WO2017130422A1 - Magnetic resonance-type power supply system - Google Patents

Magnetic resonance-type power supply system Download PDF

Info

Publication number
WO2017130422A1
WO2017130422A1 PCT/JP2016/053102 JP2016053102W WO2017130422A1 WO 2017130422 A1 WO2017130422 A1 WO 2017130422A1 JP 2016053102 W JP2016053102 W JP 2016053102W WO 2017130422 A1 WO2017130422 A1 WO 2017130422A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
coil
magnetic resonance
circuit
Prior art date
Application number
PCT/JP2016/053102
Other languages
French (fr)
Japanese (ja)
Inventor
龍志 渡邊
栄一 冨樫
Original Assignee
株式会社 東亜産業
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東亜産業 filed Critical 株式会社 東亜産業
Publication of WO2017130422A1 publication Critical patent/WO2017130422A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • wireless power feeding technology has made significant progress not only in the field of mobile devices and general household appliances but also in the field of electric vehicles (EV), and the power feeding method is expected to be put into practical use.
  • wireless power transfer technology can be broadly divided into: 1. Electromagnetic induction method (for short distance) 2. Radio system (for long distance) There are three main types: electromagnetic resonance (resonance) method (for medium distance).
  • the principle of the electromagnetic induction method is to transmit power from the coil on the power transmission side to the coil on the power reception side using the magnetic flux as a medium. Generally, it is practically used for household appliances, but it is a short distance of about several centimeters. There is a problem that can only be used. Moreover, when raising electric power feeding efficiency, there exists a subject of the magnitude
  • the radio system uses radio waves and can be used over long distances of several kilometers or more.
  • the transmission power is small because there is a lot of power loss when replacing the power with microwaves. Therefore, there are many problems in terms of the amount of power transmission, and the frequency of radio waves that can be used is used in communications and wireless systems.
  • the frequency of radio waves that can be used is used in communications and wireless systems.
  • countermeasures against adverse effects on frequency bands are possible. Also have challenges.
  • large electric power and an array for receiving the electric power will be enlarged.
  • miniaturization and high efficiency do not progress because it is necessary to take a filter measure for controlling the influence of unnecessary radio waves and harmonics on the radio system when converting radio waves into electricity.
  • the magnetic resonance method is a relatively new technology that has been attracting attention in recent years. It consists of two sets of resonance coils for the power transmission device and the power reception device, a separate power supply coil, and a power extraction coil.
  • a wireless power supply system for the future, because it has a merit that power can be transmitted with high efficiency over a medium distance of several tens of centimeters to several meters. This is the expected method.
  • EV electric
  • a secondary battery such as lithium ion has a characteristic that heat is generated by overcharging, and in a wireless charging device, it is necessary to control safety and charging time.
  • the present invention has been made in order to solve such problems, and the object of the present invention is to provide a magnetic resonance type that can reduce the overall size and weight while maintaining the power transmission capability of the magnetic resonance method. May provide power supply system.
  • the power receiving device includes a switch that can switch a resonance frequency, a voltage / current detection circuit that can communicate with a charge detection unit included in a device to be charged, and a voltage / current detection circuit that receives a charge completion detection signal from the charge detection unit. It may have a control circuit that changes the resonance frequency by switching the switch when receiving.
  • a magnetic resonance type power feeding system that feeds power from a power feeding coil of a power feeding device to a power receiving coil of a power receiving device in a contactless manner by magnetic resonance, wherein the power receiving coil includes a solenoid coil,
  • a resonance type switching power supply circuit using ZVS (Zero Voltage ⁇ Switching) for supplying AC power to is provided.
  • FIG. 1 shows a state in which a smartphone 4 is charged using a magnetic resonance system 1 according to an embodiment of the present invention.
  • the magnetic resonance power supply system 1 includes a power supply device 1 and a power reception device. 2 is a system that wirelessly feeds power by matching the resonance frequencies of the two.
  • the power receiving device 2 is configured as a portable type power receiving device including a micro USB connector 31. As shown in FIG. 1, the micro USB connector 31 is connected to the charging port 41 of the smartphone 4 to be charged, and the smartphone 4 with the power receiving device 2 thus mounted is fed by the power feeding device 1.
  • a possible range for example, 1 m to 2 m
  • power feeding from the power feeding device 1 is started and the smartphone 4 is charged via the power receiving device 2.
  • the feeding coil L1 has a capacitor C1 and a resistor R1 connected in series to the feeding coil L1. And the resonance frequency f1 of the transmission part which consists of this electric power feeding coil L1, the capacitor
  • the power supply circuit 21 is a circuit that generates high-frequency power for power transmission using power supplied from an external power supply (not shown), and is a resonance type that uses a ZVS (Zero Voltage Switching) to which a resonance type inverter is applied. It is a switching power supply circuit.
  • ZVS Zero Voltage Switching
  • the control circuit 22 performs various control operations for the entire power supply apparatus 1.
  • the control circuit 22 is configured to control the power supply circuit 21 based on a detection signal from the current detection circuit 23. Yes. Specifically, as described later in this embodiment, when the smartphone 4 is fully charged, the magnetic resonance between the power feeding device 1 and the power receiving device 2 is stopped. When the current detection circuit 23 detects a change in the current in this state, the control circuit 22 transmits a transmission stop signal to the power supply circuit 21. With this configuration, wasteful power consumption can be suppressed.
  • the current detection circuit 23 is configured to detect a current flowing through the power feeding coil L ⁇ b> 1 and transmit a detection signal to the control circuit 22.
  • the power receiving device 2 includes a power receiving unit including a power receiving coil L2, resistors 2a and 2b, capacitors C2a and C2b having two switchable resonance frequencies, a charging unit 32, a voltage / current detection circuit 33, and a control circuit 34.
  • the charging unit 32 includes a rectifier circuit 321, a voltage stabilization circuit 322, and a charging circuit 323.
  • the power receiving coil L2 is composed of a solenoid coil, and the switch S including a transistor or the like is in an OFF state during charging of the secondary battery 42, and the resistor R2a and the capacitor C2a are electrically connected in series with the power receiving coil L2. .
  • the resonance frequency f2 in the power reception unit in this state that is, the power reception unit including the power reception coil L2, the resistor R2a, and the capacitor C2a is set in advance so as to coincide with the resonance frequency f1.
  • the voltage stabilization circuit 322 is a circuit that performs a predetermined voltage stabilization operation based on the DC power supplied from the rectifier circuit 321. Specifically, the input voltage obtained based on the transmitted power is stabilized, and the stabilized output voltage is supplied to the charging circuit 323.
  • the charging circuit 323 is a circuit for charging the secondary battery (the battery of the smartphone 4) based on the DC power after voltage stabilization supplied from the voltage stabilization circuit 322.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

[Problem] To provide a magnetic resonance-type power supply system that is more compact than the prior art and that uses magnetic resonance to supply power in a non-contact manner to a device to be supplied with power such as an electronic device. [Solution] A magnetic resonance-type power supply system 1 that uses magnetic resonance to supply power in a non-contact manner from a power supply coil L1 of a power supply device 1 to a power reception coil L2 of a power-receiving device 2. The power reception coil L2 comprises a solenoid coil. The power supply device 1 is provided with a power supply circuit 21 comprising a resonant switching power supply circuit that uses zero voltage switching (ZVS) to supply AC power to the power supply coil L1.

Description

磁気共鳴式給電システムMagnetic resonance power supply system
 本発明は、電子機器等の給電対象機器に対して磁気共鳴により非接触に電力供給を行う
磁気共鳴式給電システムに関する。
The present invention relates to a magnetic resonance power supply system that supplies power to a power supply target device such as an electronic device in a contactless manner by magnetic resonance.
 近年、ケーブルを介さないで電力を供給する「ワイヤレス給電」によるシステムが注目されている。スマートフォンなどの携帯機器や一般の電子・電気家電製品の進歩において、ケーブルを介さない充電システムも現在実用化されてきている。 In recent years, a system based on “wireless power feeding” that supplies power without a cable has been attracting attention. With the advancement of mobile devices such as smartphones and general electronic / electric home appliances, charging systems that do not use cables are now being put into practical use.
 現在においてワイヤレス給電の技術は、モバイル機器や一般家電製品のみならず、電気自動車(EV)の分野おいても著しく進歩しており、その給電方法も実用化されていくことが見込まれる。現在、ワイヤレス給電技術は大きく分けて、1.電磁誘導方式(短距離用)、2.電波方式(長距離用)、3.電磁共振(共鳴)方式(中距離用)の3方式に大別される。 At present, wireless power feeding technology has made significant progress not only in the field of mobile devices and general household appliances but also in the field of electric vehicles (EV), and the power feeding method is expected to be put into practical use. Currently, wireless power transfer technology can be broadly divided into: 1. Electromagnetic induction method (for short distance) 2. Radio system (for long distance) There are three main types: electromagnetic resonance (resonance) method (for medium distance).
 1.の電磁誘導方式の原理としては、送電側コイルから磁束を媒体として、受電側コイルに送電する方式で、身近な家電製品には一般的に実用化されているが、数センチメートル程度の短距離しか使用できないという問題を持っている。また、給電効率を上げる場合は、コイルの大きさ、素材や装置の大型化、高コスト化の課題がある。 1. The principle of the electromagnetic induction method is to transmit power from the coil on the power transmission side to the coil on the power reception side using the magnetic flux as a medium. Generally, it is practically used for household appliances, but it is a short distance of about several centimeters. There is a problem that can only be used. Moreover, when raising electric power feeding efficiency, there exists a subject of the magnitude | size of a coil, the enlargement of a raw material and an apparatus, and cost increase.
 2.の電波方式は、電波を利用する方式で、数キロ以上の遠距離で使用することが可能とされているが、電力をマイクロ波に交換する時の電力ロスが多いため、送伝電力が小さくなることから送電量の面においても課題が多いく、使用できる電波の周波数は、通信、無線システムで用いられるものとなり、ワイヤレス電力伝送システムを行う環境においては、周波数帯への悪影響への対策にも課題を持っている。また、伝送力の効率を上げるためには大きな電力とその電力を受け止めるアレーも大型化してしまう。そして、電波を電気に変換するときの不要な電波・高調波による無線システムへの影響を制御するフィルタ対策も必要となることも、小型化、高効率化が進まない課題でもある。 2. The radio system uses radio waves and can be used over long distances of several kilometers or more. However, the transmission power is small because there is a lot of power loss when replacing the power with microwaves. Therefore, there are many problems in terms of the amount of power transmission, and the frequency of radio waves that can be used is used in communications and wireless systems. In the environment where wireless power transmission systems are used, countermeasures against adverse effects on frequency bands are possible. Also have challenges. In addition, in order to increase the efficiency of transmission power, large electric power and an array for receiving the electric power will be enlarged. In addition, it is also a problem that miniaturization and high efficiency do not progress because it is necessary to take a filter measure for controlling the influence of unnecessary radio waves and harmonics on the radio system when converting radio waves into electricity.
 3.の磁気共振方式は、近年になり注目されている比較的新しい技術であり、送電装置と受電装置への2組の共振用コイルと、別に設けた電力供給用のコイルと、電力取り出し用コイルをそれぞれ共振装置に近づけて配置し、電力の給電を行う方式で、数十センチメートルから数メートル程度の中距離おいて、高い効率で電力送電が行えるという利点を持つことから、今後のワイヤレス給電方式として期待されている方式である。近年実用化されつつある、電気(EV)自動車への二次電池の充電方式としても注目されているが、進歩・普及が著しい、携帯型の電子機器等広く使用されているリチウムイオンなどの二次電池へのワイヤレス充電にも期待されている。リチウムイオンなどの二次電池は、過充電により発熱するという特性を持っており、ワイレス充電装置においては、安全性と充電時間を制御する必要性がある。 3. The magnetic resonance method is a relatively new technology that has been attracting attention in recent years. It consists of two sets of resonance coils for the power transmission device and the power reception device, a separate power supply coil, and a power extraction coil. A wireless power supply system for the future, because it has a merit that power can be transmitted with high efficiency over a medium distance of several tens of centimeters to several meters. This is the expected method. Although attracting attention as a method for charging a secondary battery to an electric (EV) car, which is being put into practical use in recent years, it has been remarkably advanced and popularized. It is also expected to charge the next battery wirelessly. A secondary battery such as lithium ion has a characteristic that heat is generated by overcharging, and in a wireless charging device, it is necessary to control safety and charging time.
 このような電気共振方式を利用した非接触給電装置として、例えば、特許文献1に記載の非接触給電装置がある。この非接触給電装置は、給電先が共鳴周波数を離散的又は連続的に可変する可変機構を有する共鳴素子35と、共鳴素子35と電磁誘導結合する励振素子32と、励振素子32に共鳴周波数と同じ周波数の交流電流を印加する交流電源31とを備える。そして、給電先が可変機構により共鳴周波数を変え、それぞれ異なる固有の共鳴周波数を有する給電先に対して選択的に給電するように構成されている。 For example, there is a non-contact power supply device described in Patent Document 1 as a non-contact power supply device using such an electrical resonance method. This non-contact power supply apparatus includes a resonance element 35 having a variable mechanism in which a power supply destination discretely or continuously varies a resonance frequency, an excitation element 32 electromagnetically coupled to the resonance element 35, and a resonance frequency in the excitation element 32. And an AC power supply 31 for applying an AC current of the same frequency. The power supply destination is configured to change the resonance frequency by a variable mechanism and selectively supply power to power supply destinations having different unique resonance frequencies.
特開2010-63245号公報JP 2010-63245 A
 しかしながら、給電元においては、励振素子12と共鳴素子13を電磁誘導によって結合させることによって共鳴素子13に電流を流すとしており、同様に、給電先においても励振素子22と共鳴素子23を電磁誘導によって結合させることによって電流を出力するように構成されていることから、装置全体が大型化してしまうといった問題がある。 However, at the power supply source, current is passed through the resonance element 13 by coupling the excitation element 12 and the resonance element 13 by electromagnetic induction. Similarly, at the power supply destination, the excitation element 22 and the resonance element 23 are also connected by electromagnetic induction. Since it is configured to output a current by being coupled, there is a problem that the entire apparatus becomes large.
 本発明はこのような問題を解決するためになされたものであり、その目的とするところは、磁気共鳴方式による電力伝送能力を維持しながら、全体を小型・軽量化することができる磁気共鳴式給電システムを提供することある。 The present invention has been made in order to solve such problems, and the object of the present invention is to provide a magnetic resonance type that can reduce the overall size and weight while maintaining the power transmission capability of the magnetic resonance method. May provide power supply system.
 前記の目的を達成するため、本発明の磁気共鳴式給電システムは、磁気共鳴によって給電装置の給電コイルから受電装置の受電コイルに非接触で給電を行う磁気共鳴式給電システムであって、受電コイルはソレノイドコイルからなり、給電装置は、給電コイルに交流電力を供給するZVS(Zero Voltage Switching)を使用した共振型スイッチング電源回路を備えていることを特徴とする。 In order to achieve the above object, a magnetic resonance power feeding system of the present invention is a magnetic resonance power feeding system that feeds power from a power feeding coil of a power feeding device to a power receiving coil of a power receiving device in a contactless manner by magnetic resonance. Is composed of a solenoid coil, and the power supply device includes a resonance type switching power supply circuit using ZVS (Zero Voltage Switching) for supplying AC power to the power supply coil.
 また、前記受電装置は、充電対象機器と接続するためのコネクタを有していてもよい。 In addition, the power receiving device may have a connector for connecting to a device to be charged.
 また、前記受電装置は、共振周波数を切り替え可能なスイッチと、充電対象機器が備える充電検知部と通信可能な電圧・電流検知回路と、充電完了検知信号を充電検知部から電圧・電流検知回路が受信するとスイッチを切り替えて共振周波数を変更する制御回路とを有していてもよい。 In addition, the power receiving device includes a switch that can switch a resonance frequency, a voltage / current detection circuit that can communicate with a charge detection unit included in a device to be charged, and a voltage / current detection circuit that receives a charge completion detection signal from the charge detection unit. It may have a control circuit that changes the resonance frequency by switching the switch when receiving.
 また、給電装置は、給電コイルに流れる電流を検知する電流検知回路を有しており、給電装置は、共振周波数が変更されると電流検知回路によって給電コイルに流れる電流の変化を検知し受電装置への給電を停止するようにしてもよい。 In addition, the power supply device includes a current detection circuit that detects a current flowing in the power supply coil, and the power supply device detects a change in the current flowing in the power supply coil by the current detection circuit when the resonance frequency is changed. You may make it stop the electric power feeding to.
 本発明によれば、磁気共鳴によって給電装置の給電コイルから受電装置の受電コイルに非接触で給電を行う磁気共鳴式給電システムであって、受電コイルはソレノイドコイルからなり、給電装置は、給電コイルに交流電力を供給するZVS(Zero Voltage Switching)を使用した共振型スイッチング電源回路を備えるように構成した。これにより、従来よりも小型化が図れるといった効果を奏することができる。 According to the present invention, there is provided a magnetic resonance type power feeding system that feeds power from a power feeding coil of a power feeding device to a power receiving coil of a power receiving device in a contactless manner by magnetic resonance, wherein the power receiving coil includes a solenoid coil, A resonance type switching power supply circuit using ZVS (Zero Voltage 交流 Switching) for supplying AC power to is provided. Thereby, there can exist an effect that size reduction can be attained compared with the past.
本発明の一実施の形態に係る磁気共鳴式給電システムの模式図。The schematic diagram of the magnetic resonance type electric power feeding system which concerns on one embodiment of this invention. 本発明の一実施の形態に係る磁気共鳴式給電システムの構成例を示すブロック図。1 is a block diagram illustrating a configuration example of a magnetic resonance type power feeding system according to an embodiment of the present invention.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
 図1は、本発明の一実施の形態に係る磁気共鳴式システム1を使用してスマートフォン4に充電を行っている状態を示しており、磁気共鳴式給電システム1は、給電装置1と受電装置2とからなり、双方の共振周波数を一致させワイヤレスに給電を行うシステムである。本実施形態においては、受電装置2はマイクロUSBコネクタ31を備えたポータブルタイプの受電装置として構成されている。図1に示すように、充電対象であるスマートフォン4の充電ポート41にマイクロUSBコネクタ31を接続することにより充電可能状態となり、このように受電装置2が装着されたスマートフォン4が給電装置1の給電可能範囲(例えば、1m~2m)に入ると、給電装置1からの給電が開始され受電装置2を介してスマートフォン4は充電される。 FIG. 1 shows a state in which a smartphone 4 is charged using a magnetic resonance system 1 according to an embodiment of the present invention. The magnetic resonance power supply system 1 includes a power supply device 1 and a power reception device. 2 is a system that wirelessly feeds power by matching the resonance frequencies of the two. In the present embodiment, the power receiving device 2 is configured as a portable type power receiving device including a micro USB connector 31. As shown in FIG. 1, the micro USB connector 31 is connected to the charging port 41 of the smartphone 4 to be charged, and the smartphone 4 with the power receiving device 2 thus mounted is fed by the power feeding device 1. When entering a possible range (for example, 1 m to 2 m), power feeding from the power feeding device 1 is started and the smartphone 4 is charged via the power receiving device 2.
 次に、図2を参照して給電装置1及び受電装置2の構成について説明する。 Next, the configuration of the power feeding device 1 and the power receiving device 2 will be described with reference to FIG.
 給電装置1は、給電コイルL1、コンデンサC1及び抵抗R1からなる送信部と、電源回路21、制御回路22、電流検知回路23からなる。 The power supply device 1 includes a transmission unit including a power supply coil L1, a capacitor C1, and a resistor R1, a power supply circuit 21, a control circuit 22, and a current detection circuit 23.
 給電コイルL1は、コンデンサC1及び抵抗R1は給電コイルL1に直列接続されている。そして、この給電コイルL1、コンデンサC1、抵抗R1からなる送信部の共振周波数f1は後述する共振周波数f2と一致するように予め設定されている。 The feeding coil L1 has a capacitor C1 and a resistor R1 connected in series to the feeding coil L1. And the resonance frequency f1 of the transmission part which consists of this electric power feeding coil L1, the capacitor | condenser C1, and resistance R1 is preset so that it may correspond with the resonance frequency f2 mentioned later.
 電源回路21は、図示しない外部電源から供給される電力を用いて、送電を行うための高周波電力を発生する回路であり、共振型のインバータを応用したZVS(Zero Voltage Switching)を使用した共振型スイッチング電源回路である。 The power supply circuit 21 is a circuit that generates high-frequency power for power transmission using power supplied from an external power supply (not shown), and is a resonance type that uses a ZVS (Zero Voltage Switching) to which a resonance type inverter is applied. It is a switching power supply circuit.
 制御回路22は、給電装置1全体の種々の制御動作を行うものであるが、特に、本実施形態においては電流検知回路23からの検知信号に基づいて電源回路21を制御するように構成されている。具体的には、本実施形態においては後述するように、スマートフォン4の充電が完了すると、給電装置1と受電装置2との間の磁気共鳴を停止させるように構成されていることから、この停止した状態における電流の変化が電流検知回路23によって検知されると、制御回路22は電源回路21に対し伝送停止信号を送信する。このように構成したことにより、無駄な電力消費を抑えられる。 The control circuit 22 performs various control operations for the entire power supply apparatus 1. In particular, in the present embodiment, the control circuit 22 is configured to control the power supply circuit 21 based on a detection signal from the current detection circuit 23. Yes. Specifically, as described later in this embodiment, when the smartphone 4 is fully charged, the magnetic resonance between the power feeding device 1 and the power receiving device 2 is stopped. When the current detection circuit 23 detects a change in the current in this state, the control circuit 22 transmits a transmission stop signal to the power supply circuit 21. With this configuration, wasteful power consumption can be suppressed.
 電流検知回路23は、給電コイルL1に流れる電流を検知し、検知信号を制御回路22に送信するように構成されている。 The current detection circuit 23 is configured to detect a current flowing through the power feeding coil L <b> 1 and transmit a detection signal to the control circuit 22.
 受電装置2は、切り替え可能な2つの共振周波数を有する受電コイルL2、抵抗2a、2b、コンデンサC2a、C2b等からなる受電部と、充電部32、電圧・電流検知回路33、制御回路34とからなる。また、充電部32は、整流回路321、電圧安定化回路322及び充電回路323からなる。 The power receiving device 2 includes a power receiving unit including a power receiving coil L2, resistors 2a and 2b, capacitors C2a and C2b having two switchable resonance frequencies, a charging unit 32, a voltage / current detection circuit 33, and a control circuit 34. Become. The charging unit 32 includes a rectifier circuit 321, a voltage stabilization circuit 322, and a charging circuit 323.
 受電コイルL2はソレノイドコイルからなり、二次電池42への充電中はトランジスタ等からなるスイッチSはOFF状態となっており、抵抗R2a及びコンデンサC2aは受電コイルL2と電気的に直列接続されている。そして、この状態からなる受電部、すなわち、受電コイルL2、抵抗R2a、コンデンサC2aからなる受電部における共振周波数f2は上記共振周波数f1と一致するように予め設定されている。 The power receiving coil L2 is composed of a solenoid coil, and the switch S including a transistor or the like is in an OFF state during charging of the secondary battery 42, and the resistor R2a and the capacitor C2a are electrically connected in series with the power receiving coil L2. . The resonance frequency f2 in the power reception unit in this state, that is, the power reception unit including the power reception coil L2, the resistor R2a, and the capacitor C2a is set in advance so as to coincide with the resonance frequency f1.
 整流回路321は、受電部から供給された送電電力(交流電力)を整流し、直流電力を生成する回路である。 The rectifier circuit 321 is a circuit that rectifies transmission power (AC power) supplied from the power receiving unit and generates DC power.
 電圧安定化回路322は、整流回路321から供給される直流電力に基づいて、所定の電圧安定化動作を行う回路である。具体的には、送電電力に基づいて得られる入力電圧の安定化を行い、安定化後の出力電圧を充電回路323へ供給する。 The voltage stabilization circuit 322 is a circuit that performs a predetermined voltage stabilization operation based on the DC power supplied from the rectifier circuit 321. Specifically, the input voltage obtained based on the transmitted power is stabilized, and the stabilized output voltage is supplied to the charging circuit 323.
 充電回路323は、電圧安定化回路322から供給される電圧安定化後の直流電力に基づいて、二次電池(スマートフォン4のバッテリー)への充電を行うための回路である。 The charging circuit 323 is a circuit for charging the secondary battery (the battery of the smartphone 4) based on the DC power after voltage stabilization supplied from the voltage stabilization circuit 322.
 電圧・電流検知回路33は、スマートフォン4において二次電池42の充電状態を検知している充電検知部43と通信可能に構成されており、充電検知部43を介して二次電池42の充電状態を電圧値・電流値等から検知するように構成されている。また、電圧・電流検知回路33は、該検知した電圧値・電流値等からなる検知信号を制御回路34に送信するように構成されている。 The voltage / current detection circuit 33 is configured to be able to communicate with the charge detection unit 43 that detects the charge state of the secondary battery 42 in the smartphone 4, and the charge state of the secondary battery 42 via the charge detection unit 43. Is detected from the voltage value, current value, and the like. Further, the voltage / current detection circuit 33 is configured to transmit a detection signal including the detected voltage value / current value and the like to the control circuit 34.
 制御回路34は、受電装置2全体の種々の制御動作を行うものであるが、特に、本実施形態においては電圧・電流検知回路33からの検知信号に基づいて受電部の共振周波数を切り替えるように構成されている。具体的には、充電検知部43、電圧・電流検知回路33を介して二次電池42の充電が完了したことを検知すると、制御回路34はスイッチSをONする。すると、抵抗R2b及びC2bが導通し共振周波数が切り替わる。その結果、給電装置1と受電装置2との磁気共鳴は停止されて、充電部32から二次電池42への給電が停止される。このように構成したことにより、二次電池42への過充電を防止することができる。 The control circuit 34 performs various control operations of the entire power receiving apparatus 2. In particular, in the present embodiment, the control circuit 34 switches the resonance frequency of the power receiving unit based on the detection signal from the voltage / current detection circuit 33. It is configured. Specifically, when the charging of the secondary battery 42 is detected via the charge detection unit 43 and the voltage / current detection circuit 33, the control circuit 34 turns on the switch S. Then, the resistors R2b and C2b are turned on, and the resonance frequency is switched. As a result, the magnetic resonance between the power feeding device 1 and the power receiving device 2 is stopped, and power feeding from the charging unit 32 to the secondary battery 42 is stopped. With this configuration, overcharge of the secondary battery 42 can be prevented.
1   磁気共鳴式給電システム
2   給電装置
21  電源回路
22  制御回路
23  電流検知回路
3   受電装置
31  マイクロUSBコネクタ
32  充電部
321 整流回路
322 電圧安定化回路
323 充電回路
33  電圧・電流検知回路
34  制御回路
4   スマートフォン
41  充電ポート
42  二次電池
43  充電検知部
L1  給電コイル
L2  受電コイル
C1,C2a,C2b コンデンサ
R1,R2a,R2b 抵抗
DESCRIPTION OF SYMBOLS 1 Magnetic resonance type electric power feeding system 2 Electric power feeding apparatus 21 Power supply circuit 22 Control circuit 23 Current detection circuit 3 Power receiving apparatus 31 Micro USB connector 32 Charging part 321 Rectification circuit 322 Voltage stabilization circuit 323 Charging circuit 33 Voltage / current detection circuit 34 Control circuit 4 Smartphone 41 Charging port 42 Secondary battery 43 Charging detector L1 Feeding coil L2 Receiving coil C1, C2a, C2b Capacitor R1, R2a, R2b Resistance

Claims (4)

  1.  磁気共鳴によって給電装置の給電コイルから受電装置の受電コイルに非接触で給電を行う磁気共鳴式給電システムであって、
     受電コイルはソレノイドコイルからなり、
     給電装置は、給電コイルに交流電力を供給するZVS(Zero Voltage Switching)を使用した共振型スイッチング電源回路を備えていること
     を特徴とする磁気共鳴式給電システム。
    A magnetic resonance type power feeding system that feeds power from a power feeding coil of a power feeding device to a power receiving coil of a power receiving device in a non-contact manner by magnetic resonance,
    The receiving coil consists of a solenoid coil,
    The power supply apparatus includes a resonance type switching power supply circuit using ZVS (Zero Voltage Switching) for supplying AC power to the power supply coil.
  2.  受電装置は、充電対象機器と接続するためのコネクタを有することを特徴とする請求項1に記載の磁気共鳴式給電システム。 2. The magnetic resonance power feeding system according to claim 1, wherein the power receiving device has a connector for connecting to a device to be charged.
  3.  受電装置は、共振周波数を切り替え可能なスイッチと、充電対象機器が備える充電検知部と通信可能な電圧・電流検知回路と、充電完了検知信号を充電検知部から電圧・電流検知回路が受信するとスイッチを切り替えて共振周波数を変更する制御回路とを有することを特徴とする請求項1あるいは2に記載の磁気共鳴式給電システム。 The power receiving device includes a switch that can switch a resonance frequency, a voltage / current detection circuit that can communicate with a charge detection unit included in a charging target device, and a switch that receives a charge completion detection signal from the charge detection unit. 3. The magnetic resonance type power feeding system according to claim 1, further comprising: a control circuit that changes the resonance frequency by switching between the two.
  4.  給電装置は、給電コイルに流れる電流を検知する電流検知回路を有しており、給電装置は、共振周波数が変更されると電流検知回路によって給電コイルに流れる電流の変化を検知し受電装置への給電を停止するようにすることを特徴とする請求項3に記載の磁気共鳴式給電システム。 The power supply device includes a current detection circuit that detects a current flowing through the power supply coil. When the resonance frequency is changed, the power supply device detects a change in the current flowing through the power supply coil by the current detection circuit and supplies the current to the power reception device. The magnetic resonance type power feeding system according to claim 3, wherein the power feeding is stopped.
PCT/JP2016/053102 2016-01-26 2016-02-02 Magnetic resonance-type power supply system WO2017130422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-011988 2016-01-26
JP2016011988A JP2017135789A (en) 2016-01-26 2016-01-26 Magnetic resonance type power supply system

Publications (1)

Publication Number Publication Date
WO2017130422A1 true WO2017130422A1 (en) 2017-08-03

Family

ID=59397543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053102 WO2017130422A1 (en) 2016-01-26 2016-02-02 Magnetic resonance-type power supply system

Country Status (2)

Country Link
JP (1) JP2017135789A (en)
WO (1) WO2017130422A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350465A (en) * 2003-05-26 2004-12-09 Keisuke Goto Adapter for contact-charging portable electrical equipment and non-contact charging pad
WO2012101907A1 (en) * 2011-01-26 2012-08-02 株式会社村田製作所 Power transmission system
JP2013005527A (en) * 2011-06-14 2013-01-07 Sumitomo Electric Ind Ltd Non-contact charging system and non-contact charging method
JP2015220817A (en) * 2014-05-15 2015-12-07 株式会社ダイヘン Dc power supply apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004350465A (en) * 2003-05-26 2004-12-09 Keisuke Goto Adapter for contact-charging portable electrical equipment and non-contact charging pad
WO2012101907A1 (en) * 2011-01-26 2012-08-02 株式会社村田製作所 Power transmission system
JP2013005527A (en) * 2011-06-14 2013-01-07 Sumitomo Electric Ind Ltd Non-contact charging system and non-contact charging method
JP2015220817A (en) * 2014-05-15 2015-12-07 株式会社ダイヘン Dc power supply apparatus

Also Published As

Publication number Publication date
JP2017135789A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
US11936202B2 (en) Hybrid wireless power transmitting system and method therefor
US9608480B2 (en) Systems and methods for detecting and identifying a wireless power device
US9148201B2 (en) Systems and methods for calibration of a wireless power transmitter
EP2973939B1 (en) Systems and methods for extending the power capability of a wireless charger
EP3108565B1 (en) Device detection through dynamic impedance change measurement
EP2745412B1 (en) Wireless power receiver with multiple receiver coils
EP2949024B1 (en) Wireless power transmission apparatus and wireless power transmission method
US9437362B2 (en) Apparatus and method for wireless power reception
EP2912751B1 (en) High power rf field effect transistor switching using dc biases
US20140080409A1 (en) Static tuning of wireless transmitters
US20130015813A1 (en) Wireless power receiver
JP6001355B2 (en) Non-contact power feeding device
JP2012143091A (en) Remotely and wirelessly driven charger
US20130049456A1 (en) Source device and method for controlling magnetic field using two source resonators in wireless power transmission system
EP3025406B1 (en) Systems and methods for extending the power capability of a wireless charger
EP3036817A1 (en) Systems, apparatus, and method for a dual mode wireless power receiver
KR102649618B1 (en) Wireless power transmission device for vehicle and wireless charging method
US20140042820A1 (en) Apparatus and method for shielding leakage magnetic field in wireless power transmission system
KR102491037B1 (en) Wireless power reception device and wireless communication method
JP2013198260A (en) Power transmission system
KR20230129621A (en) Contactless power reception device and reception method
WO2015004778A1 (en) Power-transfer system
JP6535003B2 (en) Wireless power receiver
JP5772687B2 (en) Power transmission system, power transmission device and power reception device, charging facility, and electric vehicle
WO2014069148A1 (en) Non-contact power transmission device, and power reception apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16888008

Country of ref document: EP

Kind code of ref document: A1