WO2017134906A1 - Sample detection device and sample detection method - Google Patents

Sample detection device and sample detection method Download PDF

Info

Publication number
WO2017134906A1
WO2017134906A1 PCT/JP2016/084910 JP2016084910W WO2017134906A1 WO 2017134906 A1 WO2017134906 A1 WO 2017134906A1 JP 2016084910 W JP2016084910 W JP 2016084910W WO 2017134906 A1 WO2017134906 A1 WO 2017134906A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample analysis
analysis container
substance
fine particles
magnet
Prior art date
Application number
PCT/JP2016/084910
Other languages
French (fr)
Japanese (ja)
Inventor
雅之 小野
糸長 誠
祐一 長谷川
辻田 公二
茂彦 岩間
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Publication of WO2017134906A1 publication Critical patent/WO2017134906A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • the present disclosure relates to a sample detection apparatus and a sample detection method for detecting a membrane vesicle and its inclusion substance from a sample.
  • Exosomes are contained in body fluids such as blood, lymph, saliva, urine, breast milk and semen. Exosomes are roughly spherical in liquid and are covered with a lipid bilayer. In general, exosomes contain multiple proteins of different types. Among them, the protein to be recognized is a protein expressed on the surface of the lipid bilayer membrane, such as a transmembrane protein, an adhesion molecule, a membrane transport protein, a membrane fusion protein, a glycoprotein, and the like.
  • Exosomes are very small, about 100 nm in diameter, so it is difficult to optically detect exosomes directly.
  • exosomes are sandwich-captured from a specimen using a sample analysis disk and a label such as fine particles using an antibody that specifically reacts with a protein (antigen) expressed on the surface of the exosome.
  • a specimen detection method is described in which exosomes are indirectly detected by optical detection.
  • RNA deoxyribonucleic acid
  • miRNA miRNA
  • exosomes and inclusion substances may be denatured by drying. Therefore, it is necessary to take a method of counting exosomes and extracting encapsulated substances separately and evaluating the relationship with each result. Therefore, conventionally, exosome detection and inclusion substance detection are performed using separate specimens. Furthermore, minimally invasive diagnosis is desired in which examination or measurement is performed with as little sample as possible.
  • An object of the embodiment is to provide a specimen detection apparatus and a specimen detection method capable of performing detection of membrane vesicles such as exosomes and detection of encapsulated substances using the same specimen.
  • the unit holding unit that holds the sample analysis container that captures the magnetic fine particles that bind to the detection target substance and stores a solution for extracting the inclusion substance from the detection target substance;
  • a magnetic field generator having a magnet for capturing the magnetic fine particles in the sample analysis container, and magnetic fine particles released from binding to the detection target substance by the solution stored in the sample analysis container.
  • a specimen detection apparatus comprising: a drive unit that drives the magnetic field generation unit so that the magnet is brought close to the sample analysis container so as to be captured in the sample analysis container by the magnetic force of the magnet. Provided.
  • the magnetic fine particles that bind to the detection target substance are captured in the sample analysis container, and the magnetic field is maintained so that the magnetic fine particles are captured in the sample analysis container.
  • the sample detection method is characterized in that the inclusion substance is extracted from the detection target substance in a state where the magnetic fine particles are captured in the sample analysis container by the magnetic field.
  • detection of membrane vesicles such as exosomes and detection of encapsulated substances thereof can be performed with the same sample.
  • FIG. 1 is a top view showing a sample analysis container according to an embodiment.
  • FIG. 2 is a cross-sectional view showing the AA cross section of the sample analysis container of FIG.
  • FIG. 3 is an enlarged perspective view showing a state where the well of FIG. 1 is cut along BB.
  • FIG. 4 is a top view showing the sample detection apparatus of one embodiment.
  • FIG. 5 is a cross-sectional view showing a CC cross section and a DD cross section of the specimen detection apparatus of FIG.
  • FIG. 6 is a top view showing the holding plate of the unit holding portion.
  • FIG. 7 is a top view showing the base substrate of the unit holding part.
  • FIG. 8 is a top view and a cross-sectional view taken along the line AA showing the magnetic field generation unit.
  • FIG. 10 is a cross-sectional view showing a state in which a buffer solution containing an antibody is injected into a well of a sample analysis container.
  • FIG. 11 is a schematic cross-sectional view showing a state in which the antibody is fixed to the track region of the sample analysis disk.
  • FIG. 12 is a schematic cross-sectional view showing a state in which the block layer is formed in the track region.
  • FIG. 13 is a cross-sectional view showing a state in which the sample liquid of the specimen to be detected is injected into the well of the sample analysis container.
  • FIG. 14 is a schematic cross-sectional view showing an exosome.
  • FIG. 10 is a cross-sectional view showing a state in which a buffer solution containing an antibody is injected into a well of a sample analysis container.
  • FIG. 11 is a schematic cross-sectional view showing a state in which the antibody is fixed to the track region of the sample analysis disk.
  • FIG. 12 is a schematic cross-sectional view showing
  • FIG. 15 is a schematic cross-sectional view showing a state in which the exosome is captured in the recess in the track region.
  • FIG. 16 is a cross-sectional view showing a state in which a buffer solution containing magnetic fine particles is injected into the well of the sample analysis container.
  • FIG. 17 is a schematic cross-sectional view showing a state in which exosomes captured in the recesses in the track region and magnetic fine particles are combined.
  • FIG. 18 is a cross-sectional view showing a state where an extract for releasing the inclusion substance from the exosome is injected into the well with the magnet approaching the bottom surface of the well.
  • FIG. 19 is a schematic cross-sectional view showing a state in which magnetic fine particles are captured in the recesses in the track region by the magnetic force of the magnet.
  • FIG. 20 is a top view showing a sample analysis disk in which a plurality of reaction regions are formed.
  • sample analysis container A sample analysis container according to an embodiment will be described with reference to FIGS.
  • FIG. 1 shows the sample analysis container as viewed from the cartridge side.
  • FIG. 2A shows an AA cross section of the sample analysis container of FIG.
  • FIG. 2 (b) shows that the cartridge can be removed from the sample analysis disk.
  • FIG. 3 shows a partially enlarged view of the well of FIG. 1 cut along BB.
  • the sample analysis container 10 includes a sample analysis disk 20 and a cartridge 30. As shown in FIG.
  • the sample analysis container 10 is one form of a sample analysis container for capturing membrane vesicles such as exosomes, which are detection target substances, and magnetic fine particles that label the membrane vesicles.
  • the sample analysis disc 20 has a disk shape equivalent to an optical disc such as a Blu-ray disc (BD), DVD, or compact disc (CD).
  • the sample analysis disk 20 is made of, for example, a resin material such as polycarbonate resin or cycloolefin polymer generally used for optical disks.
  • the convex portion 21 and the concave portion 22 are formed in a spiral shape from the inner peripheral portion toward the outer peripheral portion.
  • the convex portion 21 corresponds to a land of the optical disc.
  • the recess 22 corresponds to a groove of the optical disc.
  • the cartridge 30 has a ring shape.
  • a plurality of cylindrical through holes 31 are formed in the cartridge 30 in the circumferential direction.
  • the plurality of through holes 31 are formed at equal intervals so that the centers thereof are located on the same circumference.
  • the sample analysis container 10 includes a plurality of wells 40 formed by the through holes 31 of the cartridge 30 and the track regions 23 of the sample analysis disk 20.
  • the plurality of wells 40 are formed at equal intervals so that their centers are located on the same circumference.
  • the inner peripheral surface of the through hole 31 constitutes the inner peripheral surface of the well 40
  • the track region 23 of the sample analysis disk 20 constitutes the bottom surface of the well 40.
  • the well 40 is a container for storing a solution such as a sample solution or a buffer solution.
  • the cartridge 30 and the sample analysis disk 20 can be separated. Detection of membrane vesicles such as exosomes, which are detection target substances, specifically, detection of magnetic fine particles labeling the membrane vesicles is performed by the sample analysis disk 20 alone from which the cartridge 30 is separated.
  • FIG. 4 shows a sample analysis container, a unit holder, and a magnetic field generator.
  • FIG. 5A shows a cross section taken along the line CC of FIG.
  • FIG. 5A shows a state in which the magnetic field generator is close to the sample analysis disk.
  • FIG. 5B shows a state in which the magnetic field generator is separated from the sample analysis disk and the unit holder.
  • FIG. 5C shows a cross section taken along line DD of FIG.
  • FIG. 6 shows a holding plate of the unit holding part.
  • FIG. 7 shows the base substrate of the unit holding part.
  • FIG. 8A shows a magnetic field generator.
  • FIG. 8B shows a cross section taken along line AA of FIG. 6, FIG. 7, and FIG. 8 (a) correspond to FIG.
  • FIG. 8B corresponds to FIG.
  • the specimen detection apparatus 50 includes a unit holding unit 60, a magnetic field generation unit 70, and a driving unit 80.
  • the unit holding unit 60 includes a pressing plate 61 and a base substrate 62.
  • the unit holding unit 60 holds the sample analysis container 10 by holding the sample analysis container 10 between the holding plate 61 and the base substrate 62.
  • the pressing plate 61 and the base substrate 62 may be fixed by screws 65 or the like via spacers 64. It is desirable that the height of the spacer 64 be equal to or slightly lower than the height of the sample analysis container 10.
  • the pressing plate 61 has an opening 61a.
  • the openings 61a have an opening diameter such that all the wells 40 are located in the openings 61a.
  • the base substrate 62 has a plurality of through holes 62a.
  • the through hole 62 a is formed corresponding to the well 40.
  • the through hole 62 a is formed to be positioned on the bottom surface of the well 40 in a state where the sample analysis container 10 is held by the unit holding unit 60. That is, the plurality of through holes 62a are formed at equal intervals so that their centers are located on the same circumference.
  • the magnetic field generation unit 70 includes a base 71 and a plurality of magnets 72.
  • the magnet 72 is fixed to the base 71.
  • the magnet 72 is formed corresponding to the well 40. As shown in FIG. Specifically, the magnet 72 is formed so as to be positioned on the bottom surface of the well 40 in a state where the sample analysis container 10 is held by the unit holding unit 60. That is, the plurality of through holes 62a are formed at equal intervals so that their centers are located on the same circumference.
  • the through hole 62 a of the base substrate 62 is an insertion hole for allowing the magnet 72 to approach the bottom surface of the well 40. Therefore, the through hole 62a has a hole diameter slightly larger than the outer diameter of the magnet.
  • the driving unit 80 moves the magnetic field generating unit 70 so that the magnet 72 approaches or separates from the bottom surface of the well 40 of the sample analysis container 10.
  • a motor may be used as the drive unit 80. By bringing the magnet 72 close to the bottom surface of the well 40, a magnetic field can be generated in the well 40 of the sample analysis container 10.
  • sample detection method A sample detection method according to an embodiment will be described with reference to the flowchart shown in FIG. 9 and FIGS. 10 to 20.
  • an exosome will be described as an example of a membrane vesicle that is a detection target substance.
  • step S1 the operator attaches the sample analysis container 10 to the unit holding unit 60 of the sample detection device 50 as shown in FIG.
  • the operator injects the buffer 100 containing the antibody 101 (first binding substance) into the well 40 of the sample analysis container 10.
  • the operator incubates the sample analysis container 10 at an appropriate temperature for an appropriate time. For example, it is allowed to incubate at 4 ° C. overnight, which is used for general immunoassay. As a result, as shown in FIG. 11, the antibody 101 is fixed on the track area 23 of the sample analysis disk 20.
  • the operator discharges the buffer solution 100 from the well 40 and cleans the well 40 with the buffer solution.
  • the antibody 101 not fixed to the track region 23 is removed by this washing.
  • FIG. 10 shows a state in which the magnet 72 of the magnetic field generating unit 70 is close to the bottom surface of the well 40, in step S1, the magnet 72 may be separated from the bottom surface of the well 40.
  • Step S1 is a process required when the operator fixes the antibody 101.
  • step S1 can be omitted.
  • the antibody 101 is fixed to the convex portion 21 and the concave portion 22 constituting the track region 23 by hydrophobic bonding.
  • the method for immobilizing the antibody 101 is not limited to hydrophobic binding.
  • An appropriate chemical treatment may be performed on the track region 23 to fix the antibody 101 to the track region 23 using a covalent bond or the like.
  • a method for fixing the antibody 101 to the track region 23 a method generally used in an immunological assay can be used.
  • step S2 the operator performs a blocking process on the inside of the well 40 in order to prevent nonspecific adsorption of the antigen other than the antigen identification part of the antibody 101. Specifically, the operator injects skim milk diluted with a buffer into the well 40 and shakes the sample analysis container 10 for an appropriate time.
  • Skimmed milk contains a protein that does not adhere to exosomes and is suitable for blocking treatment.
  • the substance used for the blocking treatment is not limited to skim milk as long as it has the same effect.
  • the operator discharges the buffer solution containing skim milk from the well 40 and cleans the well 40 with the buffer solution.
  • a buffer used for washing skim milk may or may not be contained. It is also possible to omit the cleaning.
  • the block layer 102 is formed on the track region 23 as shown in FIG.
  • step S3 the operator injects the sample solution 103 (first solution), which is the specimen to be detected, into the well 40 as shown in FIG. Note that the sample solution 103 may not include the exosome to be detected.
  • the sample solution 103 contains exosomes to be detected will be described.
  • the sample solution 103 contains exosomes 90 to be detected.
  • the exosome 90 is covered with a lipid bilayer membrane 91.
  • a plurality of types of proteins such as transmembrane proteins exist as surface molecules 92.
  • the number of proteins or the position in the lipid bilayer membrane 11 varies depending on the type of exosome and also varies depending on the individual.
  • These surface molecules 92 are used as antigens to recognize exosomes 90 using an antigen-antibody reaction.
  • the existence of various proteins such as CD63, CD9, and Rab-5b as surface molecules 92 that are antigens has been reported in many papers.
  • an encapsulated substance 93 which is a macromolecular biomaterial such as DNA, RNA, miRNA and the like, which is a substance that transmits cell information, is encapsulated in a lipid bilayer membrane 91.
  • the diameter of the exosome 90 is about 100 nm.
  • the operator incubates the sample analysis container 10 at an appropriate temperature for an appropriate time. You may shake at the time of incubation. For example, the sample analysis container 10 is shaken at 37 ° C. for about 2 hours.
  • the surface molecule 92 of the exosome 90 and the antibody 101 immobilized on the track region 23 are specifically bound by the antigen-antibody reaction.
  • the exosome 90 is captured in the track region 23, specifically, the recess 22 of the track region 23.
  • the operator discharges the sample solution 103 from the well 40 and cleans the well 40 with a buffer solution.
  • the exosomes that are not bound to the antibody 101 and are dispersed in the sample solution 103 and the exosomes that are attached to the track region 23 by non-specific adsorption that is not an antigen-antibody reaction are removed by this washing. That is, the exosome 90 to be detected is captured in the concave portion 22 of the track region 23, and the exosome not to be detected is removed by washing.
  • FIG. 13 shows a state in which the magnet 72 of the magnetic field generation unit 70 is close to the bottom surface of the well 40, the magnet 72 may be separated from the bottom surface of the well 40 in steps S2 and S3.
  • step S4 the operator injects into the well 40 a buffer solution 104 (second solution) containing magnetic fine particles (magnetic beads) 110 to be labeled as shown in FIG.
  • the operator causes the sample analysis container 10 to incubate at an appropriate temperature for an appropriate time.
  • the magnetic fine particles 110 are formed of a synthetic resin such as polystyrene formed in a substantially spherical shape.
  • the magnetic fine particles 110 contain a magnetic material 111 such as iron oxide.
  • An antibody 112 (second binding substance) that specifically binds to the surface molecule 92 of the exosome 90 is immobilized on the surface of the magnetic fine particle 110.
  • the diameter of the magnetic fine particle 110 is about 200 nm.
  • the magnetic fine particles 110 are magnetized by the magnetic field of the magnet 72 and move toward the bottom surface of the well 40.
  • the surface molecule 92 of the exosome 90 and the antibody 112 of the magnetic particle 110 are specifically bound by an antigen-antibody reaction.
  • the magnetic fine particles 110 are captured in the concave portion 22 of the track region 23 in the sample analysis container 10, specifically, the well 40, in a state of being coupled to the exosome 90.
  • step S4 shows a state in which the magnet 72 of the magnetic field generating unit 70 is close to the bottom surface of the well 40, but in a step S4, the magnet 72 may be separated from the bottom surface of the well 40.
  • step S ⁇ b> 4 the magnetic particles 110 can be quickly moved toward the bottom surface of the well 40 by bringing the magnet 72 close to the bottom surface of the well 40. Thereby, step S4 can be shortened.
  • the operator operates the specimen detection device 50 so that the magnet 72 is separated from the bottom surface of the well 40 when the magnet 72 is close to the bottom surface of the well 40.
  • the operator drains the buffer solution 104 from the well 40 and cleans the well 40 with the buffer solution.
  • the magnetic fine particles 110 that are not bonded to the exosome 90 and are dispersed in the buffer 104 are removed by this washing. That is, the magnetic fine particles 110 that are bonded to the detection target exosome 90 are captured in the recesses 22 of the track region 23, and excess magnetic fine particles 110 that are not bonded to the detection target exosome 90 are removed by washing.
  • step S5 the operator operates the specimen detection apparatus 50 so that the magnet 72 approaches the bottom surface of the well 40 as shown in FIG.
  • the operator injects the extraction liquid 105 (third solution) for releasing the inclusion substance 93 from the exosome 90 into the well 40.
  • the inclusion substance 93 can be liberated in the extract 105 by dissolving the exosome 90 in the extract 105.
  • the time for releasing the inclusion substance 93 from the exosome 90 is, for example, about several minutes after the extraction liquid 105 is injected.
  • the bond between the exosome 90 and the magnetic fine particle 110 captured in the recess 22 of the track region 23 is released. Since the magnetic fine particles 110 having been released from the coupling are attracted toward the magnet 72 by the magnetic force of the magnet 72, the magnetic particles 110 are captured in the sample analysis container 10, specifically, in the recess 22 of the track region 23 in the well 40. maintain. That is, the drive unit 80 causes the magnet 72 to approach the bottom surface of the well 40, thereby capturing the magnetic fine particles 110 in the recess 22 on the bottom surface in the well 40 by the magnetic force of the magnet 72.
  • step S6 the operator extracts the extracted solution 105 from which the inclusion substance 93 has been released from the well 40 using a pipette or the like, and analyzes the inclusion substance 93 using, for example, a real-time PCR (Real-Time Polymerase Chain Reaction) method.
  • the real-time PCR method is a method in which DNA is amplified using an enzyme reaction by a DNA polymerase, and an increase amount of an amplified product is monitored and analyzed in real time.
  • an amplification curve of an amplification product is obtained by applying a real-time PCR method to a reference sample diluted stepwise.
  • a calibration curve is created by calculating a Ct (Threshold Cycle) value, which is a point where the amplification curve intersects with the set threshold value.
  • the Ct value of the extract 105 extracted from the well 40 can be calculated similarly to the reference sample, and the DNA that is the inclusion substance 93 of the exosome 90 can be qualitatively and quantified from the calculated Ct value and the created calibration curve.
  • the inclusion substance 93 in each well 40 can be analyzed by sampling the extract 105 for each well 40.
  • the operator discharges the remaining extract 105 from the well 40 with the magnet 72 approaching the bottom surface of the well 40, and cleans the well 40 with a buffer solution.
  • the operator dries the well 40.
  • the drying time is about 10 to 15 minutes. Drying may be such that water drops on the bottom surface of the well 40 disappear.
  • the magnetic fine particle 110 maintains the state of being captured in the recess 22 by the magnetic force of the magnet 72.
  • the operator removes the sample analysis container 10 from the unit holder 60 of the specimen detection apparatus 50 in step S7.
  • the operator removes the cartridge 30 of the sample analysis container 10 from the sample analysis disk 20 as shown in FIG.
  • the dried magnetic fine particles 110 maintain a state where they are captured in the recesses 22 by van der Waals force.
  • a plurality of reaction regions 24 are formed in the sample analysis disk 20 corresponding to the plurality of wells 40. That is, the plurality of reaction regions 24 are formed at equal intervals so that their centers are located on the same circumference. Magnetic fine particles 110 are trapped on the recesses 22 of the reaction region 24 (see FIG. 19).
  • the operator optically detects and counts the magnetic fine particles 110 that are the labels captured on the recesses 22 of the reaction region 24 using, for example, an optical pickup or the like, thereby counting the exosomes captured on the recesses 22. 90 can be indirectly detected and counted.
  • laser light is irradiated from the optical pickup arranged outside to the concave portion 22 of the reaction region 24 where the magnetic fine particles 110 are captured.
  • the magnetic fine particles 110 can be detected and counted.
  • the optical pickup includes an objective lens for condensing the laser beam on the track area 23.
  • the sample analysis disk 20 is rotated in the same manner as a general optical disk, and the optical pickup is moved in the radial direction of the sample analysis disk 20 so that the laser beam condensed by the objective lens is tracked (specifically, a concave portion). Scan along 22). From the detection signal obtained by the reflected light from the reaction region 24, the magnetic fine particles 110 captured in the recess 22 are detected and counted.
  • the exosome 90 is captured in the concave portion 22 of the track region 23 in a state of being coupled to the magnetic fine particle 110.
  • the inclusion substance 93 is released from the exosome 90 by the extract 105 while the magnet 72 is brought close to the bottom surface of the well 40.
  • the extracted liquid 105 from which the inclusion substance 93 is released is extracted, and the inclusion substance 93 is analyzed.
  • the sample analysis disk 20 is dried, and the magnetic fine particles 110 trapped in the reaction region 24 are optically detected.
  • the detection of the exosome 90 and the detection of the inclusion substance 93 can be performed with the same sample (sample solution 103).
  • the buffer solution 104 is injected into the well 40 and the magnetic fine particles 110 are combined with the exosome 90.
  • the present invention is not limited to this. Is not to be done.
  • the sample solution 103 and the buffer solution 104 may be injected into the well 40 and mixed, or the sample solution 103 and the buffer solution 104 are mixed in another container such as a microtube or a column, and the mixture solution is added to the well. 40 may be injected.
  • the sample analysis container 10 includes the sample analysis disk 20 and the cartridge 30.
  • a microplate may be used as the sample analysis container 10. By releasing the inclusion substance 93 from the exosome 90 in a state where the magnet 72 is brought close to the bottom surface of the well of the microplate, the same effect as in the present embodiment can be obtained.
  • a test tube such as a macro tube or a petri dish may be used as the sample analysis container 10.
  • the magnetic fine particles 110 only need to be able to maintain the state captured in the sample analysis container 10 by the magnetic force of the magnet 72.
  • the unit holding unit 60 is not limited to this embodiment as long as the well 40 and the sample analysis disk 20 can be kept in close contact so that the liquid does not leak due to separation.
  • the sample analysis container 10 may be held by various lock mechanisms such as a claw for engaging the cartridge 30 and the sample analysis disk 20.
  • the sample analysis container 10 When the sample analysis container 10 is placed on the sample detection device 50, the sample analysis container 10 may be held by a holding structure on the sample analysis container 10 side.
  • the present invention can be used when detecting a membrane vesicle and its inclusion substance from a specimen.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

A sample detection device 50 is provided with a unit retention part 60, a magnetic field generating part 70, and a drive part 80. The unit retention part 60 retains a specimen analysis container 10 for capturing magnetic fine particles bonded to a detection object substance and storing a solution (extraction liquid 105) for extracting an included substance from the detection object substance. The magnetic field generating part 70 has a magnet 72 for capturing the magnetic fine particles in the specimen analysis container 10. The drive part 80 drives the magnetic field generating part 70 so as to cause the magnet 72 to approach the specimen analysis container 10 so that magnetic fine particles released from bonding with the detection object substance by the solution stored in the specimen analysis container 10 are captured in the specimen analysis container 10 by the magnetic force of the magnet 72.

Description

検体検出用装置及び検体検出方法Specimen detection apparatus and specimen detection method
 本開示は、検体から膜小胞とその内包物質とを検出するための検体検出用装置及び検体検出方法に関する。 The present disclosure relates to a sample detection apparatus and a sample detection method for detecting a membrane vesicle and its inclusion substance from a sample.
 検体から疾病と関連付けられている特定の抗原(または抗体)をバイオマーカとして検出して分析することで、疾病の発見または治療の効果等を定量的に分析することが広く行われている。近年、エクソソーム(exosome)と称されている微小な膜小胞が注目されている。エクソソーム等の膜小胞は、内包物質が膜で包まれた構造を有する。なお、エクソソームは、マイクロベシクル、細胞外小胞と称されることもあり、複数の呼称が存在する。 It is widely performed to quantitatively analyze the discovery of a disease or the effect of treatment by detecting and analyzing a specific antigen (or antibody) associated with the disease from a specimen as a biomarker. In recent years, minute membrane vesicles called exosomes have attracted attention. Membrane vesicles such as exosomes have a structure in which an encapsulated substance is wrapped with a membrane. The exosome is sometimes called a microvesicle or an extracellular vesicle, and there are a plurality of names.
 エクソソームは、血液,リンパ液,唾液,尿,母乳,精液等の体液に含まれている。エクソソームは、液体中では概略球形であり、脂質二重膜で覆われている。一般的に、エクソソームは、種類の異なる複数のたんぱく質を含んでいる。その中で、認識対象となるたんぱく質は、脂質二重膜の表面に発現しているたんぱく質であり、例えば、膜貫通型たんぱく質、接着分子、膜輸送たんぱく質、膜融合たんぱく質、糖たんぱく質等である。 Exosomes are contained in body fluids such as blood, lymph, saliva, urine, breast milk and semen. Exosomes are roughly spherical in liquid and are covered with a lipid bilayer. In general, exosomes contain multiple proteins of different types. Among them, the protein to be recognized is a protein expressed on the surface of the lipid bilayer membrane, such as a transmembrane protein, an adhesion molecule, a membrane transport protein, a membrane fusion protein, a glycoprotein, and the like.
 エクソソームは直径が100nm程度と非常に小さいため、エクソソームを光学的に直接検出することは難しい。 Exosomes are very small, about 100 nm in diameter, so it is difficult to optically detect exosomes directly.
 特許文献1には、検体から、エクソソームの表面に発現しているたんぱく質(抗原)と特異的に反応する抗体を用いて試料分析用ディスクと微粒子等の標識とでエクソソームをサンドイッチ捕獲し、標識を光学的に検出することで、エクソソームを間接的に検出する検体検出方法が記載されている。 In Patent Document 1, exosomes are sandwich-captured from a specimen using a sample analysis disk and a label such as fine particles using an antibody that specifically reacts with a protein (antigen) expressed on the surface of the exosome. A specimen detection method is described in which exosomes are indirectly detected by optical detection.
特開2013-134083号公報JP 2013-134083 A
 一方、細胞情報を伝達する物質とされるDNA(デオキシボ核酸)、RNA(リボ核酸)、miRNA(マイクロRNA)等の高分子生体物質は、エクソソームに内包された状態となって体内で転移しているとされる研究が報告されている。そこで、体液中のエクソソームの個数とその内包物質の個数の関係性と癌またはアルツハイマー等の重大疾病との相関に注目が集まっている。一般的に、生体物質の反応は安定性が低い場合もあるため、エクソソームの検出(計測)と内包物質の検出(計測)とを同一の検体で行うことが望ましい。 On the other hand, macromolecular biological substances such as DNA (deoxyribonucleic acid), RNA (ribonucleic acid), and miRNA (microRNA), which are substances that transmit cellular information, become encapsulated in exosomes and metastasize in the body. Some studies have been reported. Thus, attention has been focused on the correlation between the number of exosomes in body fluids and the number of encapsulated substances and a serious disease such as cancer or Alzheimer's. In general, since the reaction of a biological substance may be low in stability, it is desirable to perform exosome detection (measurement) and inclusion substance detection (measurement) on the same specimen.
 特許文献1に記載されているような方法で、エクソソームを高精度に計数することが可能である。エクソソームを計数するには検体を乾燥させた後に行う必要がある。従って、エクソソームの内包物質を抽出するためには、エクソソームの計数後に基板表面に捕捉したエクソソームと試薬とを再度反応させる必要がある。 It is possible to count exosomes with high accuracy by the method described in Patent Document 1. In order to count exosomes, it is necessary to dry the specimen. Therefore, in order to extract the exosome-encapsulating substance, it is necessary to react the exosome captured on the substrate surface with the reagent again after counting the exosome.
 また、エクソソーム及び内包物質などは乾燥により変性する可能性がある。そのため、エクソソームの計数と内包物質の抽出は別々に行い、それぞれの結果で関係性を評価するという方法をとらなければならない。従って、従来では、エクソソームの検出と内包物質の検出とを別々の検体を用いて行っている。さらに、検査または測定等をできる限り少ない量の検体で行う低侵襲診断が望まれている。 Also, exosomes and inclusion substances may be denatured by drying. Therefore, it is necessary to take a method of counting exosomes and extracting encapsulated substances separately and evaluating the relationship with each result. Therefore, conventionally, exosome detection and inclusion substance detection are performed using separate specimens. Furthermore, minimally invasive diagnosis is desired in which examination or measurement is performed with as little sample as possible.
 実施形態は、エクソソーム等の膜小胞の検出とその内包物質の検出とを同一の検体で行うことができる検体検出用装置及び検体検出方法を提供することを目的とする。 An object of the embodiment is to provide a specimen detection apparatus and a specimen detection method capable of performing detection of membrane vesicles such as exosomes and detection of encapsulated substances using the same specimen.
 実施形態の第1の態様によれば、検出対象物質と結合する磁気微粒子を捕捉し、前記検出対象物質から内包物質を抽出するための溶液を溜める試料分析用容器を保持するユニット保持部と、前記磁気微粒子を前記試料分析用容器内に捕捉するための磁石を有する磁界発生部と、前記試料分析用容器に溜められている前記溶液によって前記検出対象物質との結合が解除された磁気微粒子を前記磁石の磁力によって前記試料分析用容器内に捕捉させるよう前記磁石を前記試料分析用容器に接近させるように前記磁界発生部を駆動する駆動部とを備えることを特徴とする検体検出用装置が提供される。 According to the first aspect of the embodiment, the unit holding unit that holds the sample analysis container that captures the magnetic fine particles that bind to the detection target substance and stores a solution for extracting the inclusion substance from the detection target substance; A magnetic field generator having a magnet for capturing the magnetic fine particles in the sample analysis container, and magnetic fine particles released from binding to the detection target substance by the solution stored in the sample analysis container. A specimen detection apparatus comprising: a drive unit that drives the magnetic field generation unit so that the magnet is brought close to the sample analysis container so as to be captured in the sample analysis container by the magnetic force of the magnet. Provided.
 実施形態の第2の態様によれば、検出対象物質と結合する磁気微粒子を試料分析用容器内に捕捉させ、前記磁気微粒子が前記試料分析用容器内に捕捉された状態を維持するように磁界を発生させ、前記磁界により前記磁気微粒子が前記試料分析用容器内に捕捉されている状態で、前記検出対象物質から内包物質を抽出することを特徴とする検体検出方法が提供される。 According to the second aspect of the embodiment, the magnetic fine particles that bind to the detection target substance are captured in the sample analysis container, and the magnetic field is maintained so that the magnetic fine particles are captured in the sample analysis container. The sample detection method is characterized in that the inclusion substance is extracted from the detection target substance in a state where the magnetic fine particles are captured in the sample analysis container by the magnetic field.
 実施形態の検体検出用装置及び検体検出方法によれば、エクソソーム等の膜小胞の検出とその内包物質の検出とを同一の検体で行うことができる。 According to the sample detection apparatus and the sample detection method of the embodiment, detection of membrane vesicles such as exosomes and detection of encapsulated substances thereof can be performed with the same sample.
図1は、一実施形態の試料分析用容器を示す上面図である。FIG. 1 is a top view showing a sample analysis container according to an embodiment. 図2は、図1の試料分析用容器のA-A断面を示す断面図である。FIG. 2 is a cross-sectional view showing the AA cross section of the sample analysis container of FIG. 図3は、図1のウェルをB-Bで切断した状態を示す拡大斜視図である。FIG. 3 is an enlarged perspective view showing a state where the well of FIG. 1 is cut along BB. 図4は、一実施形態の検体検出用装置を示す上面図である。FIG. 4 is a top view showing the sample detection apparatus of one embodiment. 図5は、図4の検体検出用装置のC-C断面及びD-D断面を示す断面図である。FIG. 5 is a cross-sectional view showing a CC cross section and a DD cross section of the specimen detection apparatus of FIG. 図6は、ユニット保持部の押さえ板を示す上面図である。FIG. 6 is a top view showing the holding plate of the unit holding portion. 図7は、ユニット保持部のベース基板を示す上面図である。FIG. 7 is a top view showing the base substrate of the unit holding part. 図8は、磁界発生部を示す上面図及びA-A断面図である。FIG. 8 is a top view and a cross-sectional view taken along the line AA showing the magnetic field generation unit. 図9は、一実施形態の検体検出方法を説明するためのフローチャートである。FIG. 9 is a flowchart for explaining the sample detection method according to the embodiment. 図10は、試料分析用容器のウェルに抗体を含む緩衝液が注入された状態を示す断面図である。FIG. 10 is a cross-sectional view showing a state in which a buffer solution containing an antibody is injected into a well of a sample analysis container. 図11は、抗体が試料分析用ディスクのトラック領域に固定されている状態を示す模式的な断面図である。FIG. 11 is a schematic cross-sectional view showing a state in which the antibody is fixed to the track region of the sample analysis disk. 図12は、ブロック層がトラック領域に形成されている状態を示す模式的な断面図である。FIG. 12 is a schematic cross-sectional view showing a state in which the block layer is formed in the track region. 図13は、試料分析用容器のウェルに検出対象の検体の試料液が注入された状態を示す断面図である。FIG. 13 is a cross-sectional view showing a state in which the sample liquid of the specimen to be detected is injected into the well of the sample analysis container. 図14は、エクソソームを示す模式的な断面図である。FIG. 14 is a schematic cross-sectional view showing an exosome. 図15は、エクソソームがトラック領域の凹部に捕捉されている状態を示す模式的な断面図である。FIG. 15 is a schematic cross-sectional view showing a state in which the exosome is captured in the recess in the track region. 図16は、試料分析用容器のウェルに磁気微粒子を含む緩衝液が注入された状態を示す断面図である。FIG. 16 is a cross-sectional view showing a state in which a buffer solution containing magnetic fine particles is injected into the well of the sample analysis container. 図17は、トラック領域の凹部に捕捉されているエクソソームと磁気微粒子とが結合した状態を示す模式的な断面図である。FIG. 17 is a schematic cross-sectional view showing a state in which exosomes captured in the recesses in the track region and magnetic fine particles are combined. 図18は、磁石をウェルの底面に接近させた状態で、エクソソームから内包物質を遊離させるための抽出液がウェルに注入された状態を示す断面図である。FIG. 18 is a cross-sectional view showing a state where an extract for releasing the inclusion substance from the exosome is injected into the well with the magnet approaching the bottom surface of the well. 図19は、磁気微粒子が磁石の磁力によってトラック領域の凹部に捕捉されている状態を示す模式的な断面図である。FIG. 19 is a schematic cross-sectional view showing a state in which magnetic fine particles are captured in the recesses in the track region by the magnetic force of the magnet. 図20は、複数の反応領域が形成された試料分析用ディスクを示す上面図である。FIG. 20 is a top view showing a sample analysis disk in which a plurality of reaction regions are formed.
[試料分析用容器]
 図1~図3を用いて、一実施形態の試料分析用容器を説明する。
[Sample analysis container]
A sample analysis container according to an embodiment will be described with reference to FIGS.
 図1は試料分析用容器をカートリッジ側から見た状態を示している。図2(a)は図1の試料分析用容器のA-A断面を示している。図2(b)はカートリッジが試料分析用ディスクに対して取り外しできることを示している。図3は図1のウェルをB-Bで切断した状態を部分的に拡大して示している。 FIG. 1 shows the sample analysis container as viewed from the cartridge side. FIG. 2A shows an AA cross section of the sample analysis container of FIG. FIG. 2 (b) shows that the cartridge can be removed from the sample analysis disk. FIG. 3 shows a partially enlarged view of the well of FIG. 1 cut along BB.
 図1及び図2(a)に示すように、試料分析用容器10は、試料分析用ディスク20とカートリッジ30とを備える。試料分析用容器10は、検出対象物質であるエクソソーム等の膜小胞、及び膜小胞を標識する磁気微粒子を捕捉するための試料分析用容器の一形態である。 1 and 2A, the sample analysis container 10 includes a sample analysis disk 20 and a cartridge 30. As shown in FIG. The sample analysis container 10 is one form of a sample analysis container for capturing membrane vesicles such as exosomes, which are detection target substances, and magnetic fine particles that label the membrane vesicles.
 試料分析用ディスク20は、例えば、ブルーレイディスク(BD)、DVD、コンパクトディスク(CD)等の光ディスクと同等の円板形状を有する。試料分析用ディスク20は、例えば、一般的に光ディスクに用いられるポリカーボネート樹脂またはシクロオレフィンポリマー等の樹脂材料で形成されている。 The sample analysis disc 20 has a disk shape equivalent to an optical disc such as a Blu-ray disc (BD), DVD, or compact disc (CD). The sample analysis disk 20 is made of, for example, a resin material such as polycarbonate resin or cycloolefin polymer generally used for optical disks.
 図3に示すように、試料分析用ディスク20の表面には、凸部21と凹部22とが半径方向に交互に配置されたトラック領域23が形成されている。凸部21及び凹部22は、内周部から外周部に向かってスパイラル状に形成されている。凸部21は光ディスクのランドに相当する。凹部22は光ディスクのグルーブに相当する。 As shown in FIG. 3, on the surface of the sample analysis disk 20, track regions 23 in which convex portions 21 and concave portions 22 are alternately arranged in the radial direction are formed. The convex portion 21 and the concave portion 22 are formed in a spiral shape from the inner peripheral portion toward the outer peripheral portion. The convex portion 21 corresponds to a land of the optical disc. The recess 22 corresponds to a groove of the optical disc.
 図1に示すように、カートリッジ30はリング形状を有する。カートリッジ30には、周方向に複数の円筒状の貫通孔31が形成されている。複数の貫通孔31は、それぞれの中心が同一円周上に位置するように等間隔に形成されている。 As shown in FIG. 1, the cartridge 30 has a ring shape. A plurality of cylindrical through holes 31 are formed in the cartridge 30 in the circumferential direction. The plurality of through holes 31 are formed at equal intervals so that the centers thereof are located on the same circumference.
 図2(a)及び図3に示すように、試料分析用容器10は、カートリッジ30の貫通孔31と試料分析用ディスク20のトラック領域23とによって形成される複数のウェル40を有する。複数のウェル40は、それぞれの中心が同一円周上に位置するように等間隔に形成されている。貫通孔31の内周面はウェル40の内周面を構成し、試料分析用ディスク20のトラック領域23はウェル40の底面を構成している。ウェル40は試料液または緩衝液等の溶液を溜めるための容器である。 2A and 3, the sample analysis container 10 includes a plurality of wells 40 formed by the through holes 31 of the cartridge 30 and the track regions 23 of the sample analysis disk 20. The plurality of wells 40 are formed at equal intervals so that their centers are located on the same circumference. The inner peripheral surface of the through hole 31 constitutes the inner peripheral surface of the well 40, and the track region 23 of the sample analysis disk 20 constitutes the bottom surface of the well 40. The well 40 is a container for storing a solution such as a sample solution or a buffer solution.
 貫通孔31と試料分析用ディスク20の間に、シリコーンゴム等の弾性変形部材で作製したパッキンを配置することにより、溶液の漏れる可能性を低減することができる。 By placing a packing made of an elastically deformable member such as silicone rubber between the through hole 31 and the sample analysis disk 20, the possibility of solution leakage can be reduced.
 図2(b)に示すように、カートリッジ30と試料分析用ディスク20とは分離することができる。検出対象物質であるエクソソーム等の膜小胞の検出、具体的には膜小胞を標識する磁気微粒子の検出は、カートリッジ30が分離された試料分析用ディスク20単体で行われる。 As shown in FIG. 2B, the cartridge 30 and the sample analysis disk 20 can be separated. Detection of membrane vesicles such as exosomes, which are detection target substances, specifically, detection of magnetic fine particles labeling the membrane vesicles is performed by the sample analysis disk 20 alone from which the cartridge 30 is separated.
[検体検出用装置]
 図4~図8を用いて、一実施形態の検体検出用装置を説明する。
[Specimen detection device]
A sample detection apparatus according to an embodiment will be described with reference to FIGS.
 図4は試料分析用容器、ユニット保持部、及び磁界発生部を示している。図5(a)は図4のC-Cにおける断面を示している。図5(a)は磁界発生部が試料分析用ディスクに接近した状態を示している。図5(b)は磁界発生部が試料分析用ディスク及びユニット保持部から離隔した状態を示している。図5(c)は図4のD-Dにおける断面を示している。図6はユニット保持部の押さえ板を示している。図7はユニット保持部のベース基板を示している。図8(a)は磁界発生部を示している。図8(b)は図8(a)のA-Aにおける断面を示している。図6、図7、及び図8(a)は図4に対応する。図8(b)は図5(a)に対応する。 FIG. 4 shows a sample analysis container, a unit holder, and a magnetic field generator. FIG. 5A shows a cross section taken along the line CC of FIG. FIG. 5A shows a state in which the magnetic field generator is close to the sample analysis disk. FIG. 5B shows a state in which the magnetic field generator is separated from the sample analysis disk and the unit holder. FIG. 5C shows a cross section taken along line DD of FIG. FIG. 6 shows a holding plate of the unit holding part. FIG. 7 shows the base substrate of the unit holding part. FIG. 8A shows a magnetic field generator. FIG. 8B shows a cross section taken along line AA of FIG. 6, FIG. 7, and FIG. 8 (a) correspond to FIG. FIG. 8B corresponds to FIG.
 図4及び図5(a)に示すように、検体検出用装置50は、ユニット保持部60と磁界発生部70と駆動部80とを備える。 4 and 5A, the specimen detection apparatus 50 includes a unit holding unit 60, a magnetic field generation unit 70, and a driving unit 80.
 ユニット保持部60は、押さえ板61とベース基板62とを備える。ユニット保持部60は、押さえ板61とベース基板62とで試料分析用容器10を挟持することによって試料分析用容器10を保持する。 The unit holding unit 60 includes a pressing plate 61 and a base substrate 62. The unit holding unit 60 holds the sample analysis container 10 by holding the sample analysis container 10 between the holding plate 61 and the base substrate 62.
 図4及び図5(c)に示すように、押さえ板61とベース基板62とをスペーサ64を介してねじ65等により固定するようにしてもよい。スペーサ64の高さは試料分析用容器10の高さと同等または若干低くすることが望ましい。 As shown in FIGS. 4 and 5C, the pressing plate 61 and the base substrate 62 may be fixed by screws 65 or the like via spacers 64. It is desirable that the height of the spacer 64 be equal to or slightly lower than the height of the sample analysis container 10.
 図6に示すように、押さえ板61は開口部61aを有する。図4に示すように、試料分析用容器10がユニット保持部60に保持されている状態において、開口部61aは、全てのウェル40が開口部61a内に位置するような開口径を有する。 As shown in FIG. 6, the pressing plate 61 has an opening 61a. As shown in FIG. 4, in a state where the sample analysis container 10 is held by the unit holder 60, the openings 61a have an opening diameter such that all the wells 40 are located in the openings 61a.
 図7に示すように、ベース基板62は複数の貫通孔62aを有する。図5(b)に示すように、貫通孔62aはウェル40に対応して形成されている。具体的には、貫通孔62aは、試料分析用容器10がユニット保持部60に保持されている状態において、ウェル40の底面に位置するように形成されている。即ち、複数の貫通孔62aは、それぞれの中心が同一円周上に位置するように等間隔に形成されている。 As shown in FIG. 7, the base substrate 62 has a plurality of through holes 62a. As shown in FIG. 5B, the through hole 62 a is formed corresponding to the well 40. Specifically, the through hole 62 a is formed to be positioned on the bottom surface of the well 40 in a state where the sample analysis container 10 is held by the unit holding unit 60. That is, the plurality of through holes 62a are formed at equal intervals so that their centers are located on the same circumference.
 図8(a)及び図8(b)に示すように、磁界発生部70は、基台71と複数の磁石72とを備える。磁石72は基台71に固定されている。 8A and 8B, the magnetic field generation unit 70 includes a base 71 and a plurality of magnets 72. The magnet 72 is fixed to the base 71.
 図4及び図5(a)に示すように、磁石72はウェル40に対応して形成されている。具体的には、磁石72は、試料分析用容器10がユニット保持部60に保持されている状態において、ウェル40の底面に位置するように形成されている。即ち、複数の貫通孔62aは、それぞれの中心が同一円周上に位置するように等間隔に形成されている。なお、ベース基板62の貫通孔62aは、磁石72をウェル40の底面に接近させるための挿入孔である。そのため、貫通孔62aは、磁石の外径よりも若干大きい孔径を有する。 4 and 5A, the magnet 72 is formed corresponding to the well 40. As shown in FIG. Specifically, the magnet 72 is formed so as to be positioned on the bottom surface of the well 40 in a state where the sample analysis container 10 is held by the unit holding unit 60. That is, the plurality of through holes 62a are formed at equal intervals so that their centers are located on the same circumference. The through hole 62 a of the base substrate 62 is an insertion hole for allowing the magnet 72 to approach the bottom surface of the well 40. Therefore, the through hole 62a has a hole diameter slightly larger than the outer diameter of the magnet.
 図5(a)及び図5(b)に示すように、駆動部80は、磁石72が試料分析用容器10のウェル40の底面に接近したり、離隔したりするように磁界発生部70を駆動させる。駆動部80としてモータを用いてもよい。磁石72をウェル40の底面に接近させることにより、試料分析用容器10のウェル40内に磁界を発生させることができる。 As shown in FIGS. 5A and 5B, the driving unit 80 moves the magnetic field generating unit 70 so that the magnet 72 approaches or separates from the bottom surface of the well 40 of the sample analysis container 10. Drive. A motor may be used as the drive unit 80. By bringing the magnet 72 close to the bottom surface of the well 40, a magnetic field can be generated in the well 40 of the sample analysis container 10.
[検体検出方法]
 図9に示すフローチャート、及び図10~図20を用いて、一実施形態の検体検出方法を説明する。なお、本実施形態の検体検出方法では、検出対象物質である膜小胞としてエクソソームを例に挙げて説明する。
[Sample detection method]
A sample detection method according to an embodiment will be described with reference to the flowchart shown in FIG. 9 and FIGS. 10 to 20. In the sample detection method of the present embodiment, an exosome will be described as an example of a membrane vesicle that is a detection target substance.
 オペレータは、ステップS1にて、図10に示すように、試料分析用容器10を検体検出用装置50のユニット保持部60に装着する。オペレータは、抗体101(第1の結合物質)を含む緩衝液100を、試料分析用容器10のウェル40に注入する。 In step S1, the operator attaches the sample analysis container 10 to the unit holding unit 60 of the sample detection device 50 as shown in FIG. The operator injects the buffer 100 containing the antibody 101 (first binding substance) into the well 40 of the sample analysis container 10.
 オペレータは、試料分析用容器10を、適切な時間、適切な温度でインキュベートさせる。例えば、一般的な免疫学的測定で用いられる、4℃で一晩ほど静置してインキュベートさせる。これにより、図11に示すように、抗体101は試料分析用ディスク20のトラック領域23上に固定される。 The operator incubates the sample analysis container 10 at an appropriate temperature for an appropriate time. For example, it is allowed to incubate at 4 ° C. overnight, which is used for general immunoassay. As a result, as shown in FIG. 11, the antibody 101 is fixed on the track area 23 of the sample analysis disk 20.
 オペレータは、ウェル40から緩衝液100を排出し、ウェル40を緩衝液で洗浄する。トラック領域23に固定されなかった抗体101はこの洗浄によって除去される。 The operator discharges the buffer solution 100 from the well 40 and cleans the well 40 with the buffer solution. The antibody 101 not fixed to the track region 23 is removed by this washing.
 なお、図10では磁界発生部70の磁石72がウェル40の底面に接近した状態を示しているが、ステップS1では、磁石72がウェル40の底面から離隔した状態でもよい。 Although FIG. 10 shows a state in which the magnet 72 of the magnetic field generating unit 70 is close to the bottom surface of the well 40, in step S1, the magnet 72 may be separated from the bottom surface of the well 40.
 ステップS1は、オペレータが抗体101を固定させる場合に必要な工程である。工場等で事前に抗体101が固定されている試料分析用容器10または試料分析用ディスク20を使用する場合は、ステップS1を省略することができる。 Step S1 is a process required when the operator fixes the antibody 101. When using the sample analysis container 10 or the sample analysis disk 20 to which the antibody 101 is fixed in advance in a factory or the like, step S1 can be omitted.
 図11に示すように、抗体101はトラック領域23を構成する凸部21及び凹部22に疎水結合によって固定される。抗体101の固定方法は疎水結合に限定されない。トラック領域23に適切な化学的処理を行い、共有結合等を用いて抗体101をトラック領域23に固定させてもよい。トラック領域23に抗体101を固定させる方法は、免疫学測定法で一般的に使われている方法を用いることができる。 As shown in FIG. 11, the antibody 101 is fixed to the convex portion 21 and the concave portion 22 constituting the track region 23 by hydrophobic bonding. The method for immobilizing the antibody 101 is not limited to hydrophobic binding. An appropriate chemical treatment may be performed on the track region 23 to fix the antibody 101 to the track region 23 using a covalent bond or the like. As a method for fixing the antibody 101 to the track region 23, a method generally used in an immunological assay can be used.
 オペレータは、ステップS2にて、抗体101の抗原識別部以外に抗原が非特異的に吸着することを防ぐため、ウェル40の内部をブロッキング処理する。具体的には、オペレータは、緩衝液で希釈されたスキムミルクをウェル40に注入し、試料分析用容器10を適切な時間、振盪させる。 In step S2, the operator performs a blocking process on the inside of the well 40 in order to prevent nonspecific adsorption of the antigen other than the antigen identification part of the antibody 101. Specifically, the operator injects skim milk diluted with a buffer into the well 40 and shakes the sample analysis container 10 for an appropriate time.
 スキムミルクはエクソソームに付着しないたんぱく質を含むので、ブロッキング処理に好適である。なお、ブロッキング処理に用いる物質は、同様の効果を奏するものであればスキムミルクに限定されない。 Skimmed milk contains a protein that does not adhere to exosomes and is suitable for blocking treatment. In addition, the substance used for the blocking treatment is not limited to skim milk as long as it has the same effect.
 オペレータは、ウェル40からスキムミルクを含む緩衝液を排出し、ウェル40を緩衝液で洗浄する。洗浄に用いる緩衝液としては、スキムミルクを含んでいてもよいし、含んでいなくてもよい。また、洗浄を省略することも可能である。 The operator discharges the buffer solution containing skim milk from the well 40 and cleans the well 40 with the buffer solution. As a buffer used for washing, skim milk may or may not be contained. It is also possible to omit the cleaning.
 これにより、図12に示すように、ブロック層102がトラック領域23上に形成される。 Thereby, the block layer 102 is formed on the track region 23 as shown in FIG.
 オペレータは、ステップS3にて、図13に示すように、検出対象の検体である試料液103(第1の溶液)をウェル40に注入する。なお、試料液103には検出対象のエクソソームが含まれていない場合もある。以下に、試料液103に検出対象のエクソソームが含まれている場合について説明する。 In step S3, the operator injects the sample solution 103 (first solution), which is the specimen to be detected, into the well 40 as shown in FIG. Note that the sample solution 103 may not include the exosome to be detected. Hereinafter, the case where the sample solution 103 contains exosomes to be detected will be described.
 試料液103中には、検出対象のエクソソーム90が含まれている。図14に示すように、エクソソーム90は、脂質二重膜91で覆われている。脂質二重膜91には、複数の種類の膜貫通型たんぱく質等のたんぱく質が表面分子92として存在する。たんぱく質の個数または脂質二重膜11における位置は、エクソソームの種類によって異なり、個体によっても異なる。これらの表面分子92を抗原として抗原抗体反応を用いてエクソソーム90を認識する。抗原である表面分子92として、CD63,CD9,Rab-5b等の他様々なたんぱく質等の分子の存在が多くの論文で報告されている。 The sample solution 103 contains exosomes 90 to be detected. As shown in FIG. 14, the exosome 90 is covered with a lipid bilayer membrane 91. In the lipid bilayer membrane 91, a plurality of types of proteins such as transmembrane proteins exist as surface molecules 92. The number of proteins or the position in the lipid bilayer membrane 11 varies depending on the type of exosome and also varies depending on the individual. These surface molecules 92 are used as antigens to recognize exosomes 90 using an antigen-antibody reaction. The existence of various proteins such as CD63, CD9, and Rab-5b as surface molecules 92 that are antigens has been reported in many papers.
 エクソソーム90は、細胞情報を伝達する物質とされるDNA、RNA、miRNA等の高分子生体物質である内包物質93が脂質二重膜91内に内包されている。エクソソーム90の直径は100nm程度である。 In the exosome 90, an encapsulated substance 93, which is a macromolecular biomaterial such as DNA, RNA, miRNA and the like, which is a substance that transmits cell information, is encapsulated in a lipid bilayer membrane 91. The diameter of the exosome 90 is about 100 nm.
 オペレータは、試料分析用容器10を、適切な時間、適切な温度でインキュベートさせる。インキュベート時に振盪させてもよい。例えば2時間程度、37℃で試料分析用容器10を振盪させる。 The operator incubates the sample analysis container 10 at an appropriate temperature for an appropriate time. You may shake at the time of incubation. For example, the sample analysis container 10 is shaken at 37 ° C. for about 2 hours.
 これにより、エクソソーム90の表面分子92とトラック領域23上に固定されている抗体101とが抗原抗体反応によって特異的に結合する。その結果、図15に示すように、エクソソーム90はトラック領域23、具体的にはトラック領域23の凹部22に捕捉される。 Thereby, the surface molecule 92 of the exosome 90 and the antibody 101 immobilized on the track region 23 are specifically bound by the antigen-antibody reaction. As a result, as shown in FIG. 15, the exosome 90 is captured in the track region 23, specifically, the recess 22 of the track region 23.
 オペレータは、ウェル40から試料液103を排出し、ウェル40を緩衝液で洗浄する。なお、抗体101と結合しないで試料液103中に分散しているエクソソーム、及び、抗原抗体反応ではない非特異吸着によってトラック領域23に付着しているエクソソームは、この洗浄によって除去される。即ち、検出対象のエクソソーム90はトラック領域23の凹部22に捕捉され、検出対象ではないエクソソームは洗浄によって除去される。 The operator discharges the sample solution 103 from the well 40 and cleans the well 40 with a buffer solution. The exosomes that are not bound to the antibody 101 and are dispersed in the sample solution 103 and the exosomes that are attached to the track region 23 by non-specific adsorption that is not an antigen-antibody reaction are removed by this washing. That is, the exosome 90 to be detected is captured in the concave portion 22 of the track region 23, and the exosome not to be detected is removed by washing.
 なお、図13では磁界発生部70の磁石72がウェル40の底面に接近した状態を示しているが、ステップS2,S3では、磁石72がウェル40の底面から離隔した状態でもよい。 Although FIG. 13 shows a state in which the magnet 72 of the magnetic field generation unit 70 is close to the bottom surface of the well 40, the magnet 72 may be separated from the bottom surface of the well 40 in steps S2 and S3.
 オペレータは、ステップS4にて、図16に示すように、標識となる磁気微粒子(磁気ビーズ)110を含む緩衝液104(第2の溶液)をウェル40に注入する。オペレータは、試料分析用容器10を、適切な時間、適切な温度でインキュベートさせる。 In step S4, the operator injects into the well 40 a buffer solution 104 (second solution) containing magnetic fine particles (magnetic beads) 110 to be labeled as shown in FIG. The operator causes the sample analysis container 10 to incubate at an appropriate temperature for an appropriate time.
 図17に示すように、磁気微粒子110は、略球形に形成されたポリスチレン等の合成樹脂で形成されている。磁気微粒子110は酸化鉄等の磁性体111を内包している。磁気微粒子110の表面には、エクソソーム90の表面分子92と特異的に結合する抗体112(第2の結合物質)が固定されている。磁気微粒子110の直径は200nm程度である。 As shown in FIG. 17, the magnetic fine particles 110 are formed of a synthetic resin such as polystyrene formed in a substantially spherical shape. The magnetic fine particles 110 contain a magnetic material 111 such as iron oxide. An antibody 112 (second binding substance) that specifically binds to the surface molecule 92 of the exosome 90 is immobilized on the surface of the magnetic fine particle 110. The diameter of the magnetic fine particle 110 is about 200 nm.
 磁気微粒子110は磁石72の磁界によって磁化され、ウェル40の底面に向かって移動する。エクソソーム90の表面分子92と磁気微粒子110の抗体112とは、抗原抗体反応によって特異的に結合する。これにより、磁気微粒子110は、エクソソーム90と結合した状態で、試料分析用容器10内、具体的にはウェル40内のトラック領域23の凹部22に捕捉される。 The magnetic fine particles 110 are magnetized by the magnetic field of the magnet 72 and move toward the bottom surface of the well 40. The surface molecule 92 of the exosome 90 and the antibody 112 of the magnetic particle 110 are specifically bound by an antigen-antibody reaction. As a result, the magnetic fine particles 110 are captured in the concave portion 22 of the track region 23 in the sample analysis container 10, specifically, the well 40, in a state of being coupled to the exosome 90.
 図16では磁界発生部70の磁石72がウェル40の底面に接近した状態を示しているが、ステップS4では、磁石72がウェル40の底面から離隔した状態でもよい。なお、ステップS4では、磁石72をウェル40の底面に接近させることにより、磁気微粒子110をウェル40の底面に向かって迅速に移動させることができる。これにより、ステップS4を時間短縮することができる。 16 shows a state in which the magnet 72 of the magnetic field generating unit 70 is close to the bottom surface of the well 40, but in a step S4, the magnet 72 may be separated from the bottom surface of the well 40. In step S <b> 4, the magnetic particles 110 can be quickly moved toward the bottom surface of the well 40 by bringing the magnet 72 close to the bottom surface of the well 40. Thereby, step S4 can be shortened.
 オペレータは、磁石72がウェル40の底面に接近した状態の場合には、磁石72がウェル40の底面から離隔するように検体検出用装置50を操作する。オペレータは、ウェル40から緩衝液104を排出し、ウェル40を緩衝液で洗浄する。なお、エクソソーム90と結合しないで緩衝液104中に分散している磁気微粒子110は、この洗浄によって除去される。即ち、検出対象のエクソソーム90と結合している磁気微粒子110はトラック領域23の凹部22に捕捉され、検出対象のエクソソーム90と結合していない余分な磁気微粒子110は洗浄によって除去される。 The operator operates the specimen detection device 50 so that the magnet 72 is separated from the bottom surface of the well 40 when the magnet 72 is close to the bottom surface of the well 40. The operator drains the buffer solution 104 from the well 40 and cleans the well 40 with the buffer solution. The magnetic fine particles 110 that are not bonded to the exosome 90 and are dispersed in the buffer 104 are removed by this washing. That is, the magnetic fine particles 110 that are bonded to the detection target exosome 90 are captured in the recesses 22 of the track region 23, and excess magnetic fine particles 110 that are not bonded to the detection target exosome 90 are removed by washing.
 オペレータは、ステップS5にて、図18に示すように、磁石72がウェル40の底面に接近するように検体検出用装置50を操作する。オペレータは、エクソソーム90から内包物質93を遊離させるための抽出液105(第3の溶液)をウェル40に注入する。 In step S5, the operator operates the specimen detection apparatus 50 so that the magnet 72 approaches the bottom surface of the well 40 as shown in FIG. The operator injects the extraction liquid 105 (third solution) for releasing the inclusion substance 93 from the exosome 90 into the well 40.
 図19に示すように、抽出液105でエクソソーム90を溶解させることにより、抽出液105中に内包物質93を遊離させることができる。エクソソーム90から内包物質93を遊離させる時間は、例えば抽出液105を注入してから数分間程度である。 As shown in FIG. 19, the inclusion substance 93 can be liberated in the extract 105 by dissolving the exosome 90 in the extract 105. The time for releasing the inclusion substance 93 from the exosome 90 is, for example, about several minutes after the extraction liquid 105 is injected.
 エクソソーム90が溶解することにより、トラック領域23の凹部22に捕捉されているエクソソーム90と磁気微粒子110との結合は解除されてしまう。結合が解除された磁気微粒子110は磁石72の磁力によって磁石72側に引き寄せられるため、試料分析用容器10内、具体的にはウェル40内のトラック領域23の凹部22に捕捉されている状態を維持する。即ち、駆動部80は、磁石72をウェル40の底面に接近させることにより、磁気微粒子110を磁石72の磁力によってウェル40内の底面の凹部22に捕捉する。 When the exosome 90 is dissolved, the bond between the exosome 90 and the magnetic fine particle 110 captured in the recess 22 of the track region 23 is released. Since the magnetic fine particles 110 having been released from the coupling are attracted toward the magnet 72 by the magnetic force of the magnet 72, the magnetic particles 110 are captured in the sample analysis container 10, specifically, in the recess 22 of the track region 23 in the well 40. maintain. That is, the drive unit 80 causes the magnet 72 to approach the bottom surface of the well 40, thereby capturing the magnetic fine particles 110 in the recess 22 on the bottom surface in the well 40 by the magnetic force of the magnet 72.
 オペレータは、ステップS6にて、内包物質93が遊離された抽出液105をピペット等を用いてウェル40から抽出し、例えばリアルタイムPCR(Real-Time Polymerase Chain Reaction)法を用いて内包物質93を解析する。リアルタイムPCR法は、DNAポリメラーゼによる酵素反応を利用してDNAを増幅させ、増幅産物の増加量をリアルタイムでモニタリングして解析する方法である。 In step S6, the operator extracts the extracted solution 105 from which the inclusion substance 93 has been released from the well 40 using a pipette or the like, and analyzes the inclusion substance 93 using, for example, a real-time PCR (Real-Time Polymerase Chain Reaction) method. To do. The real-time PCR method is a method in which DNA is amplified using an enzyme reaction by a DNA polymerase, and an increase amount of an amplified product is monitored and analyzed in real time.
 例えば、段階的に希釈した基準サンプルに対してリアルタイムPCR法を適用することにより増幅産物の増幅曲線を得る。増幅曲線と設定された閾値との交わる点であるCt(Threshold Cycle)値を算出し、検量線を作成する。ウェル40から抽出した抽出液105についても基準サンプルと同様にCt値を算出し、算出したCt値と作成した検量線とからエクソソーム90の内包物質93であるDNAを定性及び定量することができる。 For example, an amplification curve of an amplification product is obtained by applying a real-time PCR method to a reference sample diluted stepwise. A calibration curve is created by calculating a Ct (Threshold Cycle) value, which is a point where the amplification curve intersects with the set threshold value. The Ct value of the extract 105 extracted from the well 40 can be calculated similarly to the reference sample, and the DNA that is the inclusion substance 93 of the exosome 90 can be qualitatively and quantified from the calculated Ct value and the created calibration curve.
 従って、ウェル40毎に抽出液105をサンプリングすることにより、各ウェル40における内包物質93を解析することができる。 Therefore, the inclusion substance 93 in each well 40 can be analyzed by sampling the extract 105 for each well 40.
 オペレータは、磁石72がウェル40の底面に接近した状態で、ウェル40から残りの抽出液105を排出し、ウェル40を緩衝液で洗浄する。オペレータは、ウェル40を乾燥させる。乾燥時間は10分~15分程度である。乾燥は、ウェル40の底面上の水滴がなくなる程度でもよい。 The operator discharges the remaining extract 105 from the well 40 with the magnet 72 approaching the bottom surface of the well 40, and cleans the well 40 with a buffer solution. The operator dries the well 40. The drying time is about 10 to 15 minutes. Drying may be such that water drops on the bottom surface of the well 40 disappear.
 ウェル40を洗浄し、乾燥させている期間は磁石72がウェル40の底面に接近しているため、磁気微粒子110は磁石72の磁力によって凹部22に捕捉されている状態を維持する。 Since the magnet 72 is close to the bottom surface of the well 40 during the period in which the well 40 is washed and dried, the magnetic fine particle 110 maintains the state of being captured in the recess 22 by the magnetic force of the magnet 72.
 オペレータは、ステップS7にて、試料分析用容器10を検体検出用装置50のユニット保持部60から取り外す。オペレータは、図2(b)に示すように、試料分析用容器10のカートリッジ30を試料分析用ディスク20から取り外す。なお、乾燥後の磁気微粒子110はファンデルワールス力によって凹部22に捕捉されている状態を維持する。 The operator removes the sample analysis container 10 from the unit holder 60 of the specimen detection apparatus 50 in step S7. The operator removes the cartridge 30 of the sample analysis container 10 from the sample analysis disk 20 as shown in FIG. The dried magnetic fine particles 110 maintain a state where they are captured in the recesses 22 by van der Waals force.
 図2(b)及び図20に示すように、試料分析用ディスク20には、複数のウェル40に対応して複数の反応領域24が形成される。即ち、複数の反応領域24は、それぞれの中心が同一円周上に位置するように等間隔に形成されている。反応領域24の凹部22上には磁気微粒子110が捕捉されている(図19参照)。 2B and 20, a plurality of reaction regions 24 are formed in the sample analysis disk 20 corresponding to the plurality of wells 40. That is, the plurality of reaction regions 24 are formed at equal intervals so that their centers are located on the same circumference. Magnetic fine particles 110 are trapped on the recesses 22 of the reaction region 24 (see FIG. 19).
 オペレータは、反応領域24の凹部22上に捕捉されている標識である磁気微粒子110を、例えば光ピックアップ等を用いて光学的に検出し、計数することで、凹部22上に捕捉されていたエクソソーム90を間接的に検出し、計数することができる。 The operator optically detects and counts the magnetic fine particles 110 that are the labels captured on the recesses 22 of the reaction region 24 using, for example, an optical pickup or the like, thereby counting the exosomes captured on the recesses 22. 90 can be indirectly detected and counted.
 例えば、外部に配置された光ピックアップから、磁気微粒子110が捕捉されている反応領域24の凹部22に向けてレーザ光を照射する。反応領域24からの反射光を解析することで、磁気微粒子110を検出し、計数することができる。 For example, laser light is irradiated from the optical pickup arranged outside to the concave portion 22 of the reaction region 24 where the magnetic fine particles 110 are captured. By analyzing the reflected light from the reaction region 24, the magnetic fine particles 110 can be detected and counted.
 具体的には、光ピックアップは、トラック領域23にレーザ光を集光させるための対物レンズを備えている。試料分析用ディスク20を一般的な光ディスクと同様に回転させ、光ピックアップを試料分析用ディスク20の半径方向に移動させることにより、対物レンズによって集光されたレーザ光をトラック(具体的には凹部22)に沿って走査する。反応領域24からの反射光により得られた検出信号から、凹部22に捕捉されている磁気微粒子110を検出し、計数する。 Specifically, the optical pickup includes an objective lens for condensing the laser beam on the track area 23. The sample analysis disk 20 is rotated in the same manner as a general optical disk, and the optical pickup is moved in the radial direction of the sample analysis disk 20 so that the laser beam condensed by the objective lens is tracked (specifically, a concave portion). Scan along 22). From the detection signal obtained by the reflected light from the reaction region 24, the magnetic fine particles 110 captured in the recess 22 are detected and counted.
 本実施形態の検体検出用装置及び検体検出方法では、エクソソーム90を磁気微粒子110と結合した状態でトラック領域23の凹部22に捕捉する。磁石72をウェル40の底面に接近させた状態で、抽出液105によりエクソソーム90から内包物質93を遊離させる。磁気微粒子110が磁石72の磁力によって凹部22に捕捉されている状態で、内包物質93が遊離した抽出液105を抽出し、内包物質93を解析する。一方、試料分析用ディスク20を乾燥させ、反応領域24に捕捉されている磁気微粒子110を光学的に検出する。 In the sample detection apparatus and the sample detection method of the present embodiment, the exosome 90 is captured in the concave portion 22 of the track region 23 in a state of being coupled to the magnetic fine particle 110. The inclusion substance 93 is released from the exosome 90 by the extract 105 while the magnet 72 is brought close to the bottom surface of the well 40. In a state where the magnetic fine particles 110 are captured in the recess 22 by the magnetic force of the magnet 72, the extracted liquid 105 from which the inclusion substance 93 is released is extracted, and the inclusion substance 93 is analyzed. On the other hand, the sample analysis disk 20 is dried, and the magnetic fine particles 110 trapped in the reaction region 24 are optically detected.
 従って、本実施形態の検体検出用装置及び検体検出方法によれば、エクソソーム90の検出と内包物質93の検出とを同一の検体(試料液103)で行うことができる。 Therefore, according to the sample detection apparatus and the sample detection method of the present embodiment, the detection of the exosome 90 and the detection of the inclusion substance 93 can be performed with the same sample (sample solution 103).
 本発明は、以上説明した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。 The present invention is not limited to the embodiment described above, and various modifications can be made without departing from the gist of the present invention.
 本実施形態では、試料液103をウェル40に注入してエクソソーム90を凹部22に捕捉した後、緩衝液104をウェル40に注入して磁気微粒子110をエクソソーム90と結合させたが、これに限定されるものではない。例えば、試料液103と緩衝液104とをウェル40に注入して混合させてもよいし、試料液103と緩衝液104とをマイクロチューブまたはカラム等の別の容器で混合し、混合液をウェル40に注入するようにしてもよい。 In this embodiment, after injecting the sample solution 103 into the well 40 and capturing the exosome 90 in the recess 22, the buffer solution 104 is injected into the well 40 and the magnetic fine particles 110 are combined with the exosome 90. However, the present invention is not limited to this. Is not to be done. For example, the sample solution 103 and the buffer solution 104 may be injected into the well 40 and mixed, or the sample solution 103 and the buffer solution 104 are mixed in another container such as a microtube or a column, and the mixture solution is added to the well. 40 may be injected.
 また、本実施形態では、試料分析用容器10を試料分析用ディスク20とカートリッジ30とを備える構成としたが、これに限定されるものではない。試料分析用容器10としてマイクロプレートを用いてもよい。マイクロプレートのウェルの底面に磁石72を接近させた状態でエクソソーム90から内包物質93を遊離させることにより、本実施形態と同様の効果を奏する。試料分析用容器10としてマクロチューブなどの試験管またはシャーレなどを用いてもよい。試料分析用容器10としてマイクロプレート、試験管、またはシャーレなどを用いる場合、磁気微粒子110は、磁石72の磁力によって試料分析用容器10内に捕捉された状態を維持できればよい。 In this embodiment, the sample analysis container 10 includes the sample analysis disk 20 and the cartridge 30. However, the present invention is not limited to this. A microplate may be used as the sample analysis container 10. By releasing the inclusion substance 93 from the exosome 90 in a state where the magnet 72 is brought close to the bottom surface of the well of the microplate, the same effect as in the present embodiment can be obtained. A test tube such as a macro tube or a petri dish may be used as the sample analysis container 10. When a microplate, a test tube, a petri dish, or the like is used as the sample analysis container 10, the magnetic fine particles 110 only need to be able to maintain the state captured in the sample analysis container 10 by the magnetic force of the magnet 72.
 また、ユニット保持部60は、ウェル40と試料分析用ディスク20が分離して液漏れしないよう密着保持が可能であれば本実施形態に限定されるものではない。例えば、カートリッジ30と試料分析用ディスク20を係合させるつめなど各種ロック機構で試料分析用容器10を保持してもよい。検体検出用装置50に試料分析用容器10を載置した際、試料分析用容器10側での押さえ構造により試料分析用容器10を保持してもよい。 The unit holding unit 60 is not limited to this embodiment as long as the well 40 and the sample analysis disk 20 can be kept in close contact so that the liquid does not leak due to separation. For example, the sample analysis container 10 may be held by various lock mechanisms such as a claw for engaging the cartridge 30 and the sample analysis disk 20. When the sample analysis container 10 is placed on the sample detection device 50, the sample analysis container 10 may be held by a holding structure on the sample analysis container 10 side.
 本発明は、検体から膜小胞とその内包物質とを検出する際に利用できる。 The present invention can be used when detecting a membrane vesicle and its inclusion substance from a specimen.

Claims (8)

  1.  検出対象物質と結合する磁気微粒子を捕捉し、前記検出対象物質から内包物質を抽出するための溶液を溜める試料分析用容器を保持するユニット保持部と、
     前記磁気微粒子を前記試料分析用容器内に捕捉するための磁石を有する磁界発生部と、
     前記試料分析用容器に溜められている前記溶液によって前記検出対象物質との結合が解除された磁気微粒子を前記磁石の磁力によって前記試料分析用容器内に捕捉させるよう、前記磁石を前記試料分析用容器に接近させるように前記磁界発生部を駆動する駆動部と、
     を備えることを特徴とする検体検出用装置。
    A unit holding unit for holding a sample analysis container for capturing a magnetic fine particle that binds to a detection target substance and storing a solution for extracting an inclusion substance from the detection target substance;
    A magnetic field generator having a magnet for capturing the magnetic fine particles in the sample analysis container;
    The magnet is used for the sample analysis so that the magnetic fine particles released from the binding to the detection target substance by the solution stored in the sample analysis container are captured in the sample analysis container by the magnetic force of the magnet. A drive unit that drives the magnetic field generation unit to approach the container;
    A specimen detection apparatus comprising:
  2.  前記検出対象物質は、前記内包物質が膜で包まれた構造を有する膜小胞であることを特徴とする請求項1に記載の検体検出用装置。 2. The specimen detection apparatus according to claim 1, wherein the substance to be detected is a membrane vesicle having a structure in which the inclusion substance is wrapped with a film.
  3.  前記膜小胞はエクソソームであることを特徴とする請求項2に記載の検体検出用装置。 3. The specimen detection apparatus according to claim 2, wherein the membrane vesicle is an exosome.
  4.  前記試料分析用容器は、
     貫通孔を有するカートリッジと、
     凸部と凹部とが交互に配置されたトラック領域を有する試料分析用ディスクと、
     を備え、
     前記溶液は、前記貫通孔の内周面と前記トラック領域とによって構成されるウェルに溜められ、
     前記磁石は、前記ウェルに対応して配置され、
     前記磁気微粒子は、前記磁石の磁力によって前記ウェル内の前記トラック領域の凹部に捕捉される
     ことを特徴とする請求項1~3のいずれか1項に記載の検体検出用装置。
    The sample analysis container comprises:
    A cartridge having a through hole;
    A sample analysis disk having a track region in which convex portions and concave portions are alternately arranged;
    With
    The solution is stored in a well constituted by the inner peripheral surface of the through hole and the track region,
    The magnet is disposed corresponding to the well;
    The specimen detection apparatus according to any one of claims 1 to 3, wherein the magnetic fine particles are captured in a recess of the track region in the well by the magnetic force of the magnet.
  5.  検出対象物質と結合する磁気微粒子を試料分析用容器内に捕捉させ、
     前記磁気微粒子が前記試料分析用容器内に捕捉された状態を維持するように磁界を発生させ、
     前記磁界により前記磁気微粒子が前記試料分析用容器内に捕捉されている状態で、前記検出対象物質から内包物質を抽出する
     ことを特徴とする検体検出方法。
    Capture the magnetic particles that bind to the detection target substance in the sample analysis container,
    Generating a magnetic field so as to maintain the magnetic fine particles captured in the sample analysis container;
    An analyte detection method, wherein an inclusion substance is extracted from the detection target substance in a state where the magnetic fine particles are captured in the sample analysis container by the magnetic field.
  6.  前記検出対象物質は、前記内包物質が膜で包まれた構造を有する膜小胞であることを特徴とする請求項5に記載の検体検出方法。 6. The specimen detection method according to claim 5, wherein the substance to be detected is a membrane vesicle having a structure in which the inclusion substance is wrapped with a film.
  7.  前記膜小胞はエクソソームであることを特徴とする請求項6に記載の検体検出方法。 The specimen detection method according to claim 6, wherein the membrane vesicle is an exosome.
  8.  前記試料分析用容器は、
     貫通孔を有するカートリッジと、
     凸部と凹部とが交互に配置されたトラック領域を有する試料分析用ディスクと、
     を備え、
     前記試料分析用ディスクは、凸部と凹部とが交互に配置されたトラック領域を有し、
     前記磁気微粒子が前記磁界により前記試料分析用容器内の前記トラック領域の凹部に捕捉されている状態で、前記検出対象物質から前記内包物質を抽出する
     ことを特徴とする請求項5~7のいずれか1項に記載の検体検出方法。
    The sample analysis container comprises:
    A cartridge having a through hole;
    A sample analysis disk having a track region in which convex portions and concave portions are alternately arranged;
    With
    The sample analysis disk has a track region in which convex portions and concave portions are alternately arranged,
    8. The inclusion substance is extracted from the detection target substance in a state where the magnetic fine particles are trapped in the recess of the track region in the sample analysis container by the magnetic field. 2. The specimen detection method according to claim 1.
PCT/JP2016/084910 2016-02-01 2016-11-25 Sample detection device and sample detection method WO2017134906A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016017156A JP2017138112A (en) 2016-02-01 2016-02-01 Device for specimen detection, and method for detecting specimen
JP2016-017156 2016-02-01

Publications (1)

Publication Number Publication Date
WO2017134906A1 true WO2017134906A1 (en) 2017-08-10

Family

ID=59499486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084910 WO2017134906A1 (en) 2016-02-01 2016-11-25 Sample detection device and sample detection method

Country Status (2)

Country Link
JP (1) JP2017138112A (en)
WO (1) WO2017134906A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148529A (en) * 2018-02-28 2019-09-05 株式会社Jvcケンウッド Analysis unit and analysis method
JP2020148599A (en) * 2019-03-13 2020-09-17 株式会社Jvcケンウッド Analysis substrate and analysis unit
WO2020184377A1 (en) * 2019-03-13 2020-09-17 株式会社Jvcケンウッド Method for fabricating analysis substrate, analysis substrate, and analysis unit
JP2020148598A (en) * 2019-03-13 2020-09-17 株式会社Jvcケンウッド Method for manufacturing analysis substrate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6972835B2 (en) * 2017-09-25 2021-11-24 株式会社Jvcケンウッド Dispensing unit
JP2021511510A (en) * 2018-01-18 2021-05-06 ナノソミックス・インコーポレイテッドNanoSomiX, Inc. Detection of exosomes and exosome biomarkers for diagnosis and prognosis of diseases and disorders
JP7425403B2 (en) 2020-02-17 2024-01-31 株式会社Jvcケンウッド Biological sample analysis method
JP2021128128A (en) * 2020-02-17 2021-09-02 株式会社Jvcケンウッド Biological sample analysis method
KR102132630B1 (en) * 2020-03-16 2020-07-10 주식회사 퀀타매트릭스 Rapid Cell Culture Device With Island Structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012162563A2 (en) * 2011-05-24 2012-11-29 The Regents Of The University Of California Method for exosomal biomarker detection by electric field-induced release and measurement
JP2013511042A (en) * 2009-11-16 2013-03-28 シリコン バイオディバイスイズ,インク. Filtration device for assay
JP2013539862A (en) * 2010-10-15 2013-10-28 インターナショナル・ビジネス・マシーンズ・コーポレーション Method for detecting magnetic nanoparticles bound to a membrane
WO2014168020A1 (en) * 2013-04-09 2014-10-16 株式会社Jvcケンウッド Device for sample analysis and method for exosome capture
WO2015068772A1 (en) * 2013-11-06 2015-05-14 Jsr株式会社 Separation method, detection method, signal measurement method, method for determining disease, method for evaluating drug efficacy of disease treatment drug, kit, and liquid composition
JP2015092148A (en) * 2013-09-30 2015-05-14 株式会社Jvcケンウッド Sample analysis board, production method thereof, and board analysis device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511042A (en) * 2009-11-16 2013-03-28 シリコン バイオディバイスイズ,インク. Filtration device for assay
JP2013539862A (en) * 2010-10-15 2013-10-28 インターナショナル・ビジネス・マシーンズ・コーポレーション Method for detecting magnetic nanoparticles bound to a membrane
WO2012162563A2 (en) * 2011-05-24 2012-11-29 The Regents Of The University Of California Method for exosomal biomarker detection by electric field-induced release and measurement
WO2014168020A1 (en) * 2013-04-09 2014-10-16 株式会社Jvcケンウッド Device for sample analysis and method for exosome capture
JP2015092148A (en) * 2013-09-30 2015-05-14 株式会社Jvcケンウッド Sample analysis board, production method thereof, and board analysis device
WO2015068772A1 (en) * 2013-11-06 2015-05-14 Jsr株式会社 Separation method, detection method, signal measurement method, method for determining disease, method for evaluating drug efficacy of disease treatment drug, kit, and liquid composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019148529A (en) * 2018-02-28 2019-09-05 株式会社Jvcケンウッド Analysis unit and analysis method
JP7079408B2 (en) 2018-02-28 2022-06-02 株式会社Jvcケンウッド Analysis unit and analysis method
JP2020148599A (en) * 2019-03-13 2020-09-17 株式会社Jvcケンウッド Analysis substrate and analysis unit
WO2020184377A1 (en) * 2019-03-13 2020-09-17 株式会社Jvcケンウッド Method for fabricating analysis substrate, analysis substrate, and analysis unit
JP2020148598A (en) * 2019-03-13 2020-09-17 株式会社Jvcケンウッド Method for manufacturing analysis substrate
EP3940390A4 (en) * 2019-03-13 2022-05-04 Jvckenwood Corporation Method for fabricating analysis substrate, analysis substrate, and analysis unit

Also Published As

Publication number Publication date
JP2017138112A (en) 2017-08-10

Similar Documents

Publication Publication Date Title
WO2017134906A1 (en) Sample detection device and sample detection method
US7087203B2 (en) Methods and apparatus for blood typing with optical bio-disc
KR101608749B1 (en) Thin film layered centrifuge device and analysis method using the same
JP6210004B2 (en) Sample analysis device and exosome capture method
US10962531B2 (en) Method of capturing exosomes
US8097450B2 (en) Thin film chemical analysis apparatus and analysis method using the same
JP6229174B2 (en) Diagnostic kit and method of use thereof
US20020168663A1 (en) Methods for DNA conjugation onto solid phase including related optical biodiscs and disc drive systems
US9005547B2 (en) Disc-like assay chip
JP6335792B2 (en) Determining the presence of target molecules in body fluids containing cells
JP2009210392A (en) Chip
JP2008268198A (en) Separation chip and separation method
TWI472369B (en) Assay kit and analysis method
JP6822537B2 (en) How to detect exosomes
JP2011092125A (en) Collection implement
WO2002059622A1 (en) Methods and apparatus for blood typing with optical bio-discs
JP7425403B2 (en) Biological sample analysis method
WO2023080102A1 (en) METHOD FOR DETECTING AMYLOID-β BOUND TO BRAIN-NEURONAL-CELL-DERIVED EXOSOME IN BLOOD, KIT FOR DETECTION OF AMYLOID-β BOUND TO BRAIN-NEURONAL-CELL-DERIVED EXOSOME IN BLOOD, AND METHOD FOR EVALUATING ACCUMULATION LEVEL OF AMYLOID-β IN BRAIN
EP4109097A1 (en) Method for analyzing biological sample
CN118139989A (en) Method for detecting amyloid-beta protein bound to blood-derived brain nerve cell-derived exosome, kit for detecting amyloid-beta protein bound to blood-derived brain nerve cell-derived exosome, and method for evaluating accumulation level of amyloid-beta protein in brain
JP2021051018A (en) Method of producing sample
KR20130114509A (en) System for analyzing biological sample and method for analyzing biological sample using the system
WO2002068696A2 (en) Methods for dna conjugation onto solid phase including related optical biodiscs and disc drive systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889389

Country of ref document: EP

Kind code of ref document: A1