WO2017132839A1 - Method and device for performing partial subframe transmission - Google Patents

Method and device for performing partial subframe transmission Download PDF

Info

Publication number
WO2017132839A1
WO2017132839A1 PCT/CN2016/073215 CN2016073215W WO2017132839A1 WO 2017132839 A1 WO2017132839 A1 WO 2017132839A1 CN 2016073215 W CN2016073215 W CN 2016073215W WO 2017132839 A1 WO2017132839 A1 WO 2017132839A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
symbol
listening
occ
uplink
Prior art date
Application number
PCT/CN2016/073215
Other languages
French (fr)
Inventor
Hongmei Liu
Lei Jiang
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2016/073215 priority Critical patent/WO2017132839A1/en
Publication of WO2017132839A1 publication Critical patent/WO2017132839A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences

Definitions

  • Embodiments of the present invention generally relate to communication techniques. More particularly, embodiments of the present invention relate to a method and device for performing partial subframe transmission.
  • LAA License Assisted Access
  • a licensed carrier represents a frequency band that is exclusively licensed to a specific operator to provide specific wireless services.
  • an unlicensed carrier represents a frequency band that is not allocated to a specific operator, but is opened so that all entities satisfying predefined requirements may use the frequency band. Transmission on the unlicensed carrier is able to offload the traffic on the licensed carrier.
  • LBT Listen-Before-Talk
  • channel bandwidth occupancy requirements For instance, an unlicensed carrier may be available at any time during a subframe.
  • LBT should be performed before uplink (UL) transmission to satisfy the regulations. If frame based LBT is adopted, there should be an idle duration which occupies a predetermined portion (for example, 5%) of the channel occupancy time. Since uplink scheduling is per subframe and UE-specific, if uplink scheduling on unlicensed carrier is still performed per subframe, and frame based LBT is adopted by UE before transmission at each subframe, then there will be an idle duration of at least 1 OFDM symbol for each subframe. Meanwhile, UE transmission boundary needs to be aligned to avoid inter-UE transmission blocking, and multi-UE UL multiplexing in a subframe and scheduling granularity of a single subframe should be enabled.
  • the present invention proposes a solution for performing partial subframe transmission.
  • embodiments of the invention provide a method of performing partial subframe transmission.
  • the method comprises: obtaining information about a listening symbol in an uplink subframe, the listening symbol being used for determining availability of a channel before transmission on the channel; adjusting a structure of the uplink subframe based on the information about a listening symbol; and performing transmission in uplink by using the adjusted uplink subframe.
  • embodiments of the invention provide a device for performing partial subframe transmission.
  • the device comprises: an obtaining unit configured to obtain information about a listening symbol in an uplink subframe, the listening symbol being used for determining availability of a channel before transmission on the channel; an adjusting unit configured to adjust a structure of the uplink subframe based on the information about a listening symbol; and a transmitting unit configured to perform transmission in uplink by using the adjusted uplink subframe.
  • FIG. 1 illustrates a schematic diagram of a structure of a subframe 100 according to embodiments of the invention
  • FIG. 2 illustrates a flow chart of a method 200 of performing partial subframe transmission according to embodiments of the invention
  • FIG. 3 illustrates a flow chart of a method 300 of performing partial subframe transmission according to further embodiments of the invention
  • FIG. 4 illustrates a flow chart of a method 400 of performing partial subframe transmission according to still further embodiments of the invention
  • FIG. 5 illustrates a block diagram of a device 500 for performing partial subframe transmission according to embodiments of the invention
  • FIG. 6 illustrates a schematic diagram 600 of structures of subframes according to embodiments of the invention.
  • FIG. 7 illustrates a schematic diagram 700 of structures of subframes according to further embodiments of the invention.
  • BS represents a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a low power node such as a femto, a pico, and so forth.
  • the term “user equipment” or “UE” refers to any device that is capable of communicating with the BS.
  • the UE may include a terminal, a Mobile Terminal (MT) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • MT Mobile Terminal
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • Embodiments of the present invention may be applied in various communication systems, including but not limited to a Long Term Evolution (LTE) system or a Long Term Evolution Advanced (LTE-A) system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution Advanced
  • FIG. 1 illustrates schematic diagram of a structure of a subframe 100 according to embodiments of the invention.
  • the subframe 100 illustrates an example subframe used in uplink transmission.
  • a UL grant for a UE is related to a single UL subframe 100.
  • the subframe 100 includes 14 symbols which are divided into two slots, slot 0 and slot 1. Either of the slots includes 7 symbols.
  • the subframe 100 may be a Physical uplink control channel (PUCCH) subframe, a Physical uplink shared channel (PUSCH) subframe, and/or the like.
  • PUCCH Physical uplink control channel
  • PUSCH Physical uplink shared channel
  • LBT may be performed with regard to a channel at a symbol of the subframe 100, which is referred to as a listening symbol hereafter.
  • a listening symbol In the example of FIG. 1, it is supposed that the LBT is performed at an ending symbol 101 of the subframe 100, that is, symbol 6 of slot 1.
  • the LBT result is idle, it means that the channel is available, then UL transmission on 13 symbols of a subframe subsequent to the subframe 100 can be performed by the UE. On the other hand, if the LBT result is busy, no transmission will be performed by the UE on the subsequent subframe.
  • the ending symbol 101 is just an example of the listening bit.
  • the starting symbol or a middle-positioned symbol of the subframe 100 may be also used as a listening symbol.
  • FIG. 2 illustrates a flow chart of a method 200 of performing partial subframe transmission according to embodiments of the invention.
  • the method 200 may be implemented at a UE or other suitable device.
  • the uplink subframe may be implemented as the subframe 100 shown in FIG. 1.
  • the method 200 is entered in step 210, where information about a listening symbol in an uplink subframe is obtained.
  • the listening symbol is used for determining availability of a channel before transmission on the channel.
  • the listening symbol may be determined by a BS serving the UE and notified by the BS to the UE via high level signaling.
  • the listening symbol may be predefined at both the BS side and the UE side.
  • information about the listening symbol may be stored in a storage device accessible to the UE.
  • the UE may obtain the information about a listening symbol from the storage device.
  • a structure of the uplink subframe is adjusted based on the information about a listening symbol.
  • the structure of the uplink subframe may be adjusted in a variety of ways.
  • the listening symbol may be excluded from transmitting information in the uplink.
  • the transmission of control information or data on the listening symbol (the ending symbol 101 of the subframe 100) may be directly stopped, without affecting information carried on the remaining 13 symbols of the subsequent subframe or the transmission thereof.
  • the listening symbol is used to determine the availability of the channel, for example perform the LBT, it cannot be used in uplink transmission any longer.
  • the affected information indicates information about control information and/or data that are predetermined to be transmitted on the listening symbol and stopped transmission due to the performing of the LBT.
  • length of the first OCC sequences may be reduced and the listening symbol may be excluded from transmitting information in the uplink.
  • priorities of information transmitted on symbols of the uplink subframe may be determined.
  • the priorities may include priorities of affected information to be transmitted on the listening symbol and information to be transmitted on remaining symbols of the uplink subframe.
  • a target symbol may be selected from the remaining symbols based on the determined priorities.
  • the affected information may be assigned to the target symbol for transmission in the uplink.
  • the listening symbol then may be excluded from transmitting information in the uplink.
  • target information to be transmitted on the target symbol is encoded with second OCC sequences.
  • length of the second OCC sequences may be reduced.
  • step 230 transmission is performed in uplink by using the adjusted uplink subframe.
  • the adjusted uplink subframe adjusted in different ways, there may be various manners to perform transmission in uplink.
  • step 230 availability of the channel is listened on the listening symbol.
  • at least one of control information and data may be transmitted on remaining symbols of the uplink subframe, the remaining symbols excluding the listening symbol.
  • all symbols of the subframe may be used for transmission as usual.
  • control information or data on the listening symbol (the ending symbol 101 of the subframe 100) may be directly stopped, and control information or data carried on the remaining 13 symbols of the subsequent subframe may proceed in the normal way.
  • step 230 availability of the channel may be listened on the listening symbol. If the channel is available, it may be determined, from the uplink subframe, OCC symbols on which the affected information is to be transmitted after being encoded by the first OCC sequences. Then the affected information may be encoded with the reduced OCC sequences, and the encoded affected information may be transmitted on the OCC symbols. More details will be discussed with reference to FIG. 3.
  • step 230 availability of the channel may be listened on the listening symbol.
  • the affected information may be transmitted on the target symbol. More details will be discussed with reference to FIG. 4.
  • step 230 availability of the channel may be listened on the listening symbol.
  • the target information may be encoded with the reduced OCC sequences, the encoded target information may be transmitted on the OCC symbols, and the affected information may be transmitted on the target symbol.
  • FIG. 3 illustrates a flow chart of a method 300 of performing partial subframe transmission according to further embodiments of the invention.
  • the method 300 may be considered as a specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
  • step 310 information about a listening symbol in an uplink subframe is obtained. This step is similar to step 210, and thus is not detailed here.
  • the listening symbol is illustrated as the ending symbol 101 of the subframe 100. It is to be understood that this is described for purpose of discussion instead of limitation.
  • the subframe 100 may be a control information subframe (also referred to as “PUCCH subframe” hereafter) or a data subframe (also referred to as “PUSCH subframe” hereafter) . Accordingly, the information transmitted on respective symbols of the subframe may include control information and/or data.
  • FIG. 6 illustrates a schematic diagram 600 of structures of subframes according to embodiments of the invention.
  • PUCCH is used to carry scheduling request (SR) , ACK/NACK and channel state information (CSI) .
  • SR scheduling request
  • ACK/NACK channel state information
  • CSI channel state information
  • PUCCH format 1/1a/1b different symbols in the same slot carry the same PUCCH information bits with different OCC values.
  • PUCCH format 2/2a/2b different symbols in the same slot carry different PUCCH information bits.
  • PUCCH format 3 different symbols in the same slot carry the same PUCCH information bits with different OCC values.
  • PUCCH format 4 different symbols in the same slot carry different PUCCH information bits.
  • PUCCH format 5 different symbols in the same slot carry different PUCCH information bits. It thus can be seen that in PUCCH format 1/1a/1b and 3, the PUCCH is encoded with OCC sequences.
  • the listening symbol is the ending symbol 101.
  • the affected information is PUCCH in any of the PUCCH format 1/1a/1b, PUCCH format 2/2a/2b, and PUCCH formats 3 to 5, since the listening symbol only transmits the PUCCH.
  • the PUCCH formats shown in FIG. 6 it may be determined that affected information is encoded with OCC sequences in the PUCCH formats 1/1a/1b and 3.
  • OCC sequences also referred to as “first OCC sequences”
  • the length of the OCC sequences may be 3 or 4.
  • the affected information is also encoded with OCC sequences, and the length of the OCC sequences may be 4 or 5 in step 320.
  • the other PUCCH formats for example, PUCCH formats 2/2a/2b and 4-5, it may determine that the affected information is not encoded with first OCC sequences in step 320.
  • the listening symbol may be any symbol of a subframe and thus may be used for transmitting PUCCH or a demodulation reference signal (DMRS) sequence. If the listening symbol is used for transmitting the DMRS sequence, that is, the affected information includes the DMRS sequence, it needs to be determined whether the DMRS sequence is encoded with OCC sequences in step 320. As shown in the example of FIG. 6, for PUCCH format 1/1a/1b, different symbols in the same slot carry the same DMRS sequence with different OCC value. For PUCCH format 2/2a/2b, different symbols in the same slot carry the same DMRS sequence with different OCC value. For PUCCH format 3, different symbols in the same slot carry the same DMRS sequence with different OCC value. For PUCCH format 4, there is only one DMRS symbol per slot. For PUCCH format 5, there is only one DMRS symbol per slot.
  • DMRS demodulation reference signal
  • the listening symbol is symbol 3 of slot 1 of the subframe 100 and the PUCCH format is 1/1a/1b
  • the affected information namely, the DMRS sequence
  • the OCC length is 3.
  • other PUCCH formats 2/2a/2b and 3-5 it may be determined that the affected information is not encoded with OCC sequences.
  • step 330 in response to the affected information being encoded with first OCC sequences, length of the first OCC sequences is reduced and the listening symbol is excluded from transmitting information in the uplink.
  • the listening symbol is the ending symbol 101 and the affected information relate to PUCCH
  • the PUCCH format 1/1a/1b is adopted and the length of the OCC sequences is 4.
  • the length of OCC sequences may be reduced by 1.
  • the length of the reduced OCC sequences equals to 3.
  • the affected information includes the DMRS sequence and the length of OCC sequences for encoding the DMRS sequence is 3, the listening symbol may be no longer used in transmitting information in the uplink and the length of the OCC sequences may be reduced to 2 in step 330.
  • step 340 availability of the channel is listened on the listening symbol.
  • the UE may determine the availability of the channel, for example, by detecting energy on the channel.
  • step 340 could implement step 340 in a variety of manners, which are not detailed here.
  • step 350 in response to the channel being available, it is determined, from the uplink subframe, OCC symbols on which the affected information is to be transmitted after being encoded by the first OCC sequences.
  • the affected information is then encoded with the reduced OCC sequences and transmitted on the OCC symbols.
  • the OCC symbols belong to the same slot as the listening symbol, but do not include the listening symbol.
  • the listening symbol is the ending symbol 101 (symbol 6 of slot 1 of the subframe) and the length of the reduced OCC sequences equals to 3, it may be determined that, in the PUCCH format 1/1a/1b, the OCC symbols used for transmitting encoded PUCCH encoded are symbols 0, 1 and 5 of slot 1 of the subframe.
  • PUCCH may be encoded by the reduced OCC sequences and transmitted on symbols 0, 1 and 5 of slot 1 of the subframe.
  • Symbol 6 of slot 1 that is the ending symbol, is used as the listening symbol and does not transmit PUCCH anymore.
  • the OCC symbols may be determined as symbols 2 and 4 of slot 1 of the subframe and the length of the reduced OCC sequences equals to 2.
  • the DMRS sequence may be encoded by the reduced OCC sequences and transmitted on symbols 2 and 4 of slot 1 of the subframe. Symbol 3 of slot 1 is used as the listening symbol and does not transmit the DMRS sequence anymore.
  • FIG. 4 illustrates a flow chart of a method 400 of performing partial subframe transmission according to still further embodiments of the invention.
  • the method 400 may be considered as a specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
  • step 410 information about a listening symbol in an uplink subframe is obtained. This step is similar to step 210, and thus is not detailed here.
  • a symbol of the subframe may carrier a certain type of information, for example, PUCCH, DMRS sequence, Hybrid Automatic Repeat Request (HARQ) , rank information (RI) , Sounding reference signal (SRS) , SR, data, and so on.
  • HARQ Hybrid Automatic Repeat Request
  • RI rank information
  • SRS Sounding reference signal
  • SR data, and so on.
  • Different types of information may have different priorities.
  • the priorities may be assigned by the operator or may be determined according to certain rules.
  • control information such as PUCCH, DMRS sequences, SRS, HARQ, RI and so on, has a higher priority than data; PUCCH has a higher priority than DMRS sequences, SRS has a higher priority than PUCCH, and HARQ has a higher priority than RI.
  • the information bits carried on the different symbols of the same physical channel may also have different priorities. If puncturing of some of the information bits is to be performed due to the listening symbol, selection can be performed firstly to decide the information bits with lower priority to be punctured, and other remaining information bits can be kept for transmission. It is to be understood that the above examples of priorities are described for purpose of discussion rather than limitation. Those skilled in the art may assign different priorities to different control information and data according to system requirements and/or other regulations.
  • a target symbol is selected from the remaining symbols based on the determined priorities.
  • the remaining symbols include symbols of the subframe except for the listening symbol.
  • the target symbol belongs to the remaining symbols and has a lower priority than the listening symbol. The target symbol thus may be selected for carrying the affected information.
  • the target symbol may be selected from the remaining 13 symbols of the subframe 100. Since SRS has a higher priority than PUCCH and a DMRS sequence, a symbol that used for transmitting PUCCH or the DMRS sequence, for example, any of symbols 0-6 of slot 0 and symbols 0-5 of slot 1, may be selected from the remaining symbols as the target symbol.
  • the affected information is assigned to the target symbol for transmission in the uplink.
  • the information also referred to as “target information” hereafter
  • the affected information may be assigned to this symbol, and PUCCH that is pre-assigned to this symbol will not be transmitted anymore.
  • the target information in addition to discarding the target information, it may be determined whether the target information is encoded with OCC sequences.
  • OCC sequences To distinguish from the first OCC sequences discussed above, such OCC sequences are referred to as “second OCC sequences. ”
  • the second OCC sequences may or may not have the same length as the first OCC sequences. If the target information is encoded with the second OCC sequences, length of the second OCC sequences may be reduced.
  • the listening symbol is excluded from transmitting information in the uplink.
  • the listening symbol may be dedicated to perform the LBT, without carrying any control information or data.
  • step 460 availability of the channel is listened on the listening symbol. This step is similar to step 340, and thus is not detailed here.
  • step 470 in response to the channel being available, the affected information is transmitted on the target symbol.
  • control information and/or data pre-assigned thereto may be transmitted as normal.
  • the affected information that is, SRS
  • transmission on symbols 0-6 of slot 0 and symbols 1-5 of slot 1 of the subframe 100 will not be affected.
  • step 470 availability of the channel on the listening symbol may be listened. Then, if listening result shows that the channel is available, it may be determined, from the uplink subframe, OCC symbols on which the target information is to be transmitted after being encoded by the second OCC sequences. Next, the target information may be encoded with the reduced OCC sequences. Then, the encoded target information may be transmitted on the OCC symbols, and the affected information may be transmitted on the target symbol.
  • the ending symbol is determined as the listening symbol, for PUCCH format 1/1a/1b, symbol 6 in slot 1 will be impacted, and there may be some options as follows.
  • Option 1 The PUCCH OCC length (i.e., 4) in slot 1 is decreased to 3.
  • length-3 OCC sequence has already been used by shortened PUCCH format 1/1a/1b, it thus can be reused.
  • Option 2 the PUCCH in symbol 6 in slot 1 is discarded directly, also referred to as “punctured. ”
  • UE multiplexing may be impacted due to OCC sequence cutting to some extent.
  • PUCCH format 3 For PUCCH format 3, symbol 6 in slot 1 will be impacted, and there may be two options similar to those of PUCCH format 1/1a/1b. The difference therebetween is that for Option 1 of PUCCH format 3, the PUCCH OCC length in slot 1 can be decreased to 4. Since length 4 is already used by shortened PUCCH format 3, it thus can be reused.
  • Option 1 Symbol 6 in slot 1 is punctured.
  • Option 2 The information bits carried by PUCCH format 2/2a/2b may be decreased from 20 to 18.
  • the dropping of the information bits may be performed based on priorities of different types of information.
  • Symbol 5 in slot 1 may be used to carry PUCCH information of symbol 6 in slot 1.
  • Channel estimation by DMRS may be impacted, and DMRS multiplexing capacity may be decreased.
  • Option 4 Symbol 3 in slot 1 is used by PUCCH DMRS, and other symbols except the last symbol in slot 1 may be used to carry PUCCH information, which is also the case for extended CP.
  • Option 2 For PUCCH format 4/5, similar symbols as Option 1 and Option 2 for PUCCH format 2/2a/2b can be reused. With regard to Option 2, the decrease of information bits may be a bit different.
  • the partial subframe transmission may also have impact on SRS transmission. More specifically, legacy SRS is transmitted in the last symbol of a subframe, ifthe ending symbol is the listening symbol, the transmission of SRS will be affected. Now some exemplary embodiments of the present invention will be described below.
  • SRS there is SRS only transmission.
  • SRS may be transmitted in symbol 6 in slot 0 or symbol 5 in slot 1.
  • SRS there is SRS plus PUSCH transmission.
  • SRS may be transmitted in symbol 6 in slot 0 or symbol 5 in slot 1, but PUSCH in symbol 6 of the first slot or symbol 5 in slot 1 may need to be punctured.
  • SRS there is SRS plus PUCCH transmission.
  • PUCCH format 1/1a/1b the last two symbols of the subframe carry PUCCH conventionally.
  • the symbol 6 in slot 1 solutions for PUCCH only case can be adopted.
  • the second option is SRS is transmitted in symbol 6 of the first slot, and PUCCH OCC length in both slots is 3.
  • the last symbol of slot 1 carries PUCCH
  • symbol 5 of slot 1 carries PUCCH DMRS conventionally.
  • symbols 6 in slot 1 solutions for PUCCH only case can be adopted.
  • Option 1 Symbol 5 in slot 1 is used for SRS, and PUCCH DMRS OCC length in slot 1 is decreased to 1;
  • option 2 Symbol 4 in slot 1 is used for SRS, and PUCCH OCC length in slot 1 is decreased to 3;
  • option 3 Symbol 6 in the first slot is used for SRS, and PUCH OCC length in the first slot is decreased to 4. If PUCCH OCC length is decreased, PUCCH multiplexing capacity may be decreased.
  • OCC sequences with length 2, 3, 4 and 5, so they can be reused for the decreased length PUCCH when SRS plus PUCCH transmission is supported in ending partial subframe, that is, the subframe used for partial subframe transmission whose ending symbol acts as the listening symbol.
  • the partial subframe transmission may also have impact on PUSCH carrying data.
  • the available resource elements (Res) in a subframe for PUSCH transmission may be decreased due to the ending partial subframe, and there may be two options as follows.
  • Option 1 adjusting the TBS according to the available REs for PUSCH, for example, with scaling factor 0.75.
  • Option 2 puncturing PUSCH in the last symbol of slot 1.
  • the partial subframe transmission may also have impact on PUSCH carrying control information.
  • data and control information mapping is in an interleaving manner, for example, by using an interleaving matrix.
  • FIG. 7 illustrates a schematic diagram 700 of structures of subframes according to further embodiments of the invention.
  • the column number of the interleaving matrix is 11, and the row number of the interleaving matrix depends on the total bits to transmit. As shown in FIG.
  • DMRS occupies symbol 3 in both slots
  • RI occupies symbol 1 and symbol 5 in both slots
  • HARQ occupies symbol 2 and symbol 4 in both slots by puncture data information
  • SRS may occupy symbol 6 in slot 1
  • data occupies symbol 0 and 6 in the first slot
  • symbol 0 in slot 1 and may occupy symbol 6 in slot 1 depends on SRS.
  • data may refer to data information in physical layer and also PMI/CQI information.
  • the coded bits may also be impacted by the number of available symbols in time domain, for example 11 in the example of FIG. 7.
  • the row number for the interleaving matrix and the value to calculate codes bits for control information may be updated, for example, decreased by at least 1 depending on the partial subframe structure.
  • SRS is transmitted in the ending partial subframe, there may be two options as follows.
  • Option 1 SRS occupies the data symbol, that is, symbol 0 or symbol 6 in the first slot or symbol 0 in slot 1, and the corresponding data is punctured.
  • Option 2 SRS occupies the RI symbol, that is, symbol 5 in slot 1, and the punctured RI can be transmitted in the legacy data symbol.
  • the listening symbol is not limited to the ending symbol.
  • the starting symbol that is, symbol 0 may be used as the listening symbol.
  • symbol 0 in the first slot is used for PUCCH transmission conventionally, so PUCCH OCC length in the first slot can be decreased by 1 due to the starting partial subframe.
  • symbol 0 in the first slot may be impacted, and there may be four options.
  • Option 1 symbol 0 in the first slot is punctured.
  • Option 2 the information bits carried by PUCCH format 2/2a/2b may be decreased from 20 to 18.
  • Option 3 Symbol 1 in the first slot may be used to carry PUCCH information of symbol 0 in slot 1, and legacy PUCCH DMRS in symbol 1 of the first slot may be punctured.
  • Option 4 Symbol 3 in the first slot is used by PUCCH DMRS, and other symbols except the first symbol in the first slot may be used to carry PUCCH information, which is also the case for extended CP.
  • PUCCH format 4/5 similar symbols as Option 1 and Option 2 for PUCCH format 2/2a/2b may be reused.
  • the decrease of information bits may be a bit different.
  • symbol 0 in the first slot may be punctured, similar processing as the ending partial subframe may be adopted.
  • the number of available symbols in a subframe should be decreased by at least 1 depending on the partial subframe structure.
  • the decreased value may be equal to the number of the listening symbol (s) . For example, if the listening symbol number is 1, the corresponding decreased value is 1. SRS, DMRS, HARQ, and RI may not be affected. Symbol 0 in the first slot which carries data may be punctured.
  • the partial subframe may be indicated in multiple ways.
  • RRC configures all the subframes are partial subframe or full subframe.
  • MIB Master Information Block
  • SIB System Information Block
  • the partial subframe configuration of a specific cell ID is broadcasted.
  • broadcasting is performed in unlicensed cell itself the partial subframe configuration if broadcasting is supported.
  • the partial subframe configuration is implicitly linked to cell ID or other possible index. The linkage may be restricted by specification.
  • UE-specific PUSCH transmission may be triggered by Downlink control information (DCI) format, and the DCI format also triggers channel sensing implicitly.
  • DCI Downlink control information
  • UE-specific periodic PUCCH/SRS transmission may be according to the periodicity, and channel sensing may be also performed implicitly.
  • FIG. 5 illustrates a block diagram of a device 500 for performing partial subframe transmission according to embodiments of the invention.
  • the device 500 may be implemented at a UE or other suitable node in the wireless communication system.
  • the device 500 comprises: an obtaining unit 510 configured to obtain information about a listening symbol in an uplink subframe, the listening symbol being used for determining availability of a channel before transmission on the channel; an adjusting unit 520 configured to adjust a structure of the uplink subframe based on the information about a listening symbol; and a transmitting unit 530 configured to perform transmission in uplink by using the adjusted uplink subframe.
  • the adjusting unit 520 is further configured to: exclude the listening symbol from transmitting information in the uplink.
  • the transmitting unit 530 is further configured to: listen availability of the channel on the listening symbol; and in response to the channel being available, transmit at least one of control information and data on remaining symbols of the uplink subframe, the remaining symbols excluding the listening symbol.
  • the adjusting unit 520 is further configured to: determine whether affected information to be transmitted on the listening symbol is encoded with first OCC sequences, the affected information including at least one of control information and data; and in response to the affected information being encoded with first OCC sequences, reduce length of the first OCC sequences and exclude the listening symbol from transmitting information in the uplink.
  • the transmitting unit 530 is further configured to: listen availability of the channel on the listening symbol; and in response to the channel being available, determine, from the uplink subframe, OCC symbols on which the affected information is to be transmitted after being encoded by the first OCC sequences; encode the affected information with the reduced OCC sequences; and transmit the encoded affected information on the OCC symbols.
  • the adjusting unit 520 is further configured to: determine priorities of affected information to be transmitted on the listening symbol and information to be transmitted on remaining symbols of the uplink subframe; select a target symbol from the remaining symbols based on the determined priorities; assign the affected information to the target symbol for transmission in the uplink; and exclude the listening symbol from transmitting information in the uplink.
  • the transmitting unit 530 is further configured to: listen availability of the channel on the listening symbol; and in response to the channel being available, transmit the affected information on the target symbol.
  • the adjusting unit 520 is further configured to: determine whether target information to be transmitted on the target symbol is encoded with second OCC sequences; and in response to the target information being encoded with the second OCC sequences, reduce length of the second OCC sequences.
  • the transmitting unit 530 is further configured to: listen availability of the channel on the listening symbol; and in response to the channel being available, determine, from the uplink subframe, OCC symbols on which the target information is to be transmitted after being encoded by the second OCC sequences; encode the target information with the reduced OCC sequences; transmit the encoded target information on the OCC symbols; and transmit the affected information on the target symbol.
  • the device 500 may be respectively implemented by any suitable technique either known at present or developed in the future. Further, a single device shown in FIG. 5 may be alternatively implemented in multiple devices separately, and multiple separated devices may be implemented in a single device. The scope of the present invention is not limited in these regards.
  • the device 500 may be configured to implement functionalities as described with reference to FIGs. 2-4. Therefore, the features discussed with respect to the methods 200-400 may apply to the corresponding components of the device 500. It is further noted that the components of the device 500 may be embodied in hardware, software, firmware, and/or any combination thereof. For example, the components of the device 500 may be respectively implemented by a circuit, a processor or any other appropriate device. Those skilled in the art will appreciate that the aforesaid examples are only for illustration not limitation.
  • the device500 may comprise at least one processor.
  • the at least one processor suitable for use with embodiments of the present disclosure may include, by way of example, both general and special purpose processors already known or developed in the future.
  • the device 500 may further comprise at least one memory.
  • the at least one memory may include, for example, semiconductor memory devices, e.g., RAM, ROM, EPROM, EEPROM, and flash memory devices.
  • the at least one memory may be used to store program of computer executable instructions.
  • the program can be written in any high-level and/or low-level compliable or interpretable programming languages.
  • the computer executable instructions may be configured, with the at least one processor, to cause the device 500 to at least perform according to any of the methods 200-400 as discussed above.
  • the present disclosure may be embodied in an apparatus, a method, or a computer program product.
  • the various exemplary embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto.
  • FIGs. 2-4 may be viewed as method steps, and/or as operations that result from operation of computer program code, and/or as a plurality of coupled logic circuit elements constructed to carry out the associated function (s) .
  • At least some aspects of the exemplary embodiments of the disclosures may be practiced in various components such as integrated circuit chips and modules, and that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, FPGA or ASIC that is configurable to operate in accordance with the exemplary embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the disclosure provide a method and device for performing partial subframe transmission. The method comprises : obtaining information about a listening symbol in an uplink subframe, the listening symbol being used for determining availability of a channel before transmission on the channel; adjusting a structure of the uplink subframe based on the information about a listening symbol; and performing transmission in uplink by using the adjusted uplink subframe.

Description

METHOD AND DEVICE FOR PERFORMING PARTIAL SUBFRAME TRANSMISSION FIELD OF THE INVENTION
Embodiments of the present invention generally relate to communication techniques. More particularly, embodiments of the present invention relate to a method and device for performing partial subframe transmission.
BACKGROUND OF THE INVENTION
In wireless communication, spectrum is rare resource. Recently, for purpose of improving usage of the spectrum, the spectrum is divided into licensed carriers and unlicensed carriers, and License Assisted Access (LAA) has been introduced. A licensed carrier represents a frequency band that is exclusively licensed to a specific operator to provide specific wireless services. On the other hand, an unlicensed carrier represents a frequency band that is not allocated to a specific operator, but is opened so that all entities satisfying predefined requirements may use the frequency band. Transmission on the unlicensed carrier is able to offload the traffic on the licensed carrier.
In some regions in the world, unlicensed carrier technologies need to abide to certain regulations, for example, Listen-Before-Talk (LBT) and channel bandwidth occupancy requirements. LBT results in an uncertainty of channel availability. For instance, an unlicensed carrier may be available at any time during a subframe.
Conventionally, at the user equipment (UE) side, LBT should be performed before uplink (UL) transmission to satisfy the regulations. If frame based LBT is adopted, there should be an idle duration which occupies a predetermined portion (for example, 5%) of the channel occupancy time. Since uplink scheduling is per subframe and UE-specific, if uplink scheduling on unlicensed carrier is still performed per subframe, and frame based LBT is adopted by UE before transmission at each subframe, then there will be an idle duration of at least 1 OFDM symbol for each subframe. Meanwhile, UE transmission boundary needs to be aligned to avoid inter-UE transmission blocking, and multi-UE UL multiplexing in a subframe and scheduling  granularity of a single subframe should be enabled.
Therefore, there is a need for a solution of performing partial subframe transmission, such that LBT can be implemented while keeping legacy functions of uplink physical channels and reference signals.
SUMMARY OF THE INVENTION
The present invention proposes a solution for performing partial subframe transmission.
According to a first aspect of embodiments of the present invention, embodiments of the invention provide a method of performing partial subframe transmission. The method comprises: obtaining information about a listening symbol in an uplink subframe, the listening symbol being used for determining availability of a channel before transmission on the channel; adjusting a structure of the uplink subframe based on the information about a listening symbol; and performing transmission in uplink by using the adjusted uplink subframe.
According to a second aspect of embodiments of the present invention, embodiments of the invention provide a device for performing partial subframe transmission. The device comprises: an obtaining unit configured to obtain information about a listening symbol in an uplink subframe, the listening symbol being used for determining availability of a channel before transmission on the channel; an adjusting unit configured to adjust a structure of the uplink subframe based on the information about a listening symbol; and a transmitting unit configured to perform transmission in uplink by using the adjusted uplink subframe.
Other features and advantages of the embodiments of the present invention will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the invention are presented in the sense of examples and their advantages are explained in greater detail below, with reference to the accompanying  drawings, where
FIG. 1 illustrates a schematic diagram of a structure of a subframe 100 according to embodiments of the invention;
FIG. 2 illustrates a flow chart of a method 200 of performing partial subframe transmission according to embodiments of the invention;
FIG. 3 illustrates a flow chart of a method 300 of performing partial subframe transmission according to further embodiments of the invention;
FIG. 4 illustrates a flow chart of a method 400 of performing partial subframe transmission according to still further embodiments of the invention;
FIG. 5 illustrates a block diagram of a device 500 for performing partial subframe transmission according to embodiments of the invention;
FIG. 6 illustrates a schematic diagram 600 of structures of subframes according to embodiments of the invention; and
FIG. 7 illustrates a schematic diagram 700 of structures of subframes according to further embodiments of the invention.
Throughout the figures, same or similar reference numbers indicate same or similar elements.
DETAILED DESCRIPTION OF EMBODIMENTS
The subject matter described herein will now be discussed with reference to several example embodiments. It should be understood these embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus implement the subject matter described herein, rather than suggesting any limitations on the scope of the subject matter.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a, ” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises, ” “comprising, ” “includes” and/or “including, ”  when used herein, specify the presence of stated features, integers, steps, operations, elements and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
It should also be noted that in some alternative implementations, the functions/acts noted may occur out of the order noted in the figures. For example, two functions or acts shown in succession may in fact be executed concurrently or may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
As used herein, the term “base station” or “BS” represents a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth.
As used herein, the term “user equipment” or “UE” refers to any device that is capable of communicating with the BS. By way of example, the UE may include a terminal, a Mobile Terminal (MT) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
Embodiments of the present invention may be applied in various communication systems, including but not limited to a Long Term Evolution (LTE) system or a Long Term Evolution Advanced (LTE-A) system. Given the rapid development in communications, there will of course also be future type wireless communication technologies and systems with which the present invention may be embodied. It should not be seen as limiting the scope of the invention to only the aforementioned system.
Now some exemplary embodiments of the present invention will be described below with reference to the figures. Reference is first made to FIG. 1, which illustrates schematic diagram of a structure of a subframe 100 according to embodiments of the invention.
The subframe 100 illustrates an example subframe used in uplink transmission. In the example of FIG. 1, a UL grant for a UE is related to a single UL subframe 100. The subframe 100 includes 14 symbols which are divided into two slots, slot 0 and slot  1. Either of the slots includes 7 symbols. According to embodiments of the present invention, the subframe 100 may be a Physical uplink control channel (PUCCH) subframe, a Physical uplink shared channel (PUSCH) subframe, and/or the like.
As to the scheduled UL subframe, LBT may be performed with regard to a channel at a symbol of the subframe 100, which is referred to as a listening symbol hereafter. In the example of FIG. 1, it is supposed that the LBT is performed at an ending symbol 101 of the subframe 100, that is, symbol 6 of slot 1. Ifthe LBT result is idle, it means that the channel is available, then UL transmission on 13 symbols of a subframe subsequent to the subframe 100 can be performed by the UE. On the other hand, if the LBT result is busy, no transmission will be performed by the UE on the subsequent subframe.
It is to be understood that the above example is described for example rather than limitation. Those skilled in the art will readily understand that the ending symbol 101 is just an example of the listening bit. In some other embodiments, the starting symbol or a middle-positioned symbol of the subframe 100 may be also used as a listening symbol. Furthermore, there may be more than one listening symbols in one subframe.
As to transmission using the partial subframe structure as described with reference to FIG. 1, uplink physical channels and reference signals may be impacted. Thus, there is a need to redesign uplink physical channels and reference signals regarding the partial subframe structure. Now some exemplary embodiments of the present invention will be described below with reference to the following figures. FIG. 2 illustrates a flow chart of a method 200 of performing partial subframe transmission according to embodiments of the invention. The method 200 may be implemented at a UE or other suitable device. The uplink subframe may be implemented as the subframe 100 shown in FIG. 1.
The method 200 is entered in step 210, where information about a listening symbol in an uplink subframe is obtained. The listening symbol is used for determining availability of a channel before transmission on the channel. In some embodiments, the listening symbol may be determined by a BS serving the UE and notified by the BS to the UE via high level signaling.
Alternatively, in some embodiments, the listening symbol may be predefined at both the BS side and the UE side. At the UE side, information about the listening symbol may be stored in a storage device accessible to the UE. Thus, in step 210, the UE may obtain the information about a listening symbol from the storage device.
In step 220, a structure of the uplink subframe is adjusted based on the information about a listening symbol. According to embodiments of the present invention, the structure of the uplink subframe may be adjusted in a variety of ways. In some embodiments, the listening symbol may be excluded from transmitting information in the uplink. In the example of FIG. 1, the transmission of control information or data on the listening symbol (the ending symbol 101 of the subframe 100) may be directly stopped, without affecting information carried on the remaining 13 symbols of the subsequent subframe or the transmission thereof.
As an alternative, in some embodiments, it may be determined whether affected information is encoded with first Orthogonal Cover Code (OCC) sequences. In embodiments of the present invention, since the listening symbol is used to determine the availability of the channel, for example perform the LBT, it cannot be used in uplink transmission any longer. The affected information indicates information about control information and/or data that are predetermined to be transmitted on the listening symbol and stopped transmission due to the performing of the LBT. In response to the affected information being encoded with first OCC sequences, length of the first OCC sequences may be reduced and the listening symbol may be excluded from transmitting information in the uplink.
As a further alternative, in some embodiments, priorities of information transmitted on symbols of the uplink subframe may be determined. The priorities may include priorities of affected information to be transmitted on the listening symbol and information to be transmitted on remaining symbols of the uplink subframe. A target symbol may be selected from the remaining symbols based on the determined priorities. The affected information may be assigned to the target symbol for transmission in the uplink. The listening symbol then may be excluded from transmitting information in the uplink.
Alternatively, or in addition, when assigning the affected information to the target symbol for transmission in the uplink, it may be determined whether target  information to be transmitted on the target symbol is encoded with second OCC sequences. In response to the target information being encoded with the second OCC sequences, length of the second OCC sequences may be reduced.
In step 230, transmission is performed in uplink by using the adjusted uplink subframe. According to embodiments of the present invention, with respect to structure of the uplink subframe adjusted in different ways, there may be various manners to perform transmission in uplink.
In some embodiments where the listening symbol is excluded from transmitting information in the uplink, in step 230, availability of the channel is listened on the listening symbol. In response to the channel being available, at least one of control information and data may be transmitted on remaining symbols of the uplink subframe, the remaining symbols excluding the listening symbol. In other words, except for the listening symbol, all symbols of the subframe may be used for transmission as usual. In the example of FIG. 1, control information or data on the listening symbol (the ending symbol 101 of the subframe 100) may be directly stopped, and control information or data carried on the remaining 13 symbols of the subsequent subframe may proceed in the normal way.
Alternatively, in some embodiments where the affected information is encoded with first OCC sequences, in step 230, availability of the channel may be listened on the listening symbol. If the channel is available, it may be determined, from the uplink subframe, OCC symbols on which the affected information is to be transmitted after being encoded by the first OCC sequences. Then the affected information may be encoded with the reduced OCC sequences, and the encoded affected information may be transmitted on the OCC symbols. More details will be discussed with reference to FIG. 3.
Alternatively, in some embodiments where the affected information is assigned to a target symbol selected from the remaining symbols based on the priorities of symbols, in step 230, availability of the channel may be listened on the listening symbol. In response to the channel being available, the affected information may be transmitted on the target symbol. More details will be discussed with reference to FIG. 4.
In addition, or alternatively, in some embodiments where the target information is encoded with the second OCC sequences and the length of the second OCC  sequences is reduced, in step 230, availability of the channel may be listened on the listening symbol. In response to the channel being available, it may be determined, from the uplink subframe, OCC symbols on which the target information is to be transmitted after being encoded by the second OCC sequences, the target information may be encoded with the reduced OCC sequences, the encoded target information may be transmitted on the OCC symbols, and the affected information may be transmitted on the target symbol.
More details of embodiments of the present invention will be discussed with reference to FIGs. 3 and 4. FIG. 3 illustrates a flow chart of a method 300 of performing partial subframe transmission according to further embodiments of the invention. The method 300 may be considered as a specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
The method 300 is entered in step 310, where information about a listening symbol in an uplink subframe is obtained. This step is similar to step 210, and thus is not detailed here. In the following discussed embodiments, the listening symbol is illustrated as the ending symbol 101 of the subframe 100. It is to be understood that this is described for purpose of discussion instead of limitation.
In step 320, it is determined whether affected information to be transmitted on the listening symbol is encoded with first OCC sequences. According to embodiments of the present invention, the subframe 100 may be a control information subframe (also referred to as “PUCCH subframe” hereafter) or a data subframe (also referred to as “PUSCH subframe” hereafter) . Accordingly, the information transmitted on respective symbols of the subframe may include control information and/or data. FIG. 6 illustrates a schematic diagram 600 of structures of subframes according to embodiments of the invention.
In FIG. 6, a plurality of control information formats (also referred to as “PUCCH formats” hereafter) are illustrated. PUCCH is used to carry scheduling request (SR) , ACK/NACK and channel state information (CSI) . For PUCCH format 1/1a/1b, different symbols in the same slot carry the same PUCCH information bits with different OCC values. For PUCCH format 2/2a/2b, different symbols in the same slot  carry different PUCCH information bits. For PUCCH format 3, different symbols in the same slot carry the same PUCCH information bits with different OCC values. For PUCCH format 4, different symbols in the same slot carry different PUCCH information bits. For PUCCH format 5, different symbols in the same slot carry different PUCCH information bits. It thus can be seen that in PUCCH format 1/1a/1b and 3, the PUCCH is encoded with OCC sequences.
In some embodiments, it is supposed that the listening symbol is the ending symbol 101. Thus, in step 320, it may be determined that the affected information is PUCCH in any of the PUCCH format 1/1a/1b, PUCCH format 2/2a/2b, and PUCCH formats 3 to 5, since the listening symbol only transmits the PUCCH. Furthermore, according to the PUCCH formats shown in FIG. 6, it may be determined that affected information is encoded with OCC sequences in the PUCCH formats 1/1a/1b and 3. In particular, with regard to the PUCCH format 1/1a/1b, it may be determined that the affected information is encoded with OCC sequences (also referred to as “first OCC sequences” ) , and the length of the OCC sequences may be 3 or 4. With regard to the PUCCH format 3, it may be determined that the affected information is also encoded with OCC sequences, and the length of the OCC sequences may be 4 or 5 in step 320. Regarding the other PUCCH formats, for example, PUCCH formats 2/2a/2b and 4-5, it may determine that the affected information is not encoded with first OCC sequences in step 320.
It is to be understood that the above examples are illustrated for discussion rather than limitation. In some embodiments, the listening symbol may be any symbol of a subframe and thus may be used for transmitting PUCCH or a demodulation reference signal (DMRS) sequence. If the listening symbol is used for transmitting the DMRS sequence, that is, the affected information includes the DMRS sequence, it needs to be determined whether the DMRS sequence is encoded with OCC sequences in step 320. As shown in the example of FIG. 6, for PUCCH format 1/1a/1b, different symbols in the same slot carry the same DMRS sequence with different OCC value. For PUCCH format 2/2a/2b, different symbols in the same slot carry the same DMRS sequence with different OCC value. For PUCCH format 3, different symbols in the same slot carry the same DMRS sequence with different OCC value. For PUCCH format 4, there is only one DMRS symbol per slot. For PUCCH format 5, there is only one DMRS  symbol per slot.
Thus, according to FIG. 6, if the listening symbol is symbol 3 of slot 1 of the subframe 100 and the PUCCH format is 1/1a/1b, it may be determined that the affected information, namely, the DMRS sequence, is encoded with OCC sequences, and the OCC length is 3. With regard to other PUCCH formats 2/2a/2b and 3-5, it may be determined that the affected information is not encoded with OCC sequences.
In step 330, in response to the affected information being encoded with first OCC sequences, length of the first OCC sequences is reduced and the listening symbol is excluded from transmitting information in the uplink.
In the above discussed embodiments where the listening symbol is the ending symbol 101 and the affected information relate to PUCCH, it is supposed that the PUCCH format 1/1a/1b is adopted and the length of the OCC sequences is 4. In this case, since the listening symbol is no longer used in transmission of PUCCH, the length of OCC sequences may be reduced by 1. As a result, the length of the reduced OCC sequences equals to 3.
In an analogous way, in the embodiments where the listening symbol is symbol 3 of slot 1 of the subframe 100, the affected information includes the DMRS sequence and the length of OCC sequences for encoding the DMRS sequence is 3, the listening symbol may be no longer used in transmitting information in the uplink and the length of the OCC sequences may be reduced to 2 in step 330.
In step 340, availability of the channel is listened on the listening symbol. According to embodiments of the present invention, the UE may determine the availability of the channel, for example, by detecting energy on the channel. Those skilled in the art could implement step 340 in a variety of manners, which are not detailed here.
In step 350, in response to the channel being available, it is determined, from the uplink subframe, OCC symbols on which the affected information is to be transmitted after being encoded by the first OCC sequences. The affected information is then encoded with the reduced OCC sequences and transmitted on the OCC symbols. According to embodiments of the present invention, the OCC symbols belong to the same slot as the listening symbol, but do not include the listening symbol.
In the above discussed embodiments where the listening symbol is the ending  symbol 101 (symbol 6 of slot 1 of the subframe) and the length of the reduced OCC sequences equals to 3, it may be determined that, in the PUCCH format 1/1a/1b, the OCC symbols used for transmitting encoded PUCCH encoded are  symbols  0, 1 and 5 of slot 1 of the subframe. As such, in step 350, PUCCH may be encoded by the reduced OCC sequences and transmitted on  symbols  0, 1 and 5 of slot 1 of the subframe. Symbol 6 of slot 1, that is the ending symbol, is used as the listening symbol and does not transmit PUCCH anymore.
In the above discussed embodiments regarding the DMRS sequence, the OCC symbols may be determined as  symbols  2 and 4 of slot 1 of the subframe and the length of the reduced OCC sequences equals to 2. In step 350, the DMRS sequence may be encoded by the reduced OCC sequences and transmitted on  symbols  2 and 4 of slot 1 of the subframe. Symbol 3 of slot 1 is used as the listening symbol and does not transmit the DMRS sequence anymore.
It is to be understood that the above embodiments are described for purpose of discussion rather than limitation. Those skilled in the art will readily understand that there are many other implementations the present invention. FIG. 4 illustrates a flow chart of a method 400 of performing partial subframe transmission according to still further embodiments of the invention. The method 400 may be considered as a specific implementation of the method 200 described above with reference to Fig. 2. However, it is noted that this is only for the purpose of illustrating the principles of the present invention, rather than limiting the scope thereof.
The method 400 is entered in step 410, where information about a listening symbol in an uplink subframe is obtained. This step is similar to step 210, and thus is not detailed here.
In step 420, determining priorities of affected information to be transmitted on the listening symbol and information to be transmitted on remaining symbols of the uplink subframe. According to embodiments of the present invention, a symbol of the subframe may carrier a certain type of information, for example, PUCCH, DMRS sequence, Hybrid Automatic Repeat Request (HARQ) , rank information (RI) , Sounding reference signal (SRS) , SR, data, and so on. Different types of information may have different priorities. The priorities may be assigned by the operator or may be  determined according to certain rules. In some embodiments, the control information, such as PUCCH, DMRS sequences, SRS, HARQ, RI and so on, has a higher priority than data; PUCCH has a higher priority than DMRS sequences, SRS has a higher priority than PUCCH, and HARQ has a higher priority than RI. Additionally, in some embodiments, the information bits carried on the different symbols of the same physical channel, for example, the information bits on PUCCH format 2/2a/2b, may also have different priorities. If puncturing of some of the information bits is to be performed due to the listening symbol, selection can be performed firstly to decide the information bits with lower priority to be punctured, and other remaining information bits can be kept for transmission. It is to be understood that the above examples of priorities are described for purpose of discussion rather than limitation. Those skilled in the art may assign different priorities to different control information and data according to system requirements and/or other regulations.
In step 430, a target symbol is selected from the remaining symbols based on the determined priorities. The remaining symbols include symbols of the subframe except for the listening symbol. The target symbol belongs to the remaining symbols and has a lower priority than the listening symbol. The target symbol thus may be selected for carrying the affected information.
Still referring the structure of the subframe 100, if SRS is to be transmitted on the ending symbol 101 but the ending symbol 101 is defined as the listening symbol, then the target symbol may be selected from the remaining 13 symbols of the subframe 100. Since SRS has a higher priority than PUCCH and a DMRS sequence, a symbol that used for transmitting PUCCH or the DMRS sequence, for example, any of symbols 0-6 of slot 0 and symbols 0-5 of slot 1, may be selected from the remaining symbols as the target symbol.
In step 440, the affected information is assigned to the target symbol for transmission in the uplink. In some embodiments, when the affected information is assigned to the target symbol, the information (also referred to as “target information” hereafter) to be transmitted on the target symbol may be discarded or dropped directly. In the above discussed example, if symbol 0 of slot 1 of the subframe 100 is selected as the target symbol, the affected information, that is, SRS, may be assigned to this symbol,  and PUCCH that is pre-assigned to this symbol will not be transmitted anymore.
As an alternative, in some embodiments, in addition to discarding the target information, it may be determined whether the target information is encoded with OCC sequences. To distinguish from the first OCC sequences discussed above, such OCC sequences are referred to as “second OCC sequences. ” The second OCC sequences may or may not have the same length as the first OCC sequences. If the target information is encoded with the second OCC sequences, length of the second OCC sequences may be reduced.
In step 450, the listening symbol is excluded from transmitting information in the uplink. As such, the listening symbol may be dedicated to perform the LBT, without carrying any control information or data.
In step 460, availability of the channel is listened on the listening symbol. This step is similar to step 340, and thus is not detailed here.
In step 470, in response to the channel being available, the affected information is transmitted on the target symbol. In some embodiments, with regard to the remaining symbols excluding the target symbol and the listening symbol, control information and/or data pre-assigned thereto may be transmitted as normal. In the above discussed example in which symbol 0 of slot 1 of the subframe 100 is selected as the target symbol, the affected information, that is, SRS, is transmitted on this symbol, and transmission on symbols 0-6 of slot 0 and symbols 1-5 of slot 1 of the subframe 100 will not be affected.
Alternatively, in embodiments where the target information is encoded with the second OCC sequences as discussed in step 450, in step 470, availability of the channel on the listening symbol may be listened. Then, if listening result shows that the channel is available, it may be determined, from the uplink subframe, OCC symbols on which the target information is to be transmitted after being encoded by the second OCC sequences. Next, the target information may be encoded with the reduced OCC sequences. Then, the encoded target information may be transmitted on the OCC symbols, and the affected information may be transmitted on the target symbol.
It should be understood the above embodiments are discussed only for the purpose of enabling those skilled persons in the art to better understand and thus  implement the subject matter described herein, rather than suggesting any limitations on the scope of the subject matter. Now more exemplary embodiments of the present invention will be described below with respect to FIG. 6.
In some embodiments, if the ending symbol is determined as the listening symbol, for PUCCH format 1/1a/1b, symbol 6 in slot 1 will be impacted, and there may be some options as follows.
Option 1: The PUCCH OCC length (i.e., 4) in slot 1 is decreased to 3. In this regard, since, length-3 OCC sequence has already been used by shortened PUCCH format 1/1a/1b, it thus can be reused.
Option 2: the PUCCH in symbol 6 in slot 1 is discarded directly, also referred to as “punctured. ” In this regard, UE multiplexing may be impacted due to OCC sequence cutting to some extent.
For PUCCH format 3, symbol 6 in slot 1 will be impacted, and there may be two options similar to those of PUCCH format 1/1a/1b. The difference therebetween is that for Option 1 of PUCCH format 3, the PUCCH OCC length in slot 1 can be decreased to 4. Since length 4 is already used by shortened PUCCH format 3, it thus can be reused.
For PUCCH format 2/2a/2b, symbol 6 in slot 1 will be impacted, and there may be four options as follows.
Option 1: Symbol 6 in slot 1 is punctured.
Option 2: The information bits carried by PUCCH format 2/2a/2b may be decreased from 20 to 18. The dropping of the information bits may be performed based on priorities of different types of information.
Option 3: Symbol 5 in slot 1 may be used to carry PUCCH information of symbol 6 in slot 1. Channel estimation by DMRS may be impacted, and DMRS multiplexing capacity may be decreased.
Option 4: Symbol 3 in slot 1 is used by PUCCH DMRS, and other symbols except the last symbol in slot 1 may be used to carry PUCCH information, which is also the case for extended CP.
For PUCCH format 4/5, similar symbols as Option 1 and Option 2 for PUCCH format 2/2a/2b can be reused. With regard to Option 2, the decrease of information bits may be a bit different.
According to embodiments of the present invention, the partial subframe transmission may also have impact on SRS transmission. More specifically, legacy SRS is transmitted in the last symbol of a subframe, ifthe ending symbol is the listening symbol, the transmission of SRS will be affected. Now some exemplary embodiments of the present invention will be described below.
In some embodiments, there is SRS only transmission. In this case, SRS may be transmitted in symbol 6 in slot 0 or symbol 5 in slot 1.
In some embodiments, there is SRS plus PUSCH transmission. In this case, SRS may be transmitted in symbol 6 in slot 0 or symbol 5 in slot 1, but PUSCH in symbol 6 of the first slot or symbol 5 in slot 1 may need to be punctured.
In some embodiments, there is SRS plus PUCCH transmission. For PUCCH format 1/1a/1b, the last two symbols of the subframe carry PUCCH conventionally. As to the symbol 6 in slot 1, solutions for PUCCH only case can be adopted. There may be two options regarding SRS transmission. The first Option is that SRS is transmitted in symbol 5 of slot 1, and PUCCH OCC length in slot 1 is decreased to 2. The second option is SRS is transmitted in symbol 6 of the first slot, and PUCCH OCC length in both slots is 3.
For PUCCH format 3, the last symbol of slot 1 carries PUCCH, and symbol 5 of slot 1 carries PUCCH DMRS conventionally. As to symbol 6 in slot 1, solutions for PUCCH only case can be adopted. There may be three options regarding SRS transmission. Option 1: Symbol 5 in slot 1 is used for SRS, and PUCCH DMRS OCC length in slot 1 is decreased to 1; option 2: Symbol 4 in slot 1 is used for SRS, and PUCCH OCC length in slot 1 is decreased to 3; and option 3: Symbol 6 in the first slot is used for SRS, and PUCH OCC length in the first slot is decreased to 4. If PUCCH OCC length is decreased, PUCCH multiplexing capacity may be decreased. Conventionally, there are OCC sequences with  length  2, 3, 4 and 5, so they can be reused for the decreased length PUCCH when SRS plus PUCCH transmission is supported in ending partial subframe, that is, the subframe used for partial subframe  transmission whose ending symbol acts as the listening symbol.
According to embodiments of the present invention, the partial subframe transmission may also have impact on PUSCH carrying data. In some embodiments, the available resource elements (Res) in a subframe for PUSCH transmission may be decreased due to the ending partial subframe, and there may be two options as follows. Option 1: adjusting the TBS according to the available REs for PUSCH, for example, with scaling factor 0.75. Option 2: puncturing PUSCH in the last symbol of slot 1.
According to embodiments of the present invention, the partial subframe transmission may also have impact on PUSCH carrying control information. Conventionally, data and control information mapping is in an interleaving manner, for example, by using an interleaving matrix. FIG. 7 illustrates a schematic diagram 700 of structures of subframes according to further embodiments of the invention. In the example of FIG. 7, the column number of the interleaving matrix is 11, and the row number of the interleaving matrix depends on the total bits to transmit. As shown in FIG. 7, DMRS occupies symbol 3 in both slots, RI occupies symbol 1 and symbol 5 in both slots, HARQ occupies symbol 2 and symbol 4 in both slots by puncture data information, SRS may occupy symbol 6 in slot 1, and data occupies  symbol  0 and 6 in the first slot, symbol 0 in slot 1, and may occupy symbol 6 in slot 1 depends on SRS. In the context of the disclosure, data may refer to data information in physical layer and also PMI/CQI information. In addition, the coded bits may also be impacted by the number of available symbols in time domain, for example 11 in the example of FIG. 7.
If ending partials subframe is adopted, then the row number for the interleaving matrix and the value to calculate codes bits for control information may be updated, for example, decreased by at least 1 depending on the partial subframe structure. If SRS is transmitted in the ending partial subframe, there may be two options as follows. Option 1: SRS occupies the data symbol, that is, symbol 0 or symbol 6 in the first slot or symbol 0 in slot 1, and the corresponding data is punctured. Option 2: SRS occupies the RI symbol, that is, symbol 5 in slot 1, and the punctured RI can be transmitted in the legacy data symbol.
It is to be noted that the above examples are described for illustration. The listening symbol is not limited to the ending symbol. In some embodiments, the  starting symbol, that is, symbol 0, may be used as the listening symbol. In this case, for PUCCH format 1/1a/1b/3, symbol 0 in the first slot is used for PUCCH transmission conventionally, so PUCCH OCC length in the first slot can be decreased by 1 due to the starting partial subframe. For PUCCH format 2/2a/2b, symbol 0 in the first slot may be impacted, and there may be four options. Option 1: symbol 0 in the first slot is punctured. Option 2: the information bits carried by PUCCH format 2/2a/2b may be decreased from 20 to 18. Option 3: Symbol 1 in the first slot may be used to carry PUCCH information of symbol 0 in slot 1, and legacy PUCCH DMRS in symbol 1 of the first slot may be punctured. Option 4: Symbol 3 in the first slot is used by PUCCH DMRS, and other symbols except the first symbol in the first slot may be used to carry PUCCH information, which is also the case for extended CP. For PUCCH format 4/5, similar symbols as Option 1 and Option 2 for PUCCH format 2/2a/2b may be reused. In particular, as to Option 2, the decrease of information bits may be a bit different.
In embodiments where PUSCH carries data, symbol 0 in the first slot may be punctured, similar processing as the ending partial subframe may be adopted.
In embodiments where PUSCH carries control information, the number of available symbols in a subframe should be decreased by at least 1 depending on the partial subframe structure. The decreased value may be equal to the number of the listening symbol (s) . For example, if the listening symbol number is 1, the corresponding decreased value is 1. SRS, DMRS, HARQ, and RI may not be affected. Symbol 0 in the first slot which carries data may be punctured.
According to embodiments of the present invention, the partial subframe may be indicated in multiple ways. In some embodiments, for a specific CC, RRC configures all the subframes are partial subframe or full subframe. Altematively, in some embodiments, by broadcasting in licensed cell’s Master Information Block (MIB) /System Information Block (SIB) or other broadcasting system information, the partial subframe configuration of a specific cell ID is broadcasted. Alternatively, in some embodiments, broadcasting is performed in unlicensed cell itself the partial subframe configuration if broadcasting is supported. Alternatively, in some embodiments, the partial subframe configuration is implicitly linked to cell ID or other possible index. The linkage may be restricted by specification.
According to embodiments of the present invention, there may be some impacts on the channel sensing triggering. UE-specific PUSCH transmission may be triggered by Downlink control information (DCI) format, and the DCI format also triggers channel sensing implicitly. UE-specific periodic PUCCH/SRS transmission may be according to the periodicity, and channel sensing may be also performed implicitly.
FIG. 5 illustrates a block diagram of a device 500 for performing partial subframe transmission according to embodiments of the invention. According to embodiments of the present invention, the device 500 may be implemented at a UE or other suitable node in the wireless communication system.
As shown in FIG. 5, the device 500 comprises: an obtaining unit 510 configured to obtain information about a listening symbol in an uplink subframe, the listening symbol being used for determining availability of a channel before transmission on the channel; an adjusting unit 520 configured to adjust a structure of the uplink subframe based on the information about a listening symbol; and a transmitting unit 530 configured to perform transmission in uplink by using the adjusted uplink subframe.
According to embodiments of the present invention, the adjusting unit 520 is further configured to: exclude the listening symbol from transmitting information in the uplink.
According to embodiments of the present invention, the transmitting unit 530 is further configured to: listen availability of the channel on the listening symbol; and in response to the channel being available, transmit at least one of control information and data on remaining symbols of the uplink subframe, the remaining symbols excluding the listening symbol.
According to embodiments of the present invention, the adjusting unit 520 is further configured to: determine whether affected information to be transmitted on the listening symbol is encoded with first OCC sequences, the affected information including at least one of control information and data; and in response to the affected information being encoded with first OCC sequences, reduce length of the first OCC sequences and exclude the listening symbol from transmitting information in the uplink.
According to embodiments of the present invention, the transmitting unit 530 is further configured to: listen availability of the channel on the listening symbol; and in  response to the channel being available, determine, from the uplink subframe, OCC symbols on which the affected information is to be transmitted after being encoded by the first OCC sequences; encode the affected information with the reduced OCC sequences; and transmit the encoded affected information on the OCC symbols.
According to embodiments of the present invention, the adjusting unit 520 is further configured to: determine priorities of affected information to be transmitted on the listening symbol and information to be transmitted on remaining symbols of the uplink subframe; select a target symbol from the remaining symbols based on the determined priorities; assign the affected information to the target symbol for transmission in the uplink; and exclude the listening symbol from transmitting information in the uplink.
According to embodiments of the present invention, the transmitting unit 530 is further configured to: listen availability of the channel on the listening symbol; and in response to the channel being available, transmit the affected information on the target symbol.
According to embodiments of the present invention, the adjusting unit 520 is further configured to: determine whether target information to be transmitted on the target symbol is encoded with second OCC sequences; and in response to the target information being encoded with the second OCC sequences, reduce length of the second OCC sequences.
According to embodiments of the present invention, the transmitting unit 530 is further configured to: listen availability of the channel on the listening symbol; and in response to the channel being available, determine, from the uplink subframe, OCC symbols on which the target information is to be transmitted after being encoded by the second OCC sequences; encode the target information with the reduced OCC sequences; transmit the encoded target information on the OCC symbols; and transmit the affected information on the target symbol.
It is also to be noted that the device 500 may be respectively implemented by any suitable technique either known at present or developed in the future. Further, a single device shown in FIG. 5 may be alternatively implemented in multiple devices separately, and multiple separated devices may be implemented in a single device.  The scope of the present invention is not limited in these regards.
It is noted that the device 500 may be configured to implement functionalities as described with reference to FIGs. 2-4. Therefore, the features discussed with respect to the methods 200-400 may apply to the corresponding components of the device 500. It is further noted that the components of the device 500 may be embodied in hardware, software, firmware, and/or any combination thereof. For example, the components of the device 500 may be respectively implemented by a circuit, a processor or any other appropriate device. Those skilled in the art will appreciate that the aforesaid examples are only for illustration not limitation.
In some embodiment of the present disclosure, the device500 may comprise at least one processor. The at least one processor suitable for use with embodiments of the present disclosure may include, by way of example, both general and special purpose processors already known or developed in the future. The device 500 may further comprise at least one memory. The at least one memory may include, for example, semiconductor memory devices, e.g., RAM, ROM, EPROM, EEPROM, and flash memory devices. The at least one memory may be used to store program of computer executable instructions. The program can be written in any high-level and/or low-level compliable or interpretable programming languages. In accordance with embodiments, the computer executable instructions may be configured, with the at least one processor, to cause the device 500 to at least perform according to any of the methods 200-400 as discussed above.
Based on the above description, the skilled in the art would appreciate that the present disclosure may be embodied in an apparatus, a method, or a computer program product. In general, the various exemplary embodiments may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. For example, some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device, although the disclosure is not limited thereto. While various aspects of the exemplary embodiments of this disclosure may be illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it is well understood that these blocks, apparatus, systems, techniques or  methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The various blocks shown in FIGs. 2-4 may be viewed as method steps, and/or as operations that result from operation of computer program code, and/or as a plurality of coupled logic circuit elements constructed to carry out the associated function (s) . At least some aspects of the exemplary embodiments of the disclosures may be practiced in various components such as integrated circuit chips and modules, and that the exemplary embodiments of this disclosure may be realized in an apparatus that is embodied as an integrated circuit, FPGA or ASIC that is configurable to operate in accordance with the exemplary embodiments of the present disclosure.
While this specification contains many specific implementation details, these should not be construed as limitations on the scope of any disclosure or of what may be claimed, but rather as descriptions of features that may be specific to particular embodiments of particular disclosures. Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a sub-combination or variation of a sub-combination.
Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single  software product or packaged into multiple software products.
Various modifications, adaptations to the foregoing exemplary embodiments of this disclosure may become apparent to those skilled in the relevant arts in view of the foregoing description, when read in conjunction with the accompanying drawings. Any and all modifications will still fall within the scope of the non-limiting and exemplary embodiments of this disclosure. Furthermore, other embodiments of the disclosures set forth herein will come to mind to one skilled in the art to which these embodiments of the disclosure pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
Therefore, it is to be understood that the embodiments of the disclosure are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Although specific terms are used herein, they are used in a generic and descriptive sense only and not for purpose of limitation.

Claims (18)

  1. A method of performing partial subframe transmission, comprising:
    obtaining information about a listening symbol in an uplink subframe, the listening symbol being used for determining availability of a channel before transmission on the channel;
    adjusting a structure of the uplink subframe based on the information about a listening symbol; and
    performing transmission in uplink by using the adjusted uplink subframe.
  2. The method of Claim 1, wherein adjusting a structure of the uplink subframe based on the information about a listening symbol comprises:
    excluding the listening symbol from transmitting information in the uplink.
  3. The method of Claim 1, wherein performing transmission in uplink comprises:
    listening availability of the channel on the listening symbol; and
    in response to the channel being available, transmitting at least one of control information and data on remaining symbols of the uplink subframe, the remaining symbols excluding the listening symbol.
  4. The method of Claim 1, wherein adjusting a structure of the uplink subframe based on the information about a listening symbol comprises:
    determining whether affected information to be transmitted on the listening symbol is encoded with first Orthogonal Cover Code (OCC) sequences, the affected information including at least one of control information and data; and
    in response to the affected information being encoded with first OCC sequences,
    reducing length of the first OCC sequences; and
    excluding the listening symbol from transmitting information in the uplink.
  5. The method of Claim 4, wherein performing transmission in uplink comprises:
    listening availability of the channel on the listening symbol; and
    in response to the channel being available,
    determining, from the uplink subframe, OCC symbols on which the affected information is to be transmitted after being encoded by the first OCC sequences;
    encoding the affected information with the reduced OCC sequences; and
    transmitting the encoded affected information on the OCC symbols.
  6. The method of Claim 1, wherein adjusting a structure of the uplink subframe based on the information about a listening symbol comprises:
    determining priorities of affected information to be transmitted on the listening symbol and information to be transmitted on remaining symbols of the uplink subframe;
    selecting a target symbol from the remaining symbols based on the determined priorities;
    assigning the affected information to the target symbol for transmission in the uplink; and
    excluding the listening symbol from transmitting information in the uplink.
  7. The method of Claim 6, wherein performing transmission in uplink comprises:
    listening availability of the channel on the listening symbol; and
    in response to the channel being available, transmitting the affected information on the target symbol.
  8. The method of Claim 6, wherein assigning the affected information to be transmitted on the target symbol comprises:
    determining whether target information to be transmitted on the target symbol is encoded with second Orthogonal Cover Code (OCC) sequences; and
    in response to the target information being encoded with the second OCC sequences, reducing length of the second OCC sequences.
  9. The method of Claim 8, wherein performing transmission in uplink comprises:
    listening availability of the channel on the listening symbol; and
    in response to the channel being available,
    determining, from the uplink subframe, OCC symbols on which the target information is to be transmitted after being encoded by the second OCC sequences;
    encoding the target information with the reduced OCC sequences;
    transmitting the encoded target information on the OCC symbols; and
    transmitting the affected information on the target symbol.
  10. A device for performing partial subframe transmission, comprising:
    an obtaining unit configured to obtain information about a listening symbol in an uplink subframe, the listening symbol being used for determining availability of a channel before transmission on the channel;
    an adjusting unit configured to adjust a structure of the uplink subframe based on the information about a listening symbol; and
    a transmitting unit configured to perform transmission in uplink by using the adjusted uplink subframe.
  11. The device of Claim 10, wherein the adjusting unit is further configured to:
    exclude the listening symbol from transmitting information in the uplink.
  12. The device of Claim 10, wherein the transmitting unit is further configured to:
    listen availability of the channel on the listening symbol; and
    in response to the channel being available, transmit at least one of control information and data on remaining symbols of the uplink subframe, the remaining symbols excluding the listening symbol.
  13. The device of Claim 10, wherein the adjusting unit is further configured to:
    determine whether affected information to be transmitted on the listening symbol is encoded with first Orthogonal Cover Code (OCC) sequences, the affected information including at least one of control information and data; and
    in response to the affected information being encoded with first OCC sequences, reduce length of the first OCC sequences and exclude the listening symbol from transmitting information in the uplink.
  14. The device of Claim 13, wherein the transmitting unit is further configured to:
    listen availability of the channel on the listening symbol; and
    in response to the channel being available, determine, from the uplink subframe, OCC symbols on which the affected information is to be transmitted after being encoded by the first OCC sequences; encode the affected information with the reduced OCC sequences; and transmit the encoded affected information on the OCC symbols.
  15. The device of Claim 10, wherein the adjusting unit is further configured to:
    determine priorities of affected information to be transmitted on the listening symbol and information to be transmitted on remaining symbols of the uplink subframe;
    select a target symbol from the remaining symbols based on the determined priorities;
    assign the affected information to the target symbol for transmission in the uplink; and
    exclude the listening symbol from transmitting information in the uplink.
  16. The device of Claim 15, wherein the transmitting unit is further configured to:
    listen availability of the channel on the listening symbol; and
    in response to the channel being available, transmit the affected information on the target symbol.
  17. The device of Claim 15, wherein the adjusting unit is further configured to:
    determine whether target information to be transmitted on the target symbol is encoded with second Orthogonal Cover Code (OCC) sequences; and
    in response to the target information being encoded with the second OCC sequences, reduce length of the second OCC sequences.
  18. The device of Claim 17, wherein the transmitting unit is further configured to:
    listen availability of the channel on the listening symbol; and
    in response to the channel being available, determine, from the uplink subframe, OCC symbols on which the target information is to be transmitted after being encoded by the second OCC sequences; encode the target information with the reduced OCC sequences; transmit the encoded target information on the OCC symbols; and transmit the affected information on the target symbol.
PCT/CN2016/073215 2016-02-02 2016-02-02 Method and device for performing partial subframe transmission WO2017132839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073215 WO2017132839A1 (en) 2016-02-02 2016-02-02 Method and device for performing partial subframe transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/073215 WO2017132839A1 (en) 2016-02-02 2016-02-02 Method and device for performing partial subframe transmission

Publications (1)

Publication Number Publication Date
WO2017132839A1 true WO2017132839A1 (en) 2017-08-10

Family

ID=59499223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073215 WO2017132839A1 (en) 2016-02-02 2016-02-02 Method and device for performing partial subframe transmission

Country Status (1)

Country Link
WO (1) WO2017132839A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596183A (en) * 2012-08-13 2014-02-19 上海无线通信研究中心 Method and system for carrying out rapid communication by utilizing public frequency band
CN104333873A (en) * 2014-11-28 2015-02-04 东莞宇龙通信科技有限公司 Channel detection method and system, as well as equipment and terminal having functions of base station
WO2015047912A2 (en) * 2013-09-24 2015-04-02 Qualcomm Incorporated Techniques for performing carrier sense adaptive transmission in unlicensed spectrum
CN104539405A (en) * 2015-01-28 2015-04-22 深圳酷派技术有限公司 Channel detection method, channel detection system, base station and terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103596183A (en) * 2012-08-13 2014-02-19 上海无线通信研究中心 Method and system for carrying out rapid communication by utilizing public frequency band
WO2015047912A2 (en) * 2013-09-24 2015-04-02 Qualcomm Incorporated Techniques for performing carrier sense adaptive transmission in unlicensed spectrum
CN104333873A (en) * 2014-11-28 2015-02-04 东莞宇龙通信科技有限公司 Channel detection method and system, as well as equipment and terminal having functions of base station
CN104539405A (en) * 2015-01-28 2015-04-22 深圳酷派技术有限公司 Channel detection method, channel detection system, base station and terminal

Similar Documents

Publication Publication Date Title
US11910406B2 (en) Wireless communication with downlink control information having a semi persistent scheduling activation/deactivation field
US11690098B2 (en) User equipment and wireless communication method
US10028151B2 (en) Uplink channel access, reservation and data transmission for licensed assist access long term evolution (LAA-LTE)
US11350451B2 (en) Method of handling communication in unlicensed spectrum and related communication device
US10904879B2 (en) Rach preamble transmission and multiplexing with data and/or control signals
JP6557878B2 (en) COMMUNICATION DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
US9350509B2 (en) Scheduling request enhancements
US10863552B2 (en) User equipment, eNode B and wireless communication method
US10757693B2 (en) Base station, user equipment and wireless communication method
US11445553B2 (en) Method executed by user equipment, user equipment and base station
CN113615244A (en) User equipment, base station and method
US20190320428A1 (en) Control Channel Resource Indication Method, User Equipment, And Network Device
CN105790897B (en) Method and equipment for hybrid automatic repeat request (HARQ)
WO2020151758A1 (en) Channel access procedure for ul transmission
CN114144983A (en) Reporting of HARQ feedback in sidelink transmissions
US11190960B2 (en) Methods and apparatuses for control resource mapping
US11363631B2 (en) Dynamic start for transmission on unlicensed spectrum
US20230087110A1 (en) Systems, methods, and apparatus for slot structure, channel access, and resource allocation for sidelink communications
CN114223243A (en) Indication method, terminal equipment and network equipment
EP3917246B1 (en) Retuning method and apparatus
WO2017132839A1 (en) Method and device for performing partial subframe transmission
WO2022027645A1 (en) Computer readable medium, methods, and devices for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888664

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888664

Country of ref document: EP

Kind code of ref document: A1