WO2017115477A1 - Fuel injection device and injection plate - Google Patents

Fuel injection device and injection plate Download PDF

Info

Publication number
WO2017115477A1
WO2017115477A1 PCT/JP2016/064893 JP2016064893W WO2017115477A1 WO 2017115477 A1 WO2017115477 A1 WO 2017115477A1 JP 2016064893 W JP2016064893 W JP 2016064893W WO 2017115477 A1 WO2017115477 A1 WO 2017115477A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection
cylindrical
injection hole
cylindrical injection
Prior art date
Application number
PCT/JP2016/064893
Other languages
French (fr)
Japanese (ja)
Inventor
裕輔 木本
史也 茶園
啓祐 伊藤
翔太 川▲崎▼
宗実 毅
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016561400A priority Critical patent/JP6180659B1/en
Publication of WO2017115477A1 publication Critical patent/WO2017115477A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for

Definitions

  • the present invention relates to a fuel injection device and an injection plate for injecting fuel.
  • the fuel injection device for an internal combustion engine As the particle size of the injected fuel becomes smaller, the evaporation of the fuel is promoted and the amount of fuel adhering to the inner wall of the internal combustion engine is reduced, thereby reducing the amount of unfueled fuel discharged. Is done. As a result, the fuel consumption, which is the fuel consumption efficiency of the internal combustion engine, is improved, and the amount of harmful gas emissions is reduced.
  • a method of atomizing the fuel to be injected there is a method of atomizing the fuel by thinning the fuel to be injected by devising the shape of the flow path of the fuel in the injection plate or devising the arrangement of the injection holes.
  • Various proposals have been made. In order to reduce harmful gas emissions, it is required to inject fuel at a predetermined flow rate.
  • a method for promoting atomization of the injected fuel for example, a method of injecting fuel into a liquid film by generating a swirling flow of fuel inside an injection hole in an injection plate, or a film by colliding fuel with a film
  • the method of injecting in a shape is mentioned.
  • a fuel injection device having a disk with an injection hole serving as an injection valve.
  • the disk with injection holes is formed with a plurality of cylindrical injection holes penetrating the disk with injection holes.
  • a vortex swirl chamber concentric with the injection hole and having a larger radius than the injection hole is formed on the upstream side of the disk with the injection hole into which the fuel is introduced.
  • a swirling flow of fuel is generated in the swirl swirl chamber, and fine fuel is sprayed from the injection hole to the internal combustion engine. That is, the fuel that has flowed into the swirl swirl chamber is swirled in the swirl swirl chamber, and the swirled fuel is injected from the injection holes (see, for example, Patent Document 1).
  • a fuel injection device that swirls the fuel that has flowed into the swirl swirl chamber in the swirl swirl chamber and injects the swirled fuel from the injection hole, by matching the center of the swirl swirl chamber with the center of the injection hole, A flow rate can be obtained.
  • a displacement occurs between the center of the swirl swirl chamber and the center of the injection hole during machining, a deviation occurs in the flow of fuel swirling in the swirl swirl chamber.
  • the flow rate of the fuel injected from the injection hole varies.
  • the present invention provides a fuel injection device and an injection plate capable of suppressing variations in the flow rate of fuel injected from injection holes.
  • a fuel injection device is a fuel injection device that injects fuel into an internal combustion engine via an injection plate, wherein the injection plate is a first surface facing the internal combustion engine and a back surface of the first surface.
  • a plate-like member having a surface, a fuel introduction portion for introducing fuel to the second surface, a plurality of cylindrical injection holes for injecting the fuel introduced to the fuel introduction portion toward the first surface, and a fuel
  • a plurality of distribution passages for distributing the fuel introduced into the introduction portion to the plurality of cylindrical injection holes on the second surface, and the first distribution passage of the plurality of distribution passages includes the fuel introduction portion and the plurality of distribution passages.
  • the second distribution flow that is connected to the first cylindrical injection hole and the second cylindrical injection hole that are adjacent to each other among the plurality of cylindrical injection holes and that is adjacent to the first distribution flow path among the plurality of distribution flow paths.
  • the path has a second cylindrical injection hole and a third cylindrical shape adjacent to each other among the fuel introduction portion and the plurality of cylindrical injection holes. Which is connected to the Iana, a plurality of distribution flow paths to pivot distributed fuel within the plurality of tubular injection hole.
  • the swirl swirl chamber is not provided, there is no position shift between the center of the swirl swirl chamber and the center of the injection hole. Thereby, the dispersion
  • the ratio of the widthwise dimension of the first turning opening to the diameter dimension of the cylindrical injection hole in FIG. 8 and the ratio of the widthwise dimension of the second turning opening to the diameter dimension of the cylindrical injection hole and the injection plate It is a graph which shows the relationship with the spray angle of the fuel injected. It is a top view which shows the principal part of the injection plate of the fuel injection apparatus which concerns on Embodiment 3 of this invention. It is a top view which shows the principal part of the injection plate of the fuel injection apparatus which concerns on Embodiment 4 of this invention. It is a top view which shows the injection plate of the fuel-injection apparatus which concerns on Embodiment 5 of this invention.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 12.
  • FIG. 1 is a sectional view showing a fuel injection device according to Embodiment 1 of the present invention.
  • the fuel injection device 1 is provided inside the solenoid device 2, the solenoid device 2, the core 3 that is a stator core portion of the magnetic circuit, and the solenoid device 2 and the core 3.
  • the housing 4 which is a part, the power connector 5 for supplying current to the solenoid device 2, the armature 6 which is provided inside the solenoid device 2 and which is the mover core portion of the magnetic circuit, and is driven by the movement of the armature 6
  • a valve device 7 for supplying current to the solenoid device 2
  • the armature 6 which is provided inside the solenoid device 2 and which is the mover core portion of the magnetic circuit
  • the solenoid device 2 has a coil 21 to which current is supplied from the power connector 5.
  • the solenoid device 2 generates magnetic flux when current is supplied to the coil 21.
  • the valve device 7 includes a valve seat 71 in which a valve seat fuel passage 711 and a valve seat portion 712 are formed, and a contact portion 721.
  • the contact portion 721 is separated from and seated on the valve seat portion 712.
  • a valve body 72 provided between the housing 4 and the armature 6, a valve member 72 that opens and closes the valve seat fuel passage 711, an injection plate 73 that is a circular member provided downstream of the valve seat 71, and the valve body 71. 74.
  • the injection plate 73 is coupled to the valve seat 71.
  • the injection plate 73 is formed with a plurality of cylindrical injection holes 731 extending in the thickness direction of the injection plate 73 and penetrating the injection plate 73.
  • the valve member 72 further includes a needle 722 connected to the armature 6 and the contact portion 721, and a compression spring 723 that presses the needle 722 in a direction in which the contact portion 721 is seated on the valve seat portion 712.
  • the needle 722 is press-fitted into the armature 6 and further welded to the armature 6.
  • the fuel passes through the side surface of the chamfered portion 724 formed in the abutting portion 721, further passes between the abutting portion 721 and the valve seat portion 712, and from the plurality of cylindrical injection holes 731 to the internal combustion engine. Is injected into the intake passage. At this time, the armature 6 contacts the core 3 in the axial direction.
  • FIG. 2 is an enlarged view showing the main part of the valve device 7 of FIG. 1
  • FIG. 3 is a plan view showing the injection plate 73 of FIG.
  • the injection plate 73 is a plate-like member having a first surface that faces the internal combustion engine and a second surface that is the back surface of the first surface.
  • a plurality of fuel introduction portions 732 into which fuel that has passed through the valve seat fuel passage 711 is introduced are formed.
  • the fuel introduction part 732 introduces fuel to the second surface of the injection plate 73.
  • four fuel introduction portions 732 are formed on the injection plate 73.
  • the cylindrical injection hole 731 injects the fuel introduced into the fuel introduction part 732 to the first surface side of the injection plate 73.
  • the cylindrical injection hole 731 is formed in a portion farther from the central axis O of the valve seat 71 than the fuel introduction portion 732 in the injection plate 73.
  • the cylindrical injection hole 731 is formed in the injection plate 73 so as to extend along the central axis O and penetrate the injection plate 73. In this example, four cylindrical injection holes 731 are formed in the injection plate 73.
  • the injection plate 73 In the injection plate 73, four fuel passages 733 that connect the fuel introduction portion 732 and the cylindrical injection hole 731 are formed. A pair of fuel passages 733 communicate with one cylindrical injection hole 731. The fuel introduction part 732 and the fuel passage 733 are arranged on the same plane. In other words, the four fuel passages 733 that connect the fuel introduction part 732 and the cylindrical injection hole 731 have branch parts for supplying fuel evenly to the four cylindrical injection holes 731.
  • the fuel passage 733 is a distribution passage that distributes the fuel introduced into the fuel introduction portion 732 to the plurality of cylindrical injection holes 731 on the second surface. By distributing the fuel evenly by the branching portion, the flow rate fluctuation between the cylindrical injection holes 731 can be suppressed.
  • the fuel introduction portion 732 and the fuel passage 733 are disposed on a plane perpendicular to the central axis O. Since the fuel introduction part 732 and the fuel passage 733 are arranged on the same plane perpendicular to the central axis O, the fuel introduction part 732 and the fuel passage 733 are arranged to be inclined with respect to the same plane perpendicular to the central axis O. Compared to the case, machining is easy, and even if machining variations in the height direction occur, only the flow path depth is affected, so that the position shift that causes flow path fluctuation is unlikely to occur. Become.
  • FIG. 4 is an enlarged view showing a main part of the injection plate 73 of FIG.
  • the first turning opening 734 a communicated with the first fuel passage 733 a which is one fuel passage 733 in the pair of fuel passages 733 and the other of the pair of fuel passages 733.
  • a second turning opening 734 b that communicates with the second fuel passage 733 b that is the fuel passage 733 is formed. That is, the structure shown in FIG. 4 including the cylindrical injection hole 731, the first fuel passage 733a, the second fuel passage 733b, the first turning opening 734a, and the second turning opening 734b is centered on the central axis O.
  • the fuel passages 733 are evenly pressurized because the difference between the structures arranged symmetrically with respect to the point can be reduced to the minimum.
  • the fuel from the fuel introduction part 732 is evenly distributed to each fuel passage 733, and uniform spray can be injected from the cylindrical injection hole 731.
  • four cylindrical injection holes 731 are shown, but since they are point symmetric, four or more injections can be made. As the number of the cylindrical injection holes 731 increases, the cylindrical injection holes 731 are increased. Since the flow rate supplied per hole 731 is small, fluctuations in flow rate can be easily suppressed.
  • the first turning opening 734a is disposed on one side in the circumferential direction and on the one side in the radial direction in the cylindrical injection hole 731.
  • the second turning opening 734b is disposed on the other side in the circumferential direction and on the other side in the radial direction in the cylindrical injection hole 731.
  • the circumferential direction is a circumferential direction centered on the central axis O
  • the radial direction is a radial direction centered on the central axis O.
  • one side in the circumferential direction is the left side in FIG. 4
  • the other side in the circumferential direction is the right side in FIG. Note that one side in the circumferential direction may be the right side in FIG.
  • the other side in the circumferential direction may be on the left side in FIG.
  • the one side in the radial direction is the inner side in the radial direction
  • the other side in the radial direction is the outer side in the radial direction.
  • one side in the radial direction may be the outside in the radial direction
  • the other side in the radial direction may be inward in the radial direction.
  • the fuel flowing from the fuel introduction part 732 into the first fuel passage 733a is guided to the first turning opening 734a. Further, the fuel flowing from the fuel introduction part 732 into the second fuel passage 733b is guided to the second turning opening part 734b.
  • the fuel flow A guided to the first turning opening 734a and the fuel flow B guided to the second turning opening 734b are point-symmetric about the center of the cylindrical injection hole 731. . Further, the fuel flow A guided to the first turning opening 734 a and the fuel flow B guided to the second turning opening 734 b are biased toward the inner peripheral surface of the cylindrical injection hole 731. As described above, the fuel flows symmetrically with respect to the center of the cylindrical injection hole 731, whereby a strong swirling flow is generated in the cylindrical injection hole 731.
  • the fuel flow A guided to the first turning opening 734 a and the fuel flow B guided to the second turning opening 734 b are pushed toward the inner peripheral surface of the cylindrical injection hole 731.
  • a thin and uniform fuel thin film is formed in the cylindrical injection hole 731.
  • the droplet diameter of the fuel can be made uniform and atomized, and good fuel particles are injected into the internal combustion engine.
  • the first fuel passage 733a and the second fuel passage 733b are arranged on the same plane perpendicular to the central axis O, the fuel introduction part 732 and the fuel passage 733 are arranged inclined with respect to the central axis O. Compared with the case where the flow rate is smaller, the momentum of the flow in the direction of gravity is smaller and the flow in the tangential direction of the cylindrical injection hole 731 is stronger, so that the turning force can be maintained and good fuel particles are generated.
  • FIG. 5 is a cross-sectional view showing the cylindrical injection hole 731 in FIG. 4
  • FIG. 6 is a cross-sectional view showing the injection hole for comparison with the cylindrical injection hole 731 in FIG.
  • the injection hole 82 is formed in the swirl swirl chamber 81 by processing as in the conventional fuel injection device described in Patent Document 1, it is positioned between the center of the swirl swirl chamber 81 and the center of the injection hole 82. Deviation may occur. When a positional deviation occurs between the center of the swirl swirl chamber 81 and the center of the injection hole 82, the flow of fuel swirling in the swirl swirl chamber 81 is biased. On the other hand, in the present invention, since the swirl swirl chamber 81 is not formed, there is no bias in the swirling fuel flow. Further, as shown in FIG.
  • a sag 821 is generated at the inlet of the injection hole 82.
  • the swirl swirl chamber 81 is not formed, sagging does not occur in the cylindrical injection hole 731. Therefore, fluctuations in characteristic values such as the flow rate of the fuel swirling in the cylindrical injection hole 731 are suppressed. As a result, variations in the fuel injection amount between the cylinders that cause deterioration of fuel consumption and exhaust gas are suppressed.
  • FIG. 7 is a graph showing the fuel flow rate at the outermost diameter portion of the injection hole depending on the presence or absence of sagging.
  • the radial dimension of the cylindrical injection hole 731 is the same as the radial dimension of the swirl swirl chamber 81, a flow rate approximately 2.0 times that of the case where the swirl swirl chamber 81 is provided can be obtained. Is possible. Thereby, a predetermined flow rate can be obtained in a smaller shape than before. Therefore, many cylindrical injection holes 731 can be formed in the injection plate 73, and the position where the cylindrical injection holes 731 are arranged can be changed more freely. As a result, a more free spray shape can be created.
  • the space allocated to the vortex swirl chamber 81 can be allocated to the cylindrical injection hole 731.
  • the radial dimension of the cylindrical injection hole 731 can be increased, the injection range that can be swiveled is widened, and the fuel injection device 1 can be easily manufactured.
  • the fuel that has passed through the valve seat fuel passage 711 is introduced into the portion of the injection plate 73 on the valve seat 71 side.
  • a fuel injection portion 732 is formed, and a cylindrical injection hole extending along the central axis O and penetrating the injection plate 73 in a portion of the injection plate 73 farther from the central axis O of the valve seat 71 than the fuel introduction portion 732.
  • 731 is formed, and a pair of fuel passages 733 that connect the fuel introduction portion 732 and the cylindrical injection hole 731 are formed in the injection plate 73, and a pair of fuel passages 733 are formed on the inner peripheral surface of the cylindrical injection hole 731.
  • the first turning opening 734a communicated with the first fuel passage 733a, which is one of the fuel passages 733, and the other fuel passage 7 of the pair of fuel passages 733.
  • a second turning opening 734 b communicating with the second fuel passage 733 b is formed, and the first turning opening 734 a is one side in the circumferential direction and one side in the radial direction in the cylindrical injection hole 731. Since the second swirl opening 734b is disposed on the other side in the circumferential direction and on the other side in the radial direction in the cylindrical injection hole 731, the second swirl opening 734b is disposed without the vortex swirl chamber 81.
  • the fuel swirled from the cylindrical injection hole 731 can be injected. Thereby, the position shift between the center of the vortex swirl chamber 81 and the center of the injection hole does not occur. As a result, variation in the flow rate of fuel injected from the cylindrical injection hole 731 can be suppressed.
  • the pair of fuel introduction portions 732 are disposed apart from each other in the circumferential direction, and the first fuel passage 733a connects one fuel introduction portion 732 and the cylindrical injection hole 731 in the pair of fuel introduction portions 732 to provide the second fuel. Since the passage 733b connects the other fuel introduction part 732 and the cylindrical injection hole 731 in the pair of fuel introduction parts 732, the position where the cylindrical injection hole 731 is arranged can be determined more freely.
  • FIG. FIG. 8 is a plan view showing a main part of an injection plate of a fuel injection device according to Embodiment 2 of the present invention.
  • the shape of the cylindrical injection hole 731, the first turning opening 734a, and the second turning opening 734b is the width dimension of the first turning opening 734a.
  • the width dimension of the second pivot opening 734b and W 2 the diameter of the tubular injection hole 731 in the case of the D, W 1 /D ⁇ 0.6,W 2 / D ⁇ 0. 6 is satisfied.
  • Other configurations are the same as those in the first embodiment.
  • Figure 9 is a width dimension W 1 of the ratio of the first turning opening 734a to the diameter dimension D of the tubular injection hole 731 of FIG. 8, and the second turning opening to the diameter dimension D of the tubular injection hole 731 is a graph showing the relationship between the spray angle of the fuel injected from the width dimension W 1 of the ratio between the injection plate 73 of 734b. As the spray angle increases, atomization of fuel is promoted. As shown in FIG. 9, when W 1 /D ⁇ 0.6 and W 2 /D ⁇ 0.6 are satisfied, the swirled fuel is sprayed in an umbrella shape.
  • widthwise dimension W 1 of the first turning opening 734 a and the widthwise dimension W 2 of the second turning opening 734 b are sufficiently smaller than the diameter D of the cylindrical injection hole 731. This is because the horizontal flow velocity of the fuel introduced into the cylindrical injection hole 731 in the cylindrical injection hole 731 increases and the angular momentum of the fuel increases, so that a strong turning force is maintained.
  • the width dimension of the first turning opening 734a and W 1 is D, W 1 /D ⁇ 0.6 and W 2 /D ⁇ 0.6 are satisfied. Therefore, the fuel adjusted to an arbitrary spray angle A spray can be formed. As a result, the atomized fuel can be prevented from being atomized due to interference.
  • FIG. FIG. 10 is a plan view showing a main part of an injection plate of a fuel injection device according to Embodiment 3 of the present invention.
  • the angle theta 1 which forms between the portion intersecting with the first turning opening 734a at the center line L a of the first fuel passage 733a is less than or equal to 90 degrees.
  • the angle ⁇ 1 is 90 degrees or less, the flow of fuel passing through the first turning opening 734a and a portion further away from the central axis O is the first turning opening 734a and the central axis. The flow of fuel through the portion closer to O is suppressed. As a result, the fuel flow A passing through the first turning opening 734a is introduced into a portion of the cylindrical injection hole 731 away from the center C. As a result, a large amount of fuel flows along the inner peripheral surface of the cylindrical injection hole 731 and the strong turning force of the fuel is maintained.
  • Other configurations are the same as those in the first or second embodiment.
  • the fuel injection device 1 when viewed along the central axis O, the center line of the first fuel passage 733a in the first turning opening 734a.
  • the tangent L b of the intersection with L a since the angle formed between the portion intersecting with the first turning opening 734a at the center line L a of the first fuel passage 733a is less than 90 degrees, the first The fuel flow A that passes through the turning opening 734 a is introduced into a portion of the cylindrical injection hole 731 that is away from the center C.
  • a large amount of fuel flows along the inner peripheral surface of the cylindrical injection hole 731, and the strong turning force of the fuel is maintained. Therefore, even if the fuel passage has to be bent with respect to the cylindrical injection hole 731, a stable swirling flow of fuel can be generated.
  • FIG. 11 is a plan view showing a main part of an injection plate of a fuel injection device according to Embodiment 4 of the present invention.
  • the first fuel passage 733a includes a fuel passage base 735a extending radially outward from the fuel introduction portion 732, and a cylindrical injection from the radially outer end of the fuel passage base 735a. And a fuel passage branch 736 a extending to the hole 731.
  • the second fuel passage 733b has a fuel passage base 735b extending radially outward from the fuel introduction portion 732, and a fuel passage branch 736b extending from the radially outer end of the fuel passage base 735b to the cylindrical injection hole 731.
  • the fuel passage base 735 a and the fuel passage base 735 b are radial fuel passages extending in the radial direction of the injection plate 73.
  • the fuel passage branch 736 a and the fuel passage branch 736 b are circumferential fuel passages extending in the circumferential direction of the injection plate 73.
  • the cylindrical injection hole 731 is such that the distance between the cylindrical injection hole 731 and the radially outer end of the fuel passage base 735a in the first fuel passage 733a is the fuel passage in the cylindrical injection hole 731 and the second fuel passage 733b. It arrange
  • the length dimension of the fuel passage branch 736a in the first fuel passage 733a is larger than the length dimension of the fuel passage branch 736b in the second fuel passage 733b.
  • Other configurations are the same as those in the first to third embodiments.
  • the length dimension of the fuel passage branch 736a in the first fuel passage 733a is the same as that of the fuel passage branch 736b in the second fuel passage 733b. Since it is larger than the length dimension, the fuel passing through the fuel passage branch 736b in the first fuel passage 733a can be rectified. As a result, the flow A of fuel passing through the first turning opening 734a is prevented from going to the portion of the cylindrical injection hole 731 that is close to the center. As a result, the fuel can flow along the inner peripheral surface of the cylindrical injection hole 731, and a thin and uniform liquid film of fuel can be formed. Therefore, even when the size or shape of the injection plate 73 is limited, a stable swirling flow of fuel can be generated.
  • FIG. 12 is a plan view showing an injection plate of a fuel injection device according to Embodiment 5 of the present invention
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
  • the cylindrical injection hole 731 is arranged to be inclined with respect to a plane perpendicular to the central axis O. In other words, the cylindrical injection hole 731 is inclined with respect to the surface along the injection plate 73.
  • the inclination angle ⁇ 3 of each cylindrical injection hole 731 is arbitrarily set.
  • the cylindrical injection holes 731 are formed from the first turning opening 734a and the second turning opening 734b. Since the fuel flowing into 731 is arranged point-symmetrically, the swirling flow of fuel never disappears.
  • Other configurations are the same as those in the first to fourth embodiments.
  • the cylindrical injection holes 731 are arranged to be inclined with respect to the plane perpendicular to the central axis O.
  • the direction of fuel sprayed from the cylindrical injection hole 731 can be not only one direction but also other directions such as two directions.
  • FIG. FIG. 14 is a plan view showing an injection plate of a fuel injection device according to Embodiment 6 of the present invention.
  • the injection plate 73 is formed with one fuel introduction portion 732.
  • a plurality of fuel passages 733 are communicated with one fuel introduction portion 732.
  • Other configurations are the same as those in the first to fifth embodiments.
  • one fuel introduction portion 732 is formed in the injection plate 73, and a plurality of fuel passages are formed in one fuel introduction portion 732. Since 733 is communicated, the fuel introduction portion 732 can be easily formed in the injection plate 73, and the fuel droplet diameter can be reduced without causing the fuel flow rate fluctuation as in the first to fifth embodiments. Can be made uniform and atomized, and good fuel particles can be injected into the internal combustion engine.
  • FIG. FIG. 15 is a plan view showing an injection plate of a fuel injection device according to Embodiment 7 of the present invention.
  • the first fuel passage 733a includes a fuel passage base portion 735a extending radially outward from the fuel introduction portion 732, and a radially outer end portion of the fuel passage base portion 735a in the circumferential direction.
  • a pair of fuel passage branches 736 a extending to a pair of adjacent cylindrical injection holes 731.
  • a round hole-shaped auxiliary injection hole 75 a extending along the central axis O and penetrating the injection plate 73 is formed at the radially outer end of the fuel passage base 735 a.
  • the fuel passing through the fuel passage base 735a from the fuel introduction portion 732 collides with the side wall of the radially outer end of the fuel passage base 735a. Can be separated without.
  • the second fuel passage 733b includes a fuel passage base 735b extending radially outward from the fuel introduction portion 732, and a pair extending from a radially outer end of the fuel passage base 735b to a pair of cylindrical injection holes 731 adjacent in the circumferential direction. And a fuel passage branch 736b.
  • a circular auxiliary injection hole 75b extending along the central axis O and penetrating the injection plate 73 is formed at the radially outer end of the fuel passage base 735b.
  • the first fuel passage 733a includes the fuel passage base 735a extending outward in the radial direction from the fuel introduction portion 732, and the fuel passage base 735a.
  • a pair of fuel passage branches 736a extending from a radially outer end portion of the fuel passage to a pair of cylindrical injection holes 731 adjacent in the circumferential direction.
  • a radially outer end portion of the fuel passage base portion 735a has a central axis O.
  • the auxiliary injection hole 75a having a round hole shape extending along the injection plate 73 and passing through the injection plate 73 is formed, the fuel passing from the fuel introduction part 732 through the fuel passage base part 735a to the radially outer end of the fuel passage base part 735a. Separation can be performed without colliding with the side wall, and the fuel flowing through the fuel passage branch 736a can be rectified. Further, the auxiliary injection holes 75a can inject the fuel farther and can form fuel spray with high directivity.
  • the cylindrical injection hole 731 is excellent in atomization of fuel by forming a spray of umbrella-like fuel by a swirl flow to form a thin liquid film.
  • the injection is aimed at the top surface of the intake valve from the auxiliary injection hole 75a, and at the same time, the umbrella spray emitted from the cylindrical injection hole 731 follows it. Accordingly, the umbrella-shaped spray can be a directional spray. Furthermore, since the fuel flow from the fuel introduction part 732 to the first fuel passage 733a rapidly changes in the direction of fuel flow from the direction along the central axis O to the direction along the plane perpendicular to the central axis O, Disturbances occur in the flow. The fuel in which the flow is disturbed is injected from the auxiliary injection hole 75a. Therefore, the injected fuel can promote the splitting of the liquid film due to the turbulence and produce fuel particles with good atomization.
  • the auxiliary injection holes 75a and 75b extend along the central axis O and penetrate the injection plate 73.
  • the auxiliary injection holes 75a and 75b are surfaces perpendicular to the central axis O. The structure which inclines with respect to and penetrates the injection plate 73 may be sufficient.
  • assistant injection hole 75a, 75b demonstrated the structure which is a round hole shape, as shown in FIG. 16, for example, the circular arc shape where the auxiliary injection holes 76a, 76b extended in the circumferential direction.
  • the auxiliary injection holes 77a and 77b may have a straight slit shape extending in the circumferential direction.
  • the configuration in which the number of the cylindrical injection holes 731 is four has been described, but the number of the cylindrical injection holes 731 may be other than four.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Provided is a fuel injection device configured so that a variation in the flow rate of fuel injected from an injection hole can be prevented. A fuel injection device injects fuel into an internal combustion engine through an injection plate. The injection plate is a plate-like member provided with a first surface which faces the internal combustion engine, and a second surface which is located on the reverse side of the first surface. The injection plate is provided with: a fuel introduction section for introducing the fuel to the second surface; a plurality of cylindrical injection holes for injecting to the first surface side, the fuel having been introduced into the fuel introduction section; and a plurality of distribution flow passages which, on the second surface, distribute to the plurality of cylindrical fuel injection holes, the fuel having been introduced into the fuel introduction section. A first distribution flow passage is connected to a first cylindrical injection hole and a second cylindrical injection hole, which are adjacent to the fuel introduction section. A second distribution flow passage adjacent to the first distribution flow passage is connected to the fuel introduction section, the second cylindrical injection hole, and a third cylindrical injection hole. The plurality of distribution flow passages swirl, within the plurality of cylindrical injection holes, the distributed fuel.

Description

燃料噴射装置および噴射プレートFuel injection device and injection plate
 この発明は、燃料を噴射する燃料噴射装置および噴射プレートに関する。 The present invention relates to a fuel injection device and an injection plate for injecting fuel.
 内燃機関の燃料噴射装置は、噴射される燃料の粒子径が小さくなるにつれて、燃料の蒸発が促進されるとともに内燃機関の内壁への燃料付着量が減少して、未燃料の燃料排出量が低減される。その結果、内燃機関の燃料消費効率である燃費が向上し、有害ガスの排出量が低減される。噴射される燃料の微粒化の方法としては、噴射プレートにおける燃料の流路形状を工夫しまたは噴射孔の配置を工夫することで噴射される燃料を薄膜化して、燃料の微粒化を図るものが種々提案されている。有害ガスの排出量削減には、所定の流量の燃料を噴射することが求められる。 In the fuel injection device for an internal combustion engine, as the particle size of the injected fuel becomes smaller, the evaporation of the fuel is promoted and the amount of fuel adhering to the inner wall of the internal combustion engine is reduced, thereby reducing the amount of unfueled fuel discharged. Is done. As a result, the fuel consumption, which is the fuel consumption efficiency of the internal combustion engine, is improved, and the amount of harmful gas emissions is reduced. As a method of atomizing the fuel to be injected, there is a method of atomizing the fuel by thinning the fuel to be injected by devising the shape of the flow path of the fuel in the injection plate or devising the arrangement of the injection holes. Various proposals have been made. In order to reduce harmful gas emissions, it is required to inject fuel at a predetermined flow rate.
 噴射される燃料の微粒化を促進する方法としては、例えば、噴射プレートにおける噴射孔の内部に燃料の旋回流を発生させて燃料を液膜状に噴射する方法、または、燃料を衝突させて膜状に噴射する方法が挙げられる。 As a method for promoting atomization of the injected fuel, for example, a method of injecting fuel into a liquid film by generating a swirling flow of fuel inside an injection hole in an injection plate, or a film by colliding fuel with a film The method of injecting in a shape is mentioned.
 従来、噴射弁となる噴射孔付ディスクを備えた燃料噴射装置が知られている。この噴射孔付ディスクには、噴射孔付ディスクを貫通する複数の筒状噴射孔が形成されている。燃料が導入される噴射孔付ディスクの上流側には、噴射孔と同心円で半径が噴射孔よりも大きい渦流旋回室が形成されている。渦流旋回室において燃料の旋回流が発生し、噴射孔から内燃機関へ微細な燃料が噴霧される。つまり、渦流旋回室に流入した燃料を渦流旋回室において旋回させて、旋回した燃料が噴射孔から噴射する(例えば、特許文献1参照)。 Conventionally, a fuel injection device having a disk with an injection hole serving as an injection valve is known. The disk with injection holes is formed with a plurality of cylindrical injection holes penetrating the disk with injection holes. A vortex swirl chamber concentric with the injection hole and having a larger radius than the injection hole is formed on the upstream side of the disk with the injection hole into which the fuel is introduced. A swirling flow of fuel is generated in the swirl swirl chamber, and fine fuel is sprayed from the injection hole to the internal combustion engine. That is, the fuel that has flowed into the swirl swirl chamber is swirled in the swirl swirl chamber, and the swirled fuel is injected from the injection holes (see, for example, Patent Document 1).
特開2014-526013号公報JP 2014-526013 A
 渦流旋回室に流入した燃料を渦流旋回室において旋回させて、旋回した燃料が噴射孔から噴射する燃料噴射装置は、渦流旋回室の中心と噴射孔の中心とを一致させることによって、所定の噴射流量を得ることができる。しかしながら、加工において渦流旋回室の中心と噴射孔の中心との間に位置ずれが発生した場合に、渦流旋回室において旋回する燃料の流れに偏りが発生する。これにより、噴射孔から噴射される燃料の流量にばらつきが発生してしまうという問題点があった。 A fuel injection device that swirls the fuel that has flowed into the swirl swirl chamber in the swirl swirl chamber and injects the swirled fuel from the injection hole, by matching the center of the swirl swirl chamber with the center of the injection hole, A flow rate can be obtained. However, when a displacement occurs between the center of the swirl swirl chamber and the center of the injection hole during machining, a deviation occurs in the flow of fuel swirling in the swirl swirl chamber. As a result, there is a problem that the flow rate of the fuel injected from the injection hole varies.
 この発明は、噴射孔から噴射される燃料の流量のばらつきを抑制することができる燃料噴射装置および噴射プレートを提供するものである。 The present invention provides a fuel injection device and an injection plate capable of suppressing variations in the flow rate of fuel injected from injection holes.
 この発明に係る燃料噴射装置は、噴射プレートを介して燃料を内燃機関に噴射する燃料噴射装置であって、噴射プレートは、内燃機関に対向する第1表面と第1表面の裏面である第2表面とを備えたプレート状部材であり、第2表面に燃料を導入する燃料導入部と、燃料導入部に導入された燃料を第1表面の側へ噴射する複数の筒状噴射孔と、燃料導入部に導入された燃料を第2表面で複数の筒状噴射孔へ分配する複数の分配流路とを備え、複数の分配流路のうちの第1分配流路は、燃料導入部と複数の筒状噴射孔のうちの隣接する第1筒状噴射孔および第2筒状噴射孔とに接続されており、複数の分配流路のうちの第1分配流路に隣接する第2分配流路は、燃料導入部と複数の筒状噴射孔のうちの隣接する第2筒状噴射孔および第3筒状噴射孔とに接続されており、複数の分配流路は、分配された燃料を複数の筒状噴射孔内で旋回させる。 A fuel injection device according to the present invention is a fuel injection device that injects fuel into an internal combustion engine via an injection plate, wherein the injection plate is a first surface facing the internal combustion engine and a back surface of the first surface. A plate-like member having a surface, a fuel introduction portion for introducing fuel to the second surface, a plurality of cylindrical injection holes for injecting the fuel introduced to the fuel introduction portion toward the first surface, and a fuel A plurality of distribution passages for distributing the fuel introduced into the introduction portion to the plurality of cylindrical injection holes on the second surface, and the first distribution passage of the plurality of distribution passages includes the fuel introduction portion and the plurality of distribution passages. The second distribution flow that is connected to the first cylindrical injection hole and the second cylindrical injection hole that are adjacent to each other among the plurality of cylindrical injection holes and that is adjacent to the first distribution flow path among the plurality of distribution flow paths. The path has a second cylindrical injection hole and a third cylindrical shape adjacent to each other among the fuel introduction portion and the plurality of cylindrical injection holes. Which is connected to the Iana, a plurality of distribution flow paths to pivot distributed fuel within the plurality of tubular injection hole.
 この発明に係る燃料噴射装置によれば、渦流旋回室が設けられていないので、渦流旋回室の中心と噴射孔の中心との間の位置ずれが発生しない。これにより、噴射孔から噴射される燃料の流量のばらつきを抑制することができる。 According to the fuel injection device according to the present invention, since the swirl swirl chamber is not provided, there is no position shift between the center of the swirl swirl chamber and the center of the injection hole. Thereby, the dispersion | variation in the flow volume of the fuel injected from an injection hole can be suppressed.
この発明の実施の形態1に係る燃料噴射装置を示す断面図である。It is sectional drawing which shows the fuel-injection apparatus which concerns on Embodiment 1 of this invention. 図1の弁装置の要部を示す拡大図である。It is an enlarged view which shows the principal part of the valve apparatus of FIG. 図2の噴射プレートを示す平面図である。It is a top view which shows the injection plate of FIG. 図3の噴射プレートの要部を示す拡大図である。It is an enlarged view which shows the principal part of the injection plate of FIG. 図4の筒状噴射孔を示す断面図である。It is sectional drawing which shows the cylindrical injection hole of FIG. 図5の筒状噴射孔と比較するための噴射孔を示す断面図である。It is sectional drawing which shows the injection hole for comparing with the cylindrical injection hole of FIG. ダレの有無による噴射孔の最外径部分における燃料の流量を示すグラフである。It is a graph which shows the flow volume of the fuel in the outermost diameter part of the injection hole by the presence or absence of sagging. この発明の実施の形態2に係る燃料噴射装置の噴射プレートの要部を示す平面図である。It is a top view which shows the principal part of the injection plate of the fuel injection apparatus which concerns on Embodiment 2 of this invention. 図8の筒状噴射孔の直径寸法に対する第1旋回用開口部の幅方向寸法の比、および、筒状噴射孔の直径寸法に対する第2旋回用開口部の幅方向寸法の比と噴射プレートから噴射される燃料の噴霧角との関係を示すグラフである。The ratio of the widthwise dimension of the first turning opening to the diameter dimension of the cylindrical injection hole in FIG. 8 and the ratio of the widthwise dimension of the second turning opening to the diameter dimension of the cylindrical injection hole and the injection plate It is a graph which shows the relationship with the spray angle of the fuel injected. この発明の実施の形態3に係る燃料噴射装置の噴射プレートの要部を示す平面図である。It is a top view which shows the principal part of the injection plate of the fuel injection apparatus which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る燃料噴射装置の噴射プレートの要部を示す平面図である。It is a top view which shows the principal part of the injection plate of the fuel injection apparatus which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係る燃料噴射装置の噴射プレートを示す平面図である。It is a top view which shows the injection plate of the fuel-injection apparatus which concerns on Embodiment 5 of this invention. 図12のXIII-XIII線に沿った矢視断面図である。FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 12. この発明の実施の形態6に係る燃料噴射装置の噴射プレートを示す平面図である。It is a top view which shows the injection plate of the fuel injection apparatus which concerns on Embodiment 6 of this invention. この発明の実施の形態7に係る燃料噴射装置の噴射プレートを示す平面図である。It is a top view which shows the injection plate of the fuel-injection apparatus which concerns on Embodiment 7 of this invention. 図15の噴射プレートの変形例を示す平面図である。It is a top view which shows the modification of the injection plate of FIG. 図15の噴射プレートの変形例を示す平面図である。It is a top view which shows the modification of the injection plate of FIG.
 実施の形態1.
 図1はこの発明の実施の形態1に係る燃料噴射装置を示す断面図である。燃料噴射装置1は、ソレノイド装置2と、ソレノイド装置2の内側に設けられ、磁気回路の固定子鉄心部分であるコア3と、ソレノイド装置2とコア3とに渡って設けられ、磁気回路のヨーク部分であるハウジング4と、ソレノイド装置2に電流を供給するための電源コネクタ5と、ソレノイド装置2の内側に設けられ、磁気回路の可動子鉄心部分であるアマチュア6と、アマチュア6の移動によって駆動する弁装置7とを備えている。
Embodiment 1 FIG.
1 is a sectional view showing a fuel injection device according to Embodiment 1 of the present invention. The fuel injection device 1 is provided inside the solenoid device 2, the solenoid device 2, the core 3 that is a stator core portion of the magnetic circuit, and the solenoid device 2 and the core 3. The housing 4 which is a part, the power connector 5 for supplying current to the solenoid device 2, the armature 6 which is provided inside the solenoid device 2 and which is the mover core portion of the magnetic circuit, and is driven by the movement of the armature 6 And a valve device 7 for
 ソレノイド装置2は、電源コネクタ5から電流が供給されるコイル21を有している。ソレノイド装置2は、コイル21に電流が供給されることによって、磁束を発生させる。 The solenoid device 2 has a coil 21 to which current is supplied from the power connector 5. The solenoid device 2 generates magnetic flux when current is supplied to the coil 21.
 弁装置7は、バルブシート用燃料通路711および弁座部712が形成されたバルブシート71と、当接部721を有し、当接部721が弁座部712に離座および着座することによってバルブシート用燃料通路711が開閉される弁部材72と、バルブシート71よりも下流に設けられた円状の部材である噴射プレート73と、ハウジング4とアマチュア6との間に設けられたバルブボディ74とを有している。噴射プレート73は、バルブシート71に結合されている。噴射プレート73には、噴射プレート73の板厚方向に延び噴射プレート73を貫通する複数の筒状噴射孔731が形成されている。 The valve device 7 includes a valve seat 71 in which a valve seat fuel passage 711 and a valve seat portion 712 are formed, and a contact portion 721. The contact portion 721 is separated from and seated on the valve seat portion 712. A valve body 72 provided between the housing 4 and the armature 6, a valve member 72 that opens and closes the valve seat fuel passage 711, an injection plate 73 that is a circular member provided downstream of the valve seat 71, and the valve body 71. 74. The injection plate 73 is coupled to the valve seat 71. The injection plate 73 is formed with a plurality of cylindrical injection holes 731 extending in the thickness direction of the injection plate 73 and penetrating the injection plate 73.
 弁部材72は、アマチュア6と当接部721とに接続されたニードル722と、当接部721が弁座部712に着座する方向にニードル722を押す圧縮ばね723とをさらに有している。ニードル722は、アマチュア6に圧入され、さらにアマチュア6に溶接されている。 The valve member 72 further includes a needle 722 connected to the armature 6 and the contact portion 721, and a compression spring 723 that presses the needle 722 in a direction in which the contact portion 721 is seated on the valve seat portion 712. The needle 722 is press-fitted into the armature 6 and further welded to the armature 6.
 次に、燃料噴射装置1の一般的な動作について説明する。内燃機関の制御装置により燃料噴射装置1の駆動回路に動作信号が電源コネクタ5を通して送られると、コイル21に電流が通電され、アマチュア6、コア3、ハウジング4およびバルブボディ74で構成される磁気回路に磁束が発生する。これにより、アマチュア6は、圧縮ばね723の押圧力に逆らってコア3側に吸引されて、当接部721が弁座部712から離れる。その結果、燃料が、当接部721に形成された面取部724の側面を通り、さらに、当接部721と弁座部712との間を通り、複数の筒状噴射孔731から内燃機関の吸気通路に噴射される。この時、アマチュア6はコア3と軸方向に当接する。 Next, the general operation of the fuel injection device 1 will be described. When an operation signal is sent through the power supply connector 5 to the drive circuit of the fuel injection device 1 by the control device of the internal combustion engine, a current is passed through the coil 21, and the magnet composed of the armature 6, the core 3, the housing 4 and the valve body 74. Magnetic flux is generated in the circuit. Thereby, the armature 6 is attracted to the core 3 side against the pressing force of the compression spring 723, and the contact portion 721 is separated from the valve seat portion 712. As a result, the fuel passes through the side surface of the chamfered portion 724 formed in the abutting portion 721, further passes between the abutting portion 721 and the valve seat portion 712, and from the plurality of cylindrical injection holes 731 to the internal combustion engine. Is injected into the intake passage. At this time, the armature 6 contacts the core 3 in the axial direction.
 一方、内燃機関の制御装置により燃料噴射装置1の駆動回路に停止信号が送られると、コイル21への通電が停止され、磁気回路における磁束が減少して、圧縮ばね723の押圧力により当接部721と弁座部712との間の隙間がなくなる。これにより、燃料噴射装置1からの燃料の噴射が停止する。 On the other hand, when a stop signal is sent to the drive circuit of the fuel injection device 1 by the control device of the internal combustion engine, the energization to the coil 21 is stopped, the magnetic flux in the magnetic circuit is reduced, and contact is made by the pressing force of the compression spring 723. There is no gap between the portion 721 and the valve seat portion 712. Thereby, the fuel injection from the fuel injection device 1 is stopped.
 図2は図1の弁装置7の要部を示す拡大図、図3は図2の噴射プレート73を示す平面図である。噴射プレート73は、内燃機関に対向する第1表面と、この第1表面の裏面である第2表面とを備えたプレート状部材となっている。噴射プレート73におけるバルブシート71側の部分には、バルブシート用燃料通路711を通った燃料が導入される複数の燃料導入部732が形成されている。燃料導入部732は、噴射プレート73の第2表面に燃料を導入する。この例では、4個の燃料導入部732が噴射プレート73に形成されている。 2 is an enlarged view showing the main part of the valve device 7 of FIG. 1, and FIG. 3 is a plan view showing the injection plate 73 of FIG. The injection plate 73 is a plate-like member having a first surface that faces the internal combustion engine and a second surface that is the back surface of the first surface. In the portion of the injection plate 73 on the valve seat 71 side, a plurality of fuel introduction portions 732 into which fuel that has passed through the valve seat fuel passage 711 is introduced are formed. The fuel introduction part 732 introduces fuel to the second surface of the injection plate 73. In this example, four fuel introduction portions 732 are formed on the injection plate 73.
 筒状噴射孔731は、燃料導入部732に導入された燃料を噴射プレート73の第1表面の側へ噴射する。筒状噴射孔731は、噴射プレート73における燃料導入部732よりもバルブシート71の中心軸線Oから離れた部分に形成されている。また、筒状噴射孔731は、中心軸線Oに沿って延びて噴射プレート73を貫通するように噴射プレート73に形成されている。この例では、4個の筒状噴射孔731が噴射プレート73に形成されている。 The cylindrical injection hole 731 injects the fuel introduced into the fuel introduction part 732 to the first surface side of the injection plate 73. The cylindrical injection hole 731 is formed in a portion farther from the central axis O of the valve seat 71 than the fuel introduction portion 732 in the injection plate 73. The cylindrical injection hole 731 is formed in the injection plate 73 so as to extend along the central axis O and penetrate the injection plate 73. In this example, four cylindrical injection holes 731 are formed in the injection plate 73.
 噴射プレート73には、燃料導入部732と筒状噴射孔731とを繋ぐ4個の燃料通路733が形成されている。一対の燃料通路733が1つの筒状噴射孔731に連通している。燃料導入部732および燃料通路733は、同一平面上に配置されている。つまり、燃料導入部732と筒状噴射孔731とを繋ぐ4個の燃料通路733は、4個の筒状噴射孔731へ燃料を均等に供給するための分岐部を有する。言い換えれば、燃料通路733は、燃料導入部732に導入された燃料を第2表面で複数の筒状噴射孔731へ分配する分配流路となっている。分岐部により燃料が均等に配分されることで各筒状噴射孔731間の流量変動を抑制することができる。また、燃料導入部732および燃料通路733は、中心軸線Oに垂直な面に配置されている。燃料導入部732および燃料通路733が中心軸線Oに垂直な同一平面上に配置されているので、燃料導入部732および燃料通路733が中心軸線Oに垂直な同一平面に対して傾斜して配置する場合と比較して、加工が容易となり、また、高さ方向への加工ばらつきが発生しても流路深さにのみ影響するので、流路変動の要因となる位置ずれが発生し難い構造となる。 In the injection plate 73, four fuel passages 733 that connect the fuel introduction portion 732 and the cylindrical injection hole 731 are formed. A pair of fuel passages 733 communicate with one cylindrical injection hole 731. The fuel introduction part 732 and the fuel passage 733 are arranged on the same plane. In other words, the four fuel passages 733 that connect the fuel introduction part 732 and the cylindrical injection hole 731 have branch parts for supplying fuel evenly to the four cylindrical injection holes 731. In other words, the fuel passage 733 is a distribution passage that distributes the fuel introduced into the fuel introduction portion 732 to the plurality of cylindrical injection holes 731 on the second surface. By distributing the fuel evenly by the branching portion, the flow rate fluctuation between the cylindrical injection holes 731 can be suppressed. Further, the fuel introduction portion 732 and the fuel passage 733 are disposed on a plane perpendicular to the central axis O. Since the fuel introduction part 732 and the fuel passage 733 are arranged on the same plane perpendicular to the central axis O, the fuel introduction part 732 and the fuel passage 733 are arranged to be inclined with respect to the same plane perpendicular to the central axis O. Compared to the case, machining is easy, and even if machining variations in the height direction occur, only the flow path depth is affected, so that the position shift that causes flow path fluctuation is unlikely to occur. Become.
 図4は図3の噴射プレート73の要部を示す拡大図である。筒状噴射孔731の内周面には、一対の燃料通路733における一方の燃料通路733である第1燃料通路733aに連通される第1旋回用開口部734aおよび一対の燃料通路733における他方の燃料通路733である第2燃料通路733bに連通される第2旋回用開口部734bが形成されている。つまり、筒状噴射孔731、第1燃料通路733a、第2燃料通路733b、第1旋回用開口部734aおよび第2旋回用開口部734bからなる図4に示す構造は、中心軸線Oを中心として点対称に回転して配置可能であり、点対称に配置された構造間の差は、最小限に小さくできるため、燃料通路733へは均等に圧力がかかる。燃料導入部732からの燃料は均等に各燃料通路733へ分配され、筒状噴射孔731から均一な噴霧を噴射できる。また、ここでは、4個の筒状噴射孔731を示しているが、点対称であるため4個以上の複数噴射化も可能であり、筒状噴射孔731の数が増えるほど、筒状噴射孔731の1個あたりに供給される流量は小さくなるため、流量変動を抑制しやすくすることができる。 FIG. 4 is an enlarged view showing a main part of the injection plate 73 of FIG. On the inner peripheral surface of the cylindrical injection hole 731, the first turning opening 734 a communicated with the first fuel passage 733 a which is one fuel passage 733 in the pair of fuel passages 733 and the other of the pair of fuel passages 733. A second turning opening 734 b that communicates with the second fuel passage 733 b that is the fuel passage 733 is formed. That is, the structure shown in FIG. 4 including the cylindrical injection hole 731, the first fuel passage 733a, the second fuel passage 733b, the first turning opening 734a, and the second turning opening 734b is centered on the central axis O. The fuel passages 733 are evenly pressurized because the difference between the structures arranged symmetrically with respect to the point can be reduced to the minimum. The fuel from the fuel introduction part 732 is evenly distributed to each fuel passage 733, and uniform spray can be injected from the cylindrical injection hole 731. Here, four cylindrical injection holes 731 are shown, but since they are point symmetric, four or more injections can be made. As the number of the cylindrical injection holes 731 increases, the cylindrical injection holes 731 are increased. Since the flow rate supplied per hole 731 is small, fluctuations in flow rate can be easily suppressed.
 第1旋回用開口部734aは、筒状噴射孔731において、周方向について一方側であって径方向について一方側に配置されている。第2旋回用開口部734bは、筒状噴射孔731において、周方向について他方側であって径方向について他方側に配置されている。この例では、周方向とは、中心軸線Oを中心とした周方向であり、径方向とは中心軸線Oを中心とした径方向である。また、この例では、周方向について一方側とは、図4における左側であり、周方向について他方側とは、図4における右側である。なお、周方向について一方側が、図4における右側側であり、周方向について他方側が、図4における左側でであってもよい。また、この例では、径方向について一方側とは、径方向について内側であり、径方向について他方側とは、径方向について外側である。なお、径方向について一方側が径方向について外側で、径方向について他方側が径方向について内側であってもよい。 The first turning opening 734a is disposed on one side in the circumferential direction and on the one side in the radial direction in the cylindrical injection hole 731. The second turning opening 734b is disposed on the other side in the circumferential direction and on the other side in the radial direction in the cylindrical injection hole 731. In this example, the circumferential direction is a circumferential direction centered on the central axis O, and the radial direction is a radial direction centered on the central axis O. In this example, one side in the circumferential direction is the left side in FIG. 4, and the other side in the circumferential direction is the right side in FIG. Note that one side in the circumferential direction may be the right side in FIG. 4, and the other side in the circumferential direction may be on the left side in FIG. In this example, the one side in the radial direction is the inner side in the radial direction, and the other side in the radial direction is the outer side in the radial direction. Note that one side in the radial direction may be the outside in the radial direction, and the other side in the radial direction may be inward in the radial direction.
 燃料導入部732から第1燃料通路733aに流入する燃料は、第1旋回用開口部734aに導かれる。また、燃料導入部732から第2燃料通路733bに流入する燃料は、第2旋回用開口部734bに導かれる。第1旋回用開口部734aに導かれる燃料の流れAと、第2旋回用開口部734bに導かれる燃料の流れBとは、筒状噴射孔731の中心を中心とした点対称となっている。また、第1旋回用開口部734aに導かれる燃料の流れAおよび第2旋回用開口部734bに導かれる燃料の流れBは、筒状噴射孔731の内周面に偏って流れる。このように燃料が筒状噴射孔731の中心を中心とした点対称に流れることによって、筒状噴射孔731には、強い旋回流が発生する。また、第1旋回用開口部734aに導かれる燃料の流れAおよび第2旋回用開口部734bに導かれる燃料の流れBが、互いに、筒状噴射孔731の内周面に向かって押すことにより、筒状噴射孔731には、薄く均一な燃料の薄膜が形成される。その結果、燃料の液滴径の均一化かつ微粒化を図ることができ、良好な燃料粒子が内燃機関に噴射される。また、第1燃料通路733aおよび第2燃料通路733bが中心軸線Oに垂直な同一平面上に配置されているので、燃料導入部732および燃料通路733が中心軸線Oに対して傾斜して配置される場合と比べて、重力方向への流れの勢いが小さく、筒状噴射孔731の接線方向への流れが強いため、旋回力を維持でき、良好な燃料粒子が生成される。 The fuel flowing from the fuel introduction part 732 into the first fuel passage 733a is guided to the first turning opening 734a. Further, the fuel flowing from the fuel introduction part 732 into the second fuel passage 733b is guided to the second turning opening part 734b. The fuel flow A guided to the first turning opening 734a and the fuel flow B guided to the second turning opening 734b are point-symmetric about the center of the cylindrical injection hole 731. . Further, the fuel flow A guided to the first turning opening 734 a and the fuel flow B guided to the second turning opening 734 b are biased toward the inner peripheral surface of the cylindrical injection hole 731. As described above, the fuel flows symmetrically with respect to the center of the cylindrical injection hole 731, whereby a strong swirling flow is generated in the cylindrical injection hole 731. Further, the fuel flow A guided to the first turning opening 734 a and the fuel flow B guided to the second turning opening 734 b are pushed toward the inner peripheral surface of the cylindrical injection hole 731. A thin and uniform fuel thin film is formed in the cylindrical injection hole 731. As a result, the droplet diameter of the fuel can be made uniform and atomized, and good fuel particles are injected into the internal combustion engine. Further, since the first fuel passage 733a and the second fuel passage 733b are arranged on the same plane perpendicular to the central axis O, the fuel introduction part 732 and the fuel passage 733 are arranged inclined with respect to the central axis O. Compared with the case where the flow rate is smaller, the momentum of the flow in the direction of gravity is smaller and the flow in the tangential direction of the cylindrical injection hole 731 is stronger, so that the turning force can be maintained and good fuel particles are generated.
 図5は図4の筒状噴射孔731を示す断面図、図6は図5の筒状噴射孔731と比較するための噴射孔を示す断面図である。特許文献1に記載された従来の燃料噴射装置のように、加工によって渦流旋回室81に噴射孔82を形成する場合には、渦流旋回室81の中心と噴射孔82の中心との間に位置ずれが発生する場合がある。渦流旋回室81の中心と噴射孔82の中心との間に位置ずれが発生した場合に、渦流旋回室81において旋回する燃料の流れに偏りが発生する。一方、本発明では、渦流旋回室81が形成されていないので、旋回する燃料の流れに偏り発生しない。また、図6に示すように、噴射孔82の入口部には、ダレ821が発生する。一方、本発明では、渦流旋回室81が形成されていないので、筒状噴射孔731にはダレが発生しない。したがって、筒状噴射孔731において旋回する燃料の流量等の特性値の変動が抑制される。その結果、燃費および排気ガスの悪化の要因となる気筒間の燃料噴射量のばらつきが抑制される。 FIG. 5 is a cross-sectional view showing the cylindrical injection hole 731 in FIG. 4, and FIG. 6 is a cross-sectional view showing the injection hole for comparison with the cylindrical injection hole 731 in FIG. When the injection hole 82 is formed in the swirl swirl chamber 81 by processing as in the conventional fuel injection device described in Patent Document 1, it is positioned between the center of the swirl swirl chamber 81 and the center of the injection hole 82. Deviation may occur. When a positional deviation occurs between the center of the swirl swirl chamber 81 and the center of the injection hole 82, the flow of fuel swirling in the swirl swirl chamber 81 is biased. On the other hand, in the present invention, since the swirl swirl chamber 81 is not formed, there is no bias in the swirling fuel flow. Further, as shown in FIG. 6, a sag 821 is generated at the inlet of the injection hole 82. On the other hand, in the present invention, since the swirl swirl chamber 81 is not formed, sagging does not occur in the cylindrical injection hole 731. Therefore, fluctuations in characteristic values such as the flow rate of the fuel swirling in the cylindrical injection hole 731 are suppressed. As a result, variations in the fuel injection amount between the cylinders that cause deterioration of fuel consumption and exhaust gas are suppressed.
 図7はダレの有無による噴射孔の最外径部分における燃料の流量を示すグラフである。筒状噴射孔731の径方向の寸法を渦流旋回室81の径方向の寸法と同じにすると、渦流旋回室81が設けられている場合と比較して、およそ2.0倍の流量を得ることが可能となる。これにより、所定の流量を今までよりも小さな形状で得ることができる。したがって、噴射プレート73により多くの筒状噴射孔731を形成することができ、さらに、筒状噴射孔731の配置される位置をより自由に変更することができる。その結果、より自由な噴霧形状を作成することができる。 FIG. 7 is a graph showing the fuel flow rate at the outermost diameter portion of the injection hole depending on the presence or absence of sagging. When the radial dimension of the cylindrical injection hole 731 is the same as the radial dimension of the swirl swirl chamber 81, a flow rate approximately 2.0 times that of the case where the swirl swirl chamber 81 is provided can be obtained. Is possible. Thereby, a predetermined flow rate can be obtained in a smaller shape than before. Therefore, many cylindrical injection holes 731 can be formed in the injection plate 73, and the position where the cylindrical injection holes 731 are arranged can be changed more freely. As a result, a more free spray shape can be created.
 また、本発明では、渦流旋回室81が形成されていないので、渦流旋回室81に割り当てていたスペースを筒状噴射孔731に割り当てることができる。これにより、筒状噴射孔731の径方向寸法を大きくすることができ、旋回させて到達できる噴射範囲が広くなり、また、燃料噴射装置1の製造が容易となる。 Further, in the present invention, since the vortex swirl chamber 81 is not formed, the space allocated to the vortex swirl chamber 81 can be allocated to the cylindrical injection hole 731. Thereby, the radial dimension of the cylindrical injection hole 731 can be increased, the injection range that can be swiveled is widened, and the fuel injection device 1 can be easily manufactured.
 以上説明したように、この発明の実施の形態1に係る燃料噴射装置1によれば、噴射プレート73におけるバルブシート71側の部分には、バルブシート用燃料通路711を通った燃料が導入される燃料導入部732が形成され、噴射プレート73における燃料導入部732よりもバルブシート71の中心軸線Oから離れた部分には、中心軸線Oに沿って延びて噴射プレート73を貫通する筒状噴射孔731が形成され、噴射プレート73には、燃料導入部732と筒状噴射孔731とを繋ぐ一対の燃料通路733が形成され、筒状噴射孔731の内周面には、一対の燃料通路733における一方の燃料通路733である第1燃料通路733aに連通される第1旋回用開口部734aおよび一対の燃料通路733における他方の燃料通路733である第2燃料通路733bに連通される第2旋回用開口部734bが形成され、第1旋回用開口部734aは、筒状噴射孔731において周方向について一方側であって径方向について一方側に配置され、第2旋回用開口部734bは、筒状噴射孔731において周方向について他方側であって径方向について他方側に配置されているので、渦流旋回室81を設けることなく、筒状噴射孔731から旋回した燃料を噴射させることができる。これにより、渦流旋回室81の中心と噴射孔の中心との間の位置ずれが発生しない。その結果、筒状噴射孔731から噴射される燃料の流量のばらつきを抑制することができる。 As described above, according to the fuel injection device 1 according to Embodiment 1 of the present invention, the fuel that has passed through the valve seat fuel passage 711 is introduced into the portion of the injection plate 73 on the valve seat 71 side. A fuel injection portion 732 is formed, and a cylindrical injection hole extending along the central axis O and penetrating the injection plate 73 in a portion of the injection plate 73 farther from the central axis O of the valve seat 71 than the fuel introduction portion 732. 731 is formed, and a pair of fuel passages 733 that connect the fuel introduction portion 732 and the cylindrical injection hole 731 are formed in the injection plate 73, and a pair of fuel passages 733 are formed on the inner peripheral surface of the cylindrical injection hole 731. The first turning opening 734a communicated with the first fuel passage 733a, which is one of the fuel passages 733, and the other fuel passage 7 of the pair of fuel passages 733. 3, a second turning opening 734 b communicating with the second fuel passage 733 b is formed, and the first turning opening 734 a is one side in the circumferential direction and one side in the radial direction in the cylindrical injection hole 731. Since the second swirl opening 734b is disposed on the other side in the circumferential direction and on the other side in the radial direction in the cylindrical injection hole 731, the second swirl opening 734b is disposed without the vortex swirl chamber 81. The fuel swirled from the cylindrical injection hole 731 can be injected. Thereby, the position shift between the center of the vortex swirl chamber 81 and the center of the injection hole does not occur. As a result, variation in the flow rate of fuel injected from the cylindrical injection hole 731 can be suppressed.
 また、一対の燃料導入部732が周方向に離れて配置され、第1燃料通路733aが、一対の燃料導入部732における一方の燃料導入部732と筒状噴射孔731とを繋ぎ、第2燃料通路733bが、一対の燃料導入部732における他方の燃料導入部732と筒状噴射孔731とを繋ぐので、筒状噴射孔731の配置される位置をより自由に決めることができる。 In addition, the pair of fuel introduction portions 732 are disposed apart from each other in the circumferential direction, and the first fuel passage 733a connects one fuel introduction portion 732 and the cylindrical injection hole 731 in the pair of fuel introduction portions 732 to provide the second fuel. Since the passage 733b connects the other fuel introduction part 732 and the cylindrical injection hole 731 in the pair of fuel introduction parts 732, the position where the cylindrical injection hole 731 is arranged can be determined more freely.
 実施の形態2.
 図8はこの発明の実施の形態2に係る燃料噴射装置の噴射プレートの要部を示す平面図である。実施の形態2に係る燃料噴射装置1では、筒状噴射孔731、第1旋回用開口部734aおよび第2旋回用開口部734bの形状は、第1旋回用開口部734aの幅方向寸法をW1とし、第2旋回用開口部734bの幅方向寸法をW2とし、筒状噴射孔731の直径寸法をDとした場合に、W1/D≦0.6、W2/D≦0.6を満たすようになっている。その他の構成は、実施の形態1と同様である。
Embodiment 2. FIG.
FIG. 8 is a plan view showing a main part of an injection plate of a fuel injection device according to Embodiment 2 of the present invention. In the fuel injection device 1 according to Embodiment 2, the shape of the cylindrical injection hole 731, the first turning opening 734a, and the second turning opening 734b is the width dimension of the first turning opening 734a. 1, and the width dimension of the second pivot opening 734b and W 2, the diameter of the tubular injection hole 731 in the case of the D, W 1 /D≦0.6,W 2 / D ≦ 0. 6 is satisfied. Other configurations are the same as those in the first embodiment.
 図9は図8の筒状噴射孔731の直径寸法Dに対する第1旋回用開口部734aの幅方向寸法W1の比、および、筒状噴射孔731の直径寸法Dに対する第2旋回用開口部734bの幅方向寸法W1の比と噴射プレート73から噴射される燃料の噴霧角との関係を示すグラフである。噴霧角が大きくなるにつれて燃料の微粒化が促進される。図9に示すように、W1/D≦0.6、W2/D≦0.6を満たす場合には、旋回された燃料が傘状に噴霧される。これは、第1旋回用開口部734aの幅方向寸法W1および第2旋回用開口部734bの幅方向寸法W2が、筒状噴射孔731の直径寸法Dに対して十分に小さいので、筒状噴射孔731に導入された燃料の筒状噴射孔731における水平方向の流速が大きくなり、燃料の角運動量が増大することで強い旋回力が維持されるからである。 Figure 9 is a width dimension W 1 of the ratio of the first turning opening 734a to the diameter dimension D of the tubular injection hole 731 of FIG. 8, and the second turning opening to the diameter dimension D of the tubular injection hole 731 is a graph showing the relationship between the spray angle of the fuel injected from the width dimension W 1 of the ratio between the injection plate 73 of 734b. As the spray angle increases, atomization of fuel is promoted. As shown in FIG. 9, when W 1 /D≦0.6 and W 2 /D≦0.6 are satisfied, the swirled fuel is sprayed in an umbrella shape. This is because the widthwise dimension W 1 of the first turning opening 734 a and the widthwise dimension W 2 of the second turning opening 734 b are sufficiently smaller than the diameter D of the cylindrical injection hole 731. This is because the horizontal flow velocity of the fuel introduced into the cylindrical injection hole 731 in the cylindrical injection hole 731 increases and the angular momentum of the fuel increases, so that a strong turning force is maintained.
 以上説明したように、この発明の実施の形態2に係る燃料噴射装置1によれば、第1旋回用開口部734aの幅方向寸法をW1とし、第2旋回用開口部734bの幅方向寸法をW2とし、筒状噴射孔731の直径寸法をDとした場合に、W1/D≦0.6、W2/D≦0.6を満たすので、任意の噴霧角に調整された燃料の噴霧を形成することができる。その結果、噴霧された燃料同士が干渉による微粒化の抑制を防ぐことができる。 As described above, according to the fuel injection device 1 according to a second embodiment of the present invention, the width dimension of the first turning opening 734a and W 1, the width dimension of the second pivot opening 734b Is W 2 and the diameter of the cylindrical injection hole 731 is D, W 1 /D≦0.6 and W 2 /D≦0.6 are satisfied. Therefore, the fuel adjusted to an arbitrary spray angle A spray can be formed. As a result, the atomized fuel can be prevented from being atomized due to interference.
 実施の形態3.
 図10はこの発明の実施の形態3に係る燃料噴射装置の噴射プレートの要部を示す平面図である。実施の形態3に係る燃料噴射装置1では、中心軸線Oに沿って視た場合に、第1旋回用開口部734aにおける第1燃料通路733aの中心線Laと交差する部分の接線Lbと、第1燃料通路733aの中心線Laにおける第1旋回用開口部734aと交差する部分との間の成す角度θ1が90度以下となっている。
Embodiment 3 FIG.
FIG. 10 is a plan view showing a main part of an injection plate of a fuel injection device according to Embodiment 3 of the present invention. In the fuel injection device 1 according to the third embodiment, when viewed along the central axis O, and the tangent line L b of the intersection with the center line L a of the first fuel passage 733a in the first swivel opening 734a , the angle theta 1 which forms between the portion intersecting with the first turning opening 734a at the center line L a of the first fuel passage 733a is less than or equal to 90 degrees.
 角度θ1が90度以下となっているので、第1旋回用開口部734aであって中心軸線Oからより離れた部分を通る燃料の流れは、第1旋回用開口部734aであって中心軸線Oにより近い部分を通る燃料の流れよりも抑制される。これにより、第1旋回用開口部734aを通る燃料の流れAは、筒状噴射孔731における中心Cから離れた部分に導入される。その結果、多量の燃料が筒状噴射孔731の内周面に沿って流れ、燃料の強い旋回力が維持される。その他の構成は、実施の形態1または実施の形態2と同様である。 Since the angle θ 1 is 90 degrees or less, the flow of fuel passing through the first turning opening 734a and a portion further away from the central axis O is the first turning opening 734a and the central axis. The flow of fuel through the portion closer to O is suppressed. As a result, the fuel flow A passing through the first turning opening 734a is introduced into a portion of the cylindrical injection hole 731 away from the center C. As a result, a large amount of fuel flows along the inner peripheral surface of the cylindrical injection hole 731 and the strong turning force of the fuel is maintained. Other configurations are the same as those in the first or second embodiment.
 以上説明したように、この発明の実施の形態3に係る燃料噴射装置1によれば、中心軸線Oに沿って視た場合に、第1旋回用開口部734aにおける第1燃料通路733aの中心線Laと交差する部分の接線Lbと、第1燃料通路733aの中心線Laにおける第1旋回用開口部734aと交差する部分との間の成す角度が90度以下であるので、第1旋回用開口部734aを通る燃料の流れAは、筒状噴射孔731における中心Cから離れた部分に導入される。これにより、多量の燃料が筒状噴射孔731の内周面に沿って流れ、燃料の強い旋回力が維持される。したがって、筒状噴射孔731に対して、燃料通路を曲げて配置しなければならない場合であっても、燃料の安定した旋回流を発生させることができる。 As described above, according to the fuel injection device 1 according to Embodiment 3 of the present invention, when viewed along the central axis O, the center line of the first fuel passage 733a in the first turning opening 734a. the tangent L b of the intersection with L a, since the angle formed between the portion intersecting with the first turning opening 734a at the center line L a of the first fuel passage 733a is less than 90 degrees, the first The fuel flow A that passes through the turning opening 734 a is introduced into a portion of the cylindrical injection hole 731 that is away from the center C. Thereby, a large amount of fuel flows along the inner peripheral surface of the cylindrical injection hole 731, and the strong turning force of the fuel is maintained. Therefore, even if the fuel passage has to be bent with respect to the cylindrical injection hole 731, a stable swirling flow of fuel can be generated.
 実施の形態4.
 図11はこの発明の実施の形態4に係る燃料噴射装置の噴射プレートの要部を示す平面図である。実施の形態4に係る燃料噴射装置1では、第1燃料通路733aは、燃料導入部732から径方向について外側へ延びる燃料通路基部735aと、燃料通路基部735aの径方向外側端部から筒状噴射孔731まで延びる燃料通路枝部736aとを有している。第2燃料通路733bは、燃料導入部732から径方向について外側へ延びる燃料通路基部735bと、燃料通路基部735bの径方向外側端部から筒状噴射孔731まで延びる燃料通路枝部736bとを有している。燃料通路基部735aおよび燃料通路基部735bは、噴射プレート73の径方向に延びる径方向燃料通路となっている。燃料通路枝部736aおよび燃料通路枝部736bは、噴射プレート73の周方向に延びる周方向燃料通路となっている。
Embodiment 4 FIG.
FIG. 11 is a plan view showing a main part of an injection plate of a fuel injection device according to Embodiment 4 of the present invention. In the fuel injection device 1 according to Embodiment 4, the first fuel passage 733a includes a fuel passage base 735a extending radially outward from the fuel introduction portion 732, and a cylindrical injection from the radially outer end of the fuel passage base 735a. And a fuel passage branch 736 a extending to the hole 731. The second fuel passage 733b has a fuel passage base 735b extending radially outward from the fuel introduction portion 732, and a fuel passage branch 736b extending from the radially outer end of the fuel passage base 735b to the cylindrical injection hole 731. is doing. The fuel passage base 735 a and the fuel passage base 735 b are radial fuel passages extending in the radial direction of the injection plate 73. The fuel passage branch 736 a and the fuel passage branch 736 b are circumferential fuel passages extending in the circumferential direction of the injection plate 73.
 筒状噴射孔731は、筒状噴射孔731と第1燃料通路733aにおける燃料通路基部735aの径方向外側端部との間の距離が、筒状噴射孔731と第2燃料通路733bにおける燃料通路基部735bの径方向外側端部との間の距離よりも大きくなるように配置されている。つまり、筒状噴射孔731は、第1燃料通路733aにおける燃料通路基部735aと第2燃料通路733bにおける燃料通路基部735bとの間の中心から周方向に角度θ2だけ第2燃料通路733bにおける燃料通路基部735b側にずれて配置されている。第1燃料通路733aにおける燃料通路枝部736aの長さ寸法は、第2燃料通路733bにおける燃料通路枝部736bの長さ寸法よりも大きい。その他の構成は、実施の形態1~3と同様である。 The cylindrical injection hole 731 is such that the distance between the cylindrical injection hole 731 and the radially outer end of the fuel passage base 735a in the first fuel passage 733a is the fuel passage in the cylindrical injection hole 731 and the second fuel passage 733b. It arrange | positions so that it may become larger than the distance between the radial direction outer side edge parts of the base 735b. That is, the cylindrical injection hole 731 is a fuel in the second fuel passage 733b by an angle θ 2 in the circumferential direction from the center between the fuel passage base 735a in the first fuel passage 733a and the fuel passage base 735b in the second fuel passage 733b. It is shifted to the passage base 735b side. The length dimension of the fuel passage branch 736a in the first fuel passage 733a is larger than the length dimension of the fuel passage branch 736b in the second fuel passage 733b. Other configurations are the same as those in the first to third embodiments.
 以上説明したように、この発明の実施の形態4に係る燃料噴射装置1は、第1燃料通路733aにおける燃料通路枝部736aの長さ寸法が、第2燃料通路733bにおける燃料通路枝部736bの長さ寸法よりも大きいので、第1燃料通路733aにおける燃料通路枝部736bを通る燃料を整流化することができる。これにより、第1旋回用開口部734aを通る燃料の流れAは、筒状噴射孔731における中心に近い部分に向かうことが抑制される。その結果、筒状噴射孔731の内周面に沿って燃料を流すことができ、薄く、均一な燃料の液膜を形成することができる。したがって、噴射プレート73の大きさまたは形に制限がある場合であっても、燃料の安定した旋回流を発生させることができる。 As described above, in the fuel injection device 1 according to Embodiment 4 of the present invention, the length dimension of the fuel passage branch 736a in the first fuel passage 733a is the same as that of the fuel passage branch 736b in the second fuel passage 733b. Since it is larger than the length dimension, the fuel passing through the fuel passage branch 736b in the first fuel passage 733a can be rectified. As a result, the flow A of fuel passing through the first turning opening 734a is prevented from going to the portion of the cylindrical injection hole 731 that is close to the center. As a result, the fuel can flow along the inner peripheral surface of the cylindrical injection hole 731, and a thin and uniform liquid film of fuel can be formed. Therefore, even when the size or shape of the injection plate 73 is limited, a stable swirling flow of fuel can be generated.
 実施の形態5.
 図12はこの発明の実施の形態5に係る燃料噴射装置の噴射プレートを示す平面図、図13は図12のXIII-XIII線に沿った矢視断面図である。実施の形態5に係る燃料噴射装置1では、筒状噴射孔731は、中心軸線Oに垂直な平面に対して傾斜して配置されている。言い換えれば、筒状噴射孔731は、噴射プレート73に沿った面に対して傾斜して配置されている。それぞれの筒状噴射孔731の傾斜角度θ3は、任意に設定される。筒状噴射孔731が中心軸線Oに垂直な平面に対して傾斜して配置された場合であっても、第1旋回用開口部734aおよび第2旋回用開口部734bのそれぞれから筒状噴射孔731に流入する燃料が点対称に配置されているので、燃料の旋回流は消滅することがない。その他の構成は、実施の形態1~4と同様である。
Embodiment 5 FIG.
12 is a plan view showing an injection plate of a fuel injection device according to Embodiment 5 of the present invention, and FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. In the fuel injection device 1 according to Embodiment 5, the cylindrical injection hole 731 is arranged to be inclined with respect to a plane perpendicular to the central axis O. In other words, the cylindrical injection hole 731 is inclined with respect to the surface along the injection plate 73. The inclination angle θ 3 of each cylindrical injection hole 731 is arbitrarily set. Even when the cylindrical injection hole 731 is disposed to be inclined with respect to a plane perpendicular to the central axis O, the cylindrical injection holes are formed from the first turning opening 734a and the second turning opening 734b. Since the fuel flowing into 731 is arranged point-symmetrically, the swirling flow of fuel never disappears. Other configurations are the same as those in the first to fourth embodiments.
 以上説明したように、この発明の実施の形態5に係る燃料噴射装置1によれば、筒状噴射孔731が中心軸線Oに垂直な平面に対して傾斜して配置されているので、それぞれの筒状噴射孔731から噴霧される燃料の方向を1方向だけでなく2方向などの他方向とすることができる。これにより、1つの燃料噴射装置1を用いて2つの吸気バルブに対する燃料の噴射が可能となり、また、任意の場所を狙った燃料の噴射が可能となり燃料噴射装置1の取付位置の自由度を向上させることができる。 As described above, according to the fuel injection device 1 according to the fifth embodiment of the present invention, the cylindrical injection holes 731 are arranged to be inclined with respect to the plane perpendicular to the central axis O. The direction of fuel sprayed from the cylindrical injection hole 731 can be not only one direction but also other directions such as two directions. As a result, it is possible to inject fuel to the two intake valves using one fuel injection device 1, and it is possible to inject fuel aiming at an arbitrary place, thereby improving the degree of freedom of the mounting position of the fuel injection device 1. Can be made.
 実施の形態6.
 図14はこの発明の実施の形態6に係る燃料噴射装置の噴射プレートを示す平面図である。実施の形態6に係る燃料噴射装置1では、噴射プレート73には、1つの燃料導入部732が形成されている。1つの燃料導入部732に複数の燃料通路733が連通されている。その他の構成は、実施の形態1~5と同様である。
Embodiment 6 FIG.
FIG. 14 is a plan view showing an injection plate of a fuel injection device according to Embodiment 6 of the present invention. In the fuel injection device 1 according to Embodiment 6, the injection plate 73 is formed with one fuel introduction portion 732. A plurality of fuel passages 733 are communicated with one fuel introduction portion 732. Other configurations are the same as those in the first to fifth embodiments.
 以上説明したように、この発明の実施の形態6に係る燃料噴射装置1によれば、噴射プレート73には、1つの燃料導入部732が形成され、1つの燃料導入部732に複数の燃料通路733が連通されているので、噴射プレート73に燃料導入部732を容易に形成することができるとともに、実施の形態1~5と同様に、燃料の流量変動が生じることなく、燃料の液滴径が均一化かつ微粒化を図ることができ、良好な燃料粒子を内燃機関に噴射することができる。 As described above, according to the fuel injection device 1 according to Embodiment 6 of the present invention, one fuel introduction portion 732 is formed in the injection plate 73, and a plurality of fuel passages are formed in one fuel introduction portion 732. Since 733 is communicated, the fuel introduction portion 732 can be easily formed in the injection plate 73, and the fuel droplet diameter can be reduced without causing the fuel flow rate fluctuation as in the first to fifth embodiments. Can be made uniform and atomized, and good fuel particles can be injected into the internal combustion engine.
 実施の形態7.
 図15はこの発明の実施の形態7に係る燃料噴射装置の噴射プレートを示す平面図である。実施の形態7に係る燃料噴射装置1では、第1燃料通路733aは、燃料導入部732から径方向について外側へ延びる燃料通路基部735aと、燃料通路基部735aの径方向外側端部から周方向に隣り合う一対の筒状噴射孔731まで延びる一対の燃料通路枝部736aとを有している。燃料通路基部735aの径方向外側端部には、中心軸線Oに沿って延びて噴射プレート73を貫通する丸穴形状の補助噴射孔75aが形成されている。燃料通路基部735aの径方向外側端部に補助噴射孔75aが形成されることによって、燃料導入部732から燃料通路基部735aを通る燃料が、燃料通路基部735aの径方向外側端部の側壁に衝突することなく、分離することができる。
Embodiment 7 FIG.
FIG. 15 is a plan view showing an injection plate of a fuel injection device according to Embodiment 7 of the present invention. In the fuel injection device 1 according to Embodiment 7, the first fuel passage 733a includes a fuel passage base portion 735a extending radially outward from the fuel introduction portion 732, and a radially outer end portion of the fuel passage base portion 735a in the circumferential direction. A pair of fuel passage branches 736 a extending to a pair of adjacent cylindrical injection holes 731. A round hole-shaped auxiliary injection hole 75 a extending along the central axis O and penetrating the injection plate 73 is formed at the radially outer end of the fuel passage base 735 a. By forming the auxiliary injection hole 75a at the radially outer end of the fuel passage base 735a, the fuel passing through the fuel passage base 735a from the fuel introduction portion 732 collides with the side wall of the radially outer end of the fuel passage base 735a. Can be separated without.
 第2燃料通路733bは、燃料導入部732から径方向について外側へ延びる燃料通路基部735bと、燃料通路基部735bの径方向外側端部から周方向に隣り合う一対の筒状噴射孔731まで延びる一対の燃料通路枝部736bとを有している。燃料通路基部735bの径方向外側端部には、中心軸線Oに沿って延びて噴射プレート73を貫通する丸穴形状の補助噴射孔75bが形成されている。燃料通路基部735bの径方向外側端部に補助噴射孔75bが形成されることによって、燃料導入部732から燃料通路基部735bを通る燃料が、燃料通路基部735bの径方向外側端部の側壁に衝突することなく、分離することができる。その他の構成は、実施の形態1~6と同様である。 The second fuel passage 733b includes a fuel passage base 735b extending radially outward from the fuel introduction portion 732, and a pair extending from a radially outer end of the fuel passage base 735b to a pair of cylindrical injection holes 731 adjacent in the circumferential direction. And a fuel passage branch 736b. A circular auxiliary injection hole 75b extending along the central axis O and penetrating the injection plate 73 is formed at the radially outer end of the fuel passage base 735b. By forming the auxiliary injection hole 75b at the radially outer end of the fuel passage base 735b, the fuel passing through the fuel passage base 735b from the fuel introduction portion 732 collides with the side wall of the radially outer end of the fuel passage base 735b. Can be separated without. Other configurations are the same as those in the first to sixth embodiments.
 以上説明したように、この発明実施の形態7に係る燃料噴射装置1によれば、第1燃料通路733aは、燃料導入部732から径方向について外側へ延びる燃料通路基部735aと、燃料通路基部735aの径方向外側端部から周方向に隣り合う一対の筒状噴射孔731まで延びる一対の燃料通路枝部736aとを有し、燃料通路基部735aの径方向外側端部には、中心軸線Oに沿って延びて噴射プレート73を貫通する丸穴形状の補助噴射孔75aが形成されているので、燃料導入部732から燃料通路基部735aを通る燃料が、燃料通路基部735aの径方向外側端部の側壁に衝突することなく、分離することができ、燃料通路枝部736aを通る燃料の整流化を図ることができる。また、補助噴射孔75aは、燃料をより遠くまで噴射することができ、指向性の高い燃料の噴霧を形成することができる。一方で、筒状噴射孔731は旋回流による傘状の燃料の噴霧を形成し薄い液膜とすることで、燃料の微粒化に優れている。両者を組み合わせることによって、例えば、吸気ポート噴射式の場合、補助噴射孔75aから吸気弁の頂面を狙った噴射をすると同時に、筒状噴射孔731から放たれた傘状噴霧がそれに追従することにより、傘状噴霧も指向性のある噴霧にすることができる。さらに、燃料導入部732から第1燃料通路733aへは、燃料の流れが中心軸線Oに沿った方向から中心軸線Oに垂直な面に沿った方向へと急激に進行方向が変化するので燃料の流れに乱れが生じる。流れに乱れが生じた燃料が補助噴射孔75aから噴射される。したがって、噴射された燃料は、乱れにより液膜の分裂を促進させ、微粒化が良好な燃料粒子を作り出すことができる。 As described above, according to the fuel injection device 1 according to Embodiment 7 of the present invention, the first fuel passage 733a includes the fuel passage base 735a extending outward in the radial direction from the fuel introduction portion 732, and the fuel passage base 735a. A pair of fuel passage branches 736a extending from a radially outer end portion of the fuel passage to a pair of cylindrical injection holes 731 adjacent in the circumferential direction. A radially outer end portion of the fuel passage base portion 735a has a central axis O. Since the auxiliary injection hole 75a having a round hole shape extending along the injection plate 73 and passing through the injection plate 73 is formed, the fuel passing from the fuel introduction part 732 through the fuel passage base part 735a to the radially outer end of the fuel passage base part 735a. Separation can be performed without colliding with the side wall, and the fuel flowing through the fuel passage branch 736a can be rectified. Further, the auxiliary injection holes 75a can inject the fuel farther and can form fuel spray with high directivity. On the other hand, the cylindrical injection hole 731 is excellent in atomization of fuel by forming a spray of umbrella-like fuel by a swirl flow to form a thin liquid film. By combining the two, for example, in the case of the intake port injection type, the injection is aimed at the top surface of the intake valve from the auxiliary injection hole 75a, and at the same time, the umbrella spray emitted from the cylindrical injection hole 731 follows it. Accordingly, the umbrella-shaped spray can be a directional spray. Furthermore, since the fuel flow from the fuel introduction part 732 to the first fuel passage 733a rapidly changes in the direction of fuel flow from the direction along the central axis O to the direction along the plane perpendicular to the central axis O, Disturbances occur in the flow. The fuel in which the flow is disturbed is injected from the auxiliary injection hole 75a. Therefore, the injected fuel can promote the splitting of the liquid film due to the turbulence and produce fuel particles with good atomization.
 なお、上記実施の形態7では、補助噴射孔75a、75bが中心軸線Oに沿って延びて噴射プレート73を貫通する構成について説明したが、補助噴射孔75a、75bが中心軸線Oに垂直な面に対して傾斜して噴射プレート73を貫通する構成であってもよい。 In the seventh embodiment, the auxiliary injection holes 75a and 75b extend along the central axis O and penetrate the injection plate 73. However, the auxiliary injection holes 75a and 75b are surfaces perpendicular to the central axis O. The structure which inclines with respect to and penetrates the injection plate 73 may be sufficient.
 また、上記実施の形態7では、補助噴射孔75a、75bが丸穴形状である構成について説明したが、例えば、図16に示すように、補助噴射孔76a、76bが周方向に延びた円弧状のスリット形状であってもよく、また、図17に示すように、補助噴射孔77a、77bが周方向に延びたストレート状のスリット形状であってもよい。 Moreover, in the said Embodiment 7, although the auxiliary | assistant injection hole 75a, 75b demonstrated the structure which is a round hole shape, as shown in FIG. 16, for example, the circular arc shape where the auxiliary injection holes 76a, 76b extended in the circumferential direction. Further, as shown in FIG. 17, the auxiliary injection holes 77a and 77b may have a straight slit shape extending in the circumferential direction.
 また、各上記実施の形態では、筒状噴射孔731の数が4個である構成について説明したが、筒状噴射孔731の数が4個以外であってもよい。 Further, in each of the above embodiments, the configuration in which the number of the cylindrical injection holes 731 is four has been described, but the number of the cylindrical injection holes 731 may be other than four.

Claims (11)

  1.  噴射プレートを介して燃料を内燃機関に噴射する燃料噴射装置であって、
     前記噴射プレートは、前記内燃機関に対向する第1表面と前記第1表面の裏面である第2表面とを備えたプレート状部材であり、
     前記第2表面に前記燃料を導入する燃料導入部と、
     前記燃料導入部に導入された前記燃料を前記第1表面の側へ噴射する複数の筒状噴射孔と、
     前記燃料導入部に導入された前記燃料を前記第2表面で前記複数の筒状噴射孔へ分配する複数の分配流路と
     を備え、
     前記複数の分配流路のうちの第1分配流路は、前記燃料導入部と前記複数の筒状噴射孔のうちの隣接する第1筒状噴射孔および第2筒状噴射孔とに接続されており、
     前記複数の分配流路のうちの前記第1分配流路に隣接する第2分配流路は、前記燃料導入部と前記複数の筒状噴射孔のうちの隣接する前記第2筒状噴射孔および第3筒状噴射孔とに接続されており、
     前記複数の分配流路は、分配された前記燃料を前記複数の筒状噴射孔内で旋回させる燃料噴射装置。
    A fuel injection device for injecting fuel into an internal combustion engine via an injection plate,
    The injection plate is a plate-like member having a first surface facing the internal combustion engine and a second surface that is the back surface of the first surface,
    A fuel introduction part for introducing the fuel into the second surface;
    A plurality of cylindrical injection holes for injecting the fuel introduced into the fuel introduction portion toward the first surface;
    A plurality of distribution passages for distributing the fuel introduced into the fuel introduction portion to the plurality of cylindrical injection holes on the second surface;
    A first distribution channel of the plurality of distribution channels is connected to the fuel introduction portion and the adjacent first and second cylindrical injection holes of the plurality of cylindrical injection holes. And
    The second distribution channel adjacent to the first distribution channel among the plurality of distribution channels is the second cylindrical injection hole adjacent to the fuel introduction part and the plurality of cylindrical injection holes. Connected to the third cylindrical injection hole,
    The plurality of distribution passages is a fuel injection device for rotating the distributed fuel in the plurality of cylindrical injection holes.
  2.  前記第1分配流路と前記第2筒状噴射孔との接続部位および前記第2分配流路と前記第2筒状噴射孔との接続部位は、前記第2筒状噴射孔の中心に対して点対称に配置されている請求項1に記載の燃料噴射装置。 The connection portion between the first distribution flow path and the second cylindrical injection hole and the connection portion between the second distribution flow path and the second cylindrical injection hole are located with respect to the center of the second cylindrical injection hole. The fuel injection device according to claim 1, wherein the fuel injection device is arranged point-symmetrically.
  3.  前記噴射プレートは、円状の部材であり、
     前記燃料導入部は、前記噴射プレートに垂直な方向から視た場合に前記噴射プレートの中央に配置されており、
     前記複数の分配流路は、前記燃料導入部に対して点対称に配置されている請求項1または請求項2に記載の燃料噴射装置。
    The injection plate is a circular member,
    The fuel introduction part is disposed at the center of the injection plate when viewed from a direction perpendicular to the injection plate,
    The fuel injection device according to claim 1, wherein the plurality of distribution passages are arranged point-symmetrically with respect to the fuel introduction portion.
  4.  前記複数の分配流路のそれぞれは、前記噴射プレートの径方向に延びる径方向燃料通路と、前記噴射プレートの周方向に延びる周方向燃料通路とを備え、
     前記周方向燃料通路は、前記複数の筒状噴射孔のうちの隣接する2個の前記筒状噴射孔に接続され、
     前記径方向燃料通路は、前記燃料導入部に接続されている請求項3に記載の燃料噴射装置。
    Each of the plurality of distribution channels includes a radial fuel passage extending in a radial direction of the injection plate, and a circumferential fuel passage extending in a circumferential direction of the injection plate,
    The circumferential fuel passage is connected to two adjacent cylindrical injection holes of the plurality of cylindrical injection holes,
    The fuel injection device according to claim 3, wherein the radial fuel passage is connected to the fuel introduction portion.
  5.  前記第2筒状噴射孔は、前記第1分配流路と前記第2筒状噴射孔とによって形成される接続部位である第1旋回用開口部と、前記第2分配流路と前記第2筒状噴射孔とによって形成される接続部位である第2旋回用開口部とを有し、
     前記第1旋回用開口部の幅方向寸法をW1とし、前記第2旋回用開口部の幅方向寸法をW2とし、前記第2筒状噴射孔の直径寸法をDとした場合に、W1/D≦0.6、W2/D≦0.6を満たす請求項1から請求項4までの何れか一項に記載の燃料噴射装置。
    The second cylindrical injection hole includes a first turning opening that is a connection portion formed by the first distribution flow path and the second cylindrical injection hole; the second distribution flow path; and the second distribution flow path. A second turning opening that is a connecting portion formed by the cylindrical injection hole,
    The widthwise dimension of the first pivot opening and W 1, the width dimension of the second pivot opening and W 2, the diameter of the second cylindrical injection holes when the D, W fuel injection device according to any one of claims 1 satisfying 1 /D≦0.6,W 2 /D≦0.6 to claim 4.
  6.  前記第2筒状噴射孔は、前記第1分配流路と前記第2筒状噴射孔とによって形成される接続部位である第1旋回用開口部と、前記第2分配流路と前記第2筒状噴射孔とによって形成される接続部位である第2旋回用開口部とを有し、
     前記噴射プレートに垂直な方向から視た場合に、前記第1旋回用開口部における前記第1分配流路の中心線と交差する部分の接線と、前記第1分配流路の中心線における前記第1旋回用開口部と交差する部分との間の成す角度が90度以下である請求項1から請求項5までの何れか一項に記載の燃料噴射装置。
    The second cylindrical injection hole includes a first turning opening that is a connection portion formed by the first distribution flow path and the second cylindrical injection hole; the second distribution flow path; and the second distribution flow path. A second turning opening that is a connecting portion formed by the cylindrical injection hole,
    When viewed from a direction perpendicular to the injection plate, a tangent of a portion intersecting a center line of the first distribution flow path in the first turning opening and the first line in the center line of the first distribution flow path. The fuel injection device according to any one of claims 1 to 5, wherein an angle formed between the one turning opening and the intersecting portion is 90 degrees or less.
  7.  前記第1分配流路は、前記燃料導入部から前記噴射プレートの径方向について外側へ延びる燃料通路基部と、前記燃料通路基部の径方向外側端部から前記第2筒状噴射孔まで延びる燃料通路枝部とを有し、
     前記第2分配流路は、前記燃料導入部から前記径方向について外側へ延びる燃料通路基部と、前記燃料通路基部の径方向外側端部から前記第2筒状噴射孔まで延びる燃料通路枝部とを有し、
     前記第2筒状噴射孔は、前記第2筒状噴射孔と前記第1分配流路における前記燃料通路基部の径方向外側端部との間の距離が、前記第2筒状噴射孔と前記第2分配流路における前記燃料通路基部の径方向外側端部との間の距離よりも大きくなるように配置され、
     前記第1分配流路における前記燃料通路枝部の長さ寸法は、前記第2分配流路における前記燃料通路枝部の長さ寸法よりも大きい請求項1から請求項6までの何れか一項に記載の燃料噴射装置。
    The first distribution channel includes a fuel passage base extending outward from the fuel introduction portion in the radial direction of the injection plate, and a fuel passage extending from a radially outer end of the fuel passage base to the second cylindrical injection hole. A branch,
    The second distribution flow path includes a fuel passage base extending outward from the fuel introduction portion in the radial direction, and a fuel passage branch extending from a radially outer end of the fuel passage base to the second cylindrical injection hole. Have
    The second cylindrical injection hole has a distance between the second cylindrical injection hole and the radial outer end of the fuel passage base in the first distribution flow path. Arranged to be larger than the distance between the radially outer end of the fuel passage base in the second distribution channel;
    7. The length dimension of the fuel passage branch in the first distribution flow path is larger than the length dimension of the fuel passage branch in the second distribution flow path. The fuel injection device described in 1.
  8.  前記第2筒状噴射孔は、前記噴射プレートに沿った面に対して傾斜して配置されている請求項1から請求項7までの何れか一項に記載の燃料噴射装置。 The fuel injection device according to any one of claims 1 to 7, wherein the second cylindrical injection hole is disposed to be inclined with respect to a surface along the injection plate.
  9.  一対の前記燃料導入部が前記噴射プレートの周方向に離れて配置され、
     前記第1分配流路は、一対の前記燃料導入部における一方の前記燃料導入部と前記第2筒状噴射孔とを繋ぎ、
     前記第2分配流路は、一対の前記燃料導入部における他方の前記燃料導入部と前記第2筒状噴射孔とを繋ぐ請求項1から請求項8までの何れか一項に記載の燃料噴射装置。
    A pair of the fuel introduction parts are arranged apart in the circumferential direction of the injection plate,
    The first distribution flow path connects one of the fuel introduction portions of the pair of fuel introduction portions and the second cylindrical injection hole,
    The fuel injection according to any one of claims 1 to 8, wherein the second distribution channel connects the other fuel introduction part of the pair of fuel introduction parts to the second cylindrical injection hole. apparatus.
  10.  前記分配流路は、前記燃料導入部から前記噴射プレートの径方向について外側へ延びる燃料通路基部と、前記燃料通路基部の径方向外側端部から前記噴射プレートの周方向に隣り合う一対の前記筒状噴射孔まで延びる一対の燃料通路枝部とを有し、
     前記燃料通路基部の径方向外側端部には、前記噴射プレートを貫通する丸穴形状または周方向に延びたスリット形状の補助噴射孔が形成されている請求項1から請求項9までの何れか一項に記載の燃料噴射装置。
    The distribution channel includes a fuel passage base extending outward in the radial direction of the injection plate from the fuel introduction portion, and a pair of cylinders adjacent in the circumferential direction of the injection plate from a radially outer end of the fuel passage base. A pair of fuel passage branches extending to the injection hole,
    10. The auxiliary injection hole having a round hole shape penetrating the injection plate or a slit shape extending in the circumferential direction is formed at a radially outer end portion of the fuel passage base portion. The fuel injection device according to one item.
  11.  内燃機関へ噴射される燃料が仲介される噴射プレートであって、
     前記内燃機関に対向する第1表面と、
     前記第1表面の裏面である第2表面と、
     前記第2表面に設けられ、前記燃料を導入する燃料導入部と、
     前記燃料導入部に導入された前記燃料を前記第1表面の側へ噴射する複数の筒状噴射孔と、
     前記第2表面に設けられ、前記燃料導入部に導入された前記燃料を前記複数の筒状噴射孔へ分配する複数の分配流路と
     を備え、
     前記複数の分配流路のうちの第1分配流路は、前記燃料導入部と前記複数の筒状噴射孔のうちの隣接する第1筒状噴射孔および第2筒状噴射孔とに接続されており、
     前記複数の分配流路のうちの前記第1分配流路に隣接する第2分配流路は、前記燃料導入部と前記複数の筒状噴射孔のうちの隣接する前記第2筒状噴射孔および第3筒状噴射孔とに接続されており、
     前記複数の分配流路は、分配された前記燃料が前記複数の筒状噴射孔内で旋回させる噴射プレート。
    An injection plate through which fuel injected into the internal combustion engine is mediated;
    A first surface facing the internal combustion engine;
    A second surface which is a back surface of the first surface;
    A fuel introduction part provided on the second surface for introducing the fuel;
    A plurality of cylindrical injection holes for injecting the fuel introduced into the fuel introduction portion toward the first surface;
    A plurality of distribution passages provided on the second surface and distributing the fuel introduced into the fuel introduction portion to the plurality of cylindrical injection holes;
    A first distribution channel of the plurality of distribution channels is connected to the fuel introduction portion and the adjacent first and second cylindrical injection holes of the plurality of cylindrical injection holes. And
    The second distribution channel adjacent to the first distribution channel among the plurality of distribution channels is the second cylindrical injection hole adjacent to the fuel introduction part and the plurality of cylindrical injection holes. Connected to the third cylindrical injection hole,
    The plurality of distribution passages are injection plates that allow the distributed fuel to swirl within the plurality of cylindrical injection holes.
PCT/JP2016/064893 2015-12-28 2016-05-19 Fuel injection device and injection plate WO2017115477A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016561400A JP6180659B1 (en) 2015-12-28 2016-05-19 Fuel injection device and injection plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-255870 2015-12-28
JP2015255870 2015-12-28

Publications (1)

Publication Number Publication Date
WO2017115477A1 true WO2017115477A1 (en) 2017-07-06

Family

ID=59225099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/064893 WO2017115477A1 (en) 2015-12-28 2016-05-19 Fuel injection device and injection plate

Country Status (2)

Country Link
JP (1) JP6180659B1 (en)
WO (1) WO2017115477A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507240A (en) * 1994-10-07 1998-07-14 シーメンス オートモーティヴ コーポレイション Multi-disc swirl flow atomizer for fuel injectors
JP2004176690A (en) * 2002-11-29 2004-06-24 Denso Corp Fuel injection device
JP2004340121A (en) * 2003-04-25 2004-12-02 Toyota Motor Corp Fuel injection valve
JP2008231928A (en) * 2007-03-16 2008-10-02 Mitsubishi Electric Corp Fuel injection valve
JP2011190728A (en) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp Fuel injection valve
JP2015227656A (en) * 2014-05-09 2015-12-17 株式会社エンプラス Fuel injector nozzle plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10507240A (en) * 1994-10-07 1998-07-14 シーメンス オートモーティヴ コーポレイション Multi-disc swirl flow atomizer for fuel injectors
JP2004176690A (en) * 2002-11-29 2004-06-24 Denso Corp Fuel injection device
JP2004340121A (en) * 2003-04-25 2004-12-02 Toyota Motor Corp Fuel injection valve
JP2008231928A (en) * 2007-03-16 2008-10-02 Mitsubishi Electric Corp Fuel injection valve
JP2011190728A (en) * 2010-03-12 2011-09-29 Mitsubishi Electric Corp Fuel injection valve
JP2015227656A (en) * 2014-05-09 2015-12-17 株式会社エンプラス Fuel injector nozzle plate

Also Published As

Publication number Publication date
JPWO2017115477A1 (en) 2018-01-11
JP6180659B1 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
US7306172B2 (en) Fluidic flow controller orifice disc with dual-flow divider for fuel injector
JP5875443B2 (en) Fuel injection valve
US6769625B2 (en) Spray pattern control with non-angled orifices in fuel injection metering disc
US6966505B2 (en) Spray control with non-angled orifices in fuel injection metering disc and methods
JP2004076723A (en) Fuel injection device
US7159800B2 (en) Spray pattern control with angular orientation in fuel injector and method
US6929197B2 (en) Generally circular spray pattern control with non-angled orifices in fuel injection metering disc and method
KR20090040918A (en) Fuel injection valve
US6845930B2 (en) Spray pattern and spray distribution control with non-angled orifices in fuel injection metering disc and methods
WO2006095706A1 (en) Fuel injection valve
JP6808356B2 (en) Fuel injection valve
JPH11200998A (en) Fluid injection nozzle
JP6180659B1 (en) Fuel injection device and injection plate
JP2015078603A (en) Fuel injection valve
JP6745986B2 (en) Fuel injection valve
JP6448814B2 (en) Fuel injection valve
JP6545333B2 (en) Fuel injection valve and injection hole plate
JP6141350B2 (en) Fuel injection valve
WO2021075041A1 (en) Fuel injection valve
JP2021046813A (en) Fuel injection valve
WO2020255909A1 (en) Fuel injection valve
JP7031020B2 (en) Fuel injection device
JP6644164B2 (en) Fuel injection valve and method of adjusting injection flow rate
JP2003201937A (en) Fuel injection device
JP2017057739A (en) Fuel injection valve

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016561400

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16881457

Country of ref document: EP

Kind code of ref document: A1