WO2017135035A1 - Ophthalmic laser refractive correction device, ophthalmic photo-tuning setting device, ophthalmic photo-tuning system, ophthalmic photo-tuning setting device, program used in same, and ophthalmic laser surgery device - Google Patents

Ophthalmic laser refractive correction device, ophthalmic photo-tuning setting device, ophthalmic photo-tuning system, ophthalmic photo-tuning setting device, program used in same, and ophthalmic laser surgery device Download PDF

Info

Publication number
WO2017135035A1
WO2017135035A1 PCT/JP2017/001609 JP2017001609W WO2017135035A1 WO 2017135035 A1 WO2017135035 A1 WO 2017135035A1 JP 2017001609 W JP2017001609 W JP 2017001609W WO 2017135035 A1 WO2017135035 A1 WO 2017135035A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
eye
lens
ophthalmic
patient
Prior art date
Application number
PCT/JP2017/001609
Other languages
French (fr)
Japanese (ja)
Inventor
羽根渕昌明
田中真樹
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2017565463A priority Critical patent/JP6973086B2/en
Publication of WO2017135035A1 publication Critical patent/WO2017135035A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C13/00Assembling; Repairing; Cleaning

Definitions

  • This disclosure relates to correcting the refractive properties of the eye by optically adjusting the refractive index of the translucent body using laser irradiation.
  • An ophthalmic laser surgical apparatus treats a patient's eye by condensing a laser beam in a tissue of the patient's eye (see Patent Document 1).
  • corneal refraction correction by cutting the patient's eye cornea, cataract surgery by crushing the lens opacity portion of the patient's eye, and the like can be mentioned.
  • a phototuning method for example, a method of adjusting a refractive index using a photochemical reaction proposed by Norbert Hampp et al. (For example, Patent Document 2), a hydrophobicity filed by Perfect Lens, Inc.
  • a method of adjusting the refractive index by changing the hydrophilicity of the conductive material for example, Patent Document 3
  • a technique (for example, Patent Document 5) of changing the refractive index of the cornea is known by Patent Document 4) or Way Knox et al.
  • the present disclosure relates to an ophthalmic laser refraction correction device, an ophthalmic photo tuning setting device, an ophthalmic photo tuning system, a spectacle photo tuning setting device, and a program used therefor, ophthalmology, which can solve at least one of the above problems
  • An object of the present invention is to provide a laser surgical apparatus for medical use.
  • the present disclosure is characterized by having the following configuration.
  • An ophthalmic laser refraction correction apparatus for adjusting a refractive index of a light transmitting body by condensing laser light inside a light transmitting body provided in a patient's eye,
  • An irradiation optical system for guiding laser light emitted from a laser light source unit to adjust the refractive index of the translucent body, into the translucent body provided in the patient's eye;
  • a scanning unit that is disposed in the optical path of the irradiation optical system and scans the condensing position of the laser beam; The scanning unit is controlled to scan the condensing position of the laser beam in an irradiation region corresponding to a preset lens pattern of the multilevel phase type diffractive lens, thereby allowing the multilevel phase type diffractive lens to pass through the translucent light.
  • An ophthalmic laser refraction correction apparatus for adjusting the refractive index of the light transmitting body by condensing the laser light inside the light transmitting body provided in the patient's eye,
  • An irradiation optical system for guiding laser light emitted from a laser light source unit to adjust the refractive index of the translucent body, into the translucent body provided in the patient's eye;
  • a scanning unit that is disposed in the optical path of the irradiation optical system and scans the condensing position of the laser beam;
  • Control means for controlling the scanning unit, The laser beam is applied to an irradiation region corresponding to a lens pattern set in advance based on positional information of the translucent body in a tomographic image captured by a tomographic imaging device and a refraction characteristic of a patient's eye measured by a refraction measuring device.
  • a control means for forming a lens inside the translucent body by scanning the condensing position of It is characterized by providing.
  • An ophthalmic photo-tuning setting device for setting a lens pattern formed by condensing laser light inside a translucent body provided in a patient's eye Characterized by comprising setting means for setting the lens pattern based on positional information of the translucent body in a tomographic image captured by a tomographic imaging device and refraction characteristics of a patient's eye measured by a refraction measuring device.
  • Ophthalmic photo-tuning setting device A tomographic imaging device for capturing a tomographic image of the patient's eye including the translucent body; A refraction measuring device for measuring refraction characteristics of the patient's eye including the translucent body; Ophthalmic photo tuning system.
  • a spectacle photo-tuning setting device for setting a lens pattern formed by condensing laser light inside a spectacle lens, (6) A setting unit that sets the lens pattern based on the refractive characteristics of the entire eyeball when wearing spectacles and the optical arrangement information of the anterior segment with respect to the spectacle lens when wearing spectacles.
  • An ophthalmic laser surgical apparatus for treating the patient's eye by condensing laser light in the tissue of the patient's eye, A laser light source unit capable of selectively emitting a first laser beam for treating the patient's eye and a second laser beam for adjusting the refractive index of the transparent body; A scanning unit that is arranged in an optical path of an irradiation optical system and scans a condensing position of the first laser beam or the second laser beam; A first operation mode for treating the patient's eye using a first laser beam, and a second operation for performing phototuning using a second laser beam for adjusting the refractive index of the light transmitting body Mode switching means for switching between modes, When the first switching mode is set by the mode switching means, the patient's eye is treated by controlling the scanning
  • One aspect of this embodiment is to correct the refractive characteristics of the eye (eg, eye refractive power, aberration) by optically adjusting the refractive index of the translucent body using laser irradiation. It can be used in the fields of ophthalmology and glasses.
  • an optical technique for optically adjusting the refractive index of a light transmitting body will be described as phototuning.
  • the transparent body subjected to phototuning may be used to correct myopia, hyperopia, astigmatism, higher-order aberration, chromatic aberration, and the like of the eye to be examined.
  • multifocality adjustment may be performed.
  • one or a plurality of lenses different from the refractive index of the light transmitting body may be written in the light transmitting body by adjusting the refractive index of the light transmitting body.
  • Another aspect of this embodiment is to form (manufacture) a photo-tuned lens by optically adjusting the refractive index of the translucent body using laser irradiation.
  • the ophthalmic medical field It can be used in the field of glasses.
  • a photo-tuning method for example, a method of adjusting a refractive index using a photochemical reaction proposed by Norbert Hamp et al. (For example, US Patent Publication No. 2009-157178), which is filed by Perfect Lens Company.
  • a method of adjusting the refractive index by changing the hydrophilicity of the hydrophobic material for example, US Patent Publication No. 2014-135920
  • refraction by changing the hydrophilicity of the hydrogel material proposed by Way Knox et al.
  • a method for adjusting the rate for example, US registration 8337553
  • a method for changing the refractive index of the cornea for example, US registration 8617147
  • the translucent body may be, for example, a translucent body having a first refractive index and having optical transparency.
  • the refractive index of the transparent body is adjusted by phototuning.
  • the light-transmitting body to which photo-tuning is applied may be an artificial light-transmitting body (see the light-transmitting body 600 in FIGS. 1 and 2), for example, an ophthalmic lens,
  • an artificial lens for example, an intraocular lens (IOL, ICL), a spectacle lens, a contact lens, or an artificial cornea
  • a general optical material may be used as the artificial translucent body.
  • a natural lens for example, an eye cornea, a crystalline lens
  • an optical material dedicated to phototuning for example, an optical polymer material that is designed to have a relatively high ultraviolet absorption characteristic
  • the two-photon absorption of the laser can be promoted by the high absorption property of ultraviolet rays.
  • the intraocular lens may be, for example, an intraocular lens designed to be inserted into either the anterior chamber of the eye, the posterior chamber of the eye, or the lens. Good.
  • the intraocular lens may be, for example, an intraocular lens that is inserted into the eye and has lens characteristics in advance.
  • the intraocular lens to which a lens characteristic is added by performing photo tuning with respect to the optical material inserted in the eye may be sufficient.
  • phototuning is performed at least before the artificial translucent body is provided to the eye, or at least before the artificial translucent body is provided to the eye. May be.
  • a translucent body may be inserted into the eye, or a lens may be provided in front of the eye via a spectacle frame.
  • the translucent body may include a main body having a front surface and a rear surface, in which lens characteristics are formed. That is, the translucent body may be formed with a characteristic that refracts or diffracts light to diverge or focus the light.
  • the front surface and the rear surface may be substantially flat.
  • the front surface and the rear surface may be curved surfaces.
  • the front surface is described as the outer side
  • the rear surface is described as the retinal side.
  • a support part (loop) may be provided in addition to the main body.
  • the main body is used as an optical unit having lens characteristics.
  • one lens or a plurality of lenses may be formed inside the translucent body by phototuning (for example, the first lens 600 and the second lens in FIG. 3). 620).
  • the focal point of the laser beam is moved to write the lens inside the translucent body.
  • the refractive index inside the light transmitting body is corrected.
  • the refractive index of the region irradiated with the laser is adjusted to a second refractive index different from the first refractive index.
  • the focus of the laser beam is moved to the irradiation region corresponding to the preset lens pattern, so that the lens corresponding to the lens pattern is formed inside the translucent body.
  • the laser irradiation region is a refractive index changing region having a second refractive index, and functions as a lens having the second refractive index inside the light transmitting body.
  • the laser beam may be irradiated sequentially from the surface (front surface or rear surface) of the light transmitting body, for example.
  • the laser beam may be irradiated from the middle between the front surface and the rear surface of the transparent body.
  • the irradiation start position may be appropriately set by a phototuning technique.
  • the laser beam may be irradiated in order from the rear surface side.
  • the refractive index change region is not arranged in the optical path of the next laser beam, so that a predetermined lens pattern can be formed smoothly.
  • one or a plurality of multi-level phase type diffractive lenses may be written in the light transmitting body (FIG. 5).
  • the processor may control a scanning unit that scans a condensing position of the laser light, and may scan the condensing position of the laser light in the irradiation region of the light transmitting body corresponding to the lens pattern of the multilevel phase type diffractive lens. .
  • a multi-level phase type diffractive lens can be formed inside the light transmitting body.
  • the processor can preset the lens pattern.
  • each MP diffractive lens may be formed in different regions with respect to the front-rear direction (optical axis direction) of the light transmitting body.
  • the multi-level phase-type diffractive lens is a lens that approximates the phase-type diffractive lens (Kinoform) to a multi-level.
  • the multilevel phase type diffractive lens is formed, for example, by approximating a diffractive lens having a saw-like cross-sectional shape (see lens 610 in FIG. 4) with a step-like cross-sectional shape (lens 610 in FIG. 5).
  • the multilevel (the number of steps) in the MP diffraction lens may be, for example, 9 levels or less and 4 levels or more, for example, the multilevel may be 8.
  • 95% diffraction efficiency can be obtained
  • 96% diffraction efficiency can be obtained.
  • the diffraction efficiency is 81% at the 4th level, 87.5% at the 5th level, 91.2% at the 6th level, and 93.4% at the 7th level.
  • the diffraction efficiency is 68.4%
  • at 10 levels the diffraction efficiency is 96.8%.
  • the multi-level By setting the multi-level to 9 levels or less, diffraction efficiency sufficient for correction can be obtained, and the laser irradiation pattern can be simplified.
  • the simplification of the irradiation pattern leads to shortening of the operation time, for example, and the burden on the eye to be examined in the operation can be reduced.
  • the number of multi levels may be changed according to the refractive characteristics of the eye.
  • the number of multi-levels is counted as the number of layers, and one layer may be formed by, for example, an integral multiple of the thickness of the refractive index change region generated by one pulse of the pulse laser.
  • Each layer may be formed substantially parallel to the front surface.
  • the MP diffraction lens pattern may be, for example, an annular ring pattern when viewed from the front-rear direction of the transparent body (see FIG. 6).
  • the lens pattern may be another pattern.
  • the laser beam when writing an MP diffractive lens, the laser beam may be irradiated at every distance from the surface of the transparent body. For example, after scanning the focal point of the laser beam with respect to the XY direction by an XY scanner at a first distance, The focal point of the laser beam may be changed to the second distance by scanning the focal point of the laser beam in the Z direction with a Z scanner.
  • the XY direction is defined as a direction orthogonal to the front-rear direction (optical axis direction) of the translucent body
  • the Z direction is defined as the front-rear direction (optical axis direction) of the translucent body.
  • the method of forming the MP phase type lens on the transparent body for example, a method of writing a plurality of multi-level phase type lenses in silica glass by a femtosecond laser by Yamada et al. (K. Yamada, K. Itoh, See “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses”, Opt.Let., 29 (16), p1846-1848 (2004)).
  • phase change due to the second refractive index
  • the magnitude of the optical path difference varies depending on the thickness of the refractive index changing region in the front-rear direction. Therefore, by adjusting the thickness of the refractive index change region, it is possible to obtain a phase type diffractive lens pattern corresponding to desired refractive characteristics.
  • the pattern of the multi-level phase type diffractive lens can be obtained by approximating the phase type diffractive lens (Kinoform) corresponding to the desired refractive characteristics.
  • the aberration We (x, y) of the entire eyeball is measured at the pupil position 2)
  • the anterior eyeball shape from the cornea to the translucent body is measured by the tomographic image 3)
  • the target after the operation Set the aberration Wt (x, y) of the entire eyeball 4) Convert We (x, y) and Wt (x, y) to aberration at depth I where we want to create a lens in the translucent body based on the result of 2) To do.
  • the converted aberration is represented by We ′ (x, y) and Wt ′ (x, y), respectively.
  • the conversion process may be performed by reverse ray tracing.
  • n ′ is the refractive index of the light transmitting body after adjustment
  • n is the refractive index of the light transmitting body before adjustment.
  • the refractive lens can be expressed as a lens using a light refraction phenomenon
  • the diffractive lens can be expressed as a modulo 2p ⁇ kinoform, and may be approximated to a multilevel.
  • chromatic aberration may be corrected by using a so-called higher-order diffractive lens in which p is an integer larger than 1.
  • one or more layers may have a function of correcting chromatic aberration.
  • resolution or depth of focus may be controlled in consideration of chromatic aberration of the entire eyeball.
  • a plurality of different refractive lenses or diffractive lenses may be created in a region perpendicular to the optical axis at the depth I of the translucent body so as to be multifocal.
  • a plurality of aberrations Wt (x, y) for the target eyeball as a whole may be set to achieve multifocality in which lenses are superimposed.
  • a spherical aberration value may be added separately in order to control the depth of focus when obtaining the target wavefront in the translucent body.
  • KHBrenner “Method for designing arbitrary two-dimensional continuous phase elements”, Opt.Let., 25 (1), p31-33 ( 2000) may be used.
  • the phase distribution of the phase plate may be obtained from the target PSF distribution (KHBrenner, “Method for designing arbitrary two-dimensional continuous phase elements”, Opt. Let., 25 (1), p31-33 (2000 )).
  • the phase distribution of a lens including multiple focal points may be designed and approximated to a multilevel.
  • We (x, y) may be calculated based on the anterior ocular segment shape obtained with the axial length 2), the shape of the translucent body (for example, IOL), and the refractive index. . Further, We (x, y) may be calculated based on the subjective value and the objective value (for example, auto-ref value).
  • the total of the lens characteristics provided in advance and the lens characteristics written by phototuning is the refractive characteristics of the transparent body.
  • the lens characteristics written by phototuning become the refractive characteristics of the translucent body.
  • the amount of change from the first refractive index may be changed for each irradiation position in the translucent body. That is, the second refractive index may be different from the first refractive index that the light transmitting body basically includes. That is, the amount of change in refractive index due to phototuning may be changed according to the required refractive characteristics.
  • the pattern of the MP diffraction lens may be optically designed with a set of the thickness of the refractive index change region and the refractive index change amount. Further, gradient index lens in which the average refractive index is adjusted by changing the pulse energy or the irradiation interval may be formed.
  • a translucent function the function of multi-focus (for example, a double focus, a triple focus).
  • the number of multi-levels and the p value may be adjusted to achieve multi-focus.
  • a translucent body a plurality of diffractive structures may be overlapped to be multifocal, or a plurality of diffractive structures may be provided at different positions in the optical axis direction to be multifocal.
  • the translucent body (for example, on the IOL or the cornea) is divided in a direction orthogonal to the optical axis direction (front-rear direction), and different lenses are formed in the divided segment units to achieve multifocalization. Also good.
  • a chromatic aberration may be corrected by forming a phase Fresnel lens using a light diffraction phenomenon on a light transmitting body.
  • the laser irradiation pattern is simplified, and it is not always necessary to use a laser light source having a very high repetition frequency such as several tens of MHz. . That is, as a result, a repetition frequency (for example, several hundred KHz) comparable to that of an ophthalmic laser surgical apparatus mainly used for treatment of a patient's eye (for example, cutting of a cornea, crushing of a turbid portion of a cataract).
  • a laser light source can be used. Therefore, the writing of the multi-phase type diffractive lens is suitable for performing treatment on the patient's eye tissue and phototuning with the same ophthalmic laser surgical apparatus.
  • the processor may form the multi-level phase type diffractive lens inside the light transmitting body by changing the size of the irradiation region in the radial direction of the lens stepwise according to the front-rear direction of the light transmitting body. Good.
  • Pattern setting is typically performed by a processor.
  • the pattern of the lens to be written may be set based on the refractive characteristics RC of the eye and the position information TP of the translucent body.
  • the refraction characteristic RC of the eye here is the refraction characteristic of the eye in a state where a translucent body to which phototuning is applied is inserted into the eye.
  • the refractive characteristic of the eye to be examined may be, for example, any of wavefront aberration of the entire eyeball, subjective eye refractive power of the eye, and objective eye refractive power of the eye.
  • the refractive property RC of the eye may be measured by a refractometer device.
  • the position information TP of the translucent body may be acquired based on, for example, an anterior segment tomographic image captured by a tomographic imaging device.
  • the anterior segment tomogram is an anterior segment tomogram including a translucent body to which phototuning is applied.
  • the anterior segment tomogram is tomographic image data obtained by imaging the cornea and a translucent body to which phototuning is applied. There may be. If the crystalline lens remains, the crystalline lens is also imaged.
  • the anterior segment tomographic image may be tomographic data in the meridian direction of the anterior segment or may be three-dimensional tomographic data of the entire anterior segment.
  • the position information of the translucent body may be automatically detected by image processing, or may be detected by position designation by manual operation of the examiner.
  • the positional information of the natural lens (cornea or crystalline lens) of the patient's eye may be acquired based on the anterior ocular segment tomographic image together with the positional information of the artificial translucent body. .
  • the positional information of the tissue and the artificial object related to the refractive characteristics of the eye can be acquired and used for pattern setting.
  • the positional information of the natural lens (cornea or crystalline lens) of the patient's eye may be acquired based on the anterior segment tomogram.
  • the processor obtains optical arrangement information of the anterior segment including the translucent body based on the positional information of the cornea and the positional information of the translucent body.
  • the optical arrangement information of the anterior segment may be a relative positional relationship between the cornea and the translucent body, or may be an absolute position of the cornea and the translucent body.
  • the optical arrangement information may be one-dimensional position information regarding the optical axis direction of the eye, or may be two-dimensional position information based on one direction orthogonal to the optical axis direction of the eye and the optical axis direction of the eye. Alternatively, it may be three-dimensional position information. In this case, if the crystalline lens remains, an optical arrangement including the crystalline lens is required.
  • the processor obtains a correction amount of the refraction characteristic to be performed by phototuning based on the refraction characteristic RC of the eye.
  • a difference between the refractive characteristic RC of the eye with respect to a preset target refractive characteristic may be obtained.
  • the target refractive characteristic may be arbitrarily set for each operator or patient, or may be set as a fixed value in advance.
  • the target refractive characteristic may be, for example, any one of a three-dimensional PSF distribution of the entire eyeball, wavefront aberration, and eye refractive power.
  • a refractive power characteristic for example, an eye refractive power (spherical power, astigmatic power, etc.) and aberration (illegal astigmatism, spherical aberration, etc.) to be corrected may be obtained in the refractive characteristics RC of the eye.
  • the correction amount may be defined as the amount of change in the refractive characteristics of the entire eye (photo tuning amount) corrected by photo tuning.
  • the correction amount corresponds to information on changes in refractive characteristics of the eye that are set in advance to be corrected by phototuning.
  • the processor calculates a refraction characteristic to be written to the light transmitting body in order to obtain a preset correction amount by using the optical arrangement information of the anterior segment including the light transmitting body.
  • the processor takes into account the optical arrangement information of the anterior segment including the translucent body, the refractive index of each tissue of the anterior segment, and the first refractive index of the translucent body, and the correction is set in advance.
  • the refractive characteristics of the lens necessary for correcting the amount may be calculated.
  • the refraction characteristic of the lens may be obtained as the refraction characteristic of a lens system including a plurality of lenses, or may be obtained as the refraction characteristic of one lens.
  • the refractive characteristics of the phase type diffractive lens are approximated to a multi-level, and the refractive characteristics of the MP diffractive lens are calculated.
  • the refractive characteristics that are the basis of the MP diffraction lens may be obtained by repeated calculation in consideration of the target optical characteristics, and may be approximated to the multilevel in consideration of a preset multilevel.
  • the target refraction characteristic may be approximated to a multilevel in consideration of a preset multilevel by multiplying a spatial frequency filter. More specifically, when the target refractive characteristic is set as a three-dimensional PSF, the phase distribution is obtained by repeating the three-dimensional PSF related by the diffraction integration and the phase distribution of the phase type diffractive lens.
  • the lens position may be set on the basis of the surface position of the translucent body.
  • reliable laser irradiation is possible.
  • a pattern of each lens in the lens system may be set based on a refractive characteristic of a lens system including a plurality of lenses. In this case, a plurality of lens patterns are set.
  • the processor may cause the irradiation area of the light transmitting body corresponding to the lens pattern based on the position information of the light transmitting body and the refraction characteristics of the patient's eye to scan the condensing position of the laser light.
  • a lens corresponding to the set lens pattern is formed inside the light transmitting body.
  • the correction amount of photo tuning can be obtained in consideration of the optical arrangement of the translucent body in the anterior segment.
  • phototuning can be performed with high accuracy according to the characteristics of the patient's eyes.
  • the axial length information (distance from the cornea to the retina) may be obtained.
  • the processor obtains optical arrangement information of the entire eyeball including the cornea, the translucent body, and the retina based on the anterior segment tomogram and the axial length information. Thereby, it is possible to more accurately simulate the imaging state of the lens formed on the translucent body with respect to the retina.
  • the processor may obtain the optical arrangement information of the entire eyeball including the cornea, the transparent body, and the retina based on the tomographic image of the entire eyeball from the cornea to the retina.
  • a refraction measuring device provided in the ultrashort pulse laser apparatus may be used as a technique for obtaining the refractive characteristics of the eye, or an ultrashort pulse laser.
  • a refraction measuring device arranged at a different position from the apparatus may be used.
  • a tomographic imaging device provided in an ophthalmic laser apparatus for example, an ophthalmic laser refractive correction apparatus or an ophthalmic laser surgical apparatus
  • an ophthalmic laser may be used.
  • a tomographic imaging device arranged at a position different from the apparatus may be used.
  • the processor acquires first position information, which is position information of the translucent body in the first tomographic image, based on the first tomographic image acquired in advance for planning the lens pattern to be written. Also good. Further, the processor is the position information of the translucent body in the second tomographic image based on the second tomographic image acquired after the lens pattern is planned and with the eyeball interface attached. You may acquire 2nd positional information. Further, the processor may associate the first position information and the second position information, and set a lens pattern for the translucent body in the second tomographic image (see FIG. 12).
  • an ultrashort pulse laser device for example, a femtosecond laser device or a picosecond laser device
  • a femtosecond laser device or a picosecond laser device that can effectively generate a laser for writing a lens on a transparent body
  • the invention is not limited to the ultrashort pulse laser device as long as phototuning can be realized.
  • the ultrashort pulse laser device for phototuning may be a combined machine with an ophthalmic ultrashort pulse laser device for treating anterior ocular tissue (eg, cornea, lens), or for phototuning It may be a single machine.
  • anterior ocular tissue eg, cornea, lens
  • the treatment of the anterior ocular tissue is crushing / cutting, such as crushing of the lens turbid part in cataract, refractive surgery by cutting inside the cornea, CCC surgery by cutting the front of the lens, etc. is there.
  • the ultrashort pulse laser device may include at least a laser light source that generates a laser for photo tuning and an irradiation optical system that guides laser light for photo tuning to a light transmitting body.
  • the irradiation optical system may be used to guide the laser light for adjusting the refractive index of the light transmitting body to the inside of the light transmitting body provided in the patient's eye.
  • the laser beam emitted from the laser light source causes a change in the refractive index at the laser focal point to the translucent body by a nonlinear effect (for example, multiphoton absorption).
  • a nonlinear effect for example, multiphoton absorption.
  • an ultrashort pulse laser in the visible band (for example, the green band) in order to generate a two-photon absorption effect in the ultraviolet band.
  • a certain effect can be obtained.
  • the irradiation optical system may include, for example, a relay optical system, an optical scanner, and an objective lens.
  • the optical scanner may include an XY scanner and a Z scanner. See, for example, Japanese Patent Application Laid-Open No. 2015-37474 for a specific configuration.
  • the irradiation optical system may be an optical system for guiding laser light for phototuning to a translucent body arranged in the eye.
  • an eyeball interface may be disposed between the irradiation optical system and the eye.
  • the ophthalmic laser apparatus is a multi-function machine that can generate both a first laser that is a laser for treating an anterior ocular tissue and a second laser that is a laser for writing a lens on a light transmitting body. It may be present (see FIG. 8).
  • the first laser emits a laser capable of treating the anterior segment tissue. That is, the characteristic of the first laser is to crush or cut a part of the anterior eye tissue, whereas the characteristic of the second laser is to change the material of the light transmitting body to change the refractive index of the light transmitting body. It differs in that it is changed.
  • the irradiation optical system can guide the first laser and the second laser to the light transmitting body. The first laser and the second laser may be selectively applied to the light transmitting body.
  • the ophthalmic laser apparatus may include at least a laser light source unit, an irradiation optical system, and a scanning unit.
  • the laser light source unit may be capable of selectively emitting a first laser beam for treating the patient's eye and a second laser beam for adjusting the refractive index of the translucent body.
  • the scanning unit may be disposed in the optical path of the irradiation optical system, and may scan the condensing position of the first laser light or the second laser light.
  • the ophthalmic laser apparatus may be provided with a mode switching unit, a first operation mode for treating the patient's eye using the first laser light, and a second for adjusting the refractive index of the translucent body.
  • the second operation mode for performing phototuning may be switched using the laser beam.
  • the control unit provided in the ophthalmic laser device treats the patient's eye by controlling the scanning unit to scan the condensing position of the first laser light when the first operation mode is set. May be.
  • the control unit controls the scanning unit so that the irradiation position corresponding to the preset lens pattern is scanned with the condensing position of the second laser light.
  • the lens may be formed inside the translucent body.
  • treatment crushing, cutting
  • photo-tuning of the patient's eyes can be realized with one device.
  • the center wavelength may be in the near infrared region for the characteristics of the first laser.
  • the laser output may have an output that is higher than a threshold at which the anterior segment tissue is crushed or cut.
  • the center wavelength may be a visible region (for example, a green region), the laser output is lower than a threshold value at which the anterior ocular tissue is crushed or cut, and the translucent light is transmitted. It may have an output that can adjust the refractive index of the body. .
  • the multi-function peripheral includes a first laser light source for generating a first laser and a second laser light source for generating a second laser, which is different from the first laser light source. May be provided.
  • the multifunction machine includes a laser light source (see light source 312 in FIGS. 9 and 10) for generating laser light having a wavelength corresponding to one of the first laser and the second laser, and laser light from the laser light source.
  • a wavelength conversion optical element (see the wavelength conversion optical element 314 in FIGS. 9 and 10) for converting the wavelength of the first laser into a wavelength corresponding to the other of the first laser and the second laser. May be.
  • the wavelength conversion optical element for example, a nonlinear optical crystal may be used.
  • nonlinear optical crystal examples include, but are not limited to, a KTP crystal, a BBO crystal, an LBO crystal, and the like for converting the wavelength of 1064 nm, which is the fundamental wavelength, to the second harmonic of 532 nm.
  • the irradiation optical system includes a first optical system for guiding the first laser to the eye without passing through the wavelength conversion optical element, and the wavelength conversion optical element. And a second optical system for converting the laser into a second laser and guiding the second laser to the eye.
  • a first optical path corresponding to the first optical system and a second optical path corresponding to the second optical system may be arranged, respectively, and an optical path switching unit (optical path switching in FIGS. 9 and 10).
  • the optical system may be selected by the unit 318). Further, the present invention is not limited to this, and the optical system may be selected by inserting / removing the wavelength conversion optical element with respect to the optical path by the driving unit.
  • the ophthalmic laser apparatus may include a correction optical member (see the correction optical member 500 in FIG. 8) for correcting a difference in laser characteristics between the first laser and the second laser.
  • a correction optical member for correcting a difference in laser characteristics between the first laser and the second laser.
  • the imaging performance of the focal point of the laser beam for example, focal position, aberration characteristics
  • an optical member for example, an aberration correction lens
  • an optical member for example, an aberration correction lens
  • the correction optical member may be an optical path of the irradiation optical system, and may be disposed between the laser light source and the objective lens, or may be disposed between the objective lens and the eye.
  • the correction optical member is designed to ensure optical performance capable of achieving the purpose of the laser (crushing or cutting of anterior segment tissue, phototuning).
  • the correction optical member it is possible to accurately perform both anterior segment tissue treatment and phototuning.
  • the above correction is advantageous when an additional phototuning function is provided for an ultrashort pulse laser device having an optical system optimized for crushing or cutting an anterior segment tissue.
  • photo-tuning it is necessary to accurately irradiate a predetermined irradiation site in a translucent body arranged in the eye, and high-precision imaging performance is required. Therefore, an optical system optimized for crushing or cutting anterior segment tissue may not be able to satisfy this. Therefore, providing the correction optical system is advantageous because it can sufficiently satisfy the imaging performance in the phototuning while sufficiently satisfying the imaging performance in the crushing or cutting of the anterior segment tissue.
  • the above correction may be applied to an ultrashort pulse laser device having an optical system optimized for phototuning, in addition to providing an anterior ocular tissue crushing or cutting function. It is advantageous.
  • a wavefront compensation device may be used as the correction optical member.
  • the wavefront compensation device may be, for example, a variable shape mirror, a digital micromirror device, or an LCOS (optical phase modulation element).
  • the wavefront compensation device may be controlled, for example, to correct the imaging performance of the focus of the laser beam between the first laser and the second laser. For example, the difference in imaging performance of the focal point of the laser beam between the first laser and the second laser is calculated in advance (for example, simulation).
  • First aberration compensation data corresponding to the first laser and second aberration compensation data corresponding to the second laser are stored in the storage unit.
  • the processor may read out aberration compensation data corresponding to the selected laser from the storage unit and operate the wavefront compensation device.
  • an aberrometer for measuring the aberration related to the irradiation optical system may be provided in the ultrashort pulse laser apparatus, and the processor may control the wavefront compensation device based on the measurement result of the aberrometer.
  • the correction optical member may be an eyeball interface disposed between the irradiation optical system and the eye.
  • a first eyeball interface corresponding to the first laser and a second eyeball interface corresponding to the second laser may be prepared.
  • the lens characteristics, refractive index, and the like of the optical member provided in the eyeball interface are set according to the laser.
  • the characteristic of the laser beam may be a donut beam.
  • a method for forming a donut-shaped beam for example, an optical vortex method (for example, US Pat. No. 2015-164688) or an axicon lens may be used.
  • a donut-shaped beam may be formed using polarized light. According to the donut-shaped beam, the focal range of the laser beam in the XY directions can be widened (transverse resolution can be improved), which is particularly advantageous when performing step-like processing, that is, writing an MP diffraction lens.
  • the ophthalmic laser apparatus may include a refraction measurement device (measurement optical system) for measuring the refractive characteristics of the eye (see the refraction measurement device 90 in FIG. 7).
  • a refraction measurement device for measuring the refractive characteristics of the eye
  • a lens pattern can be set without necessarily using an external device.
  • the correction effect by photo tuning can be confirmed without necessarily using an external device.
  • the processor may display the measurement result of the refractive characteristics of the patient's eye on the display unit. Note that the processor may simulate and display the measurement result when the eyeball interface is not attached when the refractive characteristics of the eye with the eyeball interface attached are measured. In this case, the refractive characteristics of the eyeball interface may be obtained in advance, and the influence of the refractive characteristics may be canceled.
  • the refraction measurement device may be a patient eye to which an eyeball interface is attached, and may measure refraction characteristics after at least one lens is formed inside the translucent body by phototuning.
  • the refraction measuring device may be arranged coaxially with the optical axis of the irradiation optical system or may be a different axis.
  • the refraction measuring device includes: a light projecting optical system that projects a measurement index on the fundus through the optical path of the irradiation optical system; and a light receiving optical system that receives fundus reflected light from the measurement index through the optical path of the irradiation optical system. You may prepare.
  • the refraction measurement device may be a refraction measurement device for measuring the refractive properties of the eye via the eyeball interface.
  • the refraction measurement device may be an aberration measurement device (typically a wavefront sensor) for measuring the wavefront aberration of the eye, and can accurately measure the refractive characteristics of the eye.
  • the refractive power measuring device may be an eye refractive power measuring device (typically an autorefractometer) for measuring the refractive power of the eye, and can measure the refractive characteristics of the eye at a low cost.
  • the refraction measuring device may be used for measuring the refractive characteristics of the eye at least one of before, during and after laser irradiation.
  • the refraction measuring device may be used to measure the refractive characteristics of the eye before or when the eyeball interface is attached to the eye.
  • the operator can easily confirm the correction effect by photo tuning.
  • the first refractive characteristic may be measured in a state where the eye is attached to the eyeball interface and before the photo tuning is started.
  • the second refractive characteristic may be measured in a state where the eye is attached to the eyeball interface and after phototuning is performed.
  • the processor may determine a difference D between the first refractive characteristic and the second refractive characteristic. When the processor obtains the difference D, the correction effect by the lens written in the light transmitting body by phototuning can be easily obtained.
  • the processor may display the first refractive characteristic and the second refractive characteristic on the same screen of the monitor.
  • the processor may determine whether or not the photo-tuning is performed as expected by comparing the correction amount by the photo-tuning set in advance with the difference D. Further, the processor may display a preset correction amount and the difference D on the same screen of the monitor. According to the above control, the operator can easily confirm whether or not the photo-tuning is performed as expected and the target correction effect is obtained.
  • an aberration measuring device such as a wavefront sensor can be used to accurately confirm the correction effect of writing the lens on the translucent body in the eye, including high-order aberrations.
  • the refraction measuring device may be used for calibration of phototuning in addition to confirming the correction effect after actual surgery. For example, using a change in refractive characteristics before and after irradiating a laser to a calibration transparent body (for example, a model eye on which the transparent body is installed), control the laser irradiation optical system or set a lens pattern Calibration may be performed with respect to the calculation method used when performing the above.
  • the refraction measuring device has a configuration that captures a tomographic image of the entire eyeball, for example, and measures the refractive characteristics of the eye based on the shape information of the entire eyeball (for example, anterior eye shape information and the axial length). Also good.
  • the refraction measurement device may include a configuration for capturing an anterior ocular segment tomogram including a cornea and a lens, and may measure the refractive characteristics of the eye based on anterior segment morphological information and an axial length. .
  • data obtained by a known axial length measuring device may be used.
  • the refractive measurement device may measure the refractive characteristics of the eye using a tomographic imaging device described later.
  • the refractive measurement device a configuration capable of measuring the cornea shape and the axial length of the eye may be used, and for example, it can be used for prescription of a photo-tuning intraocular lens that substitutes for a natural crystalline lens.
  • the power of the phototuning intraocular lens may be determined based on the cornea shape of the eye and the axial length.
  • the refraction measuring device may be a phoropter for measuring eye refractive power, for example.
  • the processor may set a lens pattern to be additionally formed on the light transmitting body based on a refractive characteristic after at least one lens is formed inside the light transmitting body by phototuning.
  • additional photo tuning may be performed.
  • change information of refractive characteristics before and after photo tuning before and after mounting the eyeball interface is obtained in advance, and the change information is subtracted from the refractive characteristics after photo tuning with the eyeball interface mounted.
  • the refraction characteristics and the target refraction characteristics may be compared. If the difference is large, additional photo tuning may be performed.
  • the processor may calculate a deviation amount between the correction amount set in advance and the difference D, and obtain a lens pattern corresponding to the calculated deviation amount.
  • the processor may calculate the refraction characteristics to be written to the light transmitting body in order to obtain the amount of deviation using the optical arrangement information of the anterior segment including the light transmitting body.
  • the additional correction of the correction effect can be made by additionally writing the required lens pattern on the light transmitting body.
  • a lens that compensates for the excess may be newly written if overcorrection, and a lens that compensates for the lack may be newly written if correction is insufficient.
  • the refraction characteristics may be obtained after all the preset number of lenses are written. In this case, in addition to the plurality of lenses already written, a lens corresponding to the amount of deviation is newly written.
  • the refraction characteristics may be obtained at a stage where the number of written lenses is smaller than a preset number.
  • the processor may change at least one of the refractive characteristics of the lens to be written next and the number of lenses based on the amount of deviation.
  • the refractive characteristics measured by the refractometer after the first phototuning are fed back to the tuning amount by the second phototuning (for example, the refractive characteristics of the lens, the number of lenses, etc.)
  • the optometry can be corrected more accurately.
  • the refractive characteristics are measured with the eye attached to the eyeball interface.
  • the present invention is not limited to this.
  • the correction effect can be confirmed by measuring the refractive characteristics before and after phototuning in the state where the eyeball interface is not disposed between the irradiation optical system and the eye. Further, additional photo-tuning after confirming the correction effect is possible, and photo-tuning feedback based on the measurement result of the refraction characteristics is also possible.
  • the processor may obtain the refractive characteristics before the eye is mounted on the eyeball interface and the refractive characteristics after the eye is mounted on the eyeball interface and before the phototuning is performed. Good. Accordingly, the processor can obtain the change C of the refractive characteristics before and after the eye is attached to the eyeball interface.
  • the processor After the eye is attached to the eyeball interface, the processor subtracts the change C of the refraction characteristic from the refraction characteristic after the phototuning is performed, so that the eye after the eyeball interface is removed from the eye.
  • the refraction characteristics may be obtained as expected values. Thereby, the correction effect by photo tuning can be confirmed in a state where the eye is attached to the eyeball interface.
  • the processor may be configured to compare the eye refractive characteristic obtained as the predicted value with the target refractive characteristic. As a comparison method, the processor may display these in parallel or may obtain a difference.
  • the ophthalmic laser apparatus may include a tomographic imaging device (tomographic imaging system) for imaging a tomographic image of the eye (see the tomographic imaging device 71 in FIG. 8).
  • a tomographic imaging device tomographic imaging system
  • an external device is not necessarily required for acquiring the position information of the transparent body.
  • the tomographic imaging device may be arranged coaxially with the irradiation optical system or may be on a different axis.
  • the tomographic imaging device may be a device that images a tomographic image using, for example, light, ultrasound, or magnetism. Of course, it is not limited to these.
  • a device (optical system) for optically imaging a tomogram for example, an OCT optical system or a Scheinproof optical system may be used.
  • the tomographic imaging device may be a tomographic imaging device that images a tomographic image of the eye via an eyeball interface.
  • the tomographic image may be, for example, two-dimensional tomographic data or three-dimensional tomographic data.
  • the tomographic imaging device may be, for example, a tomographic imaging device for capturing a tomographic image of the anterior segment.
  • the tomographic imaging device may capture an anterior ocular tomogram including a translucent body to which phototuning is applied, and further includes an anterior ocular tomogram including a cornea and a translucent body to which phototuning is applied. May be imaged.
  • the tomographic imaging device may be a tomographic imaging device that can capture a tomographic image of the entire eyeball (including the cornea, the translucent body, and the retina). In this case, if the lens remains in the eye, the lens may be imaged.
  • the processor may acquire the position information of the translucent body using a tomographic imaging device provided in the ophthalmic laser apparatus.
  • the processor can accurately detect the position of the light transmitting body when performing phototuning by obtaining tomographic information in a state where the eyeball interface is attached to the eye.
  • the lens pattern to be written on the translucent body is calculated in a form close to the state of the eye at the time of photo tuning, so that photo tuning can be performed with high accuracy.
  • the position information of the light transmitting body may be position information of at least one of the front surface and the rear surface of the light transmitting body.
  • the processor may calculate the lens pattern using the tomographic information before the eyeball interface is attached to the eye.
  • the processor may set the irradiation position in the irradiation optical system using a tomographic image in a state where the eyeball interface is mounted on the eye in order to write the lens pattern calculated before the mounting.
  • both the refraction measuring device and the tomographic imaging device in the ophthalmic laser apparatus, it is possible to acquire both the refractive characteristics of the eye and the tomographic data in a state close to that during photo tuning. By using both the refraction characteristics and the tomographic data, it is possible to carry out photo tuning more accurately.
  • the refractive characteristics may be measured and a tomographic image may be acquired.
  • the processor may calculate a lens pattern to be written using the obtained refractive characteristics and tomographic image. Accordingly, even when the state of the eye to be examined is changed in the first phototuning (for example, the position of the light transmitting body is changed), the position of the light transmitting body can be accurately detected. Photo tuning can be performed well.
  • the tomographic imaging device may capture a tomographic image of the eye during laser irradiation, and the processor may detect (monitor) the movement of the eye based on the captured tomographic image. Further, the processor may correct the laser irradiation position according to the movement of the eye. Further, the processor may stop the laser irradiation in accordance with the eye movement.
  • the processor may detect the position of the translucent body to which phototuning is applied based on the captured tomographic image of the eye. Further, the processor may correct the laser irradiation position according to the position of the light transmitting body. Further, the processor may stop the laser irradiation according to the position of the translucent body.
  • the tomographic imaging device may capture a tomographic image of the eyeball interface during laser irradiation, and the processor may detect the position of the eyeball interface based on the captured tomographic image. Further, the processor may correct the laser irradiation position according to the position of the eyeball interface. The processor may stop the laser irradiation according to the position of the eyeball interface.
  • examples of the aforementioned ophthalmic laser apparatus include an ophthalmic laser surgical apparatus, an ophthalmic laser refractive correction apparatus, and the like.
  • the technology related to the photo tuning of the present embodiment is applied as, for example, an ophthalmic laser refraction correction apparatus, an ophthalmic photo tuning setting apparatus, an ophthalmic photo tuning system, a spectacle photo tuning setting apparatus, and a program used for these. Can be done.
  • the processor may set the lens pattern for the spectacle lens based on the refractive characteristics of the entire eyeball when wearing the spectacles and the optical arrangement information of the anterior segment with respect to the spectacle lens when wearing the spectacles.
  • the processor may calculate a refraction characteristic to be written to the spectacle lens, set a lens pattern corresponding to the calculated refraction characteristic, and perform photo-tuning with the set lens pattern.
  • the refraction characteristics of the entire eyeball when wearing glasses may be acquired using at least an eye refraction measuring device.
  • the refractive characteristics of the entire eyeball with the naked eye may be acquired by the refraction measuring device, and the refractive characteristics of the spectacle lens may be acquired by a lens meter or a design value of the lens.
  • the refractive characteristics of the entire eyeball when wearing spectacles can be obtained.
  • it may be calculated by replacing with a predetermined position (for example, the pupil position of the eye) on the optical axis.
  • the refraction measurement device measures the eye when wearing glasses (for example, projects a measurement index through a spectacle lens to obtain fundus reflection light), thereby refraction of the entire eyeball when wearing glasses. The characteristic may be obtained directly.
  • the optical arrangement information of the anterior segment with respect to the spectacle lens when wearing spectacles may be acquired using, for example, an eye position meter (eye position measuring device (for example, see Japanese Patent Application No. 2013-202632)) or a major (for example, , A ruler), or a design value of a lens or a spectacle frame, or the like.
  • the optical arrangement information of the anterior segment with respect to the spectacle lens may be, for example, a three-dimensional position of the eye with respect to the spectacle lens, and a two-dimensional position (for example, up / down / left / right position) is obtained, and other directions (for example, the front / rear direction) ) May be used as an estimated value.
  • the vertical and horizontal positions of the eyes with respect to the spectacle lens may be the positions of the eyes with respect to the spectacle frame.
  • the optical arrangement information inside the anterior segment may be acquired by the tomographic imaging device.
  • optical arrangement information of the lens itself (for example, the shape of the lens) may be acquired by a lens shape measuring apparatus (for example, a tomographic imaging device), or a setting value of the lens may be used.
  • the lens shape measuring device the lens shape may be measured by the amount of movement of the measuring element when the measuring element is brought into contact with the lens.
  • the lens pattern for the spectacle lens for example, the wavefront aberration W1 of the entire eyeball with the naked eye, the eye position (eye position) EP with respect to the spectacle frame when wearing spectacles, and the fundus macular portion when wearing spectacles
  • a lens pattern to be written to the spectacle lens may be obtained based on the light beam position LEP on the spectacle lens when the light beam condensed on the spectacle lens passes through the spectacle lens and the frequency distribution M of the spectacle lens at the position LEP.
  • the light beam position LEPF corresponding to the eye position EPF in the far vision state is obtained. Furthermore, the power distribution MF of the spectacle lens at the light beam position LEPF is obtained from the design data of the lens meter or the spectacle lens.
  • the light beam position LEPN corresponding to the eye position EPF in the near vision state is obtained by obtaining the eye position EPN in the near vision state.
  • the power distribution MN of the spectacle lens at the light beam position LEPN can be obtained from a lens meter capable of measuring the power distribution or design data of the spectacle lens.
  • the processor obtains the wavefront aberration W2 of the entire eyeball when wearing spectacles based on the wavefront aberration W1 of the entire eyeball with the naked eye and the frequency distribution MF of the spectacle lens, and performs by phototuning based on the obtained wavefront aberration W2
  • the correction amount of the refraction characteristic to be obtained is obtained.
  • the processor calculates a refraction characteristic to be written to the spectacle lens in order to obtain a preset correction amount by using the optical arrangement information of the anterior segment with respect to the spectacle lens.
  • the processor corrects a preset correction amount in consideration of the optical arrangement information of the spectacle lens and the anterior segment, the refractive index of each tissue of the anterior segment, and the first refractive index of the spectacle lens. It is also possible to calculate the refraction characteristics of the lens necessary for this. Further, the processor sets a lens pattern corresponding to the refractive characteristic to be written.
  • the processor sets (matches) the obtained lens pattern to the light beam position LEP on the spectacle lens to set the irradiation position.
  • Photo tuning is performed on the spectacle lens at the set irradiation position.
  • a soft gel close to the refractive index of the spectacle lens material is sandwiched between and closely adhered to the lens surface of the spectacle lens, so that the effect of the refractive index on the spectacle lens surface is reduced. It may be irradiated in a liquid.
  • the irradiation position may be set for the spectacle lens by detecting the position of the spectacle lens using a tomographic imaging device. Further, if the positional relationship between the spectacle lens and the apparatus is known, the irradiation position may be set using the known positional relationship. Photo tuning may be performed on the glasses worn by the patient.
  • photo-tuning is performed at a lens position corresponding to far vision, or photo-tuning is performed at a lens position corresponding to near vision, but the present invention is not limited to this. Similarly, photo tuning may be performed.
  • the spectacle lens subjected to photo tuning may be a spectacle lens actually worn by the patient or a new spectacle lens.
  • the irradiation position may be set on the assumption that the lens is arranged on the spectacle frame.
  • it is possible to manufacture a lens using a photo tuning by providing a laser device at a lens factory.
  • the wavefront aberration W2 of the entire eyeball when wearing glasses may be directly obtained by a wavefront sensor.
  • the technique related to phototuning according to the present embodiment can be applied to an ophthalmic laser surgical apparatus that treats a patient's eye by condensing laser light into the tissue of the patient's eye.
  • the technique related to phototuning according to the present embodiment can be applied to a spectacle laser device that corrects a patient's eye by condensing laser light inside a spectacle lens.
  • an ophthalmic laser surgical apparatus will be described as an example.
  • the present invention is not limited to this and can be applied to other apparatuses.
  • the setting device for setting the photo tuning lens pattern is not limited to the configuration arranged in the laser device.
  • the setting apparatus may be provided in a tomographic imaging device, a refraction measuring device, or an external PC.
  • transmission / reception of each data may be performed by wire or wireless.
  • the direction along the optical axis of the laser light applied to the patient's eye E is defined as the Z direction.
  • One of the directions intersecting the Z direction is defined as the X direction.
  • a direction that intersects both the Z direction and the X direction is defined as a Y direction.
  • the X, Y, and Z directions may be set as appropriate.
  • the X direction may be the patient's horizontal direction
  • the Y direction may be the patient's vertical direction
  • the X direction is the patient's vertical direction
  • the Y direction is the patient's horizontal direction
  • the Z direction may be the axial direction of the eye E.
  • the ophthalmic laser surgical apparatus 1 is used for treating a tissue of a patient's eye E and performing phototuning on an artificial translucent body (see FIG. 8).
  • an ophthalmic laser surgical apparatus 1 capable of treating a crystalline lens of a patient's eye E and performing phototuning on an artificial translucent body inserted into the eye is illustrated.
  • This technique may of course be applied to the treatment of anterior segment tissues including the cornea and the lens.
  • Photo tuning may also be applied to a natural translucent body, that is, the tissue of the patient's eye E.
  • the laser irradiation unit 300 includes a laser light source unit 310 and a laser irradiation optical system (laser delivery) 320.
  • the laser light source unit 310 is disposed inside the main body 2.
  • the laser irradiation optical system (light guide optical system) 320 is an optical system arranged to guide the laser light from the laser light source unit 310 to the eye E.
  • the interface unit 50 is close to the cornea of the patient's eye E, reduces the difference in refractive index, and reduces the aberration of laser light generated by the refractive index difference. This reduces surface reflections at the cornea and lens, for example.
  • the observation / imaging unit 70 captures a front image of the anterior segment of the patient's eye E and a tomographic image of the anterior segment.
  • the observation / imaging unit 70 includes, for example, a tomographic imaging device 71 and a front imaging unit 75.
  • the tomographic imaging device 71 captures (acquires) a tomographic image of the patient's eye E.
  • the front imaging unit 75 captures an anterior segment image of the patient's eye E.
  • the operation unit 400 is provided for operating the apparatus 1.
  • the control unit 100 performs overall control of the entire apparatus.
  • the laser irradiation unit 300 may include, for example, a laser light source unit 310 and a laser irradiation optical system (laser delivery) 320.
  • the laser light source unit 310 emits surgical laser light (laser beam).
  • the laser irradiation optical system 320 includes an optical member for guiding laser light.
  • the laser irradiation optical system 320 includes, for example, a scanning unit 330, an objective lens 305, and various optical members.
  • the objective lens 305 is provided on the optical path between the scanning unit 330 and the patient's eye E.
  • the objective lens 305 focuses the laser light that has passed through the scanning unit 330 on the tissue of the patient's eye E.
  • the laser light emitted by the laser light source unit 310 is used to induce plasma in the tissue by nonlinear interaction.
  • Non-linear interaction is one of the interactions caused by light and a substance, and is an effect in which a response that is not proportional to the intensity of light (that is, the density of photons) appears.
  • the ophthalmic laser surgical apparatus 1 condenses (focuses) the laser light in the transparent tissue of the patient's eye E, so that the condensing position (also referred to as “laser spot”) or the condensing position. Rather, it causes multiphoton absorption slightly upstream of the optical path (light flux). The probability that multiphoton absorption occurs is not proportional to the intensity of light and is nonlinear.
  • the laser light source unit 310 can also adjust the photorefractive index (photo tuning) by multiphoton absorption.
  • the laser light source unit 310 can emit a first laser that is a laser for crushing or cutting an anterior ocular tissue and a second laser that is a laser for writing a lens on a light transmitting body. More specifically, the laser light source unit 310 includes a laser light source 312 for generating laser light having a wavelength corresponding to the first laser, and a wavelength corresponding to the second laser from the first laser light from the laser light source. And a wavelength conversion optical element 314 for converting into a wavelength.
  • the laser light source 312 a device that emits laser light having a pulse width of 1 femtosecond to 10 nanoseconds is used.
  • the laser light source 312 for example, a device that emits infrared laser light having a pulse width of 500 femtoseconds and a center wavelength of 1040 nm (wavelength width is ⁇ 10 nm) may be used.
  • the laser light source unit 310 uses a laser light source capable of emitting laser light having an output that causes breakdown when the spot size of the laser spot is 1 to 15 ⁇ m.
  • the irradiation optical system 320 includes a first optical system (see FIG. 9) for guiding the first laser to the eye without passing through the wavelength conversion optical element, and the wavelength conversion optical element 314. And a second optical system (see FIG. 10) for converting the first laser into the second laser and guiding the second laser to the eye.
  • a first optical path corresponding to the first optical system and a second optical path corresponding to the second optical system may be respectively arranged.
  • the optical system may be selected by driving the optical path switching unit 318.
  • the laser light source unit 310 is upstream and the patient eye E is downstream. Then, the mirror 301, the mirror 302 to the lens 303, the lens 304, and the beam combiner 72 may be arranged along the optical axis L1 downstream from the laser light source unit 310.
  • Mirrors 301 and 302 adjust the optical axis of the laser beam.
  • the lens 303 is used to form an intermediate image of the scanning unit 330 and laser light.
  • the lens 304 forms a pupil conjugate position.
  • the beam combiner 72 combines the optical axis L1 and the optical axis L3 of the observation / photographing unit 70.
  • the mirrors 301 and 302 are configured such that their reflection surfaces are orthogonal to each other, and are held by tiltable holding members.
  • the optical axis of the laser light emitted from the laser light source unit 310 can be adjusted by moving and tilting the reflecting surfaces of the mirrors 301 and 302. By adjusting the mirrors 301 and 302, the axis of the laser beam is aligned with the optical axis L1.
  • the correction optical member 500 is a correction optical member for correcting a difference in laser characteristics between the first laser and the second laser.
  • the correction optical member 500 is disposed in the optical path of the second laser light during phototuning.
  • the correction optical member 500 may be disposed in the optical path of the irradiation optical system 320 by driving the driving unit 510.
  • the correction optical member 500 may be disposed in the vicinity of the wavelength conversion optical element 314.
  • the scanning unit 330 may scan the condensing position of the laser light condensed by the objective lens 305 by scanning the laser light. That is, the scanning unit 330 moves the condensing position of the laser light to the target position.
  • the scanning unit 330 of this embodiment may include a Z scanning unit 350 and an XY scanning unit 360.
  • the scanning unit 330 may be disposed in the optical path of the laser irradiation optical system (laser delivery) 320.
  • the Z scanning unit 350 may include, for example, a concave lens 351, a convex lens 352, and a driving unit 353.
  • the drive unit 353 moves the concave lens 351 along the optical axis L1.
  • the concave lens 351 moves, the divergence state of the beam that has passed through the concave lens 351 changes.
  • the laser beam condensing position moves in the Z-axis direction.
  • the XY scanning unit 360 may include an X scanner 361 and a Y scanner 364.
  • the X scanner 361 may scan the laser light in the X direction by swinging the galvano mirror 363 by the driving unit 362.
  • the Y scanner 364 may scan the laser light in the Y direction by swinging the galvanometer mirror 366 by the driving unit 365.
  • the lenses 367 and 368 conjugate the two galvanometer mirrors 363 and 366.
  • the scanning unit 330 may have any configuration that can scan the laser light in the XY directions.
  • the scanning in the main scanning direction (for example, the X direction) may be a polygon mirror
  • the scanning in the sub scanning direction (for example, the Y direction) may be a galvanometer mirror.
  • a resonant mirror may be used corresponding to the X direction and the Y direction.
  • the structure which rotates two prisms independently may be sufficient.
  • an acousto-optic deflector (AOD) may be used in the main scanning direction. In this manner, the laser spot may be moved three-dimensionally (in the XYZ directions) within the eyeball tissue (in the target) of the patient's eye E by the scanning unit 330.
  • a beam combiner (beam splitter) 72 for making the laser optical axis coaxial with the observation / photographing optical axis may be disposed.
  • the combiner 72 has a characteristic of reflecting laser light and transmitting illumination light of the observation / photographing unit 70.
  • the objective lens 305 is a lens that is fixedly disposed with respect to the irradiation end unit 42.
  • the objective lens 305 forms an image on the target using laser light as a laser spot.
  • the spot size of the laser spot is, for example, about 1 to 15 ⁇ m.
  • the interface unit 50 (see FIG. 11) is close to the cornea of the patient's eye E, has a role of weakening the refractive power of the cornea and facilitating the laser light to reach (collect) the eyeball tissue such as a crystalline lens.
  • the interface unit 50 of the present embodiment is configured to cover at least a part of the cornea without directly contacting the cornea.
  • the interface unit 50 mainly includes a cover glass 51.
  • the cover glass 51 is an optical member that covers the cornea, for example.
  • the cover crow 51 may be, for example, an applanation lens or an immersion lens.
  • an applanation lens transmits laser and applanates the front surface of the cornea.
  • the cover glass 51 is a member that covers the cornea and may have a size that covers at least the NA on which the laser spot is focused.
  • the cover glass 51 is a transparent member having translucency, and is formed of, for example, glass or resin.
  • the cover glass 51 may be positioned on the liquid surface and may have a role of covering the liquid.
  • the interface unit 50 is close to the cornea of the patient's eye E adsorbed by the suction ring 281.
  • the suction ring 281 may be adsorbed after the positions of the patient eye E and the interface unit 50 are determined in advance.
  • the suction ring 281 is filled with, for example, a liquid (saline).
  • the refractive power of the cornea is canceled by the cover glass 51 and the liquid. This suppresses the laser light from being refracted from the objective lens 305 to the target crystalline lens.
  • the interface unit 50 may be configured to be in direct contact with the cornea.
  • the interface unit 50 may be a unit that contacts the cornea with the cover glass 51 to applanate the cornea.
  • the cornea comes into contact with the cover glass 51 so that the position of the cornea is positioned with respect to the laser irradiation optical system 320.
  • the cover glass 51 may have a contact surface that covers the cornea so as to cover a laser irradiation region such as the inside of the cornea.
  • the fixation guidance unit 120 projects, for example, a fixation target for fixing the eye to be examined (see FIG. 3).
  • the fixation guidance unit 120 may change the line-of-sight direction of the patient's eye E before docking by changing the presentation position of the fixation target.
  • the fixation guidance unit 120 guides the fixation direction of the eye E in order to guide the irradiation optical axis of the surgical laser and the optical axis of the patient's eye to a predetermined positional relationship.
  • the eyeball fixing unit 280 (see FIGS. 4 and 5) is a unit for fixing the patient's eye E to the objective lens 305. By fixing the patient's eye E to the objective lens 305, the laser can be suitably focused on the patient's eye E.
  • the eyeball fixing unit 280 transmits (adds) suction pressure applied from a suction pump (not shown) to the suction ring 281 via a suction pipe. Note that the present invention is not limited to this, and laser irradiation may be performed without fixing the eyeball. Further, laser irradiation may be performed without using the interface unit 50. In this case, a tracking mechanism for correcting the laser irradiation position according to the movement of the eyes may be provided.
  • observation optical system 70 (also referred to as an observation / imaging unit) 70 (see FIG. 3) causes the operator to observe the patient's eye E and images the tissue to be treated.
  • the observation optical system 70 of this embodiment includes a tomographic imaging device 71 and a front imaging unit 75.
  • the optical axis L3 of the observation optical system 70 is made coaxial with the optical axis L1 of the laser beam by the beam combiner 72.
  • the optical axis L3 is branched by the beam combiner 73 into an optical axis L4 of the tomography unit 71 and an optical axis L5 of the front imaging unit 75.
  • the tomographic imaging device 71 may acquire a tomographic image of the tissue of the patient's eye E using, for example, an optical interference technique.
  • the tomographic imaging device 71 acquires, for example, a tomographic image of the anterior segment of the patient's eye E.
  • the tomographic imaging device 71 may be an OCT (optical coherence tomography) device.
  • the tomographic imaging device 71 may include a light source, a light splitter, a reference optical system, a scanning unit, and a detector.
  • the light source emits light for acquiring a tomographic image.
  • the light splitter divides the light emitted from the light source into reference light and measurement light.
  • the reference light enters the reference optical system, and the measurement light enters the scanning unit.
  • the reference optical system has a configuration that changes the optical path length difference between the measurement light and the reference light.
  • the scanning unit scans the measurement light in a two-dimensional direction on the anterior segment.
  • the detector detects an interference state between the measurement light reflected by the tissue and the reference light that has passed through the reference optical system.
  • the ophthalmic laser surgical apparatus 1 scans the measurement light and detects the interference state between the reflected measurement light and the interference light, thereby acquiring information in the depth direction of the anterior segment.
  • the ophthalmic laser surgical apparatus 1 associates the target position where the pulsed laser light is collected with the anterior segment tomogram of the patient's eye E. As a result, the ophthalmic laser surgical apparatus 1 can create data for controlling the operation of irradiating and scanning the pulsed laser beam using the anterior ocular segment tomographic image.
  • Various configurations can be used for the tomography unit 71. For example, any of SS-OCT, SD-OCT, TD-OCT, etc. may be adopted as the tomographic imaging device 71.
  • the ophthalmic laser surgical apparatus 1 may capture a tomographic image using a technique other than optical interference.
  • the front imaging unit 75 acquires a front image of the patient's eye E.
  • the front imaging unit 75 images the patient's eye E illuminated with visible light or infrared light.
  • the front image of the patient's eye E imaged by the front imaging unit may be displayed on the display unit 420 (described later). The surgeon can observe the patient's eye E from the front by looking at the display unit 420.
  • the refraction measurement device 90 is a refraction measurement device for measuring the refraction characteristics of the eye, and in this embodiment, a wavefront sensor is used.
  • the refraction measuring device 90 is coaxial with the tomographic imaging device 71 via the beam combiner 92.
  • the operation unit 400 may include, for example, a trigger switch 410, a display unit 420, and the like.
  • the trigger switch 410 inputs a trigger signal for emitting treatment laser light from the laser irradiation unit 300.
  • the display unit 420 is used as a display unit that displays a tomographic image and an anterior segment image of the patient's eye E, and displays surgical conditions.
  • the display unit 420 may have a touch panel function, and may also serve as input means for setting surgical conditions and setting a surgical site (laser irradiation position) on a tomographic image.
  • a mouse that is a pointing device, a keyboard that is an input device for inputting numerical values, characters, and the like can also be used as input means.
  • the control unit 100 includes a CPU 101, a ROM 102, a RAM 103, a nonvolatile memory (not shown), and the like.
  • the CPU 101 as a processor performs various controls of the ophthalmic laser surgical apparatus 1 (for example, control data creation control described later, control of the laser light source unit 310, control of the scanning unit 330, control for adjusting the scanning speed of the condensing position).
  • the ROM 102 stores various programs, initial values, and the like for controlling the operation of the ophthalmic laser surgical apparatus 1.
  • the RAM 103 temporarily stores various information.
  • a nonvolatile memory is a non-transitory storage medium that can retain stored contents even when power supply is interrupted.
  • the control unit 100 is connected with a laser irradiation unit 300, an observation / imaging unit 70, an operation unit 400, a fixation guidance unit 120, a suction pump, a perfusion suction unit, and the like.
  • the control unit 100 sets position information for irradiating the surgical laser light based on the surgical site (area) set in the tomographic image display area before the surgical laser light irradiation.
  • the control unit 100 emits laser light from the laser light source unit 310 based on the set surgical site, surgical conditions, and irradiation pattern, and controls the scanning units (galvanomirrors 363 and 366) to make the laser spot in the eyeball tissue.
  • the eyeball tissue is cut, crushed, or phototuned to a translucent body.
  • a first operation mode for crushing or cutting an anterior segment tissue and a second operation mode for performing phototuning can be selectively set.
  • the examiner can select the operation mode using the operation unit 400.
  • an operation program corresponding to each operation mode, laser irradiation conditions, and the like are stored in the memory.
  • the irradiation optical system 320 When set to the first surgical mode, the irradiation optical system 320 is set to an optical arrangement for irradiating the eye E with the first laser (FIG. 9). In this case, the correction optical member 500 is out of the optical path of the irradiation optical system 520.
  • specific operations in the first operation mode refer to, for example, Japanese Patent Application Laid-Open No. 2015-195922.
  • the irradiation optical system 320 When set to the second surgical mode, the irradiation optical system 320 is set to an optical arrangement for irradiating the eye E with the second laser (FIG. 10). In this case, the correction optical member 500 is disposed in the optical path of the irradiation optical system 520.
  • FIG. 13 is a diagram illustrating an example of a procedure in the second operation mode, and is a diagram illustrating an example of preoperative planning.
  • the tomographic information and refraction characteristics of the patient's eye E are acquired before surgery, and planning for photo tuning is performed.
  • the surgeon acquires the tomographic information of the eye E with a tomography device, for example, several days before the operation.
  • the tomography device may be a tomography device arranged as a separate housing from the apparatus 1, and the tomography device may be an apparatus that images the patient's eye E in the sitting position.
  • the tomography device may be a tomography device 71 provided integrally with the apparatus 1, and the tomography device may be an apparatus that images the patient's eye E while lying on its side. Good.
  • the refractive characteristic device may be a refractive characteristic device arranged as a separate housing from the apparatus 1, and the refractive characteristic device may be an apparatus that images the patient's eye E in a sitting position.
  • the refractive characteristic device may be the refractive characteristic device 90 provided integrally with the apparatus 1, and the refractive characteristic device is a device that measures the refractive characteristic of the eye E when lying on its side. May be.
  • the tomography device and the refractive characteristic device when an external device is used, it is preferable that data can be exchanged between the external device and the device 1.
  • the external device may be connected by wire or wireless, and data may be exchanged by a storage medium such as a flash memory.
  • the control unit 100 obtains the refractive characteristics of the lens to be written on the translucent body based on the tomographic information obtained by the tomographic device and the refractive characteristics obtained by the refractive characteristic device. Further, the control unit 100 obtains lens patterns 610 and 620 to be written on the light transmitting body 600 based on the obtained refraction characteristics.
  • the control unit 100 may acquire a tomographic image of the patient's eye E using the tomographic imaging device 71 provided in the apparatus 1.
  • the control unit 100 determines between the first tomographic image (see FIG. 11) taken before the operation by the tomographic device and the second tomographic image (see FIG. 12) acquired by the tomographic imaging device 71 after eyeball fixation. Associate the positional relationship of.
  • the planning content set before the operation can be associated with the tomographic image at the time of photo tuning. Therefore, the control unit 100 can perform an operation according to an operation condition set before the operation.
  • the first tomographic image and the tomographic imaging device 71 are considered in consideration of the difference in imaging magnification between the external tomographic imaging device and the tomographic imaging device 71.
  • the image magnification of at least one of the second tomographic images may be adjusted by image processing. Further, the lens pattern to be written may be corrected in consideration of the difference in imaging magnification.
  • control unit 100 associates the positional relationship between the translucent body in the first tomographic image and the translucent body in the second tomographic image, and transmits the translucent body in the second tomographic image.
  • a lens pattern set in advance may be set inside the translucent body in the second tomographic image on the basis of this position.
  • the control unit 100 sets the laser irradiation condition based on the lens pattern set for the translucent body in the second tomographic image. Furthermore, photo-tuning is performed with the second laser based on the set irradiation conditions.
  • the first tomographic image may be used for lens pattern planning, and the second tomographic image may be used for setting the irradiation position in the irradiation optical system.
  • the control unit 100 sets (matches) the lens pattern acquired using the first tomographic image with respect to the translucent body on the second tomographic image to set the irradiation position. Also good.
  • the lens pattern may be set based on the first tomographic image and the refractive characteristics of the eye.
  • the position of the translucent body in the state where the patient's eye E photographed by an external device before the operation is not docked matches the position of the translucent body after the docking of the patient's eye E photographed by the tomographic imaging device 71 May not.
  • the position of the transparent body changes depending on the inclination of the crystalline lens.
  • the translucent body and the eye may be deformed due to the influence of the eyeball interface.
  • the control unit 100 may correct the planning content set based on the pre-operative tomographic image to the content suitable for the intra-operative tomographic image. For example, the control unit 100 first detects a transparent body in the eye to be examined. Subsequently, the control unit 100 associates the translucent body in the first tomographic image with the translucent body in the second tomographic image. Accordingly, the surgical condition set for the translucent body of the first tomographic image is associated with the second tomographic image. Therefore, the control unit 100 can irradiate the second laser toward a predetermined position inside the preset light transmitting body. That is, the control unit 100 can perform phototuning under the surgical conditions set by planning.
  • control unit 100 may associate the first tomographic image and the second tomographic image based on the detected position information of the transparent body.
  • control unit 100 may perform association by detecting the surface of the transparent body by image processing.
  • control unit 100 may determine the presence or absence of a deformed state of the light transmitting body and the eyes (for example, the cornea) based on the second tomographic image. When the deformation is detected, the control unit 100 considers the deformation state between the first tomographic image before the deformation and the second tomographic image after the deformation when the deformation is detected. May be set.
  • the tomographic information and refraction characteristics of the patient's eye E are acquired before the operation and the planning in the photo tuning is performed.
  • the present invention is not limited to this.
  • the refractive characteristic of the patient's eye E is acquired in advance before the operation, and the control unit 100 performs planning based on the refractive characteristic obtained in advance and the tomographic image acquired by the tomographic imaging device 71 after fixing the eyeball. May be performed.
  • control unit 100 may perform planning in photo tuning using the refractive characteristic device 90 provided in the apparatus 1. Furthermore, the control unit 100 may confirm the correction effect in the photo tuning using the refraction characteristic device 90 provided in the apparatus 1, or may additionally perform the photo tuning.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Optics & Photonics (AREA)
  • Transplantation (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Prostheses (AREA)

Abstract

An ophthalmic laser refractive correction device for condensing laser light to the inside of a translucent body provided to a patient eye, the ophthalmic laser refractive correction device being provided with: an irradiation optical system for guiding laser light to the inside of a translucent body provided to the patient eye, the laser light being emitted from a laser light source unit and being for adjusting the refractive index of the translucent body; a scanning unit for causing the laser light to scan a condensing position, the scanning unit being disposed in an optical path of the irradiation optical system; and a control means for controlling the scanning unit and causing the laser light to scan a condensing position in an irradiation region corresponding to a pre-set lens pattern of a multilevel-phase-type diffractive lens, and thereby forming the multilevel-phase-type diffractive lens in the inside of the translucent body.

Description

眼科用レーザ屈折矯正装置、眼科用フォトチューニング設定装置、眼科用フォトチューニングシステム、眼鏡用フォトチューニング設定装置、及びこれらに用いられるプログラム、眼科用レーザ手術装置Ophthalmic Laser Refractive Correction Device, Ophthalmic Photo Tuning Setting Device, Ophthalmic Photo Tuning System, Eyeglass Photo Tuning Setting Device, Program Used for These, and Ophthalmic Laser Surgery Device
 本開示は、レーザ照射を用いて透光体の屈折率を光学的に調整することによって眼の屈折特性を矯正することに関する。 This disclosure relates to correcting the refractive properties of the eye by optically adjusting the refractive index of the translucent body using laser irradiation.
 レーザ光を患者眼の組織内に集光させることで患者眼を処置する眼科用レーザ手術装置が知られている(特許文献1参照)。このような装置によれば、典型的には、患者眼角膜の切断による角膜屈折矯正、患者眼の水晶体混濁部の破砕による白内障手術等が挙げられる。
 また、フォトチューニングの手法としては、例えば、Norbert Hamppらによって提案されている光化学的な反応を利用して屈折率を調整する手法(例えば、特許文献2)、Perfect Lens社から出願されている疎水性材料の親水性を変化させて屈折率を調整する手法(例えば、特許文献3)、Way Knoxらによって提案されているハイドロゲル材料の親水性を変化させて屈折率を調整する手法(例えば、特許文献4)、又はWay Knoxらによって角膜の屈折率を変化させる手法(例えば、特許文献5)等が知られている。
An ophthalmic laser surgical apparatus is known that treats a patient's eye by condensing a laser beam in a tissue of the patient's eye (see Patent Document 1). Typically, according to such an apparatus, corneal refraction correction by cutting the patient's eye cornea, cataract surgery by crushing the lens opacity portion of the patient's eye, and the like can be mentioned.
In addition, as a phototuning method, for example, a method of adjusting a refractive index using a photochemical reaction proposed by Norbert Hampp et al. (For example, Patent Document 2), a hydrophobicity filed by Perfect Lens, Inc. A method of adjusting the refractive index by changing the hydrophilicity of the conductive material (for example, Patent Document 3), a method of adjusting the refractive index by changing the hydrophilicity of the hydrogel material proposed by Way Knox et al. A technique (for example, Patent Document 5) of changing the refractive index of the cornea is known by Patent Document 4) or Way Knox et al.
特開2015-37474号公報JP 2015-37474 A 米国特許公開2009―157178号公報US Patent Publication No. 2009-157178 米国特許公開2014―135920号公報US Patent Publication No. 2014-135920 米国登録8337553号公報US Registration No. 8337553 米国登録8617147号US Registration No. 8617147
 しかしながら、上記のようなフォトチューニングが市販化された例は、まだない。その理由としては、例えば、鋸型の位相型回折レンズを形成する場合、眼科で一般的に使用されているレーザよりも繰返周波数が極めて大きいレーザ光源が必要である。他の課題として、患者眼に備えられた透光体に対してフォトチューニングを行う場合、眼内での透光体の位置が不明であり、患者眼に適したレンズパターンを導出するための具体的手段を欠く。
 また、しかしながら、上記のような眼科用レーザ手術装置とフォトチューニングを複合させた装置は、まだない。
However, there are no examples where such phototuning has been commercialized. The reason is that, for example, when a saw-type phase-type diffractive lens is formed, a laser light source having a repetitive frequency much higher than that of a laser generally used in ophthalmology is required. As another issue, when phototuning is performed on a translucent body provided in a patient's eye, the position of the translucent body in the eye is unknown, and a specific method for deriving a lens pattern suitable for the patient's eye Lacks means.
However, there is still no device that combines the above ophthalmic laser surgical device and phototuning.
 本開示は、上記問題点の少なくとも一つを解決可能な眼科用レーザ屈折矯正装置、眼科用フォトチューニング設定装置、眼科用フォトチューニングシステム、眼鏡用フォトチューニング設定装置、及びこれらに用いられるプログラム、眼科用レーザ手術装置を提供することを技術課題とする。 The present disclosure relates to an ophthalmic laser refraction correction device, an ophthalmic photo tuning setting device, an ophthalmic photo tuning system, a spectacle photo tuning setting device, and a program used therefor, ophthalmology, which can solve at least one of the above problems An object of the present invention is to provide a laser surgical apparatus for medical use.
 上記課題を解決するために、本開示は以下のような構成を備えることを特徴とする。 In order to solve the above problems, the present disclosure is characterized by having the following configuration.
 (1) 患者眼に備えられた透光体の内部にレーザ光を集光させることで前記透光体の屈折率を調整するための眼科用レーザ屈折矯正装置であって、
 レーザ光源ユニットから出射された前記透光体の屈折率を調整するためのレーザ光を、前記患者眼に備えられた透光体の内部にレーザ光を導くための照射光学系と、
 前記照射光学系の光路中に配置され、前記レーザ光の集光位置を走査させる走査ユニットと、
 前記走査ユニットを制御し、予め設定されたマルチレベル位相型回折レンズのレンズパターンに対応する照射領域に前記レーザ光の集光位置を走査させることによって、前記マルチレベル位相型回折レンズを前記透光体の内部に形成する制御手段と、
 を備えることを特徴とする。
(2) 患者眼に備えられた透光体の内部にレーザ光を集光させることで前記透光体の屈折率を調整するための眼科用レーザ屈折矯正装置であって、
 レーザ光源ユニットから出射された前記透光体の屈折率を調整するためのレーザ光を、前記患者眼に備えられた透光体の内部にレーザ光を導くための照射光学系と、
 前記照射光学系の光路中に配置され、前記レーザ光の集光位置を走査させる走査ユニットと、
 前記走査ユニットを制御する制御手段であって、
 断層撮像デバイスによって撮像された断層像における前記透光体の位置情報と、屈折測定デバイスによって測定された患者眼の屈折特性とに基づいて予め設定されたレンズパターンに対応する照射領域に前記レーザ光の集光位置を走査させることによって、レンズを前記透光体の内部に形成する制御手段と、
 を備えることを特徴とする。
 (3) 患者眼に備えられた透光体の内部にレーザ光が集光されることによって形成されるレンズパターンを設定するための眼科用フォトチューニング設定装置であって、
 断層撮像デバイスによって撮像された断層像における前記透光体の位置情報と、屈折測定デバイスによって測定された患者眼の屈折特性と、に基づいて前記レンズパターンを設定する設定手段を備えることを特徴とする。
 (4) (3)の眼科用フォトチューニング設定装置と、
 前記透光体を含む前記患者眼の断層像を撮像する断層撮像デバイスと、
 前記透光体を含む前記患者眼の屈折特性を測定する屈折測定デバイスと、
 を備える眼科用フォトチューニングシステム。
 (5) 眼鏡レンズの内部にレーザ光が集光されることによって形成されるレンズパターンを設定するための眼鏡用フォトチューニング設定装置であって、
 眼鏡装用時での眼球全体の屈折特性と、眼鏡装用時における眼鏡レンズに対する前眼部の光学配置情報とに基づいて、前記レンズパターンを設定する設定手段を備えることを特徴とする
 (6) (1)~(5)のいずれかに記載の装置のプロセッサによって実行されることで、少なくとも、前記制御手段による走査ユニットの制御、及び前記設定手段によるレンズパターンの設定のいずれかを、前記装置に実行させることを特徴とするプログラム。
 (7) レーザ光を患者眼の組織内に集光させることで前記患者眼を処置する眼科用レーザ手術装置であって、
 前記患者眼を処置するための第1のレーザ光と、透光体の屈折率を調整するための第2のレーザ光とを選択的に出射可能なレーザ光源ユニットと、
 照射光学系の光路中に配置され、前記第1のレーザ光又は前記第2のレーザ光の集光位置を走査させる走査ユニットと、
 第1のレーザ光を用いて前記患者眼を処置する第1の手術モードと、透光体の屈折率を調整するための第2のレーザ光を用いてフォトチューニングを行うための第2の手術モードとを切り換えるモード切換手段と、
 前記モード切換手段によって前記第1の手術モードに設定された場合、前記走査ユニットを制御して、前記第1のレーザ光の集光位置を走査させることによって、前記患者眼を処置し、
 前記モード切換手段によって前記第2の手術モードに設定された場合、前記走査ユニットを制御して、予め設定されたレンズパターンに対応する照射領域に前記第2のレーザ光の集光位置を走査させることによって、レンズを前記透光体の内部に形成する制御手段と、
 を備えることを特徴とする。
(1) An ophthalmic laser refraction correction apparatus for adjusting a refractive index of a light transmitting body by condensing laser light inside a light transmitting body provided in a patient's eye,
An irradiation optical system for guiding laser light emitted from a laser light source unit to adjust the refractive index of the translucent body, into the translucent body provided in the patient's eye;
A scanning unit that is disposed in the optical path of the irradiation optical system and scans the condensing position of the laser beam;
The scanning unit is controlled to scan the condensing position of the laser beam in an irradiation region corresponding to a preset lens pattern of the multilevel phase type diffractive lens, thereby allowing the multilevel phase type diffractive lens to pass through the translucent light. Control means formed inside the body;
It is characterized by providing.
(2) An ophthalmic laser refraction correction apparatus for adjusting the refractive index of the light transmitting body by condensing the laser light inside the light transmitting body provided in the patient's eye,
An irradiation optical system for guiding laser light emitted from a laser light source unit to adjust the refractive index of the translucent body, into the translucent body provided in the patient's eye;
A scanning unit that is disposed in the optical path of the irradiation optical system and scans the condensing position of the laser beam;
Control means for controlling the scanning unit,
The laser beam is applied to an irradiation region corresponding to a lens pattern set in advance based on positional information of the translucent body in a tomographic image captured by a tomographic imaging device and a refraction characteristic of a patient's eye measured by a refraction measuring device. A control means for forming a lens inside the translucent body by scanning the condensing position of
It is characterized by providing.
(3) An ophthalmic photo-tuning setting device for setting a lens pattern formed by condensing laser light inside a translucent body provided in a patient's eye,
Characterized by comprising setting means for setting the lens pattern based on positional information of the translucent body in a tomographic image captured by a tomographic imaging device and refraction characteristics of a patient's eye measured by a refraction measuring device. To do.
(4) (3) Ophthalmic photo-tuning setting device;
A tomographic imaging device for capturing a tomographic image of the patient's eye including the translucent body;
A refraction measuring device for measuring refraction characteristics of the patient's eye including the translucent body;
Ophthalmic photo tuning system.
(5) A spectacle photo-tuning setting device for setting a lens pattern formed by condensing laser light inside a spectacle lens,
(6) A setting unit that sets the lens pattern based on the refractive characteristics of the entire eyeball when wearing spectacles and the optical arrangement information of the anterior segment with respect to the spectacle lens when wearing spectacles. When executed by the processor of the apparatus according to any one of 1) to (5), at least one of the control of the scanning unit by the control unit and the setting of the lens pattern by the setting unit is performed on the apparatus. A program characterized by being executed.
(7) An ophthalmic laser surgical apparatus for treating the patient's eye by condensing laser light in the tissue of the patient's eye,
A laser light source unit capable of selectively emitting a first laser beam for treating the patient's eye and a second laser beam for adjusting the refractive index of the transparent body;
A scanning unit that is arranged in an optical path of an irradiation optical system and scans a condensing position of the first laser beam or the second laser beam;
A first operation mode for treating the patient's eye using a first laser beam, and a second operation for performing phototuning using a second laser beam for adjusting the refractive index of the light transmitting body Mode switching means for switching between modes,
When the first switching mode is set by the mode switching means, the patient's eye is treated by controlling the scanning unit to scan the condensing position of the first laser beam,
When the second operation mode is set by the mode switching means, the scanning unit is controlled to scan the condensing position of the second laser light in the irradiation area corresponding to the preset lens pattern. A control means for forming a lens inside the translucent body,
It is characterized by providing.
本実施例に係る透光体の一例を前方からみたときの図である。It is a figure when an example of the transparent body which concerns on a present Example is seen from the front. 本実施例に係る透光体の一例を側方からみたときの図である。It is a figure when an example of the transparent body which concerns on a present Example is seen from the side. 本実施例に係る透光体にレンズが形成された際の一例を示す図である。It is a figure which shows an example at the time of a lens being formed in the translucent body which concerns on a present Example. 鋸型の位相型回折レンズに係るレンズパターンの一例を示す側方図である。It is a side view showing an example of a lens pattern concerning a saw type phase type diffraction lens. マルチレベル型位相型回折レンズに係るレンズパターンの一例を示す側方図である。It is a side view which shows an example of the lens pattern which concerns on a multilevel type | mold phase type | mold diffraction lens. マルチレベル型位相型回折レンズに係るレンズパターンの一例を示す正面図である。It is a front view which shows an example of the lens pattern which concerns on a multilevel type | mold phase type | mold diffraction lens. 本実施例に係るレンズパターンを設定する場合の一例を示すフローチャートである。It is a flowchart which shows an example in the case of setting the lens pattern which concerns on a present Example. 本実施例に係る眼科用レーザ屈折矯正装置の一例を示す光学図である。It is an optical diagram which shows an example of the ophthalmic laser refractive correction apparatus which concerns on a present Example. 本実施例に係る眼科用レーザ屈折矯正装置において患者眼を処置する際の光学配置の一例を示す光学図である。It is an optical diagram which shows an example of the optical arrangement | positioning at the time of treating a patient's eye in the ophthalmic laser refractive correction apparatus which concerns on a present Example. 本実施例に係る眼科用レーザ屈折矯正装置においてフォトチューニングを行う際の光学配置の一例を示す光学図である。It is an optical diagram which shows an example of optical arrangement | positioning at the time of performing photo tuning in the ophthalmic laser refraction correction apparatus which concerns on a present Example. 本実施例に係る眼球インターフェースの一例を示す図である。It is a figure which shows an example of the eyeball interface which concerns on a present Example. 本実施例に係るプランニングの一例を示すフローチャートである。It is a flowchart which shows an example of the planning which concerns on a present Example. 本実施例に係る追加的なフォトチューニングを行う際の一例を示すフローチャートである。It is a flowchart which shows an example at the time of performing the additional photo tuning which concerns on a present Example. 本実施例に係る眼球インターフェースが患者眼に装着される前の断層像の一例を示す図である。It is a figure which shows an example of the tomogram before the eyeball interface which concerns on a present Example is mounted | worn with a patient's eye. 本実施例に係る眼球インターフェースが患者眼に装着される後の断層像の一例を示す図である。It is a figure which shows an example of the tomogram after the eyeball interface which concerns on a present Example is mounted | worn with a patient's eye.
 本開示の典型的な実施形態について以下に説明する。
<概要>
 <フォトチューニング反応>
 本実施形態の一つの側面は、レーザ照射を用いて透光体の屈折率を光学的に調整することによって眼の屈折特性(例えば、眼屈折力、収差)を矯正することであり、例えば、眼科医療分野、眼鏡分野において利用可能である。以下の説明では、透光体の屈折率を光学的に調整するための光学技術を、フォトチューニングと称して説明する。フォトチューニングが施された透光体は、被検眼の近視、遠視、乱視、高次収差、色収差等を矯正するために用いられてもよい。また、多焦点性の調整が行われてもよい。フォトチューニング技術は、透光体の屈折率を調整することによって、透光体の屈折率とは異なる一つ又は複数のレンズを、透光体の内部に書き込むようにしてもよい。
Exemplary embodiments of the present disclosure are described below.
<Overview>
<Photo tuning reaction>
One aspect of this embodiment is to correct the refractive characteristics of the eye (eg, eye refractive power, aberration) by optically adjusting the refractive index of the translucent body using laser irradiation. It can be used in the fields of ophthalmology and glasses. In the following description, an optical technique for optically adjusting the refractive index of a light transmitting body will be described as phototuning. The transparent body subjected to phototuning may be used to correct myopia, hyperopia, astigmatism, higher-order aberration, chromatic aberration, and the like of the eye to be examined. In addition, multifocality adjustment may be performed. In the photo-tuning technique, one or a plurality of lenses different from the refractive index of the light transmitting body may be written in the light transmitting body by adjusting the refractive index of the light transmitting body.
 本実施形態の他の側面としては、レーザ照射を用いて透光体の屈折率を光学的に調整することによって、フォトチューニングされたレンズを形成(製造)することであり、例えば、眼科医療分野、眼鏡分野において利用可能である。 Another aspect of this embodiment is to form (manufacture) a photo-tuned lens by optically adjusting the refractive index of the translucent body using laser irradiation. For example, the ophthalmic medical field It can be used in the field of glasses.
 フォトチューニングの手法としては、例えば、Norbert Hamppらによって提案されている光化学的な反応を利用して屈折率を調整する手法(例えば、米国特許公開2009―157178号公報)、Perfect Lens社から出願されている疎水性材料の親水性を変化させて屈折率を調整する手法(例えば、米国特許公開2014―135920号公報)、Way Knoxらによって提案されているハイドロゲル材料の親水性を変化させて屈折率を調整する手法(例えば、米国登録8337553号公報)、又はWay Knoxらによって角膜の屈折率を変化させる手法(例えば、米国登録8617147号)があげられるが、もちろんこれに限定されない。 As a photo-tuning method, for example, a method of adjusting a refractive index using a photochemical reaction proposed by Norbert Hamp et al. (For example, US Patent Publication No. 2009-157178), which is filed by Perfect Lens Company. A method of adjusting the refractive index by changing the hydrophilicity of the hydrophobic material (for example, US Patent Publication No. 2014-135920), refraction by changing the hydrophilicity of the hydrogel material proposed by Way Knox et al. A method for adjusting the rate (for example, US registration 8337553) or a method for changing the refractive index of the cornea (for example, US registration 8617147) by Way Knox et al. Is not limited to this.
 <フォトチューニングのための透光体>
 透光体は、例えば、第1の屈折率を有し、かつ、光透過性を有する透光体であってもよい。透光体の屈折率は、フォトチューニングによって調整される。フォトチューニングが適用される透光体としては、典型的には、人工の透光体であってもよく(図1、図2の透光体600参照)、例えば、眼用レンズであって、例えば、人工レンズ(例えば、眼内レンズ(IOL、ICL)、眼鏡レンズ、コンタクトレンズ、人工角膜であってもよい。人工の透光体としては、一般的な光学材料が用いられてもよい。また、フォトチューニングが適用される透光体としては、天然のレンズ(例えば、眼の角膜、水晶体)であってもよい。
<Translucent material for photo tuning>
The translucent body may be, for example, a translucent body having a first refractive index and having optical transparency. The refractive index of the transparent body is adjusted by phototuning. Typically, the light-transmitting body to which photo-tuning is applied may be an artificial light-transmitting body (see the light-transmitting body 600 in FIGS. 1 and 2), for example, an ophthalmic lens, For example, an artificial lens (for example, an intraocular lens (IOL, ICL), a spectacle lens, a contact lens, or an artificial cornea may be used. A general optical material may be used as the artificial translucent body. Moreover, a natural lens (for example, an eye cornea, a crystalline lens) may be used as a translucent body to which photo tuning is applied.
 なお、人工透光体の場合、フォトチューニング専用の光学材料(例えば、光学ポリマー材料であって、紫外線の吸収特性が相対的に高く設計されている)が用いられてもよい。紫外線の吸収特性が高いことによって、レーザの2光子吸収が促進されうる。 In the case of an artificial translucent body, an optical material dedicated to phototuning (for example, an optical polymer material that is designed to have a relatively high ultraviolet absorption characteristic) may be used. The two-photon absorption of the laser can be promoted by the high absorption property of ultraviolet rays.
 人工透光体が眼内レンズの場合、眼内レンズは、例えば、眼の前房、眼の後房、又は水晶体内のいずれかに挿入されるように設計された眼内レンズであってもよい。眼内レンズとしては、例えば、眼内に挿入され、かつ、予めレンズ特性を有する眼内レンズであってもよい。また、眼内に挿入された光学材料に対してフォトチューニングが施されることによってレンズ特性が付加される眼内レンズであってもよい。 When the artificial translucent body is an intraocular lens, the intraocular lens may be, for example, an intraocular lens designed to be inserted into either the anterior chamber of the eye, the posterior chamber of the eye, or the lens. Good. The intraocular lens may be, for example, an intraocular lens that is inserted into the eye and has lens characteristics in advance. Moreover, the intraocular lens to which a lens characteristic is added by performing photo tuning with respect to the optical material inserted in the eye may be sufficient.
 人工の透光体に対してフォトチューニングを施す場合、眼に対して人工透光体が備えられた状態、眼に対して人工透光体が備えられる前の少なくともいずれかでフォトチューニングが実施されてもよい。眼に対して人工透光体が備えられる例としては、眼内に透光体が挿入される場合、或いは眼鏡フレームを介して眼前にレンズが設けられる場合があり得る。 When phototuning is performed on an artificial translucent body, phototuning is performed at least before the artificial translucent body is provided to the eye, or at least before the artificial translucent body is provided to the eye. May be. As an example in which an artificial translucent body is provided for the eye, a translucent body may be inserted into the eye, or a lens may be provided in front of the eye via a spectacle frame.
 透光体は、前面及び後面を有し、レンズ特性が形成される本体を備えてもよい。つまり、透光体は、光を屈折又は回折させて発散又は集束させる特性が形成されてもよい。この場合、前面と後面は、略平坦であってもよい。もちろん、前面と後面は曲面であってもよい。本実施形態では、前面が外側、後面が網膜側として説明される。眼内レンズの場合、本体に加え、支持部(ループ)を備えてもよい。本体は、レンズ特性を備える光学部として用いられる。 The translucent body may include a main body having a front surface and a rear surface, in which lens characteristics are formed. That is, the translucent body may be formed with a characteristic that refracts or diffracts light to diverge or focus the light. In this case, the front surface and the rear surface may be substantially flat. Of course, the front surface and the rear surface may be curved surfaces. In the present embodiment, the front surface is described as the outer side, and the rear surface is described as the retinal side. In the case of an intraocular lens, a support part (loop) may be provided in addition to the main body. The main body is used as an optical unit having lens characteristics.
 なお、フォトチューニングによって、透光体の内部には、一つのレンズが形成されてもよいし、複数のレンズが形成されてもよい(例えば、図3の第1のレンズ600、第2のレンズ620参照)。 Note that one lens or a plurality of lenses may be formed inside the translucent body by phototuning (for example, the first lens 600 and the second lens in FIG. 3). 620).
 レーザビームの焦点は、透光体の内部にレンズを書き込むために移動される。透光体の内部にレーザ光を集光されることで、透光体の内部の屈折率が修正される。この結果として、レーザが照射された領域の屈折率は、第1の屈折率とは異なる第2の屈折率に調整される。これを利用して、予め設定されたレンズパターンに対応する照射領域にレーザビームの焦点が移動されることによって、レンズパターンに対応するレンズが透光体の内部に形成される。レーザの照射領域は、第2の屈折率を持つ屈折率変化領域であり、透光体の内部において、第2の屈折率を持つレンズとして機能する。 The focal point of the laser beam is moved to write the lens inside the translucent body. By condensing the laser beam inside the light transmitting body, the refractive index inside the light transmitting body is corrected. As a result, the refractive index of the region irradiated with the laser is adjusted to a second refractive index different from the first refractive index. By utilizing this, the focus of the laser beam is moved to the irradiation region corresponding to the preset lens pattern, so that the lens corresponding to the lens pattern is formed inside the translucent body. The laser irradiation region is a refractive index changing region having a second refractive index, and functions as a lens having the second refractive index inside the light transmitting body.
 レーザビームは、例えば、透光体の表面(前面もしくは後面)から順に照射されてもよい。もちろん、レーザビームは、透光体の前面と後面との間の中間から照射されてもよい。なお、照射開始位置は、フォトチューニングの手法によって適宜設定されてもよい。この場合、後面側から順にレーザビームを照射してもよく、これによって、屈折率変化領域が次のレーザビームの光路中に配置されないので、所定のレンズパターンをスムーズに形成させることができる。 The laser beam may be irradiated sequentially from the surface (front surface or rear surface) of the light transmitting body, for example. Of course, the laser beam may be irradiated from the middle between the front surface and the rear surface of the transparent body. Note that the irradiation start position may be appropriately set by a phototuning technique. In this case, the laser beam may be irradiated in order from the rear surface side. As a result, the refractive index change region is not arranged in the optical path of the next laser beam, so that a predetermined lens pattern can be formed smoothly.
 <マルチレベル位相型回折レンズの書込>
 本実施形態に係るフォトチューニング技術は、一つ又は複数のマルチレベル位相型回折レンズ(以下、MP回折レンズと省略する場合あり)を、透光体の内部に書き込むようにしてもよい(図5のレンズ610参照)。プロセッサは、レーザ光の集光位置を走査させる走査ユニットを制御し、マルチレベル位相型回折レンズのレンズパターンに対応する透光体の照射領域に、レーザ光の集光位置を走査させてもよい。これによって、マルチレベル位相型回折レンズを透光体の内部に形成できる。プロセッサは、レンズパターンを予め設定できる。
<Writing of multilevel phase type diffractive lens>
In the photo-tuning technique according to the present embodiment, one or a plurality of multi-level phase type diffractive lenses (hereinafter, may be abbreviated as MP diffractive lenses) may be written in the light transmitting body (FIG. 5). Lens 610). The processor may control a scanning unit that scans a condensing position of the laser light, and may scan the condensing position of the laser light in the irradiation region of the light transmitting body corresponding to the lens pattern of the multilevel phase type diffractive lens. . Thereby, a multi-level phase type diffractive lens can be formed inside the light transmitting body. The processor can preset the lens pattern.
 複数のMP回折レンズが書き込まれる場合、各MP回折レンズは、透光体本体の前後方向(光軸方向)に関して異なる領域に形成されてもよい。 When a plurality of MP diffractive lenses are written, each MP diffractive lens may be formed in different regions with respect to the front-rear direction (optical axis direction) of the light transmitting body.
 マルチレベル位相型回折レンズは、位相型回折レンズ(Kinoform)をマルチレベルに近似したレンズである。マルチレベル位相型回折レンズは、例えば、鋸状の断面形状を有する回折レンズ(図4のレンズ610参照)を、階段状の断面形状で近似する(図5のレンズ610)ことによって形成される。 The multi-level phase-type diffractive lens is a lens that approximates the phase-type diffractive lens (Kinoform) to a multi-level. The multilevel phase type diffractive lens is formed, for example, by approximating a diffractive lens having a saw-like cross-sectional shape (see lens 610 in FIG. 4) with a step-like cross-sectional shape (lens 610 in FIG. 5).
 MP回折レンズにおけるマルチレベル(階段数)は、例えば、9レベル以下4レベル以上であってもよく、例えば、マルチレベルが8であってもよい。マルチレベルを8とした場合、95%の回折効率を得ることができ、マルチレベルを9とした場合、96%の回折効率を得ることができる。なお、4レベルで81%、5レベルで87.5%、6レベルで91.2%、7レベルで93.4%の回折効率が得られる。ちなみに、3レベルでは、68.4%の回折効率となり、10レベルでは、96.8%の回折効率となる。 The multilevel (the number of steps) in the MP diffraction lens may be, for example, 9 levels or less and 4 levels or more, for example, the multilevel may be 8. When the multilevel is 8, 95% diffraction efficiency can be obtained, and when the multilevel is 9, 96% diffraction efficiency can be obtained. The diffraction efficiency is 81% at the 4th level, 87.5% at the 5th level, 91.2% at the 6th level, and 93.4% at the 7th level. Incidentally, at 3 levels, the diffraction efficiency is 68.4%, and at 10 levels, the diffraction efficiency is 96.8%.
 マルチレベルを9レベル以下とすることで、矯正に十分な回折効率を得ることができると共に、レーザの照射パターンを簡略化することができる。照射パターンの簡略化は、例えば、手術時間の短縮化に繋がり、手術における被検眼の負担を軽減できる。 By setting the multi-level to 9 levels or less, diffraction efficiency sufficient for correction can be obtained, and the laser irradiation pattern can be simplified. The simplification of the irradiation pattern leads to shortening of the operation time, for example, and the burden on the eye to be examined in the operation can be reduced.
 マルチレベルの数は、眼の屈折特性に応じて変更されてもよい。なお、マルチレベルの数は、レイヤーの数としてカウントされ、1レイヤーは、例えば、パルスレーザの1パルスで生成される屈折率変化領域の厚みの整数倍にて形成されてもよい。各レイヤーは、前面にほぼ平行に形成されてもよい。MP回折レンズのパターンは、近視又は遠視の矯正の場合、例えば、透光体の前後方向から見て環状リングパターンであってもよい(図6参照)。また、乱視又は高次収差の矯正の場合、レンズパターンは、他のパターンであってもよい。 The number of multi levels may be changed according to the refractive characteristics of the eye. The number of multi-levels is counted as the number of layers, and one layer may be formed by, for example, an integral multiple of the thickness of the refractive index change region generated by one pulse of the pulse laser. Each layer may be formed substantially parallel to the front surface. In the case of correction of myopia or hyperopia, the MP diffraction lens pattern may be, for example, an annular ring pattern when viewed from the front-rear direction of the transparent body (see FIG. 6). In the case of correction of astigmatism or higher-order aberration, the lens pattern may be another pattern.
 例えば、MP回折レンズを書き込む場合、透光体表面からの距離毎にレーザビームを照射してもよく、例えば、第1の距離にてXYスキャナによってレーザビームの焦点をXY方向に関して走査した後、レーザビームの焦点をZスキャナによってZ方向に走査することによって、レーザビームの焦点を第2の距離に変更してもよい。この場合、XY方向は、透光体の前後方向(光軸方向)に直交する方向、Z方向は、透光体の前後方向(光軸方向)として規定される。もちろん、レンズの半径方向における断面毎にレーザビームを照射してもよい。なお、MP位相型レンズを透光体に形成する手法については、例えば、山田らによるフェムト秒レーザによってシリカガラス内に複数のマルチレベル位相型レンズを書きこむ手法(K.Yamada, K.Itoh, “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses”, Opt.Let., 29(16), p1846-1848(2004))を参照されたい。 For example, when writing an MP diffractive lens, the laser beam may be irradiated at every distance from the surface of the transparent body. For example, after scanning the focal point of the laser beam with respect to the XY direction by an XY scanner at a first distance, The focal point of the laser beam may be changed to the second distance by scanning the focal point of the laser beam in the Z direction with a Z scanner. In this case, the XY direction is defined as a direction orthogonal to the front-rear direction (optical axis direction) of the translucent body, and the Z direction is defined as the front-rear direction (optical axis direction) of the translucent body. Of course, you may irradiate a laser beam for every cross section in the radial direction of a lens. As for the method of forming the MP phase type lens on the transparent body, for example, a method of writing a plurality of multi-level phase type lenses in silica glass by a femtosecond laser by Yamada et al. (K. Yamada, K. Itoh, See “Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses”, Opt.Let., 29 (16), p1846-1848 (2004)).
 フォトチューニングが施された透光体に対して入射される光は、屈折率変化領域を通過するとき、第2の屈折率による光路差(位相変化)が生じる。さらに、前後方向における屈折率変化領域の厚みによって、光路差の大きさが異なる。そこで、屈折率変化領域の厚みを調整することで、所望の屈折特性に応じた位相型回折レンズのパターンを求めることができる。この場合、所望の屈折特性に応じた位相型回折レンズ(Kinoform)を近似させることで、マルチレベル位相型回折レンズのパターンを求めることができる。 When the light incident on the light transmissive body subjected to phototuning passes through the refractive index change region, an optical path difference (phase change) due to the second refractive index occurs. Furthermore, the magnitude of the optical path difference varies depending on the thickness of the refractive index changing region in the front-rear direction. Therefore, by adjusting the thickness of the refractive index change region, it is possible to obtain a phase type diffractive lens pattern corresponding to desired refractive characteristics. In this case, the pattern of the multi-level phase type diffractive lens can be obtained by approximating the phase type diffractive lens (Kinoform) corresponding to the desired refractive characteristics.
 レンズパターンをプランニングする際の具体例の一つを以下に示す。 One specific example for planning lens patterns is shown below.
1)瞳孔位置で眼球全体の収差We(x、y)を測定
2)断層画像にて角膜~透光体(例えば、IOL)までの前眼部眼球形状を測定
3)術後の目標とする眼球全体の収差Wt(x、y)を設定
4)2)の結果に基づきWe(x、y)、Wt(x、y)を透光体内のレンズを作成したい深さIでの収差に変換する。ここで、変換された収差は、We’(x、y)、Wt’(x、y)でそれぞれ表される。例えば、逆光線追跡によって変換処理が行われてもよい。
5)次に、Iに、x方向及びy方向へのふれの各δx(x、y)、δy(x、y)
Figure JPOXMLDOC01-appb-M000001
  を発生させる小プリズムを作成すればよく、近似的には、x方向及びy方向の頂角θx(x、y)、θy(x、y)が、
Figure JPOXMLDOC01-appb-M000002
の小プリズムの分布をIOL内の深さIに作成すれば良い。ただし、n’は調整後の透光体の屈折率、nは調整前の透光体の屈折率である。
6)θx(x、y)、θy(x、y)を基に、屈折レンズ又は回折レンズに対応するパターンを作成する。つまり、θx(x、y)、θy(x、y)は、レンズパターンに変更される。ここで、屈折レンズは、光の屈折現象を利用したレンズとして表すことができ、回折レンズは、modulo 2pπ kinoformとして表すことができ、マルチレベルに近似されてもよい。
1) The aberration We (x, y) of the entire eyeball is measured at the pupil position 2) The anterior eyeball shape from the cornea to the translucent body (for example, IOL) is measured by the tomographic image 3) The target after the operation Set the aberration Wt (x, y) of the entire eyeball 4) Convert We (x, y) and Wt (x, y) to aberration at depth I where we want to create a lens in the translucent body based on the result of 2) To do. Here, the converted aberration is represented by We ′ (x, y) and Wt ′ (x, y), respectively. For example, the conversion process may be performed by reverse ray tracing.
5) Next, let I be the δx (x, y), δy (x, y) of the deflection in the x and y directions.
Figure JPOXMLDOC01-appb-M000001
Approximate angles θx (x, y) and θy (x, y) in the x direction and y direction are approximately,
Figure JPOXMLDOC01-appb-M000002
The distribution of the small prisms may be created at the depth I in the IOL. Here, n ′ is the refractive index of the light transmitting body after adjustment, and n is the refractive index of the light transmitting body before adjustment.
6) A pattern corresponding to a refractive lens or a diffractive lens is created based on θx (x, y) and θy (x, y). That is, θx (x, y) and θy (x, y) are changed to lens patterns. Here, the refractive lens can be expressed as a lens using a light refraction phenomenon, and the diffractive lens can be expressed as a modulo 2pπ kinoform, and may be approximated to a multilevel.
 なお、上記1~6)において、pを1より大きい整数とする、いわゆるHigher-orderの回折レンズとし、色収差を補正してもよい。この場合、1つ以上の層で色収差を補正する機能を持たせてもよい。色収差補正は、眼球全体の色収差を考慮して分解能又は焦点深度をコントロールしてもよい。 In the above 1 to 6), chromatic aberration may be corrected by using a so-called higher-order diffractive lens in which p is an integer larger than 1. In this case, one or more layers may have a function of correcting chromatic aberration. In chromatic aberration correction, resolution or depth of focus may be controlled in consideration of chromatic aberration of the entire eyeball.
 なお、透光体の深さIでの光軸と垂直な領域において、異なる複数の屈折レンズ又は回折レンズ(kinoform)を作成し、多焦点化させてもよい。 It should be noted that a plurality of different refractive lenses or diffractive lenses (kinoforms) may be created in a region perpendicular to the optical axis at the depth I of the translucent body so as to be multifocal.
 あるいは、pとして整数でない正の値を使うことで回折効率を下げ、多焦点化してもよい。あるいは、目標とする眼球全体の収差Wt(x、y)を複数設定し、レンズを重畳させる多焦点化させてよい。 Alternatively, it is possible to reduce the diffraction efficiency by using a positive value that is not an integer as p, and to increase the number of focal points. Alternatively, a plurality of aberrations Wt (x, y) for the target eyeball as a whole may be set to achieve multifocality in which lenses are superimposed.
 なお、透光体内での目標となる波面を求める際、焦点深度を制御するために、別途球面収差値を付加してもよい。 It should be noted that a spherical aberration value may be added separately in order to control the depth of focus when obtaining the target wavefront in the translucent body.
 なお、Wt’(x、y)を求める上で、目標とする3DPSF分布からK.H.Brenner, ”Method for designing arbitrary two-dimensional continuous phase elements”, Opt.Let., 25(1), p31-33(2000)の方法を使ってもよい。つまり、目標とするPSF分布から位相板の位相分布を求めてもよい(K.H.Brenner, ”Method for designing arbitrary two-dimensional continuous phase elements”, Opt.Let., 25(1), p31-33(2000))。この場合、多焦点を含むレンズの位相分布を設計し、マルチレベルに近似してもよい。 In calculating Wt ′ (x, y), KHBrenner, “Method for designing arbitrary two-dimensional continuous phase elements”, Opt.Let., 25 (1), p31-33 ( 2000) may be used. In other words, the phase distribution of the phase plate may be obtained from the target PSF distribution (KHBrenner, “Method for designing arbitrary two-dimensional continuous phase elements”, Opt. Let., 25 (1), p31-33 (2000 )). In this case, the phase distribution of a lens including multiple focal points may be designed and approximated to a multilevel.
 なお、上記において、眼軸長、2)で得た前眼部眼球形状、透光体(例えば、IOL)の形状、及び屈折率に基づいて、We(x、y)を算出してもよい。また、自覚値、他覚値(例えば、オートレフ値)に基づいてWe(x、y)を算出してもよい。 In the above description, We (x, y) may be calculated based on the anterior ocular segment shape obtained with the axial length 2), the shape of the translucent body (for example, IOL), and the refractive index. . Further, We (x, y) may be calculated based on the subjective value and the objective value (for example, auto-ref value).
 なお、透光体が予めレンズ特性を有する場合、予め備わるレンズ特性と、フォトチューニングによって書き込まれたレンズ特性との合計が、透光体の屈折特性となる。また、透光体が予めレンズ特性を持たない場合、フォトチューニングによって書き込まれたレンズ特性が、透光体の屈折特性となる。 In addition, when the transparent body has lens characteristics in advance, the total of the lens characteristics provided in advance and the lens characteristics written by phototuning is the refractive characteristics of the transparent body. Further, when the translucent body does not have lens characteristics in advance, the lens characteristics written by phototuning become the refractive characteristics of the translucent body.
 なお、第1の屈折率からの変化量は、透光体内での照射位置毎に変更してもよい。つまり、第2の屈折率は、透光体が基礎的に備える第1の屈折率とは異なっていればよい。つまり、フォトチューニングによる屈折率変化量は、必要な屈折特性に応じて変更してもよい。この場合、屈折率変化領域の厚みと屈折率変化量のセットでMP回折レンズのパターンが光学的に設計されてもよい。また、パルスエネルギー又は照射間隔を変更することによって平均屈折率を調整したgradient index lensを形成してもよい。 Note that the amount of change from the first refractive index may be changed for each irradiation position in the translucent body. That is, the second refractive index may be different from the first refractive index that the light transmitting body basically includes. That is, the amount of change in refractive index due to phototuning may be changed according to the required refractive characteristics. In this case, the pattern of the MP diffraction lens may be optically designed with a set of the thickness of the refractive index change region and the refractive index change amount. Further, gradient index lens in which the average refractive index is adjusted by changing the pulse energy or the irradiation interval may be formed.
 なお、多焦点(例えば、2重焦点、3重焦点)の機能を透光体に持たせるようにしてもよい。マルチレベル数、上記p値を調整して多焦点化させてもよい。例えば、透光体において、複数の回折構造をオーバーラップさせて多焦点化してもよいし、複数の回折構造を光軸方向に関して異なる位置に設けて多焦点化してもよい。さらに、光軸方向(前後方向)に関して直交する方向に透光体(例えば、IOL上、角膜上)を分割し、分割されたセグメント単位で、異なるレンズを形成させることで多焦点化を行ってもよい。また、光の回折現象を用いる位相フレネルレンズを、透光体に形成することによって、色収差を補正するようにしてもよい。 In addition, you may make it give a translucent function the function of multi-focus (for example, a double focus, a triple focus). The number of multi-levels and the p value may be adjusted to achieve multi-focus. For example, in a translucent body, a plurality of diffractive structures may be overlapped to be multifocal, or a plurality of diffractive structures may be provided at different positions in the optical axis direction to be multifocal. Further, the translucent body (for example, on the IOL or the cornea) is divided in a direction orthogonal to the optical axis direction (front-rear direction), and different lenses are formed in the divided segment units to achieve multifocalization. Also good. Further, a chromatic aberration may be corrected by forming a phase Fresnel lens using a light diffraction phenomenon on a light transmitting body.
 以上のように、マルチレベル位相型回折レンズを透光体の内部に書き込むことによって、レーザの照射パターンが簡素化され、数10MHz等の繰返周波数が非常に大きいレーザ光源を用いる必要が必ずしもなくなる。すなわち、結果として、患者眼の処置(例えば、角膜の切断、白内障の混濁部の破砕等)を主な用途とする眼科用レーザ手術装置と同程度の繰返周波数(例えば、数百KHz)を持つレーザ光源を用いることができる。したがって、マルチ位相型回折レンズの書込は、患者眼組織への処置と、フォトチューニングとを、同じ眼科用レーザ手術装置で行うことに適している。 As described above, by writing the multilevel phase type diffractive lens inside the translucent body, the laser irradiation pattern is simplified, and it is not always necessary to use a laser light source having a very high repetition frequency such as several tens of MHz. . That is, as a result, a repetition frequency (for example, several hundred KHz) comparable to that of an ophthalmic laser surgical apparatus mainly used for treatment of a patient's eye (for example, cutting of a cornea, crushing of a turbid portion of a cataract). A laser light source can be used. Therefore, the writing of the multi-phase type diffractive lens is suitable for performing treatment on the patient's eye tissue and phototuning with the same ophthalmic laser surgical apparatus.
 なお、プロセッサは、レンズの半径方向に関する照射領域のサイズを、透光体の前後方向に応じて段階的に変化させることによって、マルチレベル位相型回折レンズを透光体の内部に形成してもよい。 The processor may form the multi-level phase type diffractive lens inside the light transmitting body by changing the size of the irradiation region in the radial direction of the lens stepwise according to the front-rear direction of the light transmitting body. Good.
 <プランニング> 
 次に、患者眼に透光体が備えられた状態でフォトチューニングを行う場合において、レンズパターンを設定する際の一例を示す(図7参照)。パターン設定は、典型的には、プロセッサによって行われる。
<Planning>
Next, an example of setting a lens pattern in the case where phototuning is performed in a state where a translucent body is provided in a patient's eye (see FIG. 7). Pattern setting is typically performed by a processor.
 例えば、書き込むべきレンズのパターンは、眼の屈折特性RCと、透光体の位置情報TPとに基づいて設定されてもよい。ここでの眼の屈折特性RCは、フォトチューニングが適用される透光体が眼に挿入された状態での眼の屈折特性である。被検眼の屈折特性としては、例えば、眼球全体の波面収差、眼の自覚式眼屈折力、眼の他覚式眼屈折力のいずれかであってもよい。眼の屈折特性RCは、屈折測定デバイスによって測定されてもよい。 For example, the pattern of the lens to be written may be set based on the refractive characteristics RC of the eye and the position information TP of the translucent body. The refraction characteristic RC of the eye here is the refraction characteristic of the eye in a state where a translucent body to which phototuning is applied is inserted into the eye. The refractive characteristic of the eye to be examined may be, for example, any of wavefront aberration of the entire eyeball, subjective eye refractive power of the eye, and objective eye refractive power of the eye. The refractive property RC of the eye may be measured by a refractometer device.
 透光体の位置情報TPは、例えば、断層撮像デバイスによって撮像された前眼部断層像に基づいて取得されてもよい。前眼部断層像は、フォトチューニングが適用される透光体を含む前眼部断層像であり、例えば、角膜と、フォトチューニングが適用される透光体とが画像化された断層画像データであってもよい。なお、水晶体が残存していれば、水晶体も画像化される。また、前眼部断層像としては、前眼部のある経線方向における断層データであってもよいし、前眼部全体の3次元断層データであってもよい。 The position information TP of the translucent body may be acquired based on, for example, an anterior segment tomographic image captured by a tomographic imaging device. The anterior segment tomogram is an anterior segment tomogram including a translucent body to which phototuning is applied. For example, the anterior segment tomogram is tomographic image data obtained by imaging the cornea and a translucent body to which phototuning is applied. There may be. If the crystalline lens remains, the crystalline lens is also imaged. The anterior segment tomographic image may be tomographic data in the meridian direction of the anterior segment or may be three-dimensional tomographic data of the entire anterior segment.
 透光体の位置情報は、画像処理によって自動的に検出されてもよいし、検者の手動操作による位置指定によって検出されてもよい。なお、透光体が人工透光体の場合、人工透光体の位置情報と共に、患者眼の天然レンズ(角膜又は水晶体)の位置情報が、前眼部断層像に基づいて取得されてもよい。これによって、眼の屈折特性に関連する組織及び人工物の位置情報が取得され、パターン設定に利用されうる。なお、透光体が天然レンズの場合、患者眼の天然レンズ(角膜又は水晶体)の位置情報が、前眼部断層像に基づいて取得されてもよい。 The position information of the translucent body may be automatically detected by image processing, or may be detected by position designation by manual operation of the examiner. When the translucent body is an artificial translucent body, the positional information of the natural lens (cornea or crystalline lens) of the patient's eye may be acquired based on the anterior ocular segment tomographic image together with the positional information of the artificial translucent body. . Thereby, the positional information of the tissue and the artificial object related to the refractive characteristics of the eye can be acquired and used for pattern setting. In the case where the translucent body is a natural lens, the positional information of the natural lens (cornea or crystalline lens) of the patient's eye may be acquired based on the anterior segment tomogram.
 プロセッサは、角膜の位置情報、透光体の位置情報に基づいて、透光体を含む前眼部の光学配置情報を求める。前眼部の光学配置情報としては、角膜及び透光体の相対的な位置関係であってもよいし、角膜及び透光体の絶対位置であってもよい。光学配置情報は、眼の光軸方向に関する一次元的位置情報であってもよいし、眼の光軸方向に直交する一方向と眼の光軸方向とによる二次元的位置情報であってもよいし、3次元的位置情報であってもよい。この場合、水晶体が残存していれば、水晶体を含めた光学配置が求められる。 The processor obtains optical arrangement information of the anterior segment including the translucent body based on the positional information of the cornea and the positional information of the translucent body. The optical arrangement information of the anterior segment may be a relative positional relationship between the cornea and the translucent body, or may be an absolute position of the cornea and the translucent body. The optical arrangement information may be one-dimensional position information regarding the optical axis direction of the eye, or may be two-dimensional position information based on one direction orthogonal to the optical axis direction of the eye and the optical axis direction of the eye. Alternatively, it may be three-dimensional position information. In this case, if the crystalline lens remains, an optical arrangement including the crystalline lens is required.
 次に、プロセッサは、眼の屈折特性RCに基づいて、フォトチューニングによって実施する屈折特性の矯正量を求める。矯正量として、予め設定された目標屈折特性に対する眼の屈折特性RCの差分が求められてもよい。目標屈折特性は、術者又は患者毎に任意に設定されてもよいし、予め固定値として設定可能であってもよい。目標屈折特性としては、例えば、眼球全体の3次元PSF分布、波面収差、眼屈折力のいずれかであってもよい。また、矯正量として、眼の屈折特性RCにおいて矯正したい屈折力特性(例えば、眼屈折力(球面度数、乱視度数等)、収差(不正乱視分、球面収差等)が求められてもよい。 Next, the processor obtains a correction amount of the refraction characteristic to be performed by phototuning based on the refraction characteristic RC of the eye. As the correction amount, a difference between the refractive characteristic RC of the eye with respect to a preset target refractive characteristic may be obtained. The target refractive characteristic may be arbitrarily set for each operator or patient, or may be set as a fixed value in advance. The target refractive characteristic may be, for example, any one of a three-dimensional PSF distribution of the entire eyeball, wavefront aberration, and eye refractive power. Further, as the correction amount, a refractive power characteristic (for example, an eye refractive power (spherical power, astigmatic power, etc.) and aberration (illegal astigmatism, spherical aberration, etc.) to be corrected may be obtained in the refractive characteristics RC of the eye.
 矯正量としては、フォトチューニングによって矯正される眼全体の屈折特性(フォトチューニング量)の変化量として規定されてもよい。矯正量は、フォトチューニングによって矯正すべく予め設定された眼の屈折特性の変化情報に対応する。 The correction amount may be defined as the amount of change in the refractive characteristics of the entire eye (photo tuning amount) corrected by photo tuning. The correction amount corresponds to information on changes in refractive characteristics of the eye that are set in advance to be corrected by phototuning.
 矯正量が求められると、プロセッサは、予め設定された矯正量を得るために透光体に対して書き込むべき屈折特性を、透光体を含む前眼部の光学配置情報を利用して算出する。ここで、プロセッサは、透光体を含む前眼部の光学配置情報と、前眼部の各組織の屈折率、透光体の第1の屈折率を考慮した上で、予め設定された矯正量を矯正するために必要なレンズの屈折特性を算出してもよい。この場合、例えば、書き込まれるレンズによる光の結像状態を、光線追跡法等の光学シミュレーションを用いることで、透光体に対して書き込むべきレンズの屈折特性を求めることができる。この場合、レンズの屈折特性として、複数のレンズからなるレンズ系の屈折特性として求められてもよいし、一つのレンズの屈折特性として求められてもよい。 When the correction amount is obtained, the processor calculates a refraction characteristic to be written to the light transmitting body in order to obtain a preset correction amount by using the optical arrangement information of the anterior segment including the light transmitting body. . Here, the processor takes into account the optical arrangement information of the anterior segment including the translucent body, the refractive index of each tissue of the anterior segment, and the first refractive index of the translucent body, and the correction is set in advance. The refractive characteristics of the lens necessary for correcting the amount may be calculated. In this case, for example, by using an optical simulation such as a ray tracing method for the image formation state of the light by the lens to be written, the refraction characteristics of the lens to be written to the translucent body can be obtained. In this case, the refraction characteristic of the lens may be obtained as the refraction characteristic of a lens system including a plurality of lenses, or may be obtained as the refraction characteristic of one lens.
 MP回折レンズを形成する場合、位相型回折レンズの屈折特性は、マルチレベルに近似され、MP回折レンズの屈折特性が算出される。 When forming an MP diffractive lens, the refractive characteristics of the phase type diffractive lens are approximated to a multi-level, and the refractive characteristics of the MP diffractive lens are calculated.
 さらに、MP回折レンズの基礎となる屈折特性を、目標となる光学特性を考慮した繰り返し演算によって求め、予め設定されたマルチレベルを考慮して、マルチレベルに近似されてもよい。この場合、目標となる屈折特性に対して、空間周波数フィルタを掛け合わせることで、予め設定されたマルチレベルを考慮してマルチレベルに近似されてもよい。より詳細には、目標となる屈折特性が3次元PSFとして設定された場合、回折積分によって関係づけられる3次元PSFと位相型回折レンズの位相分布とを繰り返しで位相分布を求める。 Further, the refractive characteristics that are the basis of the MP diffraction lens may be obtained by repeated calculation in consideration of the target optical characteristics, and may be approximated to the multilevel in consideration of a preset multilevel. In this case, the target refraction characteristic may be approximated to a multilevel in consideration of a preset multilevel by multiplying a spatial frequency filter. More specifically, when the target refractive characteristic is set as a three-dimensional PSF, the phase distribution is obtained by repeating the three-dimensional PSF related by the diffraction integration and the phase distribution of the phase type diffractive lens.
 上記のようにして、書き込むべきレンズの屈折特性が算出されると、これに対応するレンズパターンが設定される。この場合、透光体の表面位置を基準としてレンズの位置が設定されてもよい。透光体の位置情報を基準とすることで、確実なレーザ照射が可能となる。この場合、書き込むべきレンズパターンとして、複数のレンズからなるレンズ系の屈折特性に基づいて、レンズ系における各レンズのパターンが設定されてもよい。この場合、複数のレンズパターンが設定される。 When the refractive characteristic of the lens to be written is calculated as described above, a lens pattern corresponding to this is set. In this case, the lens position may be set on the basis of the surface position of the translucent body. By using the position information of the translucent body as a reference, reliable laser irradiation is possible. In this case, as a lens pattern to be written, a pattern of each lens in the lens system may be set based on a refractive characteristic of a lens system including a plurality of lenses. In this case, a plurality of lens patterns are set.
 この場合、プロセッサは、透光体の位置情報と患者眼の屈折特性とに基づくレンズパターンに対応する透光体の照射領域に、レーザ光の集光位置を走査させてもよい。これによって、設定されたレンズパターンに対応するレンズが、透光体の内部に形成される。 In this case, the processor may cause the irradiation area of the light transmitting body corresponding to the lens pattern based on the position information of the light transmitting body and the refraction characteristics of the patient's eye to scan the condensing position of the laser light. Thereby, a lens corresponding to the set lens pattern is formed inside the light transmitting body.
 上記手法によれば、例えば、フォトチューニングの矯正量を、前眼部における透光体の光学配置を考慮して求めることができる。これによって、患者眼の特性に応じて精度よくフォトチューニングを行うことができる。 According to the above method, for example, the correction amount of photo tuning can be obtained in consideration of the optical arrangement of the translucent body in the anterior segment. Thus, phototuning can be performed with high accuracy according to the characteristics of the patient's eyes.
 なお、前眼部断層像に加え、眼軸長情報(角膜から網膜までの距離)を得るようにしてもよい。プロセッサは、前眼部断層像と眼軸長情報とに基づいて、角膜、透光体、網膜を含む眼球全体の光学配置情報が得られる。これによって、透光体に形成されるレンズの網膜に対する結像状態をより正確にシミュレーションできる。この場合、プロセッサは、角膜から網膜までの眼球全体の断層像に基づいて、角膜、透光体、網膜を含む眼球全体の光学配置情報が得てもよい。 In addition to the anterior segment tomogram, the axial length information (distance from the cornea to the retina) may be obtained. The processor obtains optical arrangement information of the entire eyeball including the cornea, the translucent body, and the retina based on the anterior segment tomogram and the axial length information. Thereby, it is possible to more accurately simulate the imaging state of the lens formed on the translucent body with respect to the retina. In this case, the processor may obtain the optical arrangement information of the entire eyeball including the cornea, the transparent body, and the retina based on the tomographic image of the entire eyeball from the cornea to the retina.
 なお、透光体に書き込むべきレンズの屈折特性を決定する際、眼の屈折特性を得る手法として、超短パルスレーザ装置に設けられた屈折測定デバイスが用いられてもよいし、超短パルスレーザ装置とは異なる位置に配置された屈折測定デバイスが用いられてもよい。同様に、眼の断層情報を得る手法として、眼科用レーザ装置(例えば、眼科用レーザ屈折矯正装置、眼科用レーザ手術装置)に設けられた断層撮像デバイスが用いられてもよいし、眼科用レーザ装置とは異なる位置に配置された断層撮像デバイスが用いられてもよい。 Note that when determining the refractive characteristics of the lens to be written on the translucent body, a refraction measuring device provided in the ultrashort pulse laser apparatus may be used as a technique for obtaining the refractive characteristics of the eye, or an ultrashort pulse laser. A refraction measuring device arranged at a different position from the apparatus may be used. Similarly, as a method for obtaining tomographic information of the eye, a tomographic imaging device provided in an ophthalmic laser apparatus (for example, an ophthalmic laser refractive correction apparatus or an ophthalmic laser surgical apparatus) may be used, or an ophthalmic laser may be used. A tomographic imaging device arranged at a position different from the apparatus may be used.
 なお、プロセッサは、書き込むべきレンズパターンを予めプランニングするために取得された第1の断層画像に基づいて、第1の断層画像における透光体の位置情報である第1の位置情報を取得してもよい。また、プロセッサは、レンズパターンがプランニングされた後であって、眼球インターフェースが装着された状態で取得された第2の断層画像に基づいて、第2の断層画像における透光体の位置情報である第2の位置情報を取得してもよい。さらに、プロセッサは、第1の位置情報と第2の位置情報とを対応付け、第2の断層画像における透光体に対してレンズパターンを設定してもよい(図12参照)。 The processor acquires first position information, which is position information of the translucent body in the first tomographic image, based on the first tomographic image acquired in advance for planning the lens pattern to be written. Also good. Further, the processor is the position information of the translucent body in the second tomographic image based on the second tomographic image acquired after the lens pattern is planned and with the eyeball interface attached. You may acquire 2nd positional information. Further, the processor may associate the first position information and the second position information, and set a lens pattern for the translucent body in the second tomographic image (see FIG. 12).
 <フォトチューニングのためのレーザ装置>
 本実施形態に係るフォトチューニングでは、透光体にレンズを書き込むためのレーザを効果的に発生できる超短パルスレーザ装置(例えば、フェムト秒レーザ装置、ピコ秒レーザ装置)を用いてもよい(図8参照)。もちろん、フォトチューニングが実現できれば、超短パルスレーザ装置に限定されない。
<Laser device for photo tuning>
In the photo-tuning according to the present embodiment, an ultrashort pulse laser device (for example, a femtosecond laser device or a picosecond laser device) that can effectively generate a laser for writing a lens on a transparent body may be used (see FIG. 8). Of course, the invention is not limited to the ultrashort pulse laser device as long as phototuning can be realized.
 フォトチューニングのための超短パルスレーザ装置は、前眼部組織(例えば、角膜、水晶体)を処置するための眼科用超短パルスレーザ装置との複合機であってもよいし、フォトチューニングのための単体機であってもよい。前眼部組織の処置としては、典型的には、破砕・切断であり、白内障における水晶体混濁部の破砕、角膜内部の切断による屈折矯正手術、水晶体前面の切断によるCCC手術、等が代表的である。 The ultrashort pulse laser device for phototuning may be a combined machine with an ophthalmic ultrashort pulse laser device for treating anterior ocular tissue (eg, cornea, lens), or for phototuning It may be a single machine. Typically, the treatment of the anterior ocular tissue is crushing / cutting, such as crushing of the lens turbid part in cataract, refractive surgery by cutting inside the cornea, CCC surgery by cutting the front of the lens, etc. is there.
 超短パルスレーザ装置は、フォトチューニングのためのレーザを発生させるレーザ光源と、フォトチューニングのためのレーザの光を透光体へと導くための照射光学系と、を少なくとも備えてもよい。照射光学系は、透光体の屈折率を調整するためのレーザ光を、患者眼に備えられた透光体の内部にレーザ光を導くために用いられてもよい。 The ultrashort pulse laser device may include at least a laser light source that generates a laser for photo tuning and an irradiation optical system that guides laser light for photo tuning to a light transmitting body. The irradiation optical system may be used to guide the laser light for adjusting the refractive index of the light transmitting body to the inside of the light transmitting body provided in the patient's eye.
 レーザ光源から出射されるレーザビームは、非線形効果(例えば、多光子吸収)によって、レーザ焦点での屈折率の変化を透光体にもたらす。フォトチューニングのためのレーザ光源としては、紫外線帯域での2光子吸収効果を発生させるべく、可視帯域(例えば、緑色帯域)の超短パルスレーザが用いられるのが有利である。もちろん、近赤外域の超短パルスレーザであっても、一定の効果は得られる。 The laser beam emitted from the laser light source causes a change in the refractive index at the laser focal point to the translucent body by a nonlinear effect (for example, multiphoton absorption). As a laser light source for phototuning, it is advantageous to use an ultrashort pulse laser in the visible band (for example, the green band) in order to generate a two-photon absorption effect in the ultraviolet band. Of course, even with an ultrashort pulse laser in the near infrared region, a certain effect can be obtained.
 照射光学系は、例えば、リレー光学系と、光スキャナと、対物レンズと、を備えてもよい。光スキャナは、XYスキャナと、Zスキャナと、を備えてもよい。具体的構成については、例えば、特開2015-37474号公報を参照されたい。 The irradiation optical system may include, for example, a relay optical system, an optical scanner, and an objective lens. The optical scanner may include an XY scanner and a Z scanner. See, for example, Japanese Patent Application Laid-Open No. 2015-37474 for a specific configuration.
 なお、照射光学系は、フォトチューニングのためのレーザの光を、眼内に配置された透光体に導くための光学系であってもよい。この場合、照射光学系と眼との間に、眼球インターフェースが配置されてもよい。 Note that the irradiation optical system may be an optical system for guiding laser light for phototuning to a translucent body arranged in the eye. In this case, an eyeball interface may be disposed between the irradiation optical system and the eye.
 <複合機>
 眼科用レーザ装置は、前眼部組織を処置するためのレーザである第1のレーザと、透光体にレンズを書き込むためのレーザである第2のレーザと、の両方を発生できる複合機であってもよい(図8参照)。第1のレーザは、フォトチューニングのためのレーザとは異なり、前眼部組織を処置可能なレーザを出射する。つまり、第1のレーザの特性は、前眼部組織の一部を破砕又は切断するのに対し、第2のレーザの特性は、透光体の材質を変質させて透光体の屈折率を変更させる点で異なる。複合機において、照射光学系は、第1のレーザと第2のレーザを透光体へと導くことができる。第1のレーザ、第2のレーザは、選択的に透光体に照射されてもよい。
<Multifunction machine>
The ophthalmic laser apparatus is a multi-function machine that can generate both a first laser that is a laser for treating an anterior ocular tissue and a second laser that is a laser for writing a lens on a light transmitting body. It may be present (see FIG. 8). Unlike the laser for photo tuning, the first laser emits a laser capable of treating the anterior segment tissue. That is, the characteristic of the first laser is to crush or cut a part of the anterior eye tissue, whereas the characteristic of the second laser is to change the material of the light transmitting body to change the refractive index of the light transmitting body. It differs in that it is changed. In the complex machine, the irradiation optical system can guide the first laser and the second laser to the light transmitting body. The first laser and the second laser may be selectively applied to the light transmitting body.
 眼科用レーザ装置は、レーザ光源ユニットと、照射光学系と、走査ユニットと、を少なくとも備えてもよい。レーザ光源ユニットは、患者眼を処置するための第1のレーザ光と、透光体の屈折率を調整するための第2のレーザ光とを選択的に出射可能であってもよい。走査ユニットは、照射光学系の光路中に配置され、第1のレーザ光又は第2のレーザ光の集光位置を走査してもよい。 The ophthalmic laser apparatus may include at least a laser light source unit, an irradiation optical system, and a scanning unit. The laser light source unit may be capable of selectively emitting a first laser beam for treating the patient's eye and a second laser beam for adjusting the refractive index of the translucent body. The scanning unit may be disposed in the optical path of the irradiation optical system, and may scan the condensing position of the first laser light or the second laser light.
 眼科用レーザ装置には、モード切換部が設けられてもよく、第1のレーザ光を用いて患者眼を処置する第1の手術モードと、透光体の屈折率を調整するための第2のレーザ光を用いてフォトチューニングを行うための第2の手術モードとを切り換えてもよい。 The ophthalmic laser apparatus may be provided with a mode switching unit, a first operation mode for treating the patient's eye using the first laser light, and a second for adjusting the refractive index of the translucent body. The second operation mode for performing phototuning may be switched using the laser beam.
 眼科用レーザ装置に設けられた制御部は、第1の手術モードに設定された場合、走査ユニットを制御して、第1のレーザ光の集光位置を走査させることによって、患者眼を処置してもよい。また、制御部は、第2の手術モードに設定された場合、走査ユニットを制御して、予め設定されたレンズパターンに対応する照射領域に第2のレーザ光の集光位置を走査させることによって、レンズを透光体の内部に形成してもよい。 The control unit provided in the ophthalmic laser device treats the patient's eye by controlling the scanning unit to scan the condensing position of the first laser light when the first operation mode is set. May be. In addition, when the control unit is set to the second operation mode, the control unit controls the scanning unit so that the irradiation position corresponding to the preset lens pattern is scanned with the condensing position of the second laser light. The lens may be formed inside the translucent body.
 上記複合機によれば、患者眼の処置(破砕、切断)とフォトチューニングを1台の装置で実現できる。 According to the above multi-function machine, treatment (crushing, cutting) and photo-tuning of the patient's eyes can be realized with one device.
 より詳細には、第1のレーザは、第2のレーザに対し、出射波長、レーザ出力の少なくともいずれかが異なる。典型的には、第1のレーザの特性につき、中心波長が近赤外域であってもよい。レーザ出力は、前眼部組織が破砕又は切断される閾値よりも高い出力を持っていてもよい。また、第2のレーザの特性につき、中心波長が可視域(例えば、緑色帯域)であってもよく、レーザ出力は、前眼部組織が破砕又は切断される閾値よりも低く、かつ、透光体の屈折率を調整できる出力を持っていてもよい。。 More specifically, at least one of the emission wavelength and the laser output of the first laser is different from that of the second laser. Typically, the center wavelength may be in the near infrared region for the characteristics of the first laser. The laser output may have an output that is higher than a threshold at which the anterior segment tissue is crushed or cut. Further, with respect to the characteristics of the second laser, the center wavelength may be a visible region (for example, a green region), the laser output is lower than a threshold value at which the anterior ocular tissue is crushed or cut, and the translucent light is transmitted. It may have an output that can adjust the refractive index of the body. .
 複合機は、第1のレーザーを発生させるための第1のレーザ光源と、第2のレーザを発生させるための第2のレーザ光源であって第1のレーザ光源とは異なる第2のレーザ光源とをそれぞれ備える構成であってもよい。 The multi-function peripheral includes a first laser light source for generating a first laser and a second laser light source for generating a second laser, which is different from the first laser light source. May be provided.
 複合機は、第1のレーザと第2のレーザのいずれか一方に対応する波長のレーザ光を発生させるためのレーザ光源(図9、図10の光源312参照)と、レーザ光源からのレーザ光の波長を第1のレーザと第2のレーザのいずれか他方に対応する波長に変換するための波長変換光学素子(図9、図10の波長変換光学素子314参照)と、を備える構成であってもよい。波長変換光学素子としては、例えば、非線形光学結晶が用いられてもよい。非線形光学結晶としては、代表的には、基本波長である1064nmを第2高調波の532nmに波長変換するためのKTP結晶、BBO結晶、LBO結晶等があげられるが、もちろんこれに限定されない。 The multifunction machine includes a laser light source (see light source 312 in FIGS. 9 and 10) for generating laser light having a wavelength corresponding to one of the first laser and the second laser, and laser light from the laser light source. A wavelength conversion optical element (see the wavelength conversion optical element 314 in FIGS. 9 and 10) for converting the wavelength of the first laser into a wavelength corresponding to the other of the first laser and the second laser. May be. As the wavelength conversion optical element, for example, a nonlinear optical crystal may be used. Typical examples of the nonlinear optical crystal include, but are not limited to, a KTP crystal, a BBO crystal, an LBO crystal, and the like for converting the wavelength of 1064 nm, which is the fundamental wavelength, to the second harmonic of 532 nm.
 波長変換光学素子を用いる場合、照射光学系は、波長変換光学素子を通過せず第1のレーザを眼に導くための第1の光学系と、波長変換光学素子が配置され、第1のレーザを第2のレーザに変換して第2のレーザを眼に導くための第2の光学系と、備えてもよい。この場合、第1の光学系に対応する第1の光路と、第2の光学系に対応する第2の光路とがそれぞれ配置されてもよく、光路切換部(図9、図10の光路切換部318参照)によって光学系が選択されてもよい。また、これに限定されず、駆動部によって波長変換光学素子が光路に対して挿脱されることによって、光学系が選択されてもよい。 When the wavelength conversion optical element is used, the irradiation optical system includes a first optical system for guiding the first laser to the eye without passing through the wavelength conversion optical element, and the wavelength conversion optical element. And a second optical system for converting the laser into a second laser and guiding the second laser to the eye. In this case, a first optical path corresponding to the first optical system and a second optical path corresponding to the second optical system may be arranged, respectively, and an optical path switching unit (optical path switching in FIGS. 9 and 10). The optical system may be selected by the unit 318). Further, the present invention is not limited to this, and the optical system may be selected by inserting / removing the wavelength conversion optical element with respect to the optical path by the driving unit.
 本実施形態に係る眼科レーザ装置は、第1のレーザと第2のレーザとの間のレーザ特性の違いを補正するための補正光学部材(図8の補正光学部材500参照)を備えてもよい。例えば、第1のレーザと第2のレーザとの間での波長特性が異なる場合、光スキャナの位置が同じであっても、レーザビームの焦点の結像性能(例えば、焦点位置、収差特性)が異なる。そこで、補正光学部材として、例えば、レーザビームの焦点の結像性能を補正するための光学部材(例えば、収差補正レンズ)が、照射光学系の光路中に挿脱されてもよい。なお、補正光学部材は、照射光学系の光路であればよく、レーザ光源から対物レンズの間に配置されてもよいし、対物レンズから眼との間に配置されてもよい。この場合、補正光学部材は、レーザの目的(前眼部組織の破砕又は切断、フォトチューニング)を達成できる光学性能を確保するために設計される。 The ophthalmic laser apparatus according to the present embodiment may include a correction optical member (see the correction optical member 500 in FIG. 8) for correcting a difference in laser characteristics between the first laser and the second laser. . For example, when the wavelength characteristics are different between the first laser and the second laser, the imaging performance of the focal point of the laser beam (for example, focal position, aberration characteristics) even if the position of the optical scanner is the same. Is different. Therefore, for example, an optical member (for example, an aberration correction lens) for correcting the focusing performance of the laser beam may be inserted into and removed from the optical path of the irradiation optical system. The correction optical member may be an optical path of the irradiation optical system, and may be disposed between the laser light source and the objective lens, or may be disposed between the objective lens and the eye. In this case, the correction optical member is designed to ensure optical performance capable of achieving the purpose of the laser (crushing or cutting of anterior segment tissue, phototuning).
 上記補正光学部材によれば、前眼部組織の処置、及びフォトチューニングの両方を精度よく行うことができる。例えば、上記補正は、前眼部組織の破砕又は切断を行うために最適化された光学系を持つ超短パルスレーザ装置に対し、追加的にフォトチューニング機能を設ける場合に有利である。フォトチューニングにおいては、眼内に配置された透光体における所定の照射部位に対して正確にレーザを照射する必要があり、高精度の結像性能が要求される。したがって、前眼部組織の破砕又は切断を行うために最適化された光学系では、これを満たすことができない可能性がありうる。そこで、補正光学系を設けることで、前眼部組織の破砕又は切断における結像性能を十分に満たしつつ、フォトチューニングでの結像性能も十分に満たすことができ、有利である。 According to the correction optical member, it is possible to accurately perform both anterior segment tissue treatment and phototuning. For example, the above correction is advantageous when an additional phototuning function is provided for an ultrashort pulse laser device having an optical system optimized for crushing or cutting an anterior segment tissue. In photo-tuning, it is necessary to accurately irradiate a predetermined irradiation site in a translucent body arranged in the eye, and high-precision imaging performance is required. Therefore, an optical system optimized for crushing or cutting anterior segment tissue may not be able to satisfy this. Therefore, providing the correction optical system is advantageous because it can sufficiently satisfy the imaging performance in the phototuning while sufficiently satisfying the imaging performance in the crushing or cutting of the anterior segment tissue.
 なお、他の例として、上記補正は、フォトチューニングを行うために最適化された光学系を持つ超短パルスレーザ装置に対し、追加的に前眼部組織の破砕又は切断機能を設ける場合にも有利である。 As another example, the above correction may be applied to an ultrashort pulse laser device having an optical system optimized for phototuning, in addition to providing an anterior ocular tissue crushing or cutting function. It is advantageous.
 なお、補正光学部材としては、例えば、波面補償デバイスが用いられてもよい。波面補償デバイスとしては、例えば、形状可変ミラー、デジタルマイクロミラーデバイス、LCOS(光学位相変調素子)であってもよい。波面補償デバイスは、例えば、第1のレーザと第2のレーザとの間のレーザビームの焦点の結像性能を補正するために制御されてもよい。例えば、第1のレーザと第2のレーザとの間のレーザビームの焦点の結像性能の違いが予め算出される(例えば、シミュレーション)。第1のレーザに対応する第1の収差補償データと、第2のレーザに対応する第2の収差補償データとが記憶部に記憶される。プロセッサは、選択されたレーザに対応する収差補償データを記憶部から読み出し、波面補償デバイスを動作させてもよい。もちろん、照射光学系に係る収差を測定するための収差計を超短パルスレーザ装置に設け、プロセッサは、収差計での測定結果に基づいて波面補償デバイスを制御してもよい。 As the correction optical member, for example, a wavefront compensation device may be used. The wavefront compensation device may be, for example, a variable shape mirror, a digital micromirror device, or an LCOS (optical phase modulation element). The wavefront compensation device may be controlled, for example, to correct the imaging performance of the focus of the laser beam between the first laser and the second laser. For example, the difference in imaging performance of the focal point of the laser beam between the first laser and the second laser is calculated in advance (for example, simulation). First aberration compensation data corresponding to the first laser and second aberration compensation data corresponding to the second laser are stored in the storage unit. The processor may read out aberration compensation data corresponding to the selected laser from the storage unit and operate the wavefront compensation device. Of course, an aberrometer for measuring the aberration related to the irradiation optical system may be provided in the ultrashort pulse laser apparatus, and the processor may control the wavefront compensation device based on the measurement result of the aberrometer.
 また、補正光学部材は、照射光学系と眼との間に配置される眼球インターフェースであってもよい。例えば、第1のレーザに対応する第1の眼球インターフェースと、第2のレーザに対応する第2の眼球インターフェースとが用意されてもよい。この場合、眼球インターフェースに設けられた光学部材のレンズ特性、屈折率等が、レーザに応じて設定される。 Further, the correction optical member may be an eyeball interface disposed between the irradiation optical system and the eye. For example, a first eyeball interface corresponding to the first laser and a second eyeball interface corresponding to the second laser may be prepared. In this case, the lens characteristics, refractive index, and the like of the optical member provided in the eyeball interface are set according to the laser.
 <ドーナツ状ビーム>
 なお、レーザビームの特性は、ドーナツ状ビームであってもよい。ドーナツ状ビームを形成する手法としては、例えば、光渦方式(例えば、米国特許2015-164689号公報)であってもよいし、アキシコンレンズを用いてもよい。また、偏光を利用して、ドーナツ状ビームが形成されてもよい。ドーナツ状ビームによれば、XY方向におけるレーザビームの焦点範囲を広くできる(横分解能を向上できる)ので、階段状の加工、つまり、MP回折レンズを書き込む場合に特に有利である。
<Doughnut-shaped beam>
The characteristic of the laser beam may be a donut beam. As a method for forming a donut-shaped beam, for example, an optical vortex method (for example, US Pat. No. 2015-164688) or an axicon lens may be used. Further, a donut-shaped beam may be formed using polarized light. According to the donut-shaped beam, the focal range of the laser beam in the XY directions can be widened (transverse resolution can be improved), which is particularly advantageous when performing step-like processing, that is, writing an MP diffraction lens.
 <屈折測定デバイスの搭載>
 眼科レーザ装置は、眼の屈折特性を測定するための屈折測定デバイス(測定光学系)を備えてもよい(図7の屈折測定デバイス90参照)。屈折測定デバイスが設けられることで、例えば、外部の装置を必ずしも用いることなくレンズパターンを設定できる。他の用途としては、外部の装置を必ずしも用いることなくフォトチューニングによる矯正効果を確認できる。
<Installation of refraction measuring device>
The ophthalmic laser apparatus may include a refraction measurement device (measurement optical system) for measuring the refractive characteristics of the eye (see the refraction measurement device 90 in FIG. 7). By providing the refraction measuring device, for example, a lens pattern can be set without necessarily using an external device. As another application, the correction effect by photo tuning can be confirmed without necessarily using an external device.
 プロセッサは、患者眼の屈折特性の測定結果を表示部に表示させてもよい。なお、プロセッサは、眼球インタフェースが装着された状態での眼の屈折特性が測定された場合、眼球インターフェースが装着されていない状態での測定結果をシミュレートして表示してもよい。この場合、眼球インターフェースの屈折特性が予め求められ、当該屈折特性の影響がキャンセルされてもよい。 The processor may display the measurement result of the refractive characteristics of the patient's eye on the display unit. Note that the processor may simulate and display the measurement result when the eyeball interface is not attached when the refractive characteristics of the eye with the eyeball interface attached are measured. In this case, the refractive characteristics of the eyeball interface may be obtained in advance, and the influence of the refractive characteristics may be canceled.
 屈折測定デバイスは、眼球インタフェースが装着された患者眼であって、フォトチューニングによって少なくとも一つのレンズが透光体の内部に形成された後の屈折特性を測定してもよい。 The refraction measurement device may be a patient eye to which an eyeball interface is attached, and may measure refraction characteristics after at least one lens is formed inside the translucent body by phototuning.
 屈折測定デバイスは、照射光学系の光軸と同軸に配置されてもよいし、別軸であってもよい。屈折測定デバイスは、照射光学系の光路を介して眼底に測定指標を投光する投光光学系と、照射光学系の光路を介して測定指標による眼底反射光を受光する受光光学系と、を備えてもよい。屈折測定デバイスは、眼球インターフェースを介して眼の屈折特性を測定するための屈折測定デバイスであってもよい。 The refraction measuring device may be arranged coaxially with the optical axis of the irradiation optical system or may be a different axis. The refraction measuring device includes: a light projecting optical system that projects a measurement index on the fundus through the optical path of the irradiation optical system; and a light receiving optical system that receives fundus reflected light from the measurement index through the optical path of the irradiation optical system. You may prepare. The refraction measurement device may be a refraction measurement device for measuring the refractive properties of the eye via the eyeball interface.
 屈折測定デバイスは、眼の波面収差を測定するための収差測定デバイス(典型的には、波面センサ)であってもよく、眼の屈折特性を精度よく測定できる。屈折測定デバイスは、眼屈折力を測定するための眼屈折力測定デバイス(典型的には、オートレフラクトメータ)であってもよく、眼の屈折特性を安価で測定できる。 The refraction measurement device may be an aberration measurement device (typically a wavefront sensor) for measuring the wavefront aberration of the eye, and can accurately measure the refractive characteristics of the eye. The refractive power measuring device may be an eye refractive power measuring device (typically an autorefractometer) for measuring the refractive power of the eye, and can measure the refractive characteristics of the eye at a low cost.
 屈折測定デバイスは、レーザの照射前、照射中、照射後の少なくともいずれかにおける眼の屈折特性を測定するために用いられてもよい。また、屈折測定デバイスは、眼球インターフェースの眼への装着前、又は装着時における眼の屈折特性を測定するために用いられてもよい。 The refraction measuring device may be used for measuring the refractive characteristics of the eye at least one of before, during and after laser irradiation. The refraction measuring device may be used to measure the refractive characteristics of the eye before or when the eyeball interface is attached to the eye.
 屈折測定デバイスを使用する一例としては、例えば、フォトチューニング完了後における眼の屈折特性を屈折測定デバイスを用いて測定することによって、術者は、フォトチューニングによる矯正効果を容易に確認できる。 As an example of using the refraction measuring device, for example, by measuring the refractive characteristics of the eye after completion of photo tuning using the refraction measuring device, the operator can easily confirm the correction effect by photo tuning.
 より詳細には、眼球インターフェースに眼が装着された状態であって、フォトチューニングを開始する前段階において、第1の屈折特性が測定されてもよい。次に、眼球インターフェースに眼が装着された状態であって、フォトチューニングを行った後段階において、第2の屈折特性が測定されてもよい。プロセッサは、第1の屈折特性と第2の屈折特性との間の差分Dを求めるようにしてもよい。プロセッサが差分Dを求めることによって、フォトチューニングによって透光体に書き込まれたレンズによる矯正効果を容易に求めることができる。 More specifically, the first refractive characteristic may be measured in a state where the eye is attached to the eyeball interface and before the photo tuning is started. Next, the second refractive characteristic may be measured in a state where the eye is attached to the eyeball interface and after phototuning is performed. The processor may determine a difference D between the first refractive characteristic and the second refractive characteristic. When the processor obtains the difference D, the correction effect by the lens written in the light transmitting body by phototuning can be easily obtained.
 プロセッサは、第1の屈折特性と第2の屈折特性とを、モニタの同一画面上に表示してもよい。差分Dを求めることで、眼球インターフェースの光学部の影響によって測定光学系による測定結果が変化する場合であっても、フォトチューニングによる矯正効果を評価できる。 The processor may display the first refractive characteristic and the second refractive characteristic on the same screen of the monitor. By obtaining the difference D, even if the measurement result by the measurement optical system changes due to the influence of the optical part of the eyeball interface, the correction effect by the phototuning can be evaluated.
 プロセッサは、予め設定されたフォトチューニングによる矯正量と、差分Dとを比較することによって、フォトチューニングが想定通り実施されたか否かを判定するようにしてもよい。また、プロセッサは、予め設定された矯正量と、差分Dとを、モニタの同一画面上に表示してもよい。上記制御によれば、フォトチューニングが想定通り実施され、目標とする矯正効果が得られたか否かを、術者は容易に確認できる。 The processor may determine whether or not the photo-tuning is performed as expected by comparing the correction amount by the photo-tuning set in advance with the difference D. Further, the processor may display a preset correction amount and the difference D on the same screen of the monitor. According to the above control, the operator can easily confirm whether or not the photo-tuning is performed as expected and the target correction effect is obtained.
 なお、眼の屈折特性を測定する際、波面センサ等の収差測定デバイスを用いることで、眼内の透光体にレンズを書き込んだことによる矯正効果を、高次収差を含めて精度よく確認できる。 When measuring the refractive characteristics of the eye, an aberration measuring device such as a wavefront sensor can be used to accurately confirm the correction effect of writing the lens on the translucent body in the eye, including high-order aberrations. .
 なお、眼科レーザ装置に屈折測定デバイスが設けられた場合、屈折測定デバイスは、実際の手術後における矯正効果の確認の他、フォトチューニングのキャリブレーションに用いられてもよい。例えば、キャリブレーション用の透光体(例えば、透光体が設置された模型眼)にレーザを照射した前後における屈折特性の変化を利用して、レーザ照射光学系の制御、或いはレンズパターンを設定する際の算出手法に関してキャリブレーションを行ってもよい。 When the ophthalmic laser apparatus is provided with a refraction measuring device, the refraction measuring device may be used for calibration of phototuning in addition to confirming the correction effect after actual surgery. For example, using a change in refractive characteristics before and after irradiating a laser to a calibration transparent body (for example, a model eye on which the transparent body is installed), control the laser irradiation optical system or set a lens pattern Calibration may be performed with respect to the calculation method used when performing the above.
 なお、屈折測定デバイスは、例えば、眼球全体の断層像を撮像する構成を備え、眼球全体の形態情報(例えば、前眼部形態情報と眼軸長)に基づいて眼の屈折特性を測定してもよい。また、屈折測定デバイスは、例えば、角膜及び水晶体を含む前眼部断層像を撮像する構成を備え、前眼部の形態情報と眼軸長とに基づいて眼の屈折特性を測定してもよい。眼軸長は、周知の眼軸長測定機によって得られたデータが利用されてもよい。屈折測定デバイスは、後述する断層撮像デバイスを用いて眼の屈折特性を測定してもよい。屈折測定デバイスの他の例としては、眼の角膜形状と眼軸長とを測定可能な構成であってもよく、例えば、天然水晶体の代わりとなるフォトチューニング眼内レンズの処方に用いることができ、眼の角膜形状と眼軸長に基づいてフォトチューニング眼内レンズの度数が決定されてもよい。また、屈折測定デバイスは、例えば、眼屈折力を自覚的に測定するためのフォロプターであってもよい。 The refraction measuring device has a configuration that captures a tomographic image of the entire eyeball, for example, and measures the refractive characteristics of the eye based on the shape information of the entire eyeball (for example, anterior eye shape information and the axial length). Also good. In addition, the refraction measurement device may include a configuration for capturing an anterior ocular segment tomogram including a cornea and a lens, and may measure the refractive characteristics of the eye based on anterior segment morphological information and an axial length. . For the axial length, data obtained by a known axial length measuring device may be used. The refractive measurement device may measure the refractive characteristics of the eye using a tomographic imaging device described later. As another example of the refractive measurement device, a configuration capable of measuring the cornea shape and the axial length of the eye may be used, and for example, it can be used for prescription of a photo-tuning intraocular lens that substitutes for a natural crystalline lens. The power of the phototuning intraocular lens may be determined based on the cornea shape of the eye and the axial length. Further, the refraction measuring device may be a phoropter for measuring eye refractive power, for example.
 <屈折特性に基づくフォトチューニングのフィードバック制御>
 プロセッサは、フォトチューニングによって少なくとも一つのレンズが透光体の内部に形成された後の屈折特性に基づいて、透光体に対して追加的に形成させるレンズパターンを設定してもよい。この場合、眼球インターフェースが装着された状態でのフォトチューニング前後における屈折特性の変化情報と、フォトチューニングによって矯正すべく予め設定された屈折特性の変化情報(目標屈折特性と術前の屈折特性との変化)とを比較してもよい。差が大きい場合、追加的なフォトチューニングを行うようにしてもよい。また、フォトチューニング前であって、眼球インターフェースが装着される前後での屈折特性の変化情報を予め得ておき、眼球インターフェースが装着された状態でのフォトチューニング後における屈折特性から変化情報が差し引かれた屈折特性と、目標屈折特性と、を比較してもよい。差が大きい場合、追加的なフォトチューニングを行うようにしてもよい。
<Photo tuning feedback control based on refraction characteristics>
The processor may set a lens pattern to be additionally formed on the light transmitting body based on a refractive characteristic after at least one lens is formed inside the light transmitting body by phototuning. In this case, the change information of the refractive characteristics before and after the photo tuning with the eyeball interface attached, and the change information of the refractive characteristics set in advance to be corrected by the photo tuning (the target refractive characteristics and the refractive characteristics before the operation). Change). If the difference is large, additional photo tuning may be performed. In addition, change information of refractive characteristics before and after photo tuning before and after mounting the eyeball interface is obtained in advance, and the change information is subtracted from the refractive characteristics after photo tuning with the eyeball interface mounted. The refraction characteristics and the target refraction characteristics may be compared. If the difference is large, additional photo tuning may be performed.
 例えば、眼球インターフェースに眼が装着された状態で屈折特性が測定されることで、フォトチューニングによる矯正効果が想定と異なる場合、追加的にフォトチューニングを行うことが容易である(図14参照)。例えば、プロセッサは、予め設定された矯正量と、差分Dとの偏位量を算出し、算出された偏位量に対応するレンズパターンを求めてもよい。レンズパターンを求める場合、プロセッサは、偏位量を得るために透光体に対して書き込むべき屈折特性を、透光体を含む前眼部の光学配置情報を利用して算出してもよい。 For example, if the refraction characteristics are measured in a state where the eye is attached to the eyeball interface, it is easy to additionally perform phototuning when the correction effect by phototuning is different from the assumed one (see FIG. 14). For example, the processor may calculate a deviation amount between the correction amount set in advance and the difference D, and obtain a lens pattern corresponding to the calculated deviation amount. When obtaining the lens pattern, the processor may calculate the refraction characteristics to be written to the light transmitting body in order to obtain the amount of deviation using the optical arrangement information of the anterior segment including the light transmitting body.
 求められたレンズのパターンを透光体に追加的に書き込むことで、矯正効果のずれを補うことができる。この場合、過矯正であれば、超過分を補うレンズを新たに書き込み、矯正不足であれば、不足分を補うレンズを新たに書き込んでもよい。 The additional correction of the correction effect can be made by additionally writing the required lens pattern on the light transmitting body. In this case, a lens that compensates for the excess may be newly written if overcorrection, and a lens that compensates for the lack may be newly written if correction is insufficient.
 なお、複数のレンズが書き込まれる場合、予め設定された数のレンズが全て書き込まれた後に屈折特性を求めてもよい。この場合、既に書き込まれた複数のレンズに加えて、偏位量に対応するレンズが新たに書き込まれる。 When a plurality of lenses are written, the refraction characteristics may be obtained after all the preset number of lenses are written. In this case, in addition to the plurality of lenses already written, a lens corresponding to the amount of deviation is newly written.
 複数のレンズが書き込まれる場合、書き込まれたレンズの数が予め設定された数より少ない段階において、屈折特性を求めてもよい。この場合、プロセッサは、次に書き込むべきレンズの屈折特性又はレンズの数の少なくともいずれかを、偏位量に基づいて変更してもよい。 When a plurality of lenses are written, the refraction characteristics may be obtained at a stage where the number of written lenses is smaller than a preset number. In this case, the processor may change at least one of the refractive characteristics of the lens to be written next and the number of lenses based on the amount of deviation.
 上記のように、第1のフォトチューニング後に屈折測定デバイスによって測定された屈折特性を、第2のフォトチューニングによるチューニング量(例えば、レンズの屈折特性、レンズの数等)にフィードバックすることによって、被検眼の矯正をより精度よく行うことができる。 As described above, the refractive characteristics measured by the refractometer after the first phototuning are fed back to the tuning amount by the second phototuning (for example, the refractive characteristics of the lens, the number of lenses, etc.) The optometry can be corrected more accurately.
 なお、上記説明においては、眼球インターフェースに眼が装着された状態で屈折特性を測定したが、これに限定されない。例えば、照射光学系と眼との間に眼球インターフェースが配置されていない状態において、フォトチューニング前後の屈折特性を測定することによって、矯正効果を確認することも可能である。また、矯正効果の確認後の追加的なフォトチューニングも可能であるし、屈折特性の測定結果に基づくフォトチューニングのフィードバックも可能である。 In the above description, the refractive characteristics are measured with the eye attached to the eyeball interface. However, the present invention is not limited to this. For example, the correction effect can be confirmed by measuring the refractive characteristics before and after phototuning in the state where the eyeball interface is not disposed between the irradiation optical system and the eye. Further, additional photo-tuning after confirming the correction effect is possible, and photo-tuning feedback based on the measurement result of the refraction characteristics is also possible.
 なお、上記において、プロセッサは、眼球インターフェースに眼が装着される前の屈折特性と、眼球インターフェースに眼が装着される後であって、フォトチューニングが実施される前の屈折特性とを求めてもよい。これによって、プロセッサは、眼球インターフェースに眼が装着される前後における屈折特性の変化Cを求めることができる。 Note that, in the above, the processor may obtain the refractive characteristics before the eye is mounted on the eyeball interface and the refractive characteristics after the eye is mounted on the eyeball interface and before the phototuning is performed. Good. Accordingly, the processor can obtain the change C of the refractive characteristics before and after the eye is attached to the eyeball interface.
 プロセッサは、眼球インターフェースに眼が装着される後であって、フォトチューニングが実施された後の屈折特性に対して、屈折特性の変化Cを差し引くことによって、眼球インターフェースが眼から外れた後の眼の屈折特性を予想値として求めるようにしてもよい。これによって、眼球インターフェースに眼が装着される状態において、フォトチューニングによる矯正効果を確認できる。プロセッサは、予想値として得られた眼の屈折特性と、目標屈折特性とを比較できるようにしてもよい。比較手法として、プロセッサは、これらを並列表示してもよいし、差分を求めてもよい。 After the eye is attached to the eyeball interface, the processor subtracts the change C of the refraction characteristic from the refraction characteristic after the phototuning is performed, so that the eye after the eyeball interface is removed from the eye. The refraction characteristics may be obtained as expected values. Thereby, the correction effect by photo tuning can be confirmed in a state where the eye is attached to the eyeball interface. The processor may be configured to compare the eye refractive characteristic obtained as the predicted value with the target refractive characteristic. As a comparison method, the processor may display these in parallel or may obtain a difference.
 <断層撮像デバイスの搭載>
 眼科レーザ装置は、眼の断層像をイメージング(撮像)するための断層撮像デバイス(断層撮像系)を備えてもよい(図8の断層撮像デバイス71参照)。これによって、例えば、透光体の位置情報の取得において、外部の装置が必ずしも必要ない。
<Installation of tomographic imaging device>
The ophthalmic laser apparatus may include a tomographic imaging device (tomographic imaging system) for imaging a tomographic image of the eye (see the tomographic imaging device 71 in FIG. 8). As a result, for example, an external device is not necessarily required for acquiring the position information of the transparent body.
 断層撮像デバイスは、照射光学系と同軸に配置されてもよいし、別軸であってもよい。断層撮像デバイスは、例えば、光、超音波、磁気のいずれかを用いて断層像をイメージングするデバイスであってもよい。もちろん、これらに限定されない。光学的に断層を撮像するためのデバイス(光学系)としては、例えば、OCT光学系、シャインプルーフ光学系であってもよい。断層撮像デバイスは、眼球インターフェースを介して眼の断層像を撮像する断層撮像デバイスであってもよい。断層像としては、例えば、二次元断層データであってもよいし、3次元断層データであってもよい。 The tomographic imaging device may be arranged coaxially with the irradiation optical system or may be on a different axis. The tomographic imaging device may be a device that images a tomographic image using, for example, light, ultrasound, or magnetism. Of course, it is not limited to these. As a device (optical system) for optically imaging a tomogram, for example, an OCT optical system or a Scheinproof optical system may be used. The tomographic imaging device may be a tomographic imaging device that images a tomographic image of the eye via an eyeball interface. The tomographic image may be, for example, two-dimensional tomographic data or three-dimensional tomographic data.
 断層撮像デバイスとしては、例えば、前眼部の断層像を撮像するための断層撮像デバイスであってもよい。断層撮像デバイスは、フォトチューニングが適用される透光体を含む前眼部断層像を撮像してもよく、さらに、角膜と、フォトチューニングが適用される透光体とを含む前眼部断層像を撮像してもよい。断層撮像デバイスとしては、眼球全体(角膜、透光体、網膜を含む)の断層像を撮像可能な断層撮像デバイスであってもよい。この場合、眼に水晶体が残存している場合、水晶体が撮像される場合もありうる。 The tomographic imaging device may be, for example, a tomographic imaging device for capturing a tomographic image of the anterior segment. The tomographic imaging device may capture an anterior ocular tomogram including a translucent body to which phototuning is applied, and further includes an anterior ocular tomogram including a cornea and a translucent body to which phototuning is applied. May be imaged. The tomographic imaging device may be a tomographic imaging device that can capture a tomographic image of the entire eyeball (including the cornea, the translucent body, and the retina). In this case, if the lens remains in the eye, the lens may be imaged.
 プロセッサは、眼科レーザ装置に設けられた断層撮像デバイスを用いて、透光体の位置情報を取得してもよい。この場合、プロセッサは、眼球インターフェースが眼に装着された状態での断層情報を得ることによって、フォトチューニングを行う際の透光体の位置を精度よく検出できる。結果として、透光体に書き込むべきレンズのパターンが、フォトチューニング時の眼の状態に近い形で算出されるので、精度よくフォトチューニングを行うことが可能となる。なお、透光体の位置情報としては、透光体の前面及び後面の少なくともいずれかの位置情報であってもよい。なお、プロセッサは、眼球インターフェースが眼に装着される前での断層情報を用いて、レンズのパターンを算出してもよい。そして、プロセッサは、装着前に算出されたレンズパターンを書き込むために、眼球インターフェースが眼に装着された状態での断層画像を用いて照射光学系における照射位置を設定してもよい。 The processor may acquire the position information of the translucent body using a tomographic imaging device provided in the ophthalmic laser apparatus. In this case, the processor can accurately detect the position of the light transmitting body when performing phototuning by obtaining tomographic information in a state where the eyeball interface is attached to the eye. As a result, the lens pattern to be written on the translucent body is calculated in a form close to the state of the eye at the time of photo tuning, so that photo tuning can be performed with high accuracy. The position information of the light transmitting body may be position information of at least one of the front surface and the rear surface of the light transmitting body. The processor may calculate the lens pattern using the tomographic information before the eyeball interface is attached to the eye. The processor may set the irradiation position in the irradiation optical system using a tomographic image in a state where the eyeball interface is mounted on the eye in order to write the lens pattern calculated before the mounting.
 なお、眼科レーザ装置に、屈折測定デバイス、断層撮像デバイスの両方が配置されることで、フォトチューニング時に近い状態での眼の屈折特性と断層データの両方を取得できる。屈折特性と断層データの両方を用いることで、フォトチューニングをより精度よく実施することが可能となる。 In addition, by arranging both the refraction measuring device and the tomographic imaging device in the ophthalmic laser apparatus, it is possible to acquire both the refractive characteristics of the eye and the tomographic data in a state close to that during photo tuning. By using both the refraction characteristics and the tomographic data, it is possible to carry out photo tuning more accurately.
 例えば、フォトチューニングの実施後、屈折特性を測定すると共に、断層像を取得してもよい。プロセッサは、得られた屈折特性及び断層像を用いて、書き込むべきレンズのパターンを算出してもよい。これによって、第1のフォトチューニングにおいて被検眼の状態が変化した場合(例えば、透光体の位置が変化した等)であっても、透光体の位置等を正確に検出でき、第2のフォトチューニングを良好に行うことができる。 For example, after performing phototuning, the refractive characteristics may be measured and a tomographic image may be acquired. The processor may calculate a lens pattern to be written using the obtained refractive characteristics and tomographic image. Accordingly, even when the state of the eye to be examined is changed in the first phototuning (for example, the position of the light transmitting body is changed), the position of the light transmitting body can be accurately detected. Photo tuning can be performed well.
 なお、断層撮像デバイスは、レーザ照射中における眼の断層像を撮像してもよく、プロセッサは、撮像された断層像に基づいて眼の動きを検出(モニタ)してもよい。さらに、プロセッサは、眼の動きに応じて、レーザ照射位置を補正してもよい。また、プロセッサは、眼の動きに応じて、レーザ照射を停止するようにしてもよい。 Note that the tomographic imaging device may capture a tomographic image of the eye during laser irradiation, and the processor may detect (monitor) the movement of the eye based on the captured tomographic image. Further, the processor may correct the laser irradiation position according to the movement of the eye. Further, the processor may stop the laser irradiation in accordance with the eye movement.
 なお、プロセッサは、撮像された眼の断層像に基づいて、フォトチューニングが適用される透光体の位置を検出してもよい。さらに、プロセッサは、透光体の位置に応じて、レーザ照射位置を補正してもよい。また、プロセッサは、透光体の位置に応じて、レーザ照射を停止するようにしてもよい。 Note that the processor may detect the position of the translucent body to which phototuning is applied based on the captured tomographic image of the eye. Further, the processor may correct the laser irradiation position according to the position of the light transmitting body. Further, the processor may stop the laser irradiation according to the position of the translucent body.
 なお、断層撮像デバイスは、レーザ照射中において眼球インターフェースの断層像を撮像してもよく、プロセッサは、撮像された断層像に基づいて、眼球インターフェースの位置を検出してもよい。さらに、プロセッサは、眼球インターフェースの位置に応じて、レーザ照射位置を補正してもよい。また、プロセッサは、眼球インターフェースの位置に応じて、レーザ照射を停止するようにしてもよい。 The tomographic imaging device may capture a tomographic image of the eyeball interface during laser irradiation, and the processor may detect the position of the eyeball interface based on the captured tomographic image. Further, the processor may correct the laser irradiation position according to the position of the eyeball interface. The processor may stop the laser irradiation according to the position of the eyeball interface.
 なお、前述の眼科レーザ装置の例としては、眼科用レーザ手術装置、眼科用レーザ屈折矯正装置等が挙げられる。また、本実施形態のフォトチューニングに係る技術は、例えば、眼科用レーザ屈折矯正装置、眼科用フォトチューニング設定装置、眼科用フォトチューニングシステム、眼鏡用フォトチューニング設定装置、及びこれらに用いられるプログラムとして適用されうる。 Note that examples of the aforementioned ophthalmic laser apparatus include an ophthalmic laser surgical apparatus, an ophthalmic laser refractive correction apparatus, and the like. In addition, the technology related to the photo tuning of the present embodiment is applied as, for example, an ophthalmic laser refraction correction apparatus, an ophthalmic photo tuning setting apparatus, an ophthalmic photo tuning system, a spectacle photo tuning setting apparatus, and a program used for these. Can be done.
 <眼鏡レンズへのフォトチューニングの適用>
 以下、眼鏡レンズへのフォトチューニングの適用例について説明する。もちろん、基本的には、上記説明と同様の手法を用いることができるので、具体的内容について、上記説明を参照できる。
<Application of photo tuning to spectacle lenses>
Hereinafter, an application example of photo tuning to a spectacle lens will be described. Of course, basically, the same method as that described above can be used, so that the above description can be referred to for specific contents.
 例えば、プロセッサは、眼鏡装用時での眼球全体の屈折特性と、眼鏡装用時における眼鏡レンズに対する前眼部の光学配置情報とに基づいて、眼鏡レンズに対するレンズパターンを設定してもよい。この場合、プロセッサは、眼鏡レンズに対して書き込むべき屈折特性を算出し、算出された屈折特性に対応するレンズパターンを設定し、設定されたレンズパターンにてフォトチューニングを行うようにしてもよい。 For example, the processor may set the lens pattern for the spectacle lens based on the refractive characteristics of the entire eyeball when wearing the spectacles and the optical arrangement information of the anterior segment with respect to the spectacle lens when wearing the spectacles. In this case, the processor may calculate a refraction characteristic to be written to the spectacle lens, set a lens pattern corresponding to the calculated refraction characteristic, and perform photo-tuning with the set lens pattern.
 この場合、眼鏡装用時での眼球全体の屈折特性は、少なくとも眼の屈折測定デバイスを用いて取得されてもよい。この場合、裸眼での眼球全体の屈折特性が屈折測定デバイスによって取得され、眼鏡レンズの屈折特性については、レンズメータ又はレンズの設計値によって取得されてもよい。裸眼での屈折特性と、眼鏡レンズの屈折特性とを合成することで、眼鏡装用時での眼球全体の屈折特性が得られる。屈折特性を合成する場合、例えば、光軸上における所定位置(例えば、眼の瞳孔位置)に置き換えて算出してもよい。また、眼鏡装用時での眼に対して屈折測定デバイスにて測定を行う(例えば、眼鏡レンズを介して測定指標を投影し、眼底反射光を得る)ことによって、眼鏡装用時の眼球全体の屈折特性を直接的に求めるようにしてもよい。 In this case, the refraction characteristics of the entire eyeball when wearing glasses may be acquired using at least an eye refraction measuring device. In this case, the refractive characteristics of the entire eyeball with the naked eye may be acquired by the refraction measuring device, and the refractive characteristics of the spectacle lens may be acquired by a lens meter or a design value of the lens. By combining the refractive characteristics with the naked eye and the refractive characteristics of the spectacle lens, the refractive characteristics of the entire eyeball when wearing spectacles can be obtained. When combining the refraction characteristics, for example, it may be calculated by replacing with a predetermined position (for example, the pupil position of the eye) on the optical axis. In addition, the refraction measurement device measures the eye when wearing glasses (for example, projects a measurement index through a spectacle lens to obtain fundus reflection light), thereby refraction of the entire eyeball when wearing glasses. The characteristic may be obtained directly.
 眼鏡装用時における眼鏡レンズに対する前眼部の光学配置情報は、例えば、アイポジションメータ(眼位置測定機(例えば、特願2013-202632参照))を用いて取得されてもよいし、メジャー(例えば、定規)を用いて取得されてもよいし、レンズ又は眼鏡フレームの設計値等を用いて取得されてもよい。眼鏡レンズに対する前眼部の光学配置情報は、例えば、眼鏡レンズに対する眼の3次元位置であってもよく、2次元位置(例えば、上下左右位置)が求められ、他の方向(例えば、前後方向)については推測値が用いられてもよい。また、眼鏡レンズに対する眼の上下左右位置は、眼鏡フレームに対する眼の位置であってもよい。さらに、前眼部の内部の光学配置情報が、断層撮像デバイスによって取得されてもよい。また、レンズ自体の光学配置情報(例えば、レンズの形状)が、レンズ形状測定装置(例えば、断層撮像デバイス)によって取得されてもよいし、レンズの設定値が用いられてもよい。レンズ形状測定装置としては、レンズに測定子を接触させたときの測定子の移動量によってレンズ形状を測定してもよい。 The optical arrangement information of the anterior segment with respect to the spectacle lens when wearing spectacles may be acquired using, for example, an eye position meter (eye position measuring device (for example, see Japanese Patent Application No. 2013-202632)) or a major (for example, , A ruler), or a design value of a lens or a spectacle frame, or the like. The optical arrangement information of the anterior segment with respect to the spectacle lens may be, for example, a three-dimensional position of the eye with respect to the spectacle lens, and a two-dimensional position (for example, up / down / left / right position) is obtained, and other directions (for example, the front / rear direction) ) May be used as an estimated value. Further, the vertical and horizontal positions of the eyes with respect to the spectacle lens may be the positions of the eyes with respect to the spectacle frame. Furthermore, the optical arrangement information inside the anterior segment may be acquired by the tomographic imaging device. In addition, optical arrangement information of the lens itself (for example, the shape of the lens) may be acquired by a lens shape measuring apparatus (for example, a tomographic imaging device), or a setting value of the lens may be used. As the lens shape measuring device, the lens shape may be measured by the amount of movement of the measuring element when the measuring element is brought into contact with the lens.
 より詳細には、眼鏡レンズに対するレンズパターンを設定する場合、例えば、裸眼での眼球全体の波面収差W1と、眼鏡装用時の眼鏡フレームに対する眼位置(アイポジション)EPと、眼鏡装用時に眼底黄斑部に集光する光束が眼鏡レンズを通過する際の眼鏡レンズ上の光束位置LEPと、位置LEPでの眼鏡レンズの度数分布Mと、に基づいて眼鏡レンズに書き込むべきレンズパターンが求められてもよい。 More specifically, when setting the lens pattern for the spectacle lens, for example, the wavefront aberration W1 of the entire eyeball with the naked eye, the eye position (eye position) EP with respect to the spectacle frame when wearing spectacles, and the fundus macular portion when wearing spectacles A lens pattern to be written to the spectacle lens may be obtained based on the light beam position LEP on the spectacle lens when the light beam condensed on the spectacle lens passes through the spectacle lens and the frequency distribution M of the spectacle lens at the position LEP. .
 例えば、遠方視状態における眼位置EPFを得ることによって、遠方視状態における眼位置EPFに対応する光束位置LEPFが求められる。さらに、光束位置LEPFでの眼鏡レンズの度数分布MFを、レンズメータあるいは眼鏡レンズの設計データから得る。 For example, by obtaining the eye position EPF in the far vision state, the light beam position LEPF corresponding to the eye position EPF in the far vision state is obtained. Furthermore, the power distribution MF of the spectacle lens at the light beam position LEPF is obtained from the design data of the lens meter or the spectacle lens.
 例えば、近方視状態における眼位置EPNを得ることによって、近方視状態における眼位置EPFに対応する光束位置LEPNが求められる。さらに、光束位置LEPNでの眼鏡レンズの度数分布MNは、度数分布を計測可能なレンズメータ、あるいは眼鏡レンズの設計データから得ることができる。 For example, the light beam position LEPN corresponding to the eye position EPF in the near vision state is obtained by obtaining the eye position EPN in the near vision state. Furthermore, the power distribution MN of the spectacle lens at the light beam position LEPN can be obtained from a lens meter capable of measuring the power distribution or design data of the spectacle lens.
 プロセッサは、裸眼での眼球全体の波面収差W1と眼鏡レンズの度数分布MFとに基づいて眼鏡装用時での眼球全体の波面収差W2を求め、求められた波面収差W2に基づいてフォトチューニングによって実施する屈折特性の矯正量を求める。矯正量が求められると、プロセッサは、予め設定された矯正量を得るために眼鏡レンズに対して書き込むべき屈折特性を、眼鏡レンズに対する前眼部の光学配置情報を利用して算出する。ここで、プロセッサは、眼鏡レンズ及び前眼部の光学配置情報と、前眼部の各組織の屈折率、眼鏡レンズの第1の屈折率を考慮した上で、予め設定された矯正量を矯正するために必要なレンズの屈折特性を算出してもよい。さらに、プロセッサは、書き込むべき屈折特性に対応するレンズパターンを設定する。 The processor obtains the wavefront aberration W2 of the entire eyeball when wearing spectacles based on the wavefront aberration W1 of the entire eyeball with the naked eye and the frequency distribution MF of the spectacle lens, and performs by phototuning based on the obtained wavefront aberration W2 The correction amount of the refraction characteristic to be obtained is obtained. When the correction amount is obtained, the processor calculates a refraction characteristic to be written to the spectacle lens in order to obtain a preset correction amount by using the optical arrangement information of the anterior segment with respect to the spectacle lens. Here, the processor corrects a preset correction amount in consideration of the optical arrangement information of the spectacle lens and the anterior segment, the refractive index of each tissue of the anterior segment, and the first refractive index of the spectacle lens. It is also possible to calculate the refraction characteristics of the lens necessary for this. Further, the processor sets a lens pattern corresponding to the refractive characteristic to be written.
 その後、プロセッサは、求められたレンズパターンを、眼鏡レンズ上の光束位置LEPに設定(整合)させることによって照射位置を設定する。設定された照射位置にて眼鏡レンズに対してフォトチューニングが行われる。照射時は、照射する側のレンズ面に、眼鏡レンズ素材の屈折率に近いソフトジェルを板ガラス又はレンズで挟んで密着させることで、眼鏡レンズ表面の屈折率の影響を少なくして照射してもよいし、液体中で照射してもよい。 Thereafter, the processor sets (matches) the obtained lens pattern to the light beam position LEP on the spectacle lens to set the irradiation position. Photo tuning is performed on the spectacle lens at the set irradiation position. When irradiating, a soft gel close to the refractive index of the spectacle lens material is sandwiched between and closely adhered to the lens surface of the spectacle lens, so that the effect of the refractive index on the spectacle lens surface is reduced. It may be irradiated in a liquid.
 なお、眼鏡レンズに対してフォトチューニングを行う場合、超短パルスレーザ装置に対して眼鏡を固定した状態で行ってもよい。この場合、断層撮像デバイスを用いて眼鏡レンズの位置を検出することによって眼鏡レンズに対して照射位置を設定してもよい。また、眼鏡レンズと装置との位置関係が既知であれば、既知の位置関係を利用して照射位置を設定してもよい。また、患者が装用している状態の眼鏡に対してフォトチューニングを行ってもよい。 In addition, when performing photo tuning with respect to a spectacle lens, you may carry out in the state which fixed spectacles with respect to the ultrashort pulse laser apparatus. In this case, the irradiation position may be set for the spectacle lens by detecting the position of the spectacle lens using a tomographic imaging device. Further, if the positional relationship between the spectacle lens and the apparatus is known, the irradiation position may be set using the known positional relationship. Photo tuning may be performed on the glasses worn by the patient.
 上記説明においては、遠方視に対応するレンズ位置にフォトチューニングを施す、或いは近方視に対応するレンズ位置にフォトチューニングを施すものとしたが、これに限定されず、眼鏡レンズの他のレンズ位置に関して、同様に、フォトチューニングを行うようにしてもよい。 In the above description, it is assumed that photo-tuning is performed at a lens position corresponding to far vision, or photo-tuning is performed at a lens position corresponding to near vision, but the present invention is not limited to this. Similarly, photo tuning may be performed.
 なお、フォトチューニングを施す眼鏡レンズとしては、患者が実際に装用していた眼鏡レンズであってもよいし、新規の眼鏡レンズであってもよい。新規のレンズに対してフォトチューニングを行う場合、上記眼鏡フレームに配置されたことを想定して照射位置が設定されてもよい。新規の眼鏡レンズの場合、レンズ工場にてレーザ装置を設け、フォトチューニングを用いたレンズ製造も可能である。 Note that the spectacle lens subjected to photo tuning may be a spectacle lens actually worn by the patient or a new spectacle lens. When photo-tuning is performed on a new lens, the irradiation position may be set on the assumption that the lens is arranged on the spectacle frame. In the case of a new spectacle lens, it is possible to manufacture a lens using a photo tuning by providing a laser device at a lens factory.
 なお、眼鏡装用時での眼球全体の波面収差W2を求める場合、眼鏡装用時での眼球全体の波面収差W2を、波面センサによって直接的に求めるようにしてもよい。 In addition, when obtaining the wavefront aberration W2 of the entire eyeball when wearing glasses, the wavefront aberration W2 of the entire eyeball when wearing glasses may be directly obtained by a wavefront sensor.
 なお、本実施形態のフォトチューニングに係る技術は、レーザ光を患者眼の組織内に集光させることで患者眼を処置する眼科用レーザ手術装置において適用されうる。また、本実施形態のフォトチューニングに係る技術は、レーザ光を眼鏡レンズの内部に集光させることで患者眼を矯正する眼鏡用レーザ装置において適用されうる。なお、以下の例では、眼科用レーザ手術装置を例として説明するが、これに限定されず、他の装置においても、適用可能である。 Note that the technique related to phototuning according to the present embodiment can be applied to an ophthalmic laser surgical apparatus that treats a patient's eye by condensing laser light into the tissue of the patient's eye. In addition, the technique related to phototuning according to the present embodiment can be applied to a spectacle laser device that corrects a patient's eye by condensing laser light inside a spectacle lens. In the following example, an ophthalmic laser surgical apparatus will be described as an example. However, the present invention is not limited to this and can be applied to other apparatuses.
 なお、本実施形態では、フォトチューニングのレンスパターンを設定するための設定装置は、レーザ装置に配置された構成に限定されない。例えば、設定装置は、断層撮像デバイス、屈折測定デバイス、外部PCに設けられてもよい。なお、各データの送受信は、有線又は無線によって行われてもよい。 In this embodiment, the setting device for setting the photo tuning lens pattern is not limited to the configuration arranged in the laser device. For example, the setting apparatus may be provided in a tomographic imaging device, a refraction measuring device, or an external PC. In addition, transmission / reception of each data may be performed by wire or wireless.
 <実施例>
 以下、本実施形態の典型的な実施例の1つについて、図面を参照して説明する。以下の説明では、一例として、患者眼Eに照射されるレーザ光の光軸に沿う方向をZ方向とする。Z方向に交差(本実施形態では垂直に交差)する方向のうちの1つをX方向とする。Z方向およびX方向に共に交差(本実施形態では垂直に交差)する方向をY方向とする。X,Y,Z方向は適宜設定すればよい。例えば、患者の上下左右に基づいて方向を規定する場合、X方向を患者の左右方向、Y方向を患者の上下方向としてもよいし、X方向を患者の上下方向、Y方向を患者の左右方向、Z方向を眼Eの軸方向としてもよい。
<Example>
Hereinafter, one typical example of the present embodiment will be described with reference to the drawings. In the following description, as an example, the direction along the optical axis of the laser light applied to the patient's eye E is defined as the Z direction. One of the directions intersecting the Z direction (vertically intersecting in the present embodiment) is defined as the X direction. A direction that intersects both the Z direction and the X direction (vertically intersects in this embodiment) is defined as a Y direction. The X, Y, and Z directions may be set as appropriate. For example, when the direction is defined based on the patient's vertical and horizontal directions, the X direction may be the patient's horizontal direction, the Y direction may be the patient's vertical direction, the X direction is the patient's vertical direction, and the Y direction is the patient's horizontal direction. The Z direction may be the axial direction of the eye E.
 <全体構成>
 本実施例の眼科用レーザ手術装置1は、患者眼Eの組織を処置、人工透光体に対してフォトチューニングを行うために使用される(図8参照)。本実施例では、患者眼Eの水晶体を処置すると共に、眼内に挿入された人工透光体に対してフォトチューニングを行うことが可能な眼科用レーザ手術装置1を例示する。本技術は、もちろん、角膜及び水晶体を含む前眼部の組織の処置に適用してもよい。また、フォトチューニングは、天然透光体、つまり患者眼Eの組織に適用されてもよい。
<Overall configuration>
The ophthalmic laser surgical apparatus 1 according to the present embodiment is used for treating a tissue of a patient's eye E and performing phototuning on an artificial translucent body (see FIG. 8). In this embodiment, an ophthalmic laser surgical apparatus 1 capable of treating a crystalline lens of a patient's eye E and performing phototuning on an artificial translucent body inserted into the eye is illustrated. This technique may of course be applied to the treatment of anterior segment tissues including the cornea and the lens. Photo tuning may also be applied to a natural translucent body, that is, the tissue of the patient's eye E.
 レーザ照射ユニット300は、レーザ光源ユニット310と、レーザ照射光学系(レーザデリバリ)320と、を備える。レーザ光源ユニット310は、本体部2の内部に配置される。レーザ照射光学系(導光光学系)320は、レーザ光源ユニット310からのレーザ光を眼Eに導光するために配置された光学系である。 The laser irradiation unit 300 includes a laser light source unit 310 and a laser irradiation optical system (laser delivery) 320. The laser light source unit 310 is disposed inside the main body 2. The laser irradiation optical system (light guide optical system) 320 is an optical system arranged to guide the laser light from the laser light source unit 310 to the eye E.
 インターフェイスユニット50は、患者眼Eの角膜に近接し、屈折率の差を小さくし、屈折率差によって発生するレーザ光の収差を減少させる。これによって、例えば、角膜及びレンズでの表面反射が少なくなる。観察・撮影ユニット70は、患者眼Eの前眼部の正面像及び前眼部の断層像を撮影する。観察・撮影ユニット70は、例えば、断層撮像デバイス71と、正面撮影ユニット75とを備える。断層撮像デバイス71は、患者眼Eの断層像を撮影(取得)する。正面撮影ユニット75は、患者眼Eの前眼部像を撮影する。操作ユニット400は、装置1を操作するために設けられる。制御ユニット100は、装置全体を統括制御する。 The interface unit 50 is close to the cornea of the patient's eye E, reduces the difference in refractive index, and reduces the aberration of laser light generated by the refractive index difference. This reduces surface reflections at the cornea and lens, for example. The observation / imaging unit 70 captures a front image of the anterior segment of the patient's eye E and a tomographic image of the anterior segment. The observation / imaging unit 70 includes, for example, a tomographic imaging device 71 and a front imaging unit 75. The tomographic imaging device 71 captures (acquires) a tomographic image of the patient's eye E. The front imaging unit 75 captures an anterior segment image of the patient's eye E. The operation unit 400 is provided for operating the apparatus 1. The control unit 100 performs overall control of the entire apparatus.
 <レーザ照射ユニット>
 レーザ照射ユニット300は、例えば、レーザ光源ユニット310と、レーザ照射光学系(レーザデリバリ)320を備えてもよい。レーザ光源ユニット310は、手術用のレーザ光(レーザビーム)を出射する。レーザ照射光学系320は、レーザ光を導光するための光学部材を含む。レーザ照射光学系320は、例えば、走査ユニット330と、対物レンズ305と、各種光学部材とを備える。対物レンズ305は、走査ユニット330と患者眼Eの間の光路上に設けられている。対物レンズ305は、走査ユニット330を経たレーザ光を、患者眼Eの組織に集光させる。
<Laser irradiation unit>
The laser irradiation unit 300 may include, for example, a laser light source unit 310 and a laser irradiation optical system (laser delivery) 320. The laser light source unit 310 emits surgical laser light (laser beam). The laser irradiation optical system 320 includes an optical member for guiding laser light. The laser irradiation optical system 320 includes, for example, a scanning unit 330, an objective lens 305, and various optical members. The objective lens 305 is provided on the optical path between the scanning unit 330 and the patient's eye E. The objective lens 305 focuses the laser light that has passed through the scanning unit 330 on the tissue of the patient's eye E.
 レーザ光源ユニット310によって出射されたレーザ光は、非線形相互作用によって組織にプラズマを誘起するために用いられる。非線形相互作用とは、光と物質とによって生じる相互作用の1つであり、光の強度(つまり、光子の密度)に比例しない応答が現れる作用である。本実施形態の眼科用レーザ手術装置1は、レーザ光を患者眼Eの透明組織内に集光(合焦)させることで、集光位置(「レーザスポット」という場合もある)または集光位置よりも僅かに光路(光束)の上流側で多光子吸収を生じさせる。多光子吸収が生じる確率は、光の強度に比例せず、非線形となる。多光子吸収によって励起状態が生じると、組織内にプラズマバブルが発生し、組織の切断・破砕等が行われる。以上の現象は、光破壊(photodisruption)と言われる場合もある。非線形相互作用による光破壊では、レーザ光による熱の影響が集光位置の周辺に加わり難い。よって、微細な処置が可能である。レーザ光のパルス幅を小さくする程、少ないエネルギーで効率よく光破壊が生じる。 The laser light emitted by the laser light source unit 310 is used to induce plasma in the tissue by nonlinear interaction. Non-linear interaction is one of the interactions caused by light and a substance, and is an effect in which a response that is not proportional to the intensity of light (that is, the density of photons) appears. The ophthalmic laser surgical apparatus 1 according to the present embodiment condenses (focuses) the laser light in the transparent tissue of the patient's eye E, so that the condensing position (also referred to as “laser spot”) or the condensing position. Rather, it causes multiphoton absorption slightly upstream of the optical path (light flux). The probability that multiphoton absorption occurs is not proportional to the intensity of light and is nonlinear. When an excited state is generated by multiphoton absorption, a plasma bubble is generated in the tissue, and the tissue is cut and crushed. The above phenomenon is sometimes referred to as photodisruption. In optical breakdown due to nonlinear interaction, the influence of heat from laser light is unlikely to be applied around the condensing position. Therefore, a fine treatment is possible. As the pulse width of the laser beam is reduced, optical destruction is efficiently performed with less energy.
 レーザ光源ユニット310は、多光子吸収によって透光体内の屈折率を調整する(フォトチューニング)を行うことも可能である。 The laser light source unit 310 can also adjust the photorefractive index (photo tuning) by multiphoton absorption.
 レーザ光源ユニット310は、前眼部組織を破砕又は切断するためのレーザである第1のレーザと、透光体にレンズを書き込むためのレーザである第2のレーザとを出射できる。より詳細には、レーザ光源ユニット310は、第1のレーザに対応する波長のレーザ光を発生させるためのレーザ光源312と、レーザ光源からの第1のレーザ光を第2のレーザに対応する波長に変換するための波長変換光学素子314と、を備えてもよい。 The laser light source unit 310 can emit a first laser that is a laser for crushing or cutting an anterior ocular tissue and a second laser that is a laser for writing a lens on a light transmitting body. More specifically, the laser light source unit 310 includes a laser light source 312 for generating laser light having a wavelength corresponding to the first laser, and a wavelength corresponding to the second laser from the first laser light from the laser light source. And a wavelength conversion optical element 314 for converting into a wavelength.
 レーザ光源312には、1フェムト秒から10ナノ秒のパルス幅のレーザ光を出射するデバイスが用いられる。レーザ光源312としては、例えば、パルス幅500フェムト秒で、中心波長が、1040nm(波長幅は、±10nm)である赤外域のレーザ光を出射するデバイスを用いてもよい。また、レーザ光源ユニット310には、レーザスポットのスポットサイズが1~15μmでブレイクダウンを発生させる出力のレーザ光を出射可能なレーザ光源を用いる。 As the laser light source 312, a device that emits laser light having a pulse width of 1 femtosecond to 10 nanoseconds is used. As the laser light source 312, for example, a device that emits infrared laser light having a pulse width of 500 femtoseconds and a center wavelength of 1040 nm (wavelength width is ± 10 nm) may be used. The laser light source unit 310 uses a laser light source capable of emitting laser light having an output that causes breakdown when the spot size of the laser spot is 1 to 15 μm.
 波長変換光学素子314を用いる場合、照射光学系320は、波長変換光学素子を通過せず第1のレーザを眼に導くための第1の光学系(図9参照)と、波長変換光学素子314が配置され、第1のレーザを第2のレーザに変換して第2のレーザを眼に導くための第2の光学系(図10参照)と、備えてもよい。この場合、第1の光学系に対応する第1の光路と、第2の光学系に対応する第2の光路とがそれぞれ配置されてもよい。なお、光路切換部318の駆動によって光学系が選択されてもよい。 When the wavelength conversion optical element 314 is used, the irradiation optical system 320 includes a first optical system (see FIG. 9) for guiding the first laser to the eye without passing through the wavelength conversion optical element, and the wavelength conversion optical element 314. And a second optical system (see FIG. 10) for converting the first laser into the second laser and guiding the second laser to the eye. In this case, a first optical path corresponding to the first optical system and a second optical path corresponding to the second optical system may be respectively arranged. The optical system may be selected by driving the optical path switching unit 318.
 レーザ照射光学系320において、レーザ光源ユニット310を上流、患者眼Eを下流とする。すると、レーザ光源ユニット310から下流に向かって、ミラー301、ミラー302~レンズ303、レンズ304、ビームコンバイナ72が光軸L1に沿って配置されてもよい。 In the laser irradiation optical system 320, the laser light source unit 310 is upstream and the patient eye E is downstream. Then, the mirror 301, the mirror 302 to the lens 303, the lens 304, and the beam combiner 72 may be arranged along the optical axis L1 downstream from the laser light source unit 310.
 ミラー301及び302は、レーザ光の光軸を調整する。レンズ303は、走査ユニット330、レーザ光の中間結像を形成するために用いられる。レンズ304は、瞳共役位置を形成する。ビームコンバイナ72は、光軸L1と観察・撮影ユニット70の光軸L3とを合波する。ミラー301及び302は、反射面が互いに直交する構成となっており、傾斜可能な保持部材に保持されている。ミラー301及び302の反射面を移動、傾斜させることにより、レーザ光源ユニット310から出射されたレーザ光の光軸を調整することができる。ミラー301及び302の調整により、レーザ光の軸を光軸L1に合わされる。 Mirrors 301 and 302 adjust the optical axis of the laser beam. The lens 303 is used to form an intermediate image of the scanning unit 330 and laser light. The lens 304 forms a pupil conjugate position. The beam combiner 72 combines the optical axis L1 and the optical axis L3 of the observation / photographing unit 70. The mirrors 301 and 302 are configured such that their reflection surfaces are orthogonal to each other, and are held by tiltable holding members. The optical axis of the laser light emitted from the laser light source unit 310 can be adjusted by moving and tilting the reflecting surfaces of the mirrors 301 and 302. By adjusting the mirrors 301 and 302, the axis of the laser beam is aligned with the optical axis L1.
 <補正光学部材>
 補正光学部材500は、第1のレーザと第2のレーザとの間のレーザ特性の違いを補正するための補正光学部材である。補正光学部材500は、フォトチューニングの際、第2のレーザ光の光路に配置される。補正光学部材500は、駆動部510の駆動によって照射光学系320の光路に配置されてもよい。なお、補正光学部材500は、波長変換光学素子314の近傍に配置されてもよい。
<Correction optical member>
The correction optical member 500 is a correction optical member for correcting a difference in laser characteristics between the first laser and the second laser. The correction optical member 500 is disposed in the optical path of the second laser light during phototuning. The correction optical member 500 may be disposed in the optical path of the irradiation optical system 320 by driving the driving unit 510. The correction optical member 500 may be disposed in the vicinity of the wavelength conversion optical element 314.
 <走査ユニット>
 走査ユニット330は、レーザ光を走査することで、対物レンズ305によって集光されるレーザ光の集光位置を走査させてもよい。つまり、走査ユニット330は、レーザ光の集光位置を目標位置に移動させる。本実施形態の走査ユニット330は、Z走査部350およびXY走査部360を備えてもよい。走査ユニット330は、レーザ照射光学系(レーザデリバリ)320の光路中に配置されてもよい。
<Scanning unit>
The scanning unit 330 may scan the condensing position of the laser light condensed by the objective lens 305 by scanning the laser light. That is, the scanning unit 330 moves the condensing position of the laser light to the target position. The scanning unit 330 of this embodiment may include a Z scanning unit 350 and an XY scanning unit 360. The scanning unit 330 may be disposed in the optical path of the laser irradiation optical system (laser delivery) 320.
 Z走査部350は、例えば、凹レンズ351、凸レンズ352、および駆動部353を備えてもよい。駆動部353は、凹レンズ351を光軸L1に沿って移動させる。凹レンズ351が移動することで、凹レンズ351を通過したビームの発散状態が変化する。その結果、レーザ光の集光位置(レーザスポット)がZ軸方向に移動する。 The Z scanning unit 350 may include, for example, a concave lens 351, a convex lens 352, and a driving unit 353. The drive unit 353 moves the concave lens 351 along the optical axis L1. As the concave lens 351 moves, the divergence state of the beam that has passed through the concave lens 351 changes. As a result, the laser beam condensing position (laser spot) moves in the Z-axis direction.
 XY走査部360は、Xスキャナ361、Yスキャナ364を備えてもよい。Xスキャナ361は、駆動部362によってガルバノミラー363を揺動させることで、レーザ光をX方向に走査させてもよい。Yスキャナ364は、駆動部365によってガルバノミラー366を揺動させることで、レーザ光をY方向に走査させてもよい。レンズ367,368は、2つのガルバノミラー363,366を共役とする。 The XY scanning unit 360 may include an X scanner 361 and a Y scanner 364. The X scanner 361 may scan the laser light in the X direction by swinging the galvano mirror 363 by the driving unit 362. The Y scanner 364 may scan the laser light in the Y direction by swinging the galvanometer mirror 366 by the driving unit 365. The lenses 367 and 368 conjugate the two galvanometer mirrors 363 and 366.
 なお、走査ユニット330としては、レーザ光をXY方向に走査できる構成であればよい。例えば、主走査方向(例えば、X方向)の走査をポリゴンミラーとし、副走査方向(例えば、Y方向)の走査をガルバノミラーとする構成としてもよい。また、レゾナントミラーをX方向とY方向に対応させて用いる構成としてもよい。また、2つのプリズムを独立して回転させる構成でもよい。また、主走査方向に関して、音響光学偏向器(AOD:Acousto-optic-deflector)が用いられてもよい。このようにして、走査ユニット330によって、レーザスポットが、患者眼Eの眼球組織内(ターゲット内)で3次元的(XYZ方向)に移動されてもよい。 The scanning unit 330 may have any configuration that can scan the laser light in the XY directions. For example, the scanning in the main scanning direction (for example, the X direction) may be a polygon mirror, and the scanning in the sub scanning direction (for example, the Y direction) may be a galvanometer mirror. A resonant mirror may be used corresponding to the X direction and the Y direction. Moreover, the structure which rotates two prisms independently may be sufficient. In addition, an acousto-optic deflector (AOD) may be used in the main scanning direction. In this manner, the laser spot may be moved three-dimensionally (in the XYZ directions) within the eyeball tissue (in the target) of the patient's eye E by the scanning unit 330.
 走査ユニット330と対物レンズ305の間には、レーザ光軸と観察・撮影光軸を同軸とするためのビームコンバイナ(ビームスプリッタ)72が配置されてもよい。コンバイナ72は、レーザ光を反射し、観察・撮影ユニット70の照明光を透過する特性を有している。対物レンズ305は、照射端ユニット42に対して固定的に配置されたレンズである。対物レンズ305は、レーザ光をレーザスポットとしてターゲットに結像させる。レーザスポットのスポットサイズは、例えば、1~15μm程度である。 Between the scanning unit 330 and the objective lens 305, a beam combiner (beam splitter) 72 for making the laser optical axis coaxial with the observation / photographing optical axis may be disposed. The combiner 72 has a characteristic of reflecting laser light and transmitting illumination light of the observation / photographing unit 70. The objective lens 305 is a lens that is fixedly disposed with respect to the irradiation end unit 42. The objective lens 305 forms an image on the target using laser light as a laser spot. The spot size of the laser spot is, for example, about 1 to 15 μm.
 <インターフェイスユニット>
 インターフェイスユニット50(図11参照)は、患者眼Eの角膜に近接し、角膜の屈折力を弱めて、レーザ光を水晶体等の眼球組織に到達(集光)し易くする役割を持つ。本実施形態のインターフェイスユニット50は、角膜に直接接触することなく、少なくとも角膜の一部を覆う構成とする。インターフェイスユニット50は、カバーガラス51を主に備える。カバーガラス51は、例えば、角膜を覆う光学部材である。カバーカラス51は、例えば、圧平レンズまたは液浸レンズであってもよい。例えば、圧平レンズは、レーザを透過し、角膜の前面を圧平する。
<Interface unit>
The interface unit 50 (see FIG. 11) is close to the cornea of the patient's eye E, has a role of weakening the refractive power of the cornea and facilitating the laser light to reach (collect) the eyeball tissue such as a crystalline lens. The interface unit 50 of the present embodiment is configured to cover at least a part of the cornea without directly contacting the cornea. The interface unit 50 mainly includes a cover glass 51. The cover glass 51 is an optical member that covers the cornea, for example. The cover crow 51 may be, for example, an applanation lens or an immersion lens. For example, an applanation lens transmits laser and applanates the front surface of the cornea.
 カバーガラス51は、角膜を覆う部材であり、少なくともレーザスポットが集光されるNAをカバーするサイズであってもよい。カバーガラス51は、透光性を有する透明部材であり、例えば、ガラス、樹脂によって形成される。カバーガラス51は、液体の液面に位置し、液体を覆う役割を持ってもよい。 The cover glass 51 is a member that covers the cornea and may have a size that covers at least the NA on which the laser spot is focused. The cover glass 51 is a transparent member having translucency, and is formed of, for example, glass or resin. The cover glass 51 may be positioned on the liquid surface and may have a role of covering the liquid.
 インターフェイスユニット50は、サクションリング281に吸着された患者眼Eの角膜に近接する。または、先に患者眼Eおよびインターフェイスユニット50の位置を決定した後に、サクションリング281を吸着させてもよい。サクションリング281の内側には、例えば、液体(生理食塩水)が満たされる。カバーガラス51、液体により、角膜の屈折力がキャンセルされる。これによって、レーザ光は、対物レンズ305からターゲットである水晶体まで屈折することが抑制される。 The interface unit 50 is close to the cornea of the patient's eye E adsorbed by the suction ring 281. Alternatively, the suction ring 281 may be adsorbed after the positions of the patient eye E and the interface unit 50 are determined in advance. The suction ring 281 is filled with, for example, a liquid (saline). The refractive power of the cornea is canceled by the cover glass 51 and the liquid. This suppresses the laser light from being refracted from the objective lens 305 to the target crystalline lens.
 なお、インターフェイスユニット50は、角膜に直接接触する構成であってもよい。例えば、インターフェイスユニット50は、カバーガラス51を角膜に接触させて角膜を圧平するユニットであってもよい。この結果、角膜がカバーガラス51と接触することによって、角膜の位置がレーザ照射光学系320に対してポジショニングされる。カバーガラス51は、例えば、角膜内等のレーザ照射領域をカバーするように角膜を覆う接触面を有していればよい。 Note that the interface unit 50 may be configured to be in direct contact with the cornea. For example, the interface unit 50 may be a unit that contacts the cornea with the cover glass 51 to applanate the cornea. As a result, the cornea comes into contact with the cover glass 51 so that the position of the cornea is positioned with respect to the laser irradiation optical system 320. The cover glass 51 may have a contact surface that covers the cornea so as to cover a laser irradiation region such as the inside of the cornea.
 <固視誘導ユニット>
 固視誘導ユニット120は、例えば、被検眼を固視させるための固視標を投影する(図3参照)。固視誘導ユニット120は、固視標の呈示位置を変更することによって、ドッキング前の患者眼Eの視線方向を変更してもよい。固視誘導ユニット120は、手術レーザの照射光軸と患者眼の光軸とを所定の位置関係に導くために、眼Eの固視方向を誘導する。
<Fixing guidance unit>
The fixation guidance unit 120 projects, for example, a fixation target for fixing the eye to be examined (see FIG. 3). The fixation guidance unit 120 may change the line-of-sight direction of the patient's eye E before docking by changing the presentation position of the fixation target. The fixation guidance unit 120 guides the fixation direction of the eye E in order to guide the irradiation optical axis of the surgical laser and the optical axis of the patient's eye to a predetermined positional relationship.
 <眼球固定ユニット>
 眼球固定ユニット280(図4、図5参照)は、対物レンズ305に対して患者眼Eを固定するためのユニットである。対物レンズ305に対して患者眼Eを固定することで、レーザを患者眼Eに好適に集光させることができる。眼球固定ユニット280は、吸引ポンプ(図示を略す)から付加される吸引圧を、吸引用パイプを介してサクションリング281に伝達(付加)する。なお、これに限定されず、眼球を固定せずに、レーザ照射を行ってもよい。また、インターフェースユニット50を用いずに、レーザ照射を行ってもよい。この場合、眼の移動に応じて、レーザ照射位置を補正するトラッキング機構を設けてもよい。
<Eyeball fixing unit>
The eyeball fixing unit 280 (see FIGS. 4 and 5) is a unit for fixing the patient's eye E to the objective lens 305. By fixing the patient's eye E to the objective lens 305, the laser can be suitably focused on the patient's eye E. The eyeball fixing unit 280 transmits (adds) suction pressure applied from a suction pump (not shown) to the suction ring 281 via a suction pipe. Note that the present invention is not limited to this, and laser irradiation may be performed without fixing the eyeball. Further, laser irradiation may be performed without using the interface unit 50. In this case, a tracking mechanism for correcting the laser irradiation position according to the movement of the eyes may be provided.
 <観察光学系70>
 観察光学系70(観察・撮影ユニットともいう)70(図3参照)は、患者眼Eを術者に観察させると共に、処置対象となる組織を撮影する。一例として、本実施形態の観察光学系70は、断層撮像デバイス71および正面撮影ユニット75を備える。観察光学系70の光軸L3は、ビームコンバイナ72によって、レーザ光の光軸L1と同軸とされる。光軸L3は、ビームコンバイナ73によって、断層像撮影ユニット71の光軸L4と、正面撮像ユニット75の光軸L5とに分岐される。
<Observation optical system 70>
An observation optical system 70 (also referred to as an observation / imaging unit) 70 (see FIG. 3) causes the operator to observe the patient's eye E and images the tissue to be treated. As an example, the observation optical system 70 of this embodiment includes a tomographic imaging device 71 and a front imaging unit 75. The optical axis L3 of the observation optical system 70 is made coaxial with the optical axis L1 of the laser beam by the beam combiner 72. The optical axis L3 is branched by the beam combiner 73 into an optical axis L4 of the tomography unit 71 and an optical axis L5 of the front imaging unit 75.
 <断層撮像デバイス>
 断層撮像デバイス71は、例えば、光干渉の技術を用いて患者眼Eの組織の断層像を取得してもよい。断層撮像デバイス71は、例えば、患者眼Eの前眼部の断層画像を取得する。
<Tomographic imaging device>
The tomographic imaging device 71 may acquire a tomographic image of the tissue of the patient's eye E using, for example, an optical interference technique. The tomographic imaging device 71 acquires, for example, a tomographic image of the anterior segment of the patient's eye E.
 一例として、断層撮像デバイス71は、OCT(オプティカルコヒーレンストモグラフィー)デバイスであってもよい。断層撮像デバイス71は、光源、光分割器、参照光学系、走査部、および検出器を備えてもよい。 As an example, the tomographic imaging device 71 may be an OCT (optical coherence tomography) device. The tomographic imaging device 71 may include a light source, a light splitter, a reference optical system, a scanning unit, and a detector.
 光源は、断層画像を取得するための光を出射する。光分割器は、光源によって出射された光を、参照光と測定光に分割する。参照光は参照光学系に入射し、測定光は走査部に入射する。参照光学系は、測定光と参照光の光路長差を変更する構成を有する。走査部は、測定光を前眼部上で二次元方向に走査させる。検出器は、組織によって反射された測定光と、参照光学系を経た参照光との干渉状態を検出する。眼科用レーザ手術装置1は、測定光を走査し、反射測定光と干渉光の干渉状態を検出することで、前眼部の深さ方向の情報を取得する。 The light source emits light for acquiring a tomographic image. The light splitter divides the light emitted from the light source into reference light and measurement light. The reference light enters the reference optical system, and the measurement light enters the scanning unit. The reference optical system has a configuration that changes the optical path length difference between the measurement light and the reference light. The scanning unit scans the measurement light in a two-dimensional direction on the anterior segment. The detector detects an interference state between the measurement light reflected by the tissue and the reference light that has passed through the reference optical system. The ophthalmic laser surgical apparatus 1 scans the measurement light and detects the interference state between the reflected measurement light and the interference light, thereby acquiring information in the depth direction of the anterior segment.
 取得した深さ方向の情報に基づいて、前眼部の断層画像を取得する。本実施形態の眼科用レーザ手術装置1は、パルスレーザ光を集光させるターゲット位置を、患者眼Eの前眼部断層像に対応付ける。その結果、眼科用レーザ手術装置1は、パルスレーザ光を照射・走査させる動作を制御するためのデータを、前眼部断層像を用いて作成することができる。断層像撮影ユニット71には種々の構成を用いることができる。例えば、SS-OCT、SD-OCT、TD-OCT等のいずれを断層撮像デバイス71として採用してもよい。また、眼科用レーザ手術装置1は、光干渉以外の技術を用いて断層画像を撮影してもよい。 断層 Acquire a tomographic image of the anterior segment based on the acquired depth information. The ophthalmic laser surgical apparatus 1 according to the present embodiment associates the target position where the pulsed laser light is collected with the anterior segment tomogram of the patient's eye E. As a result, the ophthalmic laser surgical apparatus 1 can create data for controlling the operation of irradiating and scanning the pulsed laser beam using the anterior ocular segment tomographic image. Various configurations can be used for the tomography unit 71. For example, any of SS-OCT, SD-OCT, TD-OCT, etc. may be adopted as the tomographic imaging device 71. The ophthalmic laser surgical apparatus 1 may capture a tomographic image using a technique other than optical interference.
 <正面撮影ユニット>
 正面撮影ユニット75(図8参照)は、患者眼Eの正面像を取得する。正面撮影ユニット75は、可視光または赤外光によって照明された患者眼Eを撮影する。正面撮影ユニットによって撮影された患者眼Eの正面像は、表示部420(後述する)に表示されてもよい。術者は、表示部420を見ることで、患者眼Eを正面から観察することができる。
<Front shooting unit>
The front imaging unit 75 (see FIG. 8) acquires a front image of the patient's eye E. The front imaging unit 75 images the patient's eye E illuminated with visible light or infrared light. The front image of the patient's eye E imaged by the front imaging unit may be displayed on the display unit 420 (described later). The surgeon can observe the patient's eye E from the front by looking at the display unit 420.
 <屈折測定デバイス>
 屈折測定デバイス90は、眼の屈折特性を測定するための屈折測定デバイスであり、本実施例では、波面センサが用いられる。屈折測定デバイス90は、ビームコンバイナ92を介して断層撮像デバイス71と同軸とされる。
<Refraction measurement device>
The refraction measurement device 90 is a refraction measurement device for measuring the refraction characteristics of the eye, and in this embodiment, a wavefront sensor is used. The refraction measuring device 90 is coaxial with the tomographic imaging device 71 via the beam combiner 92.
 <操作ユニット>
 操作ユニット400は、例えば、トリガスイッチ410、表示部420等を備えてもよい。トリガスイッチ410は、レーザ照射ユニット300から治療レーザ光を出射させるトリガ信号を入力する。表示部420は、患者眼Eの断層像、前眼部像を表示したり、手術条件を表示する表示手段として用いられる。表示部420は、タッチパネル機能を有してもよく、手術条件の設定、断層像上での手術部位(レーザ照射位置)の設定を行う入力手段を兼ねてもよい。なお、ポインティングデバイスであるマウス、数値、文字等を入力するため入力デバイスであるキーボード、等を入力手段として用いることもできる。
<Operation unit>
The operation unit 400 may include, for example, a trigger switch 410, a display unit 420, and the like. The trigger switch 410 inputs a trigger signal for emitting treatment laser light from the laser irradiation unit 300. The display unit 420 is used as a display unit that displays a tomographic image and an anterior segment image of the patient's eye E, and displays surgical conditions. The display unit 420 may have a touch panel function, and may also serve as input means for setting surgical conditions and setting a surgical site (laser irradiation position) on a tomographic image. A mouse that is a pointing device, a keyboard that is an input device for inputting numerical values, characters, and the like can also be used as input means.
 <制御ユニット100>
 制御ユニット100は、CPU101、ROM102、RAM103、および不揮発性メモリ(図示せず)等を備える。プロセッサとしてのCPU101は、眼科用レーザ手術装置1の各種制御(例えば、後述する制御データ作成の制御、レーザ光源ユニット310の制御、走査ユニット330の制御、集光位置の走査速度の調整制御等)を司る。ROM102には、眼科用レーザ手術装置1の動作を制御するための各種プログラム、初期値等が記憶されている。RAM103は、各種情報を一時的に記憶する。不揮発性メモリは、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。
<Control unit 100>
The control unit 100 includes a CPU 101, a ROM 102, a RAM 103, a nonvolatile memory (not shown), and the like. The CPU 101 as a processor performs various controls of the ophthalmic laser surgical apparatus 1 (for example, control data creation control described later, control of the laser light source unit 310, control of the scanning unit 330, control for adjusting the scanning speed of the condensing position). To manage. The ROM 102 stores various programs, initial values, and the like for controlling the operation of the ophthalmic laser surgical apparatus 1. The RAM 103 temporarily stores various information. A nonvolatile memory is a non-transitory storage medium that can retain stored contents even when power supply is interrupted.
 制御ユニット100には、レーザ照射ユニット300、観察・撮影ユニット70、操作ユニット400、固視誘導ユニット120、吸引ポンプ、灌流吸引ユニット、等が接続される。 The control unit 100 is connected with a laser irradiation unit 300, an observation / imaging unit 70, an operation unit 400, a fixation guidance unit 120, a suction pump, a perfusion suction unit, and the like.
 制御ユニット100は、手術用のレーザ光の照射よりも前に、断層像表示領域で設定された手術部位(領域)に基づき、手術用のレーザ光を照射するための位置情報を設定する。制御ユニット100は、設定された手術部位、手術条件、照射パターンに基づいてレーザ光源ユニット310からレーザ光を出射し、走査ユニット(ガルバノミラー363及び366)を制御して、レーザスポットを眼球組織で移動させ、眼球組織を切断、破砕、あるいは透光体へのフォトチューニングを行う。 The control unit 100 sets position information for irradiating the surgical laser light based on the surgical site (area) set in the tomographic image display area before the surgical laser light irradiation. The control unit 100 emits laser light from the laser light source unit 310 based on the set surgical site, surgical conditions, and irradiation pattern, and controls the scanning units (galvanomirrors 363 and 366) to make the laser spot in the eyeball tissue. The eyeball tissue is cut, crushed, or phototuned to a translucent body.
 本実施例では、前眼部組織を破砕又は切断するための第1の手術モードと、フォトチューニングを行うための第2の手術モードとが、選択的に設定可能である。検者は、操作ユニット400を用いて手術モードを選択できる。この場合、各手術モードに対応する動作プログラム、レーザ照射条件等がメモリに記憶されている。 In this embodiment, a first operation mode for crushing or cutting an anterior segment tissue and a second operation mode for performing phototuning can be selectively set. The examiner can select the operation mode using the operation unit 400. In this case, an operation program corresponding to each operation mode, laser irradiation conditions, and the like are stored in the memory.
 第1の手術モードに設定されると、照射光学系320が、第1のレーザを眼Eに照射するための光学配置に設定される(図9)。この場合、補正光学部材500は、照射光学系520の光路から外れている。第1の手術モードの具体的動作については、例えば、特開2015-195922号公報を参照されたい。 When set to the first surgical mode, the irradiation optical system 320 is set to an optical arrangement for irradiating the eye E with the first laser (FIG. 9). In this case, the correction optical member 500 is out of the optical path of the irradiation optical system 520. For specific operations in the first operation mode, refer to, for example, Japanese Patent Application Laid-Open No. 2015-195922.
 第2の手術モードに設定されると、照射光学系320が、第2のレーザを眼Eに照射するための光学配置に設定される(図10)。この場合、補正光学部材500は、照射光学系520の光路中に配置される。 When set to the second surgical mode, the irradiation optical system 320 is set to an optical arrangement for irradiating the eye E with the second laser (FIG. 10). In this case, the correction optical member 500 is disposed in the optical path of the irradiation optical system 520.
 <術前プランニング>
 図13は第2の手術モードにおける手順の一例を示す図であり、術前プランニングの一例を示す図である。本実施例においては、術前に患者眼Eの断層情報と屈折特性を取得し、フォトチューニングにおけるプランニングを行う。
<Preoperative planning>
FIG. 13 is a diagram illustrating an example of a procedure in the second operation mode, and is a diagram illustrating an example of preoperative planning. In the present embodiment, the tomographic information and refraction characteristics of the patient's eye E are acquired before surgery, and planning for photo tuning is performed.
 術者は、例えば、手術の数日前に、断層撮影デバイスによって眼Eの断層情報を取得する。断層撮影デバイスとしては、装置1とは別筐体として配置された断層撮影デバイスであってもよく、その断層撮影デバイスは、座位状態において患者眼Eを撮影する装置であってもよい。また、断層撮影デバイスとしては、装置1に一体的に設けられた断層撮影デバイス71であってもよく、その断層撮影デバイスは、横に寝た状態において患者眼Eを撮影する装置であってもよい。 The surgeon acquires the tomographic information of the eye E with a tomography device, for example, several days before the operation. The tomography device may be a tomography device arranged as a separate housing from the apparatus 1, and the tomography device may be an apparatus that images the patient's eye E in the sitting position. Further, the tomography device may be a tomography device 71 provided integrally with the apparatus 1, and the tomography device may be an apparatus that images the patient's eye E while lying on its side. Good.
 同様に、術者は、例えば、手術の数日前に、屈折特性デバイスによって眼Eの屈折特性を取得する。屈折特性デバイスとしては、装置1とは別筐体として配置された屈折特性デバイスであってもよく、その屈折特性デバイスは、座位状態において患者眼Eを撮影する装置であってもよい。また、屈折特性デバイスとしては、装置1に一体的に設けられた屈折特性デバイス90であってもよく、その屈折特性デバイスは、横に寝た状態において眼Eの屈折特性を測定するデバイスであってもよい。 Similarly, the surgeon acquires the refractive characteristics of the eye E with the refractive characteristics device, for example, several days before the operation. The refractive characteristic device may be a refractive characteristic device arranged as a separate housing from the apparatus 1, and the refractive characteristic device may be an apparatus that images the patient's eye E in a sitting position. In addition, the refractive characteristic device may be the refractive characteristic device 90 provided integrally with the apparatus 1, and the refractive characteristic device is a device that measures the refractive characteristic of the eye E when lying on its side. May be.
 断層撮影デバイス及び屈折特性デバイスに関して、外部の装置が用いられる場合、外部の装置と装置1との間で、データをやり取りできることが好ましい。例えば、有線または無線によって接続されていてもよいし、フラッシュメモリ等の記憶媒体によってデータをやり取りできてもよい。 Regarding the tomography device and the refractive characteristic device, when an external device is used, it is preferable that data can be exchanged between the external device and the device 1. For example, it may be connected by wire or wireless, and data may be exchanged by a storage medium such as a flash memory.
 制御ユニット100は、断層撮影デバイスによって得られた断層情報と、屈折特性デバイスによって得られた屈折特性とに基づいて、透光体に書き込むべきレンズの屈折特性を求める。さらに、制御ユニット100は、得られた屈折特性に基づいて、透光体600に書き込むレンズパターン610、620を求める。 The control unit 100 obtains the refractive characteristics of the lens to be written on the translucent body based on the tomographic information obtained by the tomographic device and the refractive characteristics obtained by the refractive characteristic device. Further, the control unit 100 obtains lens patterns 610 and 620 to be written on the light transmitting body 600 based on the obtained refraction characteristics.
 眼球固定が完了すると、制御ユニット100は、装置1に設けられた断層撮像デバイス71によって患者眼Eの断層像を取得してもよい。制御ユニット100は、断層撮影デバイスによって術前に撮影した第1の断層画像(図11参照)と、眼球固定後に断層撮像デバイス71によって取得された第2の断層画像(図12参照)との間の位置関係を対応づける。これによって、術前に設定したプランニング内容を、フォトチューニング時での断層画像に対応付けることができる。したがって、制御ユニット100は、術前に設定した手術条件によって手術を行うことができる。なお、外部の断層撮像デバイスによって第1の断層画像が取得される場合、外部の断層撮像デバイスと、断層撮像デバイス71との間での撮像倍率の違いを考慮して、第1の断層画像と第2の断層画像の少なくとも一方の画像倍率が画像処理により調整されてもよい。また、撮像倍率の違いを考慮して、書き込むべきレンズパターンが補正されてもよい。 When the eyeball fixation is completed, the control unit 100 may acquire a tomographic image of the patient's eye E using the tomographic imaging device 71 provided in the apparatus 1. The control unit 100 determines between the first tomographic image (see FIG. 11) taken before the operation by the tomographic device and the second tomographic image (see FIG. 12) acquired by the tomographic imaging device 71 after eyeball fixation. Associate the positional relationship of. Thereby, the planning content set before the operation can be associated with the tomographic image at the time of photo tuning. Therefore, the control unit 100 can perform an operation according to an operation condition set before the operation. Note that when the first tomographic image is acquired by the external tomographic imaging device, the first tomographic image and the tomographic imaging device 71 are considered in consideration of the difference in imaging magnification between the external tomographic imaging device and the tomographic imaging device 71. The image magnification of at least one of the second tomographic images may be adjusted by image processing. Further, the lens pattern to be written may be corrected in consideration of the difference in imaging magnification.
 より具体的には、制御ユニット100は、第1の断層画像における透光体と、第2の断層画像における透光体との間の位置関係を対応付け、第2の断層画像における透光体の位置を基準として、予め設定されたレンズパターンを第2の断層画像における透光体の内部に設定してもよい。制御ユニット100は、第2の断層画像における透光体に対して設定されたレンズパターンに基づいて、レーザの照射条件を設定する。さらに、設定された照射条件に基づいて第2のレーザにてフォトチューニングを行う。 More specifically, the control unit 100 associates the positional relationship between the translucent body in the first tomographic image and the translucent body in the second tomographic image, and transmits the translucent body in the second tomographic image. A lens pattern set in advance may be set inside the translucent body in the second tomographic image on the basis of this position. The control unit 100 sets the laser irradiation condition based on the lens pattern set for the translucent body in the second tomographic image. Furthermore, photo-tuning is performed with the second laser based on the set irradiation conditions.
 第1の断層画像は、レンズパターンのプランニングに用いられ、第2の断層画像は、照射光学系における照射位置の設定に用いられてもよい。制御ユニット100は、例えば、第1の断層画像を用いて取得されたレンズパターンを、第2の断層画像上の透光体に対して設定(整合)することによって照射位置を設定するようにしてもよい。レンズパターンにつき、例えば、第1の断層画像と眼の屈折特性とに基づいてレンズパターンが設定されてもよい。 The first tomographic image may be used for lens pattern planning, and the second tomographic image may be used for setting the irradiation position in the irradiation optical system. For example, the control unit 100 sets (matches) the lens pattern acquired using the first tomographic image with respect to the translucent body on the second tomographic image to set the irradiation position. Also good. For example, the lens pattern may be set based on the first tomographic image and the refractive characteristics of the eye.
 なお、術前に外部の装置によって撮影した患者眼Eのドッキングされていない状態の透光体の位置と、断層撮像デバイス71によって撮影した患者眼Eのドッキング後の透光体の位置とが一致しない場合がある。例えば、水晶体の傾きによって、透光体の位置が変化する。また、眼球インターフェースの影響によって、透光体、眼(例えば、角膜)が変形する場合があり得る。 In addition, the position of the translucent body in the state where the patient's eye E photographed by an external device before the operation is not docked matches the position of the translucent body after the docking of the patient's eye E photographed by the tomographic imaging device 71 May not. For example, the position of the transparent body changes depending on the inclination of the crystalline lens. Further, the translucent body and the eye (for example, the cornea) may be deformed due to the influence of the eyeball interface.
 そこで、上記のように、制御ユニット100は、術前の断層画像に基づいて設定したプランニングの内容を、術中の断層画像に適する内容に補正してもよい。例えば、制御ユニット100は、まず、被検眼における透光体を検出する。続いて、制御ユニット100は、第1の断層画像での透光体を、第2の断層画像での透光体に対応付ける。これによって、第1の断層画像の透光体に対して設定された手術条件は、第2の断層画像に対応付けられる。したがって、制御ユニット100は、予め設定された透光体内部の所定位置に向けて、第2のレーザを照射できる。すなわち、制御ユニット100は、プランニングによって設定された手術条件にてフォトチューニングを実施できる。 Therefore, as described above, the control unit 100 may correct the planning content set based on the pre-operative tomographic image to the content suitable for the intra-operative tomographic image. For example, the control unit 100 first detects a transparent body in the eye to be examined. Subsequently, the control unit 100 associates the translucent body in the first tomographic image with the translucent body in the second tomographic image. Accordingly, the surgical condition set for the translucent body of the first tomographic image is associated with the second tomographic image. Therefore, the control unit 100 can irradiate the second laser toward a predetermined position inside the preset light transmitting body. That is, the control unit 100 can perform phototuning under the surgical conditions set by planning.
 例えば、制御ユニット100は、検出した透光体の位置情報に基づいて第1の断層画像と第2の断層画像を対応付けてもよい。この場合、制御ユニット100は、透光体の表面を画像処理によって検出することによって対応付けを行ってもよい。 For example, the control unit 100 may associate the first tomographic image and the second tomographic image based on the detected position information of the transparent body. In this case, the control unit 100 may perform association by detecting the surface of the transparent body by image processing.
 なお、制御ユニット100は、透光体、眼(例えば、角膜)の変形状態の有無を第2の断層画像に基づいて判定してもよい。変形が検出された場合、制御ユニット100は、変形が検出された場合、変形前の第1の断層画像と、変形後の第2の断層画像との間での変形状態を考慮して照射位置を設定してもよい。 Note that the control unit 100 may determine the presence or absence of a deformed state of the light transmitting body and the eyes (for example, the cornea) based on the second tomographic image. When the deformation is detected, the control unit 100 considers the deformation state between the first tomographic image before the deformation and the second tomographic image after the deformation when the deformation is detected. May be set.
 なお、上記説明においては、術前に患者眼Eの断層情報と屈折特性を取得し、フォトチューニングにおけるプランニングを行ったが、これに限定されない。例えば、術前に患者眼Eの屈折特性を予め取得しておき、制御ユニット100は、予め求められた屈折特性と、眼球固定後に断層撮像デバイス71によって取得された断層画像と、に基づいてプランニングを行うようにしてもよい。 In the above description, the tomographic information and refraction characteristics of the patient's eye E are acquired before the operation and the planning in the photo tuning is performed. However, the present invention is not limited to this. For example, the refractive characteristic of the patient's eye E is acquired in advance before the operation, and the control unit 100 performs planning based on the refractive characteristic obtained in advance and the tomographic image acquired by the tomographic imaging device 71 after fixing the eyeball. May be performed.
 なお、制御ユニット100は、装置1に設けられた屈折特性デバイス90を用いてフォトチューニングにおけるプランニングを行ってもよい。さらに、制御ユニット100は、装置1に設けられた屈折特性デバイス90を用いて、フォトチューニングにおける矯正効果を確認したり、追加的にフォトチューニングを行うようにしてもよい。 Note that the control unit 100 may perform planning in photo tuning using the refractive characteristic device 90 provided in the apparatus 1. Furthermore, the control unit 100 may confirm the correction effect in the photo tuning using the refraction characteristic device 90 provided in the apparatus 1, or may additionally perform the photo tuning.
 1 眼科用レーザ手術装置
 71 断層撮像デバイス
 90 屈折測定デバイス
 100 制御ユニット
 101 CPU(プロセッサ)
 310 レーザ光源ユニット
 312 レーザ光源
 314 波長変換光学素子
 320 レーザ照射光学系
 330 走査ユニット
 500 補正光学部材
 
 
 
 
 
 
DESCRIPTION OF SYMBOLS 1 Ophthalmic laser surgery apparatus 71 Tomographic imaging device 90 Refraction measuring device 100 Control unit 101 CPU (processor)
310 Laser light source unit 312 Laser light source 314 Wavelength conversion optical element 320 Laser irradiation optical system 330 Scan unit 500 Correction optical member




Claims (22)

  1.  患者眼に備えられた透光体の内部にレーザ光を集光させることで前記透光体の屈折率を調整するための眼科用レーザ屈折矯正装置であって、
     レーザ光源ユニットから出射された前記透光体の屈折率を調整するためのレーザ光を、前記患者眼に備えられた透光体の内部にレーザ光を導くための照射光学系と、
     前記照射光学系の光路中に配置され、前記レーザ光の集光位置を走査させる走査ユニットと、
     前記走査ユニットを制御し、予め設定されたマルチレベル位相型回折レンズのレンズパターンに対応する照射領域に前記レーザ光の集光位置を走査させることによって、前記マルチレベル位相型回折レンズを前記透光体の内部に形成する制御手段と、
     を備えることを特徴とする眼科用レーザ屈折矯正装置。
    An ophthalmic laser refraction correction apparatus for adjusting the refractive index of the light transmitting body by condensing the laser light inside the light transmitting body provided in the patient's eye,
    An irradiation optical system for guiding laser light emitted from a laser light source unit to adjust the refractive index of the translucent body, into the translucent body provided in the patient's eye;
    A scanning unit that is disposed in the optical path of the irradiation optical system and scans the condensing position of the laser beam;
    The scanning unit is controlled to scan the condensing position of the laser beam in an irradiation region corresponding to a preset lens pattern of the multilevel phase type diffractive lens, thereby allowing the multilevel phase type diffractive lens to pass through the translucent light. Control means formed inside the body;
    An ophthalmic laser refraction correction apparatus comprising:
  2.  断層撮像デバイスによって撮像された断層像における前記透光体の位置情報と、屈折測定デバイスによって測定された患者眼の屈折特性と、に基づいて前記レンズパターンを設定する設定手段を備えることを特徴とする請求項1の眼科用レーザ屈折矯正装置。 Characterized by comprising setting means for setting the lens pattern based on positional information of the translucent body in a tomographic image captured by a tomographic imaging device and refraction characteristics of a patient's eye measured by a refraction measuring device. The ophthalmic laser refractive correction apparatus according to claim 1.
  3.  患者眼に備えられた透光体の内部にレーザ光を集光させることで前記透光体の屈折率を調整するための眼科用レーザ屈折矯正装置であって、
     レーザ光源ユニットから出射された前記透光体の屈折率を調整するためのレーザ光を、前記患者眼に備えられた透光体の内部にレーザ光を導くための照射光学系と、
     前記照射光学系の光路中に配置され、前記レーザ光の集光位置を走査させる走査ユニットと、
     前記走査ユニットを制御する制御手段であって、
     断層撮像デバイスによって撮像された断層像における前記透光体の位置情報と、屈折測定デバイスによって測定された患者眼の屈折特性とに基づいて予め設定されたレンズパターンに対応する照射領域に前記レーザ光の集光位置を走査させることによって、レンズを前記透光体の内部に形成する制御手段と、
     を備えることを特徴とする眼科用レーザ屈折矯正装置。
    An ophthalmic laser refraction correction apparatus for adjusting the refractive index of the light transmitting body by condensing the laser light inside the light transmitting body provided in the patient's eye,
    An irradiation optical system for guiding laser light emitted from a laser light source unit to adjust the refractive index of the translucent body, into the translucent body provided in the patient's eye;
    A scanning unit that is disposed in the optical path of the irradiation optical system and scans the condensing position of the laser beam;
    Control means for controlling the scanning unit,
    The laser beam is applied to an irradiation region corresponding to a lens pattern set in advance based on positional information of the translucent body in a tomographic image captured by a tomographic imaging device and a refraction characteristic of a patient's eye measured by a refraction measuring device. A control means for forming a lens inside the translucent body by scanning the condensing position of
    An ophthalmic laser refraction correction apparatus comprising:
  4.  前記透光体の位置情報と前記患者眼の屈折特性とに基づいて、屈折率の調整によって前記透光体に形成するレンズパターンを設定する設定手段を備える請求項3の眼科用レーザ屈折矯正装置。 The ophthalmic laser refraction correction apparatus according to claim 3, further comprising setting means for setting a lens pattern to be formed on the translucent body by adjusting a refractive index based on positional information of the translucent body and refractive characteristics of the patient's eye. .
  5.  前記透光体を含む前記患者眼の断層像を撮像する断層撮像デバイスを備え、
     前記設定手段は、断層撮像デバイスによって撮像された断層像に基づいて前記透光体の位置情報を取得することを特徴とする請求項4の眼科用レーザ屈折矯正装置。
    Comprising a tomographic imaging device for capturing a tomographic image of the patient's eye including the translucent body,
    The ophthalmic laser refraction correction apparatus according to claim 4, wherein the setting unit acquires position information of the translucent body based on a tomographic image captured by a tomographic imaging device.
  6.  前記設定手段は、
     書き込むべきレンズパターンを予めプランニングするために取得された第1の断層画像における前記透光体の位置情報である第1の位置情報と、前記レンズパターンがプランニングされた後であって、眼球インターフェースが装着された後に取得された第2の断層画像における前記透光体の位置情報である第2の位置情報とを対応付け、
     第2の断層画像における前記透光体に対して前記レンズパターンを設定することを特徴とする請求項4~5のいずれかの眼科用レーザ屈折矯正装置。
    The setting means includes
    First position information that is position information of the light transmitting body in a first tomographic image acquired to plan a lens pattern to be written in advance, and after the lens pattern is planned, the eyeball interface is Associating with the second position information that is the position information of the translucent body in the second tomographic image acquired after mounting,
    6. The ophthalmic laser refraction correction apparatus according to claim 4, wherein the lens pattern is set for the translucent body in the second tomographic image.
  7.  前記透光体を含む前記患者眼の屈折特性を測定する屈折測定デバイスを備えることを特徴とする請求項3~6のいずれかの眼科用レーザ屈折矯正装置。 The ophthalmic laser refraction correction apparatus according to any one of claims 3 to 6, further comprising a refraction measuring device for measuring a refraction characteristic of the patient's eye including the translucent body.
  8.  前記屈折測定デバイスは、眼球インタフェースが装着された患者眼であって、少なくとも一つの前記レンズが前記透光体の内部に形成された後の前記患者眼の屈折特性を測定する請求項7の眼科用レーザ屈折矯正装置。 The ophthalmology according to claim 7, wherein the refraction measuring device is a patient eye to which an eyeball interface is attached, and measures the refraction characteristic of the patient eye after at least one of the lenses is formed inside the translucent body. Laser refraction straightening device.
  9.  前記患者眼の屈折特性の測定結果を表示手段に表示させる表示制御手段を備えることを特徴とする請求項7~8のいずれかの眼科用レーザ屈折矯正装置。 9. The ophthalmic laser refraction correction apparatus according to claim 7, further comprising display control means for displaying a measurement result of the refractive characteristics of the patient's eye on a display means.
  10.  前記設定手段は、少なくとも一つの前記レンズが前記透光体の内部に形成された後の前記患者眼の屈折特性に基づいて、前記透光体に対して追加的に形成させるレンズパターンを設定することを特徴とする請求項7~9のいずれかの眼科用レーザ屈折矯正装置。 The setting unit sets a lens pattern to be additionally formed on the light transmitting body based on a refractive characteristic of the patient's eye after at least one of the lenses is formed inside the light transmitting body. The ophthalmic laser refraction correction apparatus according to any one of claims 7 to 9.
  11.  請求項1~10のいずれかの前記照射光学系は、ドーナツ状ビームを照射可能であることを特徴とする眼科用レーザ手術装置。 An ophthalmic laser surgical apparatus, wherein the irradiation optical system according to any one of claims 1 to 10 is capable of irradiating a donut-shaped beam.
  12.  患者眼に備えられた透光体の内部にレーザ光が集光されることによって形成されるレンズパターンを設定するための眼科用フォトチューニング設定装置であって、
     断層撮像デバイスによって撮像された断層像における前記透光体の位置情報と、屈折測定デバイスによって測定された患者眼の屈折特性と、に基づいて前記レンズパターンを設定する設定手段を備えることを特徴とする眼科用フォトチューニング設定装置。
    An ophthalmic photo-tuning setting device for setting a lens pattern formed by condensing laser light inside a translucent body provided in a patient's eye,
    Characterized by comprising setting means for setting the lens pattern based on positional information of the translucent body in a tomographic image captured by a tomographic imaging device and refraction characteristics of a patient's eye measured by a refraction measuring device. Ophthalmic photo tuning setting device.
  13.  請求項12の眼科用フォトチューニング設定装置と、
     前記透光体を含む前記患者眼の断層像を撮像する断層撮像デバイスと、
     前記透光体を含む前記患者眼の屈折特性を測定する屈折測定デバイスと、
     を備える眼科用フォトチューニングシステム。
    An ophthalmic photo-tuning setting device according to claim 12,
    A tomographic imaging device for capturing a tomographic image of the patient's eye including the translucent body;
    A refraction measuring device for measuring refraction characteristics of the patient's eye including the translucent body;
    Ophthalmic photo tuning system.
  14.  眼鏡レンズの内部にレーザ光が集光されることによって形成されるレンズパターンを設定するための眼鏡用フォトチューニング設定装置であって、
     眼鏡装用時での眼球全体の屈折特性と、眼鏡装用時における眼鏡レンズに対する前眼部の光学配置情報とに基づいて、前記レンズパターンを設定する設定手段を備えることを特徴とする眼鏡用フォトチューニング設定装置。
    A spectacle photo-tuning setting device for setting a lens pattern formed by condensing laser light inside a spectacle lens,
    Photon tuning for spectacles, comprising setting means for setting the lens pattern based on refractive characteristics of the entire eyeball when wearing spectacles and optical arrangement information of the anterior segment with respect to the spectacle lens when wearing spectacles Setting device.
  15.  請求項1~13のいずれかにおける前記透光体は、眼内に備えられた人工透光体である。 The light transmitting body according to any one of claims 1 to 13 is an artificial light transmitting body provided in an eye.
  16.  請求項1~15のいずれかに記載の装置のプロセッサによって実行されることで、少なくとも、前記制御手段による走査ユニットの制御、及び前記設定手段によるレンズパターンの設定のいずれかを、前記装置に実行させることを特徴とするプログラム。 When executed by the processor of the apparatus according to any one of claims 1 to 15, the apparatus executes at least one of control of the scanning unit by the control means and setting of the lens pattern by the setting means. A program characterized by letting
  17.  レーザ光を患者眼の組織内に集光させることで前記患者眼を処置する眼科用レーザ手術装置であって、
     前記患者眼を処置するための第1のレーザ光と、透光体の屈折率を調整するための第2のレーザ光とを選択的に出射可能なレーザ光源ユニットと、
     照射光学系の光路中に配置され、前記第1のレーザ光又は前記第2のレーザ光の集光位置を走査させる走査ユニットと、
     第1のレーザ光を用いて前記患者眼を処置する第1の手術モードと、透光体の屈折率を調整するための第2のレーザ光を用いてフォトチューニングを行うための第2の手術モードとを切り換えるモード切換手段と、
     前記モード切換手段によって前記第1の手術モードに設定された場合、前記走査ユニットを制御して、前記第1のレーザ光の集光位置を走査させることによって、前記患者眼を処置し、
     前記モード切換手段によって前記第2の手術モードに設定された場合、前記走査ユニットを制御して、予め設定されたレンズパターンに対応する照射領域に前記第2のレーザ光の集光位置を走査させることによって、レンズを前記透光体の内部に形成する制御手段と、
     を備えることを特徴とする眼科用レーザ手術装置。
    An ophthalmic laser surgical apparatus for treating a patient's eye by condensing a laser beam in a tissue of the patient's eye,
    A laser light source unit capable of selectively emitting a first laser beam for treating the patient's eye and a second laser beam for adjusting the refractive index of the transparent body;
    A scanning unit that is arranged in an optical path of an irradiation optical system and scans a condensing position of the first laser beam or the second laser beam;
    A first operation mode for treating the patient's eye using a first laser beam, and a second operation for performing phototuning using a second laser beam for adjusting the refractive index of the light transmitting body Mode switching means for switching between modes,
    When the first switching mode is set by the mode switching means, the patient's eye is treated by controlling the scanning unit to scan the condensing position of the first laser beam,
    When the second operation mode is set by the mode switching means, the scanning unit is controlled to scan the condensing position of the second laser light in the irradiation area corresponding to the preset lens pattern. A control means for forming a lens inside the translucent body,
    An ophthalmic laser surgical apparatus comprising:
  18.  前記第1のレーザ光と前記第2のレーザ光との間のレーザ特性の違いを補正するための補正光学部材を備えることを特徴とする請求項17の眼科用レーザ手術装置。 The ophthalmic laser surgical apparatus according to claim 17, further comprising a correction optical member for correcting a difference in laser characteristics between the first laser beam and the second laser beam.
  19.  前記第1のレーザ光が照射される際、前記補正光学部材が前記照射光学系の光路から外れ、
     前記第2のレーザ光が照射される際、前記補正光学部材が前記照射光学系の光路中に配置されることを特徴とする請求項18の眼科用レーザ手術装置。
    When the first laser beam is irradiated, the correction optical member is out of the optical path of the irradiation optical system,
    19. The ophthalmic laser surgical apparatus according to claim 18, wherein the correction optical member is disposed in an optical path of the irradiation optical system when the second laser light is irradiated.
  20.  前記レーザ照射ユニットは、
     前記第1のレーザ光を発生させるための第1のレーザ光源と、
     前記第2のレーザ光を発生させるための第2のレーザ光源であって第1のレーザ光源とは異なる第2のレーザ光源と、をそれぞれ備えることを特徴とする請求項17~19のいずれかの眼科用レーザ手術装置。
    The laser irradiation unit is
    A first laser light source for generating the first laser light;
    20. A second laser light source for generating the second laser light, the second laser light source being different from the first laser light source, respectively. Laser surgery equipment for ophthalmology.
  21.  前記レーザ照射ユニットは、
     前記第1のレーザ光と第2のレーザ光のいずれか一方に対応する波長のレーザ光を発生させるためのレーザ光源と、
     レーザ光源からのレーザ光の波長を第1のレーザと第2のレーザのいずれか他方に対応する波長に変換するための波長変換光学素子と、を備えることを特徴とする請求項17~20のいずれかの眼科用レーザ手術装置。
    The laser irradiation unit is
    A laser light source for generating a laser beam having a wavelength corresponding to one of the first laser beam and the second laser beam;
    21. A wavelength conversion optical element for converting the wavelength of laser light from a laser light source into a wavelength corresponding to one of the first laser and the second laser. Any ophthalmic laser surgery device.
  22.  前記患者眼を処置するための第1のレーザ光は、近赤外域であって、
     前記第2のレーザ光は、可視域であることを特徴とする請求項17~20のいずれかの眼科用レーザ手術装置。
    The first laser light for treating the patient's eye is in the near infrared region,
    The ophthalmic laser surgical apparatus according to any one of claims 17 to 20, wherein the second laser light is in a visible range.
PCT/JP2017/001609 2016-02-03 2017-01-18 Ophthalmic laser refractive correction device, ophthalmic photo-tuning setting device, ophthalmic photo-tuning system, ophthalmic photo-tuning setting device, program used in same, and ophthalmic laser surgery device WO2017135035A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017565463A JP6973086B2 (en) 2016-02-03 2017-01-18 Laser refraction correction device for ophthalmology, phototuning setting device for ophthalmology, phototuning system for ophthalmology, phototuning setting device for eyeglasses, and programs used for these, laser surgery device for ophthalmology

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016019358 2016-02-03
JP2016-019359 2016-02-03
JP2016-019358 2016-02-03
JP2016019359 2016-02-03

Publications (1)

Publication Number Publication Date
WO2017135035A1 true WO2017135035A1 (en) 2017-08-10

Family

ID=59500653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001609 WO2017135035A1 (en) 2016-02-03 2017-01-18 Ophthalmic laser refractive correction device, ophthalmic photo-tuning setting device, ophthalmic photo-tuning system, ophthalmic photo-tuning setting device, program used in same, and ophthalmic laser surgery device

Country Status (2)

Country Link
JP (1) JP6973086B2 (en)
WO (1) WO2017135035A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800068B (en) * 2021-11-01 2023-04-21 亨泰光學股份有限公司 A myopia management soft contact lens design derive from analysis of overnight orthokeratology procedure

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004513383A (en) * 2000-09-26 2004-04-30 カルホーン ビジョン インコーポレーテッド Adjustable lens power adjustment
JP3554157B2 (en) * 1997-10-09 2004-08-18 キヤノン株式会社 Optical scanning optical system and laser beam printer
JP2005527318A (en) * 2002-05-30 2005-09-15 ヴィズイクス・インコーポレーテッド Variable repetition rate firing scheme for refractive laser systems
JP3991166B2 (en) * 1996-10-25 2007-10-17 株式会社ニコン Illumination optical apparatus and exposure apparatus provided with the illumination optical apparatus
JP4713466B2 (en) * 2003-04-11 2011-06-29 テクノラス ゲーエムベーハー オフタルモロギッシェ システム Method, system and algorithm related to treatment planning for correcting vision
JP5241857B2 (en) * 2008-01-18 2013-07-17 ロウィアク ゲーエムベーハー Laser correction of vision status of natural eye lens
JP2013248304A (en) * 2012-06-02 2013-12-12 Nidek Co Ltd Ophthalmic laser surgical apparatus
JP5385136B2 (en) * 2006-06-28 2014-01-08 ボシュ・アンド・ロム・インコーポレイテッド Optical material and method of modifying the refractive index
WO2014172621A2 (en) * 2013-04-18 2014-10-23 Optimedica Corporation Corneal topography measurement and alignment of corneal surgical procedures
JP5666207B2 (en) * 2010-08-31 2015-02-12 株式会社ニデック Ophthalmic laser treatment device
JP5675781B2 (en) * 2009-05-15 2015-02-25 カール ツアイス メディテック アクチエンゲゼルシャフト Method for marking coagulation sites on the retina and retinal coagulation system
JP2015505710A (en) * 2011-12-19 2015-02-26 アルコン レンゼックス, インコーポレーテッド Intraoperative optical coherence tomography imaging for cataract surgery
US20150057642A1 (en) * 2008-09-26 2015-02-26 Amo Development, Llc. Methods of laser modification on intraocular lens
JP2015163193A (en) * 2010-01-08 2015-09-10 オプティメディカ・コーポレイション System for modifying eye tissues and artificial lens

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991166B2 (en) * 1996-10-25 2007-10-17 株式会社ニコン Illumination optical apparatus and exposure apparatus provided with the illumination optical apparatus
JP3554157B2 (en) * 1997-10-09 2004-08-18 キヤノン株式会社 Optical scanning optical system and laser beam printer
JP2004513383A (en) * 2000-09-26 2004-04-30 カルホーン ビジョン インコーポレーテッド Adjustable lens power adjustment
JP2005527318A (en) * 2002-05-30 2005-09-15 ヴィズイクス・インコーポレーテッド Variable repetition rate firing scheme for refractive laser systems
JP4713466B2 (en) * 2003-04-11 2011-06-29 テクノラス ゲーエムベーハー オフタルモロギッシェ システム Method, system and algorithm related to treatment planning for correcting vision
JP5385136B2 (en) * 2006-06-28 2014-01-08 ボシュ・アンド・ロム・インコーポレイテッド Optical material and method of modifying the refractive index
JP5241857B2 (en) * 2008-01-18 2013-07-17 ロウィアク ゲーエムベーハー Laser correction of vision status of natural eye lens
US20150057642A1 (en) * 2008-09-26 2015-02-26 Amo Development, Llc. Methods of laser modification on intraocular lens
JP5675781B2 (en) * 2009-05-15 2015-02-25 カール ツアイス メディテック アクチエンゲゼルシャフト Method for marking coagulation sites on the retina and retinal coagulation system
JP2015163193A (en) * 2010-01-08 2015-09-10 オプティメディカ・コーポレイション System for modifying eye tissues and artificial lens
JP5666207B2 (en) * 2010-08-31 2015-02-12 株式会社ニデック Ophthalmic laser treatment device
JP2015505710A (en) * 2011-12-19 2015-02-26 アルコン レンゼックス, インコーポレーテッド Intraoperative optical coherence tomography imaging for cataract surgery
JP2013248304A (en) * 2012-06-02 2013-12-12 Nidek Co Ltd Ophthalmic laser surgical apparatus
WO2014172621A2 (en) * 2013-04-18 2014-10-23 Optimedica Corporation Corneal topography measurement and alignment of corneal surgical procedures

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI800068B (en) * 2021-11-01 2023-04-21 亨泰光學股份有限公司 A myopia management soft contact lens design derive from analysis of overnight orthokeratology procedure

Also Published As

Publication number Publication date
JP6973086B2 (en) 2021-11-24
JPWO2017135035A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
US11872162B2 (en) Corneal topography measurement and alignment of corneal surgical procedures
US20220273493A1 (en) Corneal topography measurements and fiducial mark incisions in laser surgical procedures
US11672419B2 (en) Methods and systems for opthalmic measurements and laser surgery and methods and systems for surgical planning based thereon
US11963908B2 (en) Laser eye surgery system calibration
JP6243470B2 (en) Apparatus for creating eye surgery and a detonation incision
US20200038244A1 (en) Optical surface identification for laser eye surgery
US10706560B2 (en) Methods and systems for corneal topography, blink detection and laser eye surgery
US20220287882A1 (en) System and method for laser corneal incisions for keratoplasty procedures
HUE035196T2 (en) A method and a system for laser photoablation within a lens
CA2965004A1 (en) Corneal topography measurements and fiducial mark incisions in laser surgical procedures
JP6973086B2 (en) Laser refraction correction device for ophthalmology, phototuning setting device for ophthalmology, phototuning system for ophthalmology, phototuning setting device for eyeglasses, and programs used for these, laser surgery device for ophthalmology
JP2019041999A (en) Ophthalmological laser apparatus and interface
KR101421654B1 (en) Apparatus for treating ocular and control method thereof
KR101444758B1 (en) Apparatus for treating ocular

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017565463

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747195

Country of ref document: EP

Kind code of ref document: A1