WO2017110718A1 - Clinical thermometer - Google Patents

Clinical thermometer Download PDF

Info

Publication number
WO2017110718A1
WO2017110718A1 PCT/JP2016/087729 JP2016087729W WO2017110718A1 WO 2017110718 A1 WO2017110718 A1 WO 2017110718A1 JP 2016087729 W JP2016087729 W JP 2016087729W WO 2017110718 A1 WO2017110718 A1 WO 2017110718A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
user
main body
thermometer
attached
Prior art date
Application number
PCT/JP2016/087729
Other languages
French (fr)
Japanese (ja)
Inventor
亨 志牟田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017558105A priority Critical patent/JP6566047B2/en
Publication of WO2017110718A1 publication Critical patent/WO2017110718A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements

Definitions

  • the present invention relates to a thermometer, and more particularly to a thermometer that measures a body temperature from the temperature of a person's breath.
  • Patent Document 1 discloses a mask-type respiratory sensor that detects respiratory air in the nose or mouth.
  • This mask-type respiratory sensor includes a substantially funnel-shaped support body that covers the nose and mouth and has a hole at the tip, and a mooring member that holds the support body on the face, and is provided between the mouth or nose and the hole.
  • a passage through which breathing air flows is formed inside the support. This passage is separated by a partition wall into a first passage through which breathing air from the nose passes and a second passage through which breathing air from the mouth passes.
  • a nasal breath sensor composed of a thermistor for detecting the temperature of breathing air is disposed in the first passage, and a breath sensor composed of the thermistor is disposed in the second passage as well. Can be detected independently.
  • the body temperature measurement value may be inaccurate because the structure is easily affected by the outside air temperature.
  • exhaled air is structurally easy to diffuse and the expiratory temperature immediately approaches the ambient (outside air) temperature, so there is a possibility that the body temperature cannot be measured accurately.
  • the present invention was made to solve the above problems, and in a thermometer that measures body temperature from the temperature of exhalation, it is possible to measure body temperature more easily and accurately without hindering the activity of the measurer.
  • the aim is to provide a possible thermometer.
  • thermometer is attached to the body part of the mask covering the user's mouth and nostril during use and the temperature of the breath exhaled from the user's mouth and / or nostril during use.
  • a temperature detecting means for outputting a detected signal a heat insulating member having heat insulation attached outside the temperature detecting means of the main body, and a user's body temperature in accordance with the detection signal output from the temperature detecting means.
  • a body temperature acquisition means is
  • the temperature detection means for outputting a detection signal corresponding to the temperature of the breath exhaled from the user's mouth and / or nostril to the mask-shaped main body covering the user's mouth and nostril.
  • a heat insulating member having heat insulating properties is attached to the outer side (surface side / outside air side) than the temperature detecting means. Therefore, it is difficult to be influenced by the outside air, and the body temperature in the mask shape is maintained at a temperature close to exhalation, so that an accurate body temperature can be measured from the exhalation.
  • the main body is formed in a mask shape, the main body (thermometer) can be easily attached to the head (face), and the activity of the user (measurer) wearing the thermometer (for example, daily life) Etc.). As a result, the body temperature can be measured more easily and accurately without obstructing the activity of the measurer.
  • the body temperature acquisition unit estimates the body temperature of the user based on the output value and the change rate of the detection signal output from the temperature detection unit.
  • the output of the temperature detection means may not reach the actual expiration temperature.
  • the user's body temperature is estimated based on the output value of the detection signal output from the temperature detection means and the rate of change thereof, even in the above-described case, it is more accurate. It is possible to measure (estimate) body temperature.
  • the temperature detection means includes a plurality of temperature sensors attached to the main body so as to be disposed in a range from the front of the user's nostril to the front of the upper lip at the time of use. It is preferable that the acquisition unit estimates the body temperature of the user based on the output values and the change rates of the detection signals of the plurality of temperature sensors.
  • the temperature detecting means includes a plurality of temperature sensors attached to the main body so as to be arranged in a range from the front of the user's nostril to the front of the upper lip when in use (wearing).
  • the body temperature of the user is estimated based on the output value of the detection signal of each of the plurality of temperature sensors and the rate of change thereof. Therefore, it is possible to accurately measure (estimate) the body temperature regardless of whether the user breathes by nasal breathing or mouth breathing.
  • thermometer according to the present invention further includes a seal member that is attached to the main body so as to be disposed at least in contact with the user's nose during use, and reduces leakage of breath from the upper edge of the main body. It is preferable to provide.
  • the main body unit is attached to the main body unit so as to be disposed at least in a range in contact with the user's nose (that is, so as to fill a gap between the user's face and the main body unit).
  • the seal member for reducing the leakage of exhaled air from the upper edge portion is provided, the exhaled gas can efficiently reach the temperature detecting means (that is, the amount of exhaled gas reaching the temperature detecting means can be increased). Yes, it becomes possible to measure body temperature more accurately.
  • thermometer according to the present invention further includes a positioning member that is attached to the main body portion and positions the mounting position of the main body portion by fitting the user's nasal head during use.
  • the wearing position can be made constant, that is, the variation in the position of the temperature detecting means with respect to the mouth and nostril can be reduced, and the variation in the body temperature measurement value can be reduced.
  • thermometer according to the present invention further includes a respiration rate acquisition unit that estimates the respiration rate of the user based on the output fluctuation of the detection signal output from the temperature detection unit.
  • the apparatus further includes a respiration rate acquisition means for estimating the respiration rate of the user based on the output fluctuation of the detection signal output from the temperature detection means, and breathes from the periodic output fluctuation of the temperature detection means due to expiration. Since the number can be estimated, it is possible to measure (estimate) the respiratory rate in addition to the body temperature.
  • thermometer that measures body temperature from the temperature of exhalation, it becomes possible to measure body temperature more easily and accurately without hindering the activity of the measurer.
  • thermometer which concerns on 1st Embodiment (at the time of mounting
  • block diagram which shows the structure of the body temperature arithmetic processing unit which comprises the thermometer which concerns on 1st Embodiment.
  • thermometer which concerns on the modification of 1st Embodiment (at the time of mounting
  • FIG. 1 is a diagram showing the configuration of the thermometer 1 (when worn).
  • FIG. 2 is a block diagram showing a configuration of the body temperature calculation processing unit 80 constituting the thermometer 1.
  • the thermometer 1 is a thermometer (expiratory thermometer) that measures the body temperature (the deep body temperature) by measuring the temperature of the breath by utilizing the fact that the temperature of the breath is equal to the terminal temperature of the blood in the lungs.
  • the thermometer 1 has a function of measuring body temperature more easily and accurately without obstructing the activity of the measurer.
  • thermometer 1 is mainly attached to the mask-shaped main body 10, the temperature sensors 20 ⁇ / b> A and 20 ⁇ / b> B that are attached to the main body 10 and output a detection signal corresponding to the temperature of expiration, and the temperature sensors 20 ⁇ / b> A and 20 ⁇ / b> B.
  • each component will be described in detail.
  • the main body 10 is formed in a mask shape so as to cover the user's mouth and nostril during use (wearing).
  • the main body 10 is formed of a mask substrate such as a nonwoven fabric or gauze, for example.
  • a pair of left and right ear hooks 11 (only the right ear hook 11 is shown in FIG. 1) that can be hung on the ear to fix the main body 10 to the user's face. ) Is attached.
  • Each ear hook 11 is formed in a string shape having good stretchability by using, for example, a thermoplastic synthetic resin material, and is joined to the main body 10 by welding or the like.
  • a string or a rubber string is worn around the back of the head instead of the ear hook 11 so as not to be displaced with long-time wearing or the like and to improve the adhesion to the face.
  • a continuous thermometer that is affixed to the skin of the forehead, chest, etc., with a tape or the like needs to be worn in a way that is not often done in general life, so it has a sense of incongruity and the eyes of people around you
  • wearing a mask reduces the sense of discomfort with wearing, and people wearing a mask are a sight commonly seen in the city, so the surrounding eyes are concerned It is rare to become.
  • the temperature sensor 20A and the temperature sensor 20B are attached to the inner surface (rear side) of the main body 10 and, when used (wearing), the user's mouth and A detection signal (voltage value) corresponding to the temperature of the user's breath exhaled from the nostril is output.
  • the temperature sensor 20A and the temperature sensor 20B are disposed in a range from the front of the user's nostril to the front of the upper lip (that is, a position where exhaled breath directly hits the temperature sensors 20A and 20B) during use. Is attached.
  • the number of temperature sensors is not limited to two, and may be one or three or more.
  • the temperature sensors 20A and 20B for example, a thermistor whose resistance value changes according to temperature, a resistance temperature detector, or the like can be used.
  • the temperature sensors 20A and 20B are required to have an instantaneous increase in temperature due to exhalation (high responsiveness is required), and thus it is preferable that the heat capacity be as small as possible. Therefore, a chip thermistor is preferably used as the temperature sensors 20A and 20B.
  • the temperature sensors 20A, 20B are connected to the body temperature calculation processing unit 80, and the detection signals output from the temperature sensors 20A, 20B are input to the body temperature calculation processing unit 80.
  • the heat insulating member 30 has heat insulating properties, and is attached to the outer side (surface side) than the temperature sensors 20A and 20B of the main body 10.
  • a member having a high heat insulating property for example, a foamed plastic material such as urethane foam or a fiber material such as wool is preferably used.
  • the heat insulating member 30 may be disposed between the temperature sensors 20 ⁇ / b> A and 20 ⁇ / b> B and the main body 10, or may be disposed outside the main body 10. Moreover, you may form the main-body part 10 with a heat insulation member.
  • the heat insulating member 30 is formed in a size (size) of about 6 cm ⁇ 6 cm, for example. In order to prevent exhalation as much as possible (in order to improve heat retention), it is desirable to form a larger size (10 cm ⁇ 10 cm) that is 2 cm or more around. Further, since the heat insulating member 30 needs to cover the entire temperature sensors 20A and 20B, the temperature sensors 20A and 20B are disposed at least 1 cm or more, more desirably 2 cm or more from the outer edge of the heat insulating member 30 toward the center. The
  • inhalation is relatively low temperature in order to inhale outside air
  • exhalation is relatively high temperature due to heat in the body (influence of body temperature).
  • the temperature sensors 20A and 20B change their output values in response to such temperature changes. Therefore, when the heat insulating member 30 is not provided, the output value (temperature) rises to substantially the same temperature as the body temperature during the exhalation operation, and the output value (temperature) falls to near the outside air temperature during the inhalation operation.
  • the temperature sensors 20A and 20B are covered with the heat insulating member 30, the temperature drop after the exhalation operation is suppressed, and the temperature during the inhalation operation becomes higher than the outside air temperature.
  • the seal member 40 is disposed at least at a position in contact with the user's nose during use (when worn) (that is, so as to fill a gap between the user's face and the body portion 10). 10 is attached to the upper edge of the inner surface (back surface) of the main body 10 to reduce leakage of exhaled air from the upper edge of the main body 10.
  • the sealing material 40 for example, a material in which a highly plastic deformable gel or wool is formed on a belt-like sheet is preferably used. Note that the sealing member 40 only needs to prevent the rapid exhalation of air by filling the gap between the main body 10 and the face, and has sufficient air permeability to allow the exhalation to escape slowly. May be.
  • the seal member 40 is preferably disposed at least at a location that contacts the user's nose, but may be disposed on the entire outer edge portion of the inner surface (back surface) of the mask-shaped main body portion 10.
  • the positioning member 50 is attached to the main body unit 10 and positions the mounting position of the main body unit 10 by fitting the user's nasal head during use (at the time of mounting) (that is, the nostrils of the temperature sensors 20A and 20B). And position displacement from the upper lip).
  • the positioning member 50 has a substantially annular shape, and the main body portion 10 is mounted so that the nasal head fits inside the ring.
  • the shape of the positioning member 50 is not limited to an annular shape, and may be any shape as long as the nasal head is fitted, for example, a shape obtained by cutting an upper part of a conical shape (conical frustum shape) or a cup shape. When wearing a mask, there are large individual differences in the wearing position of the mask.
  • the upper end position of the mask varies from directly under the eyes to the nose, and the lower end position of the mask varies from the top of the chin to the neck. If the fluctuation range is so large, the temperature sensors 20A and 20B are displaced from the nostrils and the mouth, and accurate body temperature cannot be measured. On the other hand, the position of the nostril and upper lip with respect to the nasal head does not vary greatly from person to person. By positioning the nasal head as a shape that fits the nasal head, the temperature sensors 20A and 20B are not greatly displaced from the nostril or mouth, and no one wears them. However, body temperature can be measured stably.
  • the temperature sensors 20A and 20B are connected to the body temperature calculation processing unit 80, and the detection signals output from the temperature sensors 20A and 20B are input to the body temperature calculation processing unit 80.
  • the body temperature calculation processing unit 80 obtains the body temperature from the detection signals output from the temperature sensors 20A and 20B.
  • the body temperature arithmetic processing unit 80 mainly includes a temperature measuring circuit 81, an arithmetic processing circuit 82, a memory 83, a thin battery 84, a wireless communication module 85, and the like.
  • the body temperature calculation processing unit 80 is placed on the main body 10 so that, for example, the lower side of the heat insulating member 30, that is, between the lower lip and the chin of the user when the main body 10 is mounted. It is preferable to attach. This is because the temperature of the body temperature calculation processing unit 80 increases due to power consumption, and it is necessary to dispose it at a position away from the temperature sensors 20A and 20B.
  • the body temperature arithmetic processing unit 80 includes an arithmetic processing circuit 82, a memory 83, a thin battery 84, a wireless communication module 85, and the like. Since the body temperature arithmetic processing unit 80 is heavier than the main body 10 and the like, If it is arranged at the upper part, the main body part 10 may hang down due to the weight of the body temperature calculation processing unit 80. Therefore, it is arranged so as to be located at the lower part of the main body part 10, preferably between the lower lip and the chin of the user. .
  • the temperature measurement circuit 81 includes, for example, an amplifier and an analog / digital (A / D) converter, amplifies analog signals input from the temperature sensors 20A and 20B, converts the signals into digital signals, and performs an arithmetic processing circuit. 82.
  • a / D analog / digital
  • the arithmetic processing circuit 82 is configured by, for example, an MCU (Micro Control Unit) or the like, and calculates the body temperature based on the outputs of the temperature sensors 20A and 20B processed by the temperature measurement circuit 81. For this reason, the arithmetic processing circuit 82 functionally includes a body temperature acquisition unit 821. In addition, the arithmetic processing circuit 82 includes a respiration rate acquisition unit 822 that calculates a respiration rate. The arithmetic processing circuit 82 is supplied with electric power from the thin battery 84 and stores the calculated body temperature information and the like in the memory 83.
  • MCU Micro Control Unit
  • the body temperature acquisition unit 821 estimates the body temperature of the user based on the output values of the detection signals output from the temperature sensors 20A and 20B and the rate of change thereof. That is, the body temperature acquisition unit 821 functions as body temperature acquisition means described in the claims. More specifically, the body temperature acquisition unit 821 calculates the body temperature using a conversion formula between the sensor output value and the temperature (body temperature). In addition, the body temperature acquisition unit 821 analyzes and calculates in real time how the temperature rises (change rate) from the start of measurement, and predicts the body temperature. Since breathing is performed at a frequency of about once every few seconds, even if the temperature of the temperature sensors 20A and 20B rises due to exhalation, the temperature immediately drops due to inspiration.
  • the heat capacities of the temperature sensors 20A and 20B are not small, a temperature drop starts due to inspiration while the temperature is rising due to exhalation, and the body temperature cannot be measured accurately. Moreover, even if the heat capacities of the temperature sensors 20A and 20B are small, if the time from expiration to inspiration is short, the temperature may start to drop before the temperature has risen completely. In that case, it is necessary to estimate the temperature when the temperature rises.
  • an estimation method there is a method of measuring and analyzing how the temperature rises (change rate) in real time, obtaining an approximate expression of the change rate, and estimating a temperature at which the change rate is 0 from the approximate expression.
  • This estimation may be performed by the body temperature acquisition unit 821 or may be performed in an external device that has transmitted data by the wireless communication module 85.
  • the body temperature acquisition unit 821 may use an average value of the output values of the temperature sensor 20A and the temperature sensor 20B, or may use a more reliable output value of the sensor. This certainty is determined by the correlation coefficient with the approximate expression of the rate of change of temperature and the level of the output temperature value.
  • the respiration rate acquisition unit 822 estimates the respiration rate of the user based on the output fluctuation of the detection signals output from the temperature sensors 20A and 20B. That is, the respiration rate acquisition unit 822 functions as a respiration rate acquisition unit described in the claims. More specifically, inhalation is usually at a relatively low temperature for inhaling outside air, and exhalation is at a relatively high temperature because it receives heat in the body (influence of body temperature). The temperature sensors 20A and 20B change their output values in response to such temperature changes. Therefore, the respiration rate acquisition unit 822 analyzes the time (cycle) of the fluctuation to obtain a respiration interval and estimates the respiration rate per minute.
  • the breathing interval may be calculated by detecting the peak (or other feature point) of the output signal and calculating the peak (or other feature point) interval, for example, one minute of data
  • the frequency analysis may be performed to obtain the frequency peak, and the average breathing interval for 1 minute may be calculated.
  • a breathing interval may be calculated using a pattern matching method or an autocorrelation method by learning a pattern of temperature fluctuation due to breathing. Respiration intervals are often irregular compared to heartbeat intervals, etc., and may be difficult to detect for each breath, and are often useful not only for breath intervals but also for average breath intervals. Therefore, it is desirable to use frequency analysis, pattern matching method or autocorrelation method.
  • Examples of the disease include, but are not limited to, asthma, pneumonia, bronchitis, COPD (obstructive pulmonary disease), sleep apnea syndrome, hyperventilation syndrome and the like.
  • COPD obstructive pulmonary disease
  • sleep apnea syndrome hyperventilation syndrome and the like.
  • the wireless communication module 85 transmits information such as acquired body temperature and respiratory rate to an external device. That is, the acquired measurement data such as body temperature and respiratory rate is transmitted to, for example, an external PC, a smartphone having a display, a portable music player, or the like via the wireless communication module 85. In that case, it is preferable to transmit data such as measurement date and time in addition to the measurement result.
  • the acquired data may be transmitted by the wireless communication module 85 in real time during measurement, or may be stored in a memory during measurement and transmitted after measurement. Examples of the wireless communication module 85 include Bluetooth (registered trademark), Wi-Fi (registered trademark), ZigBee (registered trademark), ANT (registered trademark), UWB, NFC (near field communication), and the like.
  • thermometer 1 When measuring a body temperature, a respiratory rate, etc. using the thermometer 1, first, a pair of left and right ear hooks 11 are hung on the ear, and the mask-shaped main body 10 covers the mouth and nostrils of the user. It is worn on the face. At that time, the positioning member 50 is fitted to the nasal head of the user, and the main body 10 is positioned. Further, a gap between the main body 10 and the face is filled with the seal member 40 attached to the upper edge of the inner surface of the main body 10.
  • detection signals (voltage values) corresponding to the temperature of exhalation are output from the temperature sensors 20A and 20B and read into the body temperature calculation processing unit 80.
  • the body temperature calculation processing unit 80 the body temperature of the user is estimated based on the detection signals (output values) output from the temperature sensors 20A and 20B and the rate of change thereof.
  • a user's respiration rate is estimated based on the output fluctuation
  • the estimation method of body temperature and the respiration rate is as above-mentioned, detailed description is abbreviate
  • the acquired measurement data such as the body temperature and the respiratory rate is output to the external device by the wireless communication module 85.
  • the mask-like main body portion 10 that is worn so as to cover the user's mouth and nostril is configured to receive the breath exhaled from the user's mouth and / or nostril.
  • Temperature sensors 20A and 20B that output detection signals corresponding to the temperature are attached, and a heat insulating member 30 having heat insulating properties is attached to the outside (surface side) of the temperature sensors 20A and 20B. Therefore, it is difficult to be affected by outside air, and the mask-like main body 10 is maintained at a temperature close to exhalation, whereby an accurate body temperature can be measured from the exhalation.
  • the main body part 10 is formed in a mask shape, the main body part 10 (thermometer 1) can be easily attached to the face, and the activity (for example, daily life) of the user wearing the thermometer 1 is hindered. do not do. As a result, the body temperature can be measured more easily and accurately without hindering the activity of the user.
  • the output values of the temperature sensors 20A and 20B are the actual values. Even when the expiration temperature is not reached, the body temperature can be measured (estimated) more accurately.
  • a plurality (two in the present embodiment) of temperature sensors 20A and 20B are disposed so as to be disposed in a range from the front of the user's nostril to the front of the upper lip when used (wearing). Is attached to the main body 10, and the body temperature of the user is estimated based on the output values of the detection signals of the temperature sensors 20A and 20B and the rate of change thereof. Therefore, it is possible to accurately measure (estimate) the body temperature regardless of whether the user breathes by nasal breathing or mouth breathing.
  • a seal member 40 is attached to the main body 10 and reduces leakage of exhaled air from the upper edge of the main body 10. Therefore, exhaled air can efficiently reach the temperature sensors 20A and 20B (that is, the amount of exhaled gas that reaches the temperature sensors 20A and 20B can be increased), and the body temperature can be measured more accurately. Become.
  • the positioning member 50 which is attached to the main-body part 10 and positions the mounting position of the main-body part 10 by fitting a user's nasal head at the time of use (at the time of mounting
  • the respiration rate acquisition unit 822 that estimates the respiration rate of the user based on the output fluctuation of the detection signals output from the temperature sensors 20A and 20B is provided, and the temperature sensors 20A and 20B due to respiration. Since the respiration rate can be estimated from the periodic output fluctuations, the respiration rate can be measured (estimated) in addition to the body temperature.
  • FIG. 3 is a diagram (when worn) showing the configuration of the thermometer 1B.
  • the same or equivalent components as those in the first embodiment are denoted by the same reference numerals.
  • thermometer 1B is different from the thermometer 1 according to the first embodiment described above in that it includes a heat insulating member 30B instead of the heat insulating member 30.
  • the other structure is the same as that of the thermometer 1 mentioned above, or is the same, detailed description is abbreviate
  • the air permeability deteriorates although it has some air permeability.
  • the main body 10 covered with the heat insulating member is attached, the user may feel uncomfortable, so it is desirable to form an entrance for breathing air (air).
  • Such an air inlet / outlet port is provided, for example, on the side of the heat insulating member 30B (main body portion 10B) so that the exhaled air temporarily accumulates in an area covered with the heat insulating member 30B, and the exhaled air enters the heat insulating member 30B from the inside. It is preferable to form it so that it can be pulled out to the side after hitting.
  • exhalation does not escape from the upper side or the lower side of the heat insulating member 30B (main body part 10B), but instead of coming out from the side, the exhalation does not directly escape to the outside, but strikes the heat insulating member 30B and changes its direction. It is preferable to leave behind.
  • the heat insulating member 30B is configured to guide the exhaled air exhaled from the user's nostril or mouth toward the side of the heat insulating member 30. More specifically, for example, both sides of the heat insulating member 30 ⁇ / b> B (a part of the side of the main body 10) are formed with a relatively highly breathable cloth or the like. It should be noted that a gap may be formed at a part of the portion where the side end of the heat insulating member 30B contacts the user's cheek to serve as a breathing air (air) entrance.
  • thermometer 1 similarly to the thermometer 1 according to the first embodiment described above, the body temperature can be measured more easily and accurately without obstructing the activity of the measurer.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made.
  • the output of the temperature sensors 20A and 20B is analyzed and fluctuation due to exhalation and inhalation cannot be detected, and / or when the maximum temperature does not reach a predetermined temperature close to the body temperature, it is determined as a wearing error, An alert may be issued.
  • the shape, size, material, arrangement, and the like of the heat insulating member 30 (30B), the sealing member 40, and the positioning member 50 described above are not limited to the above-described embodiment, and can be arbitrarily set.
  • a thin battery is used as the driving power source, a coin battery or a button battery may be used, or a wireless power feeding method may be used.
  • the body temperature calculation processing unit 80 has a structure that can be detached from the main body 10 (10B). Although it is necessary to discard the mask-shaped main body 10 every time it is used to prevent infection, it is costly to dispose of the body temperature calculation processing unit 80.
  • the body temperature calculation processing unit 80 is detachable from the main body 10 (10B), the body temperature calculation processing unit 80 is removed from the main body 10 (10B) after use, and only the main body 10 (10B) is discarded.
  • the body temperature calculation processing unit 80 is desirably attached to a new main body 10 (10B) and reused.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

A clinical thermometer (1) is provided with: a mask-shaped body (10) mounted so as to cover the mouth and nostrils of a user; temperature sensors (20A, 20B) attached to the body (10), the temperature sensors (20A, 20B) outputting a detection signal that corresponds to the temperature of the breath exhaled from the mouth and/or nostrils of the user; a heat-insulation member (30) attached on the side that is outward relative to the temperature sensors (20A, 20B), the heat-insulation member (30) having heat-insulation properties; a seal member (40) for reducing leakage of breath from the upper edge portion of the body (10); a positioning member (50) for positioning the mounting position of the body (10) by the tip of the nose of the user being fitted during mounting; and a body-temperature-calculation-processing unit (80) for determining the body temperature of the user in accordance with the detection signals outputted from the temperature sensors (20A, 20B).

Description

体温計Thermometer
 本発明は、体温計に関し、特に、人の呼気の温度から体温を測定する体温計に関する。 The present invention relates to a thermometer, and more particularly to a thermometer that measures a body temperature from the temperature of a person's breath.
 従来から、人の体温を測定する多種多様な技術や方法が提案されている。そのような中で、近年、測定者の活動を阻害することなく(例えば日常生活の中で)、より簡便かつ正確に体温(特に深部体温)を測定する技術が望まれている。 Conventionally, various techniques and methods for measuring a human body temperature have been proposed. Under such circumstances, in recent years, a technique for measuring body temperature (particularly deep body temperature) more easily and accurately without obstructing the activity of the measurer (for example, in daily life) has been desired.
 ここで、特許文献1には、鼻又は口の呼吸気を検出するマスク型呼吸センサが開示されている。このマスク型呼吸センサは、鼻と口を被い、先端に穴の空いた略ロート状の支持体と、この支持体を顔面に保持する係留部材とを備え、口又は鼻と穴との間で呼吸気が流通する通路が支持体の内方に形成されている。この通路は、仕切り壁により、鼻の呼吸気が通る第1の通路と、口の呼吸気が通る第2の通路とに分離されている。そして、第1の通路には呼吸気の温度を検出するサーミスタからなる鼻息センサが配置され、第2通路には同様にサーミスタからなる口息センサが配置されており、鼻と口の呼吸の状態を独立に検出できる構成となっている。 Here, Patent Document 1 discloses a mask-type respiratory sensor that detects respiratory air in the nose or mouth. This mask-type respiratory sensor includes a substantially funnel-shaped support body that covers the nose and mouth and has a hole at the tip, and a mooring member that holds the support body on the face, and is provided between the mouth or nose and the hole. A passage through which breathing air flows is formed inside the support. This passage is separated by a partition wall into a first passage through which breathing air from the nose passes and a second passage through which breathing air from the mouth passes. A nasal breath sensor composed of a thermistor for detecting the temperature of breathing air is disposed in the first passage, and a breath sensor composed of the thermistor is disposed in the second passage as well. Can be detected independently.
特開平9-262224号公報Japanese Patent Laid-Open No. 9-262224
 上述したマスク型呼吸センサを用いて、呼気の温度から体温を測定しようとした場合、外気温の影響を受けやすい構造なため、体温の測定値が不正確になるおそれがある。また、構造的に呼気が拡散しやすく、呼気温度がすぐに周囲(外気)の温度に近づくため、体温の測定を正確に行うことができないおそれがある。 If the body temperature is measured from the exhalation temperature using the mask-type respiration sensor described above, the body temperature measurement value may be inaccurate because the structure is easily affected by the outside air temperature. In addition, exhaled air is structurally easy to diffuse and the expiratory temperature immediately approaches the ambient (outside air) temperature, so there is a possibility that the body temperature cannot be measured accurately.
 本発明は、上記問題点を解消する為になされたものであり、呼気の温度から体温を測定する体温計において、測定者の活動を阻害することなく、より簡便かつ正確に体温を測定することが可能な体温計を提供することを目的とする。 The present invention was made to solve the above problems, and in a thermometer that measures body temperature from the temperature of exhalation, it is possible to measure body temperature more easily and accurately without hindering the activity of the measurer. The aim is to provide a possible thermometer.
 本発明に係る体温計は、使用時に、使用者の口及び鼻孔を覆うマスク状の本体部と、本体部に取り付けられ、使用時に、使用者の口及び/又は鼻孔から吐き出される呼気の温度に応じた検出信号を出力する温度検出手段と、本体部の温度検出手段よりも外側に取り付けられた断熱性を有する断熱部材と、温度検出手段から出力される検出信号に応じて使用者の体温を求める体温取得手段とを備えることを特徴とする。 The thermometer according to the present invention is attached to the body part of the mask covering the user's mouth and nostril during use and the temperature of the breath exhaled from the user's mouth and / or nostril during use. A temperature detecting means for outputting a detected signal, a heat insulating member having heat insulation attached outside the temperature detecting means of the main body, and a user's body temperature in accordance with the detection signal output from the temperature detecting means. And a body temperature acquisition means.
 本発明に係る体温計によれば、使用者の口及び鼻孔を覆うマスク状の本体部に、使用者の口及び/又は鼻孔から吐き出される呼気の温度に応じた検出信号を出力する温度検出手段が取り付けられるとともに、該温度検出手段よりも外側(表面側/外気側)に断熱性を有する断熱部材が取り付けられている。そのため、外気の影響を受けにくく、マスク状の本体部内が呼気に近い温度に保たれることにより、呼気から正確な体温を測定することができる。また、本体部がマスク状に形成されているため、本体部(体温計)を頭部(顔面)に容易に装着することができ、体温計を装着した使用者(測定者)の活動(例えば日常生活など)を阻害しない。その結果、測定者の活動を阻害することなく、より簡便かつ正確に体温を測定することが可能となる。 According to the thermometer according to the present invention, the temperature detection means for outputting a detection signal corresponding to the temperature of the breath exhaled from the user's mouth and / or nostril to the mask-shaped main body covering the user's mouth and nostril. In addition to being attached, a heat insulating member having heat insulating properties is attached to the outer side (surface side / outside air side) than the temperature detecting means. Therefore, it is difficult to be influenced by the outside air, and the body temperature in the mask shape is maintained at a temperature close to exhalation, so that an accurate body temperature can be measured from the exhalation. In addition, since the main body is formed in a mask shape, the main body (thermometer) can be easily attached to the head (face), and the activity of the user (measurer) wearing the thermometer (for example, daily life) Etc.). As a result, the body temperature can be measured more easily and accurately without obstructing the activity of the measurer.
 本発明に係る体温計では、上記体温取得手段が、温度検出手段から出力された検出信号の出力値と変化率とに基づいて、使用者の体温を推定することが好ましい。 In the thermometer according to the present invention, it is preferable that the body temperature acquisition unit estimates the body temperature of the user based on the output value and the change rate of the detection signal output from the temperature detection unit.
 ところで、一度の呼気を吐き出す時間は数秒程度と比較的短いため、例えば、温度検出手段の熱容量が大きかったり、温度検出手段に到達する呼気量が少なかったりした場合には、温度検出手段の出力(検出信号)が実際の呼気の温度まで達しない場合もあり得る。しかしながら、この構成によれば、温度検出手段から出力された検出信号の出力値とその変化率とに基づいて使用者の体温が推定されるため、上述したような場合であっても、より正確に体温を測定(推定)することが可能となる。 By the way, since the time to exhale once is relatively short, such as several seconds, for example, when the heat capacity of the temperature detection means is large or the amount of exhalation reaching the temperature detection means is small, the output of the temperature detection means ( The detection signal) may not reach the actual expiration temperature. However, according to this configuration, since the user's body temperature is estimated based on the output value of the detection signal output from the temperature detection means and the rate of change thereof, even in the above-described case, it is more accurate. It is possible to measure (estimate) body temperature.
 本発明に係る体温計では、上記温度検出手段が、使用時に、使用者の鼻孔の前から上唇の前までの範囲に配置されるように、本体部に取り付けられた複数の温度センサを含み、体温取得手段が、複数の温度センサそれぞれの検出信号の出力値と変化率とに基づいて、使用者の体温を推定することが好ましい。 In the thermometer according to the present invention, the temperature detection means includes a plurality of temperature sensors attached to the main body so as to be disposed in a range from the front of the user's nostril to the front of the upper lip at the time of use. It is preferable that the acquisition unit estimates the body temperature of the user based on the output values and the change rates of the detection signals of the plurality of temperature sensors.
 この場合、温度検出手段が、使用時(装着時)に、使用者の鼻孔の前から上唇の前までの範囲に配置されるように、本体部に取り付けられた複数の温度センサを含んでおり、該複数の温度センサそれぞれの検出信号の出力値とその変化率とに基づいて、使用者の体温が推定される。そのため、使用者が鼻呼吸と口呼吸のどちらで呼吸をしたとしても、正確に体温を測定(推定)することが可能となる。 In this case, the temperature detecting means includes a plurality of temperature sensors attached to the main body so as to be arranged in a range from the front of the user's nostril to the front of the upper lip when in use (wearing). The body temperature of the user is estimated based on the output value of the detection signal of each of the plurality of temperature sensors and the rate of change thereof. Therefore, it is possible to accurately measure (estimate) the body temperature regardless of whether the user breathes by nasal breathing or mouth breathing.
 本発明に係る体温計は、使用時に、少なくとも使用者の鼻と接触する箇所に配置されるように、本体部に取り付けられ、本体部の上縁部からの呼気の漏れを低減するシール部材をさらに備えることが好ましい。 The thermometer according to the present invention further includes a seal member that is attached to the main body so as to be disposed at least in contact with the user's nose during use, and reduces leakage of breath from the upper edge of the main body. It is preferable to provide.
 ところで、鼻の形状や大きさは個人差が大きく、本体部をマスク状に形成した場合には、鼻から頬にかけての範囲で本体部との間に隙間が生じやすい。このような隙間が生じると、呼気(特に鼻孔からの呼気)が当該隙間を通ってマスク状本体部の外に出やすくなる。しかしながら、この構造によれば、少なくとも使用者の鼻と接触する範囲に配置されるように(すなわち、使用者の顔面と本体部との隙間を埋めるように)、本体部に取り付けられ、本体部の上縁部からの呼気の漏れを低減するシール部材を備えているため、呼気を温度検出手段に効率よく到達させることができ(すなわち、温度検出手段に到達する呼気の量を増大させることができ)、より正確に体温を測定することが可能となる。 By the way, the shape and size of the nose varies greatly between individuals, and when the main body is formed in a mask shape, a gap is likely to be formed between the nose and the cheek in the range from the nose to the cheek. When such a gap is generated, exhaled air (especially exhaled from the nostril) easily passes out of the mask-shaped main body through the gap. However, according to this structure, the main body unit is attached to the main body unit so as to be disposed at least in a range in contact with the user's nose (that is, so as to fill a gap between the user's face and the main body unit). Since the seal member for reducing the leakage of exhaled air from the upper edge portion is provided, the exhaled gas can efficiently reach the temperature detecting means (that is, the amount of exhaled gas reaching the temperature detecting means can be increased). Yes, it becomes possible to measure body temperature more accurately.
 本発明に係る体温計は、本体部に取り付けられ、使用時に、使用者の鼻頭が嵌まることにより、本体部の装着位置の位置決めを行う位置決め部材をさらに備えることが好ましい。 It is preferable that the thermometer according to the present invention further includes a positioning member that is attached to the main body portion and positions the mounting position of the main body portion by fitting the user's nasal head during use.
 この場合、本体部に取り付けられ、使用時(装着時)に、使用者の鼻頭が嵌まることにより、本体部の装着位置の位置決めを行う位置決め部材をさらに備えているため、マスク状本体部の装着位置を一定にでき、すなわち、口や鼻孔に対する温度検出手段の位置のばらつきを低減でき、体温測定値のばらつきを低減することが可能となる。 In this case, since it is further provided with a positioning member that is attached to the main body portion and positions the mounting position of the main body portion by fitting the user's nasal head during use (wearing), The wearing position can be made constant, that is, the variation in the position of the temperature detecting means with respect to the mouth and nostril can be reduced, and the variation in the body temperature measurement value can be reduced.
 本発明に係る体温計は、温度検出手段から出力された検出信号の出力変動に基づいて、使用者の呼吸数を推定する呼吸数取得手段をさらに備えることが好ましい。 It is preferable that the thermometer according to the present invention further includes a respiration rate acquisition unit that estimates the respiration rate of the user based on the output fluctuation of the detection signal output from the temperature detection unit.
 この場合、温度検出手段から出力された検出信号の出力変動に基づいて、使用者の呼吸数を推定する呼吸数取得手段をさらに備えており、呼気による温度検出手段の周期的な出力変動から呼吸数を推定できるため、体温に加えて呼吸数を測定(推定)することが可能となる。 In this case, the apparatus further includes a respiration rate acquisition means for estimating the respiration rate of the user based on the output fluctuation of the detection signal output from the temperature detection means, and breathes from the periodic output fluctuation of the temperature detection means due to expiration. Since the number can be estimated, it is possible to measure (estimate) the respiratory rate in addition to the body temperature.
 本発明によれば、呼気の温度から体温を測定する体温計において、測定者の活動を阻害することなく、より簡便かつ正確に体温を測定することが可能となる。 According to the present invention, in a thermometer that measures body temperature from the temperature of exhalation, it becomes possible to measure body temperature more easily and accurately without hindering the activity of the measurer.
第1実施形態に係る体温計の構成を示す図(装着時)である。It is a figure which shows the structure of the thermometer which concerns on 1st Embodiment (at the time of mounting | wearing). 第1実施形態に係る体温計を構成する体温演算処理ユニットの構成を示すブロック図である。It is a block diagram which shows the structure of the body temperature arithmetic processing unit which comprises the thermometer which concerns on 1st Embodiment. 第1実施形態の変形例に係る体温計の構成を示す図(装着時)である。It is a figure which shows the structure of the thermometer which concerns on the modification of 1st Embodiment (at the time of mounting | wearing).
 以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、図中、同一又は相当部分には同一符号を用いることとする。また、各図において、同一要素には同一符号を付して重複する説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same reference numerals are used for the same or corresponding parts. Moreover, in each figure, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted.
 (第1実施形態)
 まず、図1及び図2を併せて用いて、第1実施形態に係る体温計1の構成について説明する。図1は、体温計1の構成を示す図(装着時)である。図2は、体温計1を構成する体温演算処理ユニット80の構成を示すブロック図である。
(First embodiment)
First, the structure of the thermometer 1 which concerns on 1st Embodiment is demonstrated using FIG.1 and FIG.2 collectively. FIG. 1 is a diagram showing the configuration of the thermometer 1 (when worn). FIG. 2 is a block diagram showing a configuration of the body temperature calculation processing unit 80 constituting the thermometer 1.
 体温計1は、呼気の温度が肺の血液の終末温度と等しいことを利用し、呼気の温度を計測することによって体温(深部体温)を測定する体温計(呼気体温計)である。特に、体温計1は、測定者の活動を阻害することなく、より簡便かつ正確に体温を測定する機能を有している。 The thermometer 1 is a thermometer (expiratory thermometer) that measures the body temperature (the deep body temperature) by measuring the temperature of the breath by utilizing the fact that the temperature of the breath is equal to the terminal temperature of the blood in the lungs. In particular, the thermometer 1 has a function of measuring body temperature more easily and accurately without obstructing the activity of the measurer.
 そのため、体温計1は、主として、マスク状の本体部10と、本体部10に取り付けられ、呼気の温度に応じた検出信号を出力する温度センサ20A,20Bと、温度センサ20A,20Bを覆うように配置された断熱部材30と、本体部10の上縁部からの呼気の漏れを低減する一対のシール部材40,40と、本体部10の装着位置の位置決めを行う位置決め部材50と、温度センサ20A,20Bから出力される検出信号に応じて体温を求める体温演算処理ユニット80とを備えて構成されている。以下、各構成要素について詳細に説明する。 Therefore, the thermometer 1 is mainly attached to the mask-shaped main body 10, the temperature sensors 20 </ b> A and 20 </ b> B that are attached to the main body 10 and output a detection signal corresponding to the temperature of expiration, and the temperature sensors 20 </ b> A and 20 </ b> B. The disposed heat insulating member 30, a pair of seal members 40, 40 that reduce leakage of exhalation from the upper edge of the main body 10, a positioning member 50 that positions the mounting position of the main body 10, and a temperature sensor 20A. , 20B, and a body temperature calculation processing unit 80 for obtaining a body temperature in accordance with the detection signal output. Hereinafter, each component will be described in detail.
 本体部10は、使用時(装着時)に、使用者の口及び鼻孔を覆うようにマスク状に形成されている。本体部10は、例えば、不織布やガーゼ等のマスク素地によって形成される。また、本体部10の左右両端部には、本体部10を使用者の顔面に固定するために耳に掛けられる左右一対の耳掛け部11(図1では右側の耳掛け部11のみを示した)が取り付けられている。各耳掛け部11は、例えば、熱可塑性合成樹脂材料により伸縮性の良い紐状に形成され、溶着などにより本体部10に接合されている。なお、長時間の装着などに伴ってずれることがないよう、また顔面への密着性を高めるために、耳掛け部11に代えて、後頭部に紐またはゴム紐をまわして装着する構成としてもよい。ここで、例えば額や胸部等の皮膚にテープ等で貼付けるタイプの連続体温計は、一般生活においてあまり行うことのない方法で装着する必要があるため、違和感が大きく、また周囲の人の視線が気になってしまうという問題があるが、マスク状とすることで装着に対する違和感が軽減され、またマスクをしている人は街中で一般的に目にする光景であるため、周囲の目が気になることも少ない。 The main body 10 is formed in a mask shape so as to cover the user's mouth and nostril during use (wearing). The main body 10 is formed of a mask substrate such as a nonwoven fabric or gauze, for example. Further, at the left and right ends of the main body 10, a pair of left and right ear hooks 11 (only the right ear hook 11 is shown in FIG. 1) that can be hung on the ear to fix the main body 10 to the user's face. ) Is attached. Each ear hook 11 is formed in a string shape having good stretchability by using, for example, a thermoplastic synthetic resin material, and is joined to the main body 10 by welding or the like. In addition, it may be configured that a string or a rubber string is worn around the back of the head instead of the ear hook 11 so as not to be displaced with long-time wearing or the like and to improve the adhesion to the face. . Here, for example, a continuous thermometer that is affixed to the skin of the forehead, chest, etc., with a tape or the like needs to be worn in a way that is not often done in general life, so it has a sense of incongruity and the eyes of people around you Although there is a problem of being worried about, wearing a mask reduces the sense of discomfort with wearing, and people wearing a mask are a sight commonly seen in the city, so the surrounding eyes are concerned It is rare to become.
 温度センサ20A及び温度センサ20B(請求の範囲に記載の温度検出手段に相当)は、本体部10の内側の面(裏面側)に取り付けられ、使用時(装着時)に、使用者の口及び/又は鼻孔から吐き出される使用者の呼気の温度に応じた検出信号(電圧値)を出力する。温度センサ20A及び温度センサ20Bは、使用時に、使用者の鼻孔の前から上唇の前までの範囲(すなわち、呼気が温度センサ20A,20Bに直接当たる位置)に配置されるように、本体部10に取り付けられている。なお、温度センサの数は2個に限られることなく、1個でも、3個以上であってもよい。 The temperature sensor 20A and the temperature sensor 20B (corresponding to the temperature detection means described in the claims) are attached to the inner surface (rear side) of the main body 10 and, when used (wearing), the user's mouth and A detection signal (voltage value) corresponding to the temperature of the user's breath exhaled from the nostril is output. The temperature sensor 20A and the temperature sensor 20B are disposed in a range from the front of the user's nostril to the front of the upper lip (that is, a position where exhaled breath directly hits the temperature sensors 20A and 20B) during use. Is attached. The number of temperature sensors is not limited to two, and may be one or three or more.
 温度センサ20A,20Bとしては、例えば、温度に応じて抵抗値が変化するサーミスタや、測温抵抗体等を用いることができる。ただし、温度センサ20A,20Bには、呼気によって瞬時に温度が上昇することが求められる(高い応答性が求められる)ため、できるだけ熱容量が小さいことが好ましい。よって、温度センサ20A,20Bとしてはチップサーミスタが好適に用いられる。なお、温度センサ20A,20Bは体温演算処理ユニット80に接続されており、温度センサ20A,20Bから出力された検出信号は体温演算処理ユニット80に入力される。 As the temperature sensors 20A and 20B, for example, a thermistor whose resistance value changes according to temperature, a resistance temperature detector, or the like can be used. However, the temperature sensors 20A and 20B are required to have an instantaneous increase in temperature due to exhalation (high responsiveness is required), and thus it is preferable that the heat capacity be as small as possible. Therefore, a chip thermistor is preferably used as the temperature sensors 20A and 20B. The temperature sensors 20A, 20B are connected to the body temperature calculation processing unit 80, and the detection signals output from the temperature sensors 20A, 20B are input to the body temperature calculation processing unit 80.
 断熱部材30は、断熱性を有し、本体部10の温度センサ20A,20Bよりも外側(表面側)に取り付けられる。断熱部材30としては、断熱性が高い(低熱伝導の)部材、例えば、ウレタンフォーム等のような発泡プラスチック系や、ウール等の繊維系のものをシート状に形成したものが好適に用いられる。なお、断熱部材30は、温度センサ20A,20Bと本体部10との間に配置してもよいし、本体部10の外側に配置してもよい。また断熱部材で本体部10を形成してもよい。 The heat insulating member 30 has heat insulating properties, and is attached to the outer side (surface side) than the temperature sensors 20A and 20B of the main body 10. As the heat insulating member 30, a member having a high heat insulating property (low thermal conductivity), for example, a foamed plastic material such as urethane foam or a fiber material such as wool is preferably used. The heat insulating member 30 may be disposed between the temperature sensors 20 </ b> A and 20 </ b> B and the main body 10, or may be disposed outside the main body 10. Moreover, you may form the main-body part 10 with a heat insulation member.
 断熱部材30は、少なくとも鼻孔及び開いた状態の口部を覆うことができるように配置することが望ましい。そのため、断熱部材30は、例えば、6cm×6cm程度のサイズ(大きさ)に形成される。なお、できるだけ呼気を逃がさないようにするため(保温性を高めるため)には、さらに周囲2cm以上大きいサイズ(10cm×10cm)に形成することが望ましい。また、断熱部材30は、温度センサ20A,20B全体を覆う必要があるため、温度センサ20A,20Bは、断熱部材30の外縁部から、少なくとも1cm以上、より望ましくは2cm以上中心寄りに配設される。 It is desirable to arrange the heat insulating member 30 so as to cover at least the nostril and the opened mouth. Therefore, the heat insulating member 30 is formed in a size (size) of about 6 cm × 6 cm, for example. In order to prevent exhalation as much as possible (in order to improve heat retention), it is desirable to form a larger size (10 cm × 10 cm) that is 2 cm or more around. Further, since the heat insulating member 30 needs to cover the entire temperature sensors 20A and 20B, the temperature sensors 20A and 20B are disposed at least 1 cm or more, more desirably 2 cm or more from the outer edge of the heat insulating member 30 toward the center. The
 ところで、通常、吸気は外気を吸い込むために比較的低温であり、呼気は体内の熱(体温の影響)を受けているために比較的高温である。温度センサ20A,20Bは、このような温度の変化に反応して出力値が変化する。そのため、断熱部材30がない場合には、呼気動作時には、出力値(温度)が略体温と同じ温度まで上昇し、吸気動作時には、出力値(温度)が外気温度近くまで降下する。一方、断熱部材30で温度センサ20A,20Bを覆った場合には、呼気動作後の温度の降下が抑制されるとともに、吸気動作時の温度が外気温よりも高い温度となる。 By the way, normally, inhalation is relatively low temperature in order to inhale outside air, and exhalation is relatively high temperature due to heat in the body (influence of body temperature). The temperature sensors 20A and 20B change their output values in response to such temperature changes. Therefore, when the heat insulating member 30 is not provided, the output value (temperature) rises to substantially the same temperature as the body temperature during the exhalation operation, and the output value (temperature) falls to near the outside air temperature during the inhalation operation. On the other hand, when the temperature sensors 20A and 20B are covered with the heat insulating member 30, the temperature drop after the exhalation operation is suppressed, and the temperature during the inhalation operation becomes higher than the outside air temperature.
 シール部材40は、使用時(装着時)に、少なくとも使用者の鼻と接触する箇所に配置されるように(すなわち、使用者の顔面と本体部10との隙間を埋めるように)、本体部10の内面(裏面)の上縁部に取り付けられ、本体部10の上縁部からの呼気の漏れを低減する。シール材40としては、例えば、塑性変形能の高いゲルやウール等を帯状のシートに形成したものが好適に用いられる。なお、シール部材40は、本体部10と顔面との間の隙間を埋めることにより、呼気が急速に抜けてしまうことを防止できればよく、呼気がゆっくりと抜けていく程度の通気性は有していてもよい。なお、シール部材40は少なくとも使用者の鼻と接触する箇所に配置されることが好ましいが、マスク状の本体部10の内面(裏面)の外縁部全体に配置してもよい。 The seal member 40 is disposed at least at a position in contact with the user's nose during use (when worn) (that is, so as to fill a gap between the user's face and the body portion 10). 10 is attached to the upper edge of the inner surface (back surface) of the main body 10 to reduce leakage of exhaled air from the upper edge of the main body 10. As the sealing material 40, for example, a material in which a highly plastic deformable gel or wool is formed on a belt-like sheet is preferably used. Note that the sealing member 40 only needs to prevent the rapid exhalation of air by filling the gap between the main body 10 and the face, and has sufficient air permeability to allow the exhalation to escape slowly. May be. The seal member 40 is preferably disposed at least at a location that contacts the user's nose, but may be disposed on the entire outer edge portion of the inner surface (back surface) of the mask-shaped main body portion 10.
 位置決め部材50は、本体部10に取り付けられ、使用時(装着時)に、使用者の鼻頭が嵌まることにより、本体部10の装着位置の位置決めを行う(すなわち、温度センサ20A,20Bの鼻孔や上唇からの位置ずれを防止する)ものである。位置決め部材50は、例えば、図1に示されるように、略環状に形状されており、その環の内側に鼻頭が嵌まるように本体部10が装着される。なお、位置決め部材50の形状は、環状に限られることなく、例えば、円錐形の上部を切り取ったような形状(円錐台状)や、カップ形状のように鼻頭が嵌まる構造であればよい。マスクを装着する場合、マスクの装着位置については個人差が大きい。装着の仕方によっては、マスクの上端位置が目の直下から鼻の下まで、マスクの下端位置が顎の上から首元まで変動してしまう。そのように変動幅が大きいと温度センサ20A,20Bが鼻孔や口からずれてしまい、正確な体温を測定できなくなる。一方、鼻頭に対する鼻孔及び上唇の位置は個人差も大きくないため、鼻頭に嵌まる形状として鼻頭で位置決めを行うことにより、温度センサ20A,20Bが鼻孔や口から大きくずれることがなく、誰が装着しても安定して体温測定を行うことができる。 The positioning member 50 is attached to the main body unit 10 and positions the mounting position of the main body unit 10 by fitting the user's nasal head during use (at the time of mounting) (that is, the nostrils of the temperature sensors 20A and 20B). And position displacement from the upper lip). For example, as shown in FIG. 1, the positioning member 50 has a substantially annular shape, and the main body portion 10 is mounted so that the nasal head fits inside the ring. Note that the shape of the positioning member 50 is not limited to an annular shape, and may be any shape as long as the nasal head is fitted, for example, a shape obtained by cutting an upper part of a conical shape (conical frustum shape) or a cup shape. When wearing a mask, there are large individual differences in the wearing position of the mask. Depending on the manner of wearing, the upper end position of the mask varies from directly under the eyes to the nose, and the lower end position of the mask varies from the top of the chin to the neck. If the fluctuation range is so large, the temperature sensors 20A and 20B are displaced from the nostrils and the mouth, and accurate body temperature cannot be measured. On the other hand, the position of the nostril and upper lip with respect to the nasal head does not vary greatly from person to person. By positioning the nasal head as a shape that fits the nasal head, the temperature sensors 20A and 20B are not greatly displaced from the nostril or mouth, and no one wears them. However, body temperature can be measured stably.
 上述したように、温度センサ20A,20Bは、体温演算処理ユニット80に接続されており、温度センサ20A,20Bから出力された検出信号は体温演算処理ユニット80に入力される。体温演算処理ユニット80は、温度センサ20A,20Bから出力される検出信号から体温を求める。 As described above, the temperature sensors 20A and 20B are connected to the body temperature calculation processing unit 80, and the detection signals output from the temperature sensors 20A and 20B are input to the body temperature calculation processing unit 80. The body temperature calculation processing unit 80 obtains the body temperature from the detection signals output from the temperature sensors 20A and 20B.
 体温演算処理ユニット80は、図2に示されるように、主として、温度計測回路81、演算処理回路82、メモリ83、薄型バッテリ84、及び無線通信モジュール85等を有して構成されている。なお、体温演算処理ユニット80は、例えば、断熱部材30の下側、すなわち、本体部10を装着したときに、使用者の下唇と顎との間あたりに位置するように、本体部10に取り付けることが好ましい。体温演算処理ユニット80は消費電力によって温度が上昇するため、温度センサ20A,20Bからは離れた位置に配置する必要があるためである。また、体温演算処理ユニット80は、演算処理回路82、メモリ83、薄型バッテリ84、及び無線通信モジュール85等を有しており、本体部10等と比較して重量があるため、本体部10の上部に配置すると体温演算処理ユニット80の重量によって本体部10が垂れ下がってしまう恐れがあるため、本体部10の下部、望ましくは使用者の下唇と顎との間あたりに位置するように配置する。 As shown in FIG. 2, the body temperature arithmetic processing unit 80 mainly includes a temperature measuring circuit 81, an arithmetic processing circuit 82, a memory 83, a thin battery 84, a wireless communication module 85, and the like. The body temperature calculation processing unit 80 is placed on the main body 10 so that, for example, the lower side of the heat insulating member 30, that is, between the lower lip and the chin of the user when the main body 10 is mounted. It is preferable to attach. This is because the temperature of the body temperature calculation processing unit 80 increases due to power consumption, and it is necessary to dispose it at a position away from the temperature sensors 20A and 20B. The body temperature arithmetic processing unit 80 includes an arithmetic processing circuit 82, a memory 83, a thin battery 84, a wireless communication module 85, and the like. Since the body temperature arithmetic processing unit 80 is heavier than the main body 10 and the like, If it is arranged at the upper part, the main body part 10 may hang down due to the weight of the body temperature calculation processing unit 80. Therefore, it is arranged so as to be located at the lower part of the main body part 10, preferably between the lower lip and the chin of the user. .
 温度計測回路81は、例えば、増幅器とアナログ/デジタル(A/D)コンバータとによって構成され、各温度センサ20A,20Bから入力されるアナログ信号を増幅し、デジタル信号に変換して、演算処理回路82に出力する。 The temperature measurement circuit 81 includes, for example, an amplifier and an analog / digital (A / D) converter, amplifies analog signals input from the temperature sensors 20A and 20B, converts the signals into digital signals, and performs an arithmetic processing circuit. 82.
 演算処理回路82は、例えばMCU(Micro Control Unit)等によって構成され、温度計測回路81で処理された各温度センサ20A,20Bの出力に基づいて体温を算出する。そのため、演算処理回路82は、体温取得部821を機能的に備えている。また、演算処理回路82は、呼吸数を求める呼吸数取得部822を備えている。なお、演算処理回路82は、薄型バッテリ84から電力を供給され、算出した体温情報等をメモリ83に記憶させる。 The arithmetic processing circuit 82 is configured by, for example, an MCU (Micro Control Unit) or the like, and calculates the body temperature based on the outputs of the temperature sensors 20A and 20B processed by the temperature measurement circuit 81. For this reason, the arithmetic processing circuit 82 functionally includes a body temperature acquisition unit 821. In addition, the arithmetic processing circuit 82 includes a respiration rate acquisition unit 822 that calculates a respiration rate. The arithmetic processing circuit 82 is supplied with electric power from the thin battery 84 and stores the calculated body temperature information and the like in the memory 83.
 体温取得部821は、各温度センサ20A,20Bから出力された検出信号の出力値とその変化率とに基づいて、使用者の体温を推定する。すなわち、体温取得部821は、請求の範囲に記載の体温取得手段として機能する。より具体的には、体温取得部821は、センサ出力値と温度(体温)との変換式を用いて体温を算出する。また、体温取得部821は、計測開始から温度の上がり方(変化率)をリアルタイムに分析・演算し、体温を予測する。呼吸は数秒に1回程度の頻度で行われるため、呼気により温度センサ20A,20Bの温度が上昇してもすぐに吸気によって温度が低下してしまう。そのため温度センサ20A,20Bの熱容量が小さくないと呼気によって温度が上昇している途中に吸気によって温度低下が始まってしまい、体温を正確に測定できない。また、温度センサ20A,20Bの熱容量が小さくても呼気から吸気までの時間が短いと温度が上昇しきる前に温度低下が始まってしまう場合がある。その場合、上昇しきった場合の温度を推定することが必要になる。推定方法としては、温度の上がり方(変化率)をリアルタイムに測定・分析し、変化率の近似式を求め、その近似式から変化率が0になる温度を推定する方法等がある。この推定は体温取得部821で行ってもよいし、無線通信モジュール85でデータを送信した外部機器内で行ってもよい。なお、体温を算出する際に、体温取得部821は、温度センサ20Aと温度センサ20Bの出力値の平均値を用いてもよいし、より確からしいセンサの出力値を用いてもよい。この確からしさは、温度の変化率の近似式との相関係数や出力温度の値の高低で判定する。 The body temperature acquisition unit 821 estimates the body temperature of the user based on the output values of the detection signals output from the temperature sensors 20A and 20B and the rate of change thereof. That is, the body temperature acquisition unit 821 functions as body temperature acquisition means described in the claims. More specifically, the body temperature acquisition unit 821 calculates the body temperature using a conversion formula between the sensor output value and the temperature (body temperature). In addition, the body temperature acquisition unit 821 analyzes and calculates in real time how the temperature rises (change rate) from the start of measurement, and predicts the body temperature. Since breathing is performed at a frequency of about once every few seconds, even if the temperature of the temperature sensors 20A and 20B rises due to exhalation, the temperature immediately drops due to inspiration. Therefore, if the heat capacities of the temperature sensors 20A and 20B are not small, a temperature drop starts due to inspiration while the temperature is rising due to exhalation, and the body temperature cannot be measured accurately. Moreover, even if the heat capacities of the temperature sensors 20A and 20B are small, if the time from expiration to inspiration is short, the temperature may start to drop before the temperature has risen completely. In that case, it is necessary to estimate the temperature when the temperature rises. As an estimation method, there is a method of measuring and analyzing how the temperature rises (change rate) in real time, obtaining an approximate expression of the change rate, and estimating a temperature at which the change rate is 0 from the approximate expression. This estimation may be performed by the body temperature acquisition unit 821 or may be performed in an external device that has transmitted data by the wireless communication module 85. In calculating the body temperature, the body temperature acquisition unit 821 may use an average value of the output values of the temperature sensor 20A and the temperature sensor 20B, or may use a more reliable output value of the sensor. This certainty is determined by the correlation coefficient with the approximate expression of the rate of change of temperature and the level of the output temperature value.
 呼吸数取得部822は、温度センサ20A,20Bから出力された検出信号の出力変動に基づいて、使用者の呼吸数を推定する。すなわち、呼吸数取得部822は、請求の範囲に記載の呼吸数取得手段として機能する。より具体的には、通常、吸気は外気を吸い込むために比較的低温であり、呼気は体内の熱(体温の影響)を受けているために比較的高温である。温度センサ20A,20Bは、このような温度の変化に反応して出力値が変化する。そのため、呼吸数取得部822は、この変動の時間(周期)を分析して、呼吸間隔を求め、1分間の呼吸数を推定する。呼吸間隔は出力信号のピーク(もしくはその他の特徴点)を検出してピーク(もしくはその他の特徴点)間隔を求めることで1呼吸毎の呼吸間隔を算出してもよいし、例えば1分間のデータを周波数解析して周波数ピークを求めて1分間の平均呼吸間隔を算出してもよい。また呼吸による温度変動のパターンを学習させてパターンマッチング法や自己相関法を用いて呼吸間隔を算出してもよい。呼吸間隔は心拍間隔等に比べると不規則になることが多く1呼吸毎に検出することが難しい場合があることと、1呼吸毎の呼吸間隔でなくて平均呼吸間隔でも有用な場合が多いことから、周波数解析やパターンマッチング法や自己相関法を用いることが望ましい。ここで、様々な疾患において発症時に呼吸が変化することが知られている。疾患としては、例えば喘息、肺炎、気管支炎、COPD(閉塞性肺疾患)、睡眠時無呼吸症候群、過換気症候群等を挙げることができるが、これらには限定されない。体温と呼吸数を連続的に測定することで、体温だけを測定するよりもこれらのような疾患を精度よく検出することができる。 The respiration rate acquisition unit 822 estimates the respiration rate of the user based on the output fluctuation of the detection signals output from the temperature sensors 20A and 20B. That is, the respiration rate acquisition unit 822 functions as a respiration rate acquisition unit described in the claims. More specifically, inhalation is usually at a relatively low temperature for inhaling outside air, and exhalation is at a relatively high temperature because it receives heat in the body (influence of body temperature). The temperature sensors 20A and 20B change their output values in response to such temperature changes. Therefore, the respiration rate acquisition unit 822 analyzes the time (cycle) of the fluctuation to obtain a respiration interval and estimates the respiration rate per minute. The breathing interval may be calculated by detecting the peak (or other feature point) of the output signal and calculating the peak (or other feature point) interval, for example, one minute of data The frequency analysis may be performed to obtain the frequency peak, and the average breathing interval for 1 minute may be calculated. Alternatively, a breathing interval may be calculated using a pattern matching method or an autocorrelation method by learning a pattern of temperature fluctuation due to breathing. Respiration intervals are often irregular compared to heartbeat intervals, etc., and may be difficult to detect for each breath, and are often useful not only for breath intervals but also for average breath intervals. Therefore, it is desirable to use frequency analysis, pattern matching method or autocorrelation method. Here, it is known that respiration changes at the time of onset in various diseases. Examples of the disease include, but are not limited to, asthma, pneumonia, bronchitis, COPD (obstructive pulmonary disease), sleep apnea syndrome, hyperventilation syndrome and the like. By continuously measuring the body temperature and the respiratory rate, it is possible to detect such diseases more accurately than measuring only the body temperature.
 無線通信モジュール85は、取得された体温や呼吸数などの情報を外部の機器に送信する。すなわち、取得された体温や呼吸数等の計測データは、無線通信モジュール85を介して、例えば、外部のPCや、ディスプレイを有するスマートフォン、又は携帯型音楽プレーヤ等に送信される。その場合には、計測結果に加えて、計測日時等のデータも送信することが好ましい。なお、取得されたデータは測定中にリアルタイムに無線通信モジュール85で送信してもよいし、測定中はメモリに保存しておいて、測定後に送信してもよい。無線通信モジュール85としては、例えばBluetooth(登録商標)、Wi-Fi(登録商標)、ZigBee(登録商標)、ANT(登録商標)、UWB、NFC(近距離無線通信)等がある。 The wireless communication module 85 transmits information such as acquired body temperature and respiratory rate to an external device. That is, the acquired measurement data such as body temperature and respiratory rate is transmitted to, for example, an external PC, a smartphone having a display, a portable music player, or the like via the wireless communication module 85. In that case, it is preferable to transmit data such as measurement date and time in addition to the measurement result. The acquired data may be transmitted by the wireless communication module 85 in real time during measurement, or may be stored in a memory during measurement and transmitted after measurement. Examples of the wireless communication module 85 include Bluetooth (registered trademark), Wi-Fi (registered trademark), ZigBee (registered trademark), ANT (registered trademark), UWB, NFC (near field communication), and the like.
 次に、上述した構成からなる体温計1の使用方法について説明する。体温計1を用いて体温や呼吸数などを計測する際には、まず、左右一対の耳掛け部11が耳に掛けられ、マスク状の本体部10が、使用者の口及び鼻孔を覆うように顔面に装着される。その際に、使用者の鼻頭に位置決め部材50が嵌められて、本体部10の位置決めが行われる。また、本体部10の内面の上縁部に取り付けられたシール部材40によって、本体部10と顔面との間の隙間が埋められる。 Next, a method for using the thermometer 1 having the above-described configuration will be described. When measuring a body temperature, a respiratory rate, etc. using the thermometer 1, first, a pair of left and right ear hooks 11 are hung on the ear, and the mask-shaped main body 10 covers the mouth and nostrils of the user. It is worn on the face. At that time, the positioning member 50 is fitted to the nasal head of the user, and the main body 10 is positioned. Further, a gap between the main body 10 and the face is filled with the seal member 40 attached to the upper edge of the inner surface of the main body 10.
 その後、呼気の温度に応じた検出信号(電圧値)が温度センサ20A,20Bから出力され、体温演算処理ユニット80に読み込まれる。体温演算処理ユニット80では、温度センサ20A,20Bから出力される検出信号(出力値)とその変化率とに基づいて、使用者の体温が推定される。また、温度センサ20A,20Bから出力された検出信号の出力変動(周期)に基づいて、使用者の呼吸数が推定される。なお、体温及び呼吸数の推定方法については上述した通りであるので、ここでは詳細な説明を省略する。そして、取得された体温や呼吸数等の測定データが、無線通信モジュール85によって外部機器に出力される。 Thereafter, detection signals (voltage values) corresponding to the temperature of exhalation are output from the temperature sensors 20A and 20B and read into the body temperature calculation processing unit 80. In the body temperature calculation processing unit 80, the body temperature of the user is estimated based on the detection signals (output values) output from the temperature sensors 20A and 20B and the rate of change thereof. Moreover, a user's respiration rate is estimated based on the output fluctuation | variation (cycle) of the detection signal output from temperature sensor 20A, 20B. In addition, since the estimation method of body temperature and the respiration rate is as above-mentioned, detailed description is abbreviate | omitted here. Then, the acquired measurement data such as the body temperature and the respiratory rate is output to the external device by the wireless communication module 85.
 以上、詳細に説明したように、本実施形態によれば、使用者の口及び鼻孔を覆うように装着されるマスク状の本体部10に、使用者の口及び/又は鼻孔から吐き出される呼気の温度に応じた検出信号を出力する温度センサ20A,20Bが取り付けられるとともに、該温度センサ20A,20Bよりも外側(表面側)に断熱性を有する断熱部材30が取り付けられる。そのため、外気の影響を受けにくく、マスク状の本体部10内が呼気に近い温度に保たれることにより、呼気から正確な体温を測定することができる。また、本体部10がマスク状に形成されているため、本体部10(体温計1)を顔面に容易に装着することができ、体温計1を装着した使用者の活動(例えば日常生活など)を阻害しない。その結果、使用者の活動を阻害することなく、より簡便かつ正確に体温を測定することが可能となる。 As described above in detail, according to the present embodiment, the mask-like main body portion 10 that is worn so as to cover the user's mouth and nostril is configured to receive the breath exhaled from the user's mouth and / or nostril. Temperature sensors 20A and 20B that output detection signals corresponding to the temperature are attached, and a heat insulating member 30 having heat insulating properties is attached to the outside (surface side) of the temperature sensors 20A and 20B. Therefore, it is difficult to be affected by outside air, and the mask-like main body 10 is maintained at a temperature close to exhalation, whereby an accurate body temperature can be measured from the exhalation. Moreover, since the main body part 10 is formed in a mask shape, the main body part 10 (thermometer 1) can be easily attached to the face, and the activity (for example, daily life) of the user wearing the thermometer 1 is hindered. do not do. As a result, the body temperature can be measured more easily and accurately without hindering the activity of the user.
 本実施形態によれば、温度センサ20A,20Bから出力された検出信号の出力値とその変化率とに基づいて使用者の体温が推定されるため、温度センサ20A,20Bの出力値が実際の呼気温度まで達しない場合であっても、より正確に体温を測定(推定)することが可能となる。 According to the present embodiment, since the user's body temperature is estimated based on the output values of the detection signals output from the temperature sensors 20A and 20B and the rate of change thereof, the output values of the temperature sensors 20A and 20B are the actual values. Even when the expiration temperature is not reached, the body temperature can be measured (estimated) more accurately.
 本実施形態によれば、使用時(装着時)に、使用者の鼻孔の前から上唇の前までの範囲に配置されるように、複数(本実施形態では2個)の温度センサ20A,20Bが本体部10に取り付けられており、温度センサ20A,20Bそれぞれの検出信号の出力値とその変化率とに基づいて、使用者の体温が推定される。そのため、使用者が鼻呼吸と口呼吸のどちらで呼吸をしたとしても、正確に体温を測定(推定)することが可能となる。 According to the present embodiment, a plurality (two in the present embodiment) of temperature sensors 20A and 20B are disposed so as to be disposed in a range from the front of the user's nostril to the front of the upper lip when used (wearing). Is attached to the main body 10, and the body temperature of the user is estimated based on the output values of the detection signals of the temperature sensors 20A and 20B and the rate of change thereof. Therefore, it is possible to accurately measure (estimate) the body temperature regardless of whether the user breathes by nasal breathing or mouth breathing.
 本実施形態によれば、使用時(装着時)に、少なくとも使用者の鼻と接触する箇所に配置されるように(すなわち、使用者の顔面と本体部10との隙間を埋めるように)、本体部10に取り付けられ、本体部10の上縁部からの呼気の漏れを低減するシール部材40を有している。そのため、呼気を温度センサ20A,20Bに効率よく到達させることができ(すなわち、温度センサ20A,20Bに到達する呼気の量を増大させることができ)、より正確に体温を測定することが可能となる。 According to the present embodiment, at the time of use (at the time of wearing), so as to be disposed at least at a position that contacts the user's nose (that is, so as to fill a gap between the user's face and the main body 10), A seal member 40 is attached to the main body 10 and reduces leakage of exhaled air from the upper edge of the main body 10. Therefore, exhaled air can efficiently reach the temperature sensors 20A and 20B (that is, the amount of exhaled gas that reaches the temperature sensors 20A and 20B can be increased), and the body temperature can be measured more accurately. Become.
 本実施形態によれば、本体部10に取り付けられ、使用時(装着時)に、使用者の鼻頭が嵌まることにより、本体部10の装着位置の位置決めを行う位置決め部材50を有しているため、マスク状本体部10の装着位置を一定にでき、すなわち、口や鼻孔に対する温度センサ20A,20Bの位置のばらつきを低減でき、体温測定値のばらつきを低減することが可能となる。 According to this embodiment, it has the positioning member 50 which is attached to the main-body part 10 and positions the mounting position of the main-body part 10 by fitting a user's nasal head at the time of use (at the time of mounting | wearing). Therefore, the mounting position of the mask-shaped main body 10 can be made constant, that is, variations in the positions of the temperature sensors 20A and 20B with respect to the mouth and nostril can be reduced, and variations in body temperature measurement values can be reduced.
 本実施形態によれば、温度センサ20A,20Bから出力された検出信号の出力変動に基づいて、使用者の呼吸数を推定する呼吸数取得部822を備えており、呼吸による温度センサ20A,20Bの周期的な出力変動から呼吸数を推定できるため、体温に加えて呼吸数を測定(推定)することが可能となる。 According to this embodiment, the respiration rate acquisition unit 822 that estimates the respiration rate of the user based on the output fluctuation of the detection signals output from the temperature sensors 20A and 20B is provided, and the temperature sensors 20A and 20B due to respiration. Since the respiration rate can be estimated from the periodic output fluctuations, the respiration rate can be measured (estimated) in addition to the body temperature.
 (第1実施形態の変形例)
 次に、図3を用いて、第1実施形態の変形例に係る体温計1Bについて説明する。ここでは、上述した第1実施形態と同一・同様な構成については説明を簡略化又は省略し、異なる点を主に説明する。図3は、体温計1Bの構成を示す図(装着時)である。なお、図3において第1実施形態と同一又は同等の構成要素については同一の符号が付されている。
(Modification of the first embodiment)
Next, a thermometer 1B according to a modification of the first embodiment will be described with reference to FIG. Here, the description of the same or similar configuration as in the first embodiment will be simplified or omitted, and different points will be mainly described. FIG. 3 is a diagram (when worn) showing the configuration of the thermometer 1B. In FIG. 3, the same or equivalent components as those in the first embodiment are denoted by the same reference numerals.
 体温計1Bは、断熱部材30に代えて、断熱部材30Bを備えている点で、上述した第1実施形態に係る体温計1と異なっている。なお、その他の構成は、上述した体温計1と同一又は同様であるので、ここでは詳細な説明を省略する。 The thermometer 1B is different from the thermometer 1 according to the first embodiment described above in that it includes a heat insulating member 30B instead of the heat insulating member 30. In addition, since the other structure is the same as that of the thermometer 1 mentioned above, or is the same, detailed description is abbreviate | omitted here.
 ところで、断熱部材で鼻孔及び口を覆った場合、多少の通気性は有するものの通気性が悪化する。その結果、断熱部材で覆われた本体部10を装着すると、使用者が息苦しさを感じるおそれがあるため、呼吸気(空気)の出入り口を形成しておくことが望ましい。このような空気の出入り口は、例えば、断熱部材30B(本体部10B)の側方に設け、呼気が断熱部材30Bで覆われた領域に一旦溜まるように、そして、呼気が内側から断熱部材30Bにぶつかった後、側方に抜けるように形成することが好ましい。すなわち、呼気が断熱部材30B(本体部10B)の上方や下方から抜けるのではなく、側方に抜けるようにすることで、呼気が外部に直接抜けずに断熱部材30Bにぶつかって方向を変えた後抜けるようにすることが好ましい。 By the way, when the nostril and the mouth are covered with the heat insulating member, the air permeability deteriorates although it has some air permeability. As a result, if the main body 10 covered with the heat insulating member is attached, the user may feel uncomfortable, so it is desirable to form an entrance for breathing air (air). Such an air inlet / outlet port is provided, for example, on the side of the heat insulating member 30B (main body portion 10B) so that the exhaled air temporarily accumulates in an area covered with the heat insulating member 30B, and the exhaled air enters the heat insulating member 30B from the inside. It is preferable to form it so that it can be pulled out to the side after hitting. That is, exhalation does not escape from the upper side or the lower side of the heat insulating member 30B (main body part 10B), but instead of coming out from the side, the exhalation does not directly escape to the outside, but strikes the heat insulating member 30B and changes its direction. It is preferable to leave behind.
 そのため、断熱部材30Bは、使用者の鼻孔又は口から吐き出される呼気を断熱部材30の側方に向けて案内するように構成されている。より具体的には、例えば、断熱部材30Bの両脇(本体部10の側方の一部)が、比較的通気性の高い布等によって形成される。なお、断熱部材30Bの側方端が使用者の頬と接触する部分の一部に隙間を形成して、呼吸気(空気)の出入り口としてもよい。 Therefore, the heat insulating member 30B is configured to guide the exhaled air exhaled from the user's nostril or mouth toward the side of the heat insulating member 30. More specifically, for example, both sides of the heat insulating member 30 </ b> B (a part of the side of the main body 10) are formed with a relatively highly breathable cloth or the like. It should be noted that a gap may be formed at a part of the portion where the side end of the heat insulating member 30B contacts the user's cheek to serve as a breathing air (air) entrance.
 本変形例によれば、本体部10Bを装着したときの息苦しさを低減することができる。また、上述した第1実施形態に係る体温計1と同様に、測定者の活動を阻害することなく、より簡便かつ正確に体温を測定することが可能となる。 According to this modification, it is possible to reduce breathing difficulty when the main body 10B is mounted. Further, similarly to the thermometer 1 according to the first embodiment described above, the body temperature can be measured more easily and accurately without obstructing the activity of the measurer.
 以上、本発明の実施の形態について説明したが、本発明は、上記実施形態に限定されるものではなく種々の変形が可能である。例えば、温度センサ20A,20Bの出力を解析し、呼気と吸気による変動が検出できない場合、及び/又は、最高温度が体温に近い所定の温度に達しない場合には、装着エラーと判定して、アラートを出すようにしてもよい。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made. For example, when the output of the temperature sensors 20A and 20B is analyzed and fluctuation due to exhalation and inhalation cannot be detected, and / or when the maximum temperature does not reach a predetermined temperature close to the body temperature, it is determined as a wearing error, An alert may be issued.
 また、上述した断熱部材30(30B)、シール部材40、及び位置決め部材50それぞれの形状や、大きさ、素材、配置などは、上記実施形態には限られることなく、任意に設定することができる。また、駆動電源に薄型バッテリを用いる構成としたが、コイン電池やボタン電池を用いる構成としてもよいし、無線給電方式を用いた構成としてもよい。また、体温演算処理ユニット80は本体部10(10B)から着脱できる構造とすることが望ましい。マスク状の本体部10は感染防止のため使用毎に廃棄する必要があるが、体温演算処理ユニット80まで使い捨てにするとコストがかかる。そのため体温演算処理ユニット80を本体部10(10B)から着脱できる構造とすることで、使用後に本体部10(10B)から体温演算処理ユニット80を取り外して本体部10(10B)のみを廃棄し、体温演算処理ユニット80は新たな本体部10(10B)に取り付けて再使用することが望ましい。 In addition, the shape, size, material, arrangement, and the like of the heat insulating member 30 (30B), the sealing member 40, and the positioning member 50 described above are not limited to the above-described embodiment, and can be arbitrarily set. . Further, although a thin battery is used as the driving power source, a coin battery or a button battery may be used, or a wireless power feeding method may be used. Moreover, it is desirable that the body temperature calculation processing unit 80 has a structure that can be detached from the main body 10 (10B). Although it is necessary to discard the mask-shaped main body 10 every time it is used to prevent infection, it is costly to dispose of the body temperature calculation processing unit 80. Therefore, by making the body temperature calculation processing unit 80 detachable from the main body 10 (10B), the body temperature calculation processing unit 80 is removed from the main body 10 (10B) after use, and only the main body 10 (10B) is discarded. The body temperature calculation processing unit 80 is desirably attached to a new main body 10 (10B) and reused.
 1,1B 体温計
 10,10B 本体部
 20A,20B 温度センサ
 30,30B 断熱部材
 40 シール部材
 50 位置決め部材
 80 体温演算処理ユニット
 81 温度計測回路
 82 演算処理回路
 821 体温取得部
 822 呼吸数取得部
 83 メモリ
 84 バッテリ
 85 無線通信モジュール
 
DESCRIPTION OF SYMBOLS 1, 1B Thermometer 10,10B Main body part 20A, 20B Temperature sensor 30, 30B Thermal insulation member 40 Seal member 50 Positioning member 80 Body temperature calculation processing unit 81 Temperature measurement circuit 82 Calculation processing circuit 821 Body temperature acquisition part 822 Respiration rate acquisition part 83 Memory 84 Battery 85 Wireless communication module

Claims (6)

  1.  使用時に、使用者の口及び鼻孔を覆うマスク状の本体部と、
     前記本体部に取り付けられ、使用時に、使用者の口及び/又は鼻孔から吐き出される呼気の温度に応じた検出信号を出力する温度検出手段と、
     前記本体部の前記温度検出手段よりも外側に取り付けられた断熱性を有する断熱部材と、
     前記温度検出手段から出力される検出信号に応じて使用者の体温を求める体温取得手段と、を備えることを特徴とする体温計。
    In use, a mask-like body that covers the user's mouth and nostrils;
    A temperature detecting means attached to the main body portion and outputting a detection signal according to the temperature of exhaled air exhaled from the mouth and / or nostril of the user at the time of use;
    A heat insulating member having heat insulating properties attached to the outside of the temperature detecting means of the main body, and
    A thermometer comprising: a body temperature obtaining means for obtaining a body temperature of the user in accordance with a detection signal output from the temperature detecting means.
  2.  前記体温取得手段は、前記温度検出手段から出力された検出信号の出力値と変化率とに基づいて、使用者の体温を推定することを特徴とする請求項1に記載の体温計。 The thermometer according to claim 1, wherein the body temperature acquisition means estimates a user's body temperature based on an output value and a change rate of a detection signal output from the temperature detection means.
  3.  前記温度検出手段は、使用時に、使用者の鼻孔の前から上唇の前までの範囲に配置されるように、前記本体部に取り付けられた複数の温度センサを含み、
     前記体温取得手段は、前記複数の温度センサそれぞれの検出信号の出力値と変化率とに基づいて、使用者の体温を推定することを特徴とする請求項1又は2に記載の体温計。
    The temperature detection means includes a plurality of temperature sensors attached to the main body so as to be disposed in a range from the front of the user's nostril to the front of the upper lip when in use.
    The thermometer according to claim 1, wherein the body temperature acquisition unit estimates a user's body temperature based on an output value and a change rate of a detection signal of each of the plurality of temperature sensors.
  4.  使用時に、少なくとも使用者の鼻と接触する箇所に配置されるように、前記本体部に取り付けられ、前記本体部の上縁部からの呼気の漏れを低減するシール部材をさらに備えることを特徴とする請求項1~3のいずれか1項に記載の体温計。 It further includes a seal member that is attached to the main body so as to be disposed at least in contact with the user's nose when used, and that reduces leakage of breath from the upper edge of the main body. The thermometer according to any one of claims 1 to 3.
  5.  前記本体部に取り付けられ、使用時に、使用者の鼻頭が嵌まることにより、前記本体部の装着位置の位置決めを行う位置決め部材をさらに備えることを特徴とする請求項1~4のいずれか1項に記載の体温計。 The positioning device according to any one of claims 1 to 4, further comprising a positioning member that is attached to the main body portion and that positions a mounting position of the main body portion by fitting a user's nasal head during use. Thermometer described in 1.
  6.  前記温度検出手段から出力された検出信号の出力変動に基づいて、使用者の呼吸数を推定する呼吸数取得手段をさらに備えることを特徴とする請求項1~5のいずれか1項に記載の体温計。
     
    6. The respiration rate acquisition unit according to claim 1, further comprising a respiration rate acquisition unit configured to estimate a respiration rate of a user based on an output fluctuation of a detection signal output from the temperature detection unit. Thermometer.
PCT/JP2016/087729 2015-12-22 2016-12-19 Clinical thermometer WO2017110718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017558105A JP6566047B2 (en) 2015-12-22 2016-12-19 Thermometer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015249376 2015-12-22
JP2015-249376 2015-12-22

Publications (1)

Publication Number Publication Date
WO2017110718A1 true WO2017110718A1 (en) 2017-06-29

Family

ID=59090341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087729 WO2017110718A1 (en) 2015-12-22 2016-12-19 Clinical thermometer

Country Status (2)

Country Link
JP (1) JP6566047B2 (en)
WO (1) WO2017110718A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185509A1 (en) * 2021-03-05 2022-09-09 株式会社トライアンドイー Fever determination label and fever determination mask
KR20220153447A (en) * 2021-05-11 2022-11-18 국민대학교산학협력단 Measuring apparatus and method for predicting personal thermal sensation
JP7470618B2 (en) 2020-11-04 2024-04-18 綜合警備保障株式会社 Mask ventilation device and screening method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268525A (en) * 1986-05-16 1987-11-21 オムロン株式会社 Exhalation thermometer
JPH09262224A (en) * 1996-03-28 1997-10-07 Ikyo Kk Mask type respiration sensor
JP2003516825A (en) * 1999-12-16 2003-05-20 コムピュメディクス スリープ プロプライエタリー リミテッド Biomask with integrated sensor
JP3142088U (en) * 2008-03-19 2008-06-05 テルモ株式会社 Exhalation thermometer
JP2010516298A (en) * 2006-01-25 2010-05-20 カンザー,スティーブ,エイチ. Splash collection apparatus and method for detecting and suppressing infectious diseases caused by air infection using RFID
JP2011078754A (en) * 2009-10-09 2011-04-21 Korea Electronics Telecommun Face mask type biological signal measuring apparatus and biological signal management system using this

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268525A (en) * 1986-05-16 1987-11-21 オムロン株式会社 Exhalation thermometer
JPH09262224A (en) * 1996-03-28 1997-10-07 Ikyo Kk Mask type respiration sensor
JP2003516825A (en) * 1999-12-16 2003-05-20 コムピュメディクス スリープ プロプライエタリー リミテッド Biomask with integrated sensor
JP2010516298A (en) * 2006-01-25 2010-05-20 カンザー,スティーブ,エイチ. Splash collection apparatus and method for detecting and suppressing infectious diseases caused by air infection using RFID
JP3142088U (en) * 2008-03-19 2008-06-05 テルモ株式会社 Exhalation thermometer
JP2011078754A (en) * 2009-10-09 2011-04-21 Korea Electronics Telecommun Face mask type biological signal measuring apparatus and biological signal management system using this

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7470618B2 (en) 2020-11-04 2024-04-18 綜合警備保障株式会社 Mask ventilation device and screening method
WO2022185509A1 (en) * 2021-03-05 2022-09-09 株式会社トライアンドイー Fever determination label and fever determination mask
JP7162379B1 (en) * 2021-03-05 2022-10-28 株式会社トライアンドイー Fever determination label and fever determination mask
KR20220153447A (en) * 2021-05-11 2022-11-18 국민대학교산학협력단 Measuring apparatus and method for predicting personal thermal sensation
KR102563695B1 (en) * 2021-05-11 2023-08-04 국민대학교산학협력단 Measuring apparatus and method for predicting personal thermal sensation

Also Published As

Publication number Publication date
JP6566047B2 (en) 2019-08-28
JPWO2017110718A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
US8696588B2 (en) Device and method for determining a respiration rate
EP3723602B1 (en) Nasal and oral respiration sensor
JP3737121B2 (en) Apparatus and method for pressure and temperature waveform analysis
CN109937000A (en) Portable spirometer
US10568569B2 (en) Oral appliance for ventilation flow measurement
US20120203128A1 (en) Respiratory rate detection device, system and method
JP6566047B2 (en) Thermometer
KR101331092B1 (en) Wearable apparatus for measuring respiratory function having a form of eyeglasses
US20160242675A1 (en) Apparatus and method for detecting health deterioration
US20230218228A1 (en) Noninvasive Spontaneous Respiratory Monitoring Device with Micromachined Sensing Elements
CN208319203U (en) A kind of device for sleep apnea syndrome monitoring
CN108523845B (en) Portable metabolism measuring instrument
CN113557556A (en) Head-mounted device, heatstroke prevention system, and moisture replenishment warning system
KR20130087944A (en) Sleep pattern detection device and alarm system of sleep disturbance thereof
CN110785124A (en) Non-invasive apparatus and method for sensing respiratory parameters
GB2551768A (en) Method and apparatus for recording respiratory rate
EP3270782B1 (en) Ventilation measurement devices
CN209826731U (en) Sleep respiratory disorder detection device
US11622728B2 (en) Algorithm for breathing efficiency
US20230405374A1 (en) Methods, apparatuses, and systems for evaluating respiratory protective devices
CN108814607A (en) A kind of clinic device for detecting respiratory and method
WO2020184688A1 (en) Head-mounted device, heat illness prevention system and hydration warning system
KR20170059633A (en) Sleep apnea diagnostic system
JP2023000401A (en) Body temperature estimation system, and body temperature estimation device
CN117794450A (en) System and method for respiratory exercise

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878607

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878607

Country of ref document: EP

Kind code of ref document: A1