WO2017109903A1 - Malfunction cause estimation device and malfunction cause estimation method - Google Patents

Malfunction cause estimation device and malfunction cause estimation method Download PDF

Info

Publication number
WO2017109903A1
WO2017109903A1 PCT/JP2015/086085 JP2015086085W WO2017109903A1 WO 2017109903 A1 WO2017109903 A1 WO 2017109903A1 JP 2015086085 W JP2015086085 W JP 2015086085W WO 2017109903 A1 WO2017109903 A1 WO 2017109903A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimation
cause
model
unit
abnormality
Prior art date
Application number
PCT/JP2015/086085
Other languages
French (fr)
Japanese (ja)
Inventor
康平 丸地
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2015/086085 priority Critical patent/WO2017109903A1/en
Priority to JP2017557591A priority patent/JPWO2017109903A1/en
Publication of WO2017109903A1 publication Critical patent/WO2017109903A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • Embodiments of the present invention relate to an apparatus and a method for estimating a cause of an abnormality using data measured by a sensor.
  • Devices and systems that acquire data from sensors and perform desired control perform desired operations while performing self-diagnosis to ensure that they are always operating in the correct state for stable operation.
  • a notification to that effect is sent to inform the operator or user that an abnormality has occurred.
  • the worker or user who received the notification identifies the cause of the abnormal state and takes appropriate measures according to the cause.
  • the abnormal state detected by the system when an error is issued is the abnormal state at the time of detection, and the cause of the abnormality is unknown.
  • the parts operate while affecting each other, and therefore, the part that has issued an abnormality does not necessarily have a cause.
  • the method using the diagnosis rule is a method of making a diagnosis based on rules of expert knowledge and empirical rules such as “cause C when the value of thermometer A is greater than B”.
  • the method using machine learning is a method of making a diagnosis by constructing a diagnosis model obtained by machine learning of past data for which cause investigation has been completed and classifying which case is similar to the past case.
  • the method using a physical or chemical model is a method of simulating system behavior using, for example, a physical law or chemical formula, and detecting a difference between a simulation result and a measured value to identify an abnormality and identify a cause.
  • a common issue for these diagnostic models is to increase the accuracy (accuracy) of the diagnosis.
  • accuracy accuracy
  • a plurality of causes are listed as candidates, and erroneous determination is likely to occur for a specific failure, and it is necessary to construct a model with higher estimation accuracy.
  • the problem to be solved by the present invention is to enable diagnosis with higher accuracy by performing cause estimation by combining cause estimation models.
  • An abnormality cause estimation apparatus is an abnormality cause estimation apparatus that estimates an abnormality cause of the equipment based on sensor data of a sensor installed in the equipment, and includes a data acquisition unit that acquires the sensor data, and the sensor A first storage unit that stores a first estimation model that estimates an abnormality cause of the facility based on data, a first estimation unit that obtains a first estimation cause based on the first estimation model, and A second storage unit that stores a second estimation model that supplements the first estimation cause, and a correspondence table storage unit that stores a correspondence table that associates the first estimation cause with the second estimation model And when the first estimation cause and the second estimation model are associated with each other by the correspondence table, a second estimation unit that obtains a second estimation cause based on the second estimation model; The first probable cause and the second And a display unit that displays the probable cause.
  • the abnormality cause estimation method of the embodiment includes a data acquisition unit that acquires sensor data of a sensor installed in equipment, and a first estimation model that estimates the cause of abnormality of the equipment.
  • a first estimation unit a correspondence table storing a correspondence table associating the first estimated cause with a second estimated model that supplements the first estimated cause, and a second estimated cause based on the second estimated model
  • An abnormality cause estimation method in an abnormality cause estimation device comprising: the sensor data is acquired by the data acquisition unit; and the first estimation unit is based on the sensor data.
  • the first estimation model estimates the first estimation cause, and in the second estimation unit, the first estimation cause and the first estimation based on the correspondence table stored in the correspondence table storage unit Two estimation models If that is correlated, the second estimation model is a method for estimating a second probable cause.
  • FIG. 1 is a block diagram showing an abnormality cause estimation apparatus of the first embodiment
  • FIG. 2 is a flowchart thereof.
  • the abnormality cause estimation apparatus includes a data acquisition unit 20 that acquires sensor data 10 of equipment to be diagnosed, a first estimation unit 30 that performs cause estimation based on a first estimation model 40A, a first A first storage unit 40 that stores the estimation model 40A, a second estimation unit 50 that performs detailed cause estimation based on the second estimation model 60A, a second storage unit 60 that stores the second estimation model 60A, A correspondence table storage unit 70 that stores the correspondence table 70A and a display unit 80 are provided.
  • Sensor data 10 is sensor data measured by a large number of sensors arranged at various locations of the diagnosis target equipment, and is time-series data composed of measured values and measurement times for each sensor.
  • Sensor data 10 may include state variables inside the system.
  • the data acquisition unit 20 includes a communication unit, and acquires a measurement value of a sensor installed in the facility constantly or at a constant timing.
  • the equipment is connected using a USB or a connection port.
  • log data accumulated in a certain amount of memory in the facility may be acquired via a storage medium such as an SD card or a USB memory (S201).
  • the first estimation unit 30 estimates the cause of the abnormality using the first estimation model 40A in the first storage unit 40 with the sensor data 10 of the facility as an input (S202). Specifically, the first estimation unit 30 corresponds to a calculation location for performing cause estimation, the first storage unit 40 corresponds to a storage device such as a hard disk, and the first estimation model 40A performs cause estimation. This corresponds to a program using an algorithm.
  • the cause estimation in the first estimation unit 30 is executed by an arithmetic device such as a CPU (Central Processing Unit).
  • FIG. 3 shows the configuration of the first estimation unit 30 and the first estimation model 40A.
  • the first estimation model 40A used in the present embodiment includes an input feature quantity list 41, an estimation logic 42, and model meta information 43.
  • the first estimating unit includes a feature calculating unit 31, a model executing unit 32, and a result organizing unit 33.
  • the feature calculation unit 31 calculates a feature amount necessary for the estimation logic 42 from the sensor data 10.
  • the feature quantity required by the estimation logic 42 is defined in the input feature quantity list 41.
  • the input feature quantity list 41 has a description expressing characteristics such as an average value of the measurement data of the sensor A in the input feature quantity list 41, and the feature calculation unit 31 interprets it and calculates a desired feature quantity.
  • the input feature quantity list 41 can be omitted by determining the feature quantity to be used in advance.
  • the model execution unit 32 performs cause estimation based on the estimation logic 42 using the feature amount obtained by the feature calculation unit 31.
  • the estimation logic 42 performs cause estimation from the input feature quantity.
  • the cause estimation here is to calculate a value (here called accuracy) that quantifies the possibility of each cause.
  • the result organizing unit 33 finally organizes the accuracy of each cause.
  • FIG. 4 shows an example. When the identification is uniquely specified, the accuracy of the identified cause is 1, and when the accuracy is limited to a plurality, the accuracy of the cause is 1. When the accuracy is originally calculated, the value is used as it is. In addition, all possible causes may be listed in the cause name column, but only main ones may be listed as shown in FIG. 4 and the others may be arranged in other ways.
  • the estimation logic 42 is based on logic by machine learning.
  • the logic by machine learning is a logic constructed using an algorithm that solves a classification problem. Examples of these algorithms include decision trees, random forests, SVM (Support Vector Machine), and neural networks. An algorithm combining these algorithms may be used.
  • the model meta information 43 is meta information related to the model. Similar to the input feature 41, it is not always necessary, but if this information is present, the display unit 80 can provide a user-friendly display. Examples of the model meta information 43 include a model name, a model correct answer rate, a model mixing matrix, and a cause name list to be estimated by the model.
  • the first estimation model 40A is preferably an algorithm that can cover all estimated causes.
  • the second estimation unit 50 determines whether or not the second estimation model 60A corresponding to the cause of the abnormality cause obtained in S202 exists in the second storage unit 60. Is performed by examining the correspondence table 70A in the correspondence table storage unit 70.
  • the second estimation unit 50 corresponds to a calculation location
  • the second storage unit 60 and the correspondence table storage unit 70 correspond to a storage device such as a hard disk
  • the second estimation model is This corresponds to a program using an algorithm for estimating the cause.
  • the cause estimation in the second estimation unit 50 is executed using an arithmetic device such as a CPU.
  • the same storage device may be used as the storage device corresponding to the first storage unit 40, the second storage unit 60, and the correspondence table storage unit 70.
  • the correspondence table 70A and the second estimation model 60A are created in advance from past data and empirical rules. Specifically, when the estimation result from the past data by the first estimation model 40A includes a plurality of estimation causes, or the estimation cause is different from the actual estimation cause (probable estimation cause 2), the second estimation model 60A that supplements the estimation cause is constructed.
  • the correspondence table 70A is a table in which the correspondence between the estimation cause in the first estimation unit 30 and the constructed second estimation model 60A is created as a table. That is, the second estimation model 60A is a model used to increase the accuracy of the estimation cause of the first estimation unit 30.
  • the second estimation model 60A to be selected differs depending on the estimation cause of the first estimation unit 30
  • the second estimation model 60A to be additionally estimated is associated using the correspondence table 70A.
  • the second estimation model 60A can be easily extracted.
  • FIG. 6 is an example of the correspondence table 70A.
  • the estimation cause is associated with the second estimation model 60A. Further, it is possible to associate with the second estimation model 60A using a conditional expression based on the accuracy of the estimation cause.
  • the estimated cause of the first estimating unit 30 is compared with the correspondence table 70A, and if there is a second estimated model corresponding to the estimated cause (in the case of Yes), the process proceeds to S204, and if not, the process proceeds to S205. Proceed to
  • the second estimation unit 50 performs detailed cause estimation using the second estimation model 60A obtained from the correspondence table 70A in the correspondence table storage unit 70.
  • FIG. 7 is a configuration diagram of the second estimation unit 50 and the second estimation model 60A. Comparing FIG. 3 and FIG. 7, a second estimation model selection unit 51 is added to the second estimation unit 50, and the other features calculation unit 52 and model execution unit 53 are the same as those of the first estimation unit 30. And a result organizing unit 54.
  • the second estimation unit 50 is a part that determines the second estimation model 60A used from the correspondence table 70A. If the second estimation model is determined, the remaining operations are estimated in the same manner as the first estimation unit 30 and thus will not be described.
  • the estimated cause of the first estimating unit 30 or the estimated causes of both the first estimating unit 30 and the second estimating unit 50 are displayed on the display unit 80 in S205. indicate. That is, when S203 is No, the display unit 80 displays the estimation cause and the estimation accuracy of the first estimation model so that the user can easily understand. When S203 is Yes, the display unit 80 can display not only the estimated cause of the first estimated model but also the detailed estimated cause based on the second estimated model.
  • the display unit 80 corresponds to a computer monitor, a liquid crystal monitor of a portable terminal, or the like.
  • FIG. 8 shows an example of a screen display in which the estimated causes based on the first estimated model and the estimated causes of the second estimated model are arranged.
  • On the left side of FIG. 8 is an example in which bar graphs are displayed in ascending order of diagnostic accuracy of the first estimation model 40A, and the recall of each cause A and B of the first estimation model 40A is represented by a line graph. .
  • the model meta information 43 has a mixing matrix.
  • the mixing matrix is a table in which the diagnosis results of the diagnosis logic and the actual results are arranged (FIG. 9). In the example of FIG. 9, the number of times that cause A is correctly diagnosed as cause A is 10 times, and the number of times that cause C is mistakenly diagnosed as cause B is one.
  • the recall is an index representing the certainty of the diagnosis result of the diagnosis logic, and is a ratio that the estimated cause is correct with respect to a specific estimated cause.
  • the recall of cause A is 10/17
  • the recall of cause B is 5/9
  • the recall of cause C is 1/3.
  • a more detailed diagnosis result based on the second estimation model is represented by a pie chart, and the model AB, which is the name of the second estimation model, and the diagnostic accuracy rate thereof are displayed.
  • the algorithm related to the estimation logic 42 of the abnormality cause estimation device of the embodiment is based on logic based on machine learning, but other than that, rule-based logic and logic based on a physical or chemical model are also conceivable.
  • FIG. 5 shows an example of logic based on the rule base and an example based on the if-then rule.
  • a threshold value is provided for the feature amount calculated by the feature calculation unit 31 and divided into cases. In this case, if the feature amount A is 90, the feature amount B is 70, and the feature amount C is 100, the cause B or the cause C is estimated, the feature amount A is 90, the feature amount B is 40, and the feature amount C is 100. If there is any, it is estimated as other.
  • These threshold values are determined based on past data and empirical rules.
  • Logic based on a physical or chemical model is a method of estimating the cause of an abnormality by simulating the system behavior to be compared and looking at the difference between the measured value and the simulated value. As described above, in addition to machine learning, various logics can be used to obtain an estimated cause.
  • the first estimation model 40A alone is used for estimation. Makes it possible to estimate the cause with high accuracy.
  • the correspondence table 70A can easily extract the second estimation model 60A that improves the accuracy of the estimation cause in the first estimation unit 30.
  • FIG. 10 is a first modification of the flowchart of the cause estimation process. Since step S1001 is different from FIG. 2, this portion will be described.
  • Process S1001 is a process of confirming with the user whether to perform estimation using the second estimation model when a correspondence table exists. If the user wishes to estimate, the cause is estimated using the second estimation model (S204). When the user does not wish to estimate (for example, when there is no estimation instruction), the estimation cause is displayed without estimating the second estimation model (S205).
  • FIG. 11 shows an example of a screen display when asking the user whether to use the estimated model.
  • the display of the first estimation model is the same as in FIG. At this time, the accuracy and the reproducibility of cause A and cause B are as high as each other.
  • model AB and model AB + are listed as candidates from the correspondence table 70A.
  • Model AB is a model for diagnosing either cause A or cause B
  • model AB + is a model for diagnosing whether cause A and cause B are occurring simultaneously.
  • This information can be obtained by the user by looking at the diagnosis target (FIG. 11).
  • the diagnosis target can be output by registering this information in the model meta information 63.
  • by registering the correct answer rate in the model meta information 63 it can be presented to the user as shown in FIG.
  • the user examines whether to estimate by referring to these pieces of information, and if so, marks the selection checklist and informs the apparatus of the model to be estimated by pressing the estimation execution button based on the selected model.
  • the user can select which estimation model to use when performing the cause estimation in the second estimation unit 50, it is used in detail for diagnosis of the cause of the abnormality. In the case of a person, an estimated cause with higher accuracy can be obtained.
  • FIG. 12 is a second modification of the flowchart of the cause estimation process.
  • the estimation with the first estimation model 40A after the estimation with the first estimation model 40A, the estimation with the second estimation model 60A is performed only once, but in FIG. 12, the second estimation model 60A with respect to the second estimation model 60A is performed. We also estimate.
  • the estimation cause in the second estimation unit 50 is associated with the second estimation model by the correspondence table 70A, and the second estimation model is estimated by the second estimation model. This cause estimation is repeated until the estimation cause in the second estimation unit 50 and the second estimation model are not associated in the correspondence table 70A.
  • the estimation cause and the second estimation model of the second estimation unit 50 are further added. Can be uniquely determined by associating them with the correspondence table 70A.
  • FIG. 13 is a block diagram showing the second embodiment.
  • Implementation procedures of this embodiment include a procedure for performing cause estimation and a procedure for constructing a second estimation model. Since the former is not different from the first embodiment, a procedure for constructing a second estimation model newly increased in the present embodiment will be described.
  • FIG. 14 is a flowchart of this procedure, and the components of FIG. 13 will be described according to the procedure.
  • the first evaluation model 40A is evaluated by the model evaluation unit 90 using the sensor abnormality data in the sensor abnormality data storage unit 100 (S1401).
  • the sensor abnormality data storage unit corresponds to a database storing sensor abnormality data, and is stored in a hard disk, a USB memory, a ROM, or the like. Further, the sensor abnormality data storage unit may be in an external server or the like, and sensor abnormality data may be acquired therefrom.
  • the model evaluation unit 90 is a calculation location and is processed by a CPU or the like.
  • the sensor abnormality data is data in which the cause of the abnormality is added to the sensor data 10 when an abnormality of the facility has occurred in the past.
  • the model evaluation unit 90 uses the data in the sensor abnormality data storage unit 100 to evaluate the first estimation model 40A.
  • the evaluation procedure is the same as that in S202 of FIG. 2, and the diagnosis result and the mixing matrix of each data are calculated as the evaluation result.
  • the diagnosis result is obtained by calculating the accuracy of each cause for each sensor abnormality data, and can be organized as shown in FIG.
  • the mixing matrix is an arrangement of the number of diagnosis results and actual results, and is arranged as shown in FIG.
  • the diagnosis result is calculated based on the accuracy shown in FIG.
  • the cause with the highest accuracy may be selected, or a threshold value may be provided for each cause, and all the causes that are equal to or higher than the threshold value may be selected. You may select using the ratio and difference of a threshold and accuracy.
  • a mixing matrix including a column such as “cause A or cause C” is obtained as shown in FIG. If the cause of abnormality is a combination of a plurality of causes, a mixed matrix including rows such as “cause A and cause C” is obtained as shown in FIG.
  • a second estimation model creation process for multiple causes.
  • S1402 a second estimation model creation process
  • a second estimation model that performs estimation narrowed down from a plurality of candidates is created.
  • FIG. 17 shows the detailed procedure. First, it is confirmed whether the case which estimates multiple causes is high frequency (S1701). This can be confirmed from the mixing matrix.
  • the number of occurrences is the sum of the columns. Whether the number of occurrences is high can be determined by setting a threshold value.
  • a threshold value an absolute number may be set or a ratio of the number of sensor abnormality data may be set.
  • the model construction unit 110 acquires sensor abnormality data of multiple causes from the sensor abnormality data storage unit 100 (S1702). In the case of FIG. 16, the sensor abnormality data of the cause A and the sensor abnormality data of the cause C are acquired from the sensor abnormality data storage unit 100.
  • the model construction unit 110 constructs a model for classifying a plurality of causes using the acquired sensor abnormality data (S1703).
  • a model is constructed as a classification problem of cause A sensor abnormality data and cause C sensor abnormality data.
  • the model is constructed using general machine learning. Major algorithms include decision trees, random forests, SVMs, neural networks, and the like.
  • the second estimation model 60A is constructed for the estimation causes that are difficult to discriminate among the estimation causes in the first estimation model 40A.
  • the configuration may be different from the second estimation model 60A.
  • the model construction unit evaluates the constructed second estimated model (S1704).
  • the evaluation is performed using the sensor abnormality data in the sensor abnormality data storage unit. Since the cause of the abnormality is given to the sensor abnormality data, the accuracy of the model can be understood by evaluating the constructed second estimated model with the sensor abnormality data. The accuracy is calculated mainly using modeling fitting errors and cross validation. At this time, a plurality of classification algorithms can be employed to select a model having the highest evaluation result.
  • the model construction unit 110 is a program that uses an algorithm, and is also a calculation part that evaluates the accuracy of the constructed model. These calculations are performed using a CPU or the like.
  • the second estimation model is to be adopted by judging whether the evaluation result (S1705) is good or bad. Whether it is adopted is determined by the accuracy rate and the threshold value of the F value. Based on the evaluation result of the first estimation model in S1401 of FIG. 14, a threshold value with higher accuracy than the first estimation model is set. If the evaluation result is bad (poor in S1705), the process ends as it is. If the evaluation result is good (good in S1705), the model updating unit 120 updates the second estimated model 60A in the second storage unit 60 and the correspondence table 70A in the correspondence table storage unit 70 (S1706).
  • the actual cause is the sensor abnormality data of the cause A and the sensor abnormality data of the cause C are acquired from the sensor abnormality data storage unit 100.
  • Sensor abnormality data in which cause C occurs at the same time may be acquired, and a model for classifying the three cases in S1703 may be constructed.
  • FIG. 18 shows the detailed procedure. First, it is confirmed whether there are frequent cases of wrong cause estimation (S1801). This can be confirmed from the mixing matrix. In the example of FIG. 19, the cause B is estimated, but the actual cause is A, and there are many erroneous estimates. Whether the number of occurrences is high can be determined by setting a threshold value. As the threshold value, an absolute number may be set or a ratio of the number of sensor abnormality data may be set.
  • the model construction unit 110 acquires sensor abnormality data that is easily mistaken from the sensor abnormality data storage unit 100 (S1802). Data to be acquired is determined according to cases that are easy to make mistakes. In the case of FIG. 19, there are many cases where the case of cause A is mistaken as cause B, but there are few cases where the case of cause B is mistaken as cause A. For this reason, it can be determined that it is difficult to distinguish between cause A and cause B in the case where the first estimation model 40A estimates cause B. Therefore, in S1802, data in which the actual cause is cause A and cause B among the cases estimated by the first estimation model 40A as cause B is acquired, and a model for classifying these is created in S1803.
  • the estimated cause of the first estimated model 40A causes a plurality of estimated causes, or when the estimated cause of the first estimated model 40A is likely to be erroneous.
  • FIG. 22 is a block diagram showing the third embodiment.
  • the implementation procedure includes a procedure for performing cause estimation, a procedure for constructing the second estimation model 60A, and a procedure for constructing a model designated from the outside.
  • the cause estimation procedure is the same as that of the first embodiment and the second estimation model 60A is the same as the second embodiment. Therefore, a newly specified externally specified model is established in the third embodiment.
  • the procedure to do is explained.
  • the procedure is the flowchart of FIG.
  • the external request acquisition unit 130 acquires an external request.
  • the external request is the specification of the model to be created, and is information about the model learning data and the model algorithm.
  • the specifications of the model learning data include the actual cause and the period during which the data was obtained.
  • the model construction unit 110 acquires sensor abnormality data designated from the outside from the sensor abnormality data storage unit 100 (S2302). Subsequently, the model construction unit 110 constructs a second estimated model 60A using the acquired sensor abnormality data and an externally designated algorithm (S2303).
  • the second estimation model 60A is evaluated (S2304), and if the evaluation result is good, the model update unit 120 updates the correspondence table 70A in the second storage unit 60 and the correspondence table storage unit 70. (S2306). Since this procedure is the same as S1704-1706, description thereof is omitted.
  • the second estimation model 60A designated from the outside. If the user is familiar with the diagnosis of the cause of the abnormality and has already narrowed down the cause of the abnormality, the second estimation model 60A can be constructed from the narrowed down cause. Therefore, it is possible to perform estimation intended by the user, leading to improvement in estimation accuracy.
  • FIG. 24 is a block diagram showing the fourth embodiment.
  • the second estimation model 60A designated from the outside can be constructed, whereas in the present embodiment, the first estimation model 40A designated from the outside can be constructed.
  • the external request acquisition unit 130 acquires an external request
  • the model construction unit 110 acquires externally designated sensor abnormality data from the sensor abnormality data storage unit 100 (S2502).
  • the model construction unit 110 constructs the first estimated model 40A using the acquired sensor abnormality data and an externally designated algorithm (S2503).
  • the first estimation model 40A constructed by the model construction unit 110 is evaluated (S2504), and if the evaluation result is good, the model storage unit 120 updates the first storage unit 40 (S2506).
  • the first estimation model 40A designated from the outside.
  • the first estimation model 40A can be constructed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

A problem to be addressed by the present invention is to allow a more reliable diagnosis by combining cause estimation models when carrying out a cause estimation. Provided is a malfunction cause estimation device, comprising: a data acquisition unit which acquires sensor data of a sensor which has been installed in a facility; a first estimation unit which, on the basis of the sensor data, estimates a cause of a malfunction of the facility from a first estimation model; and a correlation table storage unit which stores correlation tables which provide correlations among estimated causes and a second estimation model which augments the estimated causes. The malfunction cause estimation device further comprises: a second estimation unit which, if an association has been made with the second estimation model via the correlation tables, additionally estimates the cause of the malfunction on the basis of the second estimation model; and a display unit which displays the estimated cause.

Description

異常原因推定装置及び異常原因推定方法Abnormal cause estimation apparatus and abnormality cause estimation method
 本発明の実施形態は、センサで測定したデータを用いて異常原因を推定する装置及び方法に関する。 Embodiments of the present invention relate to an apparatus and a method for estimating a cause of an abnormality using data measured by a sensor.
 センサからデータを取得し所望の制御を行う機器、システムでは、安定稼働のため、常に正しい状態で動作しているか自己診断を行いながら、所望の動作を行う。異常状態を検知した場合は、その旨を発報し、作業者や利用者に異常が発生した旨を知らせる。通知を受けた作業者や利用者は、異常状態に陥った原因を特定し、その原因に応じて適切な対処を施す。 ∙ Devices and systems that acquire data from sensors and perform desired control perform desired operations while performing self-diagnosis to ensure that they are always operating in the correct state for stable operation. When an abnormal state is detected, a notification to that effect is sent to inform the operator or user that an abnormality has occurred. The worker or user who received the notification identifies the cause of the abnormal state and takes appropriate measures according to the cause.
 エラー発報の際に、システムが検知した異常状態は、検知した時の異常状態であり、その異常に至る原因までは分からない。多数の部品が複雑に組み合わさって稼働するシステムでは、部品同士が互いに影響を及ぼしながら稼働するため、異常発報をした部品に原因があるとは限らない。隣接した部品の故障や、隣接はしていないが故障影響の伝播を繰り返し、構成上離れた他の部品の故障が原因である可能性もある。 The abnormal state detected by the system when an error is issued is the abnormal state at the time of detection, and the cause of the abnormality is unknown. In a system in which a large number of parts are combined and operated, the parts operate while affecting each other, and therefore, the part that has issued an abnormality does not necessarily have a cause. There may be a failure of an adjacent component or a failure of another component which is not adjacent but repeatedly propagates the influence of the failure and is distant from the structure.
 故障の起きる原因が分かって初めて、復旧の仕方が明確になるため、原因推定を確からしく、迅速に行うことは、これら復旧作業にかかる工数を抑えることに繋がる。 Only after the cause of the failure is known, how to recover is clarified. Accurate and quick estimation of the cause leads to a reduction in man-hours for these recovery operations.
 このように、異常や故障を検知した後の正確かつ迅速な原因究明を支援するシステムとして、診断ルールを用いる方法や機械学習を用いる方法、物理や化学モデルを用いる方法がある。 As described above, there are a method using a diagnosis rule, a method using machine learning, and a method using a physics or chemistry model as a system that supports accurate and quick cause investigation after detecting an abnormality or failure.
 診断ルールを用いる手法は、例えば「温度計Aの値がBより大きい場合は原因Cである」といったように、専門家の知見や経験則をルール化して診断を行う手法である。機械学習を用いる手法は、例えば原因究明が完了している過去データを機械学習した診断モデルを構築し、過去のどの事例に似ているか分類することにより診断を行う手法である。物理や化学モデルを用いる手法は、例えばシステム構成を物理法則や化学式を用いてシステム挙動をシミュレーションし、シミュレーション結果と計測値の差分を見て、異常の検知や原因の特定を行う手法である。 The method using the diagnosis rule is a method of making a diagnosis based on rules of expert knowledge and empirical rules such as “cause C when the value of thermometer A is greater than B”. The method using machine learning is a method of making a diagnosis by constructing a diagnosis model obtained by machine learning of past data for which cause investigation has been completed and classifying which case is similar to the past case. The method using a physical or chemical model is a method of simulating system behavior using, for example, a physical law or chemical formula, and detecting a difference between a simulation result and a measured value to identify an abnormality and identify a cause.
 これらの診断モデルに共通している課題として、診断の確からしさ(確度)を高めることが挙げられる。診断モデルによっては、複数の原因が候補に挙がることや、特定の故障に対し誤判定を起こしやすいケースがあり、より推定確度の高いモデルの構築が必要とされている。 課題 A common issue for these diagnostic models is to increase the accuracy (accuracy) of the diagnosis. Depending on the diagnostic model, there are cases where a plurality of causes are listed as candidates, and erroneous determination is likely to occur for a specific failure, and it is necessary to construct a model with higher estimation accuracy.
特開平8-202444号公報JP-A-8-202444 特開2009-53938号公報JP 2009-53938 A
 本発明が解決しようとする課題は、原因推定モデルを組み合わせて原因推定を実施することで、より確度の高い診断を可能にすることにある。 The problem to be solved by the present invention is to enable diagnosis with higher accuracy by performing cause estimation by combining cause estimation models.
 実施形態の異常原因推定装置は、設備に設置されたセンサのセンサデータに基づいて前記設備の異常原因を推定する異常原因推定装置であって、前記センサデータを取得するデータ取得部と、前記センサデータに基づいて前記設備の異常原因を推定する第一の推定モデルを記憶する第一の記憶部と、前記第一の推定モデルに基づいて第一の推定原因を得る第一の推定部と、前記第一の推定原因を補足する第二の推定モデルを記憶する第二の記憶部と、前記第一の推定原因と前記第二の推定モデルとを対応づける対応表を記憶する対応表記憶部と、前記対応表により前記第一の推定原因と前記第二の推定モデルが対応づけられた場合に、前記第二の推定モデルに基づいて第二の推定原因を得る第二の推定部と、前記第一の推定原因と前記第二の推定原因を表示する表示部と、を有する。 An abnormality cause estimation apparatus according to an embodiment is an abnormality cause estimation apparatus that estimates an abnormality cause of the equipment based on sensor data of a sensor installed in the equipment, and includes a data acquisition unit that acquires the sensor data, and the sensor A first storage unit that stores a first estimation model that estimates an abnormality cause of the facility based on data, a first estimation unit that obtains a first estimation cause based on the first estimation model, and A second storage unit that stores a second estimation model that supplements the first estimation cause, and a correspondence table storage unit that stores a correspondence table that associates the first estimation cause with the second estimation model And when the first estimation cause and the second estimation model are associated with each other by the correspondence table, a second estimation unit that obtains a second estimation cause based on the second estimation model; The first probable cause and the second And a display unit that displays the probable cause.
 また、実施形態の異常原因推定方法は、設備に設置されたセンサのセンサデータを取得するデータ取得部と、前記設備の異常原因を推定する第一の推定モデルにより第一の推定原因を得る第一の推定部と、前記第一の推定原因とそれを補足する第二の推定モデルとを対応付ける対応表を記憶する対応表記憶部と、前記第二の推定モデルに基づいて第二の推定原因を得る第二の推定部と、を備えた異常原因推定装置における異常原因推定方法であって、前記センサデータを前記データ取得部で取得し、前記第一の推定部において、前記センサデータに基づいて前記第一の推定モデルが前記第一の推定原因を推定し、前記第二の推定部において、前記対応表記憶部に記憶された前記対応表に基づいて前記第一の推定原因と前記第二の推定モデルが対応づけられた場合に、前記第二の推定モデルが第二の推定原因を推定する方法である。 In addition, the abnormality cause estimation method of the embodiment includes a data acquisition unit that acquires sensor data of a sensor installed in equipment, and a first estimation model that estimates the cause of abnormality of the equipment. A first estimation unit, a correspondence table storing a correspondence table associating the first estimated cause with a second estimated model that supplements the first estimated cause, and a second estimated cause based on the second estimated model An abnormality cause estimation method in an abnormality cause estimation device comprising: the sensor data is acquired by the data acquisition unit; and the first estimation unit is based on the sensor data. The first estimation model estimates the first estimation cause, and in the second estimation unit, the first estimation cause and the first estimation based on the correspondence table stored in the correspondence table storage unit Two estimation models If that is correlated, the second estimation model is a method for estimating a second probable cause.
第1の実施形態の異常原因推定装置のブロック図である。It is a block diagram of the abnormality cause estimation apparatus of 1st Embodiment. 異常原因推定処理のフローチャートである。It is a flowchart of an abnormality cause estimation process. 第一の推定部と第一の推定モデルの構成図である。It is a block diagram of a 1st estimation part and a 1st estimation model. 推定原因の整理例である。It is an example of arrangement of presumed causes. ルールベースの診断ロジックの一例である。It is an example of a rule-based diagnostic logic. 対応表の一例である。It is an example of a correspondence table. 第二の推定部と第二の推定モデルの構成図である。It is a block diagram of a 2nd estimation part and a 2nd estimation model. 表示部による表示例である。It is an example of a display by a display part. 混合行列の一例である。It is an example of a mixing matrix. 第1の変形例の異常原因推定処理のフローチャートである。It is a flowchart of the abnormality cause estimation process of a 1st modification. ユーザへのモデル選択画面イメージ図である。It is a model selection screen image figure to a user. 第2の変形例の異常原因推定処理のフローチャートである。It is a flowchart of the abnormality cause estimation process of a 2nd modification. 第2の実施形態の異常原因推定装置のブロック図である。It is a block diagram of the abnormality cause estimation apparatus of 2nd Embodiment. 複数原因向け第二の推定モデル構築処理のフローチャートである。It is a flowchart of the 2nd estimation model construction process for multiple causes. モデル評価部の診断結果例である。It is an example of a diagnostic result of a model evaluation part. モデル評価部で作る混合行列の例である。It is an example of a mixing matrix created by the model evaluation unit. 複数原因向け第二の推定モデル作成のフローチャートである。It is a flowchart of preparation of the 2nd estimation model for multiple causes. 間違いやすい結果向け第二の推定モデル構築処理のフローチャートである。It is a flowchart of the 2nd estimation model construction process for the result which is easy to make a mistake. 間違いやすい結果のある混合行列の例1である。It is Example 1 of the mixing matrix with the result which is easy to make a mistake. 間違いやすい結果のある混合行列の例2である。It is Example 2 of the mixing matrix with the result which is easy to make a mistake. 間違いやすい結果のある混合行列の例3である。It is Example 3 of the mixing matrix with the result which is easy to make a mistake. 第3の実施形態の異常原因推定装置のブロック図である。It is a block diagram of the abnormality cause estimation apparatus of 3rd Embodiment. 外部から指定した第二の推定モデルを構築するフローチャートである。It is a flowchart which builds the 2nd estimation model designated from the outside. 第4の実施形態の異常原因推定装置のブロック図である。It is a block diagram of the abnormality cause estimation apparatus of 4th Embodiment. 外部から指定した第一の推定モデルを構築するフローチャートである。It is a flowchart which builds the 1st estimation model designated from the outside.
(第1の実施形態)
 図1が第1の実施形態の異常原因推定装置を示すブロック図であり、図2がそのフローチャートである。
(First embodiment)
FIG. 1 is a block diagram showing an abnormality cause estimation apparatus of the first embodiment, and FIG. 2 is a flowchart thereof.
 第1の実施形態の異常原因推定装置は、診断対象の設備のセンサデータ10を取得するデータ取得部20、第一の推定モデル40Aに基づく原因推定を行う第一の推定部30、第一の推定モデル40Aを記憶する第一の記憶部40、第二の推定モデル60Aに基づく詳細な原因推定を行う第二の推定部50、第二の推定モデル60Aを記憶する第二の記憶部60、対応表70Aを記憶する対応表記憶部70および表示部80を備える。 The abnormality cause estimation apparatus according to the first embodiment includes a data acquisition unit 20 that acquires sensor data 10 of equipment to be diagnosed, a first estimation unit 30 that performs cause estimation based on a first estimation model 40A, a first A first storage unit 40 that stores the estimation model 40A, a second estimation unit 50 that performs detailed cause estimation based on the second estimation model 60A, a second storage unit 60 that stores the second estimation model 60A, A correspondence table storage unit 70 that stores the correspondence table 70A and a display unit 80 are provided.
 センサデータ10は、診断対象の設備の各所に配置された多数のセンサが計測しているセンサデータであり、センサごとに計測値、計測時刻から構成される時系列データである。 Sensor data 10 is sensor data measured by a large number of sensors arranged at various locations of the diagnosis target equipment, and is time-series data composed of measured values and measurement times for each sensor.
 センサデータ10にはシステム内部の状態変数が含まれてもよい。データ取得部20は、通信手段を備え、設備に設置されたセンサの計測値を常時、または一定タイミングで取得する。設備へは、USBや接続ポート等を用いて接続される。また、設備のメモリに一定以上蓄積されたログデータをSDカードやUSBメモリといった記憶媒体経由で取得しても良い(S201)。 Sensor data 10 may include state variables inside the system. The data acquisition unit 20 includes a communication unit, and acquires a measurement value of a sensor installed in the facility constantly or at a constant timing. The equipment is connected using a USB or a connection port. In addition, log data accumulated in a certain amount of memory in the facility may be acquired via a storage medium such as an SD card or a USB memory (S201).
 第一の推定部30では、設備のセンサデータ10を入力として、第一の記憶部40内の第一の推定モデル40Aを用いて、異常原因の原因推定を行う(S202)。具体的に、第一の推定部30は、原因推定を行う演算箇所に該当し、第一の記憶部40は、ハードディスク等の記憶装置に該当し、第一の推定モデル40Aは原因推定を行うアルゴリズムを用いたプログラム等に該当する。第一の推定部30での原因推定は、CPU(中央演算処理装置)等の演算装置により実行される。 The first estimation unit 30 estimates the cause of the abnormality using the first estimation model 40A in the first storage unit 40 with the sensor data 10 of the facility as an input (S202). Specifically, the first estimation unit 30 corresponds to a calculation location for performing cause estimation, the first storage unit 40 corresponds to a storage device such as a hard disk, and the first estimation model 40A performs cause estimation. This corresponds to a program using an algorithm. The cause estimation in the first estimation unit 30 is executed by an arithmetic device such as a CPU (Central Processing Unit).
 図3は、第一の推定部30と第一の推定モデル40Aの構成を示している。本実施形態で用いる第一の推定モデル40Aは、入力特徴量リスト41、推定ロジック42、およびモデルメタ情報43を含む。第一の推定部は、特徴算出部31、モデル実行部32、結果整理部33を含む。特徴算出部31では、センサデータ10から、推定ロジック42に必要となる特徴量の算出を行う。推定ロジック42が必要とする特徴量は、入力特徴量リスト41に定義されている。 FIG. 3 shows the configuration of the first estimation unit 30 and the first estimation model 40A. The first estimation model 40A used in the present embodiment includes an input feature quantity list 41, an estimation logic 42, and model meta information 43. The first estimating unit includes a feature calculating unit 31, a model executing unit 32, and a result organizing unit 33. The feature calculation unit 31 calculates a feature amount necessary for the estimation logic 42 from the sensor data 10. The feature quantity required by the estimation logic 42 is defined in the input feature quantity list 41.
 例えば、センサAの測定データの、ある期間の平均値といった特徴を表現する記述が入力特徴量リスト41にあり、特徴算出部31はそれを解釈して、所望の特徴量を計算する。尚、予め用いる特徴量を決めておくなどして、入力特徴量リスト41を省くことも可能である。 For example, the input feature quantity list 41 has a description expressing characteristics such as an average value of the measurement data of the sensor A in the input feature quantity list 41, and the feature calculation unit 31 interprets it and calculates a desired feature quantity. Note that the input feature quantity list 41 can be omitted by determining the feature quantity to be used in advance.
 モデル実行部32は特徴算出部31で得た特徴量を用い、推定ロジック42に基づく原因推定を行う。推定ロジック42は、入力した特徴量から、原因推定を行う。ここでいう原因推定とは、各原因である可能性を定量化した値(ここでは確度と呼ぶ)を算出することである。結果整理部33では、最終的に各原因の確度を整理する。図4がその例であり、一意に特定した場合は特定した原因の確度が1となり、複数に絞った場合はそれら原因の確度を1とした例である。元々確度を算出している場合は、その値をそのまま用いる。また、原因名の欄には考えられる原因全てを列挙しても良いが、図4のように主要なもののみを列挙し、それ以外をその他のように整理しても良い。 The model execution unit 32 performs cause estimation based on the estimation logic 42 using the feature amount obtained by the feature calculation unit 31. The estimation logic 42 performs cause estimation from the input feature quantity. The cause estimation here is to calculate a value (here called accuracy) that quantifies the possibility of each cause. The result organizing unit 33 finally organizes the accuracy of each cause. FIG. 4 shows an example. When the identification is uniquely specified, the accuracy of the identified cause is 1, and when the accuracy is limited to a plurality, the accuracy of the cause is 1. When the accuracy is originally calculated, the value is used as it is. In addition, all possible causes may be listed in the cause name column, but only main ones may be listed as shown in FIG. 4 and the others may be arranged in other ways.
 推定ロジック42としては、機械学習によるロジックを基本としている。機械学習によるロジックは、分類問題を解くアルゴリズムを用いて構築したロジックである。これらアルゴリズムとして、決定木、ランダムフォレスト、SVM(Support Vector Machine)、ニューラルネット等が挙げられる。これらアルゴリズムを組み合わせたアルゴリズムでもよい。 The estimation logic 42 is based on logic by machine learning. The logic by machine learning is a logic constructed using an algorithm that solves a classification problem. Examples of these algorithms include decision trees, random forests, SVM (Support Vector Machine), and neural networks. An algorithm combining these algorithms may be used.
 モデルメタ情報43はモデルに関するメタ情報である。入力特徴量41と同様必ずしも必要ではないが、この情報があると、表示部80で利用者により分かり易い表示を提供できる。モデルメタ情報43の例として、モデル名、モデルの正解率、モデルの混合行列、モデルが推定対象とする原因名リストが挙げられる。 The model meta information 43 is meta information related to the model. Similar to the input feature 41, it is not always necessary, but if this information is present, the display unit 80 can provide a user-friendly display. Examples of the model meta information 43 include a model name, a model correct answer rate, a model mixing matrix, and a cause name list to be estimated by the model.
 第一の推定モデル40Aは、推定されるすべての推定原因を網羅できるアルゴリズムとなっているのが好ましい。 The first estimation model 40A is preferably an algorithm that can cover all estimated causes.
 図2のフローチャートに戻って、S203では、第二の推定部50が、S202で得た異常原因の推定原因に対応する第二の推定モデル60Aが第二の記憶部60内に存在するかどうかを、対応表記憶部70内の対応表70Aを調べることにより行う。 Returning to the flowchart of FIG. 2, in S203, the second estimation unit 50 determines whether or not the second estimation model 60A corresponding to the cause of the abnormality cause obtained in S202 exists in the second storage unit 60. Is performed by examining the correspondence table 70A in the correspondence table storage unit 70.
 第一の推定部30と同様、第二の推定部50は演算箇所に該当し、第二の記憶部60と対応表記憶部70はハードディスク等の記憶装置に該当し、第二の推定モデルは原因推定を行うアルゴリズムを用いたプログラム等に該当する。第二の推定部50での原因推定は、CPU等の演算装置を用いて実行される。また、第一の記憶部40、第二の記憶部60、対応表記憶部70に該当する記憶装置は、同一の記憶装置を用いても良い。 Similar to the first estimation unit 30, the second estimation unit 50 corresponds to a calculation location, the second storage unit 60 and the correspondence table storage unit 70 correspond to a storage device such as a hard disk, and the second estimation model is This corresponds to a program using an algorithm for estimating the cause. The cause estimation in the second estimation unit 50 is executed using an arithmetic device such as a CPU. Moreover, the same storage device may be used as the storage device corresponding to the first storage unit 40, the second storage unit 60, and the correspondence table storage unit 70.
 対応表70Aと第二の推定モデル60Aは、過去のデータや経験則からあらかじめ作成されるものである。具体的には、過去のデータから第一の推定モデル40Aで推定した結果が、複数の推定原因を含んでいた場合や、推定原因が実際の推定原因とは異なっていた場合(間違いやすい推定原因がある場合)に、推定原因を補足する第二の推定モデル60Aの構築を行う。第一の推定部30での推定原因と、構築された第二の推定モデル60Aとの対応関係を表として作成したのが対応表70Aである。つまり、第二の推定モデル60Aは、第一の推定部30の推定原因の確度を高めるために用いるモデルである。 The correspondence table 70A and the second estimation model 60A are created in advance from past data and empirical rules. Specifically, when the estimation result from the past data by the first estimation model 40A includes a plurality of estimation causes, or the estimation cause is different from the actual estimation cause (probable estimation cause 2), the second estimation model 60A that supplements the estimation cause is constructed. The correspondence table 70A is a table in which the correspondence between the estimation cause in the first estimation unit 30 and the constructed second estimation model 60A is created as a table. That is, the second estimation model 60A is a model used to increase the accuracy of the estimation cause of the first estimation unit 30.
 第一の推定部30の推定原因により、選択する第二の推定モデル60Aが異なるため、対応表70Aを用いて、追加で推定を行うべき第二の推定モデル60Aの対応付けをする。 Since the second estimation model 60A to be selected differs depending on the estimation cause of the first estimation unit 30, the second estimation model 60A to be additionally estimated is associated using the correspondence table 70A.
 対応表70Aを用いることにより、第二の推定モデル60Aの抽出を容易にできる。 By using the correspondence table 70A, the second estimation model 60A can be easily extracted.
 図6が対応表70Aの一例である。推定原因と第二の推定モデル60Aとの対応付けをする。また、推定原因の確度による条件式を用いて第二の推定モデル60Aと対応付けすることもできる。 FIG. 6 is an example of the correspondence table 70A. The estimation cause is associated with the second estimation model 60A. Further, it is possible to associate with the second estimation model 60A using a conditional expression based on the accuracy of the estimation cause.
 S203において、第一の推定部30の推定原因と対応表70Aを比較し、推定原因に該当する第二の推定モデルが存在すれば(Yesの場合)、S204へ進み、そうでない場合は、S205へと進む。 In S203, the estimated cause of the first estimating unit 30 is compared with the correspondence table 70A, and if there is a second estimated model corresponding to the estimated cause (in the case of Yes), the process proceeds to S204, and if not, the process proceeds to S205. Proceed to
 S204では、第二の推定部50で、対応表記憶部70内の対応表70Aから得られた第二の推定モデル60Aを用いた詳細な原因推定を行う。図7は、第二の推定部50と第二の推定モデル60Aの構成図である。図3と図7を比べると、第二の推定部50に第二の推定モデル選択部51が加わっていて、その他は第一の推定部30と同じような特徴算出部52、モデル実行部53、および結果整理部54を備える。第二の推定部50は、対応表70Aから用いる第二の推定モデル60Aを決める箇所である。第二の推定モデルが決まれば、残る動作は第一の推定部30と同じように原因推定を行うため、説明を省く。 In S204, the second estimation unit 50 performs detailed cause estimation using the second estimation model 60A obtained from the correspondence table 70A in the correspondence table storage unit 70. FIG. 7 is a configuration diagram of the second estimation unit 50 and the second estimation model 60A. Comparing FIG. 3 and FIG. 7, a second estimation model selection unit 51 is added to the second estimation unit 50, and the other features calculation unit 52 and model execution unit 53 are the same as those of the first estimation unit 30. And a result organizing unit 54. The second estimation unit 50 is a part that determines the second estimation model 60A used from the correspondence table 70A. If the second estimation model is determined, the remaining operations are estimated in the same manner as the first estimation unit 30 and thus will not be described.
 S203がNoの場合または、S204が終了した後は、S205で第一の推定部30の推定原因あるいは、第一の推定部30と第二の推定部50の両方の推定原因を表示部80に表示する。つまり、S203がNoの場合、表示部80には第一の推定モデルの推定原因、推定確度を利用者に分かり易いように表示をする。S203がYesの場合、表示部80には第一の推定モデルの推定原因だけでなく、第二の推定モデルに基づく詳細な推定原因も併せて表示することができる。表示部80は、コンピュータのモニターや、携帯端末の液晶モニター等に該当する。 When S203 is No or after S204 is completed, the estimated cause of the first estimating unit 30 or the estimated causes of both the first estimating unit 30 and the second estimating unit 50 are displayed on the display unit 80 in S205. indicate. That is, when S203 is No, the display unit 80 displays the estimation cause and the estimation accuracy of the first estimation model so that the user can easily understand. When S203 is Yes, the display unit 80 can display not only the estimated cause of the first estimated model but also the detailed estimated cause based on the second estimated model. The display unit 80 corresponds to a computer monitor, a liquid crystal monitor of a portable terminal, or the like.
 図8は、第一の推定モデルに基づいた推定原因および第二の推定モデルの推定原因を並べた画面表示の一例を示している。図8の左側には、第一の推定モデル40Aの診断確度の昇順に棒グラフで表示した例であり、第一の推定モデル40Aの各原因AおよびBの再現率を折れ線グラフで表現している。再現率を表示するには、モデルメタ情報43に混合行列があることが前提である。混合行列とは、診断ロジックの診断結果と実際の結果を整理した表である(図9)。図9の例の場合、原因Aを原因Aと正しく診断した回数は10回であり、原因Cを原因Bと誤って診断した回数は1回である。再現率とは診断ロジックの診断結果の確からしさを表した指標であり、特定の推定原因に対し、その推定原因が正しかった割合となる。図9の例では、原因Aの再現率は10/17、原因Bの再現率は5/9原因Cの再現率は1/3となる。 FIG. 8 shows an example of a screen display in which the estimated causes based on the first estimated model and the estimated causes of the second estimated model are arranged. On the left side of FIG. 8 is an example in which bar graphs are displayed in ascending order of diagnostic accuracy of the first estimation model 40A, and the recall of each cause A and B of the first estimation model 40A is represented by a line graph. . In order to display the recall rate, it is assumed that the model meta information 43 has a mixing matrix. The mixing matrix is a table in which the diagnosis results of the diagnosis logic and the actual results are arranged (FIG. 9). In the example of FIG. 9, the number of times that cause A is correctly diagnosed as cause A is 10 times, and the number of times that cause C is mistakenly diagnosed as cause B is one. The recall is an index representing the certainty of the diagnosis result of the diagnosis logic, and is a ratio that the estimated cause is correct with respect to a specific estimated cause. In the example of FIG. 9, the recall of cause A is 10/17, the recall of cause B is 5/9, and the recall of cause C is 1/3.
 図8の右側には、第二の推定モデルに基づいたより詳細な診断結果を円グラフで表現しており、第二の推定モデルの名前であるモデルABやその診断正解率を表示している。 On the right side of FIG. 8, a more detailed diagnosis result based on the second estimation model is represented by a pie chart, and the model AB, which is the name of the second estimation model, and the diagnostic accuracy rate thereof are displayed.
 実施形態の異常原因推定装置の推定ロジック42に関するアルゴリズムは、機械学習によるロジックを基本とするが、それ以外にもルールベースのロジックや物理または化学モデルによるロジックも考えられる。 The algorithm related to the estimation logic 42 of the abnormality cause estimation device of the embodiment is based on logic based on machine learning, but other than that, rule-based logic and logic based on a physical or chemical model are also conceivable.
 図5がルールベースによるロジックの例であり、if-thenルールによる例である。原因A、B、Cのいずれかを原因推定する際に、特徴算出部31で算出された特徴量に閾値を設けて場合分けすることにより行う。この場合、特徴量Aが90、特徴量Bが70、特徴量Cが100であれば原因Bまたは原因Cと推定し、特徴量Aが90、特徴量Bが40、特徴量Cが100であればその他と推定する。これらの閾値は、過去のデータや経験則に基づき決定される。 FIG. 5 shows an example of logic based on the rule base and an example based on the if-then rule. When the cause of any of the causes A, B, and C is estimated, a threshold value is provided for the feature amount calculated by the feature calculation unit 31 and divided into cases. In this case, if the feature amount A is 90, the feature amount B is 70, and the feature amount C is 100, the cause B or the cause C is estimated, the feature amount A is 90, the feature amount B is 40, and the feature amount C is 100. If there is any, it is estimated as other. These threshold values are determined based on past data and empirical rules.
 物理または化学モデルによるロジックは、対照するシステム挙動のシミュレーションを行い、実測値とシミュレーション値の乖離を見て異常原因を推定する方法である。このように、機械学習以外にも推定原因を得るためには様々なロジックを取り得る。 Logic based on a physical or chemical model is a method of estimating the cause of an abnormality by simulating the system behavior to be compared and looking at the difference between the measured value and the simulated value. As described above, in addition to machine learning, various logics can be used to obtain an estimated cause.
 以上のように、第1の実施形態によれば、第一の推定モデル40Aによる推定原因を補足する第二の推定モデル60Aによる推定も行うため、第一の推定モデル40A単体で推定する時よりも確度の高い原因推定を可能にする。また、対応表70Aにより、第一の推定部30での推定原因の確度を向上する第二の推定モデル60Aの抽出を容易にできる。 As described above, according to the first embodiment, since the estimation by the second estimation model 60A that supplements the cause of the estimation by the first estimation model 40A is also performed, the first estimation model 40A alone is used for estimation. Makes it possible to estimate the cause with high accuracy. In addition, the correspondence table 70A can easily extract the second estimation model 60A that improves the accuracy of the estimation cause in the first estimation unit 30.
(第1の実施形態の第1の変形例)
 図10は、原因推定処理のフローチャートの第1の変形例である。図2と異なるのは処理S1001であるため、その部分の説明を行う。処理S1001は対応表が存在している場合、第二の推定モデルを用いた推定を行うか利用者に確認するプロセスである。利用者が推定を希望する場合には、第二の推定モデルによる原因推定を行う(S204)。利用者が推定を希望しない場合は(例えば、推定指示がないとき)、第二の推定モデルの推定を行わずに推定原因の表示を行う(S205)。
(First modification of the first embodiment)
FIG. 10 is a first modification of the flowchart of the cause estimation process. Since step S1001 is different from FIG. 2, this portion will be described. Process S1001 is a process of confirming with the user whether to perform estimation using the second estimation model when a correspondence table exists. If the user wishes to estimate, the cause is estimated using the second estimation model (S204). When the user does not wish to estimate (for example, when there is no estimation instruction), the estimation cause is displayed without estimating the second estimation model (S205).
 図11が利用者に推定モデルを使うか聞く際の画面表示の例である。第一の推定モデルの表示は、図8と同じである。このとき、原因Aと原因Bの確度、再現率とも同程度に高い。対応表70Aより、モデルABとモデルAB+が候補に挙がったとする。モデルABは原因Aと原因Bのどちらかであるかを診断するモデルであり、モデルAB+は原因Aと原因Bが同時に発生しているか診断するモデルとする。この情報は診断対象(図11)を見ることで利用者は得ることが出来る。診断対象はモデルメタ情報63にこの情報を登録しておくことで、出力できる。同様に正解率もモデルメタ情報63に登録することで、図11のように利用者に提示できる。利用者はこれら情報を参考にして、推定するかを検討し、推定する場合は選択チェックリストに印をつけ、選択モデルによる推定実行ボタンの押下により装置に推定するモデルを知らせる。 FIG. 11 shows an example of a screen display when asking the user whether to use the estimated model. The display of the first estimation model is the same as in FIG. At this time, the accuracy and the reproducibility of cause A and cause B are as high as each other. It is assumed that model AB and model AB + are listed as candidates from the correspondence table 70A. Model AB is a model for diagnosing either cause A or cause B, and model AB + is a model for diagnosing whether cause A and cause B are occurring simultaneously. This information can be obtained by the user by looking at the diagnosis target (FIG. 11). The diagnosis target can be output by registering this information in the model meta information 63. Similarly, by registering the correct answer rate in the model meta information 63, it can be presented to the user as shown in FIG. The user examines whether to estimate by referring to these pieces of information, and if so, marks the selection checklist and informs the apparatus of the model to be estimated by pressing the estimation execution button based on the selected model.
 図11のように、利用者に第二の推定モデル一覧を閲覧できるようにすることで、システムが選択した第二の推定モデル以外のモデルの実行も可能にできる。 As shown in FIG. 11, by allowing the user to browse the second estimated model list, it is possible to execute a model other than the second estimated model selected by the system.
 以上のように第1の実施形態の変形例1では、利用者が第二の推定部50での原因推定を行うにあたり、どの推定モデルを用いるかを選択できるため、異常原因の診断に詳しい利用者の場合は、より確度の高い推定原因を得ることができる。 As described above, in the first modification of the first embodiment, since the user can select which estimation model to use when performing the cause estimation in the second estimation unit 50, it is used in detail for diagnosis of the cause of the abnormality. In the case of a person, an estimated cause with higher accuracy can be obtained.
(第1の実施形態の第2の変形例)
 図12は、原因推定処理のフローチャートの第2の変形例である。図2では、第一の推定モデル40Aでの推定のあと、第二の推定モデル60Aでの推定は1回のみとなるが、図12では、第二の推定モデル60Aに対する第二の推定モデル60Aの推定も行う。
(Second modification of the first embodiment)
FIG. 12 is a second modification of the flowchart of the cause estimation process. In FIG. 2, after the estimation with the first estimation model 40A, the estimation with the second estimation model 60A is performed only once, but in FIG. 12, the second estimation model 60A with respect to the second estimation model 60A is performed. We also estimate.
 第二の推定部50では、例えばABCの確度が高かった場合は、1回の原因推定では結果を特定できない可能性があるためである。その場合は、第二の推定部50での推定原因と第二の推定モデルを対応表70Aにより対応づけをし、第二の推定モデルによる第二の推定モデルの推定を行う。第二の推定部50での推定原因と第二の推定モデルが対応表70Aで対応づけられなくなるまで、この原因推定を繰り返す。そのためには、各第二の推定モデル60Aの対応表70Aも定義する必要がある。 This is because, in the second estimation unit 50, for example, when the accuracy of ABC is high, there is a possibility that the result cannot be specified by one cause estimation. In that case, the estimation cause in the second estimation unit 50 is associated with the second estimation model by the correspondence table 70A, and the second estimation model is estimated by the second estimation model. This cause estimation is repeated until the estimation cause in the second estimation unit 50 and the second estimation model are not associated in the correspondence table 70A. For this purpose, it is also necessary to define a correspondence table 70A for each second estimation model 60A.
 以上のように第1の実施形態の変形例2では、第二の推定部50で推定された推定原因が複数あった場合に、さらに第二の推定部50の推定原因と第二の推定モデルを対応表70Aで対応付けることにより推定原因を一意に決定できる。 As described above, in the second modification of the first embodiment, when there are a plurality of estimation causes estimated by the second estimation unit 50, the estimation cause and the second estimation model of the second estimation unit 50 are further added. Can be uniquely determined by associating them with the correspondence table 70A.
(第2の実施形態)
 図13が第2の実施形態を示すブロック図である。本実施形態の実施手順としては、原因推定を行う手順と第二の推定モデルを構築する手順とがある。前者は第1の実施形態と変わらないため、本実施形態で新しく増えた、第二の推定モデルを構築する手順を説明する。図14がこの手順のフローチャートであり、手順にそって、図13の構成要素を説明する。
(Second Embodiment)
FIG. 13 is a block diagram showing the second embodiment. Implementation procedures of this embodiment include a procedure for performing cause estimation and a procedure for constructing a second estimation model. Since the former is not different from the first embodiment, a procedure for constructing a second estimation model newly increased in the present embodiment will be described. FIG. 14 is a flowchart of this procedure, and the components of FIG. 13 will be described according to the procedure.
 まず、センサ異常データ記憶部100にあるセンサ異常データを用いて、モデル評価部90により、第一の推定モデル40Aの評価を行う(S1401)。センサ異常データ記憶部は、センサ異常データを格納したデータベースに該当し、ハードディスク、USBメモリ、ROM等に記憶されているものである。また、センサ異常データ記憶部が外部サーバ等にあり、そこからセンサ異常データを取得しても良い。モデル評価部90は、演算箇所に当たり、CPU等により処理される。 First, the first evaluation model 40A is evaluated by the model evaluation unit 90 using the sensor abnormality data in the sensor abnormality data storage unit 100 (S1401). The sensor abnormality data storage unit corresponds to a database storing sensor abnormality data, and is stored in a hard disk, a USB memory, a ROM, or the like. Further, the sensor abnormality data storage unit may be in an external server or the like, and sensor abnormality data may be acquired therefrom. The model evaluation unit 90 is a calculation location and is processed by a CPU or the like.
 センサ異常データとは、過去に設備の異常が発生した際の、センサデータ10に異常の原因が付与されたデータである。モデル評価部90は、センサ異常データ記憶部100のデータを用いて、第一の推定モデル40Aの評価を行う。評価の手順は、図2のS202と同様であり、評価結果として、各データの診断結果や混合行列を算出する。診断結果はセンサ異常データ毎に各原因の確度を算出したもので、図15のように整理できる。 The sensor abnormality data is data in which the cause of the abnormality is added to the sensor data 10 when an abnormality of the facility has occurred in the past. The model evaluation unit 90 uses the data in the sensor abnormality data storage unit 100 to evaluate the first estimation model 40A. The evaluation procedure is the same as that in S202 of FIG. 2, and the diagnosis result and the mixing matrix of each data are calculated as the evaluation result. The diagnosis result is obtained by calculating the accuracy of each cause for each sensor abnormality data, and can be organized as shown in FIG.
 混合行列は診断結果と実際の結果の発生数を整理したもので、図9のように整理する。診断結果の算出は、図15の確度を基に計算する。最も確度が高い原因を選出しても良いし、各原因に閾値を設けて、閾値以上のものを全て選出しても良い。閾値と確度の比や差を利用して、選出しても良い。複数選出した場合は、図16のように「原因Aまたは原因C」といった列が含まれる混合行列となる。異常原因が複数の原因の組み合わせで起きていた場合は、図16のように「原因Aと原因C」といった行が含まれる混合行列となる。 The mixing matrix is an arrangement of the number of diagnosis results and actual results, and is arranged as shown in FIG. The diagnosis result is calculated based on the accuracy shown in FIG. The cause with the highest accuracy may be selected, or a threshold value may be provided for each cause, and all the causes that are equal to or higher than the threshold value may be selected. You may select using the ratio and difference of a threshold and accuracy. When a plurality is selected, a mixing matrix including a column such as “cause A or cause C” is obtained as shown in FIG. If the cause of abnormality is a combination of a plurality of causes, a mixed matrix including rows such as “cause A and cause C” is obtained as shown in FIG.
 続いて、複数原因向け第二の推定モデル作成処理(S1402)に移る。ここでは、第一の推定モデル40Aの推定原因が複数であった場合に、複数の候補から絞る推定を行う第二の推定モデルを作成する。図17が詳細な手順となる。まず、複数原因を推定する事例が高頻度であるかを確認する(S1701)。これは混合行列から確認できる。 Subsequently, the process proceeds to a second estimation model creation process (S1402) for multiple causes. Here, when there are a plurality of estimation causes of the first estimation model 40A, a second estimation model that performs estimation narrowed down from a plurality of candidates is created. FIG. 17 shows the detailed procedure. First, it is confirmed whether the case which estimates multiple causes is high frequency (S1701). This can be confirmed from the mixing matrix.
 図16の例では、「原因Aまたは原因C」と推定することがあり、その発生数はその列の総和となる。発生数が高頻度であるかどうかは、閾値を設定することで判定できる。閾値は絶対的な数を設定しても良いし、センサ異常データ数の比で設定しても良い。 In the example of FIG. 16, it may be estimated that “cause A or cause C”, and the number of occurrences is the sum of the columns. Whether the number of occurrences is high can be determined by setting a threshold value. As the threshold value, an absolute number may be set or a ratio of the number of sensor abnormality data may be set.
 高頻度でなかった場合(S1701のNo)は、処理を終了する。高頻度であった場合(S1701のYes)は、モデル構築部110にて、複数原因のセンサ異常データをセンサ異常データ記憶部100より取得する(S1702)。図16のケースであれば、実際の原因が原因Aのセンサ異常データと原因Cであるセンサ異常データをセンサ異常データ記憶部100から取得する。 If the frequency is not high (No in S1701), the process ends. When the frequency is high (Yes in S1701), the model construction unit 110 acquires sensor abnormality data of multiple causes from the sensor abnormality data storage unit 100 (S1702). In the case of FIG. 16, the sensor abnormality data of the cause A and the sensor abnormality data of the cause C are acquired from the sensor abnormality data storage unit 100.
 続いて、取得したセンサ異常データを用い、モデル構築部110にて、複数原因を分類するモデルを構築する(S1703)。図16のケースであれば、原因Aのセンサ異常データと原因Cのセンサ異常データの分類問題として、モデルの構築を行う。モデルの構築は一般的な機械学習を用いて行う。主なアルゴリズムとして、決定木、ランダムフォレスト、SVM、ニューラルネット等が挙げられる。 Subsequently, the model construction unit 110 constructs a model for classifying a plurality of causes using the acquired sensor abnormality data (S1703). In the case of FIG. 16, a model is constructed as a classification problem of cause A sensor abnormality data and cause C sensor abnormality data. The model is constructed using general machine learning. Major algorithms include decision trees, random forests, SVMs, neural networks, and the like.
 本実施例の第二の推定モデル60Aでは、第一の推定モデル40Aでの推定原因のうち、判別し難い推定原因に対して第二の推定モデル60Aを構築するため、第1の実施形態の第二の推定モデル60Aとは構成が異なる場合がある。 In the second estimation model 60A of the present embodiment, the second estimation model 60A is constructed for the estimation causes that are difficult to discriminate among the estimation causes in the first estimation model 40A. The configuration may be different from the second estimation model 60A.
 続いて、モデル構築部にて、構築した第二の推定モデルを評価する(S1704)。評価はセンサ異常データ記憶部のセンサ異常データを用いて行う。センサ異常データには、異常の原因が付与されているので、構築された第二の推定モデルをセンサ異常データで評価することによりモデルの確度が解る。主にモデル化の当てはめ誤差や、交差検定を用いて確度を計算する。この際、複数の分類アルゴリズムを採用し、最も評価結果の高いモデルを選択することもできる。モデル構築部110は、アルゴリズムを用いたプログラムであり、構築したモデルの確度を評価する演算箇所でもある。これらの計算の実行はCPU等を用いて行う。 Subsequently, the model construction unit evaluates the constructed second estimated model (S1704). The evaluation is performed using the sensor abnormality data in the sensor abnormality data storage unit. Since the cause of the abnormality is given to the sensor abnormality data, the accuracy of the model can be understood by evaluating the constructed second estimated model with the sensor abnormality data. The accuracy is calculated mainly using modeling fitting errors and cross validation. At this time, a plurality of classification algorithms can be employed to select a model having the highest evaluation result. The model construction unit 110 is a program that uses an algorithm, and is also a calculation part that evaluates the accuracy of the constructed model. These calculations are performed using a CPU or the like.
 続いて、評価結果(S1705)の良し悪しを判断して第二の推定モデルを採用するか決める。採用するかは、正解率やF値の閾値で判定する。図14のS1401の第一の推定モデルの評価結果から第一の推定モデルよりも確度が高くなる閾値を設定する。評価結果が悪い場合(S1705の悪い)は、そのまま処理が終了する。評価結果が良い場合(S1705の良い)は、モデル更新部120により、第二の記憶部60内の第二の推定モデル60Aと対応表記憶部70内の対応表70Aを更新する(S1706)。 Subsequently, it is determined whether or not the second estimation model is to be adopted by judging whether the evaluation result (S1705) is good or bad. Whether it is adopted is determined by the accuracy rate and the threshold value of the F value. Based on the evaluation result of the first estimation model in S1401 of FIG. 14, a threshold value with higher accuracy than the first estimation model is set. If the evaluation result is bad (poor in S1705), the process ends as it is. If the evaluation result is good (good in S1705), the model updating unit 120 updates the second estimated model 60A in the second storage unit 60 and the correspondence table 70A in the correspondence table storage unit 70 (S1706).
 S1702での処理の際、図16のケースであれば、実際の原因が原因Aのセンサ異常データと原因Cであるセンサ異常データをセンサ異常データ記憶部100から取得すると説明したが、原因Aと原因Cが同時に生じるセンサ異常データの取得も行い、S1703にて3ケースを分類するモデルを構築しても良い。 In the case of the process of S1702, in the case of FIG. 16, it has been described that the actual cause is the sensor abnormality data of the cause A and the sensor abnormality data of the cause C are acquired from the sensor abnormality data storage unit 100. Sensor abnormality data in which cause C occurs at the same time may be acquired, and a model for classifying the three cases in S1703 may be constructed.
 S1701にて複数原因の発生数が高頻度である原因の組み合わせが複数存在する場合は、その組み合わせ数分S1702-S1705の処理を繰り返しても良い。 When there are a plurality of combinations of causes having a high frequency of occurrence of multiple causes in S1701, the processes of S1702 to S1705 may be repeated for the number of combinations.
 続いて、間違いやすい結果向け第二の推定モデル作成処理(図14のS1403)に移る。ここでは、第一の推定モデル40Aの推定原因に間違い易いケースがあった場合、誤った推定をしていないか確認する第二の推定モデルを作成する。図18が詳細な手順となる。まず、原因推定を間違える事例が高頻度であるかを確認する(S1801)。これは混合行列から確認できる。図19の例では、原因Bと推定したが、実際の原因がAであり誤った推定が多いケースである。発生数が高頻度であるかどうかは、閾値を設定することで判定できる。閾値は絶対的な数を設定しても良いし、センサ異常データ数の比で設定しても良い。 Subsequently, the process proceeds to the second estimation model creation process (S1403 in FIG. 14) for results that are likely to be mistaken. Here, when there is a case where the estimation cause of the first estimation model 40A is easy to be mistaken, a second estimation model for confirming whether an erroneous estimation is performed is created. FIG. 18 shows the detailed procedure. First, it is confirmed whether there are frequent cases of wrong cause estimation (S1801). This can be confirmed from the mixing matrix. In the example of FIG. 19, the cause B is estimated, but the actual cause is A, and there are many erroneous estimates. Whether the number of occurrences is high can be determined by setting a threshold value. As the threshold value, an absolute number may be set or a ratio of the number of sensor abnormality data may be set.
 高頻度でなかった場合(S1801のNo)は、処理を終了する。高頻度であった場合(S1801のYes)は、モデル構築部110にて、間違いやすいセンサ異常データをセンサ異常データ記憶部100より取得する(S1802)。取得するデータは、間違いやすい事例に応じ、決定する。図19のケースであれば、原因Aの事例を原因Bと誤る事例は多いが、原因Bの事例を原因Aと誤る事例が少ない。そのため、第一の推定モデル40Aが原因Bと推定した事例の中で、原因Aと原因Bの区別が難しいと判断できる。そのため、S1802では、第一の推定モデル40Aが原因Bと推定した事例の内、実際の原因が原因Aと原因Bであるデータを取得し、S1803でこれらを分類するモデルを作成する。 If the frequency is not high (No in S1801), the process is terminated. If the frequency is high (Yes in S1801), the model construction unit 110 acquires sensor abnormality data that is easily mistaken from the sensor abnormality data storage unit 100 (S1802). Data to be acquired is determined according to cases that are easy to make mistakes. In the case of FIG. 19, there are many cases where the case of cause A is mistaken as cause B, but there are few cases where the case of cause B is mistaken as cause A. For this reason, it can be determined that it is difficult to distinguish between cause A and cause B in the case where the first estimation model 40A estimates cause B. Therefore, in S1802, data in which the actual cause is cause A and cause B among the cases estimated by the first estimation model 40A as cause B is acquired, and a model for classifying these is created in S1803.
 図20のケースであれば、原因Aの事例を原因Bと誤る事例も、原因Bの事例を原因Aと誤る事例も多い。そのため、原因Aと原因Bの分類自体が難しい問題であると判断できる。そのため、S1802では、実際の原因が原因Aと原因Bであるデータを取得し、S1803でこれらを分類するモデルを作成する。 In the case of FIG. 20, there are many cases where the case of cause A is mistaken as cause B, and the case of cause B is mistaken as cause A. Therefore, it can be determined that the classification of cause A and cause B is a difficult problem. Therefore, in S1802, data whose actual causes are cause A and cause B are acquired, and a model for classifying these is created in S1803.
 図21のケースでは、原因Aの事例を原因Bと誤る事例も原因Cの事例を原因Bと誤る事例も多い。その逆はどちらも成立していないため、原因Bと推定した事例の中で、原因Aと原因Bと原因Cの区別が難しいと判断できる。そのため、S1802では、第一の推定モデル40Aが原因Bと推定した事例の内、実際の原因が原因Aと原因Bと原因Cであるデータを取得し、S1803でこれらを分類するモデルを作成する。 In the case of FIG. 21, there are many cases where the case of cause A is mistaken as cause B, and the case of cause C is mistaken as cause B. Since the opposite is not true, it can be judged that it is difficult to distinguish between cause A, cause B, and cause C in the case estimated as cause B. Therefore, in S1802, data in which the actual cause is cause A, cause B, and cause C among the cases estimated by cause 40A of the first estimation model 40A are acquired, and a model for classifying these is created in S1803. .
 以降の処理であるS1803-S1806は図17のS1703-S1706と同じであるため、説明は割愛する。 Since S1803 to S1806, which are subsequent processes, are the same as S1703 to S1706 in FIG. 17, description thereof will be omitted.
 図14では、複数原因向け第二の推定モデル作成処理(S1402)と間違いやすい結果向け第二の推定モデル作成処理(S1403)の両方を行う手順を紹介したが、どちらか一方のみを実施するのでも構わない。 In FIG. 14, the procedure for performing both the second estimated model creation process for multiple causes (S1402) and the second estimated model creation process for erroneous results (S1403) has been introduced, but only one of them is performed. It doesn't matter.
 以上のように、第2の実施形態によれば、第一の推定モデル40Aの推定原因が複数の推定原因を生じる場合や第一の推定モデル40Aの推定原因に間違いやすい推定原因がある場合に、過去のセンサ異常データを基に推定確度の高いモデルを自動で構築し再度推定を行うことで、より確度の高い原因推定を可能にする。 As described above, according to the second embodiment, when the estimated cause of the first estimated model 40A causes a plurality of estimated causes, or when the estimated cause of the first estimated model 40A is likely to be erroneous. By automatically constructing a model with high estimation accuracy based on past sensor abnormality data and performing estimation again, it is possible to estimate the cause with higher accuracy.
(第3の実施形態)
 図22が第3の実施形態を示すブロック図である。実施手順としては、原因推定を行う手順と、第二の推定モデル60Aを構築する手順と外部から指定したモデルを構築する手順がある。原因推定を行う手順は第1の実施形態と、第二の推定モデル60Aを構築する手順は第2の実施形態と変わらないため、第3の実施形態で新しく増えた外部から指定したモデルを構築する手順を説明する。その手順が図23のフローチャートである。
(Third embodiment)
FIG. 22 is a block diagram showing the third embodiment. The implementation procedure includes a procedure for performing cause estimation, a procedure for constructing the second estimation model 60A, and a procedure for constructing a model designated from the outside. The cause estimation procedure is the same as that of the first embodiment and the second estimation model 60A is the same as the second embodiment. Therefore, a newly specified externally specified model is established in the third embodiment. The procedure to do is explained. The procedure is the flowchart of FIG.
 まず、外部要求取得部130で、外部からの要求を取得する。ここで外部からの要求とは、作成するモデルのスペックであり、モデルの学習データ、モデルのアルゴリズムについての情報である。モデルの学習データのスペックとして、実際の原因やデータが得られた期間等が挙げられる。外部からの要求を取得したら、モデル構築部110にて、外部から指定したセンサ異常データをセンサ異常データ記憶部100より取得する(S2302)。続いて、取得したセンサ異常データと外部指定のアルゴリズムを用い、モデル構築部110で第二の推定モデル60Aを構築する(S2303)。 First, the external request acquisition unit 130 acquires an external request. Here, the external request is the specification of the model to be created, and is information about the model learning data and the model algorithm. The specifications of the model learning data include the actual cause and the period during which the data was obtained. If the request from the outside is acquired, the model construction unit 110 acquires sensor abnormality data designated from the outside from the sensor abnormality data storage unit 100 (S2302). Subsequently, the model construction unit 110 constructs a second estimated model 60A using the acquired sensor abnormality data and an externally designated algorithm (S2303).
 次に、第二の推定モデル60Aの評価を行い(S2304)、評価結果が良の場合は、モデル更新部120で、第二の記憶部60と対応表記憶部70内の対応表70Aを更新する(S2306)。この手順は、S1704-1706と同じであるため、説明は省略する。 Next, the second estimation model 60A is evaluated (S2304), and if the evaluation result is good, the model update unit 120 updates the correspondence table 70A in the second storage unit 60 and the correspondence table storage unit 70. (S2306). Since this procedure is the same as S1704-1706, description thereof is omitted.
 以上のように、第3の実施形態によれば、外部から指定した第二の推定モデル60Aの構築が可能となる。利用者が異常原因の診断に詳しく、既に異常原因を絞ることが出来ている場合に、絞った原因から第二の推定モデル60Aを構築できる。そのため、利用者が意図した推定を行うことが可能となり、推定確度の向上に繋がる。 As described above, according to the third embodiment, it is possible to construct the second estimation model 60A designated from the outside. If the user is familiar with the diagnosis of the cause of the abnormality and has already narrowed down the cause of the abnormality, the second estimation model 60A can be constructed from the narrowed down cause. Therefore, it is possible to perform estimation intended by the user, leading to improvement in estimation accuracy.
(第4の実施形態)
 図24が第4の実施形態を示すブロック図である。第3の実施形態では、外部から指定した第二の推定モデル60Aの構築が可能であるのに対して、本実施形態では、外部から指定した第一の推定モデル40Aの構築が可能である。
(Fourth embodiment)
FIG. 24 is a block diagram showing the fourth embodiment. In the third embodiment, the second estimation model 60A designated from the outside can be constructed, whereas in the present embodiment, the first estimation model 40A designated from the outside can be constructed.
 ここでは、外部要求取得部130で外部からの要求を取得し、モデル構築部110で外部指定のセンサ異常データをセンサ異常データ記憶部100より取得する(S2502)。取得したセンサ異常データと外部指定のアルゴリズムを用い、モデル構築部110で第一の推定モデル40Aを構築する(S2503)。次に、モデル構築部110で構築した第一の推定モデル40Aの評価を行い(S2504)、評価結果が良の場合は、モデル更新部120で第一の記憶部40を更新する(S2506)。 Here, the external request acquisition unit 130 acquires an external request, and the model construction unit 110 acquires externally designated sensor abnormality data from the sensor abnormality data storage unit 100 (S2502). The model construction unit 110 constructs the first estimated model 40A using the acquired sensor abnormality data and an externally designated algorithm (S2503). Next, the first estimation model 40A constructed by the model construction unit 110 is evaluated (S2504), and if the evaluation result is good, the model storage unit 120 updates the first storage unit 40 (S2506).
 第一の推定モデル40Aを変更するため、対応表70A及び第二の推定モデル60Aについても定義し直すことが好ましい。 In order to change the first estimation model 40A, it is preferable to redefine the correspondence table 70A and the second estimation model 60A.
 以上のように、第4の実施形態によれば、外部から指定した第一の推定モデル40Aの構築が可能になる。新たな異常原因が発生した場合など第一の推定モデル40Aを構築し直す必要が生じた場合や、第一の推定モデル40Aを定義し直してより確度の高い推定を行いたい場合に、外部からの指定により第一の推定モデル40Aを構築できる。 As described above, according to the fourth embodiment, it is possible to construct the first estimation model 40A designated from the outside. When it is necessary to reconstruct the first estimation model 40A, such as when a new abnormality cause occurs, or when it is necessary to redefine the first estimation model 40A and perform more accurate estimation from the outside. By designating, the first estimation model 40A can be constructed.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
10 センサデータ
20 データ取得部
30 第一の推定部
31 特徴算出部
32 モデル実行部
33 結果整理部
40 第一の記憶部
40A 第一の推定モデル
41 入力特徴量リスト
42 推定ロジック
43 モデルメタ情報
50 第二の推定部
51 第二の推定モデル選択部
52 特徴算出部
53 モデル実行部
54 結果整理部
60 第二の記憶部
60A 第二の推定モデル
61 入力特徴量リスト
62 推定ロジック
63 モデルメタ情報
70 対応表記憶部
70A 対応表
80 表示部
90 モデル評価部
100 センサ異常データ記憶部
110 モデル構築部
120 モデル更新部
130 ユーザ要求取得部
DESCRIPTION OF SYMBOLS 10 Sensor data 20 Data acquisition part 30 1st estimation part 31 Feature calculation part 32 Model execution part 33 Result arrangement | positioning part 40 1st memory | storage part 40A 1st estimation model 41 Input feature-value list | wrist 42 Estimation logic 43 Model meta information 50 Second estimation unit 51 Second estimation model selection unit 52 Feature calculation unit 53 Model execution unit 54 Result organizing unit 60 Second storage unit 60A Second estimation model 61 Input feature list 62 Estimation logic 63 Model meta information 70 Correspondence table storage unit 70A Correspondence table 80 display unit 90 model evaluation unit 100 sensor abnormality data storage unit 110 model construction unit 120 model update unit 130 user request acquisition unit

Claims (5)

  1.  設備に設置されたセンサのセンサデータに基づいて前記設備の異常原因を推定する異常原因推定装置であって、
     前記センサデータを取得するデータ取得部と、
     前記センサデータに基づいて前記設備の異常原因を推定するための第一の推定モデルを記憶する第一の記憶部と、
     前記第一の推定モデルに基づいて第一の推定原因を得る第一の推定部と、
     前記第一の推定原因を補足する第二の推定モデルを記憶する第二の記憶部と、
     前記第一の推定原因と前記第二の推定モデルとを対応づける対応表を記憶する対応表記憶部と、
     前記対応表により前記第一の推定原因と前記第二の推定モデルが対応づけられた場合に、前記第二の推定モデルに基づいて第二の推定原因を得る第二の推定部と、
     前記第一の推定原因と前記第二の推定原因を表示する表示部と、
     を備える異常原因推定装置。
    An abnormality cause estimation device for estimating an abnormality cause of the equipment based on sensor data of a sensor installed in the equipment,
    A data acquisition unit for acquiring the sensor data;
    A first storage unit for storing a first estimation model for estimating an abnormality cause of the equipment based on the sensor data;
    A first estimation unit for obtaining a first estimation cause based on the first estimation model;
    A second storage unit that stores a second estimation model that supplements the first estimation cause;
    A correspondence table storage unit that stores a correspondence table that associates the first estimated cause with the second estimated model;
    A second estimation unit that obtains a second estimated cause based on the second estimated model when the first estimated cause and the second estimated model are associated with each other by the correspondence table;
    A display unit for displaying the first estimated cause and the second estimated cause;
    An abnormality cause estimation device comprising:
  2.  前記設備が異常を発生した際のセンサデータに前記設備の異常原因が付与されたセンサ異常データを蓄積したセンサ異常データ記憶部と、
     前記センサ異常データに基づいて前記第一の推定モデルの評価結果を得るモデル評価部と、
     前記モデル評価部の評価結果に基づいて第二の推定モデルの構築を行うモデル構築部と、
     構築された前記第二の推定モデルに応じて、前記第二の記憶部と前記対応表記憶部を更新するモデル更新部と、
     を備える請求項1に記載の異常原因推定装置。
    A sensor abnormality data storage unit that accumulates sensor abnormality data in which the cause of abnormality of the facility is given to sensor data when the facility has an abnormality;
    A model evaluation unit for obtaining an evaluation result of the first estimation model based on the sensor abnormality data;
    A model construction unit for constructing a second estimation model based on the evaluation result of the model evaluation unit;
    In accordance with the constructed second estimation model, a model update unit that updates the second storage unit and the correspondence table storage unit;
    The abnormality cause estimation device according to claim 1, comprising:
  3.  前記設備が異常を発生した際のセンサデータに前記設備の異常原因が付与されたセンサ異常データを蓄積したセンサ異常データ記憶部と、
     前記センサ異常データに基づいて前記第一の推定モデルの評価結果を得るモデル評価部と、
     外部からの要求を取得する外部要求取得部と、
     前記モデル評価部の評価結果と前記外部要求取得部のデータに基づいて第二の推定モデルの構築を行うモデル構築部と、
     構築された前記第二の推定モデルに応じて、前記第二の記憶部と前記対応表記憶部を更新するモデル更新部と、を備える請求項1に記載の異常原因推定装置。
    A sensor abnormality data storage unit that accumulates sensor abnormality data in which the cause of abnormality of the facility is given to sensor data when the facility has an abnormality;
    A model evaluation unit for obtaining an evaluation result of the first estimation model based on the sensor abnormality data;
    An external request acquisition unit for acquiring external requests;
    A model construction unit that constructs a second estimation model based on the evaluation result of the model evaluation unit and the data of the external request acquisition unit;
    The abnormality cause estimation device according to claim 1, further comprising: a model update unit that updates the second storage unit and the correspondence table storage unit according to the constructed second estimation model.
  4.  前記設備が異常を発生した際のセンサデータに前記設備の異常原因が付与されたセンサ異常データを蓄積したセンサ異常データ記憶部と、
     前記センサ異常データに基づいて前記第一の推定モデルの評価結果を得るモデル評価部と、
     外部からの要求を取得する外部要求取得部と、
     前記モデル評価部の評価結果と前記ユーザ要求取得部のデータに基づいて第一の推定モデルの構築を行うモデル構築部と、
     構築された第一の推定モデルに応じて、前記第一の記憶部を更新するモデル更新部と、を備える請求項1に記載の異常原因推定装置。
    A sensor abnormality data storage unit that accumulates sensor abnormality data in which the cause of abnormality of the facility is given to sensor data when the facility has an abnormality;
    A model evaluation unit for obtaining an evaluation result of the first estimation model based on the sensor abnormality data;
    An external request acquisition unit for acquiring external requests;
    A model construction unit for constructing a first estimated model based on the evaluation result of the model evaluation unit and the data of the user request acquisition unit;
    The abnormality cause estimation device according to claim 1, further comprising: a model update unit that updates the first storage unit according to the constructed first estimation model.
  5.  設備に設置されたセンサのセンサデータを取得するデータ取得部と、前記設備の異常原因を推定するための第一の推定モデルにより第一の推定原因を得る第一の推定部と、前記第一の推定原因とそれを補足する第二の推定モデルとを対応付ける対応表を記憶する対応表記憶部と、前記第二の推定モデルに基づいて第二の推定原因を得る第二の推定部と、を備えた異常原因推定装置における異常原因推定方法であって、
     前記センサデータを前記データ取得部で取得し、
     前記第一の推定部において、前記センサデータに基づいて前記第一の推定モデルが前記第一の推定原因を推定し、
     前記第二の推定部において、前記対応表記憶部に記憶された前記対応表に基づいて前記第一の推定原因と前記第二の推定モデルが対応づけられた場合に、前記第二の推定モデルが第二の推定原因を推定する異常原因推定方法。
     
     
     
    A data acquisition unit for acquiring sensor data of a sensor installed in the facility; a first estimation unit for obtaining a first estimation cause by a first estimation model for estimating the cause of abnormality of the facility; and the first A correspondence table storage unit that stores a correspondence table that correlates the estimated cause of the second estimated model supplementing the estimated cause, a second estimating unit that obtains a second estimated cause based on the second estimated model, An abnormality cause estimation method in an abnormality cause estimation device comprising:
    The sensor data is acquired by the data acquisition unit,
    In the first estimation unit, the first estimation model estimates the first estimation cause based on the sensor data,
    In the second estimation unit, when the first estimation cause and the second estimation model are associated with each other based on the correspondence table stored in the correspondence table storage unit, the second estimation model Is an abnormal cause estimation method for estimating a second estimated cause.


PCT/JP2015/086085 2015-12-24 2015-12-24 Malfunction cause estimation device and malfunction cause estimation method WO2017109903A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/086085 WO2017109903A1 (en) 2015-12-24 2015-12-24 Malfunction cause estimation device and malfunction cause estimation method
JP2017557591A JPWO2017109903A1 (en) 2015-12-24 2015-12-24 Abnormal cause estimation apparatus and abnormality cause estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/086085 WO2017109903A1 (en) 2015-12-24 2015-12-24 Malfunction cause estimation device and malfunction cause estimation method

Publications (1)

Publication Number Publication Date
WO2017109903A1 true WO2017109903A1 (en) 2017-06-29

Family

ID=59090904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086085 WO2017109903A1 (en) 2015-12-24 2015-12-24 Malfunction cause estimation device and malfunction cause estimation method

Country Status (2)

Country Link
JP (1) JPWO2017109903A1 (en)
WO (1) WO2017109903A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013224A1 (en) * 2017-07-12 2019-01-17 パナソニックIpマネジメント株式会社 Manufacturing status visualization method, manufacturing status visualization device, and manufacturing system
JP2019101495A (en) * 2017-11-28 2019-06-24 横河電機株式会社 Diagnostic device, diagnostic method, program, and recording medium
JP2019139375A (en) * 2018-02-07 2019-08-22 株式会社Ye Digital Failure prediction method, failure prediction system and failure prediction program
JP2019159729A (en) * 2018-03-12 2019-09-19 株式会社リコー Failure prediction system
JP2020154891A (en) * 2019-03-20 2020-09-24 株式会社 日立産業制御ソリューションズ Outlier factor estimation support device, outlier factor estimation support method and outlier factor estimation support program
JP2020173742A (en) * 2019-04-15 2020-10-22 株式会社三菱総合研究所 Information processor, information processing method, and program
KR20200135453A (en) * 2019-03-26 2020-12-02 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Abnormality determination support device
JP2021087222A (en) * 2019-11-30 2021-06-03 華為技術有限公司Huawei Technologies Co.,Ltd. Fault root cause determining method and apparatus, and computer storage medium
WO2021241578A1 (en) * 2020-05-29 2021-12-02 株式会社ダイセル Abnormal modulation cause identifying device, abnormal modulation cause identifying method, and abnormal modulation cause identifying program
WO2021241577A1 (en) * 2020-05-29 2021-12-02 株式会社ダイセル Abnormal modulation cause display device, abnormal modulation cause display method, and abnormal modulation cause display program
WO2022091291A1 (en) * 2020-10-29 2022-05-05 日本電気株式会社 Information processing device, information processing method, and recording medium
WO2023026879A1 (en) * 2021-08-25 2023-03-02 パナソニックIpマネジメント株式会社 Diagnosis device, diagnosis system, and diagnosis method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202444A (en) * 1995-01-25 1996-08-09 Hitachi Ltd Method and device for diagnosing abnormality of machine facility
JP2009053938A (en) * 2007-08-27 2009-03-12 Toshiba Corp Equipment diagnosing system and equipment-diagnosing method on the basis of multiple model
JP2011243118A (en) * 2010-05-20 2011-12-01 Hitachi Ltd Monitoring diagnosis device and monitoring diagnosis method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08202444A (en) * 1995-01-25 1996-08-09 Hitachi Ltd Method and device for diagnosing abnormality of machine facility
JP2009053938A (en) * 2007-08-27 2009-03-12 Toshiba Corp Equipment diagnosing system and equipment-diagnosing method on the basis of multiple model
JP2011243118A (en) * 2010-05-20 2011-12-01 Hitachi Ltd Monitoring diagnosis device and monitoring diagnosis method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019013224A1 (en) * 2017-07-12 2019-01-17 パナソニックIpマネジメント株式会社 Manufacturing status visualization method, manufacturing status visualization device, and manufacturing system
JP2019101495A (en) * 2017-11-28 2019-06-24 横河電機株式会社 Diagnostic device, diagnostic method, program, and recording medium
JP7106847B2 (en) 2017-11-28 2022-07-27 横河電機株式会社 Diagnostic device, diagnostic method, program, and recording medium
JP2019139375A (en) * 2018-02-07 2019-08-22 株式会社Ye Digital Failure prediction method, failure prediction system and failure prediction program
JP7133315B2 (en) 2018-02-07 2022-09-08 株式会社Ye Digital Failure prediction system
JP2019159729A (en) * 2018-03-12 2019-09-19 株式会社リコー Failure prediction system
JP2020154891A (en) * 2019-03-20 2020-09-24 株式会社 日立産業制御ソリューションズ Outlier factor estimation support device, outlier factor estimation support method and outlier factor estimation support program
KR102398307B1 (en) * 2019-03-26 2022-05-16 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Abnormality judgment support device
KR20200135453A (en) * 2019-03-26 2020-12-02 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Abnormality determination support device
US11392114B2 (en) 2019-03-26 2022-07-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Abnormality determination support apparatus
JP2020173742A (en) * 2019-04-15 2020-10-22 株式会社三菱総合研究所 Information processor, information processing method, and program
US11362884B2 (en) 2019-11-30 2022-06-14 Huawei Technologies Co., Ltd. Fault root cause determining method and apparatus, and computer storage medium
JP7108674B2 (en) 2019-11-30 2022-07-28 華為技術有限公司 Failure root cause determination method and device, and computer storage medium
JP2021087222A (en) * 2019-11-30 2021-06-03 華為技術有限公司Huawei Technologies Co.,Ltd. Fault root cause determining method and apparatus, and computer storage medium
WO2021241577A1 (en) * 2020-05-29 2021-12-02 株式会社ダイセル Abnormal modulation cause display device, abnormal modulation cause display method, and abnormal modulation cause display program
WO2021241578A1 (en) * 2020-05-29 2021-12-02 株式会社ダイセル Abnormal modulation cause identifying device, abnormal modulation cause identifying method, and abnormal modulation cause identifying program
WO2022091291A1 (en) * 2020-10-29 2022-05-05 日本電気株式会社 Information processing device, information processing method, and recording medium
WO2023026879A1 (en) * 2021-08-25 2023-03-02 パナソニックIpマネジメント株式会社 Diagnosis device, diagnosis system, and diagnosis method

Also Published As

Publication number Publication date
JPWO2017109903A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
WO2017109903A1 (en) Malfunction cause estimation device and malfunction cause estimation method
Schlegel et al. Towards a rigorous evaluation of XAI methods on time series
CA2947577C (en) Method and apparatus for processing service requests
CN107391379B (en) Automatic interface testing method and device
US8732524B2 (en) Systems and methods for using a corrective action as diagnostic evidence
EP2960799A1 (en) Defect localization in software integration tests
JP2019016209A (en) Diagnosis device, diagnosis method, and computer program
JP6402541B2 (en) Abnormality diagnosis apparatus and program
US20200143292A1 (en) Signature enhancement for deviation measurement-based classification of a detected anomaly in an industrial asset
US10627265B2 (en) Sensor assignment apparatus and sensor diagnostic apparatus
JP2007293489A (en) Failure diagnostic device for facility equipment and failure diagnostic method for facility equipment
JP6989860B2 (en) Image inspection equipment, image inspection methods and programs
CA3127100C (en) Anomaly detection for predictive maintenance and deriving outcomes and workflows based on data quality
CN109964182A (en) Method and system for vehicle analysis
Gitzel Data Quality in Time Series Data: An Experience Report.
CN105760983A (en) Collection of filed measurement data using a pre-defined workflow
JP2012058885A (en) Failure cause diagnostic method and failure cause diagnostic device
US11004002B2 (en) Information processing system, change point detection method, and recording medium
US9905058B2 (en) Workshop diagnostic system
US20190155267A1 (en) Information processing apparatus, information processing method, and recording medium
JP5911581B2 (en) Logic drawing error location estimation apparatus and method
EP3983955A1 (en) Methods and systems for improving asset operation based on identification of significant changes in sensor combinations in related events
CN106662869B (en) System and method for advanced process control
JP6310865B2 (en) Source code evaluation system and method
JP6715705B2 (en) Failure cause search system and failure cause search method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017557591

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911341

Country of ref document: EP

Kind code of ref document: A1