the “X-axis vibration value” of the bearing 2 is Vx2
  • the “Y-axis vibration value” is Vy2
  • the “Z-axis vibration value” is Vz2.
  • CS1, CS2, and CS3 that are “excitation control signals” shown in FIG. 6 are the low-frequency excitation control signal or the high-frequency excitation control signal shown in FIG.
  • the measurement value acquisition unit 12 acquires the measured rotation speed of the electric motor 3 via the input I / F 11 and the internal bus 20 from an encoder (not illustrated) installed in the electric motor 3 every hour. Then, the “actual rotational speed” in the vibration value DB 15 is written into the area storing the vibration value DB 15 via the internal bus 20. In addition, the measurement value acquisition unit 12 receives the X-axis (horizontal direction) vibration value, the Y-axis (vertical direction) vibration value, and the rotation axis of the bearing 2 from the first sensor 7 via the input I / F 11 and the internal bus 20.
  • the vibration value acquisition unit 12 receives the X axis direction of the rotary shaft 4 in the magnetic bearing as the vibrator 6 via the input I / F 11 and the internal bus 20 from the second sensor 9a and the second sensor 9b.
  • the measured value of displacement and the measured value of displacement in the Y-axis direction are written to the areas storing “X-axis displacement” and “Y-axis displacement” in the vibration value DB 15 via the internal bus 20, respectively.
  • the vibration exciter control unit 13 writes the generated vibration control signal to the area for storing the “vibration control signal” in the vibration value DB 15 via the internal bus 20.
  • the measurement conditions at the time of diagnosis described above are, for example, environmental parameters such as air temperature, humidity and altitude, and the rotation speed setting value of the motor 3.
  • the storage unit 16 illustrated in FIG. 4 stores the ambient temperature, humidity, and altitude, which are the environmental parameters, and stores the rotation speed setting value of the motor 3 that is set in advance by the user via the input unit 10.
  • environmental parameters such as temperature, humidity, and altitude depending on the installation or installation environment of the rotating device 8 having at least the electric motor 3, the bearing 2, and the rotor 5 are, for example, a thermometer, hygrometer, GPS (Global The altitude data or barometer included in the position information (positioning information) by Positioning System) is measured once / day and stored in the storage unit 16.
  • the altitude as an environmental parameter causes a change in the amplitude of the vibration value of the bearing 2 measured according to the atmospheric pressure.
  • the altitude is stored in the storage unit 16 as an environmental parameter.
  • the storage unit 16 storing the environmental parameters and the preset rotational speed setting value of the electric motor 3 and the vibration value DB 15 are associated with each other by a node, and constitute a so-called relational database.
  • the environmental parameter and the preset rotational speed setting value of the motor 3 are not limited to the configuration stored in the storage unit 16 and may be stored in the vibration value DB 15.
  • Figure 7 is a graph showing the relationship between signal strength and frequency, the left view of FIG. 7 shows the comparison result of the signal strength at the maximum amplitude of the resonance frequency f R, right view of FIG. 7, the resonance frequency f R The comparison result of the frequency value in the maximum amplitude is shown.
  • the signal intensity shown on the vertical axis in the left and right diagrams of FIG. 7 is the X-axis vibration value measured by the first sensor 7 installed on the outer peripheral surface of the housing 24 of the bearing 2, for example, a three-axis acceleration sensor, Y It is a value for each frequency after the Fourier transform (FFT: Fast Fourier Transform) of the measured value of the axial vibration value and the Z-axis vibration value.
  • FFT Fast Fourier Transform
  • the horizontal axis represents frequency
  • the vertical axis represents signal intensity
  • the solid line represents the frequency spectrum distribution of past vibration values extracted from the vibration value DB 15
  • the dotted line represents the bearing 2 measured at the present time.
  • the frequency spectrum distribution of vibration values is shown.
  • the resonance frequency naturally frequency
  • the signal strength S A vibration value of the past that are extracted from the vibration value DB15 in f R, of the vibration value of the bearing 2, which is measured at the moment signal strength S B is large.
  • signal strength S B is large, reduction of the lubricating oil, the change in the consistency of the lubricating oil, foreign matter into the lubricating oil (such as dust) mixed, occurrence of iron powder.
  • the generation of iron powder means that fine iron powder may be generated due to friction between the outer peripheral surface of the rotating shaft 4 and the inner peripheral surface of the inner ring 21 of the bearing 2, and the generated iron powder is fine. Therefore, a groove or a scratch or a crack is not generated on the inner peripheral surface of the inner ring 21 of the bearing 2.
  • the change value of the signal intensity at the maximum amplitude of the resonance frequency (natural frequency) f R is at least the electric motor 3, the bearing 2, and are regarded as a sign of change in the mechanical structure of the rotating device 8 having a rotor 5
  • the degree of deterioration of the bearing 2 is small.
  • the difference between the signal intensity S B of the vibration value of the bearing 2 measured at the present time and the signal intensity S A of the vibration value extracted from the vibration value DB 15 is (S B ⁇ S A ). Used for processing.
  • the degree of deterioration of the bearing 2 becomes large, and maintenance work such as replacement of the bearing 2 itself is required.
  • the change values of the frequency value at the maximum amplitude of the resonance frequency (natural frequency) f R is mean that the mechanical structure of the rotating device 8 has at least the electric motor 3, the bearing 2, and a rotor 5 is changed The degree of deterioration of the bearing 2 is in a large state.
  • FIG. 8 is a process flow diagram of the vibration exciter control unit 13 constituting the bearing deterioration diagnosis device 1 shown in FIG.
  • the vibration exciter control unit 13 uses the encoder (not shown) or the like installed in the electric motor 3 to change the measured rotational speed of the electric motor 3 to the input I / F 11 and the measured value acquisition unit 12. And via the internal bus 20.
  • step S ⁇ b> 12 the vibration exciter controller 13 is perpendicular to each other in the cross section centered on the axis of the rotating shaft 4 on the inner peripheral surface of the cylindrical magnetic bearing housing of the magnetic bearing that is the vibrator 6.
  • the measured value of the X-axis direction displacement of the rotating shaft 4 measured by the second sensor 9a (X-axis direction displacement sensor) disposed at the position and the second sensor 9b (Y-axis direction displacement sensor).
  • the measurement value of the displacement in the Y-axis direction of the rotation shaft 4 is acquired via the input I / F 11, the measurement value acquisition unit 12, and the internal bus 20.
  • a gap (X-axis displacement) between the outer peripheral surface of the rotating shaft 4 and the second sensor 9a (X-axis direction displacement sensor) and a gap between the outer peripheral surface of the rotating shaft 4 and the second sensor 9b (Y-axis direction displacement sensor). (Y-axis displacement) is acquired.
  • step S ⁇ b> 13 the vibration exciter control unit 13 performs vibration control based on the measured rotation speed of the electric motor 3, the X-axis displacement and the Y-axis displacement that are displacements of the rotating shaft 4 with respect to the magnetic bearing as the vibration exciter 6. Generate a signal.
  • step S ⁇ b> 14 the vibration exciter control unit 13 outputs the generated vibration control signal to the magnetic bearing that is the vibration exciter 6 via the internal bus 20 and the output I / F 18.
  • the vibration control signal a low-frequency vibration control signal or a high-frequency vibration control signal (FIG. 5) which is a time-varying pattern of a voltage applied to the electromagnet coil (coil wound around the iron core) constituting the magnetic bearing. ) Is output to the magnetic bearing which is the vibrator 6.
  • step S ⁇ b> 15 the vibration exciter controller 13 accesses the storage unit 16 via the internal bus 20 and acquires environmental parameters such as air temperature, humidity, and altitude stored in the storage unit 16.
  • step S16 the vibration exciter controller 13 applies the time of the voltage to be applied to the electromagnet coil (which is wound around the iron core) constituting the magnetic bearing as the vibration exciter 6 according to the acquired environmental parameter.
  • the change pattern is changed, and the changed vibration control signal is output to the magnetic bearing as the vibrator 6 via the internal bus 20 and the output I / F 18.
  • the frequency of energization of the coil per unit time is changed.
  • FIG. 9 is a process flow diagram of the deterioration determination unit 14 shown in FIG.
  • the deterioration determination unit 14 measures the X of the bearing 2 measured by the first sensor 7 installed on the outer peripheral surface of the housing 24 of the bearing 2, for example, a triaxial acceleration sensor.
  • the measured vibration value at the present time (during diagnosis) of the axial vibration value, the Y-axis vibration value, and the Z-axis vibration value is acquired via the input I / F 11, the measured value acquisition unit 12, and the internal bus 20.
  • step S22 the deterioration determination unit 14 performs Fourier transform on the acquired measured vibration values of the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value of the bearing 2, and the frequency of the measured vibration value at the present time (during diagnosis). A spectrum distribution is obtained (dotted line shown in the left or right diagram of FIG. 7).
  • step S23 the deterioration determination unit 14 accesses the vibration value DB 15 via the internal bus 20, and stores the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration of the past bearing 2 stored in the vibration value DB 15. Refer to the measured vibration value.
  • step S ⁇ b> 24 the deterioration determination unit 14 accesses the storage unit 16 via the internal bus 20, and is set in advance by the user via the environmental parameters stored in the storage unit 16, such as temperature, humidity, and altitude, and the input unit 10.
  • the rotation speed setting value of the electric motor 3 stored in the storage unit 16 is referred to.
  • the environmental parameter and the rotational speed setting value of the electric motor 3 constitute measurement conditions at the time of diagnosis.
  • the resonance frequency of the bearing 2 changes if the rotation number of the motor 3 is different.
  • the set value is referred to and compared with the measured rotational speed at the present time (during diagnosis) of the electric motor 3 measured by an encoder (not shown) installed in the electric motor 3.
  • the rotation speed setting value is constant, the latest measurement conditions stored in the storage unit 16 are extracted.
  • the measurement condition closest to the measurement condition at the time of diagnosis (current time) is extracted.
  • the past environmental parameter that minimizes the square of the sum of the difference between the past environmental parameter stored in the storage unit 16 and the environmental parameter at the time of diagnosis (current time) is specified using the least square method.
  • the deterioration determination unit 14 extracts measurement conditions corresponding to or similar to the measurement conditions at the time of diagnosis (current time) from the measurement conditions at the time of past diagnosis stored in the storage unit 16.
  • the storage unit 16 and the vibration value DB 15 that store the environmental parameters that are measurement conditions at the time of past diagnosis and the rotation speed setting value of the motor 3 set in advance are linked by nodes to form a relational database. is doing. Therefore, the deterioration determination unit 14 extracts the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value of the bearing 2 corresponding to the extracted measurement conditions in the past diagnosis from the vibration value DB 15.
  • step S25 the deterioration determination unit 14 performs Fourier transform on the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value of the bearing 2, which are past amplitude values extracted from the vibration value DB 15, and serves as a reference past.
  • the frequency spectrum distribution of the vibration value is obtained (solid line shown in the left or right diagram of FIG. 7).
  • step S26 the deterioration determination unit 14 extracts a frequency at which the signal intensity is maximum in the frequency spectrum distribution of the vibration value at the present time (during diagnosis) obtained in step S22, and obtained in step S25.
  • the frequency having the maximum signal intensity is obtained and compared, and it is determined whether or not they match. As a result of the determination, if they match, the process proceeds to step S27, and if they do not match, the process proceeds to step S30.
  • step S27 the deterioration determination unit 14 determines the resonance frequency in the frequency spectrum distribution of the vibration value at the present time (during diagnosis) in the signal intensity S B at the resonance frequency f R and the frequency spectrum distribution of the extracted past vibration values.
  • the difference (S B ⁇ S A ) from the signal intensity S A at f R is calculated as the deterioration value.
  • step S28 the deterioration determination unit 14 compares the difference in signal strength (S B ⁇ S A ) obtained in step S27 with a plurality of predetermined threshold values TH1, and the deterioration state of the bearing 2 is “lubricating oil”.
  • step S29 the deterioration determination unit 14 transfers the bearing deterioration determination result obtained in step S28 to the display control unit 17 via the internal bus 20.
  • the display control unit 17 outputs the transferred bearing deterioration determination result to the display unit 19 via the internal bus 20 and the output I / F 18, displays the result on the screen of the display unit 19, and ends the process.
  • step S30 the deterioration determination unit 14 detects that the resonance frequency of the bearing at the current time (during diagnosis) has shifted, and the resonance at which the signal intensity is maximized in the frequency spectrum distribution of the vibration values at the current time (during diagnosis). and the frequency f B, the signal intensity in the frequency spectrum distribution of the extracted past vibration value calculates the difference (f B -f a) between the resonance frequency f a of the maximum.
  • step S31 the deterioration determination unit 14 compares the difference (f B ⁇ f A ) of the resonance frequency obtained in step S30 with a predetermined threshold value TH2, and the deterioration state of the bearing 2 indicates that the inner ring 21 of the bearing 2 has a deterioration state.
  • step S ⁇ b> 32 the deterioration determination unit 14 transfers the bearing deterioration determination result obtained in step S ⁇ b> 31 to the display control unit 17 via the internal bus 20.
  • the display control unit 17 outputs the transferred bearing deterioration determination result to the display unit 19 via the internal bus 20 and the output I / F 18, displays the result on the screen of the display unit 19, and ends the process.
  • steps S21 to S22 and steps S23 to S25 may be configured to be executed in parallel by the deterioration determination unit 14.
  • FIG. 10 is a diagram showing an example of the screen display of the display unit 19 shown in FIG.
  • the display screen 40 of the display unit 19 includes a first display area 41 that displays a frequency spectrum distribution indicating the relationship between signal intensity and frequency, and a second display that displays a determination result by the deterioration determination unit 14.
  • the area 42 includes an area for displaying a “read” button 43 and a “determination” button 44 for inputting various commands (hereinafter referred to as a command input area).
  • a command input area In the uppermost area on the display screen 40, the entire window in which the first display area 41 and the second display area 42 are displayed is closed, reduced / enlarged, and displayed on the control bar of the display unit 19. A button for designating movement or the like is displayed.
  • the display control unit 17 (FIG. 4), through the internal bus 20 and the output I / F 18, performs the current determination (during diagnosis) as the execution result of step S27 in FIG. and the signal intensity S B at the resonance frequency f R in the frequency spectrum distribution of the vibration value of) difference between the signal intensities S a at the resonance frequency f R in the extracted frequency spectral distribution of the past vibration value (S B -S a ) In the first display area 41 so as to be visible.
  • the display form is not limited to hatching display or highlight display, and any display form that can be distinguished from others, such as blink display or display in a different color, may be used.
  • the user can easily visually recognize the deteriorated state of the bearing 2, and in the example shown in FIG. 10, it is possible to immediately perform maintenance work for replenishing (injecting) the lubricating oil to the bearing 2. .
  • FIG. 11 is a diagram showing an example of the screen display of the display unit 19 shown in FIG.
  • the display screen 40 of the display unit 19 includes a first display region 41 that displays a frequency spectrum distribution indicating the relationship between signal intensity and frequency, and a second display that displays a determination result by the deterioration determination unit 14.
  • the area 42 includes an area for displaying a “read” button 43 and a “determination” button 44 for inputting various commands (hereinafter referred to as a command input area).
  • a command input area In the uppermost area on the display screen 40, the entire window in which the first display area 41 and the second display area 42 are displayed is closed, reduced / enlarged, and displayed on the control bar of the display unit 19.
  • a button for designating movement or the like is displayed.
  • the “read” button 43 becomes active.
  • the display control unit 17 (FIG. 4), through the internal bus 20 and the output I / F 18, performs the present time (during diagnosis) as a result of execution of step S30 in FIG. ) Of the resonance frequency f B at which the signal intensity is maximum in the frequency spectrum distribution of the vibration value and the resonance frequency f A at which the signal intensity is maximum in the frequency spectrum distribution of the extracted past vibration values (f B ⁇ f A ) is displayed in the first display area 41 so as to be visible.
  • the “determination” button 44 becomes active.
  • the deterioration state of the bearing 2 which is the execution result of the above-described step S ⁇ b> 31 by the deterioration determination unit 14, causes a crack on the inner peripheral surface of the inner ring 21 of the bearing 2.
  • “Crack occurrence” indicating that the bearing is in a state of being displayed is displayed in the second display area 42 as a bearing deterioration determination result, and indicates a state of being hatched or highlighted.
  • the display is not limited to hatching display or highlight display, but may be other display forms such as blink display or display in a different color.
  • the user can easily grasp the deterioration state of the bearing 2, and in the example shown in FIG. 11, the rotating device 8 having at least the motor 3, the bearing 2, and the rotor 5 is stopped and the bearing 2 is replaced. It is possible to support maintenance work.
  • the present invention is not limited to this.
  • the deterioration determination result of the bearing 2 by the deterioration determination unit 14 is displayed on the screen of the display unit 19.
  • the present invention is not limited to this.
  • the deterioration determination result of the bearing 2 by the deterioration determination unit 14 may be output by a print output device such as a printer, and the deterioration determination result of the bearing 2 by the deterioration determination unit 14 is output by voice message. Also good.
  • the measurement rotational speed of the electric motor 3 is output to the bearing deterioration diagnosis device 1 from an encoder or the like installed in the electric motor 3, but instead of this, for example, the bearing deterioration diagnosis device 1 is
  • a monitoring control device such as SCADA (Supervision Control And Data Acquisition) may be provided, and the measured rotational speed of the electric motor 3 may be transmitted from the SCADA to the bearing deterioration diagnosis device 1.
  • a bearing deterioration diagnosis device, a bearing deterioration diagnosis method, and a bearing deterioration diagnosis that enable deterioration diagnosis of a bearing with high accuracy and can perform deterioration diagnosis while avoiding damage to the bearing and the rotating device having the bearing.
  • a system can be realized.
  • the rotating shaft constituting the rotating device is vibrated in a frequency band including the resonance frequency (natural frequency) of the bearing, and the frequency of this vibration is controlled to thereby obtain the bearing. It is possible to avoid damage to the rotating device having the bearing and to safely perform the deterioration diagnosis of the bearing.
  • the bearing deterioration determination result by the deterioration determining unit constituting the bearing deterioration diagnosis device is displayed on the display screen of the display unit as “decrease in lubricating oil” and “change in consistency of lubricating oil”.
  • the degree of deterioration of the bearing or the state of deterioration such as “mixing of foreign matter into the lubricating oil”, “generation of iron powder” or “cracking” is subdivided and displayed. It is possible to visually recognize the necessary maintenance work immediately.
  • FIG. 12 is an overall schematic configuration diagram of the bearing deterioration diagnosis system of the second embodiment according to another embodiment of the present invention.
  • the present embodiment is different from the first embodiment in that the bearing is vibrated by a vibrator to diagnose bearing deterioration.
  • Other configurations are the same as those in the first embodiment, and the same reference numerals are given to the same components as those in the first embodiment, and the description overlapping with the first embodiment is omitted below.
  • the bearing deterioration diagnosis system 100 of this embodiment includes a rotor 5 that is a driven body, an electric motor (motor) 3 that has a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating shaft 4.
  • a rotating device 8 having a bearing 2 that rotatably supports the first sensor 7, a first sensor 7 attached to the bearing 2, a vibrator 6a that vibrates the bearing 2, and at least measurement values from the first sensor 7,
  • a bearing deterioration diagnosis device 1 is provided that outputs an excitation control signal to the vibrator 6a.
  • the bearing deterioration diagnostic apparatus 1 includes a vibrator 6a.
  • FIG. 13 is a cross-sectional view of the bearing 2 shown in FIG.
  • the bearing 2 covers a cylindrical inner ring 21 disposed so as to cover the outer peripheral surface of the rotating shaft 4, covers the outer peripheral surface of the cylindrical inner ring 21, and is radially outward from the outer peripheral surface of the inner ring 21.
  • a cylindrical outer ring 22 which is concentrically spaced apart from each other at a predetermined interval, and a cylindrical shape which covers the outer peripheral surface of the outer ring 22 and is arranged with a slight gap in the radial direction from the outer peripheral surface of the outer ring 22
  • the housing 24 is provided.
  • a plurality of arc-shaped deep grooves are formed on the outer peripheral surface of the cylindrical inner ring 21 at predetermined intervals in the circumferential direction.
  • an arc-shaped deep groove is formed on the inner peripheral surface of the cylindrical outer ring 22 at a position facing the deep groove formed on the outer peripheral surface of the inner ring 21. That is, the deep groove formed on the outer peripheral surface of the inner ring 21 and the deep groove formed on the inner peripheral surface of the outer ring 22 are arranged so as to be aligned in the radial direction.
  • a spherical ball 23 is disposed between the deep groove formed on the outer peripheral surface of the inner ring 21 and the deep groove formed on the inner peripheral surface of the outer ring 22.
  • the bearing 2 shown in FIG. 13 is a so-called ball bearing.
  • the bearing 2 is not limited to a ball bearing, and may be a roller bearing in which a cylindrical roller is provided instead of the ball 23. Furthermore, any form may be used for the bearing 2 as long as it is a rolling bearing.
  • the number of balls 23 is ten, but the number of balls 23 is not limited to ten.
  • 13 is a deep groove ball bearing, at least a slight gap between the outer peripheral surface of the outer ring 22 and the inner peripheral surface of the housing 24, and the outer peripheral surface of the rotating shaft 4 and the inner peripheral surface of the inner ring 21. Between them, lubricating oil is filled.
  • the bearing 2 includes a lubricating oil supply path and an oil drain for discharging (removing) the lubricating oil to the outside of the bearing 2.
  • the first sensor 7 is attached to the outer peripheral surface of the cylindrical housing 24.
  • the first sensor 7 receives the vibration in the housing 24 of the bearing 2 as an input, converts it into a vibration value, and outputs it.
  • the first sensor 7 includes, for example, an acceleration sensor and a logger.
  • As the acceleration sensor for example, a three-axis acceleration sensor is used. As shown in FIG. 12, the X-axis (horizontal direction) vibration value, the Y-axis (vertical direction) vibration value, and the Z-axis (rotation shaft 4 of the rotating shaft 4). Longitudinal) Measure vibration value.
  • three uniaxial acceleration sensors are used, and at least the horizontal direction (X direction), the vertical direction (Y direction) and the longitudinal direction (Z direction) of the rotating shaft 4 shown in FIG. It is good also as a structure attached to the bearing 2 so that the vibration of these 3 axial directions may be measured.
  • a vibrator 6a made of an ultrasonic vibrator is disposed, and the housing 24 of the bearing 2 is vibrated as indicated by a white arrow in FIG. .
  • the vibrator 6 a may be configured to be movable along the outer peripheral surface of the cylindrical housing 24 as long as it does not interfere with the first sensor 7.
  • FIG. 14 is a functional block diagram of the bearing deterioration diagnostic apparatus 1 shown in FIG.
  • the signal lines are indicated by dotted arrows. Note that the signal line may be either wired or wireless, but it is preferable that the signal line be wireless in consideration of the routing of the signal line.
  • the bearing deterioration diagnosis device 1 inputs a measurement value measured by an input unit 10 such as a mouse and the first sensor 7 and inputs setting information from the user via the input unit 10.
  • a measurement value acquisition unit 12 that acquires measurement values via the I / F 11 and the input I / F 11, a vibration exciter control unit 13 that generates a vibration control signal to be output to the vibration exciter 6 a, and the deterioration of the bearing 2 are determined.
  • a deterioration determination unit 14, a vibration value DB (database) 15 that stores past vibration values (actual vibration values) of the bearing 2, a storage unit 16, a display control unit 17, and an output I / F 18 are provided.
  • the vibrator control unit 13, the deterioration determination unit 14, and the display control unit 17 include, for example, a ROM that stores various programs, and a RAM that temporarily stores data in an arithmetic process or a program execution process. It is realized by a processor such as a CPU that executes various programs stored in the apparatus and ROM.
  • the measurement value acquisition unit 12 transfers the vibration value of the bearing 2 from the first sensor 7 to the deterioration determination unit 14 via the internal bus 20.
  • the measured value acquisition unit 12 transfers the measured rotational speed of the electric motor 3 from an encoder or the like installed in the electric motor 3 to the vibrator control unit 13 via the internal bus 20. Further, the bearing deterioration diagnosis device 1 receives the vibration control signal generated by the vibration exciter control unit 13 via the internal bus 20 and the output I / F 18, and based on the received vibration control signal, the bearing deterioration diagnosis device 1 receives the vibration control signal. 2 has a vibration exciter 6a.
  • the bearing deterioration diagnosis apparatus 1 includes a display unit 19 that displays the deterioration determination result of the bearing 2 from the deterioration determination unit 14 on the screen via the display control unit 17 and the output I / F 18.
  • the deterioration determination unit 14 accesses the vibration value DB 15 via the internal bus 20 and corresponds to or is similar to the measurement condition at the time of diagnosis from among the past vibration values (actual vibration values) stored in the vibration value DB 15. Extract past vibration values.
  • the deterioration determination unit 14 compares the extracted past vibration value with the measured vibration value of the bearing 2 acquired via the first sensor 7, the input I / F 11, and the measured value acquisition unit 12.
  • the deterioration determination of the bearing 2 which comprises the apparatus 8 is performed.
  • the vibrator 6a shown in FIG. 14 vibrates the bearing 2 constituting the rotating device 8 based on the vibration control signal generated by the vibrator control unit 13.
  • the vibration of the bearing 2 by the vibrator 6a is performed in a frequency band including the resonance frequency of the bearing 2 that can detect the highest sensitivity.
  • the housing 24 of the bearing 2 is vibrated at the resonance frequency, so that the horizontal direction (X direction), the vertical direction (Y direction), and the longitudinal direction (Z direction) of the rotating shaft 4 are shown in FIG. ) Natural frequency.
  • the natural frequency is calculated in advance from the shape and material characteristics of the housing 24 of the bearing 2.
  • the vibration exciter controller 13 reliably modulates the vibration control signal output to the vibration exciter 6a back and forth (within the frequency band including the resonance frequency) around the calculated natural frequency. It is possible to vibrate at the natural frequency.
  • the vibration exciter control unit 13 controls the time of vibration at the natural frequency per unit time by controlling the frequency of modulation back and forth around the natural frequency.
  • the vibration exciter control unit 13 controls the frequency of vibration of the bearing 2 to the housing 24 by the vibration exciter 6a, so that the rotating device 8 having the rotating shaft 4, the rotor 5, and the electric motor 3 is controlled.
  • the bearing 2 can be vibrated at the natural frequency without deteriorating the mechanical structure. Operation
  • movement of the vibration exciter control part 13 of a present Example is demonstrated.
  • the vibration exciter control unit 13 acquires the measured rotational speed of the electric motor 3 via the input I / F 11, the measured value acquisition unit 12, and the internal bus 20 using an encoder (not shown) installed in the electric motor 3.
  • an excitation control signal is generated based on the acquired measured rotational speed of the electric motor 3.
  • the vibration exciter control unit 13 accesses the storage unit 16 via the internal bus 20 and acquires environmental parameters such as temperature, humidity, and altitude stored in the storage unit 16.
  • the vibration exciter control unit 13 changes the vibration control signal to the vibration exciter 6a according to the acquired environmental parameter, and sends the changed vibration control signal via the internal bus 20 and the output I / F 18.
  • Output to the vibrator 6a In other words, the frequency of vibration applied to the bearing 2 by the vibrator 6a made of an ultrasonic vibrator is changed.
  • the operation of the deterioration determination unit 14 constituting the bearing deterioration diagnosis device 1 is the same as the processing flow shown in FIG.
  • the case where an ultrasonic vibrator is used as the vibrator 6a that vibrates the bearing 2 has been described as an example.
  • the present invention is not limited to this.
  • the vibrator 6a for example, a general mechanical, hydraulic, electrodynamic, or piezoelectric vibrator may be used.
  • the second sensors 9a and 9b required in the first embodiment are not required, so that the number of parts can be reduced as compared with the first embodiment. It becomes possible.
  • FIG. 15 is an overall schematic configuration diagram of the bearing deterioration diagnosis system of the third embodiment according to another embodiment of the present invention.
  • the present embodiment is different from the first embodiment in that a support base (support portion) that supports an electric motor is vibrated by a vibrator to diagnose bearing deterioration.
  • Other configurations are the same as those in the first embodiment, and the same reference numerals are given to the same components as those in the first embodiment, and the description overlapping with the first embodiment is omitted below.
  • the bearing deterioration diagnosis system 100 of this embodiment includes a rotor 5 that is a driven body, an electric motor (motor) 3 that has a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating shaft 4.
  • a rotating device 8 having a bearing 2 that is rotatably supported, and a support base 26 that supports the electric motor 3, a first sensor 7 attached to the bearing 2, a vibrator 6b that vibrates the support base 26, and at least a first
  • a bearing deterioration diagnosis apparatus 1 that acquires a measurement value from one sensor 7 and outputs an excitation control signal to the vibrator 6b is provided.
  • the bearing deterioration diagnostic apparatus 1 includes a vibrator 6b.
  • the vibrator 6b for example, an ultrasonic vibrator, a general mechanical, hydraulic, electrodynamic, or piezoelectric vibrator is used.
  • FIG. 16 is a functional block diagram of the bearing deterioration diagnostic apparatus 1 shown in FIG.
  • signal lines are indicated by dotted arrows.
  • the signal line may be either wired or wireless, but it is preferable that the signal line be wireless in consideration of the routing of the signal line.
  • the bearing deterioration diagnosis device 1 inputs a measurement value measured by an input unit 10 such as a mouse and the first sensor 7 and inputs setting information from the user via the input unit 10.
  • a measurement value acquisition unit 12 that acquires measurement values via the I / F 11 and the input I / F 11, a vibration exciter control unit 13 that generates a vibration control signal to be output to the vibration exciter 6 b, and the deterioration of the bearing 2 are determined.
  • a deterioration determination unit 14, a vibration value DB (database) 15 that stores past vibration values (actual vibration values) of the bearing 2, a storage unit 16, a display control unit 17, and an output I / F 18 are provided.
  • the vibrator control unit 13, the deterioration determination unit 14, and the display control unit 17 include, for example, a ROM that stores various programs, and a RAM that temporarily stores data in an arithmetic process or a program execution process. It is realized by a processor such as a CPU that executes various programs stored in the apparatus and ROM.
  • the measurement value acquisition unit 12 transfers the vibration value of the bearing 2 from the first sensor 7 to the deterioration determination unit 14 via the internal bus 20.
  • the measurement value acquisition unit 12 transfers the measured rotation speed of the motor 3 from, for example, an encoder (not shown) installed in the motor 3 to the vibrator control unit 13 via the internal bus 20.
  • the bearing deterioration diagnosis device 1 receives the vibration control signal generated by the vibration exciter control unit 13 via the internal bus 20 and the output I / F 18 and supports it based on the received vibration control signal.
  • a vibration exciter 6b for exciting the table 26 is provided.
  • the bearing deterioration diagnosis apparatus 1 includes a display unit 19 that displays the deterioration determination result of the bearing 2 from the deterioration determination unit 14 on the screen via the display control unit 17 and the output I / F 18.
  • the deterioration determination unit 14 accesses the vibration value DB 15 via the internal bus 20 and corresponds to or is similar to the measurement condition at the time of diagnosis from among the past vibration values (actual vibration values) stored in the vibration value DB 15. Extract past vibration values.
  • the deterioration determination unit 14 compares the extracted past vibration value with the measured vibration value of the bearing 2 acquired via the first sensor 7, the input I / F 11, and the measured value acquisition unit 12.
  • the deterioration determination of the bearing 2 which comprises the apparatus 8 is performed.
  • the vibrator 6 b shown in FIG. 16 vibrates the support base 26 that supports the electric motor 3 constituting the rotating device 8 based on the vibration control signal generated by the vibrator controller 13.
  • the vibration of the support base 26 by the vibrator 6b is performed in a frequency band including the resonance frequency of the bearing 2 that can detect the highest sensitivity.
  • the support base 26 is vibrated at the resonance frequency, the horizontal direction (X direction), the vertical direction (Y direction), and the longitudinal direction (Z direction) of the rotating shaft 4 are shown in FIG. Natural frequency is considered.
  • the natural frequency is calculated in advance from the shape and material characteristics of the bearing 2.
  • at least a rotor 5 as a driven body, an electric motor 3 having a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating device 8 having a bearing 2 that rotatably supports the rotating shaft 4 are installed.
  • the vibrator controller 13 reliably modulates the vibration control signal output to the vibrator 6b back and forth (within the frequency band including the resonance frequency) around the calculated natural frequency. It is possible to vibrate at the natural frequency. Further, the vibration exciter control unit 13 controls the time of vibration at the natural frequency per unit time by controlling the frequency of modulation back and forth around the natural frequency. In other words, the mechanical structure of the rotating device 8 having the rotating shaft 4, the rotor 5, and the electric motor 3 by the vibration exciter control unit 13 controlling the frequency of vibration applied to the support base 26 by the vibration exciter 6 b.
  • the support base 26 can be vibrated at the natural frequency of the bearing 2 without deteriorating the vibration. Operation
  • movement of the vibration exciter control part 13 of a present Example is demonstrated.
  • the vibration exciter control unit 13 acquires the measured rotational speed of the electric motor 3 via the input I / F 11, the measured value acquisition unit 12, and the internal bus 20 using an encoder (not shown) installed in the electric motor 3. Thereafter, an excitation control signal is generated based on the acquired measured rotational speed of the electric motor 3.
  • the vibration exciter control unit 13 accesses the storage unit 16 via the internal bus 20 and acquires environmental parameters such as temperature, humidity, and altitude stored in the storage unit 16.
  • the vibration exciter control unit 13 changes the vibration control signal to the vibration exciter 6b according to the acquired environmental parameter, and sends the changed vibration control signal via the internal bus 20 and the output I / F 18. And output to the vibrator 6b. In other words, the frequency of excitation to the support base 26 by the vibrator 6b is changed.
  • the operation of the deterioration determination unit 14 constituting the bearing deterioration diagnosis device 1 is the same as the processing flow shown in FIG. According to the present embodiment, in addition to the effects of the above-described first embodiment, the second sensors 9a and 9b required in the first embodiment are not required, so that the number of parts can be reduced as compared with the first embodiment. It becomes possible.
  • FIG. 17 is a functional block diagram of a bearing deterioration diagnosis device that constitutes the bearing deterioration diagnosis system according to the fourth embodiment of the present invention.
  • an FB vibration signal generation unit that generates a feedback vibration signal based on the measured vibration value of the bearing measured by the first sensor is provided, and the feedback vibration signal generated by the FB vibration signal generation unit is provided. It differs from the first embodiment in that it is configured to output to the vibration exciter control unit.
  • Other configurations are the same as those in the first embodiment, and the same reference numerals are given to the same components as those in the first embodiment, and the description overlapping with the first embodiment is omitted below.
  • the bearing deterioration diagnosis system 100 includes a rotor 5 that is a driven body, an electric motor (motor) 3 that includes a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating shaft 4.
  • a rotating device 8 having a bearing 2 that rotatably supports the first sensor 7, a first sensor 7 attached to the bearing 2, a vibrator 6 that vibrates the rotating shaft 4 that is rotatably supported by the bearing 2, and at least
  • a bearing deterioration diagnosis device 1 a that acquires a measurement value from the first sensor 7 and outputs an excitation control signal to the vibrator 6 is provided.
  • the bearing deterioration diagnosis device 1 a includes a vibrator 6.
  • the vibrator 6 of this embodiment uses the magnetic bearing shown in FIG. 3 as an example.
  • a position orthogonal to the axis of the rotating shaft 4 that is, in the cross section around the axis of the rotating shaft 4.
  • Two second sensors 9a (X-axis direction displacement sensors) and second sensors 9b (Y-axis direction displacement sensors) arranged at positions perpendicular to each other are attached.
  • the second sensor 9a and the second sensor 9b are attached so as to extend from the inner peripheral surface of the cylindrical magnetic bearing housing toward the rotary shaft 4 disposed in the center.
  • These two second sensors 9a and 9b are displacement sensors, and for example, an overcurrent sensor, an induction sensor, an optical sensor, or a Hall sensor is used.
  • the 2nd sensor 9a outputs the measured value of the X-axis direction displacement of the rotating shaft 4 arrange
  • the second sensor 9b outputs a measured value of the displacement in the Y-axis direction of the rotating shaft 4 arranged at the center of the cross section of the magnetic bearing as the vibrator 6 to the bearing deterioration diagnosis device 1a.
  • signal lines are indicated by dotted arrows. Note that the signal line may be either wired or wireless, but it is preferable that the signal line be wireless in consideration of the routing of the signal line.
  • the bearing deterioration diagnosis device 1 a inputs the measurement values measured by the input unit 10 such as a mouse, the first sensor 7, the second sensor 9 a, and the second sensor 9 b and through the input unit 10.
  • the input I / F 11 for inputting setting information from the user, the measurement value acquisition unit 12 for acquiring the measurement value via the input I / F 11, and the vibrator control for generating the vibration control signal to be output to the vibrator 6 Unit 13, an FB excitation signal generation unit 25 that generates a feedback excitation signal based on the measured vibration value of the bearing 2 measured by the first sensor 7, a deterioration determination unit 14 that determines deterioration of the bearing 2, and the past of the bearing 2
  • a vibration value DB (database) 15 for storing vibration values (actual vibration values), a storage unit 16, a display control unit 17, and an output I / F 18 are connected to each other via an internal bus 20. .
  • the vibrator control unit 13, the FB vibration signal generation unit 25, the deterioration determination unit 14, and the display control unit 17 are temporarily stored in, for example, a ROM that stores various programs and an arithmetic process or a program execution process. It is realized by a storage device such as a RAM for storing data and a processor such as a CPU for executing various programs stored in the ROM.
  • the measurement value acquisition unit 12 transfers the vibration value of the bearing 2 from the first sensor 7 to the deterioration determination unit 14 and the FB vibration signal generation unit 25 via the internal bus 20.
  • the measurement value acquisition unit 12 receives the measurement value of the X-axis direction displacement of the rotation shaft 4 from the second sensor 9a and the measurement value of the Y-axis direction displacement of the rotation shaft 4 from the second sensor 9b.
  • the measured value acquisition unit 12 transfers the measured rotational speed of the electric motor 3 from, for example, an encoder (not shown) installed in the electric motor 3 to the vibrator control unit 13 via the internal bus 20.
  • the bearing deterioration diagnosis device 1a receives the vibration control signal generated by the vibration exciter control unit 13 via the internal bus 20 and the output I / F 18, and rotates based on the received vibration control signal.
  • a vibration exciter 6 for exciting the shaft 4 is provided.
  • the bearing deterioration diagnosis device 1a includes a display unit 19 that displays the deterioration determination result of the bearing 2 from the deterioration determination unit 14 on the screen via the display control unit 17 and the output I / F 18.
  • the FB excitation signal generation unit 25 is based on the vibration value of the bearing 2 from the first sensor 7 transferred from the measurement value acquisition unit 12 via the internal bus 20. A time change pattern of a voltage applied to the coil is generated as an excitation signal.
  • the FB vibration signal generation unit 25 transfers the generated vibration signal to the vibration exciter control unit 13 via the internal bus 20.
  • the deterioration determination unit 14 accesses the vibration value DB 15 via the internal bus 20 and corresponds to or is similar to the measurement condition at the time of diagnosis from among the past vibration values (actual vibration values) stored in the vibration value DB 15. Extract past vibration values.
  • the deterioration determination unit 14 compares the extracted past vibration value with the measured vibration value of the bearing 2 acquired via the first sensor 7, the input I / F 11, and the measured value acquisition unit 12. The deterioration determination of the bearing 2 which comprises the apparatus 8 is performed.
  • the vibrator 6 shown in FIG. 17 vibrates the rotating shaft 4 constituting the rotating device 8 based on the vibration control signal generated by the vibrator controller 13.
  • the vibration of the rotating shaft 4 by the vibrator 6 is performed in a frequency band including the resonance frequency of the bearing 2 that can detect the highest sensitivity.
  • the rotating shaft 4 is vibrated at the resonance frequency, as shown in FIG. 1 described above, the horizontal direction (X direction), the vertical direction (Y direction), and the longitudinal direction of the rotating shaft 4 (Z direction). Natural frequency is considered.
  • the natural frequency is calculated in advance from the shape and material characteristics of the bearing 2.
  • a rotor 5 as a driven body, an electric motor 3 having a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating device 8 having a bearing 2 that rotatably supports the rotating shaft 4 are installed.
  • the vibrator control unit 13 reliably modulates the vibration control signal output to the vibrator 6 back and forth (within the frequency band including the resonance frequency) around the calculated natural frequency. It is possible to vibrate at the natural frequency.
  • the vibration exciter control unit 13 controls the time of vibration at the natural frequency per unit time by controlling the frequency of modulation back and forth around the natural frequency.
  • movement of the vibration exciter control part 13 of a present Example is demonstrated.
  • the vibration exciter control unit 13 is the magnetic exciter 6 generated by the FB vibration signal generation unit 25 after performing steps S11 to S15 in FIG. 8 described in the first embodiment.
  • step S16 An excitation signal that is a time change pattern of a voltage applied to the coil of each pole of the bearing is acquired via the internal bus 20.
  • the vibration exciter controller 13 serves as the vibration exciter 6 according to the acquired environmental parameter and the vibration signal that is the time change pattern of the voltage from the FB vibration signal generation unit 25.
  • the time change pattern of the voltage applied to the electromagnet coil (which is wound around the iron core) constituting the magnetic bearing is changed, and the changed excitation control signal is sent via the internal bus 20 and the output I / F 18. It outputs to the magnetic bearing which is the vibrator 6. In other words, the frequency of energization of the coil per unit time is changed. Thereby, the frequency of excitation to the rotating shaft 4 is changed.
  • the bearing deterioration diagnosis device 1a includes the vibrator 6 that vibrates the rotating shaft 4. Instead, the bearing deterioration diagnosis device 1a includes the bearing shown in the second embodiment. It is good also as a structure which has the vibrator 6a which vibrates 2. Further, the bearing deterioration diagnosis device 1a may include a vibrator 6b that vibrates the support base 26 that supports the electric motor 3 shown in the third embodiment.
  • the vibration exciter control unit outputs the vibration control signal to the vibration exciter in consideration of the vibration signal from the FB vibration signal generation unit. Therefore, it is possible to more preferably vibrate compared to the first embodiment, and it is possible to more effectively avoid damage to the bearing and the rotating device having the bearing.
  • the bearing deterioration diagnosis result on the display screen of the display unit of the bearing deterioration diagnosis apparatus. It is good also as a structure, or it is good also as a structure which displays a deterioration state as a ratio (numerical value display).
  • the display unit 19 constituting the bearing deterioration diagnosis device is installed in the vicinity of the rotating device 8 or installed in a control room or the like of the rotating device 8 via a network or the like. It is good also as a structure installed in.
  • the user can easily grasp the deterioration state of the bearing, so that the restraint operation is performed in order to keep the bearing until the next maintenance, or a failure occurs.
  • the operation mode of the rotating equipment is selected according to the deterioration state of the bearing. By changing, it becomes possible to provide an optimal operation service.
  • maintenance adjustment services such as ordering parts immediately and accelerating the next inspection date from the schedule or reviewing the maintenance cycle in view of the progress of the deterioration of the bearing.
  • it can be used as a part of the rotating equipment maintenance report and used as a proof when requesting a cost burden when parts replacement is required. Can do.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Provided are a bearing deterioration diagnosis device, bearing deterioration diagnosis method, and bearing deterioration diagnosis system that make it possible to diagnose the deterioration of a bearing with a high degree of accuracy and carry out deterioration diagnosis while avoiding damage to a bearing and a rotating machine having the bearing. A bearing deterioration diagnosis device 1 is provided with: a vibration control unit (12, 6) for vibrating a rotating shaft 4 that transmits a rotational driving force to a rotor 5 that is a driven body, a bearing 2 that rotationally supports the rotating shaft 4, or a support part 26 of an electric motor 3 having the rotating shaft 4 using a frequency band that includes a resonant frequency of the bearing 2 and controlling how often this vibration occurs; a vibration value database 15 for storing the past vibration values of the bearing 4 in association with at least the rotation speed of the electric motor 3; and a deterioration determination unit 14 for determining the deterioration state of the bearing 2 on the basis of the measured vibration value for the bearing 2 and the past vibration values stored in the vibration value database 15.

Description

軸受劣化診断装置、軸受劣化診断方法及び軸受劣化診断システムBearing deterioration diagnosis device, bearing deterioration diagnosis method, and bearing deterioration diagnosis system
 本発明は、軸受を有する回転機器に係り、軸受の劣化を診断するのに好適な軸受劣化診断装置、軸受劣化診断方法及び軸受劣化診断システムに関する。 The present invention relates to a rotating device having a bearing, and relates to a bearing deterioration diagnosis device, a bearing deterioration diagnosis method, and a bearing deterioration diagnosis system suitable for diagnosing deterioration of the bearing.
 回転体における軸受の異常診断において状態監視装置(CMS)を用いた予兆診断が行われ始めている。一般に回転機器の軸受に異常が発生すると、これらの機器の運転中に発する振動に変化が現れる場合が多く、軸受の発する振動を測定し、その状態を監視する手法が用いられている。軸受の振動を測定し、その加速度値を評価する、或いは振動のエンベロープの周波数解析を実行することにより、軸受の傷の有無や傷の発生場所を推定する手法が確立され実用化されている。しかしながら、軸受は、設計時の十分な安全係数と対象機械の施工状態・ 設置環境のばらつきにより劣化速度及び寿命のばらつきが大きく、劣化の診断精度が低いことが問題とされている。 
 そこで、例えば、特許文献1及び特許文献2に記載される技術が提案されている。 
 特許文献1には、転がり軸受の外周面に超音波発信器を複数配し、超音波発信器により加振しつつ軸受の外周面周方向に移動させ、そのインピーダンスを測定する構成が開示されている。そして、特許文献1では、測定されるインピーダンスに基づき、軸受け芯ずれ量を推定する旨記載されている。 
 また、特許文献2には、軸受に加速度センサを設置し、回転機器の正常状態での振動値、又は、対象となる回転機器に類似する他の回転機器の正常状態の振動値をデータベース化し、実測される軸受の振動と上記データベースに基づき軸受の余寿命を診断する構成が開示されている。
Predictive diagnosis using a state monitoring device (CMS) is beginning to be performed in the abnormality diagnosis of a bearing in a rotating body. In general, when an abnormality occurs in a bearing of a rotating device, a change often appears in the vibration generated during operation of these devices, and a method of measuring the vibration generated by the bearing and monitoring the state is used. A method for estimating the presence / absence of a flaw in a bearing and a place where the flaw is generated has been established and put into practical use by measuring the vibration of the bearing and evaluating the acceleration value thereof or executing frequency analysis of the vibration envelope. However, bearings have a problem in that the deterioration diagnosis accuracy is low due to large variations in deterioration speed and life due to variations in the safety factor at the time of design and the construction state and installation environment of the target machine.
Therefore, for example, techniques described in Patent Document 1 and Patent Document 2 have been proposed.
Patent Document 1 discloses a configuration in which a plurality of ultrasonic transmitters are arranged on the outer peripheral surface of a rolling bearing, and the impedance is measured by moving in the circumferential direction of the outer peripheral surface of the bearing while being vibrated by the ultrasonic transmitter. Yes. Patent Document 1 describes that the amount of bearing misalignment is estimated based on the measured impedance.
Further, in Patent Document 2, an acceleration sensor is installed on the bearing, and the vibration value in the normal state of the rotating device or the vibration value in the normal state of another rotating device similar to the target rotating device is databased. A configuration for diagnosing the remaining life of a bearing based on the measured vibration of the bearing and the database is disclosed.
特開2001-124665号公報JP 2001-124665 A 特開2008-102107号公報JP 2008-102107 A
 しかしながら、特許文献1に記載される構成では、超音波発信器により加振しつつ軸受の局所的な共振周波数を計測する構成であるため、共振周波数に相当する振動を加振し続けることとなり、軸受、更には軸受を有する回転機器の損傷を招く恐れがある。 
 また、特許文献2に記載される構成では、対象となる回転機器と類似する他の回転機器に備えられる軸受から、正常状態における振動値を予め取得しデータベース化する必要があり、準備作業の手間の増大を招く。更に、特許文献1と同様に、対象となる軸受に対し共振周波数に相当する振動を加振し続けることとなり、軸受、更には軸受を有する回転機器の損傷を招く恐れがある。 
 そこで、本発明は、高精度な軸受の劣化診断を可能とすると共に、軸受及び軸受を有する回転機器の損傷を回避しつつ劣化診断可能な軸受劣化診断装置、軸受劣化診断方法及び軸受劣化診断システムを提供する。
However, in the configuration described in Patent Document 1, since it is a configuration that measures the local resonance frequency of the bearing while being vibrated by an ultrasonic transmitter, vibration corresponding to the resonance frequency is continuously vibrated, There is a risk of damaging the bearing and even the rotating equipment having the bearing.
Further, in the configuration described in Patent Document 2, it is necessary to previously acquire a vibration value in a normal state from a bearing provided in another rotating device similar to the target rotating device, and create a database. Increase. Furthermore, similarly to Patent Document 1, vibration corresponding to the resonance frequency is continuously applied to the target bearing, which may cause damage to the bearing and the rotating device having the bearing.
Therefore, the present invention enables a bearing deterioration diagnosis apparatus, a bearing deterioration diagnosis method, and a bearing deterioration diagnosis system that enable a deterioration diagnosis of a bearing with high accuracy and that can be diagnosed while avoiding damage to a rotating device having the bearing and the bearing. I will provide a.
 上記課題を解決するため、本発明の軸受劣化診断装置は、被駆動体であるロータへ回転駆動力を伝達する回転軸又は前記回転軸を回転可能に支持する軸受若しくは前記回転軸を有する電動機の支持部に対し、前記軸受の共振周波数を含む周波数帯域にて加振し、当該加振の頻度を制御する加振制御部と、前記軸受の過去の振動値を、少なくとも前記電動機の回転数と対応付けて格納する振動値データベースと、計測される前記軸受の計測振動値と前記振動値データベースに格納される過去の振動値に基づき、前記軸受の劣化状態を判定する劣化判定部と、を備えることを特徴とする。 
 また、本発明の軸受劣化診断方法は、少なくとも、被駆動体であるロータへ回転駆動力を伝達する回転軸を有する電動機と、前記回転軸を回転可能に支持する軸受と、を有する回転機器の軸受劣化診断方法であって、前記回転軸又は前記軸受若しくは電動機を支持する支持部に対し、前記軸受の共振周波数を含む周波数帯域にて加振すると共に当該加振の頻度を制御し、少なくとも前記電動機の回転数と対応付けて前記軸受の過去の振動値を格納する振動値データベースを参照し、計測される前記軸受の計測振動値と前記振動値データベースに格納される過去の振動値に基づき、前記軸受の劣化状態を判定することを特徴とする。 
 また、本発明の軸受劣化診断システムは、少なくとも、被駆動体であるロータへ回転駆動力を伝達する回転軸を有する電動機と、前記回転軸を回転可能に支持する軸受と、前記電動機を支持する支持部を、有する回転機器と、前記軸受の劣化状態を判定する軸受劣化診断装置と、を備え、前記軸受劣化診断装置は、前記回転軸又は前記軸受若しくは前記支持部に対し、前記軸受の共振周波数を含む周波数帯域にて加振し、当該加振の頻度を制御する加振制御部と、前記軸受の過去の振動値を、少なくとも前記電動機の回転数と対応付けて格納する振動値データベースと、計測される前記軸受の計測振動値と前記振動値データベースに格納される過去の振動値に基づき、前記軸受の劣化状態を判定する劣化判定部と、を有することを特徴とする。
In order to solve the above-described problems, a bearing deterioration diagnosis apparatus according to the present invention is a rotating shaft that transmits a rotational driving force to a rotor that is a driven body, a bearing that rotatably supports the rotating shaft, or an electric motor having the rotating shaft. Excitation in a frequency band including the resonance frequency of the bearing with respect to the support, and an excitation control unit that controls the frequency of the excitation, and a past vibration value of the bearing, at least with the rotational speed of the motor A vibration value database stored in association with each other; and a deterioration determination unit that determines a deterioration state of the bearing based on a measured vibration value of the bearing to be measured and a past vibration value stored in the vibration value database. It is characterized by that.
The bearing deterioration diagnosis method of the present invention is a rotating device having at least an electric motor having a rotating shaft that transmits a rotational driving force to a rotor that is a driven body, and a bearing that rotatably supports the rotating shaft. A method for diagnosing bearing deterioration, wherein the rotating shaft or the support portion supporting the bearing or the electric motor is vibrated in a frequency band including a resonance frequency of the bearing and the frequency of the vibration is controlled, and at least the With reference to a vibration value database that stores the past vibration value of the bearing in association with the rotation speed of the electric motor, based on the measured vibration value of the bearing to be measured and the past vibration value stored in the vibration value database, The deterioration state of the bearing is determined.
The bearing deterioration diagnosis system of the present invention supports at least an electric motor having a rotating shaft that transmits a rotational driving force to a rotor that is a driven body, a bearing that rotatably supports the rotating shaft, and the electric motor. A rotating device having a support portion; and a bearing deterioration diagnosis device that determines a deterioration state of the bearing. The bearing deterioration diagnosis device is configured to resonate the bearing with respect to the rotating shaft or the bearing or the support portion. A vibration control unit that vibrates in a frequency band including a frequency and controls the frequency of the vibration, and a vibration value database that stores a past vibration value of the bearing in association with at least the rotational speed of the motor; A deterioration determination unit that determines a deterioration state of the bearing based on a measured vibration value of the bearing to be measured and a past vibration value stored in the vibration value database.
 本発明によれば、高精度な軸受の劣化診断を可能とすると共に、軸受及び軸受を有する回転機器の損傷を回避しつつ劣化診断可能な軸受劣化診断装置、軸受劣化診断方法及び軸受劣化診断システムを提供することができる。 
 例えば、本発明によれば、回転機器を構成する回転軸又は軸受け若しくは電動機の支持部に対し、軸受の共振周波数(固有振動数)を含む周波数帯域にて加振し、この加振の頻度を制御することにより、軸受、更には軸受を有する回転機器の損傷を回避でき、安全に軸受の劣化診断を行うことができる。 
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, a bearing deterioration diagnosis device, a bearing deterioration diagnosis method, and a bearing deterioration diagnosis system capable of performing a deterioration diagnosis while enabling damage diagnosis of a bearing and the rotating device having the bearing while preventing deterioration of the bearing with high accuracy. Can be provided.
For example, according to the present invention, the rotating shaft or the bearing constituting the rotating device or the support portion of the electric motor is vibrated in a frequency band including the resonance frequency (natural frequency) of the bearing, and the frequency of the vibration is determined. By controlling, it is possible to avoid damage to the bearings and also the rotating equipment having the bearings, and to safely perform deterioration diagnosis of the bearings.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
本発明の一実施例に係る実施例1の軸受劣化診断システムの全体概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram of the bearing deterioration diagnostic system of Example 1 which concerns on one Example of this invention. 図1に示す軸受の横断面であり、A-A断面矢視図である。FIG. 2 is a cross-sectional view of the bearing shown in FIG. 図1に示す加振器の一例である磁気軸受の横断面図である。It is a cross-sectional view of the magnetic bearing which is an example of the vibrator shown in FIG. 図1に示す軸受劣化診断装置の機能ブロック図である。It is a functional block diagram of the bearing deterioration diagnostic apparatus shown in FIG. 図4に示す加振器制御部から加振器へ出力される加振制御信号の概略図である。It is the schematic of the vibration control signal output to a vibrator by the vibrator control part shown in FIG. 図4に示す振動値DBのデータ構造の説明図である。It is explanatory drawing of the data structure of vibration value DB shown in FIG. 信号強度と周波数との関係図である。It is a relationship diagram between signal strength and frequency. 図4に示す加振器制御部の処理フロー図である。FIG. 5 is a processing flowchart of the vibrator control unit shown in FIG. 4. 図4に示す劣化判定部の処理フロー図である。FIG. 5 is a process flow diagram of a deterioration determination unit shown in FIG. 4. 図4に示す表示部の画面表示の一例を示す図である。It is a figure which shows an example of the screen display of the display part shown in FIG. 図4に示す表示部の画面表示の一例を示す図である。It is a figure which shows an example of the screen display of the display part shown in FIG. 本発明の他の実施例に係る実施例2の軸受劣化診断システムの全体概略構成図である。It is a whole schematic block diagram of the bearing deterioration diagnostic system of Example 2 which concerns on the other Example of this invention. 図12に示す軸受の横断面図であり、A-A断面矢視図である。FIG. 13 is a transverse sectional view of the bearing shown in FIG. 12 and is a sectional view taken along the line AA. 図12に示す軸受劣化診断装置の機能ブロック図である。It is a functional block diagram of the bearing deterioration diagnostic apparatus shown in FIG. 本発明の他の実施例に係る実施例3の軸受劣化診断システムの全体概略構成図である。It is a whole schematic block diagram of the bearing deterioration diagnostic system of Example 3 which concerns on the other Example of this invention. 図15に示す軸受劣化診断装置の機能ブロック図である。It is a functional block diagram of the bearing deterioration diagnostic apparatus shown in FIG. 本発明の他の実施例に係る実施例4の軸受劣化診断システムを構成する軸受劣化診断装置の機能ブロック図である。It is a functional block diagram of the bearing degradation diagnostic apparatus which comprises the bearing degradation diagnostic system of Example 4 which concerns on the other Example of this invention.
 本明細書において、少なくとも被駆動体であるロータ、ロータへ回転駆動力を伝達する回転軸を有する電動機(モータ)、及び回転軸を回転可能に支持する軸受を有する回転機器とは、例えば、ポンプ、ファン、圧縮機、又は発電機等を含むものである。以下、本明細書においては、単に、回転機器と称する。 
 また、本明細書においては、共振周波数を固有振動数と称する場合もあり、これら、共振周波数と固有振動数とは同義である。 
 以下、図面を用いて本発明の実施例について説明する。
In this specification, at least a rotor that is a driven body, an electric motor (motor) having a rotating shaft that transmits a rotational driving force to the rotor, and a rotating device having a bearing that rotatably supports the rotating shaft include, for example, a pump , A fan, a compressor, or a generator. Hereinafter, in this specification, it is simply referred to as a rotating device.
In this specification, the resonance frequency may be referred to as a natural frequency, and these resonance frequency and natural frequency are synonymous.
Embodiments of the present invention will be described below with reference to the drawings.
 図1は、本発明の一実施例に係る実施例1の軸受劣化診断システムの全体概略構成図である。図1に示すように、軸受劣化診断システム100は、被駆動体であるロータ5、ロータ5へ回転駆動力を伝達する回転軸4を有する電動機(モータ)3、と回転軸4を回転可能に支持する軸受2を有する回転機器8、軸受2に取り付けられた第1センサ7、及び、軸受2にて回転可能に支持される回転軸4を加振する加振器6、少なくとも第1センサ7からの計測値を取得し、加振器6へ加振制御信号を出力する軸受劣化診断装置1を備える。ここで、軸受劣化診断装置1は、加振器6を含む。なお、回転軸4を、図示しないカップリングを介して、被駆動体であるロータ5へ連結する構成としても良い。 FIG. 1 is an overall schematic configuration diagram of a bearing deterioration diagnosis system according to a first embodiment of the present invention. As shown in FIG. 1, the bearing deterioration diagnosis system 100 can rotate a rotating shaft 4 and a rotor 5 that is a driven body, a motor 3 having a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and the rotating shaft 4. A rotating device 8 having a bearing 2 to be supported, a first sensor 7 attached to the bearing 2, a vibrator 6 for vibrating the rotating shaft 4 rotatably supported by the bearing 2, at least the first sensor 7. The bearing deterioration diagnosis device 1 is provided which acquires a measurement value from the motor and outputs an excitation control signal to the vibrator 6. Here, the bearing deterioration diagnostic apparatus 1 includes a vibrator 6. In addition, it is good also as a structure which connects the rotating shaft 4 to the rotor 5 which is a to-be-driven body through the coupling which is not shown in figure.
 図2に、図1に示す軸受2の横断面図であり、A-A断面矢視図を示す。図2に示すように、軸受2は、回転軸4の外周面を覆うように配される円筒状の内輪21、円筒状の内輪21の外周面を覆い且つ内輪21の外周面より径方向外側に所定の間隔にて離間し同心円状に配される円筒状の外輪22、及び、外輪22の外周面を覆い且つ外輪22の外周面より径方向に僅かな間隙を介して配される円筒状のハウジング24を備える。また、円筒状の内輪21の外周面には、周方向に所定の間隔にて円弧状の深溝が複数形成されている。一方、円筒状の外輪22の内周面には、内輪21の外周面に形成された深溝と対向する位置に円弧状の深溝が形成されている。すなわち、内輪21の外周面に形成された深溝と、外輪22の内周面に形成された深溝とは、径方向に整列するよう配されている。これら、内輪21の外周面に形成された深溝と外輪22の内周面に形成された深溝との間に球状の玉23が配されている。これにより、ラジアル荷重、アキシャル荷重、又はこれらの組み合わせである合成荷重を受けることができる。図2に示す軸受2は、所謂、玉軸受である。なお、軸受2は、玉軸受に限らず、玉23に代えて円柱状のころを配するころ軸受としても良い。また更には、軸受2は転がり軸受であればいずれの形態を用いても良い。 FIG. 2 is a cross-sectional view of the bearing 2 shown in FIG. As shown in FIG. 2, the bearing 2 covers a cylindrical inner ring 21 disposed so as to cover the outer peripheral surface of the rotating shaft 4, covers the outer peripheral surface of the cylindrical inner ring 21, and is radially outward from the outer peripheral surface of the inner ring 21. A cylindrical outer ring 22 which is concentrically spaced apart from each other at a predetermined interval, and a cylindrical shape which covers the outer peripheral surface of the outer ring 22 and is arranged with a slight gap in the radial direction from the outer peripheral surface of the outer ring 22 The housing 24 is provided. A plurality of arc-shaped deep grooves are formed on the outer peripheral surface of the cylindrical inner ring 21 at predetermined intervals in the circumferential direction. On the other hand, an arc-shaped deep groove is formed on the inner peripheral surface of the cylindrical outer ring 22 at a position facing the deep groove formed on the outer peripheral surface of the inner ring 21. That is, the deep groove formed on the outer peripheral surface of the inner ring 21 and the deep groove formed on the inner peripheral surface of the outer ring 22 are arranged so as to be aligned in the radial direction. A spherical ball 23 is disposed between the deep groove formed on the outer peripheral surface of the inner ring 21 and the deep groove formed on the inner peripheral surface of the outer ring 22. Thereby, it is possible to receive a combined load which is a radial load, an axial load, or a combination thereof. The bearing 2 shown in FIG. 2 is a so-called ball bearing. The bearing 2 is not limited to a ball bearing, and may be a roller bearing in which a cylindrical roller is provided instead of the ball 23. Furthermore, any form may be used for the bearing 2 as long as it is a rolling bearing.
 図2に示す例では、玉23の数は10個であるが、玉23の個数は10個に限られるものでは無い。また、図2に示す軸受2は、深溝玉軸受であり、少なくとも、外輪22の外周面とハウジング24の内周面との僅かな間隙及び、回転軸4の外周面と内輪21の内周面との間には、潤滑油が充填されている。なお、図2では図示しないが、軸受2は、潤滑油の供給路及び潤滑油を軸受2の外部へ排出(除去)するためのオイルドレーンを備える。 
 また、図2に示すように、円筒状のハウジング24の外周面に、第1センサ7が取り付けられている。第1センサ7は、軸受2のハウジング24における振動を入力とし、振動値に変換して出力する。第1センサ7は、例えば加速度センサ及びロガーを備える。加速度センサとして、例えば、三軸加速度センサが用いられ、図1に示すように、軸受2のX軸(水平方向)振動値、Y軸(垂直方向)振動値、及びZ軸(回転軸4の長手方向)振動値を計測する。なお、この三軸加速度センサに代えて、一軸加速度センサを3個用いて、少なくとも図1に示した水平方向(X方向)、垂直方向(Y方向)及び回転軸4の長手方向(Z方向)の3軸方向の振動を計測するよう、軸受2に取り付ける構成としても良い。また、三軸方向の振動値はロガーにて同期して記録されると共に、ロガーにて回転機器8の実際の回転速度も同時に記録される。なお、回転軸4の長手方向に直交する仮想面内(軸受2の横断面内)において、X方向(図1に示す水平方向)、Y方向(図1に示す垂直方向)への加振により、本来、軸受2に生ずるX方向及びY方向で規定される面内での振動とは異なり、回転軸4の長手方向(Z方向)への振動が生じる現象が確認された。すなわち、本発明者等は、X方向及びY方向へ加振した場合に、Z方向への振動が増幅するX方向及びY方向の加振周波数が存在するとの知見を得たものである。
In the example illustrated in FIG. 2, the number of balls 23 is ten, but the number of balls 23 is not limited to ten. 2 is a deep groove ball bearing, at least a slight gap between the outer peripheral surface of the outer ring 22 and the inner peripheral surface of the housing 24, and the outer peripheral surface of the rotating shaft 4 and the inner peripheral surface of the inner ring 21. Between them, lubricating oil is filled. Although not shown in FIG. 2, the bearing 2 includes a lubricating oil supply path and an oil drain for discharging (removing) the lubricating oil to the outside of the bearing 2.
As shown in FIG. 2, the first sensor 7 is attached to the outer peripheral surface of the cylindrical housing 24. The first sensor 7 receives the vibration in the housing 24 of the bearing 2 as an input, converts it into a vibration value, and outputs it. The first sensor 7 includes, for example, an acceleration sensor and a logger. As the acceleration sensor, for example, a three-axis acceleration sensor is used. As shown in FIG. 1, the X-axis (horizontal direction) vibration value, the Y-axis (vertical direction) vibration value, and the Z-axis (rotation shaft 4 of the rotation shaft 4). Longitudinal) Measure vibration value. Instead of the three-axis acceleration sensor, three uniaxial acceleration sensors are used, and at least the horizontal direction (X direction), the vertical direction (Y direction) and the longitudinal direction (Z direction) of the rotating shaft 4 shown in FIG. It is good also as a structure attached to the bearing 2 so that the vibration of these 3 axial directions may be measured. In addition, the vibration values in the three-axis directions are recorded in synchronization with the logger, and the actual rotational speed of the rotating device 8 is also recorded at the same time with the logger. In addition, in a virtual plane orthogonal to the longitudinal direction of the rotating shaft 4 (within the transverse section of the bearing 2), by excitation in the X direction (horizontal direction shown in FIG. 1) and Y direction (vertical direction shown in FIG. 1). Unlike the vibration in the plane defined by the X direction and the Y direction originally generated in the bearing 2, a phenomenon in which the vibration in the longitudinal direction (Z direction) of the rotating shaft 4 occurs was confirmed. That is, the present inventors have obtained the knowledge that there are excitation frequencies in the X direction and the Y direction that amplify vibrations in the Z direction when excitation is performed in the X direction and the Y direction.
 図3は、図1に示す加振器6の一例である磁気軸受の横断面図である。図3に示すように、加振器6としての磁気軸受は、コイル31aが捲回され、円筒状の磁気軸受ハウジングの内周面より中央に配される回転軸4へと向かい延伸する鉄心と、コイル31baが捲回され、磁気軸受ハウジングの内周より中央に配される回転軸4へと向かい延伸する鉄心のペアにて形成される第1極を備える。また、同様に、コイル32aが捲回される鉄心とコイル32bが捲回される鉄心のペアにて形成される第2極、コイル33aが捲回される鉄心とコイル33bが捲回される鉄心のペアにて形成される第3極、及び、コイル34aが捲回される鉄心とコイル34bが捲回される鉄心のペアにて形成される第4極を備える。第1極のコイル31a及びコイル31bへ電流I(図示せず)が通電されると、点線で示すように、磁気軸受ハウジング、2つの鉄心、エアギャップ、及び回転軸4を磁束が通る磁路が形成される。第2極についても同様にコイル32a及びコイル32bへ電流I(図示せず)を通電することで磁路が形成され、第3極についても同様にコイル33a及びコイル33bへ電流I(図示せず)を通電することで磁路が形成され、第4極についても同様にコイル34a及びコイル34bへ電流I(図示せず)を通電することで磁路が形成される。図3に示す加振器6としての磁気軸受は、ラジアル磁気軸受である。 FIG. 3 is a cross-sectional view of a magnetic bearing which is an example of the vibrator 6 shown in FIG. As shown in FIG. 3, the magnetic bearing as the vibrator 6 includes an iron core wound around a coil 31 a and extending from the inner peripheral surface of the cylindrical magnetic bearing housing toward the rotating shaft 4 disposed in the center. The coil 31ba is wound, and includes a first pole formed of a pair of iron cores extending toward the rotating shaft 4 disposed in the center from the inner periphery of the magnetic bearing housing. Similarly, the second pole formed by a pair of an iron core around which the coil 32a is wound and an iron core around which the coil 32b is wound, and an iron core around which the coil 33a is wound and the coil 33b are wound. And a fourth pole formed by a pair of an iron core around which the coil 34a is wound and an iron core around which the coil 34b is wound. When a current I A (not shown) is supplied to the first pole coil 31a and the coil 31b, as shown by the dotted lines, the magnetic flux that passes through the magnetic bearing housing, the two iron cores, the air gap, and the rotating shaft 4 passes through. A path is formed. Similarly, the current I B (not shown) is supplied to the coil 32a and the coil 32b in the second pole to form a magnetic path, and the current I C (in the figure) is similarly supplied to the coil 33a and the coil 33b in the third pole. A magnetic path is formed by energizing the coil 34a and the coil 34b, and a magnetic path is formed by energizing the current I D (not shown) to the coil 34a and the coil 34b. The magnetic bearing as the vibrator 6 shown in FIG. 3 is a radial magnetic bearing.
 また、図3に示すように、回転軸4の軸心から見て直交する位置、すなわち、回転軸4の軸心を中心として横断面内において相互に直角となる位置に配される2つの第2センサ9a(X軸方向変位センサ)及び第2センサ9b(Y軸方向変位センサ)が取り付けられている。これら、第2センサ9a及び第2センサ9bは、円筒状の磁気軸受ハウジングの内周面より中央に配される回転軸4へと向かい延伸するよう取り付けられている。これら2つの第2センサ9a及び第2センサ9bは、変位センサであって、例えば、過電流センサ、誘導センサ、光センサ、又はホールセンサ等が用いられる。第2センサ9aは、加振器6としての磁気軸受の横断面中央部に配される回転軸4のX軸方向変位の計測値を、軸受劣化診断装置1へ出力する。また、第2センサ9bは、加振器6としての磁気軸受の横断面中央部に配される回転軸4のY軸方向変位の計測値を、軸受劣化診断装置1へ出力する。 Further, as shown in FIG. 3, the two second positions arranged at positions orthogonal to each other when viewed from the axis of the rotating shaft 4, that is, at positions perpendicular to each other in the cross section around the axis of the rotating shaft 4. Two sensors 9a (X-axis direction displacement sensor) and second sensor 9b (Y-axis direction displacement sensor) are attached. The second sensor 9a and the second sensor 9b are attached so as to extend from the inner peripheral surface of the cylindrical magnetic bearing housing toward the rotary shaft 4 disposed in the center. These two second sensors 9a and 9b are displacement sensors, and for example, an overcurrent sensor, an induction sensor, an optical sensor, or a Hall sensor is used. The second sensor 9 a outputs the measured value of the displacement in the X-axis direction of the rotating shaft 4 arranged at the center of the cross section of the magnetic bearing serving as the vibrator 6 to the bearing deterioration diagnosis device 1. Further, the second sensor 9 b outputs a measured value of the displacement in the Y-axis direction of the rotating shaft 4 arranged at the center of the cross section of the magnetic bearing as the vibrator 6 to the bearing deterioration diagnosis device 1.
 図4は、図1に示す軸受劣化診断装置1の機能ブロック図である。図4では、信号線を点線矢印にて示している。なお、信号線は、有線、無線の何れでも良いが、信号線の引き回しを考慮すると無線とすることが好ましい。図4に示すように、軸受劣化診断装置1は、マウス等の入力部10、第1センサ7と第2センサ9a及び第2センサ9bより計測される計測値を入力すると共に入力部10を介してユーザからの設定情報を入力する入力I/F11、入力I/F11を介して計測値を取得する計測値取得部12、加振器6へ出力する加振制御信号を生成する加振器制御部13、軸受2の劣化状態を判定する劣化判定部14、軸受2の過去の振動値(実績振動値)を格納する振動値DB(データベース)15、記憶部16、表示制御部17、出力I/F18を備え、これらは内部バス20を介して相互に接続されている。なお、加振器制御部13、劣化判定部14、及び表示制御部17は、例えば、各種プログラムを格納するROM、及び演算過程又はプログラムの実行過程において一時的にデータを格納するRAM等の記憶装置、ROMに格納される各種プログラムを実行するCPU等のプロセッサにより実現される。 
 計測値取得部12は、第1センサ7からの軸受2の計測振動値を、内部バス20を介して劣化判定部14へ転送する。また、計測値取得部12は、第2センサ9aからの回転軸4のX軸方向変位の計測値及び、第2センサ9bからの回転軸4のY軸方向変位の計測値を、内部バス20を介して加振器制御部13へ転送する。更に、計測値取得部12は、電動機3に設置される、例えばエンコーダ等(図示せず)からの電動機3の計測回転数を、内部バス20を介して加振器制御部13へ転送する。 
 また、軸受劣化診断装置1は、加振器制御部13により生成された加振制御信号を、内部バス20及び出力I/F18を介して受信すると共に、受信された加振制御信号に基づき回転軸4を加振する加振器6を有する。軸受劣化診断装置1は、劣化判定部14からの軸受2の劣化判定結果(詳細後述する)を、表示制御部17及び出力I/F18を介して画面上に表示する表示部19を備える。
FIG. 4 is a functional block diagram of the bearing deterioration diagnostic apparatus 1 shown in FIG. In FIG. 4, signal lines are indicated by dotted arrows. Note that the signal line may be either wired or wireless, but it is preferable that the signal line be wireless in consideration of the routing of the signal line. As shown in FIG. 4, the bearing deterioration diagnosis device 1 inputs measurement values measured by the input unit 10 such as a mouse, the first sensor 7, the second sensor 9 a, and the second sensor 9 b and through the input unit 10. The input I / F 11 for inputting setting information from the user, the measurement value acquisition unit 12 for acquiring the measurement value via the input I / F 11, and the vibrator control for generating the vibration control signal to be output to the vibrator 6 Unit 13, deterioration determination unit 14 that determines the deterioration state of bearing 2, vibration value DB (database) 15 that stores past vibration values (actual vibration values) of bearing 2, storage unit 16, display control unit 17, and output I / F18, which are connected to each other via an internal bus 20. The vibrator control unit 13, the deterioration determination unit 14, and the display control unit 17 include, for example, a ROM that stores various programs, and a RAM that temporarily stores data in an arithmetic process or a program execution process. It is realized by a processor such as a CPU that executes various programs stored in the apparatus and ROM.
The measurement value acquisition unit 12 transfers the measurement vibration value of the bearing 2 from the first sensor 7 to the deterioration determination unit 14 via the internal bus 20. In addition, the measurement value acquisition unit 12 receives the measurement value of the X-axis direction displacement of the rotation shaft 4 from the second sensor 9a and the measurement value of the Y-axis direction displacement of the rotation shaft 4 from the second sensor 9b. To the vibration exciter control unit 13. Further, the measured value acquisition unit 12 transfers the measured rotational speed of the electric motor 3 from, for example, an encoder (not shown) installed in the electric motor 3 to the vibrator control unit 13 via the internal bus 20.
Further, the bearing deterioration diagnosis device 1 receives the vibration control signal generated by the vibration exciter control unit 13 via the internal bus 20 and the output I / F 18 and rotates based on the received vibration control signal. A vibration exciter 6 for exciting the shaft 4 is provided. The bearing deterioration diagnosis apparatus 1 includes a display unit 19 that displays a deterioration determination result (details will be described later) of the bearing 2 from the deterioration determination unit 14 on a screen via a display control unit 17 and an output I / F 18.
 劣化判定部14は、内部バス20を介して振動値DB15へアクセスし、振動値DB15に格納される過去の振動値(実績振動値)のなかから、診断時の計測条件(詳細後述する)に該当する又は類似する過去の振動値を抽出する。劣化判定部14は、抽出された過去の振動値と、第1センサ7、入力I/F11、及び計測値取得部12を介して取得される軸受2の計測振動値を比較することで、回転機器8を構成する軸受2の劣化判定を行う。 
 図4に示す加振器6は、加振器制御部13にて生成された加振制御信号に基づき、回転機器8を構成する回転軸4を加振する。加振器6による回転軸4の加振は、最も高感度検出が可能な軸受2の共振周波数を含む周波数帯域で行う。本実施例では回転軸4を軸受2共振周波数で加振するため、上述の図1に示すように、水平方向(X方向)、垂直方向(Y方向)及び回転軸4の長手方向(Z方向)の固有振動数が考えられる。ここでは、回転軸4の長手方向(Z方向)の軸受2の固有振動数を用いた場合を一例として説明する。軸受2の形状や材質特性から予め、固有振動数を計算しておく。但し、少なくとも被駆動体であるロータ5、ロータ5へ回転駆動力を伝達する回転軸4を有する電動機3、及び、回転軸4を回転可能に支持する軸受2を有する回転機器8を設置した状態(据え付け状態)では、回転機器8の機械構造、施工状態や設置環境(据え付け環境)のばらつきにより、計算した固有振動数から若干ずれている可能性がある。そこで、加振器制御部13は、加振器6へ出力する加振制御信号を、計算した固有振動数を中心に前後に(共振周波数を含む周波数帯域内で)変調させることで、確実に固有振動数で加振することが可能となる。更に、加振器制御部13が、固有振動数を中心に前後に変調する頻度を制御することで、単位時間あたりに固有振動数で加振する時間を制御する。換言すれば、加振器制御部13が、加振器6による回転軸4への加振の頻度を制御することで、回転軸4、ロータ5、及び電動機3を有する回転機器8の機械構造に対し劣化を与えることなく、固有振動数で回転軸4を加振することが可能となる。 
 例えば、回転軸4の長手方向(Z方向)の固有振動数が計算上、若しくは過去の計測結果から1つであり、且つその固有振動数が1kHzである場合を想定すると、直線掃引(リニアスイープ)を行う。具体的には950Hzの正弦波を生成し、1Hzずつ周波数を上げながら、1050Hzまで、加振器6により回転軸4を加振する。次に950Hzまで1Hzずつ周波数を下げながら、加振器6により回転軸4を加振する。この操作を1回のスイープとしてカウントする。所定の時間内でスイープを繰り返すことで、単位時間あたりに固有振動数で加振する時間を制御する。すなわち、加振の頻度を制御する。なお、周波数を上下に制御する方法としてはアナログ変調、パルス変調等が用いられる。
The deterioration determination unit 14 accesses the vibration value DB 15 via the internal bus 20, and uses the past vibration values (actual vibration values) stored in the vibration value DB 15 to determine the measurement conditions at the time of diagnosis (details will be described later). Applicable or similar past vibration values are extracted. The deterioration determination unit 14 compares the extracted past vibration value with the measured vibration value of the bearing 2 acquired via the first sensor 7, the input I / F 11, and the measured value acquisition unit 12. The deterioration determination of the bearing 2 which comprises the apparatus 8 is performed.
The vibrator 6 shown in FIG. 4 vibrates the rotating shaft 4 constituting the rotating device 8 based on the vibration control signal generated by the vibrator controller 13. The vibration of the rotating shaft 4 by the vibrator 6 is performed in a frequency band including the resonance frequency of the bearing 2 that can detect the highest sensitivity. In this embodiment, since the rotating shaft 4 is vibrated at the bearing 2 resonance frequency, as shown in FIG. 1 described above, the horizontal direction (X direction), the vertical direction (Y direction), and the longitudinal direction of the rotating shaft 4 (Z direction). ) Natural frequency. Here, a case where the natural frequency of the bearing 2 in the longitudinal direction (Z direction) of the rotating shaft 4 is used will be described as an example. The natural frequency is calculated in advance from the shape and material characteristics of the bearing 2. However, at least a rotor 5 as a driven body, an electric motor 3 having a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating device 8 having a bearing 2 that rotatably supports the rotating shaft 4 are installed. In (installation state), there is a possibility that the calculated natural frequency is slightly deviated due to variations in the mechanical structure, construction state, and installation environment (installation environment) of the rotating device 8. Therefore, the vibrator control unit 13 reliably modulates the vibration control signal output to the vibrator 6 back and forth (within the frequency band including the resonance frequency) around the calculated natural frequency. It is possible to vibrate at the natural frequency. Further, the vibration exciter control unit 13 controls the time of vibration at the natural frequency per unit time by controlling the frequency of modulation back and forth around the natural frequency. In other words, the mechanical structure of the rotating device 8 having the rotating shaft 4, the rotor 5, and the electric motor 3 by the vibration exciter control unit 13 controlling the frequency of vibration applied to the rotating shaft 4 by the vibration exciter 6. Therefore, it is possible to vibrate the rotating shaft 4 at the natural frequency without deteriorating.
For example, assuming that the natural frequency in the longitudinal direction (Z direction) of the rotating shaft 4 is one in calculation or from past measurement results, and the natural frequency is 1 kHz, a linear sweep (linear sweep) )I do. Specifically, a sine wave of 950 Hz is generated, and the rotating shaft 4 is vibrated by the vibrator 6 to 1050 Hz while increasing the frequency by 1 Hz. Next, the rotating shaft 4 is vibrated by the vibrator 6 while decreasing the frequency by 1 Hz to 950 Hz. This operation is counted as one sweep. By repeating the sweep within a predetermined time, the time for exciting at the natural frequency per unit time is controlled. That is, the frequency of excitation is controlled. Note that analog modulation, pulse modulation, or the like is used as a method of controlling the frequency up and down.
 周波数の変化速度は、回転機器8の機械構造に依存する。加振器制御13より出力される加振制御信号がステップ状の信号パターンを有する場合であっても、実際の運動は質量の大きさに応じた慣性力が作用し、アナログ的な挙動となる。また、周波数の変化速度が速すぎると、共振による信号(振動値)が増幅する前に、加振制御信号に含まれる加振周波数が変化すると共振が発生しない現象が生じる。そのため、1回転あたりを1周期として1回発生する現象を回転1次成分、そのn倍を回転n次成分と定義し、X軸を次数にとり Y軸を次数成分の振動騒音の大きさとして表す「回転次数比分析」や、回転速度の上昇または下降変化によって注目する次数成分の振動騒音の大きさがどのように変化するかを分析する「回転‐トラッキング解析」を予め実施しておく。加振の強度は、回転機器8の機械構造になるべく疲労を与えないよう、できるだけ小さくすることは言うまでもない。 
 一方で、固有振動数が計算上、若しくは過去の計測結果から複数ある場合或は固有振動数の検討がついていない場合は、はじめに対数掃引、すなわち、周波数をリニアスケールで変化させる。固有振動数のあたりをつけた後は、当該周波数を含む周波数帯域のみを直線掃引する。
The frequency change speed depends on the mechanical structure of the rotating device 8. Even if the vibration control signal output from the vibration exciter control 13 has a step-like signal pattern, the actual motion acts in an analog manner due to the inertial force corresponding to the magnitude of the mass. . Further, if the frequency change rate is too fast, a phenomenon in which resonance does not occur occurs if the excitation frequency included in the excitation control signal changes before the signal (vibration value) due to resonance is amplified. Therefore, a phenomenon that occurs once per rotation is defined as a rotation primary component, and n times that rotation is defined as a rotation n-order component. The X-axis is the order and the Y-axis is the magnitude of the vibration noise of the order component. “Rotational order ratio analysis” and “rotation-tracking analysis” for analyzing how the magnitude of vibration noise of the order component of interest changes due to an increase or decrease in rotational speed are performed in advance. Needless to say, the strength of the excitation is made as small as possible so as not to cause fatigue in the mechanical structure of the rotating device 8.
On the other hand, when there are a plurality of natural frequencies in calculation or from past measurement results, or when the natural frequency is not examined, first, logarithmic sweep, that is, the frequency is changed on a linear scale. After hitting the natural frequency, only the frequency band including the frequency is linearly swept.
 図5は、図4に示す加振器制御部13から加振器6へ出力される加振制御信号の概略図である。本実施例では、加振器6として図3に示した磁気軸受を用いる場合を一例としており、図5の上図に示す低周波加振制御信号の波形及び図5の下図に示す高周波加振制御信号の波形は、図3に示す磁気軸受を構成する各極の鉄心に捲回されるコイルへ印加する電圧の時間変化パターンを示している。図5の上図に示すように、パルス制御法を用いて加振を制御する場合、加振器制御部13より出力I/F18を介して加振器6へ出力される加振制御信号は、ON/OFFがゆっくりと切り替わると振幅変動がゆっくりとなり周波数は低くなる。一方、図5の下図に示すように、加振制御信号の切り替えが早くなると振幅変動が早くなるため、周波数は高くなる。計算した軸受2の共振周波数を中心に加振制御信号の切り替え速度を変化させることで、共振周波数前後の周波数帯域内で加振器6により回転軸4を加振する加振制御信号を生成することができる。なお、図5に示す例では、加振器制御部13から出力I/F18を介して加振器6としての磁気軸受に出力される加振制御信号は、高周波加振制御信号(図5の下図)が低周波加振制御信号(図5の上図)の3倍の周波数を有する場合を例示しているが、必ずしもこれに限られるものではなく、低周波加振制御信号のn倍(n:自然数)の周波数を有する高周波加振制御信号としても良い。 FIG. 5 is a schematic diagram of an excitation control signal output from the vibrator control unit 13 shown in FIG. 4 to the vibrator 6. In this embodiment, the case where the magnetic bearing shown in FIG. 3 is used as the vibrator 6 is taken as an example. The waveform of the low frequency excitation control signal shown in the upper diagram of FIG. 5 and the high frequency excitation shown in the lower diagram of FIG. The waveform of the control signal shows the time change pattern of the voltage applied to the coil wound around the iron core of each pole constituting the magnetic bearing shown in FIG. As shown in the upper diagram of FIG. 5, when controlling the vibration using the pulse control method, the vibration control signal output from the vibrator control unit 13 to the vibrator 6 via the output I / F 18 is When the ON / OFF is switched slowly, the amplitude fluctuation becomes slow and the frequency is lowered. On the other hand, as shown in the lower diagram of FIG. 5, when the excitation control signal is switched faster, the amplitude variation becomes faster, and the frequency becomes higher. By changing the switching speed of the vibration control signal around the calculated resonance frequency of the bearing 2, a vibration control signal for vibrating the rotating shaft 4 by the vibration exciter 6 within a frequency band around the resonance frequency is generated. be able to. In the example shown in FIG. 5, the vibration control signal output from the vibrator control unit 13 to the magnetic bearing as the vibrator 6 via the output I / F 18 is a high-frequency vibration control signal (in FIG. 5). The lower diagram exemplifies a case where the frequency of the low-frequency excitation control signal (upper diagram of FIG. 5) is three times, but is not necessarily limited to this. n may be a high-frequency excitation control signal having a frequency of n).
 図6は、図4に示す振動値DB15のデータ構造の説明図である。図6に示すように、振動値DB15は、例えば、上述の第1センサ7、及び第2センサ9a,9bによる計測時刻を示す「時間」、加振器制御部13より加振器6へ出力される「加振制御信号」、及び電動機3に設置される例えばエンコーダ等により計測される電動機3の計測回転数である「実際の回転数」を相互に対応付けてテーブル形式にて格納するデータ構造を有する。また、図6に示すように、振動値DB15は、加振器6としての磁気軸受に設置される第2センサ9aにより計測される回転軸4のX軸方向変位の計測値である「X軸変位」、加振器6としての磁気軸受に設置される第2センサ9bにより計測される回転軸4のY軸方向変位の計測値である「Y軸変位」、軸受2のハウジング24の外周面に設置される第1センサ7により計測されるX軸(水平方向)振動値である「X軸振動値」、同様に第1センサ7により計測されるY軸(垂直方向)振動値である「Y軸振動値」及び第1センサ7により計測される回転軸4の長手方向(Z方向)振動値である「Z軸振動値」を相互に対応付けて格納する。図6では、第1センサ7及び第2センサ9a,9b並びに図示しない電動機3に設置されるエンコーダ等による計測周期を1時間とした場合の上記各データを、時系列データとして格納した状態を一例として示している。なお、計測周期についてはこれに限られるものではない。 FIG. 6 is an explanatory diagram of the data structure of the vibration value DB 15 shown in FIG. As shown in FIG. 6, the vibration value DB 15 outputs, for example, “time” indicating the measurement time by the first sensor 7 and the second sensors 9 a and 9 b described above to the shaker 6 from the shaker control unit 13. Stored in a table format in association with each other “excitation control signal” and “actual rotational speed” that is a measured rotational speed of the electric motor 3 measured by, for example, an encoder installed in the electric motor 3 It has a structure. Further, as shown in FIG. 6, the vibration value DB 15 is a measured value of the displacement in the X-axis direction of the rotating shaft 4 measured by the second sensor 9 a installed in the magnetic bearing as the vibrator 6. “Displacement”, “Y-axis displacement” which is a measured value of the displacement in the Y-axis direction of the rotating shaft 4 measured by the second sensor 9 b installed on the magnetic bearing as the vibrator 6, the outer peripheral surface of the housing 24 of the bearing 2 “X-axis vibration value” which is an X-axis (horizontal direction) vibration value measured by the first sensor 7 installed in the same manner as “Y-axis (vertical direction) vibration value measured by the first sensor 7”. The “Y-axis vibration value” and the “Z-axis vibration value” which is the vibration value in the longitudinal direction (Z direction) of the rotating shaft 4 measured by the first sensor 7 are stored in association with each other. FIG. 6 shows an example of a state in which each of the above data is stored as time series data when the measurement cycle by the first sensor 7 and the second sensors 9a and 9b and an encoder or the like installed in the motor 3 (not shown) is 1 hour. As shown. Note that the measurement cycle is not limited to this.
 図6に示すように、「時間」が1時間後、「加振制御信号」がCS1、電動機3の「実際の回転数」がRaであり、その時の、加振器6としての磁気軸受内での回転軸4の変位は、「X軸変位」がX1であり「Y軸変位」がY1である。また、軸受2の「X軸振動値」はVx1、「Y軸振動値」はVy1、及び「Z軸振動値」はVz1であったことを示している。また、更に1時間経過後、すなわち、「時間」が2時間後においては、「加振制御信号」がCS2、電動機3の「実際の回転数」がRbであり、その時の、加振器6としての磁気軸受内での回転軸4の変位は、「X軸変位」がX2であり「Y軸変位」がY2である。また、軸受2の「X軸振動値」はVx2、「Y軸振動値」はVy2、及び「Z軸振動値」はVz2であったことを示している。図6に示す「加振制御信号」であるCS1、CS2、CS3は、上述の図5に示した低周波加振制御信号又は高周波加振制御信号であり、これら低周波加振制御信号と高周波加振制御信号を切り替えることにより、単位時間あたりに軸受2の共振周波数にて回転軸4を加振する時間が制御され、加振器6による回転軸4への加振の頻度が制御される。 As shown in FIG. 6, after “hour” is one hour, “excitation control signal” is CS1, and “actual rotational speed” of the electric motor 3 is Ra. As for the displacement of the rotary shaft 4 at “X-axis displacement”, X1 and “Y-axis displacement” are Y1. Further, the “X-axis vibration value” of the bearing 2 is Vx1, the “Y-axis vibration value” is Vy1, and the “Z-axis vibration value” is Vz1. Further, after one hour has elapsed, that is, after “time” is two hours, the “excitation control signal” is CS2, and the “actual rotational speed” of the electric motor 3 is Rb. As for the displacement of the rotary shaft 4 in the magnetic bearing, “X-axis displacement” is X2, and “Y-axis displacement” is Y2. Further, the “X-axis vibration value” of the bearing 2 is Vx2, the “Y-axis vibration value” is Vy2, and the “Z-axis vibration value” is Vz2. CS1, CS2, and CS3 that are “excitation control signals” shown in FIG. 6 are the low-frequency excitation control signal or the high-frequency excitation control signal shown in FIG. By switching the vibration control signal, the time for vibrating the rotating shaft 4 at the resonance frequency of the bearing 2 per unit time is controlled, and the frequency of vibration applied to the rotating shaft 4 by the vibrator 6 is controlled. .
 図6に示す例では、1時間おきに、計測値取得部12は、電動機3に設置される図示しないエンコーダ等から入力I/F11及び内部バス20を介して、電動機3の計測回転数を取得し、内部バス20を介して振動値DB15内の「実際の回転数」を格納する領域へ書き込む。また、計測値取得部12は、第1センサ7から入力I/F11及び内部バス20を介して、軸受2のX軸(水平方向)振動値、Y軸(垂直方向)振動値、及び回転軸4の長手方向(Z方向)振動値の計測値を取得し、内部バス20を介して振動値DB15内の「X軸振動値」、「Y軸振動値」、及び「Z軸振動値」を格納する領域へそれぞれ書き込む。また更に、計測値取得部12は、第2センサ9a及び第2センサ9bから入力I/F11及び内部バス20を介して、加振器6としての磁気軸受内での回転軸4のX軸方向変位の計測値及びY軸方向変位の計測値を、内部バス20を介して振動値DB15内の「X軸変位」及び「Y軸変位」を格納する領域へそれぞれ書き込む。加振器制御部13は、生成した加振制御信号を、内部バス20を介して振動値DB15内の「加振制御信号」を格納する領域へ書き込む。 In the example illustrated in FIG. 6, the measurement value acquisition unit 12 acquires the measured rotation speed of the electric motor 3 via the input I / F 11 and the internal bus 20 from an encoder (not illustrated) installed in the electric motor 3 every hour. Then, the “actual rotational speed” in the vibration value DB 15 is written into the area storing the vibration value DB 15 via the internal bus 20. In addition, the measurement value acquisition unit 12 receives the X-axis (horizontal direction) vibration value, the Y-axis (vertical direction) vibration value, and the rotation axis of the bearing 2 from the first sensor 7 via the input I / F 11 and the internal bus 20. 4 is obtained, and the “X-axis vibration value”, “Y-axis vibration value”, and “Z-axis vibration value” in the vibration value DB 15 are obtained via the internal bus 20. Write to each storage area. Still further, the measurement value acquisition unit 12 receives the X axis direction of the rotary shaft 4 in the magnetic bearing as the vibrator 6 via the input I / F 11 and the internal bus 20 from the second sensor 9a and the second sensor 9b. The measured value of displacement and the measured value of displacement in the Y-axis direction are written to the areas storing “X-axis displacement” and “Y-axis displacement” in the vibration value DB 15 via the internal bus 20, respectively. The vibration exciter control unit 13 writes the generated vibration control signal to the area for storing the “vibration control signal” in the vibration value DB 15 via the internal bus 20.
 上述の診断時の計測条件とは、例えば、環境パラメータである、気温、湿度及び標高、並びに電動機3の回転数設定値である。図4に示した記憶部16は、上記環境パラメータである、気温、湿度及び標高を格納すると共に、入力部10を介して予めユーザにより設定される電動機3の回転数設定値を格納する。上述の通り、少なくとも電動機3、軸受2、及びロータ5を有する回転機器8の据え付け又は設置環境に依存する気温、湿度、及び標高等の環境パラメータは、例えば、温度計、湿度計、GPS(Global Positioning System)による位置情報(測位情報)に含まれる標高データ或いは気圧計により、1回/日測定され記憶部16に格納される。なお、環境パラメータとしての標高は、気圧に応じて計測される軸受2の振動値の振幅に変化をもたらす。換言すれば、軸受2の振動値の振幅は気圧に依存することから、標高を環境パラメータとして記憶部16に格納するのである。また、環境パラメータ及び予め設定される電動機3の回転数設定値を格納する記憶部16と振動値DB15は、ノードにより紐付けられており、所謂、リレーショナルデータベースを構成する。なお、環境パラメータ及び予め設定される電動機3の回転数設定値については、必ずしも記憶部16に格納する構成に限らず、振動値DB15に格納する構成としても良い。 The measurement conditions at the time of diagnosis described above are, for example, environmental parameters such as air temperature, humidity and altitude, and the rotation speed setting value of the motor 3. The storage unit 16 illustrated in FIG. 4 stores the ambient temperature, humidity, and altitude, which are the environmental parameters, and stores the rotation speed setting value of the motor 3 that is set in advance by the user via the input unit 10. As described above, environmental parameters such as temperature, humidity, and altitude depending on the installation or installation environment of the rotating device 8 having at least the electric motor 3, the bearing 2, and the rotor 5 are, for example, a thermometer, hygrometer, GPS (Global The altitude data or barometer included in the position information (positioning information) by Positioning System) is measured once / day and stored in the storage unit 16. The altitude as an environmental parameter causes a change in the amplitude of the vibration value of the bearing 2 measured according to the atmospheric pressure. In other words, since the amplitude of the vibration value of the bearing 2 depends on the atmospheric pressure, the altitude is stored in the storage unit 16 as an environmental parameter. Further, the storage unit 16 storing the environmental parameters and the preset rotational speed setting value of the electric motor 3 and the vibration value DB 15 are associated with each other by a node, and constitute a so-called relational database. Note that the environmental parameter and the preset rotational speed setting value of the motor 3 are not limited to the configuration stored in the storage unit 16 and may be stored in the vibration value DB 15.
 また、上述の図6に示した振動値DB15に格納される電動機3の「実際の回転数」、回転軸4の「X軸変位」及び「Y軸変位」は、詳細後述する加振器制御部13による加振制御信号の生成に供される。また、軸受2の「X軸振動値」、「Y軸振動値」、及び「Z軸振動値」は、詳細後述する劣化判定部14による劣化度の算出に供される。 Further, the “actual rotational speed” of the electric motor 3 and the “X-axis displacement” and “Y-axis displacement” of the rotating shaft 4 stored in the vibration value DB 15 shown in FIG. This is used for generating an excitation control signal by the unit 13. Further, the “X-axis vibration value”, “Y-axis vibration value”, and “Z-axis vibration value” of the bearing 2 are used for calculation of the degree of deterioration by the deterioration determination unit 14 described later in detail.
 図7は、信号強度と周波数との関係図であり、図7の左図は、共振周波数fの最大振幅における信号強度の比較結果を示し、図7の右図は、共振周波数fの最大振幅における周波数値の比較結果を示している。図7の左図及び右図の縦軸に示す信号強度は、軸受2のハウジング24の外周面に設置される第1センサ7、例えば、三軸加速度センサにより計測されるX軸振動値、Y軸振動値、及びZ軸振動値の計測値をフーリェ変換(FFT:Fast Fourier Transform)した後の周波数毎の値である。 Figure 7 is a graph showing the relationship between signal strength and frequency, the left view of FIG. 7 shows the comparison result of the signal strength at the maximum amplitude of the resonance frequency f R, right view of FIG. 7, the resonance frequency f R The comparison result of the frequency value in the maximum amplitude is shown. The signal intensity shown on the vertical axis in the left and right diagrams of FIG. 7 is the X-axis vibration value measured by the first sensor 7 installed on the outer peripheral surface of the housing 24 of the bearing 2, for example, a three-axis acceleration sensor, Y It is a value for each frequency after the Fourier transform (FFT: Fast Fourier Transform) of the measured value of the axial vibration value and the Z-axis vibration value.
 図7の左図では、横軸に周波数、縦軸に信号強度をとり、実線は振動値DB15より抽出された過去の振動値の周波数スペクトル分布を示し、点線は現時点で計測された軸受2の振動値の周波数スペクトル分布を示す。図7の左図に示すように、共振周波数(固有振動数)fにおける振動値DB15より抽出された過去の振動値の信号強度Sよりも、現時点で計測された軸受2の振動値の信号強度Sは大きい。このように、信号強度Sが大となる要因として、潤滑油の減少、潤滑油の稠度の変化、潤滑油への異物(ゴミ等)混入、鉄粉の発生等が挙げられる。ここで、鉄粉の発生とは、回転軸4の外周面と軸受2の内輪21の内周面との摩擦により微粒子状の鉄粉が発生する場合があり、発生する鉄粉が微粒子状であるがゆえ、軸受2の内輪21の内周面に、溝或いは引っ掻き傷又はクラックの発生までには至らない。このように、共振周波数(固有振動数)fの最大振幅における信号強度の変化値は、少なくとも電動機3、軸受2、及びロータ5を有する回転機器8の機械構造の変化の兆候と捉えることができ、軸受2の劣化度合は小さい状態にある。 
 現時点で計測された軸受2の振動値の信号強度Sと振動値DB15より抽出された振動値の信号強度Sとの差分、(S-S)は、後述する劣化判定部14の処理に用いられる。
In the left diagram of FIG. 7, the horizontal axis represents frequency, the vertical axis represents signal intensity, the solid line represents the frequency spectrum distribution of past vibration values extracted from the vibration value DB 15, and the dotted line represents the bearing 2 measured at the present time. The frequency spectrum distribution of vibration values is shown. As shown in the left diagram of FIG. 7, the resonance frequency (natural frequency) than the signal strength S A vibration value of the past that are extracted from the vibration value DB15 in f R, of the vibration value of the bearing 2, which is measured at the moment signal strength S B is large. Thus, as a factor signal strength S B is large, reduction of the lubricating oil, the change in the consistency of the lubricating oil, foreign matter into the lubricating oil (such as dust) mixed, occurrence of iron powder. Here, the generation of iron powder means that fine iron powder may be generated due to friction between the outer peripheral surface of the rotating shaft 4 and the inner peripheral surface of the inner ring 21 of the bearing 2, and the generated iron powder is fine. Therefore, a groove or a scratch or a crack is not generated on the inner peripheral surface of the inner ring 21 of the bearing 2. Thus, the change value of the signal intensity at the maximum amplitude of the resonance frequency (natural frequency) f R is at least the electric motor 3, the bearing 2, and are regarded as a sign of change in the mechanical structure of the rotating device 8 having a rotor 5 The degree of deterioration of the bearing 2 is small.
The difference between the signal intensity S B of the vibration value of the bearing 2 measured at the present time and the signal intensity S A of the vibration value extracted from the vibration value DB 15 is (S B −S A ). Used for processing.
 また、図7の右図に示すように、振動値DB15より抽出された過去の振動値の周波数スペクトル分布(実線)において、信号強度が最大となる共振周波数fに比べ、現時点で計測された軸受2の振動値の周波数スペクトル分布(点線)において、信号強度が最大となる共振周波数fは高周波側へとシフトしている。これは、回転軸4の外周面と軸受2の内輪21の内周面との衝突或いは摩擦により、軸受2の内輪21の内周面にクラックが発生し、軸受2の共振周波数(固有振動数)が変化したことを示している。このような場合、軸受2の劣化度合は大となり、軸受2自体の交換等のメンテナンス作業が必要となる。すなわち、共振周波数(固有振動数)fの最大振幅における周波数値の変化値は、少なくとも電動機3、軸受2、及びロータ5を有する回転機器8の機械構造が変化していることを意味するものであり、軸受2の劣化度合は大きい状態にある。 Further, as shown in the right diagram of FIG. 7, in the frequency spectrum distribution (solid line) of past vibration values extracted from the vibration value DB 15, it was measured at the present time compared to the resonance frequency f A at which the signal intensity is maximum. in the frequency spectrum distribution of the vibration value of the bearing 2 (dotted line), the resonance frequency f B of the signal strength is maximum is shifted to the high frequency side. This is because cracks occur on the inner peripheral surface of the inner ring 21 of the bearing 2 due to collision or friction between the outer peripheral surface of the rotating shaft 4 and the inner peripheral surface of the inner ring 21 of the bearing 2, and the resonance frequency (natural frequency) of the bearing 2. ) Indicates a change. In such a case, the degree of deterioration of the bearing 2 becomes large, and maintenance work such as replacement of the bearing 2 itself is required. I.e., the change values of the frequency value at the maximum amplitude of the resonance frequency (natural frequency) f R is mean that the mechanical structure of the rotating device 8 has at least the electric motor 3, the bearing 2, and a rotor 5 is changed The degree of deterioration of the bearing 2 is in a large state.
 次に、加振器制御部13の動作について説明する。図8は、図4に示す軸受劣化診断装置1を構成する加振器制御部13の処理フロー図である。 
 図8に示すように、先ず、ステップS11では、加振器制御部13は、電動機3に設置される図示しないエンコーダ等により電動機3の計測回転数を、入力I/F11、計測値取得部12、及び内部バス20を介して取得する。
Next, the operation of the vibrator control unit 13 will be described. FIG. 8 is a process flow diagram of the vibration exciter control unit 13 constituting the bearing deterioration diagnosis device 1 shown in FIG.
As shown in FIG. 8, first, in step S <b> 11, the vibration exciter control unit 13 uses the encoder (not shown) or the like installed in the electric motor 3 to change the measured rotational speed of the electric motor 3 to the input I / F 11 and the measured value acquisition unit 12. And via the internal bus 20.
 ステップS12では、加振器制御部13は、加振器6である磁気軸受の円筒状の磁気軸受ハウジングの内周面に、回転軸4の軸心を中心とし、横断面内において相互に直角となる位置に配される第2センサ9a(X軸方向変位センサ)により計測された回転軸4のX軸方向変位の計測値、及び第2センサ9b(Y軸方向変位センサ)により計測された回転軸4のY軸方向変位の計測値を、入力I/F11、計測値取得部12、及び内部バス20を介して取得する。すなわち、回転軸4の外周面と第2センサ9a(X軸方向変位センサ)との間隙(X軸変位)及び回転軸4の外周面と第2センサ9b(Y軸方向変位センサ)との間隙(Y軸変位)を取得する。 In step S <b> 12, the vibration exciter controller 13 is perpendicular to each other in the cross section centered on the axis of the rotating shaft 4 on the inner peripheral surface of the cylindrical magnetic bearing housing of the magnetic bearing that is the vibrator 6. The measured value of the X-axis direction displacement of the rotating shaft 4 measured by the second sensor 9a (X-axis direction displacement sensor) disposed at the position and the second sensor 9b (Y-axis direction displacement sensor). The measurement value of the displacement in the Y-axis direction of the rotation shaft 4 is acquired via the input I / F 11, the measurement value acquisition unit 12, and the internal bus 20. That is, a gap (X-axis displacement) between the outer peripheral surface of the rotating shaft 4 and the second sensor 9a (X-axis direction displacement sensor) and a gap between the outer peripheral surface of the rotating shaft 4 and the second sensor 9b (Y-axis direction displacement sensor). (Y-axis displacement) is acquired.
 ステップS13では、加振器制御部13は、取得された電動機3の計測回転数、回転軸4の加振器6としての磁気軸受に対する変位であるX軸変位及びY軸変位に基づき加振制御信号を生成する。 
 ステップS14では、加振器制御部13は、生成された加振制御信号を加振器6である磁気軸受に、内部バス20及び出力I/F18を介して出力する。ここで加振制御信号として、磁気軸受を構成する電磁石のコイル(鉄心に捲回されるコイル)に印加する電圧の時間変化パターンである低周波加振制御信号又は高周波加振制御信号(図5)が、加振器6である磁気軸受に出力される。
In step S <b> 13, the vibration exciter control unit 13 performs vibration control based on the measured rotation speed of the electric motor 3, the X-axis displacement and the Y-axis displacement that are displacements of the rotating shaft 4 with respect to the magnetic bearing as the vibration exciter 6. Generate a signal.
In step S <b> 14, the vibration exciter control unit 13 outputs the generated vibration control signal to the magnetic bearing that is the vibration exciter 6 via the internal bus 20 and the output I / F 18. Here, as the vibration control signal, a low-frequency vibration control signal or a high-frequency vibration control signal (FIG. 5) which is a time-varying pattern of a voltage applied to the electromagnet coil (coil wound around the iron core) constituting the magnetic bearing. ) Is output to the magnetic bearing which is the vibrator 6.
 ステップS15では、加振器制御器13は、内部バス20を介して記憶部16へアクセスし、記憶部16に格納される気温、湿度及び標高等の環境パラメータを取得する。 
 ステップS16では、加振器制御器13は、取得された環境パラメータに応じて、加振器6としての磁気軸受を構成する電磁石のコイル(鉄心に捲回される起きる)に印加する電圧の時間変化パターンを変更し、変更後の加振制御信号を、内部バス20及び出力I/F18を介して加振器6である磁気軸受に出力する。換言すれば、単位時間あたりのコイルへの通電の頻度を変更する。これにより、回転軸4への加振の頻度を変更する。 
 なお、上述のステップS11及びステップS12を、加振器制御部13が並列に実行するよう構成しても良い。
In step S <b> 15, the vibration exciter controller 13 accesses the storage unit 16 via the internal bus 20 and acquires environmental parameters such as air temperature, humidity, and altitude stored in the storage unit 16.
In step S16, the vibration exciter controller 13 applies the time of the voltage to be applied to the electromagnet coil (which is wound around the iron core) constituting the magnetic bearing as the vibration exciter 6 according to the acquired environmental parameter. The change pattern is changed, and the changed vibration control signal is output to the magnetic bearing as the vibrator 6 via the internal bus 20 and the output I / F 18. In other words, the frequency of energization of the coil per unit time is changed. Thereby, the frequency of excitation to the rotating shaft 4 is changed.
In addition, you may comprise so that the vibration exciter control part 13 may perform step S11 and step S12 mentioned above in parallel.
 次に、軸受劣化診断装置1を構成する劣化判定部14の動作について説明する。図9は、図4に示す劣化判定部14の処理フロー図である。 
 図9に示すように、先ず、ステップS21では、劣化判定部14は、軸受2のハウジング24の外周面に設置される第1センサ7、例えば三軸加速度センサにより計測される、軸受2のX軸振動値、Y軸振動値、及びZ軸振動値の現時点(診断時)における計測振動値を、入力I/F11、計測値取得部12、及び内部バス20を介して取得する。
Next, operation | movement of the deterioration determination part 14 which comprises the bearing deterioration diagnostic apparatus 1 is demonstrated. FIG. 9 is a process flow diagram of the deterioration determination unit 14 shown in FIG.
As shown in FIG. 9, first, in step S <b> 21, the deterioration determination unit 14 measures the X of the bearing 2 measured by the first sensor 7 installed on the outer peripheral surface of the housing 24 of the bearing 2, for example, a triaxial acceleration sensor. The measured vibration value at the present time (during diagnosis) of the axial vibration value, the Y-axis vibration value, and the Z-axis vibration value is acquired via the input I / F 11, the measured value acquisition unit 12, and the internal bus 20.
 ステップS22では、劣化判定部14は、取得した軸受2のX軸振動値、Y軸振動値、及びZ軸振動値の計測振動値をフーリェ変換し、現時点(診断時)の計測振動値の周波数スペクトル分布を求める(図7の左図又は右図に示す点線)。 
 ステップS23では、劣化判定部14は、内部バス20を介して振動値DB15へアクセスし、振動値DB15内に格納される過去の軸受2のX軸振動値、Y軸振動値、及びZ軸振動値の計測振動値を参照する。
In step S22, the deterioration determination unit 14 performs Fourier transform on the acquired measured vibration values of the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value of the bearing 2, and the frequency of the measured vibration value at the present time (during diagnosis). A spectrum distribution is obtained (dotted line shown in the left or right diagram of FIG. 7).
In step S23, the deterioration determination unit 14 accesses the vibration value DB 15 via the internal bus 20, and stores the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration of the past bearing 2 stored in the vibration value DB 15. Refer to the measured vibration value.
 ステップS24では、劣化判定部14は、内部バス20を介して記憶部16へアクセスし、記憶部16に格納される気温、湿度及び標高等の環境パラメータ並びに入力部10を介して予めユーザにより設定され記憶部16に格納される電動機3の回転数設定値を参照する。ここで、環境パラメータ及び電動機3の回転数設定値は、診断時の計測条件を構成するものである。劣化判定部14による記憶部16に格納される過去の診断時における計測条件の参照においては、仮に、電動機3の回転数が異なると軸受2の共振周波数が変わるため、先ず、電動機3の回転数設定値を参照し、電動機3に設置される図示しないエンコーダ等により計測される電動機3の現時点(診断時)における計測回転数と比較する。回転数設定値が一定の場合には、記憶部16に格納される最新の計測時の計測条件を抽出する。一方、記憶部16に格納されている電動機3の回転数設定が複数存在する場合には、診断時(現時点)の計測条件に最も近い計測条件を抽出する。次に、例えば、最小二乗法を用いて記憶部16に格納される過去の環境パラメータと診断時(現時点)の環境パラメータとの差分の和の二乗が最小となる過去の環境パラメータを特定する。これにより、劣化判定部14は、診断時(現時点)の計測条件に該当又は類似する計測条件を、記憶部16に格納される過去の診断時における計測条件のなからか抽出する。上述したように、過去の診断時における計測条件である環境パラメータ及び予め設定される電動機3の回転数設定値を格納する記憶部16と振動値DB15は、ノードにより紐付けられ、リレーショナルデータベースを構成している。そこで、劣化判定部14は、抽出された過去の診断時における計測条件に対応する軸受2のX軸振動値、Y軸振動値、及びZ軸振動値を、振動値DB15から抽出する。 In step S <b> 24, the deterioration determination unit 14 accesses the storage unit 16 via the internal bus 20, and is set in advance by the user via the environmental parameters stored in the storage unit 16, such as temperature, humidity, and altitude, and the input unit 10. The rotation speed setting value of the electric motor 3 stored in the storage unit 16 is referred to. Here, the environmental parameter and the rotational speed setting value of the electric motor 3 constitute measurement conditions at the time of diagnosis. In referring to the measurement conditions at the time of past diagnosis stored in the storage unit 16 by the deterioration determination unit 14, the resonance frequency of the bearing 2 changes if the rotation number of the motor 3 is different. The set value is referred to and compared with the measured rotational speed at the present time (during diagnosis) of the electric motor 3 measured by an encoder (not shown) installed in the electric motor 3. When the rotation speed setting value is constant, the latest measurement conditions stored in the storage unit 16 are extracted. On the other hand, when there are a plurality of rotation speed settings of the electric motor 3 stored in the storage unit 16, the measurement condition closest to the measurement condition at the time of diagnosis (current time) is extracted. Next, for example, the past environmental parameter that minimizes the square of the sum of the difference between the past environmental parameter stored in the storage unit 16 and the environmental parameter at the time of diagnosis (current time) is specified using the least square method. Thereby, the deterioration determination unit 14 extracts measurement conditions corresponding to or similar to the measurement conditions at the time of diagnosis (current time) from the measurement conditions at the time of past diagnosis stored in the storage unit 16. As described above, the storage unit 16 and the vibration value DB 15 that store the environmental parameters that are measurement conditions at the time of past diagnosis and the rotation speed setting value of the motor 3 set in advance are linked by nodes to form a relational database. is doing. Therefore, the deterioration determination unit 14 extracts the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value of the bearing 2 corresponding to the extracted measurement conditions in the past diagnosis from the vibration value DB 15.
 ステップS25では、劣化判定部14は、振動値DB15より抽出した過去の振幅値である、軸受2のX軸振動値、Y軸振動値、及びZ軸振動値をフーリェ変換し、基準となる過去の振動値の周波数スペクトル分布を求める(図7の左図又は右図に示す実線)。 
 ステップS26では、劣化判定部14は、ステップS22にて得られた現時点(診断時)の振動値の周波数スペクトル分布において、信号強度が最大となる周波数を抽出すると共に、ステップS25にて得られた過去の振動値の周波数スペクトル分布において信号強度が最大となる周波数を求め比較し、これらが一致するか否かを判定する。判定の結果、一致する場合にはステップS27へ進み、不一致の場合にはステップS30へ進む。
In step S25, the deterioration determination unit 14 performs Fourier transform on the X-axis vibration value, the Y-axis vibration value, and the Z-axis vibration value of the bearing 2, which are past amplitude values extracted from the vibration value DB 15, and serves as a reference past. The frequency spectrum distribution of the vibration value is obtained (solid line shown in the left or right diagram of FIG. 7).
In step S26, the deterioration determination unit 14 extracts a frequency at which the signal intensity is maximum in the frequency spectrum distribution of the vibration value at the present time (during diagnosis) obtained in step S22, and obtained in step S25. In the frequency spectrum distribution of the past vibration values, the frequency having the maximum signal intensity is obtained and compared, and it is determined whether or not they match. As a result of the determination, if they match, the process proceeds to step S27, and if they do not match, the process proceeds to step S30.
 ステップS27では、劣化判定部14は、現時点(診断時)の振動値の周波数スペクトル分布において、共振周波数fにおける信号強度Sと、抽出された過去の振動値の周波数スペクトル分布において、共振周波数fにおける信号強度Sとの差分(S-S)を劣化値として算出する。 
 ステップS28では、劣化判定部14は、ステップS27にて得られた信号強度の差分(S-S)と、所定の複数の閾値TH1と比較し、軸受2の劣化状態が、「潤滑油の減少」、「潤滑油の稠度の変化」、「潤滑油への異物(ゴミ等)混入」及び「鉄粉の発生」のうち、いずれかを判定する。これにより、軸受劣化判定を実行する。 
 ステップS29では、劣化判定部14は、ステップS28にて得られた軸受劣化判定結果を、内部バス20を介して表示制御部17へ転送する。表示制御部17は、転送された軸受け劣化判定結果を、内部バス20及び出力I/F18を介して表示部19へ出力し、表示部19の画面上に表示し、処理を終了する。
In step S27, the deterioration determination unit 14 determines the resonance frequency in the frequency spectrum distribution of the vibration value at the present time (during diagnosis) in the signal intensity S B at the resonance frequency f R and the frequency spectrum distribution of the extracted past vibration values. The difference (S B −S A ) from the signal intensity S A at f R is calculated as the deterioration value.
In step S28, the deterioration determination unit 14 compares the difference in signal strength (S B −S A ) obtained in step S27 with a plurality of predetermined threshold values TH1, and the deterioration state of the bearing 2 is “lubricating oil”. , "Decrease in consistency of lubricating oil", "mixing of foreign matter (dust etc.) into lubricating oil" and "generation of iron powder". Thereby, bearing deterioration determination is performed.
In step S29, the deterioration determination unit 14 transfers the bearing deterioration determination result obtained in step S28 to the display control unit 17 via the internal bus 20. The display control unit 17 outputs the transferred bearing deterioration determination result to the display unit 19 via the internal bus 20 and the output I / F 18, displays the result on the screen of the display unit 19, and ends the process.
 一方、ステップS30では、劣化判定部14は、現時点(診断時)の軸受の共振周波数がシフトしたことを検出し、現時点(診断時)の振動値の周波数スペクトル分布において信号強度が最大となる共振周波数fと、抽出された過去の振動値の周波数スペクトル分布において信号強度が最大となる共振周波数fとの差分(f-f)を算出する。 
 ステップS31では、劣化判定部14は、ステップS30にて得られた共振周波数の差分(f-f)と、所定の閾値TH2と比較し、軸受2の劣化状態が軸受2の内輪21の内周面にクラックが発生している状態にあることを検出する。これにより、軸受劣化判定を実行する。 
 ステップS32では、劣化判定部14は、ステップS31にて得られた軸受劣化判定結果を、内部バス20を介して表示制御部17へ転送する。表示制御部17は、転送された軸受け劣化判定結果を、内部バス20及び出力I/F18を介して表示部19へ出力し、表示部19の画面上に表示し、処理を終了する。 
 なお、上述のステップS21~ステップS22と、ステップS23~ステップS25とを、劣化判定部14が並列に実行するよう構成しても良い。
On the other hand, in step S30, the deterioration determination unit 14 detects that the resonance frequency of the bearing at the current time (during diagnosis) has shifted, and the resonance at which the signal intensity is maximized in the frequency spectrum distribution of the vibration values at the current time (during diagnosis). and the frequency f B, the signal intensity in the frequency spectrum distribution of the extracted past vibration value calculates the difference (f B -f a) between the resonance frequency f a of the maximum.
In step S31, the deterioration determination unit 14 compares the difference (f B −f A ) of the resonance frequency obtained in step S30 with a predetermined threshold value TH2, and the deterioration state of the bearing 2 indicates that the inner ring 21 of the bearing 2 has a deterioration state. It is detected that a crack has occurred on the inner peripheral surface. Thereby, bearing deterioration determination is performed.
In step S <b> 32, the deterioration determination unit 14 transfers the bearing deterioration determination result obtained in step S <b> 31 to the display control unit 17 via the internal bus 20. The display control unit 17 outputs the transferred bearing deterioration determination result to the display unit 19 via the internal bus 20 and the output I / F 18, displays the result on the screen of the display unit 19, and ends the process.
Note that the above-described steps S21 to S22 and steps S23 to S25 may be configured to be executed in parallel by the deterioration determination unit 14.
 図10は、図4に示す表示部19の画面表示の一例を示す図である。図10に示すように、表示部19の表示画面40は、信号強度と周波数との関係を示す周波数スペクトル分布を表示する第1表示領域41、劣化判定部14による判定結果を表示する第2表示領域42、及び各種コマンドを入力するための、「読込」ボタン43、「判定」ボタン44が表示される領域(以下、コマンド入力領域と称する)から構成される。また、表示画面40上の最も上部に表示される領域には、第1表示領域41及び第2表示領域42が表示されるウィンドウ全体を、クローズ、縮小/拡大表示、表示部19のコントロールバーへの移動等を指定するためのボタンが表示される。 FIG. 10 is a diagram showing an example of the screen display of the display unit 19 shown in FIG. As shown in FIG. 10, the display screen 40 of the display unit 19 includes a first display area 41 that displays a frequency spectrum distribution indicating the relationship between signal intensity and frequency, and a second display that displays a determination result by the deterioration determination unit 14. The area 42 includes an area for displaying a “read” button 43 and a “determination” button 44 for inputting various commands (hereinafter referred to as a command input area). In the uppermost area on the display screen 40, the entire window in which the first display area 41 and the second display area 42 are displayed is closed, reduced / enlarged, and displayed on the control bar of the display unit 19. A button for designating movement or the like is displayed.
 図10に示すように、ユーザによりマウス等の入力部10によりマウスポインタが「読込」ボタン43上に移動され、クリックされると、「読込」ボタン43がアクティブとなる。これに対応して、表示制御部17(図4)は、内部バス20及び出力I/F18を介して、劣化判定部14による上述の図9におけるステップS27の実行結果である、現時点(診断時)の振動値の周波数スペクトル分布において共振周波数fにおける信号強度Sと、抽出された過去の振動値の周波数スペクトル分布において共振周波数fにおける信号強度Sとの差分(S-S)を視認可能に、第1表示領域41に表示する。 
 また、ユーザによりマウス等の入力部10によりマウスポインタが「判定」ボタン44上に移動され、クリックされると、「判定」ボタン44がアクティブとなる。これに対応して、図10に示す画面表示例では、劣化判定部14による上述のステップS28の実行結果である、軸受劣化判定結果として、予め第2表示領域42に表示される、「潤滑油の減少」、「潤滑油の稠度の変化」、「潤滑油への異物混入」及び「鉄粉の発生」のうち、「潤滑油の減少」がハッチング又はハイライト表示された状態を示している。なお、ハッチング表示又はハイライト表示に限らず、ブリンク表示或いは異なる色にて表示する等、他と識別可能な表示形態であればいずれでも良い。これにより、ユーザは容易に軸受2の劣化状態を視認することが可能となり、図10に示す例では、即座に、軸受2に対する潤滑油の補充(注入)するメンテナンス作業を行うことが可能となる。
As shown in FIG. 10, when the user moves the mouse pointer onto the “read” button 43 by the input unit 10 such as a mouse and clicks it, the “read” button 43 becomes active. Correspondingly, the display control unit 17 (FIG. 4), through the internal bus 20 and the output I / F 18, performs the current determination (during diagnosis) as the execution result of step S27 in FIG. and the signal intensity S B at the resonance frequency f R in the frequency spectrum distribution of the vibration value of) difference between the signal intensities S a at the resonance frequency f R in the extracted frequency spectral distribution of the past vibration value (S B -S a ) In the first display area 41 so as to be visible.
Further, when the user moves the mouse pointer onto the “determination” button 44 by the input unit 10 such as a mouse and clicks it, the “determination” button 44 becomes active. Correspondingly, in the screen display example shown in FIG. 10, “lubricating oil” that is displayed in advance in the second display area 42 as the bearing deterioration determination result that is the execution result of the above-described step S28 by the deterioration determination unit 14. "Decrease in lubricant", "Change in consistency of lubricant", "Contamination of foreign matter in lubricant" and "Occurrence of iron powder" indicate the state where "Decrease in lubricant" is hatched or highlighted. . Note that the display form is not limited to hatching display or highlight display, and any display form that can be distinguished from others, such as blink display or display in a different color, may be used. As a result, the user can easily visually recognize the deteriorated state of the bearing 2, and in the example shown in FIG. 10, it is possible to immediately perform maintenance work for replenishing (injecting) the lubricating oil to the bearing 2. .
 図11は、図4に示す表示部19の画面表示の一例を示す図である。図11に示すように、表示部19の表示画面40は、信号強度と周波数との関係を示す周波数スペクトル分布を表示する第1表示領域41、劣化判定部14による判定結果を表示する第2表示領域42、及び各種コマンドを入力するための、「読込」ボタン43、「判定」ボタン44が表示される領域(以下、コマンド入力領域と称する)から構成される。また、表示画面40上の最も上部に表示される領域には、第1表示領域41及び第2表示領域42が表示されるウィンドウ全体を、クローズ、縮小/拡大表示、表示部19のコントロールバーへの移動等を指定するためのボタンが表示される。 FIG. 11 is a diagram showing an example of the screen display of the display unit 19 shown in FIG. As shown in FIG. 11, the display screen 40 of the display unit 19 includes a first display region 41 that displays a frequency spectrum distribution indicating the relationship between signal intensity and frequency, and a second display that displays a determination result by the deterioration determination unit 14. The area 42 includes an area for displaying a “read” button 43 and a “determination” button 44 for inputting various commands (hereinafter referred to as a command input area). In the uppermost area on the display screen 40, the entire window in which the first display area 41 and the second display area 42 are displayed is closed, reduced / enlarged, and displayed on the control bar of the display unit 19. A button for designating movement or the like is displayed.
 図11に示すように、ユーザによりマウス等の入力部によりマウスポインタが「読込」ボタン43上に移動され、クリックされると、「読込」ボタン43がアクティブとなる。これに対応して、表示制御部17(図4)は、内部バス20及び出力I/F18を介して、劣化判定部14による上述の図9におけるステップS30の実行結果である、現時点(診断時)の振動値の周波数スペクトル分布において信号強度が最大となる共振周波数fと、抽出された過去の振動値の周波数スペクトル分布において信号強度が最大となる共振周波数fとの差分(f-f)を視認可能に、第1表示領域41に表示する。 As shown in FIG. 11, when the user moves the mouse pointer onto a “read” button 43 by an input unit such as a mouse and clicks it, the “read” button 43 becomes active. Correspondingly, the display control unit 17 (FIG. 4), through the internal bus 20 and the output I / F 18, performs the present time (during diagnosis) as a result of execution of step S30 in FIG. ) Of the resonance frequency f B at which the signal intensity is maximum in the frequency spectrum distribution of the vibration value and the resonance frequency f A at which the signal intensity is maximum in the frequency spectrum distribution of the extracted past vibration values (f B − f A ) is displayed in the first display area 41 so as to be visible.
 また、ユーザによりマウス等の入力部10によりマウスポインタが「判定」ボタン44上に移動され、クリックされると、「判定」ボタン44がアクティブとなる。これに対応して、図11に示す画面表示例では、劣化判定部14による上述のステップS31の実行結果である、軸受2の劣化状態が軸受2の内輪21の内周面にクラックが発生している状態にあることを示す「クラック発生」が、軸受劣化判定結果として第2表示領域42に表示され、ハッチング又はハイライト表示された状態を示している。なお、ハッチング表示又はハイライト表示に限らず、ブリンク表示或いは異なる色にて表示する等の他の表示形態としても良い。これにより、ユーザは容易に軸受2の劣化状態を把握でき、図11に示す例では、少なくとも電動機3、軸受2、及びロータ5を有する回転機器8を停止し、軸受2の交換作業を行うことが可能となり、メンテナンス作業の支援を図ることができる。 Further, when the user moves the mouse pointer onto the “determination” button 44 by the input unit 10 such as a mouse and clicks it, the “determination” button 44 becomes active. Correspondingly, in the screen display example shown in FIG. 11, the deterioration state of the bearing 2, which is the execution result of the above-described step S <b> 31 by the deterioration determination unit 14, causes a crack on the inner peripheral surface of the inner ring 21 of the bearing 2. “Crack occurrence” indicating that the bearing is in a state of being displayed is displayed in the second display area 42 as a bearing deterioration determination result, and indicates a state of being hatched or highlighted. The display is not limited to hatching display or highlight display, but may be other display forms such as blink display or display in a different color. As a result, the user can easily grasp the deterioration state of the bearing 2, and in the example shown in FIG. 11, the rotating device 8 having at least the motor 3, the bearing 2, and the rotor 5 is stopped and the bearing 2 is replaced. It is possible to support maintenance work.
 なお、本実施例では、加振器6として磁気軸受を用いる場合を例に説明したがこれに限られるものではない。例えば、加振器6として超音波加振器を用いて、回転軸4を加振する構成としても良い。 
 また、本実施例では、劣化判定部14による軸受2の劣化判定結果を、表示部19の画面上に表示する構成としたが、これに限られるものではない。例えば、劣化判定部14による軸受2の劣化判定結果をプリンタ等の印字出力装置にて出力する構成としても良く、また、劣化判定部14による軸受2の劣化判定結果を音声によりメッセージ出力する構成としても良い。 
 また、本実施例では、電動機3に設置されたエンコーダ等から電動機3の計測回転数を軸受劣化診断装置1に出力する構成としたが、これに代えて、例えば、軸受劣化診断装置1とは別に、SCADA(Supervisory Control And Data Acquisition)等の監視制御装置を設け、SCADAから電動機3の計測回転数を軸受劣化診断装置1へ送信する構成としても良い。
In this embodiment, the case where a magnetic bearing is used as the vibrator 6 has been described as an example, but the present invention is not limited to this. For example, it is good also as a structure which vibrates the rotating shaft 4 using an ultrasonic vibrator as the vibrator 6.
In the present embodiment, the deterioration determination result of the bearing 2 by the deterioration determination unit 14 is displayed on the screen of the display unit 19. However, the present invention is not limited to this. For example, the deterioration determination result of the bearing 2 by the deterioration determination unit 14 may be output by a print output device such as a printer, and the deterioration determination result of the bearing 2 by the deterioration determination unit 14 is output by voice message. Also good.
Further, in the present embodiment, the measurement rotational speed of the electric motor 3 is output to the bearing deterioration diagnosis device 1 from an encoder or the like installed in the electric motor 3, but instead of this, for example, the bearing deterioration diagnosis device 1 is In addition, a monitoring control device such as SCADA (Supervision Control And Data Acquisition) may be provided, and the measured rotational speed of the electric motor 3 may be transmitted from the SCADA to the bearing deterioration diagnosis device 1.
 本実施例によれば、高精度な軸受の劣化診断を可能とすると共に、軸受及び軸受を有する回転機器の損傷を回避しつつ劣化診断可能な軸受劣化診断装置、軸受劣化診断方法及び軸受劣化診断システムを実現することが可能となる。 
 また、本実施例によれば、回転機器を構成する回転軸に対し、軸受の共振周波数(固有振動数)を含む周波数帯域にて加振し、この加振の頻度を制御することにより、軸受を有する回転機器の損傷を回避でき、安全に軸受の劣化診断を行うことが可能となる。 
 更にまた、本実施例によれば、軸受劣化診断装置を構成する劣化判定部による軸受劣化判定結果が、表示部の表示画面上に、「潤滑油の減少」、「潤滑油の稠度の変化」、「潤滑油への異物混入」、「鉄粉の発生」或いは「クラック発生」等、軸受の劣化の度合或いは劣化の状態が細分化され表示されるため、ユーザは容易に軸受の劣化状態を視認することが可能となり、即座に、必要となるメンテナンス作業を行うことが可能となる。
According to the present embodiment, a bearing deterioration diagnosis device, a bearing deterioration diagnosis method, and a bearing deterioration diagnosis that enable deterioration diagnosis of a bearing with high accuracy and can perform deterioration diagnosis while avoiding damage to the bearing and the rotating device having the bearing. A system can be realized.
Further, according to the present embodiment, the rotating shaft constituting the rotating device is vibrated in a frequency band including the resonance frequency (natural frequency) of the bearing, and the frequency of this vibration is controlled to thereby obtain the bearing. It is possible to avoid damage to the rotating device having the bearing and to safely perform the deterioration diagnosis of the bearing.
Furthermore, according to the present embodiment, the bearing deterioration determination result by the deterioration determining unit constituting the bearing deterioration diagnosis device is displayed on the display screen of the display unit as “decrease in lubricating oil” and “change in consistency of lubricating oil”. , The degree of deterioration of the bearing or the state of deterioration such as “mixing of foreign matter into the lubricating oil”, “generation of iron powder” or “cracking” is subdivided and displayed. It is possible to visually recognize the necessary maintenance work immediately.
 図12は、本発明の他の実施例に係る実施例2の軸受劣化診断システムの全体概略構成図である。本実施例では、加振器により軸受を加振し、軸受劣化を診断する構成とした点が実施例1と異なる。その他の構成は実施例1と同様であり、実施例1と同様の構成要素に同一符号を付し、以下では、実施例1と重複する説明を省略する。 FIG. 12 is an overall schematic configuration diagram of the bearing deterioration diagnosis system of the second embodiment according to another embodiment of the present invention. The present embodiment is different from the first embodiment in that the bearing is vibrated by a vibrator to diagnose bearing deterioration. Other configurations are the same as those in the first embodiment, and the same reference numerals are given to the same components as those in the first embodiment, and the description overlapping with the first embodiment is omitted below.
 図12に示すように、本実施例の軸受劣化診断システム100は、被駆動体であるロータ5、ロータ5へ回転駆動力を伝達する回転軸4を有する電動機(モータ)3、と回転軸4を回転可能に支持する軸受2を有する回転機器8、軸受2に取り付けられた第1センサ7、軸受2を加振する加振器6a、及び少なくとも第1センサ7からの計測値を取得し、加振器6aへ加振制御信号を出力する軸受劣化診断装置1を備える。ここで、軸受劣化診断装置1は、加振器6aを含む。なお、回転軸4を図示しないカップリングを介して、被駆動体であるロータ5へ連結する構成としても良い。 As shown in FIG. 12, the bearing deterioration diagnosis system 100 of this embodiment includes a rotor 5 that is a driven body, an electric motor (motor) 3 that has a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating shaft 4. A rotating device 8 having a bearing 2 that rotatably supports the first sensor 7, a first sensor 7 attached to the bearing 2, a vibrator 6a that vibrates the bearing 2, and at least measurement values from the first sensor 7, A bearing deterioration diagnosis device 1 is provided that outputs an excitation control signal to the vibrator 6a. Here, the bearing deterioration diagnostic apparatus 1 includes a vibrator 6a. In addition, it is good also as a structure which connects the rotating shaft 4 to the rotor 5 which is a to-be-driven body through the coupling which is not shown in figure.
 図13に、図12に示す軸受2の横断面図であり、A-A断面矢視図を示す。図13に示すように、軸受2は、回転軸4の外周面を覆うように配される円筒状の内輪21、円筒状の内輪21の外周面を覆い且つ内輪21の外周面より径方向外側に所定の間隔にて離間し同心円状に配される円筒状の外輪22、及び、外輪22の外周面を覆い且つ外輪22の外周面より径方向に僅かな間隙を介して配される円筒状のハウジング24を備える。また、円筒状の内輪21の外周面には、周方向に所定の間隔にて円弧状の深溝が複数形成されている。一方、円筒状の外輪22の内周面には、上記内輪21の外周面に形成された深溝と対向する位置に円弧状の深溝が形成されている。すなわち、内輪21の外周面に形成された深溝と、外輪22の内周面に形成された深溝とは、径方向に整列するよう配されている。これら、内輪21の外周面に形成された深溝と外輪22の内周面に形成された深溝との間に球状の玉23が配されている。これにより、ラジアル荷重、アキシャル荷重、又はこれらの組み合わせである合成荷重を受けることができる。図13に示す軸受2は、所謂、玉軸受である。なお、軸受2は、玉軸受に限らず、玉23に代えて円柱状のころを配するころ軸受としても良い。また更には、軸受2は転がり軸受であればいずれの形態を用いても良い。 FIG. 13 is a cross-sectional view of the bearing 2 shown in FIG. As shown in FIG. 13, the bearing 2 covers a cylindrical inner ring 21 disposed so as to cover the outer peripheral surface of the rotating shaft 4, covers the outer peripheral surface of the cylindrical inner ring 21, and is radially outward from the outer peripheral surface of the inner ring 21. A cylindrical outer ring 22 which is concentrically spaced apart from each other at a predetermined interval, and a cylindrical shape which covers the outer peripheral surface of the outer ring 22 and is arranged with a slight gap in the radial direction from the outer peripheral surface of the outer ring 22 The housing 24 is provided. A plurality of arc-shaped deep grooves are formed on the outer peripheral surface of the cylindrical inner ring 21 at predetermined intervals in the circumferential direction. On the other hand, an arc-shaped deep groove is formed on the inner peripheral surface of the cylindrical outer ring 22 at a position facing the deep groove formed on the outer peripheral surface of the inner ring 21. That is, the deep groove formed on the outer peripheral surface of the inner ring 21 and the deep groove formed on the inner peripheral surface of the outer ring 22 are arranged so as to be aligned in the radial direction. A spherical ball 23 is disposed between the deep groove formed on the outer peripheral surface of the inner ring 21 and the deep groove formed on the inner peripheral surface of the outer ring 22. Thereby, it is possible to receive a combined load which is a radial load, an axial load, or a combination thereof. The bearing 2 shown in FIG. 13 is a so-called ball bearing. The bearing 2 is not limited to a ball bearing, and may be a roller bearing in which a cylindrical roller is provided instead of the ball 23. Furthermore, any form may be used for the bearing 2 as long as it is a rolling bearing.
 図13に示す例では、玉23の数は10個であるが、玉23の個数は10個に限られるものでは無い。また、図13に示す軸受2は、深溝玉軸受であり、少なくとも、外輪22の外周面とハウジング24の内周面との僅かな間隙及び、回転軸4の外周面と内輪21の内周面との間には、潤滑油が充填されている。なお、図13では図示しないが、軸受2は、潤滑油の供給路及び潤滑油を軸受2の外部へ排出(除去)するためのオイルドレーンを備える。 
 また、図13に示すように、円筒状のハウジング24の外周面に、第1センサ7が取り付けられている。第1センサ7は、軸受2のハウジング24における振動を入力とし、振動値に変換して出力する。第1センサ7は、例えば加速度センサ及びロガーを備える。加速度センサとして、例えば、三軸加速度センサが用いられ、図12に示すように、軸受2のX軸(水平方向)振動値、Y軸(垂直方向)振動値、及びZ軸(回転軸4の長手方向)振動値を計測する。なお、この三軸加速度センサに代えて、一軸加速度センサを3個用いて、少なくとも図12に示した水平方向(X方向)、垂直方向(Y方向)及び回転軸4の長手方向(Z方向)の3軸方向の振動を計測するよう、軸受2に取り付ける構成としても良い。
In the example shown in FIG. 13, the number of balls 23 is ten, but the number of balls 23 is not limited to ten. 13 is a deep groove ball bearing, at least a slight gap between the outer peripheral surface of the outer ring 22 and the inner peripheral surface of the housing 24, and the outer peripheral surface of the rotating shaft 4 and the inner peripheral surface of the inner ring 21. Between them, lubricating oil is filled. Although not shown in FIG. 13, the bearing 2 includes a lubricating oil supply path and an oil drain for discharging (removing) the lubricating oil to the outside of the bearing 2.
Further, as shown in FIG. 13, the first sensor 7 is attached to the outer peripheral surface of the cylindrical housing 24. The first sensor 7 receives the vibration in the housing 24 of the bearing 2 as an input, converts it into a vibration value, and outputs it. The first sensor 7 includes, for example, an acceleration sensor and a logger. As the acceleration sensor, for example, a three-axis acceleration sensor is used. As shown in FIG. 12, the X-axis (horizontal direction) vibration value, the Y-axis (vertical direction) vibration value, and the Z-axis (rotation shaft 4 of the rotating shaft 4). Longitudinal) Measure vibration value. In place of this triaxial acceleration sensor, three uniaxial acceleration sensors are used, and at least the horizontal direction (X direction), the vertical direction (Y direction) and the longitudinal direction (Z direction) of the rotating shaft 4 shown in FIG. It is good also as a structure attached to the bearing 2 so that the vibration of these 3 axial directions may be measured.
 また、円筒状のハウジング24の外周面に、例えば、超音波加振器よりなる加振器6aが配され、軸受2のハウジング24を図13にて白抜き矢印にて示すように加振する。加振器6aは、第1センサ7と干渉しない範囲であれば、円筒状のハウジング24の外周面に沿って、移動可能な構成としても良い。 Further, on the outer peripheral surface of the cylindrical housing 24, for example, a vibrator 6a made of an ultrasonic vibrator is disposed, and the housing 24 of the bearing 2 is vibrated as indicated by a white arrow in FIG. . The vibrator 6 a may be configured to be movable along the outer peripheral surface of the cylindrical housing 24 as long as it does not interfere with the first sensor 7.
 図14は、図12に示す軸受劣化診断装置1の機能ブロック図である。図14では、信号線を点線矢印にて示している。なお、信号線は、有線、無線の何れでも良いが、信号線の引き回しを考慮すると無線とすることが好ましい。図14に示すように、軸受劣化診断装置1は、マウス等の入力部10、第1センサ7より計測される計測値を入力すると共に入力部10を介してユーザからの設定情報を入力する入力I/F11、入力I/F11を介して計測値を取得する計測値取得部12、加振器6aへ出力する加振制御信号を生成する加振器制御部13、軸受2の劣化を判定する劣化判定部14、軸受2の過去の振動値(実績振動値)を格納する振動値DB(データベース)15、記憶部16、表示制御部17、及び出力I/F18を備え、これらは内部バス20を介して相互に接続されている。なお、加振器制御部13、劣化判定部14、及び表示制御部17は、例えば、各種プログラムを格納するROM、及び演算過程又はプログラムの実行過程において一時的にデータを格納するRAM等の記憶装置、ROMに格納される各種プログラムを実行するCPU等のプロセッサにより実現される。 
 計測値取得部12は、第1センサ7からの軸受2の振動値を、内部バス20を介して劣化判定部14へ転送する。また、計測値取得部12は、電動機3に設置される、例えばエンコーダ等からの電動機3の計測回転数を、内部バス20を介して加振器制御部13へ転送する。 
 また、軸受劣化診断装置1は、加振器制御部13により生成された加振制御信号を、内部バス20及び出力I/F18を介して受信すると共に、受信された加振制御信号に基づき軸受2を加振する加振器6aを有する。軸受劣化診断装置1は、劣化判定部14からの軸受2の劣化判定結果を、表示制御部17及び出力I/F18を介して画面上に表示する表示部19を備える。
FIG. 14 is a functional block diagram of the bearing deterioration diagnostic apparatus 1 shown in FIG. In FIG. 14, the signal lines are indicated by dotted arrows. Note that the signal line may be either wired or wireless, but it is preferable that the signal line be wireless in consideration of the routing of the signal line. As shown in FIG. 14, the bearing deterioration diagnosis device 1 inputs a measurement value measured by an input unit 10 such as a mouse and the first sensor 7 and inputs setting information from the user via the input unit 10. A measurement value acquisition unit 12 that acquires measurement values via the I / F 11 and the input I / F 11, a vibration exciter control unit 13 that generates a vibration control signal to be output to the vibration exciter 6 a, and the deterioration of the bearing 2 are determined. A deterioration determination unit 14, a vibration value DB (database) 15 that stores past vibration values (actual vibration values) of the bearing 2, a storage unit 16, a display control unit 17, and an output I / F 18 are provided. Are connected to each other. The vibrator control unit 13, the deterioration determination unit 14, and the display control unit 17 include, for example, a ROM that stores various programs, and a RAM that temporarily stores data in an arithmetic process or a program execution process. It is realized by a processor such as a CPU that executes various programs stored in the apparatus and ROM.
The measurement value acquisition unit 12 transfers the vibration value of the bearing 2 from the first sensor 7 to the deterioration determination unit 14 via the internal bus 20. Further, the measured value acquisition unit 12 transfers the measured rotational speed of the electric motor 3 from an encoder or the like installed in the electric motor 3 to the vibrator control unit 13 via the internal bus 20.
Further, the bearing deterioration diagnosis device 1 receives the vibration control signal generated by the vibration exciter control unit 13 via the internal bus 20 and the output I / F 18, and based on the received vibration control signal, the bearing deterioration diagnosis device 1 receives the vibration control signal. 2 has a vibration exciter 6a. The bearing deterioration diagnosis apparatus 1 includes a display unit 19 that displays the deterioration determination result of the bearing 2 from the deterioration determination unit 14 on the screen via the display control unit 17 and the output I / F 18.
 劣化判定部14は、内部バス20を介して振動値DB15へアクセスし、振動値DB15に格納される過去の振動値(実績振動値)のなかから、診断時の計測条件に該当する又は類似する過去の振動値を抽出する。劣化判定部14は、抽出された過去の振動値と、第1センサ7、入力I/F11、及び計測値取得部12を介して取得される軸受2の計測振動値を比較することで、回転機器8を構成する軸受2の劣化判定を行う。 
 図14に示す加振器6aは、加振器制御部13にて生成された加振制御信号に基づき、回転機器8を構成する軸受2を加振する。加振器6aによる軸受2の加振は、最も高感度検出が可能な軸受2の共振周波数を含む周波数帯域で行う。本実施例では軸受2のハウジング24を共振周波数で加振するため、上述の図12に示すように、水平方向(X方向)、垂直方向(Y方向)及び回転軸4の長手方向(Z方向)の固有振動数が考えられる。軸受2のハウジング24の形状や材質特性から予め、固有振動数を計算しておく。但し、少なくとも被駆動体であるロータ5、ロータ5へ回転駆動力を伝達する回転軸4を有する電動機3、と回転軸4を回転可能に支持する軸受2を有する回転機器8を設置した状態(据え付け状態)では、回転機器8の機械構造、施工状態や設置環境(据え付け環境)のばらつきにより、計算した固有振動数から若干ずれている可能性がある。そこで、加振器制御部13は、加振器6aへ出力する加振制御信号を、計算した固有振動数を中心に前後に(共振周波数を含む周波数帯域内で)変調させることで、確実に固有振動数で加振することが可能となる。更に、加振器制御部13が、固有振動数を中心に前後に変調する頻度を制御することで、単位時間あたりに固有振動数で加振する時間を制御する。換言すれば、加振器制御部13が、加振器6aによる軸受2のハウジング24への加振の頻度を制御することで、回転軸4、ロータ5、及び電動機3を有する回転機器8の機械構造に対し劣化を与えることなく、固有振動数で軸受2を加振することが可能となる。 
 本実施例の加振器制御部13の動作について説明する。 
 先ず、加振器制御部13は、電動機3に設置される図示しないエンコーダ等により電動機3の計測回転数を、入力I/F11、計測値取得部12、及び内部バス20を介して取得する。その後、取得された電動機3の計測回転数に基づき加振制御信号を生成する。次に、加振器制御部13は、内部バス20を介して記憶部16へアクセスし、記憶部16に格納される気温、湿度及び標高等の環境パラメータを取得する。加振器制御部13は、取得された環境パラメータに応じて、加振器6aへの加振制御信号を変更し、変更後の加振制御信号を、内部バス20及び出力I/F18を介して加振器6aへ出力する。換言すれば、超音波加振器よりなる加振器6aによる軸受2への加振の頻度を変更する。
The deterioration determination unit 14 accesses the vibration value DB 15 via the internal bus 20 and corresponds to or is similar to the measurement condition at the time of diagnosis from among the past vibration values (actual vibration values) stored in the vibration value DB 15. Extract past vibration values. The deterioration determination unit 14 compares the extracted past vibration value with the measured vibration value of the bearing 2 acquired via the first sensor 7, the input I / F 11, and the measured value acquisition unit 12. The deterioration determination of the bearing 2 which comprises the apparatus 8 is performed.
The vibrator 6a shown in FIG. 14 vibrates the bearing 2 constituting the rotating device 8 based on the vibration control signal generated by the vibrator control unit 13. The vibration of the bearing 2 by the vibrator 6a is performed in a frequency band including the resonance frequency of the bearing 2 that can detect the highest sensitivity. In the present embodiment, the housing 24 of the bearing 2 is vibrated at the resonance frequency, so that the horizontal direction (X direction), the vertical direction (Y direction), and the longitudinal direction (Z direction) of the rotating shaft 4 are shown in FIG. ) Natural frequency. The natural frequency is calculated in advance from the shape and material characteristics of the housing 24 of the bearing 2. However, at least a rotor 5 as a driven body, an electric motor 3 having a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating device 8 having a bearing 2 that rotatably supports the rotating shaft 4 are installed ( In the installation state), there is a possibility that the calculated natural frequency is slightly deviated due to variations in the mechanical structure, construction state, and installation environment (installation environment) of the rotating device 8. Therefore, the vibration exciter controller 13 reliably modulates the vibration control signal output to the vibration exciter 6a back and forth (within the frequency band including the resonance frequency) around the calculated natural frequency. It is possible to vibrate at the natural frequency. Further, the vibration exciter control unit 13 controls the time of vibration at the natural frequency per unit time by controlling the frequency of modulation back and forth around the natural frequency. In other words, the vibration exciter control unit 13 controls the frequency of vibration of the bearing 2 to the housing 24 by the vibration exciter 6a, so that the rotating device 8 having the rotating shaft 4, the rotor 5, and the electric motor 3 is controlled. The bearing 2 can be vibrated at the natural frequency without deteriorating the mechanical structure.
Operation | movement of the vibration exciter control part 13 of a present Example is demonstrated.
First, the vibration exciter control unit 13 acquires the measured rotational speed of the electric motor 3 via the input I / F 11, the measured value acquisition unit 12, and the internal bus 20 using an encoder (not shown) installed in the electric motor 3. Thereafter, an excitation control signal is generated based on the acquired measured rotational speed of the electric motor 3. Next, the vibration exciter control unit 13 accesses the storage unit 16 via the internal bus 20 and acquires environmental parameters such as temperature, humidity, and altitude stored in the storage unit 16. The vibration exciter control unit 13 changes the vibration control signal to the vibration exciter 6a according to the acquired environmental parameter, and sends the changed vibration control signal via the internal bus 20 and the output I / F 18. Output to the vibrator 6a. In other words, the frequency of vibration applied to the bearing 2 by the vibrator 6a made of an ultrasonic vibrator is changed.
 軸受劣化診断装置1を構成する劣化判定部14の動作については、上述の実施例1にて図9に示した処理フローと同様であるため説明を省略する。 
 本実施例では、軸受2を加振する加振器6aとして超音波加振器を用いる場合を例に説明したが、これに限られるものではない。加振器6aとして、例えば、一般的な機械式、油圧式、動電型、圧電型の加振器等を用いても良い。
The operation of the deterioration determination unit 14 constituting the bearing deterioration diagnosis device 1 is the same as the processing flow shown in FIG.
In this embodiment, the case where an ultrasonic vibrator is used as the vibrator 6a that vibrates the bearing 2 has been described as an example. However, the present invention is not limited to this. As the vibrator 6a, for example, a general mechanical, hydraulic, electrodynamic, or piezoelectric vibrator may be used.
 本実施例によれば、上述の実施例1の効果に加え、実施例1にて必要とされた第2センサ9a,9bが不要となることから、実施例1と比較し部品点数の低減が可能となる。 According to the present embodiment, in addition to the effects of the above-described first embodiment, the second sensors 9a and 9b required in the first embodiment are not required, so that the number of parts can be reduced as compared with the first embodiment. It becomes possible.
 図15は、本発明の他の実施例に係る実施例3の軸受劣化診断システムの全体概略構成図である。本実施例では、加振器により電動機を支持する支持台(支持部)を加振し、軸受劣化を診断する構成とした点が実施例1と異なる。その他の構成は実施例1と同様であり、実施例1と同様の構成要素に同一符号を付し、以下では、実施例1と重複する説明を省略する。 FIG. 15 is an overall schematic configuration diagram of the bearing deterioration diagnosis system of the third embodiment according to another embodiment of the present invention. The present embodiment is different from the first embodiment in that a support base (support portion) that supports an electric motor is vibrated by a vibrator to diagnose bearing deterioration. Other configurations are the same as those in the first embodiment, and the same reference numerals are given to the same components as those in the first embodiment, and the description overlapping with the first embodiment is omitted below.
 図15に示すように、本実施例の軸受劣化診断システム100は、被駆動体であるロータ5、ロータ5へ回転駆動力を伝達する回転軸4を有する電動機(モータ)3、回転軸4を回転可能に支持する軸受2、と電動機3を支持する支持台26を有する回転機器8、軸受2に取り付けられた第1センサ7、支持台26を加振する加振器6b、及び、少なくとも第1センサ7からの計測値を取得し、加振器6bへ加振制御信号を出力する軸受劣化診断装置1を備える。ここで、軸受劣化診断装置1は、加振器6bを含む。なお、回転軸4を図示しないカップリングを介して、被駆動体であるロータ5へ連結する構成としても良い。ここで、加振器6bとして、例えば、超音波加振器、一般的な機械式、油圧式、動電型、圧電型の加振器等が用いられる。 As shown in FIG. 15, the bearing deterioration diagnosis system 100 of this embodiment includes a rotor 5 that is a driven body, an electric motor (motor) 3 that has a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating shaft 4. A rotating device 8 having a bearing 2 that is rotatably supported, and a support base 26 that supports the electric motor 3, a first sensor 7 attached to the bearing 2, a vibrator 6b that vibrates the support base 26, and at least a first A bearing deterioration diagnosis apparatus 1 that acquires a measurement value from one sensor 7 and outputs an excitation control signal to the vibrator 6b is provided. Here, the bearing deterioration diagnostic apparatus 1 includes a vibrator 6b. In addition, it is good also as a structure which connects the rotating shaft 4 to the rotor 5 which is a to-be-driven body through the coupling which is not shown in figure. Here, as the vibrator 6b, for example, an ultrasonic vibrator, a general mechanical, hydraulic, electrodynamic, or piezoelectric vibrator is used.
 図16は、図15に示す軸受劣化診断装置1の機能ブロック図である。図16では、信号線を点線矢印にて示している。なお、信号線は、有線、無線の何れでも良いが、信号線の引き回しを考慮すると無線とすることが好ましい。図16に示すように、軸受劣化診断装置1は、マウス等の入力部10、第1センサ7より計測される計測値を入力すると共に入力部10を介してユーザからの設定情報を入力する入力I/F11、入力I/F11を介して計測値を取得する計測値取得部12、加振器6bへ出力する加振制御信号を生成する加振器制御部13、軸受2の劣化を判定する劣化判定部14、軸受2の過去の振動値(実績振動値)を格納する振動値DB(データベース)15、記憶部16、表示制御部17、出力I/F18を備え、これらは内部バス20を介して相互に接続されている。なお、加振器制御部13、劣化判定部14、及び表示制御部17は、例えば、各種プログラムを格納するROM、及び演算過程又はプログラムの実行過程において一時的にデータを格納するRAM等の記憶装置、ROMに格納される各種プログラムを実行するCPU等のプロセッサにより実現される。 
 計測値取得部12は、第1センサ7からの軸受2の振動値を、内部バス20を介して劣化判定部14へ転送する。また、計測値取得部12は、電動機3に設置される、例えばエンコーダ等(図示せず)からの電動機3の計測回転数を、内部バス20を介して加振器制御部13へ転送する。 
 また、軸受劣化診断装置1は、加振器制御部13により生成された加振制御信号を、内部バス20及び出力I/F18を介して受信すると共に、受信された加振制御信号に基づき支持台26を加振する加振器6bを有する。軸受劣化診断装置1は、劣化判定部14からの軸受2の劣化判定結果を、表示制御部17及び出力I/F18を介して画面上に表示する表示部19を備える。
FIG. 16 is a functional block diagram of the bearing deterioration diagnostic apparatus 1 shown in FIG. In FIG. 16, signal lines are indicated by dotted arrows. Note that the signal line may be either wired or wireless, but it is preferable that the signal line be wireless in consideration of the routing of the signal line. As shown in FIG. 16, the bearing deterioration diagnosis device 1 inputs a measurement value measured by an input unit 10 such as a mouse and the first sensor 7 and inputs setting information from the user via the input unit 10. A measurement value acquisition unit 12 that acquires measurement values via the I / F 11 and the input I / F 11, a vibration exciter control unit 13 that generates a vibration control signal to be output to the vibration exciter 6 b, and the deterioration of the bearing 2 are determined. A deterioration determination unit 14, a vibration value DB (database) 15 that stores past vibration values (actual vibration values) of the bearing 2, a storage unit 16, a display control unit 17, and an output I / F 18 are provided. Are connected to each other. The vibrator control unit 13, the deterioration determination unit 14, and the display control unit 17 include, for example, a ROM that stores various programs, and a RAM that temporarily stores data in an arithmetic process or a program execution process. It is realized by a processor such as a CPU that executes various programs stored in the apparatus and ROM.
The measurement value acquisition unit 12 transfers the vibration value of the bearing 2 from the first sensor 7 to the deterioration determination unit 14 via the internal bus 20. In addition, the measurement value acquisition unit 12 transfers the measured rotation speed of the motor 3 from, for example, an encoder (not shown) installed in the motor 3 to the vibrator control unit 13 via the internal bus 20.
The bearing deterioration diagnosis device 1 receives the vibration control signal generated by the vibration exciter control unit 13 via the internal bus 20 and the output I / F 18 and supports it based on the received vibration control signal. A vibration exciter 6b for exciting the table 26 is provided. The bearing deterioration diagnosis apparatus 1 includes a display unit 19 that displays the deterioration determination result of the bearing 2 from the deterioration determination unit 14 on the screen via the display control unit 17 and the output I / F 18.
 劣化判定部14は、内部バス20を介して振動値DB15へアクセスし、振動値DB15に格納される過去の振動値(実績振動値)のなかから、診断時の計測条件に該当する又は類似する過去の振動値を抽出する。劣化判定部14は、抽出された過去の振動値と、第1センサ7、入力I/F11、及び計測値取得部12を介して取得される軸受2の計測振動値を比較することで、回転機器8を構成する軸受2の劣化判定を行う。 
 図16に示す加振器6bは、加振器制御部13にて生成された加振制御信号に基づき、回転機器8を構成する電動機3を支持する支持台26を加振する。加振器6bによる支持台26の加振は、最も高感度検出が可能な軸受2の共振周波数を含む周波数帯域で行う。本実施例では支持台26を共振周波数で加振するため、上述の図15に示すように、水平方向(X方向)、垂直方向(Y方向)及び回転軸4の長手方向(Z方向)の固有振動数が考えられる。軸受2の形状や材質特性から予め、固有振動数を計算しておく。但し、少なくとも被駆動体であるロータ5、ロータ5へ回転駆動力を伝達する回転軸4を有する電動機3、及び、回転軸4を回転可能に支持する軸受2を有する回転機器8を設置した状態(据え付け状態)では、回転機器8の機械構造、施工状態や設置環境(据え付け環境)のばらつきにより、計算した固有振動数から若干ずれている可能性がある。そこで、加振器制御部13は、加振器6bへ出力する加振制御信号を、計算した固有振動数を中心に前後に(共振周波数を含む周波数帯域内で)変調させることで、確実に固有振動数で加振することが可能となる。更に、加振器制御部13が、固有振動数を中心に前後に変調する頻度を制御することで、単位時間あたりに固有振動数で加振する時間を制御する。換言すれば、加振器制御部13が、加振器6bによる支持台26への加振の頻度を制御することで、回転軸4、ロータ5、及び電動機3を有する回転機器8の機械構造に対し劣化を与えることなく、軸受2の固有振動数で支持台26を加振することが可能となる。 
 本実施例の加振器制御部13の動作について説明する。 
 先ず、加振器制御部13は、電動機3に設置される図示しないエンコーダ等により電動機3の計測回転数を、入力I/F11、計測値取得部12、及び内部バス20を介して取得する。その後、取得された電動機3の計測回転数に基づき加振制御信号を生成する。次に、加振器制御部13は、内部バス20を介して記憶部16へアクセスし、記憶部16に格納される気温、湿度及び標高等の環境パラメータを取得する。加振器制御部13は、取得された環境パラメータに応じて、加振器6bへの加振制御信号を変更し、変更後の加振制御信号を、内部バス20及び出力I/F18を介して加振器6bへ出力する。換言すれば、加振器6bによる支持台26への加振の頻度を変更する。
The deterioration determination unit 14 accesses the vibration value DB 15 via the internal bus 20 and corresponds to or is similar to the measurement condition at the time of diagnosis from among the past vibration values (actual vibration values) stored in the vibration value DB 15. Extract past vibration values. The deterioration determination unit 14 compares the extracted past vibration value with the measured vibration value of the bearing 2 acquired via the first sensor 7, the input I / F 11, and the measured value acquisition unit 12. The deterioration determination of the bearing 2 which comprises the apparatus 8 is performed.
The vibrator 6 b shown in FIG. 16 vibrates the support base 26 that supports the electric motor 3 constituting the rotating device 8 based on the vibration control signal generated by the vibrator controller 13. The vibration of the support base 26 by the vibrator 6b is performed in a frequency band including the resonance frequency of the bearing 2 that can detect the highest sensitivity. In this embodiment, since the support base 26 is vibrated at the resonance frequency, the horizontal direction (X direction), the vertical direction (Y direction), and the longitudinal direction (Z direction) of the rotating shaft 4 are shown in FIG. Natural frequency is considered. The natural frequency is calculated in advance from the shape and material characteristics of the bearing 2. However, at least a rotor 5 as a driven body, an electric motor 3 having a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating device 8 having a bearing 2 that rotatably supports the rotating shaft 4 are installed. In (installation state), there is a possibility that the calculated natural frequency is slightly deviated due to variations in the mechanical structure, construction state, and installation environment (installation environment) of the rotating device 8. Therefore, the vibrator controller 13 reliably modulates the vibration control signal output to the vibrator 6b back and forth (within the frequency band including the resonance frequency) around the calculated natural frequency. It is possible to vibrate at the natural frequency. Further, the vibration exciter control unit 13 controls the time of vibration at the natural frequency per unit time by controlling the frequency of modulation back and forth around the natural frequency. In other words, the mechanical structure of the rotating device 8 having the rotating shaft 4, the rotor 5, and the electric motor 3 by the vibration exciter control unit 13 controlling the frequency of vibration applied to the support base 26 by the vibration exciter 6 b. Therefore, the support base 26 can be vibrated at the natural frequency of the bearing 2 without deteriorating the vibration.
Operation | movement of the vibration exciter control part 13 of a present Example is demonstrated.
First, the vibration exciter control unit 13 acquires the measured rotational speed of the electric motor 3 via the input I / F 11, the measured value acquisition unit 12, and the internal bus 20 using an encoder (not shown) installed in the electric motor 3. Thereafter, an excitation control signal is generated based on the acquired measured rotational speed of the electric motor 3. Next, the vibration exciter control unit 13 accesses the storage unit 16 via the internal bus 20 and acquires environmental parameters such as temperature, humidity, and altitude stored in the storage unit 16. The vibration exciter control unit 13 changes the vibration control signal to the vibration exciter 6b according to the acquired environmental parameter, and sends the changed vibration control signal via the internal bus 20 and the output I / F 18. And output to the vibrator 6b. In other words, the frequency of excitation to the support base 26 by the vibrator 6b is changed.
 軸受劣化診断装置1を構成する劣化判定部14の動作については、上述の実施例1にて図9に示した処理フローと同様であるため説明を省略する。 
 本実施例によれば、上述の実施例1の効果に加え、実施例1にて必要とされた第2センサ9a,9bが不要となることから、実施例1と比較し部品点数の低減が可能となる。
The operation of the deterioration determination unit 14 constituting the bearing deterioration diagnosis device 1 is the same as the processing flow shown in FIG.
According to the present embodiment, in addition to the effects of the above-described first embodiment, the second sensors 9a and 9b required in the first embodiment are not required, so that the number of parts can be reduced as compared with the first embodiment. It becomes possible.
 図17は、本発明の他の実施例に係る実施例4の軸受劣化診断システムを構成する軸受劣化診断装置の機能ブロック図である。本実施例では、第1センサにより計測される軸受の計測振動値に基づきフィードバック加振信号を生成するFB加振信号生成部を設け、FB加振信号生成部により生成されたフィードバック加振信号を加振器制御部へ出力する構成とした点が実施例1と異なる。その他の構成は実施例1と同様であり、実施例1と同様の構成要素に同一符号を付し、以下では、実施例1と重複する説明を省略する。 FIG. 17 is a functional block diagram of a bearing deterioration diagnosis device that constitutes the bearing deterioration diagnosis system according to the fourth embodiment of the present invention. In the present embodiment, an FB vibration signal generation unit that generates a feedback vibration signal based on the measured vibration value of the bearing measured by the first sensor is provided, and the feedback vibration signal generated by the FB vibration signal generation unit is provided. It differs from the first embodiment in that it is configured to output to the vibration exciter control unit. Other configurations are the same as those in the first embodiment, and the same reference numerals are given to the same components as those in the first embodiment, and the description overlapping with the first embodiment is omitted below.
 本実施例の軸受劣化診断システム100は、実施例1と同様に、被駆動体であるロータ5、ロータ5へ回転駆動力を伝達する回転軸4を有する電動機(モータ)3、と回転軸4を回転可能に支持する軸受2を有する回転機器8、軸受2に取り付けられた第1センサ7、軸受2にて回転可能に支持される回転軸4を加振する加振器6、及び、少なくとも第1センサ7からの計測値を取得し、加振器6へ加振制御信号を出力する軸受劣化診断装置1aを備える。ここで、軸受劣化診断装置1aは、加振器6を含む。なお、回転軸4を図示しないカップリングを介して、被駆動体であるロータ5へ連結する構成としても良い。 As in the first embodiment, the bearing deterioration diagnosis system 100 according to the present embodiment includes a rotor 5 that is a driven body, an electric motor (motor) 3 that includes a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating shaft 4. A rotating device 8 having a bearing 2 that rotatably supports the first sensor 7, a first sensor 7 attached to the bearing 2, a vibrator 6 that vibrates the rotating shaft 4 that is rotatably supported by the bearing 2, and at least A bearing deterioration diagnosis device 1 a that acquires a measurement value from the first sensor 7 and outputs an excitation control signal to the vibrator 6 is provided. Here, the bearing deterioration diagnosis device 1 a includes a vibrator 6. In addition, it is good also as a structure which connects the rotating shaft 4 to the rotor 5 which is a to-be-driven body through the coupling which is not shown in figure.
 また、本実施例の加振器6は、図3に示した磁気軸受を一例として用いる。上述のように、磁気軸受ハウジングの内周面には、図3に示すように、回転軸4の軸心から見て直交する位置、すなわち、回転軸4の軸心を中心として横断面内において相互に直角となる位置に配される2つの第2センサ9a(X軸方向変位センサ)及び第2センサ9b(Y軸方向変位センサ)が取り付けられている。これら、第2センサ9a及び第2センサ9bは、円筒状の磁気軸受ハウジングの内周面より中央に配される回転軸4へと向かい延伸するよう取り付けられている。これら2つの第2センサ9a及び第2センサ9bは、変位センサであって、例えば、過電流センサ、誘導センサ、光センサ、又はホールセンサ等が用いられる。第2センサ9aは、加振器6としての磁気軸受の横断面中央部に配される回転軸4のX軸方向変位の計測値を、軸受劣化診断装置1aへ出力する。また、第2センサ9bは、加振器6としての磁気軸受の横断面中央部に配される回転軸4のY軸方向変位の計測値を、軸受劣化診断装置1aへ出力する。 Further, the vibrator 6 of this embodiment uses the magnetic bearing shown in FIG. 3 as an example. As described above, on the inner peripheral surface of the magnetic bearing housing, as shown in FIG. 3, a position orthogonal to the axis of the rotating shaft 4, that is, in the cross section around the axis of the rotating shaft 4. Two second sensors 9a (X-axis direction displacement sensors) and second sensors 9b (Y-axis direction displacement sensors) arranged at positions perpendicular to each other are attached. The second sensor 9a and the second sensor 9b are attached so as to extend from the inner peripheral surface of the cylindrical magnetic bearing housing toward the rotary shaft 4 disposed in the center. These two second sensors 9a and 9b are displacement sensors, and for example, an overcurrent sensor, an induction sensor, an optical sensor, or a Hall sensor is used. The 2nd sensor 9a outputs the measured value of the X-axis direction displacement of the rotating shaft 4 arrange | positioned in the cross-sectional center part of the magnetic bearing as the vibrator 6 to the bearing deterioration diagnostic apparatus 1a. In addition, the second sensor 9b outputs a measured value of the displacement in the Y-axis direction of the rotating shaft 4 arranged at the center of the cross section of the magnetic bearing as the vibrator 6 to the bearing deterioration diagnosis device 1a.
 図17では、信号線を点線矢印にて示している。なお、信号線は、有線、無線の何れでも良いが、信号線の引き回しを考慮すると無線とすることが好ましい。図17に示すように、軸受劣化診断装置1aは、マウス等の入力部10、第1センサ7と第2センサ9a及び第2センサ9bより計測される計測値を入力すると共に入力部10を介してユーザからの設定情報を入力する入力I/F11、入力I/F11を介して計測値を取得する計測値取得部12、加振器6へ出力する加振制御信号を生成する加振器制御部13、第1センサ7により計測される軸受2の計測振動値に基づきフィードバック加振信号を生成するFB加振信号生成部25、軸受2の劣化を判定する劣化判定部14、軸受2の過去の振動値(実績振動値)を格納する振動値DB(データベース)15、記憶部16、表示制御部17、及び出力I/F18を備え、これらは内部バス20を介して相互に接続されている。なお、加振器制御部13、FB加振信号生成部25、劣化判定部14、及び表示制御部17は、例えば、各種プログラムを格納するROM、及び演算過程又はプログラムの実行過程において一時的にデータを格納するRAM等の記憶装置、ROMに格納される各種プログラムを実行するCPU等のプロセッサにより実現される。 
 計測値取得部12は、第1センサ7からの軸受2の振動値を、内部バス20を介して劣化判定部14及びFB加振信号生成部25へ転送する。また、計測値取得部12は、第2センサ9aからの回転軸4のX軸方向変位の計測値及び、第2センサ9bからの回転軸4のY軸方向変位の計測値を、内部バス20を介して加振器制御部13へ転送する。更に、計測値取得部12は、電動機3に設置される、例えばエンコーダ等(図示せず)からの電動機3の計測回転数を、内部バス20を介して加振器制御部13へ転送する。 
 また、軸受劣化診断装置1aは、加振器制御部13により生成された加振制御信号を、内部バス20及び出力I/F18を介して受信すると共に、受信された加振制御信号に基づき回転軸4を加振する加振器6を有する。軸受劣化診断装置1aは、劣化判定部14からの軸受2の劣化判定結果を、表示制御部17及び出力I/F18を介して画面上に表示する表示部19を備える。
In FIG. 17, signal lines are indicated by dotted arrows. Note that the signal line may be either wired or wireless, but it is preferable that the signal line be wireless in consideration of the routing of the signal line. As shown in FIG. 17, the bearing deterioration diagnosis device 1 a inputs the measurement values measured by the input unit 10 such as a mouse, the first sensor 7, the second sensor 9 a, and the second sensor 9 b and through the input unit 10. The input I / F 11 for inputting setting information from the user, the measurement value acquisition unit 12 for acquiring the measurement value via the input I / F 11, and the vibrator control for generating the vibration control signal to be output to the vibrator 6 Unit 13, an FB excitation signal generation unit 25 that generates a feedback excitation signal based on the measured vibration value of the bearing 2 measured by the first sensor 7, a deterioration determination unit 14 that determines deterioration of the bearing 2, and the past of the bearing 2 A vibration value DB (database) 15 for storing vibration values (actual vibration values), a storage unit 16, a display control unit 17, and an output I / F 18 are connected to each other via an internal bus 20. . The vibrator control unit 13, the FB vibration signal generation unit 25, the deterioration determination unit 14, and the display control unit 17 are temporarily stored in, for example, a ROM that stores various programs and an arithmetic process or a program execution process. It is realized by a storage device such as a RAM for storing data and a processor such as a CPU for executing various programs stored in the ROM.
The measurement value acquisition unit 12 transfers the vibration value of the bearing 2 from the first sensor 7 to the deterioration determination unit 14 and the FB vibration signal generation unit 25 via the internal bus 20. In addition, the measurement value acquisition unit 12 receives the measurement value of the X-axis direction displacement of the rotation shaft 4 from the second sensor 9a and the measurement value of the Y-axis direction displacement of the rotation shaft 4 from the second sensor 9b. To the vibration exciter control unit 13. Further, the measured value acquisition unit 12 transfers the measured rotational speed of the electric motor 3 from, for example, an encoder (not shown) installed in the electric motor 3 to the vibrator control unit 13 via the internal bus 20.
The bearing deterioration diagnosis device 1a receives the vibration control signal generated by the vibration exciter control unit 13 via the internal bus 20 and the output I / F 18, and rotates based on the received vibration control signal. A vibration exciter 6 for exciting the shaft 4 is provided. The bearing deterioration diagnosis device 1a includes a display unit 19 that displays the deterioration determination result of the bearing 2 from the deterioration determination unit 14 on the screen via the display control unit 17 and the output I / F 18.
 FB加振信号生成部25は、内部バス20を介して計測値取得部12より転送される、第1センサ7からの軸受2の振動値に基づき、加振器6である磁気軸受の各極のコイルに印加する電圧の時間変化パターンを加振信号として生成する。FB加振信号生成部25は、生成した加振信号を、内部バス20を介して加振器制御部13へ転送する。 
 劣化判定部14は、内部バス20を介して振動値DB15へアクセスし、振動値DB15に格納される過去の振動値(実績振動値)のなかから、診断時の計測条件に該当する又は類似する過去の振動値を抽出する。劣化判定部14は、抽出された過去の振動値と、第1センサ7、入力I/F11、及び計測値取得部12を介して取得される軸受2の計測振動値を比較することで、回転機器8を構成する軸受2の劣化判定を行う。
The FB excitation signal generation unit 25 is based on the vibration value of the bearing 2 from the first sensor 7 transferred from the measurement value acquisition unit 12 via the internal bus 20. A time change pattern of a voltage applied to the coil is generated as an excitation signal. The FB vibration signal generation unit 25 transfers the generated vibration signal to the vibration exciter control unit 13 via the internal bus 20.
The deterioration determination unit 14 accesses the vibration value DB 15 via the internal bus 20 and corresponds to or is similar to the measurement condition at the time of diagnosis from among the past vibration values (actual vibration values) stored in the vibration value DB 15. Extract past vibration values. The deterioration determination unit 14 compares the extracted past vibration value with the measured vibration value of the bearing 2 acquired via the first sensor 7, the input I / F 11, and the measured value acquisition unit 12. The deterioration determination of the bearing 2 which comprises the apparatus 8 is performed.
 図17に示す加振器6は、加振器制御部13にて生成された加振制御信号に基づき、回転機器8を構成する回転軸4を加振する。加振器6による回転軸4の加振は、最も高感度検出が可能な軸受2の共振周波数を含む周波数帯域で行う。本実施例では回転軸4を共振周波数で加振するため、上述した図1に示すように、水平方向(X方向)、垂直方向(Y方向)及び回転軸4の長手方向(Z方向)の固有振動数が考えられる。軸受2の形状や材質特性から予め、固有振動数を計算しておく。但し、少なくとも被駆動体であるロータ5、ロータ5へ回転駆動力を伝達する回転軸4を有する電動機3、及び、回転軸4を回転可能に支持する軸受2を有する回転機器8を設置した状態(据え付け状態)では、回転機器8の機械構造、施工状態や設置環境(据え付け環境)のばらつきにより、計算した固有振動数から若干ずれている可能性がある。そこで、加振器制御部13は、加振器6へ出力する加振制御信号を、計算した固有振動数を中心に前後に(共振周波数を含む周波数帯域内で)変調させることで、確実に固有振動数で加振することが可能となる。更に、加振器制御部13が、固有振動数を中心に前後に変調する頻度を制御することで、単位時間あたりに固有振動数で加振する時間を制御する。換言すれば、加振器制御部13が、加振器6による回転軸4への加振の頻度を制御することで、回転軸4、ロータ5、及び電動機3を有する回転機器8の機械構造に対し劣化を与えることなく、軸受2の固有振動数で回転軸4を加振することが可能となる。 
 本実施例の加振器制御部13の動作について説明する。 
 加振器制御部13は、上述の実施例1にて説明した、図8のステップS11~ステップS15までを実行した後、FB加振信号生成部25により生成された加振器6である磁気軸受の各極のコイルに印加する電圧の時間変化パターンである加振信号を、内部バス20を介して取得する。次に、加振器制御器13は、ステップS16にて、取得された環境パラメータ及びFB加振信号生成部25からの電圧の時間変化パターンである加振信号に応じて、加振器6としての磁気軸受を構成する電磁石のコイル(鉄心に捲回される起きる)に印加する電圧の時間変化パターンを変更し、変更後の加振制御信号を、内部バス20及び出力I/F18を介して加振器6である磁気軸受に出力する。換言すれば、単位時間あたりのコイルへの通電の頻度を変更する。これにより、回転軸4への加振の頻度を変更する。 
 軸受劣化診断装置1aを構成する劣化判定部14の動作については、上述の実施例1にて図9に示した処理フローと同様であるため説明を省略する。
 なお、本実施例では、軸受劣化診断装置1aが回転軸4を加振する加振器6を有する構成としたが、これに代えて、軸受劣化診断装置1aが、実施例2に示した軸受2を加振する加振器6aを有する構成としても良い。また、軸受劣化診断装置1aが、実施例3に示した電動機3を支持する支持台26を加振する加振器6bを有する構成としても良い。
The vibrator 6 shown in FIG. 17 vibrates the rotating shaft 4 constituting the rotating device 8 based on the vibration control signal generated by the vibrator controller 13. The vibration of the rotating shaft 4 by the vibrator 6 is performed in a frequency band including the resonance frequency of the bearing 2 that can detect the highest sensitivity. In this embodiment, since the rotating shaft 4 is vibrated at the resonance frequency, as shown in FIG. 1 described above, the horizontal direction (X direction), the vertical direction (Y direction), and the longitudinal direction of the rotating shaft 4 (Z direction). Natural frequency is considered. The natural frequency is calculated in advance from the shape and material characteristics of the bearing 2. However, at least a rotor 5 as a driven body, an electric motor 3 having a rotating shaft 4 that transmits a rotational driving force to the rotor 5, and a rotating device 8 having a bearing 2 that rotatably supports the rotating shaft 4 are installed. In (installation state), there is a possibility that the calculated natural frequency is slightly deviated due to variations in the mechanical structure, construction state, and installation environment (installation environment) of the rotating device 8. Therefore, the vibrator control unit 13 reliably modulates the vibration control signal output to the vibrator 6 back and forth (within the frequency band including the resonance frequency) around the calculated natural frequency. It is possible to vibrate at the natural frequency. Further, the vibration exciter control unit 13 controls the time of vibration at the natural frequency per unit time by controlling the frequency of modulation back and forth around the natural frequency. In other words, the mechanical structure of the rotating device 8 having the rotating shaft 4, the rotor 5, and the electric motor 3 by the vibration exciter control unit 13 controlling the frequency of vibration applied to the rotating shaft 4 by the vibration exciter 6. Therefore, it is possible to vibrate the rotating shaft 4 at the natural frequency of the bearing 2 without deteriorating.
Operation | movement of the vibration exciter control part 13 of a present Example is demonstrated.
The vibration exciter control unit 13 is the magnetic exciter 6 generated by the FB vibration signal generation unit 25 after performing steps S11 to S15 in FIG. 8 described in the first embodiment. An excitation signal that is a time change pattern of a voltage applied to the coil of each pole of the bearing is acquired via the internal bus 20. Next, in step S16, the vibration exciter controller 13 serves as the vibration exciter 6 according to the acquired environmental parameter and the vibration signal that is the time change pattern of the voltage from the FB vibration signal generation unit 25. The time change pattern of the voltage applied to the electromagnet coil (which is wound around the iron core) constituting the magnetic bearing is changed, and the changed excitation control signal is sent via the internal bus 20 and the output I / F 18. It outputs to the magnetic bearing which is the vibrator 6. In other words, the frequency of energization of the coil per unit time is changed. Thereby, the frequency of excitation to the rotating shaft 4 is changed.
The operation of the deterioration determination unit 14 constituting the bearing deterioration diagnosis device 1a is the same as the processing flow shown in FIG.
In this embodiment, the bearing deterioration diagnosis device 1a includes the vibrator 6 that vibrates the rotating shaft 4. Instead, the bearing deterioration diagnosis device 1a includes the bearing shown in the second embodiment. It is good also as a structure which has the vibrator 6a which vibrates 2. Further, the bearing deterioration diagnosis device 1a may include a vibrator 6b that vibrates the support base 26 that supports the electric motor 3 shown in the third embodiment.
 本実施例によれば、上述の実施例1の効果に加え、加振器制御部が、FB加振信号生成部からの加振信号も加味した上で加振器へ出力する加振制御信号を変更する構成であることから、実施例1と比較しより好適に加振することが可能となり、軸受及び軸受を有する回転機器の損傷をより効果的に回避することが可能となる。 According to the present embodiment, in addition to the effects of the first embodiment, the vibration exciter control unit outputs the vibration control signal to the vibration exciter in consideration of the vibration signal from the FB vibration signal generation unit. Therefore, it is possible to more preferably vibrate compared to the first embodiment, and it is possible to more effectively avoid damage to the bearing and the rotating device having the bearing.
 なお、上述の実施例1~実施例4において、軸受劣化診断装置の表示部の表示画面上に、軸受劣化診断結果として、「正常」、「経過注意」、及び「異常」の3段階表示する構成としても良く、或は、劣化状態を割合表示(数値表示)する構成としても良い。 
 また、軸受劣化診断装置を構成する表示部19を、回転機器8の近くに設置する構成、又はネットワーク等を介して回転機器8の制御室等に設置するなど、回転機器8から離間する遠隔地に設置する構成としても良い。 
 また、上述の実施例1~実施例4に示す構成とすることで、ユーザは軸受の劣化状態を容易に把握できることから、次回のメンテナンスまで軸受を持たせるために抑制運転を行う、若しくは、故障する時期を予測し次回のメンテナンス作業日までの間隔を鑑みて、次回メンテナンス作業日まで回転機器の稼働量が最大になるような運転を行う等、軸受の劣化状態に応じて回転機器の運転モードを変更することで、最適なオペレーションサービスを提供することが可能となる。 
 一方、直ちに部品を発注し、次回の点検日を予定より早める、若しくは軸受の劣化の進行経過を鑑みて、メンテナンス周期を見直す等、メンテナンス調整サービスを提供することができる。更に軸受の劣化状態を顧客、特に回転機器オーナーに提示することで、回転機器のメンテナンスレポートの一部とすることができ、部品交換が必要な場合において費用負担を請求する際の証拠として用いることができる。
In the first to fourth embodiments described above, three stages of “normal”, “elapsed attention”, and “abnormal” are displayed as the bearing deterioration diagnosis result on the display screen of the display unit of the bearing deterioration diagnosis apparatus. It is good also as a structure, or it is good also as a structure which displays a deterioration state as a ratio (numerical value display).
In addition, the display unit 19 constituting the bearing deterioration diagnosis device is installed in the vicinity of the rotating device 8 or installed in a control room or the like of the rotating device 8 via a network or the like. It is good also as a structure installed in.
Further, with the configuration shown in the above-described first to fourth embodiments, the user can easily grasp the deterioration state of the bearing, so that the restraint operation is performed in order to keep the bearing until the next maintenance, or a failure occurs. In consideration of the interval until the next maintenance work day, the operation mode of the rotating equipment is selected according to the deterioration state of the bearing. By changing, it becomes possible to provide an optimal operation service.
On the other hand, it is possible to provide maintenance adjustment services such as ordering parts immediately and accelerating the next inspection date from the schedule or reviewing the maintenance cycle in view of the progress of the deterioration of the bearing. In addition, by presenting the deterioration status of the bearing to the customer, especially the owner of the rotating equipment, it can be used as a part of the rotating equipment maintenance report and used as a proof when requesting a cost burden when parts replacement is required. Can do.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.
1,1a・・・軸受劣化診断装置,2・・・軸受,3・・・電動機(モータ),4・・・回転軸,5・・・ロータ,6,6a,6b・・・加振器,7・・・第1センサ,8・・・回転機器,9a,9b・・・第2センサ,10・・・入力部,11・・・入力I/F,12・・・計測値取得部,13・・・加振器制御部,14・・・劣化判定部,15・・・振動値DB,16・・・記憶部,17・・・表示制御部,18・・・出力I/F,19・・・表示部,20・・・内部バス,21・・・内輪,22・・・外輪,23・・・玉,24・・・ハウジング,25・・・FB加振信号生成部,26・・・支持台,31a,31b・・・コイル,32a,32b・・・コイル,33a,33b・・・コイル,34a,34b・・・コイル,40・・・表示画面,41・・・第1表示領域,42・・・第2表示領域,43・・・読込ボタン,44・・・判定ボタン,100・・・軸受劣化診断システム DESCRIPTION OF SYMBOLS 1, 1a ... Bearing deterioration diagnostic apparatus, 2 ... Bearing, 3 ... Electric motor (motor), 4 ... Rotary shaft, 5 ... Rotor, 6, 6a, 6b ... Exciter , 7 ... 1st sensor, 8 ... Rotating device, 9a, 9b ... 2nd sensor, 10 ... Input part, 11 ... Input I / F, 12 ... Measurement value acquisition part , 13 ... exciter control unit, 14 ... degradation determination unit, 15 ... vibration value DB, 16 ... storage unit, 17 ... display control unit, 18 ... output I / F , 19 ... Display unit, 20 ... Internal bus, 21 ... Inner ring, 22 ... Outer ring, 23 ... Ball, 24 ... Housing, 25 ... FB excitation signal generator, 26 ... support base, 31a, 31b ... coil, 32a, 32b ... coil, 33a, 33b ... coil, 34a, 34b ... coil, 40 ... Display screen, 41 ... first display area, 42 ... second display area, 43 ... read button, 44 ... determination button 100 ... bearing degradation diagnostic system

Claims (15)

  1.  被駆動体であるロータへ回転駆動力を伝達する回転軸又は前記回転軸を回転可能に支持する軸受若しくは前記回転軸を有する電動機の支持部に対し、前記軸受の共振周波数を含む周波数帯域にて加振し、当該加振の頻度を制御する加振制御部と、
     前記軸受の過去の振動値を、少なくとも前記電動機の回転数と対応付けて格納する振動値データベースと、
     計測される前記軸受の計測振動値と前記振動値データベースに格納される過去の振動値に基づき、前記軸受の劣化状態を判定する劣化判定部と、を備えることを特徴とする軸受劣化診断装置。
    In a frequency band including the resonance frequency of the bearing, the rotating shaft that transmits the rotational driving force to the rotor that is the driven body, the bearing that rotatably supports the rotating shaft, or the support portion of the electric motor that has the rotating shaft. An excitation control unit for exciting and controlling the frequency of the excitation,
    A vibration value database for storing a past vibration value of the bearing in association with at least the rotational speed of the motor;
    A bearing deterioration diagnosis apparatus comprising: a deterioration determining unit that determines a deterioration state of the bearing based on a measured vibration value of the bearing to be measured and a past vibration value stored in the vibration value database.
  2.  請求項1に記載の軸受劣化診断装置において、
     前記加振制御部は、
     前記回転軸又は前記軸受若しくは前記電動機の支持部を加振する加振器と、
     前記加振器に対し、前記軸受の共振周波数を含む周波数帯域内で周波数を変調する加振制御信号を出力する加振器制御部と、を有することを特徴とする軸受劣化診断装置。
    In the bearing deterioration diagnostic apparatus according to claim 1,
    The excitation control unit
    A vibration exciter for vibrating the rotating shaft or the bearing or the motor support;
    A bearing deterioration diagnostic apparatus, comprising: a vibrator control unit that outputs a vibration control signal that modulates a frequency within a frequency band including a resonance frequency of the bearing to the vibrator.
  3.  請求項2に記載の軸受劣化診断装置において、
     前記劣化判定部は、前記軸受に設置される第1センサからの計測振動値に基づき現時点の計測振動値の周波数スペクトル分布を求めると共に、計測される電動機の回転数に対応する軸受の過去の振動値を前記振動値データベースから抽出し、軸受の過去の振動値の周波数スペクトル分布を求め、前記現時点の計測振動値の周波数スペクトル分布及び前記軸受の過去の振動値の周波数スペクトル分布を比較し、前記軸受の劣化状態を判定することを特徴とする軸受劣化診断装置。
    In the bearing deterioration diagnostic apparatus according to claim 2,
    The deterioration determination unit obtains a frequency spectrum distribution of a current measured vibration value based on a measured vibration value from a first sensor installed in the bearing, and also determines a past vibration of the bearing corresponding to the measured number of rotations of the motor. The value is extracted from the vibration value database, the frequency spectrum distribution of the past vibration value of the bearing is obtained, the frequency spectrum distribution of the current measured vibration value and the frequency spectrum distribution of the past vibration value of the bearing are compared, and A bearing deterioration diagnosis device characterized by determining a deterioration state of a bearing.
  4.  請求項3に記載の軸受劣化診断装置において、
     前記振動値データベースは、少なくとも、計測時の時間、前記電動機の計測回転数、及び前記第1センサからの軸受の計測振動値を相互に対応づけて、時系列データとして格納することを特徴とする軸受劣化診断装置。
    In the bearing deterioration diagnostic apparatus according to claim 3,
    The vibration value database stores at least time for measurement, a measured rotation speed of the electric motor, and a measured vibration value of a bearing from the first sensor as time series data. Bearing deterioration diagnosis device.
  5.  請求項4に記載の軸受劣化診断装置において、
     表示部と、
     前記劣化判定部により求められた現時点の計測振動値の周波数スペクトル分布及び前記軸受の過去の振動値の周波数スペクトル分布並びに前記軸受の劣化状態の判定結果を、前記表示部へ出力する表示制御部と、を備えることを特徴とする軸受劣化診断装置。
    In the bearing deterioration diagnostic apparatus according to claim 4,
    A display unit;
    A display control unit that outputs the frequency spectrum distribution of the current measured vibration value obtained by the deterioration determination unit, the frequency spectrum distribution of the past vibration value of the bearing, and the determination result of the deterioration state of the bearing to the display unit; A bearing deterioration diagnostic apparatus comprising:
  6.  請求項5に記載の軸受劣化診断装置において、
     前記表示部の表示画面は、前記現時点の計測振動値の周波数スペクトル分布及び前記軸受の過去の振動値の周波数スペクトル分布を重ねて表示する第1表示領域と、前記軸受の劣化状態の判定結果を表示する第2表示領域を有することを特徴とする軸受劣化診断装置。
    In the bearing deterioration diagnostic apparatus according to claim 5,
    The display screen of the display unit displays a first display area that displays the frequency spectrum distribution of the current measured vibration value and the frequency spectrum distribution of the past vibration value of the bearing in an overlapping manner, and a determination result of the deterioration state of the bearing. A bearing deterioration diagnostic apparatus having a second display area for display.
  7.  請求項4に記載の軸受劣化診断装置において、
     前記加振器は、前記回転軸を加振する磁気軸受であって、
     前記磁気軸受の内周面と前記回転軸の外周面との間隙を、前記回転軸の変位として計測する第2センサを備え、
     前記加振器制御部は、前記第2センサからの計測値及び前記電動機の計測回転数に基づき、加振制御信号を生成することを特徴とする軸受劣化診断装置。
    In the bearing deterioration diagnostic apparatus according to claim 4,
    The vibrator is a magnetic bearing that vibrates the rotating shaft,
    A second sensor for measuring a gap between the inner peripheral surface of the magnetic bearing and the outer peripheral surface of the rotary shaft as a displacement of the rotary shaft;
    The vibration generator control unit generates a vibration control signal based on a measured value from the second sensor and a measured rotational speed of the electric motor.
  8.  少なくとも、被駆動体であるロータへ回転駆動力を伝達する回転軸を有する電動機と、前記回転軸を回転可能に支持する軸受と、を有する回転機器の軸受劣化診断方法であって、
     前記回転軸又は前記軸受若しくは電動機を支持する支持部に対し、前記軸受の共振周波数を含む周波数帯域にて加振すると共に当該加振の頻度を制御し、
     少なくとも前記電動機の回転数と対応付けて前記軸受の過去の振動値を格納する振動値データベースを参照し、
     計測される前記軸受の計測振動値と前記振動値データベースに格納される過去の振動値に基づき、前記軸受の劣化状態を判定することを特徴とする軸受劣化診断方法。
    A method for diagnosing bearing deterioration in a rotating device having at least an electric motor having a rotating shaft that transmits a rotational driving force to a rotor that is a driven body, and a bearing that rotatably supports the rotating shaft,
    For the support portion that supports the rotating shaft or the bearing or the electric motor, and vibrates in a frequency band including the resonance frequency of the bearing, and controls the frequency of the vibration,
    Referring to a vibration value database that stores at least the past vibration value of the bearing in association with at least the rotation speed of the motor;
    A bearing deterioration diagnosis method, comprising: determining a deterioration state of the bearing based on a measured vibration value of the bearing to be measured and a past vibration value stored in the vibration value database.
  9.  請求項8に記載の軸受劣化診断方法において、
     前記軸受の共振周波数を含む周波数帯域内で周波数を変調する加振制御信号を生成し、
     生成された加振制御信号に基づき、前記回転軸又は前記軸受若しくは電動機を支持する支持部を加振することを特徴とする軸受劣化診断方法。
    In the bearing deterioration diagnostic method according to claim 8,
    Generating an excitation control signal for modulating the frequency within a frequency band including a resonance frequency of the bearing;
    A bearing deterioration diagnosis method characterized by exciting a rotating shaft or a support portion that supports the bearing or the electric motor based on the generated vibration control signal.
  10.  請求項9に記載の軸受劣化診断方法において、
     前記軸受に設置される第1センサからの計測振動値に基づき現時点の計測振動値の周波数スペクトル分布を求め、
     計測される電動機の回転数に対応する軸受の過去の振動値を前記振動値データベースから抽出し、
     抽出された軸受の過去の振動値の周波数スペクトル分布を求め、
     前記現時点の計測振動値の周波数スペクトル分布及び前記軸受の過去の振動値の周波数スペクトル分布を比較し、前記軸受の劣化状態を判定することを特徴とする軸受劣化診断方法。
    In the bearing deterioration diagnostic method according to claim 9,
    Obtain the frequency spectrum distribution of the current measured vibration value based on the measured vibration value from the first sensor installed in the bearing,
    Extract the past vibration value of the bearing corresponding to the rotation speed of the measured motor from the vibration value database,
    Obtain the frequency spectrum distribution of the past vibration values of the extracted bearing,
    A bearing deterioration diagnosis method comprising: comparing a frequency spectrum distribution of the current measured vibration value and a frequency spectrum distribution of a past vibration value of the bearing to determine a deterioration state of the bearing.
  11.  請求項10に記載の軸受劣化診断方法において、
     前記現時点の計測振動値の周波数スペクトル分布及び前記軸受の過去の振動値の周波数スペクトル分布を表示部へ出力すると共に、前記軸受の劣化状態の判定結果を前記表示部へ出力することを特徴とする軸受劣化診断方法。
    In the bearing deterioration diagnostic method according to claim 10,
    The frequency spectrum distribution of the current measured vibration value and the frequency spectrum distribution of the past vibration value of the bearing are output to the display unit, and the determination result of the deterioration state of the bearing is output to the display unit. Bearing deterioration diagnosis method.
  12.  請求項11に記載の軸受劣化診断方法において、
     前記表示部の表示画面を構成する第1表示領域に、前記現時点の計測振動値の周波数スペクトル分布及び前記軸受の過去の振動値の周波数スペクトル分布を重ねて表示し、
     前記表示部の表示画面を構成する第2表示領域に、前記軸受の劣化状態の判定結果を表示することを特徴とする軸受劣化診断方法。
    In the bearing deterioration diagnostic method according to claim 11,
    In the first display area constituting the display screen of the display unit, the frequency spectrum distribution of the current measured vibration value and the frequency spectrum distribution of the past vibration value of the bearing are displayed in an overlapping manner,
    A bearing deterioration diagnosis method, comprising: displaying a determination result of the deterioration state of the bearing in a second display area constituting a display screen of the display unit.
  13.  少なくとも、被駆動体であるロータへ回転駆動力を伝達する回転軸を有する電動機と、前記回転軸を回転可能に支持する軸受と、前記電動機を支持する支持部を、有する回転機器と、
     前記軸受の劣化状態を判定する軸受劣化診断装置と、を備え、
     前記軸受劣化診断装置は、
     前記回転軸又は前記軸受若しくは前記支持部に対し、前記軸受の共振周波数を含む周波数帯域にて加振し、当該加振の頻度を制御する加振制御部と、
     前記軸受の過去の振動値を、少なくとも前記電動機の回転数と対応付けて格納する振動値データベースと、
     計測される前記軸受の計測振動値と前記振動値データベースに格納される過去の振動値に基づき、前記軸受の劣化状態を判定する劣化判定部と、を有することを特徴とする軸受劣化診断システム。
    At least an electric motor having a rotating shaft that transmits a rotational driving force to a rotor that is a driven body, a bearing that rotatably supports the rotating shaft, and a rotating device that includes a support portion that supports the electric motor,
    A bearing deterioration diagnosis device for determining a deterioration state of the bearing,
    The bearing deterioration diagnostic device is:
    An excitation control unit for exciting the rotating shaft or the bearing or the support part in a frequency band including a resonance frequency of the bearing, and controlling the frequency of the excitation,
    A vibration value database for storing a past vibration value of the bearing in association with at least the rotational speed of the motor;
    A bearing deterioration diagnosis system comprising: a deterioration determination unit that determines a deterioration state of the bearing based on a measured vibration value of the bearing to be measured and a past vibration value stored in the vibration value database.
  14.  請求項13に記載の軸受劣化診断システムにおいて、
     前記加振制御部は、
     前記回転軸又は前記軸受若しくは前記支持部を加振する加振器と、
     前記加振器に対し、前記軸受の共振周波数を含む周波数帯域内で周波数を変調する加振制御信号を出力する加振器制御部と、を有することを特徴とする軸受劣化診断システム。
    In the bearing deterioration diagnosis system according to claim 13,
    The excitation control unit
    A vibrator for vibrating the rotating shaft or the bearing or the support;
    A bearing deterioration diagnosis system, comprising: a vibration exciter control unit that outputs a vibration control signal that modulates a frequency within a frequency band including a resonance frequency of the bearing to the vibration exciter.
  15.  請求項14に記載の軸受劣化診断システムにおいて、
     前記劣化判定部は、前記軸受に設置される第1センサからの計測振動値に基づき現時点の計測振動値の周波数スペクトル分布を求めると共に、計測される電動機の回転数に対応する軸受の過去の振動値を前記振動値データベースから抽出し、軸受の過去の振動値の周波数スペクトル分布を求め、前記現時点の計測振動値の周波数スペクトル分布及び前記軸受の過去の振動値の周波数スペクトル分布を比較し、前記軸受の劣化状態を判定することを特徴とする軸受劣化診断システム。
    The bearing deterioration diagnosis system according to claim 14,
    The deterioration determination unit obtains a frequency spectrum distribution of a current measured vibration value based on a measured vibration value from a first sensor installed in the bearing, and also determines a past vibration of the bearing corresponding to the measured number of rotations of the motor. The value is extracted from the vibration value database, the frequency spectrum distribution of the past vibration value of the bearing is obtained, the frequency spectrum distribution of the current measured vibration value and the frequency spectrum distribution of the past vibration value of the bearing are compared, and A bearing deterioration diagnosis system characterized by determining a deterioration state of a bearing.
PCT/JP2016/055012 2016-02-22 2016-02-22 Bearing deterioration diagnosis device, bearing deterioration diagnosis method, and bearing deterioration diagnosis system WO2017145222A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055012 WO2017145222A1 (en) 2016-02-22 2016-02-22 Bearing deterioration diagnosis device, bearing deterioration diagnosis method, and bearing deterioration diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055012 WO2017145222A1 (en) 2016-02-22 2016-02-22 Bearing deterioration diagnosis device, bearing deterioration diagnosis method, and bearing deterioration diagnosis system

Publications (1)

Publication Number Publication Date
WO2017145222A1 true WO2017145222A1 (en) 2017-08-31

Family

ID=59686061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055012 WO2017145222A1 (en) 2016-02-22 2016-02-22 Bearing deterioration diagnosis device, bearing deterioration diagnosis method, and bearing deterioration diagnosis system

Country Status (1)

Country Link
WO (1) WO2017145222A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627340A (en) * 2018-03-27 2018-10-09 扬州美达灌装机械有限公司 A kind of filling production lines roller bearing failure prediction method
CN111435105A (en) * 2019-01-15 2020-07-21 计算系统有限公司 Bearing and fault frequency identification based on vibration spectrogram
CN111649944A (en) * 2019-03-04 2020-09-11 株式会社日立大厦系统 Bearing diagnosis device, bearing diagnosis method, and escalator
CN112816216A (en) * 2021-01-05 2021-05-18 三峡大学 Rolling bearing performance test bench and identification and correction method of abnormal test sample
US11300482B2 (en) 2019-08-06 2022-04-12 Computational Systems, Inc. Graphical differentiation of spectral frequency families
US11499889B1 (en) 2021-09-10 2022-11-15 Computational Systems, Inc. Fault frequency matching of periodic peaks in spectral machine data
WO2023282028A1 (en) 2021-07-07 2023-01-12 日本精工株式会社 State monitoring apparatus for mechanical apparatus, wind power generation apparatus, state monitoring method, and program
US11598694B2 (en) 2019-01-18 2023-03-07 Hitachi Industrial Products, Ltd. Abnormality diagnosis system for rotary electric machine
WO2023029382A1 (en) * 2021-09-06 2023-03-09 江苏大学 Strong-robustness signal early-degradation feature extraction and device running state monitoring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108728A (en) * 1983-11-17 1985-06-14 Mitsubishi Heavy Ind Ltd Vibration-characteristics testing apparatus of rotary machine
JP2001124665A (en) * 1999-10-29 2001-05-11 Toshiba Corp Diagnostic device and diagnostic method for rolling bearing
JP2008038949A (en) * 2006-08-02 2008-02-21 Nippon Steel Corp Deterioration diagnostic method for rolling bearing
JP2008102107A (en) * 2006-10-23 2008-05-01 Chugoku Electric Power Co Inc:The Method and system for assessing remaining life of rolling bearing using normal database, and computer program used for remaining life assessment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108728A (en) * 1983-11-17 1985-06-14 Mitsubishi Heavy Ind Ltd Vibration-characteristics testing apparatus of rotary machine
JP2001124665A (en) * 1999-10-29 2001-05-11 Toshiba Corp Diagnostic device and diagnostic method for rolling bearing
JP2008038949A (en) * 2006-08-02 2008-02-21 Nippon Steel Corp Deterioration diagnostic method for rolling bearing
JP2008102107A (en) * 2006-10-23 2008-05-01 Chugoku Electric Power Co Inc:The Method and system for assessing remaining life of rolling bearing using normal database, and computer program used for remaining life assessment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108627340A (en) * 2018-03-27 2018-10-09 扬州美达灌装机械有限公司 A kind of filling production lines roller bearing failure prediction method
CN111435105A (en) * 2019-01-15 2020-07-21 计算系统有限公司 Bearing and fault frequency identification based on vibration spectrogram
CN111435105B (en) * 2019-01-15 2022-03-22 计算系统有限公司 Bearing and fault frequency identification based on vibration spectrogram
US11506569B2 (en) 2019-01-15 2022-11-22 Computational Systems, Inc. Bearing and fault frequency identification from vibration spectral plots
US11598694B2 (en) 2019-01-18 2023-03-07 Hitachi Industrial Products, Ltd. Abnormality diagnosis system for rotary electric machine
CN111649944A (en) * 2019-03-04 2020-09-11 株式会社日立大厦系统 Bearing diagnosis device, bearing diagnosis method, and escalator
US11300482B2 (en) 2019-08-06 2022-04-12 Computational Systems, Inc. Graphical differentiation of spectral frequency families
CN112816216A (en) * 2021-01-05 2021-05-18 三峡大学 Rolling bearing performance test bench and identification and correction method of abnormal test sample
WO2023282028A1 (en) 2021-07-07 2023-01-12 日本精工株式会社 State monitoring apparatus for mechanical apparatus, wind power generation apparatus, state monitoring method, and program
WO2023029382A1 (en) * 2021-09-06 2023-03-09 江苏大学 Strong-robustness signal early-degradation feature extraction and device running state monitoring method
US11499889B1 (en) 2021-09-10 2022-11-15 Computational Systems, Inc. Fault frequency matching of periodic peaks in spectral machine data

Similar Documents

Publication Publication Date Title
WO2017145222A1 (en) Bearing deterioration diagnosis device, bearing deterioration diagnosis method, and bearing deterioration diagnosis system
RU2504701C2 (en) Machine and method for control of state of safety bearing of machine
US10519935B2 (en) Condition monitoring system and wind power generation system using the same
AU2015215266B2 (en) Vibrating machine
JP2007010415A (en) Abnormality diagnosis system, device, and technique of bearing
JP6760844B2 (en) Vibration test system and method
JP5546545B2 (en) Method for monitoring and / or analyzing an electric machine during operation of the rotor of the electric machine and apparatus for monitoring and / or analyzing the electric machine during operation
US20190323922A1 (en) Self-learning malfunction monitoring and early warning system
JP2019074060A (en) State monitoring device of wind turbine generation windmill, state monitoring method and state monitoring system
US9063030B2 (en) Apparatus and method for visualizing the position of a rotating structure with respect to a stationary structure
US20180088003A1 (en) Techniques for monitoring gear condition
JP5584036B2 (en) Deterioration diagnosis device
JP2010151773A (en) Compound sensor for monitoring state of rotation device
JP4253104B2 (en) Abnormal diagnosis method for rotating machinery
JP2018145866A (en) Blade vibration monitoring device and rotary machine system
US20230358639A1 (en) Conformance test apparatus, sensor system, and processes
JP2018141751A (en) Blade vibration monitoring device and rotary machinery system
Soliman Vibration Basics and Machine Reliability Simplified: A Practical Guide to Vibration Analysis
CN109713853A (en) Rotating electric machine and its diagnostic method
JP2017125691A (en) Bearing control device and bearing control system
WO2021124515A1 (en) Inspection device for rotating electrical machines and method for inspecting rotating electrical machines
Kreitzer et al. The effects of structural and localized resonances on induction motor performance
CA3228343A1 (en) Method for resonance analysis of a vibration machine
Sanders A guide to vibration analysis and associated techniques in condition monitoring
JP7230707B2 (en) Linear drive monitoring device and method for monitoring linear drive

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891381

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP