WO2017104313A1 - Optical film - Google Patents

Optical film Download PDF

Info

Publication number
WO2017104313A1
WO2017104313A1 PCT/JP2016/083342 JP2016083342W WO2017104313A1 WO 2017104313 A1 WO2017104313 A1 WO 2017104313A1 JP 2016083342 W JP2016083342 W JP 2016083342W WO 2017104313 A1 WO2017104313 A1 WO 2017104313A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optical film
vanadium dioxide
pigment red
containing particles
Prior art date
Application number
PCT/JP2016/083342
Other languages
French (fr)
Japanese (ja)
Inventor
博和 小山
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017556417A priority Critical patent/JPWO2017104313A1/en
Publication of WO2017104313A1 publication Critical patent/WO2017104313A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor

Definitions

  • the present invention relates to an optical film, and more particularly to an optical film containing vanadium dioxide-containing particles capable of adjusting the near-infrared light shielding rate in accordance with a temperature environment and hardly affected by the use environment.
  • the near-infrared light shielding film is preferably used due to its high near-infrared light shielding ability in a low-latitude zone near the equator where the illuminance of sunlight is high.
  • the mid to high latitude winter seasons conversely, there is a problem that sunlight is shielded when it is desired to take it into the vehicle or the room as much as possible.
  • thermochromic material that controls the optical properties of near-infrared light shielding and transmission to the near-infrared light shielding film.
  • a typical example is vanadium dioxide (hereinafter also referred to as VO 2 ).
  • VO 2 is known to undergo a phase transition in a temperature region around 67 ° C. and exhibit thermochromic properties. That is, the optical film using the characteristics of VO 2 can exhibit characteristics such as shielding near infrared light that causes heat at high temperatures and transmitting near infrared light at low temperatures. .
  • the summertime is hot, near-infrared light is shielded to suppress the temperature rise in the room, and when the wintertime is cold, light energy can be taken in.
  • thermochromic film can be provided by forming a VO 2 dispersed resin layer in which a VO 2 particle produced by hydrothermal synthesis is dispersed in a transparent resin on a transparent substrate to form a laminate. (For example, see Patent Document 2).
  • thermochromic film When such a thermochromic film is attached to a window and used in a place where the air conditioner wind (cold air) directly hits it, the temperature rise is suppressed even when it is originally intended to block near-infrared light. In some cases, the expected performance does not function due to the influence of the usage environment, such as the fact that it is not shielded.
  • the present invention has been made in view of the above-described problems and situations, and its solution is an optical film containing vanadium dioxide-containing particles capable of adjusting the near-infrared light shielding rate according to the temperature environment, and used. It is to provide an optical film that is not easily affected by the environment.
  • the present inventor has at least one transparent heat insulating layer on the side opposite to the transparent base material of the optical functional layer in the process of examining the cause of the above-mentioned problem.
  • the present inventors have found that an optical film that is not easily affected by the above can be provided, and have reached the present invention.
  • An optical film having an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties on a transparent substrate An optical film comprising at least one transparent heat insulating layer on the side of the optical functional layer opposite to the transparent substrate.
  • the transparent substrate or the transparent heat insulating layer, or the layer between the transparent substrate and the transparent heat insulating layer contains a dye or pigment that absorbs light within a light wavelength range of 400 to 700 nm.
  • Item 3. The optical film according to item 1 or 2, which is characterized.
  • the average optical absorptance of the optical film in the light wavelength range of 400 to 700 nm is in the range of 20 to 80% at 23 ° C., any one of items 1 to 3
  • the optical film of the present invention has an optical functional layer in which vanadium dioxide-containing particles having thermochromic properties are contained on a transparent substrate, and at least 1 on the opposite side of the optical functional layer from the transparent substrate. It has the transparent heat insulation layer of a layer, It is characterized by the above-mentioned. This makes it possible to provide an optical film that is not easily affected by the use environment.
  • the transparent base material, the optical functional layer, and the transparent heat insulation layer are laminated in this order so as to sandwich the optical function layer, so that the transparent base material and the transparent heat insulation layer serve as a buffer, and are used for the optical function layer.
  • the effect of the environment is suppressed, and it is thought that the chromic property can be switched according to the degree of heating of the optical functional layer by sunlight.
  • Schematic sectional view showing a basic configuration example of the optical film of the present invention Schematic sectional view showing a basic configuration example of the optical film of the present invention
  • Schematic sectional view showing a basic configuration example of the optical film of the present invention Schematic sectional view showing a basic configuration example of the optical film of the present invention
  • Schematic sectional view showing a basic configuration example of the optical film of the present invention Schematic sectional view showing a basic configuration example of the optical film of the present invention
  • Schematic sectional view showing a basic configuration example of the optical film of the present invention Schematic sectional view showing a basic configuration example of the optical film of the present invention
  • Schematic sectional view showing a basic configuration example of the optical film of the present invention Schematic process drawing showing an example of a solvent replacement processing apparatus applicable to the present invention
  • the optical film of the present invention has an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties on a transparent substrate, and at least one layer on the opposite side of the optical functional layer from the transparent substrate. It has a transparent heat insulation layer. This feature is a technical feature common to the claimed invention.
  • the thermal resistance of the transparent heat insulating layer is within the range of 1.0 ⁇ 10 ⁇ 4 to 2.5 ⁇ 10 ⁇ 3 m 2 ⁇ K / W because it is not easily affected by the use environment. Preferably there is.
  • the transparent substrate or the transparent heat insulating layer, or the layer between the transparent substrate and the transparent heat insulating layer contains a dye or pigment that absorbs light in the light wavelength range of 400 to 700 nm.
  • Dye or pigment that absorbs light within the light wavelength range of 400-700 nm is heated by absorbing sunlight, and heat is transferred to the optical functional layer containing vanadium dioxide-containing particles. The chromic switching according to the heating degree of sunlight can be performed more effectively without receiving the light.
  • the average light absorption rate of the optical film within the light wavelength range of 400 to 700 nm is 23 ° C. It is preferably in the range of 20 to 85%.
  • representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
  • the optical film of the present invention has an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties on a transparent substrate, and at least one layer on the opposite side of the optical functional layer from the transparent substrate. It has the transparent heat insulation layer of this.
  • transparent means that the average light transmittance in the visible light region is 30% or more, preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more. is there.
  • a dye or pigment that absorbs light in the light wavelength range of 400 to 700 nm is formed in the transparent base material or the transparent heat insulating layer, or the layer between the transparent base material and the transparent heat insulating layer. It is a preferable aspect that it is contained.
  • the dye or pigment that absorbs light in the light wavelength range of 400 to 700 nm is not particularly limited as long as it is a material that absorbs light in the range of 400 to 700 nm, but it is maximum within the range of 350 to 750 nm.
  • a dye or pigment having an absorption wavelength is more preferable because it can efficiently absorb light in the range of 400 to 700 nm.
  • the “dye” is used as a coloring material to be colored and is dissolved in any solvent such as water or an organic solvent.
  • “Pigment” refers to a pigment that is used as a coloring material to be colored and is in the form of a fine powder of a pigment that does not dissolve in water or an organic solvent.
  • specific examples of the dye having the maximum absorption wavelength in the light wavelength range of 350 to 750 nm include anthraquinone dyes, phthalocyanine dyes, triphenylmethane dyes, triarylmethane dyes, and indigo dyes. Etc.
  • pigments compounds classified as pigments in the color index (CI; issued by The Society of Dyersand Colorists), specifically, the following color index (CI) numbers are given. Can be mentioned.
  • Pigment red 52 1, C.I. I. Pigment red 53: 1, C.I. I. Pigment red 57, C.I. I. Pigment red 57: 1, C.I. I. Pigment red 57: 2, C.I. I. Pigment red 58: 2, C.I. I. Pigment red 58: 4, C.I. I. Pigment red 60: 1, C.I. I. Pigment red 63: 1, C.I. I. Pigment red 63: 2, C.I. I. Pigment red 64: 1, C.I. I. Pigment red 81: 1, C.I. I. Pigment red 83, C.I. I. Pigment red 88, C.I. I. Pigment red 90: 1, C.I. I.
  • Pigment red 97 C.I. I. Pigment red 101, C.I. I. Pigment red 102, C.I. I. Pigment red 104, C.I. I. Pigment red 105, C.I. I. Pigment red 106, C.I. I. Pigment red 108, C.I. I. Pigment red 112, C.I. I. Pigment red 113, C.I. I. Pigment red 114, C.I. I. Pigment red 122, C.I. I. Pigment red 123, C.I. I. Pigment red 144, C.I. I. Pigment red 146, C.I. I. Pigment red 149, C.I. I. Pigment red 150, C.I. I.
  • the phthalocyanine C.I. I. Pigment blue 15: 3 (maximum absorption wavelength: 630 nm, 720 nm), C.I. I. Pigment Blue 15: 4 (maximum absorption wavelength: 640 nm, 740 nm), C.I. I. Pigment Blue 16 (maximum absorption wavelength: 620 nm, 690 nm) or the like can be preferably used.
  • the optical film of the present invention preferably has an average light absorptance within the range of 20 to 80% at 23 ° C. within the light wavelength range of 400 to 700 nm.
  • the average light absorptance (%) within the light wavelength range of 400 to 700 nm can be determined as follows.
  • Average light absorptance (%) within the light wavelength range of 400 to 700 nm 100- ⁇ (Average spectral transmittance in the range of light wavelength 400 to 700 nm)-(Average spectral reflectance in the range of light wavelength 400 to 700 nm) ⁇
  • the average spectral transmittance and the average spectral reflectance can be measured using a spectrophotometer.
  • the measurement is performed using an ultraviolet-visible near-infrared spectrophotometer V-670 manufactured by JASCO Corporation. Specifically, the temperature inside the temperature-controlled room is set to 23 ° C. and 55% RH so that the temperature of the optical film as the measurement object is 23 ° C., and the optical film is allowed to stand in the temperature-controlled room for 3 hours to equilibrate. After making the state, the above measurement is performed.
  • the spectral transmittance at an optical wavelength of 1300 nm is 50% or more at 23 ° C., since the shielding effect and the transmission effect before and after the phase transition of the vanadium dioxide-containing particles can be effectively used.
  • the spectral transmittance at a light wavelength of 550 nm is preferably in the range of 20 to 60% at 23 ° C. from the viewpoint of coloring of the optical film.
  • the measurement of these spectral transmittances can also use the same spectrophotometer as the above.
  • the coating amount of the coating liquid containing the above-mentioned dye or pigment can be controlled.
  • the coating amount varies depending on the absorption coefficient of the dye or pigment, but is approximately in the range of 0.01 to 1 g as the coating amount per 1 m 2 of the dye or pigment.
  • the optical film of the present invention is characterized in that an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties is sandwiched between a transparent substrate and at least one transparent heat insulating layer. To do.
  • a layer containing a dye or pigment that absorbs light in the light wavelength range of 400 to 700 nm may be provided as a colorant layer between the transparent substrate and the transparent heat insulating layer.
  • the pigment may be contained in the optical functional layer together with the vanadium dioxide-containing particles.
  • dye or a pigment may be contained in the transparent base material or the transparent heat insulation layer. From the viewpoint of efficiently transferring solar heat absorbed by the dye or pigment to the vanadium dioxide-containing particles, the dye or pigment is contained in the optical functional layer containing the vanadium dioxide-containing particles or in an adjacent layer in direct contact with the optical functional layer. (See FIGS. 1D to 1H described later.)
  • Transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / transparent substrate / adhesive layer see FIG. 1A
  • Clear hard coat layer / transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / transparent substrate / adhesive layer see FIG. 1B
  • Colorant layer / clear hard coat layer containing dye or pigment / transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / transparent substrate / adhesive layer see FIG. 1C
  • Clear hard coat layer / colorant layer containing a dye or pigment / transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / transparent substrate / adhesive layer see FIG.
  • the adhesive layer can be attached to glass or the like.
  • the configuration (5) will be described as an example.
  • An optical film 1 shown in FIG. 1E absorbs light within a wavelength range of 400 to 700 nm, an optical functional layer 3 containing thermochromic vanadium dioxide-containing particles on one surface of a transparent substrate 2.
  • a colorant layer 4 containing a dye or a pigment, a transparent heat insulating layer 5 and a clear hard coat layer 6 are laminated in this order, and an adhesive layer 7 is laminated on the other surface of the transparent substrate 2.
  • the vanadium dioxide-containing particles are present in a dispersed state in the binder resin.
  • a dye or pigment is present in a dispersed state.
  • the number average particle diameter of the primary particles of the vanadium dioxide-containing particles in the optical functional layer 3 is preferably larger than the number average particle diameter of the primary particles of the pigment particles constituting the pigment.
  • the number average particle diameter of the vanadium dioxide-containing particles in the optical functional layer 3 can be determined according to the following method.
  • the side surface of the optical functional layer 3 constituting the optical film 1 is trimmed with a microtome to produce an ultrathin section having a cross section as shown in FIG. 1E.
  • the ultrathin section is photographed at 10,000 to 100,000 times using a transmission electron microscope (TEM).
  • the particle size of the primary particles of vanadium dioxide-containing particles existing as single particles in a certain region of the photographed cross section is measured.
  • the number of vanadium dioxide-containing particles to be measured is preferably in the range of 50 to 100 particles. If the vanadium dioxide-containing particles are not spherical, the projected area of the particles is converted into a circle and the diameter is taken as the particle size.
  • the number average diameter is determined for each diameter of the primary particles. Since the cut-out cross-sectional portion has a variation in particle distribution, such measurement is performed for 10 different cross-sectional regions, the whole number average diameter is obtained, and this is referred to as the number average particle size (nm) in the present invention. To do.
  • the number average particle size of the primary particles is preferably in the range of 5 to 100 nm.
  • the number average particle diameter of the primary particles of the pigment particles constituting the pigment is preferably in the range of 1 to 100 nm.
  • the number average particle diameter of the pigment particles can be determined, for example, by transmission electron microscope observation (TEM) of an ultrathin slice similarly to the primary particle diameter of the vanadium dioxide-containing particles.
  • optical functional layer contains vanadium dioxide-containing particles and a binder resin.
  • Vanadium dioxide-containing particles Crystalline form of vanadium dioxide-containing particles according to the present invention is not particularly limited, thermochromic (automatic dimming) from the viewpoint of efficient expression, rutile dioxide vanadium-containing particles (VO 2 containing particles) It is particularly preferable to use it.
  • the rutile vanadium dioxide-containing particles have a monoclinic structure below the phase transition temperature, they are also called M-type.
  • the vanadium dioxide-containing particles according to the present invention may contain other crystal-type vanadium dioxide-containing particles such as A-type or B-type, as long as the object is not impaired.
  • the metal component of the vanadium dioxide-containing particles is vanadium, which can exhibit good thermochromic properties. That is, when a metal other than vanadium is doped, it is sufficient if it is doped with less than 5 atomic%.
  • tungsten W
  • molybdenum Mo
  • niobium Nb
  • tantalum Ta
  • tin Sn
  • rhenium Re
  • iridium Ir
  • osmium Os
  • ruthenium Ru
  • Germanium Ge
  • Cr chromium
  • Fe iron
  • Ga gallium
  • Al aluminum
  • fluorine F
  • P phosphorus
  • the aspect ratio of the vanadium dioxide-containing particles is preferably in the range of 1.0 to 3.0.
  • the vanadium dioxide-containing particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, and therefore have good dispersibility when added to a solution.
  • the single crystal since the single crystal has a sufficiently small particle size, it can exhibit better thermochromic properties than conventional particles.
  • the concentration of the vanadium dioxide-containing particles in the optical functional layer according to the present invention is not particularly limited, but is generally preferably in the range of 5 to 80% by mass with respect to the total mass of the optical functional layer, more preferably. Is in the range of 5 to 60% by mass, more preferably in the range of 5 to 40% by mass.
  • a pentavalent vanadium compound such as hydrazine or oxalic acid as a raw material together with a pentavalent vanadium compound such as ammonium vanadate (NH 4 VO 3 ), or a tetravalent vanadium compound such as vanadyl sulfate as a raw material in the liquid phase
  • a aqueous synthesis method in which particles are grown while synthesizing vanadium dioxide can be mentioned.
  • the method for producing vanadium dioxide-containing particles according to the present invention is an aqueous system in which particles are grown while synthesizing vanadium dioxide-containing particles in a liquid phase in that the average primary particle size is small and variation in particle size can be suppressed.
  • a synthetic method is preferred.
  • examples of the aqueous synthesis method include a hydrothermal synthesis method and an aqueous synthesis method using a supercritical state (also referred to as a supercritical hydrothermal synthesis method). Details of the hydrothermal synthesis method will be described later. For the details of the aqueous synthesis method using the supercritical state, for example, the production methods described in paragraphs 0011 and 0015 to 0018 of JP-A-2010-58984 can be referred to. Among the aqueous synthesis methods, it is preferable to apply the hydrothermal synthesis method.
  • vanadium dioxide-containing particles if necessary, particles such as fine TiO 2 serving as the core of particle growth are added as core particles, and vanadium dioxide-containing particles are produced by growing the core particles. You can also
  • a substance (I) containing vanadium (V), hydrazine (N 2 H 4 ) or a hydrate thereof (N 2 H 4 .nH 2 O), and water are mixed to prepare a solution (A).
  • This solution may be an aqueous solution in which the substance (I) is dissolved in water, or a suspension in which the substance (I) is dispersed in water.
  • the substance (I) examples include divanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadium trichloride (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like. .
  • the substance (I) is not particularly limited as long as it is a compound containing pentavalent vanadium (V). Hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) function as a reducing agent for the substance (I) and have a property of being easily dissolved in water.
  • the solution (A) may further contain a substance (II) containing the element to be added in order to add the element to the finally obtained vanadium dioxide (VO 2 ) single crystal fine particles.
  • the element to be added include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium ( Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), or phosphorus (P).
  • this solution (A) may further contain a substance (III) having oxidizing property or reducing property.
  • the substance (III) include hydrogen peroxide (H 2 O 2 ).
  • hydrothermal reaction treatment is performed using the prepared solution (A).
  • “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa).
  • the hydrothermal reaction treatment is performed, for example, in an autoclave apparatus.
  • Single crystal fine particles containing vanadium dioxide (VO 2 ) are obtained by the hydrothermal reaction treatment.
  • the conditions of the hydrothermal reaction treatment are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C.
  • the hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. Increasing the time can control the particle size and the like of the obtained single crystal fine particles, but an excessively long processing time increases the energy consumption.
  • the surface of the obtained vanadium dioxide-containing particles may be subjected to a coating treatment or a surface modification treatment with a resin. Thereby, the surface of the vanadium dioxide-containing particles can be protected, and surface-modified single crystal fine particles can be obtained.
  • the surface of the vanadium dioxide-containing particles is coated with the same or the same kind of resin as the aqueous binder resin described later.
  • the “coating” as used in the present invention is a state in which the entire surface of the particle is completely covered with the resin with respect to the vanadium dioxide-containing particles, or a part of the particle surface is covered with the resin. It may be in a state.
  • thermochromic vanadium dioxide VO 2
  • the dispersion of vanadium dioxide-containing particles prepared by the aqueous synthesis method described above contains impurities such as residues generated during the synthesis process, and has an optical function. It is preferable to remove impurities at the stage of the dispersion liquid in advance because it may cause secondary agglomerated particles when the layer is formed and may cause deterioration in long-term storage of the optical functional layer.
  • the vanadium dioxide-containing particle dispersion As a method for removing impurities in the vanadium dioxide-containing particle dispersion, conventionally known means for separating foreign substances and impurities can be applied.
  • the vanadium dioxide-containing particle dispersion is subjected to centrifugal separation to contain vanadium dioxide.
  • a method of precipitating particles, removing impurities in the supernatant, adding and dispersing the dispersion medium again, or removing impurities out of the system using an exchange membrane such as an ultrafiltration membrane may be used. From the viewpoint of preventing aggregation of vanadium-containing particles, a method using an ultrafiltration membrane is most preferable.
  • Examples of the material for the ultrafiltration membrane include cellulose, polyethersulfone, and polytetrafluoroethylene (PTFE). Among these, polyethersulfone and PTFE are preferably used.
  • the solvent replacement step is composed of a concentration step of concentrating the dispersion liquid containing vanadium dioxide-containing particles, and a solvent dilution step of adding a solvent to the concentrate for dilution, and is composed of a concentration step and a subsequent solvent dilution step.
  • the treatment operation is preferably repeated twice or more to prepare a non-aqueous solvent dispersion containing vanadium dioxide-containing particles.
  • concentration means used in the concentration step of the dispersion containing specific vanadium dioxide-containing particles an ultrafiltration method is preferable.
  • the solvent applicable in the solvent replacement treatment according to the present invention is an organic solvent, preferably a non-aqueous organic solvent.
  • it is a step of preparing a solvent dispersion containing vanadium dioxide-containing particles by replacing water, which is a medium constituting the aqueous dispersion containing vanadium dioxide-containing particles, with an organic solvent.
  • the solvent is not particularly limited and can be appropriately selected.
  • ketone solvents such as acetone, dimethyl ketone and methyl ethyl ketone
  • alcohol solvents such as methanol, ethanol and isopropyl alcohol
  • chlorine solvents such as chloroform and methylene chloride.
  • Solvents aromatic solvents such as benzene and toluene, ester solvents such as methyl acetate, ethyl acetate and butyl acetate, glycol ether solvents such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether, dioxane, hexane, octane, diethyl ether, Any material that dissolves the hydrophobic binder resin to be applied at the same time, such as dimethylformamide, can be used.
  • FIG. 2 is a schematic flow diagram showing an example of a solvent replacement processing apparatus applicable to the present invention.
  • the solvent replacement processing apparatus 10 shown in FIG. 2 includes a preparation tank 11 for storing the dispersion liquid 12 containing the prepared vanadium dioxide-containing particles, a solvent stock tank 17 storing a solvent 18 for dilution, and a solvent 18.
  • the ultrafiltration unit 15 is used as a concentrating means in the route of the solvent supply line 19 to be added to the adjustment kettle 11, the circulation line 13 for circulating the dispersion 12 stored in the preparation kettle 11 by the circulation pump 14, and the circulation line 13.
  • the discharge port 16 is used to discharge the medium in the dispersion to the outside of the system.
  • the dispersion liquid containing the vanadium dioxide-containing particles prepared by the above method is stored as the dispersion liquid 12 and circulated by the circulation pump 14. It is discharged from the discharge port 16 and concentrated to a predetermined concentration. As a standard of concentration, it concentrates to 20 volume% with respect to the initial volume. It is preferable to avoid excessive concentration beyond this because particle aggregation occurs as the particle density increases. In this concentration operation, it is important not to dry the dispersion 12.
  • the solvent dispersion containing vanadium dioxide-containing particles according to the present invention can contain water to some extent, and is 30% by mass or less, preferably 10% by mass or less, and particularly preferably 5.0% by mass. % Or less. Moreover, a minimum is 0.01 mass% or more, Preferably it is 0.05 mass% or more, Most preferably, it is 0.1 mass%. Accordingly, the water content is preferably in the range of 0.01 to 30% by mass, and in the range of 0.1 to 5.0% by mass is a particularly preferable embodiment.
  • the film forming property of the coexisting hydrophobic binder can be prevented at the time of forming the optical functional layer, and the haze can be reduced to 0.01% by mass. If it is% or more, the change width between the near-infrared light transmittance and the near-infrared light shielding rate at the time of temperature change can be increased to some extent. In particular, when the water content is 5.0% by mass or less, it is possible to further suppress the effect of the vanadium dioxide-containing particles on the oxidation prevention and the film forming property of the coexisting hydrophobic binder, and maintain the haze at a lower level. can do.
  • the change width of the near-infrared-light transmittance at the time of a temperature change and a near-infrared-light shielding rate can further be expanded, and it is preferable conditions.
  • Vivaflow 50 (effective filtration area 50 cm 2 , molecular weight cut off 5000) manufactured by Sartorius steady is used as a filtration membrane, and ultrafiltration is performed at a flow rate of 300 ml / min, a hydraulic pressure of 100 kPa, and room temperature (25 ° C.).
  • examples thereof include an ultrafiltration device having a filtration membrane made of polyethersulfone and having a molecular weight cut off of 300,000 (Pericon 2 cassette manufactured by Nihon Millipore Corporation).
  • the binder resin applicable to the present invention is not particularly limited, but is preferably an aqueous binder resin or a hydrophobic binder resin.
  • a hydrophobic binder resin is used when preparing a solvent dispersion containing vanadium dioxide-containing particles by the above solvent replacement step. It is preferable to use an aqueous binder resin when the solvent substitution step is not performed.
  • Water-based binder resin represents a resin material that dissolves 0.5 g or more with respect to 100 g of water at 20 ° C., and more preferably 1.0 g or more. Moreover, after making it melt
  • Dextrin dextran, saccharide derivatives such as dextran sulfate, naturally-derived materials such as thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylic Acrylic resins such as nitrile copolymer, vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid -Acrylate ester co-polymer Styrene- ⁇ -methylstyrene-acrylic acid copolymer, styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene acrylic resin, styrene-sodium
  • a polymer containing 50 mol% or more of repeating unit components having a hydroxy group which has a high affinity with vanadium dioxide-containing particles and has a high effect of preventing particle aggregation even during drying of film formation, is preferable.
  • examples thereof include celluloses, polyvinyl alcohols, and acrylic resins having a hydroxy group.
  • polyvinyl alcohols and celluloses can be most preferably used.
  • polyvinyl alcohols As polyvinyl alcohols preferably used in the present invention, ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate can be used. In addition to ordinary polyvinyl alcohol, modified polyvinyl alcohols such as polyvinyl alcohols whose ends are cationically modified and anionic modified polyvinyl alcohols having an anionic group are also included.
  • Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups as described in JP-A No. 61-10383.
  • Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride.
  • the ratio of the cation-modified group-containing monomer of the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
  • anion-modified polyvinyl alcohol examples include polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include copolymers of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
  • Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795.
  • the block copolymer of the vinyl compound and vinyl alcohol which have the described hydrophobic group is mentioned.
  • Polyvinyl alcohol can be used in combination of two or more different degrees of polymerization and different types of modification.
  • polyvinyl alcohol used in the present invention a synthetic product or a commercially available product may be used.
  • commercially available products used as polyvinyl alcohol include, for example, PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA-203, PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-235 (above, manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04, JF-05, JP- 03, JP-04, JP-05, JP-45 (above, manufactured by Nippon Vinegar Poval Co., Ltd.) and the like.
  • a water-soluble cellulose derivative is preferable, for example, carboxymethyl cellulose (cellulose carboxymethyl ether), methyl cellulose, hydroxymethyl cellulose, Examples thereof include water-soluble cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, and hydroxypropyl methyl cellulose, carboxymethyl cellulose (cellulose carboxymethyl ether) and carboxyethyl cellulose, which are carboxylic acid group-containing celluloses. Other examples include cellulose derivatives such as nitrocellulose, cellulose acetate propionate, cellulose acetate, and cellulose sulfate.
  • the aqueous binder resin is a polymer containing 50 mol% or more of repeating units having a hydroxy group.
  • the repeating unit component is originally composed of three hydroxy units. And some of these three hydroxy groups are substituted.
  • the content of 50 mol% or more of repeating unit components having a hydroxy group means that 50 mol% or more of the repeating unit component having a hydroxy group in this substituent or the repeating unit component in which one or more unsubstituted hydroxy groups remain is contained. Represents that.
  • Gelatin As the gelatin applicable to the present invention, various gelatins conventionally used widely in the field of silver halide photographic light-sensitive materials can be applied, such as acid-processed gelatin and alkali-processed gelatin.
  • enzyme-treated gelatin and gelatin derivatives that undergo enzyme treatment in the gelatin production process that is, groups having amino groups, imino groups, hydroxy groups, carboxy groups as functional groups in the molecule, and groups obtained by reaction with them. It may be modified by treating with a reagent.
  • Well-known methods for producing gelatin are well known. H. James: The Theory of Photographic Process 4th. ed. Reference can be made to descriptions such as 1977 (Maccillan), p. 55, Science Photo Handbook (above), p. 72-75 (Maruzen), Fundamental of Photographic Engineering-Silver Salt Photo Hen, pages 119-124 (Corona). Also, Research Disclosure Magazine Vol. 176, No. And gelatin described on page IX of 17643 (December 1978).
  • a gelatin hardener can be added as necessary.
  • known compounds that are used as hardeners for ordinary photographic emulsion layers can be used.
  • the thickening polysaccharide referred to in the present invention is a polymer of saccharides and has a number of hydrogen bonding groups in the molecule. Due to the difference in hydrogen bonding strength between molecules depending on the temperature, the viscosity at low temperature and the viscosity at high temperature. It is a polysaccharide with a large difference in characteristics, and when further adding metal oxide fine particles, it causes a viscosity increase caused by hydrogen bonding with the metal oxide fine particles at low temperatures, When added, it is a polysaccharide that increases its viscosity at 15 ° C. by 1.0 mPa ⁇ s or more, preferably 5.0 mPa ⁇ s or more, more preferably 10.0 mPa ⁇ s or more. Polysaccharides.
  • Examples of the thickening polysaccharide applicable to the present invention include galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.), xyloglucan (eg, tamarind gum, etc.), Glucomannoglycan (eg, salmon mannan, wood-derived glucomannan, xanthan gum, etc.), galactoglucomannoglycan (eg, softwood-derived glycan), arabinogalactoglycan (eg, soybean-derived glycan, microorganism-derived glycan, etc.), Red algae such as glucuronoglycan (eg gellan gum), glycosaminoglycan (eg hyaluronic acid, keratan sulfate etc.), alginic acid and alginates, agar, ⁇ -carrageenan, ⁇ -carrageenan,
  • the structural unit does not have a carboxylic acid group or a sulfonic acid group.
  • polysaccharides include pentoses such as L-arabitose, D-ribose, 2-deoxyribose and D-xylose, and hexoses such as D-glucose, D-fructose, D-mannose and D-galactose only. It is preferable that it is a polysaccharide.
  • tamarind seed gum known as xyloglucan whose main chain is glucose and side chain is glucose
  • guar gum known as galactomannan whose main chain is mannose and side chain is glucose
  • cationized guar gum Hydroxypropyl guar gum
  • locust bean gum locust bean gum
  • tara gum arabinogalactan whose main chain is galactose and whose side chain is arabinose
  • tamarind, guar gum, cationized guar gum, and hydroxypropyl guar gum are particularly preferable.
  • aqueous binder resins include polymers having reactive functional groups, such as polyvinylpyrrolidones, polyacrylic acid, acrylic acid- Acrylic resins such as acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene -Methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene- ⁇ -methylstyrene-acrylic acid copolymer, styrene- ⁇ -methylstyrene-acrylic acid-acrylic acid ester copolymer, etc.
  • polymers having reactive functional groups such as polyvinylpyrrolidones, polyacrylic acid, acrylic acid- Acrylic resins such as acrylonitrile copolymer, potassium acrylate
  • Styrene acrylic acid resin Styrene-sodium styrene sulfonate copolymer Styrene-2-hydroxyethyl acrylate copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinylnaphthalene-acrylic acid Copolymers, vinyl naphthalene-maleic acid copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-based copolymers such as vinyl acetate-acrylic acid copolymers, and the like Of the salt.
  • particularly preferred examples include polyvinylpyrrolidones and copolymers containing the same.
  • the hydrophobic binder resin refers to a resin having a dissolution amount of less than 1.0 g at a liquid temperature of 25 ° C. with respect to 100 g of water.
  • the amount of the resin is less than 0.5 g, particularly preferably the resin having a dissolution amount of less than 0.25 g.
  • the hydrophobic binder resin is preferably a resin obtained by polymerizing in the curing process using a hydrophobic polymer or a monomer of the hydrophobic binder resin.
  • hydrophobic polymer examples include polyethylene, polypropylene, ethylene-propylene copolymers, olefin polymers such as poly (4-methyl-1-pentene), acrylate copolymers, chlorides, and the like.
  • Halogen-containing polymers such as vinyl and chlorinated vinyl resins, styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer, polyethylene terephthalate, poly Polyesters such as butylene terephthalate and polyethylene naphthalate, polyamides such as nylon 6, nylon 66 and nylon 610, polyacetal, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polyether ABS resin (acrylonitrile-butadiene-styrene resin), ASA resin (acrylonitrile-styrene-acrylate resin), cellulose blended with rutheketone, polysulfone, polyethersulfone, polyoxybenzylene, polyamideimide, polybutadiene rubber, acrylic rubber Resin, butyral resin, and the like.
  • hydrophobic binder resin applicable to the present invention, a resin that is polymerized in a curing process using a monomer of a hydrophobic binder resin can be exemplified, and typical hydrophobic binder resin materials include: A compound that is cured by irradiation with active energy rays, specifically a radical polymerizable compound that is cured by a polymerization reaction with radical active species, and a cationic polymerizable compound that is cured by a cationic polymerization reaction with cationic active species. it can.
  • radical polymerizable compound examples include a compound having an ethylenically unsaturated bond capable of radical polymerization.
  • examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include acrylic acid, methacrylic acid, itaconic acid, and crotonic acid.
  • Unsaturated carboxylic acids such as isocrotonic acid and maleic acid and their salts, esters, urethanes, amides and anhydrides, acrylonitrile, styrene, various unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, unsaturated urethanes, etc. These radically polymerizable compounds are mentioned.
  • cationic polymerizable compound various known cationic polymerizable monomers can be used.
  • cationic polymerizable monomers JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, Examples thereof include epoxy compounds, vinyl ether compounds, oxetane compounds and the like exemplified in JP-A-2001-220526.
  • photopolymerization initiators all known photopolymerization initiators listed in “Application and Market of UV / EB Curing Technology” (CMC Publishing Co., Ltd., edited by Yoneho Tabata / edited by Radtech Research Association) should be used. Can do.
  • ultraviolet LED ultraviolet laser
  • mercury arc lamp xenon arc lamp
  • low pressure mercury lamp fluorescent lamp
  • carbon arc lamp tungsten-halogen copying lamp
  • sunlight can be used.
  • an electron beam it is usually cured with an electron beam having an energy of 300 eV or less, but it can also be cured instantaneously with an irradiation dose of 1 to 5 Mrad.
  • optical additives for optical functional layers Various additives that can be applied to the optical functional layer according to the present invention as long as the effects of the present invention are not impaired are listed below.
  • nonionic surfactants JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-228771, JP-A-4-219266 Fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters, antifoaming agents, and polyethylene Lubricants such as glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, lubricants, infrared absorbers And various known additives such as dyes and pigments.
  • Lubricants such as glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, lub
  • an aqueous binder resin After preparing vanadium dioxide-containing particles by an aqueous synthesis method, a state of a dispersion in which vanadium dioxide-containing particles exist without being associated with each other without passing through a drying step. Then, by mixing an aqueous binder resin solution prepared by dissolving an aqueous binder resin in an aqueous solvent, an aqueous optical functional layer forming coating solution is prepared, and this optical functional layer forming coating solution is prepared by a wet coating method. A method of forming an optical functional layer by applying and drying on a transparent substrate is preferred.
  • vanadium dioxide-containing particles are prepared in the same manner as when an aqueous binder resin is used. After that, without passing through a drying step, a solvent dispersion containing vanadium dioxide-containing particles is prepared by a solvent substitution step, and then mixed and dissolved with a hydrophobic binder resin, etc. for forming a non-aqueous optical functional layer A method is preferred in which a coating solution is prepared, and this non-aqueous coating solution for forming an optical functional layer is applied and dried on a transparent substrate by a wet coating method to form an optical functional layer.
  • the wet coating method used for forming the optical functional layer is not particularly limited, and for example, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419. Examples thereof include a slide hopper coating method and an extrusion coating method described in the specification, US Pat. No. 2,761791.
  • the transparent heat-insulating layer according to the present invention is not particularly limited as long as it is transparent and has an effect of suppressing heat transfer, for example, a transparent polymer layer, a transparent porous layer, a layer containing hollow particles or porous particles, etc. Can be mentioned.
  • the thermal resistance (R) of the transparent heat insulating layer is preferably in the range of 1.0 ⁇ 10 ⁇ 4 to 2.5 ⁇ 10 ⁇ 3 m 2 ⁇ K / W. More preferably, it is in the range of 5 ⁇ 10 ⁇ 4 to 1.5 ⁇ 10 ⁇ 3 .
  • the thermal resistance of the transparent heat insulating layer (R) is 1.0 ⁇ 10 -4 m 2 ⁇ K / W or more, a large effect of preventing the influence of the external environment such as air conditioning, 2.5 ⁇ 10 - If it is 3 m ⁇ 2 > * K / W or less, when the sunlight which hits the heated optical film will become weak, it can suppress that the temperature of an optical film falls quickly and continues shielding of near-infrared light.
  • the thermal resistance (R) (m 2 ⁇ K / W) can be obtained by thickness (d) (m) ⁇ material thermal conductivity ( ⁇ ) (W / (m ⁇ K)).
  • the thickness of the transparent heat insulating layer may be appropriately set according to the constituent material (thermal conductivity ( ⁇ )) of the transparent heat insulating layer.
  • Transparent polymer layer An example of the transparent polymer layer is a transparent resin film.
  • transparent resin films include polyolefin films (eg, cycloolefin, polyethylene, polypropylene, etc.), polyester films (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, polycarbonate films, triacetylcellulose films, acrylic films. (Polymethylmethacrylate etc.) etc. can be used, Preferably it is a polyethylene terephthalate film.
  • Transparent porous layer As a method for forming the transparent porous layer, for example, a method for forming a porous layer using a sol-gel method can be used.
  • a method for forming a porous layer using a sol-gel method can be used.
  • the method for producing a porous silica material generally, alkoxysilane is hydrolyzed, and the generated silica sol is polycondensed to form a wet gel, which is dried to obtain a porous silica material.
  • the hollow particle-containing layer for example, a layer in which hollow particles described in JP-T-2000-500113, JP-A-2005-263550, JP-A-2012-144394, etc. are contained in a transparent resin is used. Can do.
  • the layer can be similarly produced by using hollow particles instead of vanadium dioxide-containing particles in the optical functional layer described above.
  • porous particle containing layer As the porous particle-containing layer, for example, it is possible to use a layer in which transparent resin contains particles obtained by atomizing methyl silicate monomer obtained by air drying by atmospheric pressure drying or critical drying.
  • JP 2013-100406 A can be referred to.
  • the transparent substrate applicable to the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. However, it is possible to impart flexibility and suitability for production (manufacturing process suitability). From the viewpoint, a transparent resin film is preferable.
  • the thermal resistance (R) of the transparent substrate is preferably in the range of 1.0 ⁇ 10 ⁇ 4 to 2.5 ⁇ 10 ⁇ 3 m 2 ⁇ K / W.
  • the thermal resistance (R) of the transparent substrate is 1.0 ⁇ 10 ⁇ 4 m 2 ⁇ K / W or more, the effect of preventing the influence of an external environment such as an air conditioner is great.
  • the large heat capacity of glass compared to the optical film even if the temperature of the outside air drops and there is no need to shield near-infrared light, it is possible to shield near-infrared light by the influence of the residual heat of the glass heated by the sun. The condition continued.
  • An optical film that can suppress the influence of the heat of glass because the thermal resistance (R) of the transparent substrate is 2.5 ⁇ 10 ⁇ 3 m 2 ⁇ K / W or less, and is less affected by the external environment can do.
  • the thickness of the transparent substrate according to the present invention is preferably in the range of 30 to 200 ⁇ m, more preferably in the range of 30 to 100 ⁇ m, and still more preferably in the range of 35 to 70 ⁇ m. If the thickness of the transparent substrate is 30 ⁇ m or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 ⁇ m or less, the followability to the curved glass surface when bonded to the glass substrate is improved.
  • the transparent substrate according to the present invention is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used.
  • a stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression.
  • a stretched film is more preferable.
  • the transparent substrate according to the present invention has a thermal shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing generation of wrinkles of the optical film and cracking of the optical functional layer. Is preferable, more preferably in the range of 1.5 to 3.0%, still more preferably 1.9 to 2.7%.
  • the transparent substrate applicable to the optical film of the present invention is not particularly limited as long as it is transparent, but various resin films are preferably used.
  • polyolefin films for example, cycloolefin, polyethylene, polypropylene) Etc.
  • polyester films for example, polyethylene terephthalate, polyethylene naphthalate, etc.
  • polyvinyl chloride, triacetyl cellulose films and the like can be used, and cycloolefin films, polyester films, and triacetyl cellulose films are preferable.
  • the transparent resin film is preferably coated with an undercoat layer coating solution inline on one or both sides during the film formation process.
  • undercoating during the film forming process is referred to as in-line undercoating.
  • the dye or pigment according to the present invention is added to vanadium dioxide-containing particles. You may make it contain in a colorant layer as an adjacent layer which contacts the optical function layer in which was contained.
  • the binder of the colorant layer for example, the aforementioned hydrophobic binder resin can be used.
  • the clear hard coat layer (CHC layer) according to the present invention is a layer provided on the opposite side of the transparent heat insulating layer from the optical functional layer.
  • a dye or pigment may be included in the clear hard coat layer as in the layer configuration of (3) above (see FIG. 1C).
  • an inorganic material typified by polysiloxane, an active energy ray curable resin, or the like can be used.
  • Inorganic materials need to be moisture-cured (from room temperature to warming). From the viewpoint of curing temperature, curing time, and cost, it is preferable to use an active energy ray-curable resin in the present invention.
  • the active energy ray resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays and electron beams.
  • active energy ray curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active ray such as an ultraviolet ray or an electron beam. It is formed.
  • Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and a resin curable by ultraviolet irradiation is preferable.
  • an ultraviolet curable urethane acrylate resin for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable.
  • UV curable acrylate resins are preferred.
  • UV curable acrylic urethane resins generally contain 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as methacrylates) in addition to products obtained by reacting polyester polyols with isocyanate monomers or prepolymers. Only acrylates are indicated as such), and can be easily obtained by reacting an acrylate monomer having a hydroxy group such as 2-hydroxypropyl acrylate.
  • a mixture of 100 parts by mass of Unidic 17-806 (manufactured by DIC Corporation) and 1 part by mass of Coronate L (manufactured by Tosoh Corporation) described in JP-A-59-151110 is preferably used.
  • An ultraviolet curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylic acid with a hydroxyl group or carboxy group at the end of the polyester (see, for example, JP (See Sho 59-151112).
  • the ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
  • UV curable polyol acrylate resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipenta Examples include erythritol pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.
  • An adhesion layer is a layer for making the optical film of this invention adhere to another base material.
  • the optical film of this invention is a layer for making it adhere to a window glass.
  • a dye or pigment may be contained in the adhesive layer as in the layer configuration of (9) above (see FIG. 1I).
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is selected from rubber-based, acrylic-based, silicone-based and urethane-based pressure-sensitive adhesives. Since there is no yellowing over time, acrylic and silicone are preferred, and acrylic is most preferred because a general-purpose release sheet can be used.
  • the thickness of the adhesive layer is preferably in the range of 5 to 30 ⁇ m. If it is 5 ⁇ m or more, the adhesiveness is stable, and if it is 30 ⁇ m or less, the adhesive does not protrude from the side of the film and is easy to handle.
  • a substrate such as polyester, polyethylene, polypropylene, paper, etc., which is coated with silicone coat, polyalkylene coat or fluororesin can be used.
  • silicone coat polyalkylene coat or fluororesin
  • dimensional stability and smoothness can be used.
  • a polyester film coated with silicone is particularly preferred.
  • the thickness of the separator is preferably in the range of 10 to 100 ⁇ m, more preferably in the range of 20 to 60 ⁇ m. If it is 10 ⁇ m or more, the film is not wrinkled due to heat during coating and drying, and it is preferably 100 ⁇ m or less from the viewpoint of economy.
  • optical film of the present invention can be configured to be pasted on glass, and the glass on which this film is bonded can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like.
  • the glass bonded together can be used for other purposes.
  • the glass bonded with the film is preferably used for construction or for vehicles.
  • the glass bonded with the film can be used for a windshield, side glass, rear glass or roof glass of an automobile.
  • the glass member examples include inorganic glass and organic glass (resin glazing).
  • the inorganic glass examples include colored glass such as float plate glass, heat ray absorbing plate glass, polished plate glass, mold plate glass, meshed plate glass, wire-containing plate glass, and green glass.
  • Organic glass is a synthetic resin glass that can be substituted for inorganic glass.
  • organic glass (resin glazing) examples include polycarbonate plates and poly (meth) acrylic resin plates.
  • the poly (meth) acrylic resin plate examples include a polymethyl (meth) acrylate plate.
  • ⁇ Preparation of dispersion of vanadium dioxide-containing particles >> ⁇ Preparation of dispersion 1 of vanadium dioxide-containing particles> 1 g of vanadate ammonium (V) (NH 4 VO 3 , Wako Pure Chemicals, special grade) is mixed with 25 g of pure water, and hydrazine monohydrate (N 2 H 4 ⁇ H 2 O, Wako Pure Chemical Industries, special grade) is mixed. ) was slowly added dropwise.
  • the prepared reaction solution is placed in a high-pressure reaction decomposition vessel stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample vessel HUTc-50: manufactured by Sanai Kagaku Co., Ltd.), 100 ° C.
  • the concentration of the finished vanadium dioxide-containing particles is adjusted to 3.0% by mass, and further 15 masses per 100 parts by mass of the vanadium dioxide-containing particles.
  • Polyvinylpyrrolidone (PVP, manufactured by Nippon Shokubai Co., Ltd., K-30) was added at a ratio of 1 part, and dispersed with a super apex mill manufactured by Kotobukisha using 30 ⁇ m zirconia beads to prepare a dispersion 2 of vanadium dioxide-containing particles. did.
  • V vanadate ammonium
  • NH 4 VO 3 vanadate ammonium
  • hydrazine monohydrate N 2 H 4 ⁇ H 2 O, Wako Pure Chemical Industries, special grade
  • the prepared reaction solution is placed in a high-pressure reaction decomposition vessel stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample vessel HUTc-50: manufactured by Sanai Kagaku Co., Ltd.), 100 ° C. for 2 hours, and subsequently 275 ° C.
  • the hydrothermal reaction was carried out for 24 hours.
  • an ultrafiltration apparatus having a filtration membrane made of polyethersulfone and having a molecular weight cut off of 300,000 (Pericon 2 manufactured by Nihon Millipore Corporation) with the reaction solution kept at 20 ° C. while circulating in the system.
  • Concentration operation was performed using the solvent displacement treatment apparatus shown in FIG. 2 equipped with a cassette), and when the initial volume was 100% by volume, after concentration to 20% by volume, ethyl alcohol was added and 100% by volume. It was.
  • the dispersion was concentrated again to 20% by volume, then methyl ethyl ketone was added as a solvent to make 100% by volume, and the solvent was subjected to two solvent substitution treatments.
  • the solvent-based vanadium dioxide-containing particles having a particle concentration of 3% by mass A dispersion 3 was prepared.
  • Optical functional layer forming coating solution 1 Dispersion 1 of vanadium dioxide-containing particles 1 10 parts by weight Aqueous solution of 4% by weight of hydroxypropyl methylcellulose (Metroose 60SH-50, manufactured by Shin-Etsu Chemical Co., Ltd.) 75 parts by weight 5% by weight of an aqueous surfactant solution (Triton X-100, Sigma-Aldrich) 2 parts by mass pure water 13 parts by mass
  • a clear hard coat layer forming coating solution 1 having the following composition is wet coated by adjusting the coating amount so that the dry film thickness becomes 2 ⁇ m using an extrusion coater. Dry at 1 ° C. for 1 minute.
  • the coating film was cured by irradiating ultraviolet rays under the conditions of an illuminance of 100 mW / cm 2 , an irradiation amount of 0.2 J / cm 2 , and an oxygen concentration of 200 ppm to form a clear hard coat layer. .
  • An adhesive layer forming coating solution 1 having the following composition is applied on the surface opposite to the optical functional layer across the PET film so that the dry film thickness is 10 ⁇ m, and dried at 90 ° C. for 1 minute.
  • the optical film 101 was produced by forming.
  • a release film (MRF # 25, manufactured by Mitsubishi Resin Co., Ltd.) was bonded to the outermost surface on the adhesive layer side to protect the surface.
  • Coating layer forming coating solution 1 N-2147 (acrylic adhesive, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) 100 parts by mass Tinuvin (registered trademark) 477 (ultraviolet absorber, manufactured by BASF Japan Ltd.) 2.1 parts by mass Coronate (registered trademark) HL (curing agent, manufactured by Tosoh Corporation) 5 parts by mass MIBK (methyl isobutyl ketone) 300 Parts by mass
  • Each surface of PET 1 for transparent heat insulation layer is subjected to a corona discharge treatment of 12 W ⁇ min / m 2 , and an easy-adhesion layer-forming coating solution 1 having the following composition is applied to a dry film thickness of 0.4 ⁇ m. 12 W ⁇ min / m 2 of corona discharge treatment, and the easy-adhesion layer-forming coating solution 2 having the following composition was applied so as to have a dry film thickness of 0.06 ⁇ m. did.
  • Copolymer latex solution (30% solid content) of 30% by weight of butyl acrylate, 20% by weight of t-butyl acrylate, 25% by weight of styrene and 25% by weight of 2-hydroxyethyl acrylate 50 g
  • Compound (UL-1) 0.2g Hexamethylene-1,6-bis (ethyleneurea) 0.05g 1000ml of pure water
  • the clear hard coat layer-forming coating solution 1 was applied to one surface of the transparent heat-insulating layer-coated PET 1 with the easy adhesion layer applied in the same manner as the optical film 101.
  • the adhesive layer forming coating solution 1 having the following composition is applied on the surface opposite to the surface coated with the clear hard coat layer forming coating solution 1 so that the dry film thickness is 10 ⁇ m. It dried for minutes and bonded together with the optical function layer of the PET film prepared previously.
  • Adhesive layer forming coating solution 1 N-2147 (acrylic adhesive, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) 100 parts by mass Coronate (registered trademark) HL (curing agent, manufactured by Tosoh Corporation) 5 parts by mass MIBK (methyl isobutyl ketone) 300 parts by mass
  • the adhesive layer forming coating solution 1 is applied on the surface opposite to the optical functional layer across the PET film so that the dry film thickness is 10 ⁇ m, and dried at 90 ° C. for 1 minute to form the adhesive layer.
  • the optical film 102 was produced by forming.
  • a release film (MRF # 25, manufactured by Mitsubishi Resin Co., Ltd.) was bonded to the outermost surface on the adhesive layer side to protect the surface.
  • Optical films 103 to 111 were produced in the same manner as in the production of the optical film 102 except that the transparent heat insulating layer PET1 was replaced with the following transparent heat insulating layer PET.
  • the optical film 103 transparent heat insulating layer PET 2 (thickness 15 [mu] m, the thermal resistance 1.07 ⁇ 10 -4 m 2 ⁇ K / W)
  • Optical film 104 PET3 for transparent heat insulation layer (thickness 25 ⁇ m, thermal resistance 1.79 ⁇ 10 ⁇ 4 m 2 ⁇ K / W)
  • Optical film 105 PET4 for transparent heat insulation layer (thickness 50 ⁇ m, thermal resistance 3.57 ⁇ 10 ⁇ 4 m 2 ⁇ K / W)
  • Optical film 106 PET5 for transparent heat insulating layer (thickness 100 ⁇ m, thermal resistance 7.14 ⁇ 10 ⁇ 4 m 2 ⁇ K / W)
  • Optical film 107 PET6 for transparent heat insulating layer (thickness 150 ⁇ m, thermal resistance 1.07 ⁇ 10 ⁇ 3 m 2 ⁇ K / W)
  • Optical film 108 PET7 for transparent heat insulation layer (thickness 200 ⁇ m, thermal resistance 1.43
  • the addition amount of the pigment that absorbs light within the light wavelength range of 400 to 700 nm is the average light absorption rate of the optical film within the light wavelength range of 400 to 700 nm as shown in Table 1.
  • Optical films 122 to 124 were produced in the same manner except that the adjustment was performed.
  • optical film 125 was produced in the same manner as in the production of the optical film 115 except that the dispersion 2 of vanadium dioxide-containing particles was used instead of the dispersion 1 of vanadium dioxide-containing particles.
  • Optical Film 126 In the production of the optical film 115, a pigment that absorbs light within a light wavelength range of 400 to 700 nm is used as a dye. I. An optical film 126 was produced in the same manner except that the solvent was changed to Solvent Blue 63 (1-methylamino-4-[(3-methylphenyl) amino] -9,10-anthraquinone, maximum absorption wavelength 645 nm).
  • the dispersion liquid 3 of vanadium dioxide-containing particles is further added to the adhesive layer coating liquid 1 in the light wavelength range of 400 to 700 nm.
  • An optical film 127 was produced in the same manner except that the addition amount was adjusted so that the average optical absorptance of the optical film was 55%.
  • a transparent heat insulating layer containing airgel fine particles (thickness 8 ⁇ m, heat resistance 1) using a coating solution 1 for forming a transparent heat insulating layer having the following composition between the optical functional layer and the clear hard coat layer. 0.004 ⁇ 10 ⁇ 4 m 2 ⁇ K / W), an optical film 128 was produced in the same manner.
  • the thickness of the transparent heat insulating layer is 13 ⁇ m (thermal resistance 1.63 ⁇ 10 ⁇ 4 m 2 ⁇ K / W) and 20 ⁇ m (thermal resistance 2.50 ⁇ 10 ⁇ 4 m 2 ⁇ K / W), respectively.
  • Optical films 129 and 130 were produced in the same manner except that the film was changed to.
  • the optical film of the present invention is not suppressed in temperature rise even when it is used in a place where the air of the air conditioner directly hits, as compared with the optical film of the comparative example. It can be seen that near-infrared light can be effectively shielded. From the above, it has an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties on a transparent substrate, and at least one transparent heat insulating layer is provided on the opposite side of the optical functional layer from the transparent substrate. It was confirmed that it was useful to provide an optical film that is hardly affected by the use environment.
  • the optical film of the present invention has a structure in which the optical functional layer containing the vanadium dioxide-containing particles is sandwiched between the transparent base material and the transparent base material, so that the glass window heated by sunlight is used. It was confirmed that the duration of the near-infrared light shielding effect can be shortened in an environment where the influence of residual heat is small and near-infrared light shielding is not required.
  • the present invention is an optical film containing vanadium dioxide-containing particles that can adjust the near-infrared light shielding rate according to the temperature environment, and is particularly preferably used for providing an optical film that is not easily affected by the use environment. can do.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

The objective of the present invention is to provide an optical film which contains vanadium dioxide-containing particles and is not susceptible to the influence of the environment of usage, and wherein the near-infrared light shielding rate is able to be adjusted in accordance with the temperature environment. An optical film (1) according to the present invention is characterized by: having an optical function layer (3), which contains vanadium dioxide-containing particles having thermochromic properties, on a transparent base (2); and having at least one transparent thermal insulation layer (5) on a surface of the optical function layer (3), said surface being on the reverse side of the transparent base (2)-side surface.

Description

光学フィルムOptical film
 本発明は、光学フィルムに関し、より詳しくは、温度環境に応じて近赤外光遮蔽率を調節できる二酸化バナジウム含有粒子を含有する光学フィルムであって、使用環境による影響を受けにくい光学フィルムに関する。 The present invention relates to an optical film, and more particularly to an optical film containing vanadium dioxide-containing particles capable of adjusting the near-infrared light shielding rate in accordance with a temperature environment and hardly affected by the use environment.
 近年、車窓から入り込む太陽光の影響によって人肌で感じる熱線を遮り、高い断熱性又は遮熱性を備えた合わせガラスが市場に流通している。最近では、電気自動車等の普及に伴い、車内の冷房効率を高める観点から、合わせガラスに適用する近赤外光(熱線)遮蔽フィルムの開発が盛んに行われている。
 近赤外光遮蔽フィルムを車体や建物の窓ガラスに適用することにより、車内のエア・コンディショナー等の冷房設備への負荷を低減することができ、省エネルギー対策として有効な手段である。
In recent years, laminated glass having high heat insulating property or heat insulating property, which blocks heat rays felt on human skin due to the influence of sunlight entering from a vehicle window, has been distributed in the market. Recently, with the spread of electric vehicles and the like, development of near-infrared light (heat ray) shielding films applied to laminated glass has been actively conducted from the viewpoint of increasing the cooling efficiency in the vehicle.
By applying the near-infrared light shielding film to the window glass of a vehicle body or a building, it is possible to reduce the load on the cooling equipment such as an air conditioner in the vehicle, which is an effective means for saving energy.
 近赤外光遮蔽フィルムは、太陽光の照度が高い赤道近傍の低緯度地帯では、その高い近赤外光遮蔽能により好ましく利用されている。しかしながら、中緯度~高緯度地帯の冬場においては、逆に、太陽光をできるだけ車内や室内に取り込みたい場合にも遮蔽してしまうという問題がある。 The near-infrared light shielding film is preferably used due to its high near-infrared light shielding ability in a low-latitude zone near the equator where the illuminance of sunlight is high. However, in the mid to high latitude winter seasons, conversely, there is a problem that sunlight is shielded when it is desired to take it into the vehicle or the room as much as possible.
 上記問題に対し、近赤外光遮蔽フィルムに、近赤外光の遮蔽や透過の光学的性質を温度により制御するサーモクロミック材料を適用する方法の検討がなされている。その代表例として、二酸化バナジウム(以下、VOともいう。)が挙げられる。VOは、67℃前後の温度領域で相転移を起こし、サーモクロミック性を示すことが知られている。すなわち、このVOの特性を利用した光学フィルムにより、高温になると熱の原因となる近赤外光を遮蔽し、低い温度では近赤外光を透過するといった特性を発現することが可能となる。その結果、夏場の暑いときは、近赤外光を遮蔽して室内の温度上昇を抑制し、冬場の寒いときは、光エネルギーを取り込むことができるようになる。 In order to solve the above problem, a method of applying a thermochromic material that controls the optical properties of near-infrared light shielding and transmission to the near-infrared light shielding film has been studied. A typical example is vanadium dioxide (hereinafter also referred to as VO 2 ). VO 2 is known to undergo a phase transition in a temperature region around 67 ° C. and exhibit thermochromic properties. That is, the optical film using the characteristics of VO 2 can exhibit characteristics such as shielding near infrared light that causes heat at high temperatures and transmitting near infrared light at low temperatures. . As a result, when the summertime is hot, near-infrared light is shielded to suppress the temperature rise in the room, and when the wintertime is cold, light energy can be taken in.
 このような特性を備えたVOの製造方法としては、バナジウム化合物とヒドラジン又はその水和物とを水熱合成することにより、VO粒子を得る方法が開示されている(例えば、特許文献1参照。)。
 また、透明基材上に、上記水熱合成により作製したVO粒子を透明樹脂中に分散させたVO分散樹脂層を形成し、積層体とすることにより、サーモクロミックフィルムを提供できることが開示されている(例えば、特許文献2参照。)。
As a method for producing VO 2 having such characteristics, a method of obtaining VO 2 particles by hydrothermal synthesis of a vanadium compound and hydrazine or a hydrate thereof is disclosed (for example, Patent Document 1). reference.).
Further, it is disclosed that a thermochromic film can be provided by forming a VO 2 dispersed resin layer in which a VO 2 particle produced by hydrothermal synthesis is dispersed in a transparent resin on a transparent substrate to form a laminate. (For example, see Patent Document 2).
 こうしたサーモクロミックフィルムを窓に貼り付けて、エア・コンディショナーの風(冷風)が直接当たる場所で使用した場合、本来は近赤外光を遮蔽したい状況でも温度上昇が抑えられて近赤外光を遮蔽しないことがあるなど、使用環境による影響を受けて、本来期待される性能が機能しないことがあった。 When such a thermochromic film is attached to a window and used in a place where the air conditioner wind (cold air) directly hits it, the temperature rise is suppressed even when it is originally intended to block near-infrared light. In some cases, the expected performance does not function due to the influence of the usage environment, such as the fact that it is not shielded.
特開2011-178825号公報JP 2011-178825 A 特開2013-184091号公報JP 2013-184091 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、温度環境に応じて近赤外光遮蔽率を調節できる二酸化バナジウム含有粒子を含有する光学フィルムであって、使用環境による影響を受けにくい光学フィルムを提供することである。 The present invention has been made in view of the above-described problems and situations, and its solution is an optical film containing vanadium dioxide-containing particles capable of adjusting the near-infrared light shielding rate according to the temperature environment, and used. It is to provide an optical film that is not easily affected by the environment.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、光学機能層の透明基材とは反対側に、少なくとも1層の透明断熱層を有することにより、使用環境による影響を受けにくい光学フィルムを提供できることを見出し、本発明に至った。 In order to solve the above-mentioned problems, the present inventor has at least one transparent heat insulating layer on the side opposite to the transparent base material of the optical functional layer in the process of examining the cause of the above-mentioned problem. The present inventors have found that an optical film that is not easily affected by the above can be provided, and have reached the present invention.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above-mentioned problem according to the present invention is solved by the following means.
 1.透明基材上に、サーモクロミック性を有する二酸化バナジウム含有粒子が含有された光学機能層を有する光学フィルムであって、
 前記光学機能層の前記透明基材とは反対側に、少なくとも1層の透明断熱層を有することを特徴とする光学フィルム。
1. An optical film having an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties on a transparent substrate,
An optical film comprising at least one transparent heat insulating layer on the side of the optical functional layer opposite to the transparent substrate.
 2.前記透明断熱層の熱抵抗が、1.0×10-4~2.5×10-3・K/Wの範囲内であることを特徴とする第1項に記載の光学フィルム。 2. 2. The optical film according to item 1, wherein the heat resistance of the transparent heat insulating layer is in the range of 1.0 × 10 −4 to 2.5 × 10 −3 m 2 · K / W.
 3.前記透明基材若しくは前記透明断熱層、又は前記透明基材と前記透明断熱層との間の層に、光波長400~700nmの範囲内の光を吸収する染料又は顔料が含有されていることを特徴とする第1項又は第2項に記載の光学フィルム。 3. The transparent substrate or the transparent heat insulating layer, or the layer between the transparent substrate and the transparent heat insulating layer contains a dye or pigment that absorbs light within a light wavelength range of 400 to 700 nm. Item 3. The optical film according to item 1 or 2, which is characterized.
 4.光波長400~700nmの範囲内における前記光学フィルムの平均光吸収率が、23℃において、20~80%の範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載の光学フィルム。 4. The average optical absorptance of the optical film in the light wavelength range of 400 to 700 nm is in the range of 20 to 80% at 23 ° C., any one of items 1 to 3 The optical film described in 1.
 本発明の上記手段により、温度環境に応じて近赤外光遮蔽率を調節できる二酸化バナジウム含有粒子を含有する光学フィルムであって、使用環境による影響を受けにくい光学フィルムを提供することができる。 By the above means of the present invention, it is possible to provide an optical film containing vanadium dioxide-containing particles capable of adjusting the near-infrared light shielding rate in accordance with the temperature environment and hardly affected by the use environment.
 本発明の効果の発現機構・作用機構については明確になっていないが、以下のように推察している。 The expression mechanism / action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明の光学フィルムは、透明基材上に、サーモクロミック性を有する二酸化バナジウム含有粒子が含有された光学機能層を有し、更に、光学機能層の透明基材とは反対側に、少なくとも1層の透明断熱層を有することを特徴とする。これにより、使用環境による影響を受けにくい光学フィルムを提供可能とするものである。
 本発明の光学フィルムにおいては、光学機能層を挟むようにして、透明基材、光学機能層、透明断熱層の順に積層されることで、透明基材及び透明断熱層がバッファーとなり、光学機能層に対する使用環境の影響を抑え、太陽光による光学機能層の加熱度合に応じてクロミック性の切り替えが可能となったものと考えている。
The optical film of the present invention has an optical functional layer in which vanadium dioxide-containing particles having thermochromic properties are contained on a transparent substrate, and at least 1 on the opposite side of the optical functional layer from the transparent substrate. It has the transparent heat insulation layer of a layer, It is characterized by the above-mentioned. This makes it possible to provide an optical film that is not easily affected by the use environment.
In the optical film of the present invention, the transparent base material, the optical functional layer, and the transparent heat insulation layer are laminated in this order so as to sandwich the optical function layer, so that the transparent base material and the transparent heat insulation layer serve as a buffer, and are used for the optical function layer. The effect of the environment is suppressed, and it is thought that the chromic property can be switched according to the degree of heating of the optical functional layer by sunlight.
本発明の光学フィルムの基本的な構成例を示す概略断面図Schematic sectional view showing a basic configuration example of the optical film of the present invention 本発明の光学フィルムの基本的な構成例を示す概略断面図Schematic sectional view showing a basic configuration example of the optical film of the present invention 本発明の光学フィルムの基本的な構成例を示す概略断面図Schematic sectional view showing a basic configuration example of the optical film of the present invention 本発明の光学フィルムの基本的な構成例を示す概略断面図Schematic sectional view showing a basic configuration example of the optical film of the present invention 本発明の光学フィルムの基本的な構成例を示す概略断面図Schematic sectional view showing a basic configuration example of the optical film of the present invention 本発明の光学フィルムの基本的な構成例を示す概略断面図Schematic sectional view showing a basic configuration example of the optical film of the present invention 本発明の光学フィルムの基本的な構成例を示す概略断面図Schematic sectional view showing a basic configuration example of the optical film of the present invention 本発明の光学フィルムの基本的な構成例を示す概略断面図Schematic sectional view showing a basic configuration example of the optical film of the present invention 本発明の光学フィルムの基本的な構成例を示す概略断面図Schematic sectional view showing a basic configuration example of the optical film of the present invention 本発明に適用可能な溶媒置換処理装置の一例を示す概略工程図Schematic process drawing showing an example of a solvent replacement processing apparatus applicable to the present invention
 本発明の光学フィルムは、透明基材上に、サーモクロミック性を有する二酸化バナジウム含有粒子が含有された光学機能層を有し、光学機能層の透明基材とは反対側に、少なくとも1層の透明断熱層を有することを特徴とする。この特徴は、各請求項に係る発明に共通する技術的特徴である。 The optical film of the present invention has an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties on a transparent substrate, and at least one layer on the opposite side of the optical functional layer from the transparent substrate. It has a transparent heat insulation layer. This feature is a technical feature common to the claimed invention.
 本発明の実施態様としては、使用環境による影響を受けにくいことから、透明断熱層の熱抵抗が1.0×10-4~2.5×10-3・K/Wの範囲内であることが好ましい。 As an embodiment of the present invention, since the thermal resistance of the transparent heat insulating layer is within the range of 1.0 × 10 −4 to 2.5 × 10 −3 m 2 · K / W because it is not easily affected by the use environment. Preferably there is.
 また、透明基材若しくは透明断熱層、又は透明基材と透明断熱層との間の層に、光波長400~700nmの範囲内の光を吸収する染料又は顔料が含有されていることが好ましい。光波長400~700nmの範囲内の光を吸収する染料又は顔料が、太陽光を吸収して加熱され、二酸化バナジウム含有粒子が含有されている光学機能層に熱を伝えることで、使用環境の影響を受けずに、より効果的に太陽光の加熱度合に応じたクロミック性の切り替えが可能となる。 In addition, it is preferable that the transparent substrate or the transparent heat insulating layer, or the layer between the transparent substrate and the transparent heat insulating layer, contains a dye or pigment that absorbs light in the light wavelength range of 400 to 700 nm. Dye or pigment that absorbs light within the light wavelength range of 400-700 nm is heated by absorbing sunlight, and heat is transferred to the optical functional layer containing vanadium dioxide-containing particles. The chromic switching according to the heating degree of sunlight can be performed more effectively without receiving the light.
 また、二酸化バナジウム含有粒子の相転移前後の近赤外光の遮蔽効果及び透過効果を有効に利用できることから、光波長400~700nmの範囲内における光学フィルムの平均光吸収率が、23℃において、20~85%の範囲内であることが好ましい。 Further, since the shielding effect and transmission effect of near-infrared light before and after the phase transition of the vanadium dioxide-containing particles can be effectively used, the average light absorption rate of the optical film within the light wavelength range of 400 to 700 nm is 23 ° C. It is preferably in the range of 20 to 85%.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用している。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” representing a numerical range is used in the sense that numerical values described before and after the numerical value range are included as a lower limit value and an upper limit value.
《光学フィルムの概要》
 本発明の光学フィルムは、透明基材上に、サーモクロミック性を有する二酸化バナジウム含有粒子が含有された光学機能層を有し、当該光学機能層の透明基材とは反対側に、少なくとも1層の透明断熱層を有することを特徴とする。
 なお、本発明でいう「透明」とは、可視光領域における平均光線透過率が30%以上であることをいい、好ましくは50%以上、より好ましくは70%以上、特に好ましくは80%以上である。
<Outline of optical film>
The optical film of the present invention has an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties on a transparent substrate, and at least one layer on the opposite side of the optical functional layer from the transparent substrate. It has the transparent heat insulation layer of this.
In the present invention, “transparent” means that the average light transmittance in the visible light region is 30% or more, preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more. is there.
 また、本発明の光学フィルムにおいては、透明基材若しくは透明断熱層、又は透明基材と透明断熱層との間の層に、光波長400~700nmの範囲内の光を吸収する染料又は顔料が含有されていることが好ましい態様である。 In the optical film of the present invention, a dye or pigment that absorbs light in the light wavelength range of 400 to 700 nm is formed in the transparent base material or the transparent heat insulating layer, or the layer between the transparent base material and the transparent heat insulating layer. It is a preferable aspect that it is contained.
 本発明における光波長400~700nmの範囲内の光を吸収する染料又は顔料としては、400~700nmの範囲内の光を吸収する材料であれば特に制限されないが、350~750nmの範囲内に極大吸収波長を持つ染料又は顔料であることが、効率的に400~700nmの範囲内の光を吸収できることからより好ましい。
 ここで、本発明において、「染料」とは、着色する色材として利用され、水や有機溶媒などのいずれかの溶媒に溶解するものをいう。「顔料」とは、着色する色材として利用され、水や有機溶媒などに溶解しない色素が微粉末状になったものをいう。
In the present invention, the dye or pigment that absorbs light in the light wavelength range of 400 to 700 nm is not particularly limited as long as it is a material that absorbs light in the range of 400 to 700 nm, but it is maximum within the range of 350 to 750 nm. A dye or pigment having an absorption wavelength is more preferable because it can efficiently absorb light in the range of 400 to 700 nm.
Here, in the present invention, the “dye” is used as a coloring material to be colored and is dissolved in any solvent such as water or an organic solvent. “Pigment” refers to a pigment that is used as a coloring material to be colored and is in the form of a fine powder of a pigment that does not dissolve in water or an organic solvent.
 本発明において、光波長350~750nmの範囲内に極大吸収波長を持つ染料としては、具体的には、アントラキノン系色素、フタロシアニン系色素、トリフェニルメタン系色素、トリアリールメタン系色素、インジゴ系色素などが挙げられる。 In the present invention, specific examples of the dye having the maximum absorption wavelength in the light wavelength range of 350 to 750 nm include anthraquinone dyes, phthalocyanine dyes, triphenylmethane dyes, triarylmethane dyes, and indigo dyes. Etc.
 また、顔料として、カラーインデックス(C.I.;TheSocietyofDyersandColourists社発行)においてピグメント(Pigment)に分類されている化合物、具体的には、下記のようなカラーインデックス(C.I.)番号が付されているものを挙げることができる。 Further, as pigments, compounds classified as pigments in the color index (CI; issued by The Society of Dyersand Colorists), specifically, the following color index (CI) numbers are given. Can be mentioned.
 C.I.ピグメントレッド1、C.I.ピグメントレッド2、C.I.ピグメントレッド3、C.I.ピグメントレッド4、C.I.ピグメントレッド5、C.I.ピグメントレッド6、C.I.ピグメントレッド7、C.I.ピグメントレッド8、C.I.ピグメントレッド9、C.I.ピグメントレッド10、C.I.ピグメントレッド11、C.I.ピグメントレッド12、C.I.ピグメントレッド14、C.I.ピグメントレッド15、C.I.ピグメントレッド16、C.I.ピグメントレッド17、C.I.ピグメントレッド18、C.I.ピグメントレッド19、C.I.ピグメントレッド21、C.I.ピグメントレッド22、C.I.ピグメントレッド23、C.I.ピグメントレッド30、C.I.ピグメントレッド31、C.I.ピグメントレッド32、C.I.ピグメントレッド37、C.I.ピグメントレッド38、C.I.ピグメントレッド40、C.I.ピグメントレッド41、C.I.ピグメントレッド42、C.I.ピグメントレッド48:1、C.I.ピグメントレッド48:2、C.I.ピグメントレッド48:3、C.I.ピグメントレッド48:4、C.I.ピグメントレッド49:1、C.I.ピグメントレッド49:2、C.I.ピグメントレッド50:1、C.I.ピグメントレッド52:1、C.I.ピグメントレッド53:1、C.I.ピグメントレッド57、C.I.ピグメントレッド57:1、C.I.ピグメントレッド57:2、C.I.ピグメントレッド58:2、C.I.ピグメントレッド58:4、C.I.ピグメントレッド60:1、C.I.ピグメントレッド63:1、C.I.ピグメントレッド63:2、C.I.ピグメントレッド64:1、C.I.ピグメントレッド81:1、C.I.ピグメントレッド83、C.I.ピグメントレッド88、C.I.ピグメントレッド90:1、C.I.ピグメントレッド97、C.I.ピグメントレッド101、C.I.ピグメントレッド102、C.I.ピグメントレッド104、C.I.ピグメントレッド105、C.I.ピグメントレッド106、C.I.ピグメントレッド108、C.I.ピグメントレッド112、C.I.ピグメントレッド113、C.I.ピグメントレッド114、C.I.ピグメントレッド122、C.I.ピグメントレッド123、C.I.ピグメントレッド144、C.I.ピグメントレッド146、C.I.ピグメントレッド149、C.I.ピグメントレッド150、C.I.ピグメントレッド151、C.I.ピグメントレッド166、C.I.ピグメントレッド168、C.I.ピグメントレッド170、C.I.ピグメントレッド171、C.I.ピグメントレッド172、C.I.ピグメントレッド174、C.I.ピグメントレッド175、C.I.ピグメントレッド176、C.I.ピグメントレッド177、C.I.ピグメントレッド178、C.I.ピグメントレッド179、C.I.ピグメントレッド180、C.I.ピグメントレッド185、C.I.ピグメントレッド187、C.I.ピグメントレッド188、C.I.ピグメントレッド190、C.I.ピグメントレッド193、C.I.ピグメントレッド194、C.I.ピグメントレッド202、C.I.ピグメントレッド206、C.I.ピグメントレッド207、C.I.ピグメントレッド208、C.I.ピグメントレッド209、C.I.ピグメントレッド215、C.I.ピグメントレッド216、C.I.ピグメントレッド220、C.I.ピグメントレッド224、C.I.ピグメントレッド226、C.I.ピグメントレッド242、C.I.ピグメントレッド243、C.I.ピグメントレッド245、C.I.ピグメントレッド254、C.I.ピグメントレッド255、C.I.ピグメントレッド264、C.I.ピグメントレッド265 C. I. Pigment red 1, C.I. I. Pigment red 2, C.I. I. Pigment red 3, C.I. I. Pigment red 4, C.I. I. Pigment red 5, C.I. I. Pigment red 6, C.I. I. Pigment red 7, C.I. I. Pigment red 8, C.I. I. Pigment red 9, C.I. I. Pigment red 10, C.I. I. Pigment red 11, C.I. I. Pigment red 12, C.I. I. Pigment red 14, C.I. I. Pigment red 15, C.I. I. Pigment red 16, C.I. I. Pigment red 17, C.I. I. Pigment red 18, C.I. I. Pigment red 19, C.I. I. Pigment red 21, C.I. I. Pigment red 22, C.I. I. Pigment red 23, C.I. I. Pigment red 30, C.I. I. Pigment red 31, C.I. I. Pigment red 32, C.I. I. Pigment red 37, C.I. I. Pigment red 38, C.I. I. Pigment red 40, C.I. I. Pigment red 41, C.I. I. Pigment red 42, C.I. I. Pigment red 48: 1, C.I. I. Pigment red 48: 2, C.I. I. Pigment red 48: 3, C.I. I. Pigment red 48: 4, C.I. I. Pigment red 49: 1, C.I. I. Pigment red 49: 2, C.I. I. Pigment red 50: 1, C.I. I. Pigment red 52: 1, C.I. I. Pigment red 53: 1, C.I. I. Pigment red 57, C.I. I. Pigment red 57: 1, C.I. I. Pigment red 57: 2, C.I. I. Pigment red 58: 2, C.I. I. Pigment red 58: 4, C.I. I. Pigment red 60: 1, C.I. I. Pigment red 63: 1, C.I. I. Pigment red 63: 2, C.I. I. Pigment red 64: 1, C.I. I. Pigment red 81: 1, C.I. I. Pigment red 83, C.I. I. Pigment red 88, C.I. I. Pigment red 90: 1, C.I. I. Pigment red 97, C.I. I. Pigment red 101, C.I. I. Pigment red 102, C.I. I. Pigment red 104, C.I. I. Pigment red 105, C.I. I. Pigment red 106, C.I. I. Pigment red 108, C.I. I. Pigment red 112, C.I. I. Pigment red 113, C.I. I. Pigment red 114, C.I. I. Pigment red 122, C.I. I. Pigment red 123, C.I. I. Pigment red 144, C.I. I. Pigment red 146, C.I. I. Pigment red 149, C.I. I. Pigment red 150, C.I. I. Pigment red 151, C.I. I. Pigment red 166, C.I. I. Pigment red 168, C.I. I. Pigment red 170, C.I. I. Pigment red 171, C.I. I. Pigment red 172, C.I. I. Pigment red 174, C.I. I. Pigment red 175, C.I. I. Pigment red 176, C.I. I. Pigment red 177, C.I. I. Pigment red 178, C.I. I. Pigment red 179, C.I. I. Pigment red 180, C.I. I. Pigment red 185, C.I. I. Pigment red 187, C.I. I. Pigment red 188, C.I. I. Pigment red 190, C.I. I. Pigment red 193, C.I. I. Pigment red 194, C.I. I. Pigment red 202, C.I. I. Pigment red 206, C.I. I. Pigment red 207, C.I. I. Pigment red 208, C.I. I. Pigment red 209, C.I. I. Pigment red 215, C.I. I. Pigment red 216, C.I. I. Pigment red 220, C.I. I. Pigment red 224, C.I. I. Pigment red 226, C.I. I. Pigment red 242, C.I. I. Pigment red 243, C.I. I. Pigment red 245, C.I. I. Pigment red 254, C.I. I. Pigment red 255, C.I. I. Pigment red 264, C.I. I. Pigment Red 265
 C.I.ピグメントブルー15、C.I.ピグメントブルー15:3、C.I.ピグメントブルー15:4、C.I.ピグメントブルー15:6、C.I.ピグメントブルー16、C.I.ピグメントブルー60 C. I. Pigment blue 15, C.I. I. Pigment blue 15: 3, C.I. I. Pigment blue 15: 4, C.I. I. Pigment blue 15: 6, C.I. I. Pigment blue 16, C.I. I. Pigment Blue 60
 C.I.ピグメントグリーン7、C.I.ピグメントグリーン36 C. I. Pigment green 7, C.I. I. Pigment Green 36
 C.I.ピグメントブラウン23、C.I.ピグメントブラウン25 C. I. Pigment brown 23, C.I. I. Pigment Brown 25
 C.I.ピグメントブラック1、C.I.ピグメントブラック7 C. I. Pigment black 1, C.I. I. Pigment Black 7
 中でも、同フタロシアニン系のC.I.ピグメントブルー15:3(極大吸収波長630nm、720nm)、C.I.ピグメントブルー15:4(極大吸収波長640nm、740nm)、C.I.ピグメントブルー16(極大吸収波長620nm、690nm)などを好ましく用いることができる。 Above all, the phthalocyanine C.I. I. Pigment blue 15: 3 (maximum absorption wavelength: 630 nm, 720 nm), C.I. I. Pigment Blue 15: 4 (maximum absorption wavelength: 640 nm, 740 nm), C.I. I. Pigment Blue 16 (maximum absorption wavelength: 620 nm, 690 nm) or the like can be preferably used.
 また、本発明の光学フィルムは、光波長400~700nmの範囲内における平均光吸収率が、23℃において、20~80%の範囲内であることが好ましい。
 光波長400~700nmの範囲内における平均光吸収率(%)は、以下のようにして求めることができる。
The optical film of the present invention preferably has an average light absorptance within the range of 20 to 80% at 23 ° C. within the light wavelength range of 400 to 700 nm.
The average light absorptance (%) within the light wavelength range of 400 to 700 nm can be determined as follows.
 光波長400~700nmの範囲内における平均光吸収率(%)
=100-{(光波長400~700nmの範囲内における平均分光透過率)-(光波長400~700nmの範囲内における平均分光反射率)}
Average light absorptance (%) within the light wavelength range of 400 to 700 nm
= 100-{(Average spectral transmittance in the range of light wavelength 400 to 700 nm)-(Average spectral reflectance in the range of light wavelength 400 to 700 nm)}
 平均分光透過率及び平均分光反射率は、分光光度計を用いて測定することができる。本発明においては、日本分光社製紫外可視近赤外分光光度計V-670を用いて測定する。
 具体的には、測定対象物である光学フィルムの温度が23℃となるように、恒温室内を23℃、55%RHとなるように設定し、恒温室内に光学フィルムを3時間放置して平衡状態にした後に、上記の測定を行う。
The average spectral transmittance and the average spectral reflectance can be measured using a spectrophotometer. In the present invention, the measurement is performed using an ultraviolet-visible near-infrared spectrophotometer V-670 manufactured by JASCO Corporation.
Specifically, the temperature inside the temperature-controlled room is set to 23 ° C. and 55% RH so that the temperature of the optical film as the measurement object is 23 ° C., and the optical film is allowed to stand in the temperature-controlled room for 3 hours to equilibrate. After making the state, the above measurement is performed.
 また、光波長1300nmにおける分光透過率が、23℃において、50%以上であることが、二酸化バナジウム含有粒子の相転移前後の遮蔽効果及び透過効果を有効に利用できることから好ましい。
 さらに、光波長550nmにおける分光透過率が、23℃において、20~60%の範囲内であることが、光学フィルムの着色の点で好ましい。
 なお、これら分光透過率の測定も、上記と同様の分光光度計を用いることができる。
Moreover, it is preferable that the spectral transmittance at an optical wavelength of 1300 nm is 50% or more at 23 ° C., since the shielding effect and the transmission effect before and after the phase transition of the vanadium dioxide-containing particles can be effectively used.
Further, the spectral transmittance at a light wavelength of 550 nm is preferably in the range of 20 to 60% at 23 ° C. from the viewpoint of coloring of the optical film.
In addition, the measurement of these spectral transmittances can also use the same spectrophotometer as the above.
 光波長400~700nmの範囲内における平均光吸収率を、20~80%の範囲内とするための手段としては、例えば、上記した染料又は顔料を含有する塗布液の塗布量を調整することによって制御することができる。塗布量は、染料又は顔料の吸収係数によって異なるが、おおよそ染料又は顔料の1mあたりの塗布量として0.01~1gの範囲内である。 As a means for setting the average light absorptance within the light wavelength range of 400 to 700 nm within the range of 20 to 80%, for example, by adjusting the coating amount of the coating liquid containing the above-mentioned dye or pigment. Can be controlled. The coating amount varies depending on the absorption coefficient of the dye or pigment, but is approximately in the range of 0.01 to 1 g as the coating amount per 1 m 2 of the dye or pigment.
《光学フィルムの層構成》
 本発明の光学フィルムは、透明基材と少なくとも1層の透明断熱層とで、サーモクロミック性を有する二酸化バナジウム含有粒子が含有された光学機能層を挟持するように構成されていることを特徴とする。
<< Layer structure of optical film >>
The optical film of the present invention is characterized in that an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties is sandwiched between a transparent substrate and at least one transparent heat insulating layer. To do.
 また、光波長400~700nmの範囲内の光を吸収する染料又は顔料が含有されている層が、透明基材と透明断熱層との間に着色剤層として設けられていてもよいし、染料又は顔料が二酸化バナジウム含有粒子とともに光学機能層に含有されていてもよい。また、染料又は顔料が、透明基材又は透明断熱層に含有されていてもよい。
 染料又は顔料が吸収した太陽熱を効率的に二酸化バナジウム含有粒子に移行させる観点から、染料又は顔料は、二酸化バナジウム含有粒子が含有された光学機能層又は当該光学機能層に直接接触する隣接層に含有されていることが好ましい(後述の図1D~H参照。)。
In addition, a layer containing a dye or pigment that absorbs light in the light wavelength range of 400 to 700 nm may be provided as a colorant layer between the transparent substrate and the transparent heat insulating layer. Or the pigment may be contained in the optical functional layer together with the vanadium dioxide-containing particles. Moreover, dye or a pigment may be contained in the transparent base material or the transparent heat insulation layer.
From the viewpoint of efficiently transferring solar heat absorbed by the dye or pigment to the vanadium dioxide-containing particles, the dye or pigment is contained in the optical functional layer containing the vanadium dioxide-containing particles or in an adjacent layer in direct contact with the optical functional layer. (See FIGS. 1D to 1H described later.)
 本発明の光学フィルムの代表的な構成としては、以下の(1)~(9)の構成を挙げることができるが、これらに限定されるものではない。 As typical configurations of the optical film of the present invention, the following configurations (1) to (9) can be exemplified, but the present invention is not limited thereto.
(1)透明断熱層/二酸化バナジウム含有粒子が含有された光学機能層/透明基材/粘着層(図1A参照。)
(2)クリアハードコート層/透明断熱層/二酸化バナジウム含有粒子が含有された光学機能層/透明基材/粘着層(図1B参照。)
(3)染料又は顔料が含有された着色剤層兼クリアハードコート層/透明断熱層/二酸化バナジウム含有粒子が含有された光学機能層/透明基材/粘着層(図1C参照。)
(4)クリアハードコート層/染料又は顔料が含有された着色剤層兼透明断熱層/二酸化バナジウム含有粒子が含有された光学機能層/透明基材/粘着層(図1D参照。)
(5)クリアハードコート層/透明断熱層/染料又は顔料が含有された着色剤層/二酸化バナジウム含有粒子が含有された光学機能層/透明基材/粘着層(図1E参照。)
(6)クリアハードコート層/透明断熱層/染料又は顔料と、二酸化バナジウム含有粒子とが含有された着色剤層兼光学機能層/透明基材/粘着層(図1F参照。)
(7)クリアハードコート層/透明断熱層/二酸化バナジウム含有粒子が含有された光学機能層/染料又は顔料が含有された着色剤層/透明基材/粘着層(図1G参照。)
(8)クリアハードコート層/透明断熱層/二酸化バナジウム含有粒子が含有された光学機能層/染料又は顔料が含有された着色剤層兼透明基材/粘着層(図1H参照。)
(9)クリアハードコート層/透明断熱層/二酸化バナジウム含有粒子が含有された光学機能層/透明基材/染料又は顔料が含有された着色剤層兼粘着層(図1I参照。)
(1) Transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / transparent substrate / adhesive layer (see FIG. 1A)
(2) Clear hard coat layer / transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / transparent substrate / adhesive layer (see FIG. 1B)
(3) Colorant layer / clear hard coat layer containing dye or pigment / transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / transparent substrate / adhesive layer (see FIG. 1C)
(4) Clear hard coat layer / colorant layer containing a dye or pigment / transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / transparent substrate / adhesive layer (see FIG. 1D)
(5) Clear hard coat layer / transparent heat insulating layer / colorant layer containing dye or pigment / optical functional layer containing vanadium dioxide-containing particles / transparent substrate / adhesive layer (see FIG. 1E)
(6) Colorant layer / optical functional layer / transparent substrate / adhesive layer containing clear hard coat layer / transparent heat insulating layer / dye or pigment and vanadium dioxide-containing particles (see FIG. 1F)
(7) Clear hard coat layer / transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / colorant layer containing dye or pigment / transparent substrate / adhesive layer (see FIG. 1G)
(8) Clear hard coat layer / transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / colorant layer / dye or pigment containing transparent substrate / adhesive layer (see FIG. 1H)
(9) Clear hard coat layer / transparent heat insulating layer / optical functional layer containing vanadium dioxide-containing particles / transparent substrate / colorant layer / adhesive layer containing a dye or pigment (see FIG. 1I)
 上記粘着層は、ガラス等に貼り付け可能となっている。
 以下、(5)の構成を例にとって説明する。
The adhesive layer can be attached to glass or the like.
Hereinafter, the configuration (5) will be described as an example.
 図1Eに示す光学フィルム1は、透明基材2の一方の面に、サーモクロミック性を有する二酸化バナジウム含有粒子が含有された光学機能層3、光波長400~700nmの範囲内の光を吸収する染料又は顔料が含有された着色剤層4、透明断熱層5及びクリアハードコート層6がこの順に積層され、透明基材2の他方の面に、粘着層7が積層されている。 An optical film 1 shown in FIG. 1E absorbs light within a wavelength range of 400 to 700 nm, an optical functional layer 3 containing thermochromic vanadium dioxide-containing particles on one surface of a transparent substrate 2. A colorant layer 4 containing a dye or a pigment, a transparent heat insulating layer 5 and a clear hard coat layer 6 are laminated in this order, and an adhesive layer 7 is laminated on the other surface of the transparent substrate 2.
 光学機能層3においては、二酸化バナジウム含有粒子は、バインダー樹脂中に分散された状態で存在している。
 着色剤層4においては、染料又は顔料が分散された状態で存在している。
In the optical functional layer 3, the vanadium dioxide-containing particles are present in a dispersed state in the binder resin.
In the colorant layer 4, a dye or pigment is present in a dispersed state.
 光学機能層3中における二酸化バナジウム含有粒子の1次粒子による数平均粒径は、顔料を構成する顔料粒子の1次粒子による数平均粒径よりも大きいことが好ましい。
 光学機能層3中における二酸化バナジウム含有粒子の数平均粒径は、下記の方法に従って求めることができる。
The number average particle diameter of the primary particles of the vanadium dioxide-containing particles in the optical functional layer 3 is preferably larger than the number average particle diameter of the primary particles of the pigment particles constituting the pigment.
The number average particle diameter of the vanadium dioxide-containing particles in the optical functional layer 3 can be determined according to the following method.
 はじめに、光学フィルム1を構成する光学機能層3の側面をミクロトームによりトリミングして、図1Eに示すような断面の超薄切片を作製する。次いで、その超薄切片について、透過型電子顕微鏡(TEM)を用いて、1万~10万倍で撮影する。撮影した断面の一定領域内の単一粒子で存在している二酸化バナジウム含有粒子の1次粒子について、その粒径を測定する。このとき、測定する二酸化バナジウム含有粒子は、50~100個の範囲内であることが好ましい。もし、二酸化バナジウム含有粒子が球形でない場合には、粒子の投影面積を円換算し、その直径をもって粒径とする。1次粒子の各直径について、数平均直径を求める。切り出した断面部には粒子分布のバラつきがあるため、このような測定を異なる断面領域10か所について行い、全体の数平均直径を求め、これを本発明でいう数平均粒径(nm)とする。 First, the side surface of the optical functional layer 3 constituting the optical film 1 is trimmed with a microtome to produce an ultrathin section having a cross section as shown in FIG. 1E. Next, the ultrathin section is photographed at 10,000 to 100,000 times using a transmission electron microscope (TEM). The particle size of the primary particles of vanadium dioxide-containing particles existing as single particles in a certain region of the photographed cross section is measured. At this time, the number of vanadium dioxide-containing particles to be measured is preferably in the range of 50 to 100 particles. If the vanadium dioxide-containing particles are not spherical, the projected area of the particles is converted into a circle and the diameter is taken as the particle size. The number average diameter is determined for each diameter of the primary particles. Since the cut-out cross-sectional portion has a variation in particle distribution, such measurement is performed for 10 different cross-sectional regions, the whole number average diameter is obtained, and this is referred to as the number average particle size (nm) in the present invention. To do.
 本発明に係る二酸化バナジウム含有粒子の詳細については後述するが、1次粒子の数平均粒径としては、5~100nmの範囲内であることが好ましい。
 また、顔料を構成する顔料粒子の1次粒子の数平均粒径は、1~100nmの範囲内であることが好ましい。なお、顔料粒子の数平均粒径は、例えば、二酸化バナジウム含有粒子の1次粒子径と同様に超薄切片の透過電子顕微鏡観察(TEM)によって求めることができる。
The details of the vanadium dioxide-containing particles according to the present invention will be described later, but the number average particle size of the primary particles is preferably in the range of 5 to 100 nm.
The number average particle diameter of the primary particles of the pigment particles constituting the pigment is preferably in the range of 1 to 100 nm. The number average particle diameter of the pigment particles can be determined, for example, by transmission electron microscope observation (TEM) of an ultrathin slice similarly to the primary particle diameter of the vanadium dioxide-containing particles.
〈光学機能層〉
 本発明に係る光学機能層には、二酸化バナジウム含有粒子とバインダー樹脂とが含有されている。
<Optical function layer>
The optical functional layer according to the present invention contains vanadium dioxide-containing particles and a binder resin.
(二酸化バナジウム含有粒子)
 本発明に係る二酸化バナジウム含有粒子の結晶形は、特に制限はないが、サーモクロミック性(自動調光性)を効率よく発現させる観点から、ルチル型の二酸化バナジウム含有粒子(VO含有粒子)を用いることが、特に好ましい。
(Vanadium dioxide-containing particles)
Crystalline form of vanadium dioxide-containing particles according to the present invention is not particularly limited, thermochromic (automatic dimming) from the viewpoint of efficient expression, rutile dioxide vanadium-containing particles (VO 2 containing particles) It is particularly preferable to use it.
 ルチル型の二酸化バナジウム含有粒子は、相転移温度以下では、単斜晶系(monoclinic)の構造を有するため、M型とも呼ばれる。本発明に係る二酸化バナジウム含有粒子においては、目的を損なわない範囲で、A型又はB型などの他の結晶型の二酸化バナジウム含有粒子を含んでもよい。 Since the rutile vanadium dioxide-containing particles have a monoclinic structure below the phase transition temperature, they are also called M-type. The vanadium dioxide-containing particles according to the present invention may contain other crystal-type vanadium dioxide-containing particles such as A-type or B-type, as long as the object is not impaired.
 本発明においては、二酸化バナジウム含有粒子の金属成分の95原子%以上がバナジウムであることが好ましく、これにより良好なサーモクロミック性を発揮することができる。すなわち、バナジウム以外の金属がドープされている場合には、5原子%未満でドープされていれば十分である。例えば、バナジウムの他に、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)及びリン(P)からなる群から選択される少なくとも一つの元素を含んでいてもよい。 In the present invention, it is preferable that 95 atomic% or more of the metal component of the vanadium dioxide-containing particles is vanadium, which can exhibit good thermochromic properties. That is, when a metal other than vanadium is doped, it is sufficient if it is doped with less than 5 atomic%. For example, in addition to vanadium, tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium (Ru) ), Germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F) and phosphorus (P). May be.
 また、二酸化バナジウム含有粒子のアスペクト比としては、1.0~3.0の範囲内であることが好ましい。
 このような特徴をもつ二酸化バナジウム含有粒子では、アスペクト比が十分に小さく、形状が等方的であるので、溶液に添加した場合の分散性が良好である。加えて、単結晶の粒径が十分に小さいので、従来の粒子に比べて、良好なサーモクロミック性を発揮することができる。
The aspect ratio of the vanadium dioxide-containing particles is preferably in the range of 1.0 to 3.0.
The vanadium dioxide-containing particles having such characteristics have a sufficiently small aspect ratio and isotropic shape, and therefore have good dispersibility when added to a solution. In addition, since the single crystal has a sufficiently small particle size, it can exhibit better thermochromic properties than conventional particles.
 また、本発明に係る光学機能層における二酸化バナジウム含有粒子の濃度としては、特に制限はないが、おおむね光学機能層全質量に対し、5~80質量%の範囲内であることが好ましく、より好ましくは5~60質量%の範囲内であり、更に好ましくは5~40質量%の範囲内である。 Further, the concentration of the vanadium dioxide-containing particles in the optical functional layer according to the present invention is not particularly limited, but is generally preferably in the range of 5 to 80% by mass with respect to the total mass of the optical functional layer, more preferably. Is in the range of 5 to 60% by mass, more preferably in the range of 5 to 40% by mass.
(1)二酸化バナジウム含有粒子の製造方法
 一般に、二酸化バナジウム含有粒子の製造方法としては、固相法により合成された二酸化バナジウム焼結体を粉砕する方法や、五酸化二バナジウム(V)やバナジン酸アンモニウム(NHVO)などの5価のバナジウム化合物を原料にヒドラジンやシュウ酸等の還元剤を併用し、あるいは、硫酸バナジル等の4価のバナジウム化合物を原料として、液相で二酸化バナジウムを合成しながら粒子成長させる水系合成法が挙げられる。
 本発明に係る二酸化バナジウム含有粒子の製造方法としては、平均1次粒子径が小さく、粒径のばらつきを抑制することができる点で、液相で二酸化バナジウム含有粒子を合成しながら粒子成長させる水系合成法が好ましい。
(1) Method for Producing Vanadium Dioxide-Containing Particles In general, as a method for producing vanadium dioxide-containing particles, a method of pulverizing a vanadium dioxide sintered body synthesized by a solid phase method, or divanadium pentoxide (V 2 O 5 ). Or a pentavalent vanadium compound such as hydrazine or oxalic acid as a raw material together with a pentavalent vanadium compound such as ammonium vanadate (NH 4 VO 3 ), or a tetravalent vanadium compound such as vanadyl sulfate as a raw material in the liquid phase An aqueous synthesis method in which particles are grown while synthesizing vanadium dioxide can be mentioned.
The method for producing vanadium dioxide-containing particles according to the present invention is an aqueous system in which particles are grown while synthesizing vanadium dioxide-containing particles in a liquid phase in that the average primary particle size is small and variation in particle size can be suppressed. A synthetic method is preferred.
 さらに、水系合成法としては、水熱合成法と、超臨界状態を用いた水系合成法(超臨界水熱合成法ともいう。)が挙げられる。水熱合成法の詳細については後述する。また、超臨界状態を用いた水系合成法の詳細については、例えば、特開2010-58984号公報の段落0011、0015~0018に記載されている製造方法を参照することができる。
 上記水系合成法の中でも、水熱合成法を適用することが好ましい。
Furthermore, examples of the aqueous synthesis method include a hydrothermal synthesis method and an aqueous synthesis method using a supercritical state (also referred to as a supercritical hydrothermal synthesis method). Details of the hydrothermal synthesis method will be described later. For the details of the aqueous synthesis method using the supercritical state, for example, the production methods described in paragraphs 0011 and 0015 to 0018 of JP-A-2010-58984 can be referred to.
Among the aqueous synthesis methods, it is preferable to apply the hydrothermal synthesis method.
 また、二酸化バナジウム含有粒子の製造方法として、必要に応じて、粒子成長の核となる微小なTiO等の粒子を核粒子として添加し、その核粒子を成長させることにより二酸化バナジウム含有粒子を製造することもできる。 In addition, as a method for producing vanadium dioxide-containing particles, if necessary, particles such as fine TiO 2 serving as the core of particle growth are added as core particles, and vanadium dioxide-containing particles are produced by growing the core particles. You can also
 次いで、本発明に好適な水熱合成法による二酸化バナジウム含有粒子の製造方法について、その詳細を更に説明する。
 以下に、代表的な水熱合成法による二酸化バナジウム含有粒子の製造工程を示す。
Next, the details of the method for producing vanadium dioxide-containing particles by a hydrothermal synthesis method suitable for the present invention will be described.
Below, the manufacturing process of the vanadium dioxide containing particle | grains by the typical hydrothermal synthesis method is shown.
(工程1)
 バナジウム(V)を含む物質(I)と、ヒドラジン(N)又はその水和物(N・nHO)と、水とを混ぜて溶液(A)を調製する。この溶液は、物質(I)が水中に溶解した水溶液であってもよいし、物質(I)が水中に分散した懸濁液であってもよい。
(Process 1)
A substance (I) containing vanadium (V), hydrazine (N 2 H 4 ) or a hydrate thereof (N 2 H 4 .nH 2 O), and water are mixed to prepare a solution (A). This solution may be an aqueous solution in which the substance (I) is dissolved in water, or a suspension in which the substance (I) is dispersed in water.
 物質(I)としては、例えば、五酸化二バナジウム(V)、バナジン酸アンモニウム(NHVO)、三塩化酸化バナジウム(VOCl)、メタバナジン酸ナトリウム(NaVO)等が挙げられる。なお、物質(I)としては、五価のバナジウム(V)を含む化合物であれば、特に限定されない。ヒドラジン(N)及びその水和物(N・nHO)は、物質(I)の還元剤として機能するものであって、水に容易に溶解する性質を有する。 Examples of the substance (I) include divanadium pentoxide (V 2 O 5 ), ammonium vanadate (NH 4 VO 3 ), vanadium trichloride (VOCl 3 ), sodium metavanadate (NaVO 3 ), and the like. . The substance (I) is not particularly limited as long as it is a compound containing pentavalent vanadium (V). Hydrazine (N 2 H 4 ) and its hydrate (N 2 H 4 .nH 2 O) function as a reducing agent for the substance (I) and have a property of being easily dissolved in water.
 溶液(A)は、最終的に得られる二酸化バナジウム(VO)の単結晶微粒子に元素を添加するため、添加する元素を含む物質(II)を更に含有していてもよい。添加する元素としては、例えば、タングステン(W)、モリブデン(Mo)、ニオブ(Nb)、タンタル(Ta)、スズ(Sn)、レニウム(Re)、イリジウム(Ir)、オスミウム(Os)、ルテニウム(Ru)、ゲルマニウム(Ge)、クロム(Cr)、鉄(Fe)、ガリウム(Ga)、アルミニウム(Al)、フッ素(F)又はリン(P)が挙げられる。 The solution (A) may further contain a substance (II) containing the element to be added in order to add the element to the finally obtained vanadium dioxide (VO 2 ) single crystal fine particles. Examples of the element to be added include tungsten (W), molybdenum (Mo), niobium (Nb), tantalum (Ta), tin (Sn), rhenium (Re), iridium (Ir), osmium (Os), ruthenium ( Ru), germanium (Ge), chromium (Cr), iron (Fe), gallium (Ga), aluminum (Al), fluorine (F), or phosphorus (P).
 また、この溶液(A)は、酸化性又は還元性を有する物質(III)を更に含有していてもよい。物質(III)としては、例えば、過酸化水素(H)が挙げられる。酸化性又は還元性を有する物質(III)を添加することにより、溶液のpHを調整したり、物質(I)であるバナジウム(V)を含む物質を均一に溶解させたりすることができる。 Moreover, this solution (A) may further contain a substance (III) having oxidizing property or reducing property. Examples of the substance (III) include hydrogen peroxide (H 2 O 2 ). By adding the oxidizing or reducing substance (III), the pH of the solution can be adjusted, or the substance containing vanadium (V) as the substance (I) can be uniformly dissolved.
(工程2)
 次に、調製した溶液(A)を用いて、水熱反応処理を行う。ここで、「水熱反応」とは、温度と圧力とが、水の臨界点(374℃、22MPa)よりも低い熱水(亜臨界水)中において生じる化学反応を意味する。水熱反応処理は、例えば、オートクレーブ装置内で行われる。水熱反応処理により、二酸化バナジウム(VO)含有の単結晶微粒子が得られる。
(Process 2)
Next, a hydrothermal reaction treatment is performed using the prepared solution (A). Here, “hydrothermal reaction” means a chemical reaction that occurs in hot water (subcritical water) whose temperature and pressure are lower than the critical point of water (374 ° C., 22 MPa). The hydrothermal reaction treatment is performed, for example, in an autoclave apparatus. Single crystal fine particles containing vanadium dioxide (VO 2 ) are obtained by the hydrothermal reaction treatment.
 水熱反応処理の条件(例えば、反応物の量、処理温度、処理圧力、処理時間等。)は、適宜設定されるが、水熱反応処理の温度は、例えば、250~350℃の範囲内であり、好ましくは250~300℃の範囲内であり、より好ましくは250~280℃の範囲内である。温度を低くすることにより、得られる単結晶微粒子の粒径を小さくすることができるが、過度に粒径が小さいと、結晶性が低くなる。
 また、水熱反応処理の時間は、例えば、1時間~5日の範囲内であることが好ましい。時間を長くすることにより、得られる単結晶微粒子の粒径等を制御することができるが、過度に長い処理時間では、エネルギー消費量が多くなる。
The conditions of the hydrothermal reaction treatment (for example, the amount of reactants, the treatment temperature, the treatment pressure, the treatment time, etc.) are set as appropriate, but the temperature of the hydrothermal reaction treatment is, for example, within the range of 250 to 350 ° C. Preferably, it is in the range of 250 to 300 ° C, more preferably in the range of 250 to 280 ° C. By reducing the temperature, the particle diameter of the obtained single crystal fine particles can be reduced, but if the particle diameter is excessively small, the crystallinity is lowered.
The hydrothermal reaction treatment time is preferably in the range of 1 hour to 5 days, for example. Increasing the time can control the particle size and the like of the obtained single crystal fine particles, but an excessively long processing time increases the energy consumption.
(工程3)
 必要に応じて、得られた二酸化バナジウム含有粒子の表面に、樹脂によるコーティング処理又は表面改質処理を行ってもよい。これにより、二酸化バナジウム含有粒子の表面が保護され、表面改質された単結晶微粒子を得ることができる。本発明では、その中でも、二酸化バナジウム含有粒子の表面を後述する水系バインダー樹脂と同じ又は同種の樹脂により被覆されていることが好ましい態様である。
 なお、本発明でいう「被覆」とは、二酸化バナジウム含有粒子に対し、当該樹脂により粒子全面が完全に覆われている状態であっても、あるいは、粒子表面の一部が樹脂により覆われている状態であってもよい。
(Process 3)
If necessary, the surface of the obtained vanadium dioxide-containing particles may be subjected to a coating treatment or a surface modification treatment with a resin. Thereby, the surface of the vanadium dioxide-containing particles can be protected, and surface-modified single crystal fine particles can be obtained. In the present invention, among these, it is preferable that the surface of the vanadium dioxide-containing particles is coated with the same or the same kind of resin as the aqueous binder resin described later.
The “coating” as used in the present invention is a state in which the entire surface of the particle is completely covered with the resin with respect to the vanadium dioxide-containing particles, or a part of the particle surface is covered with the resin. It may be in a state.
 以上の工程1~工程3を経て、サーモクロミック性を有する二酸化バナジウム(VO)含有の単結晶微粒子を含む分散液が得られる。 Through the above steps 1 to 3, a dispersion containing single crystal fine particles containing thermochromic vanadium dioxide (VO 2 ) is obtained.
(2)二酸化バナジウム含有粒子分散液の不純物の除去処理
 上記水系合成法により調製された二酸化バナジウム含有粒子の分散液中には、合成過程で生じた残渣などの不純物が含まれており、光学機能層を形成する際に2次凝集粒子発生のきっかけとなって、光学機能層の長期保存での劣化要因となることがあることから、あらかじめ分散液の段階で不純物を除去することが好ましい。
(2) Removal of impurities from vanadium dioxide-containing particle dispersion The dispersion of vanadium dioxide-containing particles prepared by the aqueous synthesis method described above contains impurities such as residues generated during the synthesis process, and has an optical function. It is preferable to remove impurities at the stage of the dispersion liquid in advance because it may cause secondary agglomerated particles when the layer is formed and may cause deterioration in long-term storage of the optical functional layer.
 二酸化バナジウム含有粒子分散液中の不純物を除去する方法としては、従来公知の異物や不純物を分離する手段を適用することができ、例えば、二酸化バナジウム含有粒子分散液に遠心分離を施し、二酸化バナジウム含有粒子を沈殿させ、上澄み中の不純物を除去し、再び分散媒を添加、分散する方法でもよいし、限外ろ過膜などの交換膜を用いて不純物を系外へ除去する方法でもよいが、二酸化バナジウム含有粒子の凝集を防止する観点からは、限外ろ過膜を用いる方法が最も好ましい。 As a method for removing impurities in the vanadium dioxide-containing particle dispersion, conventionally known means for separating foreign substances and impurities can be applied. For example, the vanadium dioxide-containing particle dispersion is subjected to centrifugal separation to contain vanadium dioxide. A method of precipitating particles, removing impurities in the supernatant, adding and dispersing the dispersion medium again, or removing impurities out of the system using an exchange membrane such as an ultrafiltration membrane may be used. From the viewpoint of preventing aggregation of vanadium-containing particles, a method using an ultrafiltration membrane is most preferable.
 限外ろ過膜の材質としては、セルロース系、ポリエーテルスルホン系、ポリテトラフルオロエチレン(PTFE)などを挙げることができ、その中でも、ポリエーテルスルホン系、PTFEを用いることが好ましい。 Examples of the material for the ultrafiltration membrane include cellulose, polyethersulfone, and polytetrafluoroethylene (PTFE). Among these, polyethersulfone and PTFE are preferably used.
(3)二酸化バナジウム含有粒子を含む溶媒分散液の調製方法:溶媒置換処理
 本発明においては、疎水系バインダー樹脂を使用する場合は、上記水系合成法により二酸化バナジウム含有粒子を含む水系分散液を調製した後、水系分散液として、二酸化バナジウム含有粒子が乾燥過程を経ることなく、溶媒置換工程により二酸化バナジウム含有粒子を含む溶媒分散液を調製することが好ましい。
(3) Preparation method of solvent dispersion containing vanadium dioxide-containing particles: Solvent replacement treatment In the present invention, when a hydrophobic binder resin is used, an aqueous dispersion containing vanadium dioxide-containing particles is prepared by the aqueous synthesis method described above. After that, it is preferable to prepare a solvent dispersion containing vanadium dioxide-containing particles by a solvent replacement step without passing through the drying process of vanadium dioxide-containing particles as an aqueous dispersion.
 上記溶媒置換工程としては、二酸化バナジウム含有粒子を含む分散液を濃縮する濃縮工程と、濃縮液に溶媒を添加して希釈する溶媒希釈工程より構成され、濃縮工程とそれに続く溶媒希釈工程とで構成される処理操作を2回以上繰り返して、二酸化バナジウム含有粒子を含む非水系の溶媒分散液を調製する工程であることが好ましい。 The solvent replacement step is composed of a concentration step of concentrating the dispersion liquid containing vanadium dioxide-containing particles, and a solvent dilution step of adding a solvent to the concentrate for dilution, and is composed of a concentration step and a subsequent solvent dilution step. The treatment operation is preferably repeated twice or more to prepare a non-aqueous solvent dispersion containing vanadium dioxide-containing particles.
 具体的な二酸化バナジウム含有粒子を含む分散液の濃縮工程で用いる濃縮手段としては、限外ろ過方法であることが好ましい。 As the concentration means used in the concentration step of the dispersion containing specific vanadium dioxide-containing particles, an ultrafiltration method is preferable.
 以下、溶媒置換処理の詳細な方法について説明する。 Hereinafter, a detailed method of the solvent replacement process will be described.
 本発明に係る溶媒置換処理で適用可能な溶媒は、有機溶媒であり、好ましくは、非水系の有機溶媒である。最終的には、二酸化バナジウム含有粒子を含む水系分散液を構成している媒体である水を有機溶媒に置換して、二酸化バナジウム含有粒子を含む溶媒分散液を調製する工程である。溶媒分散液とすることにより、光学機能層を形成する疎水性バインダー樹脂との相溶性が向上し、均一性の高い光学機能層を形成することができる。 The solvent applicable in the solvent replacement treatment according to the present invention is an organic solvent, preferably a non-aqueous organic solvent. Finally, it is a step of preparing a solvent dispersion containing vanadium dioxide-containing particles by replacing water, which is a medium constituting the aqueous dispersion containing vanadium dioxide-containing particles, with an organic solvent. By using a solvent dispersion, compatibility with the hydrophobic binder resin forming the optical functional layer is improved, and an optical functional layer with high uniformity can be formed.
 溶媒としては、特に制限はなく適宜選択することができるが、例えば、アセトン、ジメチルケトン、メチルエチルケトン等のケトン系溶媒、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶媒、クロロホルム、塩化メチレン等の塩素系溶媒、ベンゼン、トルエン等の芳香族系溶媒,酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系溶媒,エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶媒、ジオキサン、ヘキサン、オクタン、ジエチルエーテル、ジメチルホルムアミド等、同時に適用する疎水性バインダー樹脂を溶解させるものであれば使用可能である。 The solvent is not particularly limited and can be appropriately selected. For example, ketone solvents such as acetone, dimethyl ketone and methyl ethyl ketone, alcohol solvents such as methanol, ethanol and isopropyl alcohol, and chlorine solvents such as chloroform and methylene chloride. Solvents, aromatic solvents such as benzene and toluene, ester solvents such as methyl acetate, ethyl acetate and butyl acetate, glycol ether solvents such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether, dioxane, hexane, octane, diethyl ether, Any material that dissolves the hydrophobic binder resin to be applied at the same time, such as dimethylformamide, can be used.
 具体的な溶媒置換処理について、図を交えて説明する。 Specific solvent replacement processing will be described with reference to the drawings.
 図2は、本発明に適用可能な溶媒置換処理装置の一例を示す概略フロー図である。 FIG. 2 is a schematic flow diagram showing an example of a solvent replacement processing apparatus applicable to the present invention.
 図2に示す溶媒置換処理装置10は、上記調製した二酸化バナジウム含有粒子を含む分散液12を貯留するための調製釜11、希釈用の溶媒18を貯留している溶媒ストック釜17、溶媒18を調整釜11に添加する溶媒供給ライン19、調製釜11内に貯留されている分散液12を循環ポンプ14により循環させる循環ライン13、循環ライン13の経路内に濃縮手段として、限外ろ過部15、分散液中の媒体を系外に排出する排出口16で構成されている。 The solvent replacement processing apparatus 10 shown in FIG. 2 includes a preparation tank 11 for storing the dispersion liquid 12 containing the prepared vanadium dioxide-containing particles, a solvent stock tank 17 storing a solvent 18 for dilution, and a solvent 18. The ultrafiltration unit 15 is used as a concentrating means in the route of the solvent supply line 19 to be added to the adjustment kettle 11, the circulation line 13 for circulating the dispersion 12 stored in the preparation kettle 11 by the circulation pump 14, and the circulation line 13. The discharge port 16 is used to discharge the medium in the dispersion to the outside of the system.
(工程A)
 調製釜11に、分散液12として、上記方法で調製した二酸化バナジウム含有粒子を含む分散液を貯留して、循環ポンプ14により循環させながら、限外ろ過部15で、分散液12中の水分を排出口16より排出して、所定の濃度まで濃縮する。濃縮の目安としては、初期体積に対し20体積%まで濃縮する。これ以上に過度の濃縮を行うと、粒子密度の上昇に伴う粒子凝集が生じるため、避けることが好ましい。また、この濃縮操作においては、分散液12を乾燥させないことが重要である。
(Process A)
In the preparation kettle 11, the dispersion liquid containing the vanadium dioxide-containing particles prepared by the above method is stored as the dispersion liquid 12 and circulated by the circulation pump 14. It is discharged from the discharge port 16 and concentrated to a predetermined concentration. As a standard of concentration, it concentrates to 20 volume% with respect to the initial volume. It is preferable to avoid excessive concentration beyond this because particle aggregation occurs as the particle density increases. In this concentration operation, it is important not to dry the dispersion 12.
(工程B)
 次いで、20体積%まで濃縮した分散液12に対し、溶媒ストック釜17より溶媒供給ライン19を経由して、溶媒18を初期体積の80体積%相当添加し、十分に撹拌混合して、第1次の溶媒置換した分散液12を調製する。
(Process B)
Next, 80% by volume of the initial volume of the solvent 18 is added to the dispersion 12 concentrated to 20% by volume from the solvent stock kettle 17 via the solvent supply line 19 and mixed sufficiently. The following solvent-dispersed dispersion 12 is prepared.
(工程C)
 次いで、上記工程Aと同様にして、循環ポンプ14により循環させながら、限外ろ過部15で、分散液12中の媒体(水+溶媒)を排出口16から系外に排出して、再び20体積%の濃度まで濃縮する。
(Process C)
Next, in the same manner as in the above step A, the medium (water + solvent) in the dispersion 12 is discharged out of the system from the discharge port 16 by the ultrafiltration unit 15 while being circulated by the circulation pump 14, and again 20 Concentrate to a volume percent concentration.
(工程D)
 次いで、上記工程Bと同様にして、濃縮した分散液12に対し、溶媒ストック釜17より溶媒供給ライン19を経由して、溶媒18を80質量%相当添加し、十分に撹拌混合して、第2次の溶媒置換した分散液12を調製する。
(Process D)
Next, in the same manner as in the above step B, 80 mass% of the solvent 18 is added from the solvent stock kettle 17 via the solvent supply line 19 to the concentrated dispersion 12, and the mixture is sufficiently stirred and mixed. A secondary solvent-substituted dispersion 12 is prepared.
(工程E)
 最終的には、工程A及び工程Bによる濃縮及び溶媒希釈操作を、少なくとも2回以上繰り返して、水分含有量を0.1~5.0質量%の範囲内に調整した二酸化バナジウム含有粒子を含有する溶媒分散液を調製する。なお、水分含有量は、例えば、カールフィッシャー法等により測定して求めることができる。
(Process E)
Finally, it contains vanadium dioxide-containing particles whose water content is adjusted within the range of 0.1 to 5.0 mass% by repeating the concentration and solvent dilution operations in step A and step B at least twice. A solvent dispersion is prepared. The water content can be determined by measuring, for example, by the Karl Fischer method.
 すなわち、本発明に係る二酸化バナジウム含有粒子を含む溶媒分散液においては、水分をある程度含有することができ、30質量%以下であり、好ましくは10質量%以下であり、特に好ましくは5.0質量%以下である。また、下限は、0.01質量%以上であり、好ましくは0.05質量%以上であり、特に好ましくは0.1質量%である。したがって、水分含有量としては、0.01~30質量%が好ましい範囲であり、0.1~5.0質量%の範囲内であることが、特に好ましい態様である。当該溶媒分散液中の水分が30質量%以下であれば、光学機能層形成時に、共存する疎水性バインダーの造膜性を阻害することがなく、低ヘイズとすることができ、0.01質量%以上であれば温度変化時の近赤外光透過率と近赤外光遮蔽率との変化幅をある程度大きくすることができる。特に、含水率が5.0質量%以下であれば、二酸化バナジウム含有粒子の酸化防止と、共存する疎水性バインダーの造膜性に対する影響を更に抑制することができ、ヘイズもより低いレベルに維持することができる。また、0.1質量%以上とすることにより、温度変化時の近赤外光透過率と近赤外光遮蔽率との変化幅を更に拡大することができ、好ましい条件である。 That is, the solvent dispersion containing vanadium dioxide-containing particles according to the present invention can contain water to some extent, and is 30% by mass or less, preferably 10% by mass or less, and particularly preferably 5.0% by mass. % Or less. Moreover, a minimum is 0.01 mass% or more, Preferably it is 0.05 mass% or more, Most preferably, it is 0.1 mass%. Accordingly, the water content is preferably in the range of 0.01 to 30% by mass, and in the range of 0.1 to 5.0% by mass is a particularly preferable embodiment. If the water content in the solvent dispersion is 30% by mass or less, the film forming property of the coexisting hydrophobic binder can be prevented at the time of forming the optical functional layer, and the haze can be reduced to 0.01% by mass. If it is% or more, the change width between the near-infrared light transmittance and the near-infrared light shielding rate at the time of temperature change can be increased to some extent. In particular, when the water content is 5.0% by mass or less, it is possible to further suppress the effect of the vanadium dioxide-containing particles on the oxidation prevention and the film forming property of the coexisting hydrophobic binder, and maintain the haze at a lower level. can do. Moreover, by setting it as 0.1 mass% or more, the change width of the near-infrared-light transmittance at the time of a temperature change and a near-infrared-light shielding rate can further be expanded, and it is preferable conditions.
 上記溶媒置換処理で用いる限外ろ過方法としては、例えば、リサーチ・ディスクロージャー(Research Disclosure)No.10208(1972)、No.13122(1975)及びNo.16351(1977)などを参照することができる。操作条件として重要な圧力差や流量は、大矢春彦著「膜利用技術ハンドブック」幸書房出版(1978)、p275に記載の特性曲線を参考に選定することができる。 Examples of the ultrafiltration method used in the above solvent replacement treatment include Research Disclosure No.1. 10208 (1972), no. 13122 (1975) and no. 16351 (1977) and the like can be referred to. Pressure differences and flow rates that are important as operating conditions can be selected with reference to the characteristic curves described in Haruhiko Oya's “Membrane Utilization Technology Handbook”, Koshobo Publishing (1978), p275.
 限外ろ過膜は、膜材質として、有機膜では、すでにモジュールとして組み込まれた平板型、スパイラル型、円筒型、中空糸型、ホローファイバー型などが旭化成(株)、ダイセル化学(株)、(株)東レ、(株)日東電工などから市販されているが、耐溶媒性のある膜としては、日本ガイシ(株)、(株)ノリタケなどのセラミック膜が好ましい。 For ultrafiltration membranes, organic membranes, flat plate types, spiral types, cylindrical types, hollow fiber types, hollow fiber types, etc., already incorporated as modules, are available from Asahi Kasei Corporation, Daicel Chemical Co., Ltd. ( Although commercially available from Toray Industries, Inc. and Nitto Denko Corporation, etc., ceramic films such as NGK Co., Ltd. and Noritake Corporation are preferred as the solvent-resistant film.
 具体的には、例えば、ろ過膜としてSartorius stedim社製ビバフロー50(有効ろ過面積50cm、分画分子量5000)を用い、流速300ml/min、液圧100kPa、室温(25℃)で限外ろ過を行う方法や、ポリエーテルスルホン製で分画分子量が30万のろ過膜を有する限外ろ過装置(日本ミリポア株式会社製 ペリコン2カセット)等を挙げることができる。 Specifically, for example, Vivaflow 50 (effective filtration area 50 cm 2 , molecular weight cut off 5000) manufactured by Sartorius steady is used as a filtration membrane, and ultrafiltration is performed at a flow rate of 300 ml / min, a hydraulic pressure of 100 kPa, and room temperature (25 ° C.). Examples thereof include an ultrafiltration device having a filtration membrane made of polyethersulfone and having a molecular weight cut off of 300,000 (Pericon 2 cassette manufactured by Nihon Millipore Corporation).
(バインダー樹脂)
 次いで、本発明に係る光学機能層の形成に用いるバインダー樹脂について説明する。
 本発明に適用可能なバインダー樹脂としては、特に制限はないが、水系バインダー樹脂又は疎水系バインダー樹脂であることが好ましい。
 上述したとおり、水系合成法により二酸化バナジウム含有粒子を含む水系分散液を調製した後、上記溶媒置換工程により、二酸化バナジウム含有粒子を含む溶媒分散液を調製する場合には、疎水系バインダー樹脂を使用することが好ましく、溶媒置換工程を行わない場合には水系バインダー樹脂を使用することが好ましい。
(Binder resin)
Next, the binder resin used for forming the optical functional layer according to the present invention will be described.
The binder resin applicable to the present invention is not particularly limited, but is preferably an aqueous binder resin or a hydrophobic binder resin.
As described above, after preparing an aqueous dispersion containing vanadium dioxide-containing particles by an aqueous synthesis method, a hydrophobic binder resin is used when preparing a solvent dispersion containing vanadium dioxide-containing particles by the above solvent replacement step. It is preferable to use an aqueous binder resin when the solvent substitution step is not performed.
(1)水系バインダー樹脂
 本発明でいう水系バインダー樹脂とは、20℃における水100gに対し、0.5g以上溶解する樹脂材料を表し、より好ましくは1.0g以上溶解する樹脂である。また、熱水に溶解させた後、20℃で同様に溶解している樹脂も、本発明でいう水系バインダー樹脂として定義する。
(1) Water-based binder resin The water-based binder resin referred to in the present invention represents a resin material that dissolves 0.5 g or more with respect to 100 g of water at 20 ° C., and more preferably 1.0 g or more. Moreover, after making it melt | dissolve in a hot water, the resin similarly melt | dissolved at 20 degreeC is also defined as an aqueous binder resin as used in the field of this invention.
 本発明に係る光学機能層の形成に有用な水系バインダー樹脂としては、例えば、ゼラチン類、ゼラチンと他の高分子とのグラフトポリマー、アルブミン、カゼイン等のタンパク質、セルロース類、アルギン酸ソーダ、セルロース硫酸エステル、デキストリン、デキストラン、デキストラン硫酸塩等の糖誘導体、増粘多糖類等の天然由来素材や、ポリビニルアルコール類、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、アクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、スチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びそれらの塩が挙げられる。 Examples of the aqueous binder resin useful for the formation of the optical functional layer according to the present invention include gelatins, graft polymers of gelatin and other polymers, proteins such as albumin and casein, celluloses, sodium alginate, and cellulose sulfate. , Dextrin, dextran, saccharide derivatives such as dextran sulfate, naturally-derived materials such as thickening polysaccharides, polyvinyl alcohols, polyvinylpyrrolidones, polyacrylic acid, acrylic acid-acrylonitrile copolymer, potassium acrylate-acrylic Acrylic resins such as nitrile copolymer, vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene-methacrylic acid copolymer, styrene-methacrylic acid -Acrylate ester co-polymer Styrene-α-methylstyrene-acrylic acid copolymer, styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, styrene acrylic resin, styrene-sodium styrenesulfonate copolymer, styrene- 2-hydroxyethyl acrylate copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinyl naphthalene-acrylic acid copolymer Vinyl acetate copolymers such as vinyl naphthalene-maleic acid copolymer, vinyl acetate-maleic acid ester copolymer, vinyl acetate-crotonic acid copolymer, vinyl acetate-acrylic acid copolymer, and salts thereof. Can be mentioned.
 中でも、二酸化バナジウム含有粒子との親和性が高く、膜形成の乾燥時にも粒子の凝集を防ぐ効果の高い、ヒドロキシ基を有する繰り返し単位成分を50mol%以上含有するポリマーであることが好ましく、こうしたポリマーとしては、セルロース類、ポリビニルアルコール類、ヒドロキシ基を有するアクリル系樹脂などを挙げることができ、その中でも、ポリビニルアルコール類、セルロース類が最も好ましく利用できる。 Among them, a polymer containing 50 mol% or more of repeating unit components having a hydroxy group, which has a high affinity with vanadium dioxide-containing particles and has a high effect of preventing particle aggregation even during drying of film formation, is preferable. Examples thereof include celluloses, polyvinyl alcohols, and acrylic resins having a hydroxy group. Among them, polyvinyl alcohols and celluloses can be most preferably used.
 以下、本発明に係る光学機能層の形成に有用な代表的な水系バインダー樹脂について説明する。 Hereinafter, typical aqueous binder resins useful for forming the optical functional layer according to the present invention will be described.
(1.1)ポリビニルアルコール類
 本発明で好ましく用いられるポリビニルアルコール類としては、ポリ酢酸ビニルを加水分解して得られる通常のポリビニルアルコールを用いることができる。
 通常のポリビニルアルコールの他に、末端をカチオン変性したポリビニルアルコールやアニオン性基を有するアニオン変性ポリビニルアルコール等の変性ポリビニルアルコールも含まれる。
(1.1) Polyvinyl alcohols As polyvinyl alcohols preferably used in the present invention, ordinary polyvinyl alcohol obtained by hydrolyzing polyvinyl acetate can be used.
In addition to ordinary polyvinyl alcohol, modified polyvinyl alcohols such as polyvinyl alcohols whose ends are cationically modified and anionic modified polyvinyl alcohols having an anionic group are also included.
 カチオン変性ポリビニルアルコールとしては、例えば、特開昭61-10483号公報に記載されているような、第一級~第三級アミノ基や第四級アンモニウム基を上記ポリビニルアルコールの主鎖又は側鎖中に有するポリビニルアルコールであり、カチオン性基を有するエチレン性不飽和単量体と酢酸ビニルとの共重合体をケン化することにより得られる。 Examples of the cation-modified polyvinyl alcohol include primary to tertiary amino groups and quaternary ammonium groups as described in JP-A No. 61-10383. Polyvinyl alcohol contained therein and obtained by saponifying a copolymer of an ethylenically unsaturated monomer having a cationic group and vinyl acetate.
 カチオン性基を有するエチレン性不飽和単量体としては、例えば、トリメチル-(2-アクリルアミド-2,2-ジメチルエチル)アンモニウムクロライド、トリメチル-(3-アクリルアミド-3,3-ジメチルプロピル)アンモニウムクロライド、N-ビニルイミダゾール、N-ビニル-2-メチルイミダゾール、N-(3-ジメチルアミノプロピル)メタクリルアミド、ヒドロキシエチルトリメチルアンモニウムクロライド、トリメチル-(2-メタクリルアミドプロピル)アンモニウムクロライド、N-(1,1-ジメチル-3-ジメチルアミノプロピル)アクリルアミド等が挙げられる。カチオン変性ポリビニルアルコールのカチオン変性基含有単量体の比率は、酢酸ビニルに対して0.1~10mol%、好ましくは0.2~5mol%である。 Examples of the ethylenically unsaturated monomer having a cationic group include trimethyl- (2-acrylamido-2,2-dimethylethyl) ammonium chloride and trimethyl- (3-acrylamido-3,3-dimethylpropyl) ammonium chloride. N-vinylimidazole, N-vinyl-2-methylimidazole, N- (3-dimethylaminopropyl) methacrylamide, hydroxyethyltrimethylammonium chloride, trimethyl- (2-methacrylamidopropyl) ammonium chloride, N- (1, And 1-dimethyl-3-dimethylaminopropyl) acrylamide. The ratio of the cation-modified group-containing monomer of the cation-modified polyvinyl alcohol is 0.1 to 10 mol%, preferably 0.2 to 5 mol%, relative to vinyl acetate.
 アニオン変性ポリビニルアルコールとしては、例えば、特開平1-206088号公報に記載されているようなアニオン性基を有するポリビニルアルコール、特開昭61-237681号公報及び同63-307979号公報に記載されているような、ビニルアルコールと水溶性基を有するビニル化合物との共重合体及び特開平7-285265号公報に記載されているような水溶性基を有する変性ポリビニルアルコールが挙げられる。 Examples of the anion-modified polyvinyl alcohol include polyvinyl alcohol having an anionic group as described in JP-A-1-206088, JP-A-61-237681 and JP-A-63-307979. Examples thereof include copolymers of vinyl alcohol and a vinyl compound having a water-soluble group, and modified polyvinyl alcohol having a water-soluble group as described in JP-A-7-285265.
 また、ノニオン変性ポリビニルアルコールとしては、例えば、特開平7-9758号公報に記載されているようなポリアルキレンオキサイド基をビニルアルコールの一部に付加したポリビニルアルコール誘導体、特開平8-25795号公報に記載されている疎水性基を有するビニル化合物とビニルアルコールとのブロック共重合体等が挙げられる。ポリビニルアルコールは、重合度や変性の種類などが異なる2種類以上を併用することもできる。 Nonionic modified polyvinyl alcohol includes, for example, a polyvinyl alcohol derivative in which a polyalkylene oxide group is added to a part of vinyl alcohol as described in JP-A-7-9758, and JP-A-8-25795. The block copolymer of the vinyl compound and vinyl alcohol which have the described hydrophobic group is mentioned. Polyvinyl alcohol can be used in combination of two or more different degrees of polymerization and different types of modification.
 本発明で用いられるポリビニルアルコール類は、合成品を用いてもよいし、市販品を用いてもよい。ポリビニルアルコールとして用いられる市販品の例としては、例えば、PVA-102、PVA-103、PVA-105、PVA-110、PVA-117、PVA-120、PVA-124、PVA-203、PVA-205、PVA-210、PVA-217、PVA-220、PVA-224、PVA-235(以上、株式会社クラレ製)、JC-25、JC-33、JF-03、JF-04、JF-05、JP-03、JP-04、JP-05、JP-45(以上、日本酢ビ・ポバール株式会社製)等が挙げられる。 As the polyvinyl alcohol used in the present invention, a synthetic product or a commercially available product may be used. Examples of commercially available products used as polyvinyl alcohol include, for example, PVA-102, PVA-103, PVA-105, PVA-110, PVA-117, PVA-120, PVA-124, PVA-203, PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-235 (above, manufactured by Kuraray Co., Ltd.), JC-25, JC-33, JF-03, JF-04, JF-05, JP- 03, JP-04, JP-05, JP-45 (above, manufactured by Nippon Vinegar Poval Co., Ltd.) and the like.
(1.2)セルロース類
 本発明に係る光学機能層の形成に用いることのできるセルロース類としては、水溶性のセルロース誘導体が好ましく、例えば、カルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等の水溶性セルロース誘導体や、カルボン酸基含有セルロース類であるカルボキシメチルセルロース(セルロースカルボキシメチルエーテル)、カルボキシエチルセルロース等を挙げることができる。その他には、ニトロセルロース、セルロースアセテートプロピオネート、酢酸セルロース、セルロース硫酸エステル等のセルロース誘導体を挙げることができる。
(1.2) Cellulose As the cellulose that can be used for forming the optical functional layer according to the present invention, a water-soluble cellulose derivative is preferable, for example, carboxymethyl cellulose (cellulose carboxymethyl ether), methyl cellulose, hydroxymethyl cellulose, Examples thereof include water-soluble cellulose derivatives such as hydroxyethyl cellulose, hydroxypropyl cellulose, and hydroxypropyl methyl cellulose, carboxymethyl cellulose (cellulose carboxymethyl ether) and carboxyethyl cellulose, which are carboxylic acid group-containing celluloses. Other examples include cellulose derivatives such as nitrocellulose, cellulose acetate propionate, cellulose acetate, and cellulose sulfate.
 本発明においては、水系バインダー樹脂が、ヒドロキシ基を有する繰り返し単位を50mol%以上含有するポリマーであることが好ましい態様の一つであるが、セルロース類の場合では、繰り返し単位成分はもともと三つのヒドロキシ基を有し、この三つのヒドロキシ基の一部が置換されている。ヒドロキシ基を有する繰り返し単位成分を50mol%以上含有するとは、この置換基にヒドロキシ基を有する繰り返し単位成分、又は、置換されていないヒドロキシ基が一つ以上残った繰り返し単位成分が50mol%以上含有することを表す。 In the present invention, it is one of the preferred embodiments that the aqueous binder resin is a polymer containing 50 mol% or more of repeating units having a hydroxy group. In the case of celluloses, the repeating unit component is originally composed of three hydroxy units. And some of these three hydroxy groups are substituted. The content of 50 mol% or more of repeating unit components having a hydroxy group means that 50 mol% or more of the repeating unit component having a hydroxy group in this substituent or the repeating unit component in which one or more unsubstituted hydroxy groups remain is contained. Represents that.
(1.3)ゼラチン類
 本発明に適用可能なゼラチンとしては、従来、ハロゲン化銀写真感光材料分野で広く用いられてきた各種ゼラチンを適用することができ、例えば、酸処理ゼラチン、アルカリ処理ゼラチンの他に、ゼラチンの製造過程で酵素処理をする酵素処理ゼラチン及びゼラチン誘導体、すなわち分子中に官能基としてのアミノ基、イミノ基、ヒドロキシ基、カルボキシ基を有し、それと反応して得る基を持った試薬で処理し改質したものでもよい。ゼラチンの一般的製造法に関してはよく知られており、例えば、T.H.James:The Theory of Photographic Process 4th.ed.1977(Macmillan)55頁、科学写真便覧(上)72~75頁(丸善)、写真工学の基礎-銀塩写真編119~124頁(コロナ社)等の記載を参考にすることができる。また、リサーチ・ディスクロージャー誌第176巻、No.17643(1978年12月)のIX頁に記載されているゼラチンを挙げることができる。
(1.3) Gelatin As the gelatin applicable to the present invention, various gelatins conventionally used widely in the field of silver halide photographic light-sensitive materials can be applied, such as acid-processed gelatin and alkali-processed gelatin. In addition, enzyme-treated gelatin and gelatin derivatives that undergo enzyme treatment in the gelatin production process, that is, groups having amino groups, imino groups, hydroxy groups, carboxy groups as functional groups in the molecule, and groups obtained by reaction with them. It may be modified by treating with a reagent. Well-known methods for producing gelatin are well known. H. James: The Theory of Photographic Process 4th. ed. Reference can be made to descriptions such as 1977 (Maccillan), p. 55, Science Photo Handbook (above), p. 72-75 (Maruzen), Fundamental of Photographic Engineering-Silver Salt Photo Hen, pages 119-124 (Corona). Also, Research Disclosure Magazine Vol. 176, No. And gelatin described on page IX of 17643 (December 1978).
 また、水系バインダー樹脂として、ゼラチンを用いる場合、必要に応じてゼラチンの硬膜剤を添加することもできる。使用できる硬膜剤としては、通常の写真乳剤層の硬膜剤として使用されている公知の化合物を使用でき、例えば、ビニルスルホン化合物、尿素-ホルマリン縮合物、メラニン-ホルマリン縮合物、エポキシ系化合物、アジリジン系化合物、活性オレフィン類、イソシアネート系化合物などの有機硬膜剤、クロム、アルミニウム、ジルコニウムなどの無機多価金属塩類などを挙げることができる。 Further, when gelatin is used as the aqueous binder resin, a gelatin hardener can be added as necessary. As the hardener that can be used, known compounds that are used as hardeners for ordinary photographic emulsion layers can be used. For example, vinyl sulfone compounds, urea-formalin condensates, melanin-formalin condensates, epoxy compounds And organic hardeners such as aziridine compounds, active olefins and isocyanate compounds, and inorganic polyvalent metal salts such as chromium, aluminum and zirconium.
(1.4)増粘多糖類
 本発明で用いることのできる増粘多糖類としては、特に制限はなく、例えば、一般に知られている天然単純多糖類、天然複合多糖類、合成単純多糖類及び合成複合多糖類を挙げることができ、これら多糖類の詳細については、「生化学事典(第2版),東京化学同人出版」、「食品工業」第31巻(1988)21頁等を参照することができる。
(1.4) Thickening polysaccharide There is no restriction | limiting in particular as thickening polysaccharide which can be used by this invention, For example, generally known natural simple polysaccharide, natural complex polysaccharide, synthetic simple polysaccharide, and Synthetic complex polysaccharides can be mentioned. For details of these polysaccharides, refer to “Biochemical Encyclopedia (2nd edition), Tokyo Kagaku Dojin Publishing”, “Food Industry”, Vol. 31 (1988), p. 21. be able to.
 本発明でいう増粘多糖類とは、糖類の重合体であり分子内に水素結合基を多数有するもので、温度による分子間の水素結合力の違いにより、低温時の粘度と高温時の粘度差が大きな特性を備えた多糖類であり、更に金属酸化物微粒子を添加すると、低温時にその金属酸化物微粒子との水素結合によると思われる粘度上昇を起こすものであり、その粘度上昇幅は、添加することにより15℃における粘度が1.0mPa・s以上の上昇を生じる多糖類であり、好ましくは5.0mPa・s以上であり、更に好ましくは10.0mPa・s以上の粘度上昇能を備えた多糖類である。 The thickening polysaccharide referred to in the present invention is a polymer of saccharides and has a number of hydrogen bonding groups in the molecule. Due to the difference in hydrogen bonding strength between molecules depending on the temperature, the viscosity at low temperature and the viscosity at high temperature. It is a polysaccharide with a large difference in characteristics, and when further adding metal oxide fine particles, it causes a viscosity increase caused by hydrogen bonding with the metal oxide fine particles at low temperatures, When added, it is a polysaccharide that increases its viscosity at 15 ° C. by 1.0 mPa · s or more, preferably 5.0 mPa · s or more, more preferably 10.0 mPa · s or more. Polysaccharides.
 本発明に適用可能な増粘多糖類としては、例えば、ガラクタン(例えば、アガロース、アガロペクチン等)、ガラクトマンノグリカン(例えば、ローカストビーンガム、グアラン等)、キシログルカン(例えば、タマリンドガム等)、グルコマンノグリカン(例えば、蒟蒻マンナン、木材由来グルコマンナン、キサンタンガム等)、ガラクトグルコマンノグリカン(例えば、針葉樹材由来グリカン)、アラビノガラクトグリカン(例えば、大豆由来グリカン、微生物由来グリカン等)、グルコラムノグリカン(例えば、ジェランガム等)、グリコサミノグリカン(例えば、ヒアルロン酸、ケラタン硫酸等)、アルギン酸及びアルギン酸塩、寒天、κ-カラギーナン、λ-カラギーナン、ι-カラギーナン、ファーセレラン等の紅藻類に由来する天然高分子多糖類等が挙げられ、塗布液中に共存する二酸化バナジウム含有粒子の分散安定性を低下させない観点から、好ましくは、その構成単位がカルボン酸基やスルホン酸基を有しないものが好ましい。そのような多糖類としては、例えば、L-アラビトース、D-リボース、2-デオキシリボース、D-キシロースなどのペントース、D-グルコース、D-フルクトース、D-マンノース、D-ガラクトースなどのヘキソースのみからなる多糖類であることが好ましい。具体的には、主鎖がグルコースであり、側鎖もグルコースであるキシログルカンとして知られるタマリンドシードガムや、主鎖がマンノースで側鎖がグルコースであるガラクトマンナンとして知られるグアーガム、カチオン化グアーガム、ヒドロキシプロピルグアーガム、ローカストビーンガム、タラガムや、主鎖がガラクトースで側鎖がアラビノースであるアラビノガラクタンを好ましく使用することができる。本発明においては、特には、タマリンド、グアーガム、カチオン化グアーガム、ヒドロキシプロピルグアーガムが好ましい。 Examples of the thickening polysaccharide applicable to the present invention include galactan (eg, agarose, agaropectin, etc.), galactomannoglycan (eg, locust bean gum, guaran, etc.), xyloglucan (eg, tamarind gum, etc.), Glucomannoglycan (eg, salmon mannan, wood-derived glucomannan, xanthan gum, etc.), galactoglucomannoglycan (eg, softwood-derived glycan), arabinogalactoglycan (eg, soybean-derived glycan, microorganism-derived glycan, etc.), Red algae such as glucuronoglycan (eg gellan gum), glycosaminoglycan (eg hyaluronic acid, keratan sulfate etc.), alginic acid and alginates, agar, κ-carrageenan, λ-carrageenan, ι-carrageenan Derived from From the viewpoint of not reducing the dispersion stability of the vanadium dioxide-containing particles coexisting in the coating solution, natural polymer polysaccharides and the like are preferable. Preferably, the structural unit does not have a carboxylic acid group or a sulfonic acid group. . Examples of such polysaccharides include pentoses such as L-arabitose, D-ribose, 2-deoxyribose and D-xylose, and hexoses such as D-glucose, D-fructose, D-mannose and D-galactose only. It is preferable that it is a polysaccharide. Specifically, tamarind seed gum known as xyloglucan whose main chain is glucose and side chain is glucose, guar gum known as galactomannan whose main chain is mannose and side chain is glucose, cationized guar gum, Hydroxypropyl guar gum, locust bean gum, tara gum, and arabinogalactan whose main chain is galactose and whose side chain is arabinose can be preferably used. In the present invention, tamarind, guar gum, cationized guar gum, and hydroxypropyl guar gum are particularly preferable.
(1.5)反応性官能基を有するポリマー類
 本発明に適用可能な水系バインダー樹脂としては、反応性官能基を有するポリマー類が挙げられ、例えば、ポリビニルピロリドン類、ポリアクリル酸、アクリル酸-アクリルニトリル共重合体、アクリル酸カリウム-アクリルニトリル共重合体、酢酸ビニル-アクリル酸エステル共重合体、アクリル酸-アクリル酸エステル共重合体などのアクリル系樹脂、スチレン-アクリル酸共重合体、スチレン-メタクリル酸共重合体、スチレン-メタクリル酸-アクリル酸エステル共重合体、スチレン-α-メチルスチレン-アクリル酸共重合体、スチレン-α-メチルスチレン-アクリル酸-アクリル酸エステル共重合体などのスチレンアクリル酸樹脂、スチレン-スチレンスルホン酸ナトリウム共重合体、スチレン-2-ヒドロキシエチルアクリレート共重合体、スチレン-2-ヒドロキシエチルアクリレート-スチレンスルホン酸カリウム共重合体、スチレン-マレイン酸共重合体、スチレン-無水マレイン酸共重合体、ビニルナフタレン-アクリル酸共重合体、ビニルナフタレン-マレイン酸共重合体、酢酸ビニル-マレイン酸エステル共重合体、酢酸ビニル-クロトン酸共重合体、酢酸ビニル-アクリル酸共重合体などの酢酸ビニル系共重合体及びそれらの塩が挙げられる。これらの中で、特に好ましい例としては、ポリビニルピロリドン類及びこれを含有する共重合体が挙げられる。
(1.5) Polymers having reactive functional groups Examples of aqueous binder resins applicable to the present invention include polymers having reactive functional groups, such as polyvinylpyrrolidones, polyacrylic acid, acrylic acid- Acrylic resins such as acrylonitrile copolymer, potassium acrylate-acrylonitrile copolymer, vinyl acetate-acrylic acid ester copolymer, acrylic acid-acrylic acid ester copolymer, styrene-acrylic acid copolymer, styrene -Methacrylic acid copolymer, styrene-methacrylic acid-acrylic acid ester copolymer, styrene-α-methylstyrene-acrylic acid copolymer, styrene-α-methylstyrene-acrylic acid-acrylic acid ester copolymer, etc. Styrene acrylic acid resin, styrene-sodium styrene sulfonate copolymer Styrene-2-hydroxyethyl acrylate copolymer, styrene-2-hydroxyethyl acrylate-potassium styrene sulfonate copolymer, styrene-maleic acid copolymer, styrene-maleic anhydride copolymer, vinylnaphthalene-acrylic acid Copolymers, vinyl naphthalene-maleic acid copolymers, vinyl acetate-maleic acid ester copolymers, vinyl acetate-crotonic acid copolymers, vinyl acetate-based copolymers such as vinyl acetate-acrylic acid copolymers, and the like Of the salt. Among these, particularly preferred examples include polyvinylpyrrolidones and copolymers containing the same.
 また、ヒドロキシ基を有するアクリル系ポリマーの詳細については、国際公開第2011/148931号の段落0049~0052に記載されている内容を参照することができる。 For details of the acrylic polymer having a hydroxy group, the contents described in paragraphs 0049 to 0052 of International Publication No. 2011/148931 can be referred to.
(2)疎水性バインダー樹脂
 本発明でいう疎水性バインダー樹脂とは、100gの水に対し、液温25℃での溶解量が1.0g未満である樹脂をいい、更に好ましくは、溶解量が0.5g未満の樹脂であり、特に好ましくは、溶解量が0.25g未満の樹脂である。
(2) Hydrophobic binder resin In the present invention, the hydrophobic binder resin refers to a resin having a dissolution amount of less than 1.0 g at a liquid temperature of 25 ° C. with respect to 100 g of water. The amount of the resin is less than 0.5 g, particularly preferably the resin having a dissolution amount of less than 0.25 g.
 疎水性バインダー樹脂としては、疎水性ポリマー、又は疎水性バインダー樹脂の単量体を用い、硬化処理工程でポリマー化した樹脂であることが好ましい。 The hydrophobic binder resin is preferably a resin obtained by polymerizing in the curing process using a hydrophobic polymer or a monomer of the hydrophobic binder resin.
 本発明に適用可能な疎水性ポリマーとしては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系ポリマー、アクリル酸エステル系共重合体、塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系ポリマー、ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレンブロック共重合体等のスチレン系ポリマー、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ナイロン6、ナイロン66、ナイロン610等のポリアミド、ポリアセタール、ポリカーボネート、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルスルホン、ポリオキシベンジレン、ポリアミドイミド、ポリブタジエン系ゴム、アクリル系ゴムを配合したABS樹脂(アクリロニトリル-ブタジエン-スチレン樹脂)やASA樹脂(アクリロニトリル-スチレン-アクリレート樹脂)、セルロース系樹脂、ブチラール系樹脂等が挙げられる。 Examples of the hydrophobic polymer applicable to the present invention include polyethylene, polypropylene, ethylene-propylene copolymers, olefin polymers such as poly (4-methyl-1-pentene), acrylate copolymers, chlorides, and the like. Halogen-containing polymers such as vinyl and chlorinated vinyl resins, styrene polymers such as polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene-styrene block copolymer, polyethylene terephthalate, poly Polyesters such as butylene terephthalate and polyethylene naphthalate, polyamides such as nylon 6, nylon 66 and nylon 610, polyacetal, polycarbonate, polyphenylene oxide, polyphenylene sulfide, polyether ABS resin (acrylonitrile-butadiene-styrene resin), ASA resin (acrylonitrile-styrene-acrylate resin), cellulose blended with rutheketone, polysulfone, polyethersulfone, polyoxybenzylene, polyamideimide, polybutadiene rubber, acrylic rubber Resin, butyral resin, and the like.
 また、本発明に適用可能な疎水性バインダー樹脂として、疎水性バインダー樹脂の単量体を用い、硬化処理工程でポリマー化する樹脂を挙げることができ、その代表的な疎水性バインダー樹脂材料としては、活性エネルギー線の照射により硬化する化合物であり、具体的にはラジカル活性種による重合反応により硬化するラジカル重合性化合物、及びカチオン活性種によるカチオン重合反応により硬化するカチオン重合性化合物を挙げることができる。 In addition, as a hydrophobic binder resin applicable to the present invention, a resin that is polymerized in a curing process using a monomer of a hydrophobic binder resin can be exemplified, and typical hydrophobic binder resin materials include: A compound that is cured by irradiation with active energy rays, specifically a radical polymerizable compound that is cured by a polymerization reaction with radical active species, and a cationic polymerizable compound that is cured by a cationic polymerization reaction with cationic active species. it can.
 ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物が挙げられ、ラジカル重合可能なエチレン性不飽和結合を有する化合物の例としては、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等の不飽和カルボン酸及びそれらの塩、エステル、ウレタン、アミドや無水物、アクリロニトリル、スチレン、更に種々の不飽和ポリエステル、不飽和ポリエーテル、不飽和ポリアミド、不飽和ウレタン等のラジカル重合性化合物が挙げられる。具体的には、2-エチルヘキシルアクリレート、2-ヒドロキシエチルアクリレート、ブトキシエチルアクリレート、カルビトールアクリレート、シクロヘキシルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、ビス(4-アクリロキシポリエトキシフェニル)プロパン、ネオペンチルグリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタンテトラアクリレート、オリゴエステルアクリレート、N-メチロールアクリルアミド、ジアセトンアクリルアミド、エポキシアクリレート等のアクリル酸誘導体、メチルメタクリレート、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ラウリルメタクリレート、アリルメタクリレート、グリシジルメタクリレート、ベンジルメタクリレート、ジメチルアミノメチルメタクリレート、1,6-ヘキサンジオールジメタクリレート、エチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、トリメチロールエタントリメタクリレート、トリメチロールプロパントリメタクリレート、2,2-ビス(4-メタクリロキシポリエトキシフェニル)プロパン等のメタクリル誘導体、その他、アリルグリシジルエーテル、ジアリルフタレート、トリアリルトリメリテート等のアリル化合物の誘導体が挙げられる。 Examples of the radical polymerizable compound include a compound having an ethylenically unsaturated bond capable of radical polymerization. Examples of the compound having an ethylenically unsaturated bond capable of radical polymerization include acrylic acid, methacrylic acid, itaconic acid, and crotonic acid. , Unsaturated carboxylic acids such as isocrotonic acid and maleic acid and their salts, esters, urethanes, amides and anhydrides, acrylonitrile, styrene, various unsaturated polyesters, unsaturated polyethers, unsaturated polyamides, unsaturated urethanes, etc. These radically polymerizable compounds are mentioned. Specifically, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, butoxyethyl acrylate, carbitol acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, benzyl acrylate, bis (4-acryloxypolyethoxyphenyl) propane, neopentyl glycol Diacrylate, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, polypropylene glycol diacrylate, pentaerythritol triacrylate, pentaerythritol Tetraacrylate, dipentaery Acrylic acid derivatives such as lithol tetraacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, oligoester acrylate, N-methylolacrylamide, diacetoneacrylamide, epoxy acrylate, methyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate , Lauryl methacrylate, allyl methacrylate, glycidyl methacrylate, benzyl methacrylate, dimethylaminomethyl methacrylate, 1,6-hexanediol dimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, trimethylol Methacryl derivatives such as tan trimethacrylate, trimethylolpropane trimethacrylate, 2,2-bis (4-methacryloxypolyethoxyphenyl) propane, and other derivatives of allyl compounds such as allyl glycidyl ether, diallyl phthalate, triallyl trimellitate Is mentioned.
 カチオン重合性化合物としては、各種公知のカチオン重合性のモノマーが使用できる。例えば、特開平6-9714号公報、特開2001-31892号公報、特開2001-40068号公報、特開2001-55507号公報、特開2001-310938号公報、特開2001-310937号公報、特開2001-220526号公報に例示されているエポキシ化合物、ビニルエーテル化合物、オキセタン化合物などが挙げられる。 As the cationic polymerizable compound, various known cationic polymerizable monomers can be used. For example, JP-A-6-9714, JP-A-2001-31892, JP-A-2001-40068, JP-A-2001-55507, JP-A-2001-310938, JP-A-2001-310937, Examples thereof include epoxy compounds, vinyl ether compounds, oxetane compounds and the like exemplified in JP-A-2001-220526.
 上記化合物とともに光重合開始剤を含有することが好ましい。光重合開始剤としては、「UV・EB硬化技術の応用と市場」(シーエムシー出版、田畑米穂監修/ラドテック研究会編集)などに掲載されている、あらゆる公知の光重合開始剤を用いることができる。 It is preferable to contain a photopolymerization initiator together with the above compound. As photopolymerization initiators, all known photopolymerization initiators listed in “Application and Market of UV / EB Curing Technology” (CMC Publishing Co., Ltd., edited by Yoneho Tabata / edited by Radtech Research Association) should be used. Can do.
 本発明においては、各構成材料と、二酸化バナジウム含有粒子を含む溶媒分散液とを含む光学機能層形成用塗布液を、例えば、透明基材上に塗布した後、その後、紫外線又は電子線等の活性エネルギー線を照射する。これにより形成した光学機能層薄膜を構成する組成物は速やかに硬化する。 In the present invention, after applying a coating solution for forming an optical functional layer containing each constituent material and a solvent dispersion containing vanadium dioxide-containing particles, for example, on a transparent substrate, thereafter, ultraviolet rays, electron beams, etc. Irradiate active energy rays. The composition which comprises the optical function layer thin film formed by this hardens | cures rapidly.
 活性エネルギー線の光源としては、紫外線を照射する場合には、例えば紫外線LED、紫外線レーザー、水銀アークランプ、キセノンアークランプ、低圧水銀灯、蛍光ランプ、炭素アークランプ、タングステン-ハロゲン複写ランプ及び太陽光を使用することができる。電子線により硬化させる場合には、通常300eVの以下のエネルギーの電子線で硬化させるが、1~5Mradの照射量で瞬時に硬化させることも可能である。 As a light source of active energy rays, when irradiating ultraviolet rays, for example, ultraviolet LED, ultraviolet laser, mercury arc lamp, xenon arc lamp, low pressure mercury lamp, fluorescent lamp, carbon arc lamp, tungsten-halogen copying lamp and sunlight are used. Can be used. In the case of curing with an electron beam, it is usually cured with an electron beam having an energy of 300 eV or less, but it can also be cured instantaneously with an irradiation dose of 1 to 5 Mrad.
(光学機能層のその他の添加剤)
 本発明に係る光学機能層に、本発明の目的とする効果を損なわない範囲で適用可能な各種の添加剤を、以下に列挙する。例えば、特開昭57-74193号公報、特開昭57-87988号公報、特開昭62-261476号公報等に記載の紫外線吸収剤、特開昭57-74192号公報、特開昭57-87989号公報、特開昭60-72785号公報、特開昭61-146591号公報、特開平1-95091号公報、特開平3-13376号公報等に記載されている退色防止剤、アニオン、カチオン又はノニオンの各種界面活性剤、特開昭59-42993号公報、特開昭59-52689号公報、特開昭62-280069号公報、特開昭61-242871号公報、特開平4-219266号公報等に記載されている蛍光増白剤、硫酸、リン酸、酢酸、クエン酸、水酸化ナトリウム、水酸化カリウム、炭酸カリウム等のpH調整剤、消泡剤、ジエチレングリコール等の潤滑剤、防腐剤、防黴剤、帯電防止剤、マット剤、熱安定剤、酸化防止剤、難燃剤、結晶核剤、無機粒子、有機粒子、減粘剤、滑剤、赤外線吸収剤、色素、顔料等の公知の各種添加剤などが挙げられる。
(Other additives for optical functional layers)
Various additives that can be applied to the optical functional layer according to the present invention as long as the effects of the present invention are not impaired are listed below. For example, ultraviolet absorbers described in JP-A-57-74193, JP-A-57-87988, JP-A-62-261476, JP-A-57-74192, JP-A-57- No. 878989, JP-A-60-72785, JP-A-61-146591, JP-A-1-95091, JP-A-3-13376, etc. Or nonionic surfactants, JP-A-59-42993, JP-A-59-52689, JP-A-62-280069, JP-A-61-228771, JP-A-4-219266 Fluorescent brighteners, sulfuric acid, phosphoric acid, acetic acid, citric acid, sodium hydroxide, potassium hydroxide, potassium carbonate and other pH adjusters, antifoaming agents, and polyethylene Lubricants such as glycol, antiseptics, antifungal agents, antistatic agents, matting agents, heat stabilizers, antioxidants, flame retardants, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, lubricants, infrared absorbers And various known additives such as dyes and pigments.
(光学機能層の形成方法)
 本発明に係る光学機能層の形成方法としては、特に制限はないが、水系バインダー樹脂を使用する場合と、疎水系バインダー樹脂を使用する場合とで異なる。
(Method for forming optical functional layer)
Although there is no restriction | limiting in particular as a formation method of the optical function layer based on this invention, The case where a water-based binder resin is used differs from the case where a hydrophobic binder resin is used.
 水系バインダー樹脂を使用する場合には、水系合成法により二酸化バナジム含有粒子を調製した後、乾燥させる工程を経ることがなく、二酸化バナジウム含有粒子が会合せずに離間して存在する分散液の状態で、水系バインダー樹脂を水系溶媒に溶解して調製した水系バインダー樹脂溶液を混合させることにより、水系の光学機能層形成用塗布液を調製し、この光学機能層形成用塗布液を湿式塗布方式により、透明基材上に塗布、乾燥して光学機能層を形成する方法が好ましい。 In the case of using an aqueous binder resin, after preparing vanadium dioxide-containing particles by an aqueous synthesis method, a state of a dispersion in which vanadium dioxide-containing particles exist without being associated with each other without passing through a drying step. Then, by mixing an aqueous binder resin solution prepared by dissolving an aqueous binder resin in an aqueous solvent, an aqueous optical functional layer forming coating solution is prepared, and this optical functional layer forming coating solution is prepared by a wet coating method. A method of forming an optical functional layer by applying and drying on a transparent substrate is preferred.
 疎水系バインダー樹脂を使用する場合には、水系バインダー樹脂を使用した場合と同様に、二酸化バナジウム含有粒子を調製する。その後は、乾燥させる工程を経ることがなく、溶媒置換工程により二酸化バナジム含有粒子を含む溶媒分散液を調製した後、疎水系バインダー樹脂等と混合、溶解して、非水系の光学機能層形成用塗布液を調製し、この非水系の光学機能層形成用塗布液を湿式塗布方式により、透明基材上に、塗布、乾燥して光学機能層を形成する方法が好ましい。 When a hydrophobic binder resin is used, vanadium dioxide-containing particles are prepared in the same manner as when an aqueous binder resin is used. After that, without passing through a drying step, a solvent dispersion containing vanadium dioxide-containing particles is prepared by a solvent substitution step, and then mixed and dissolved with a hydrophobic binder resin, etc. for forming a non-aqueous optical functional layer A method is preferred in which a coating solution is prepared, and this non-aqueous coating solution for forming an optical functional layer is applied and dried on a transparent substrate by a wet coating method to form an optical functional layer.
 上記光学機能層の形成に用いる湿式塗布方式としては、特に制限されず、例えば、ロールコーティング法、ロッドバーコーティング法、エアナイフコーティング法、スプレーコーティング法、スライド型カーテン塗布法、又は米国特許第2761419号明細書、米国特許第2761791号明細書などに記載のスライドホッパー塗布法、エクストルージョンコート法などが挙げられる。 The wet coating method used for forming the optical functional layer is not particularly limited, and for example, a roll coating method, a rod bar coating method, an air knife coating method, a spray coating method, a slide curtain coating method, or US Pat. No. 2,761,419. Examples thereof include a slide hopper coating method and an extrusion coating method described in the specification, US Pat. No. 2,761791.
〈透明断熱層〉
 本発明に係る透明断熱層としては、透明で熱の伝達を抑える効果があれば特に制限はないが、例えば、透明ポリマー層、透明多孔質層、中空粒子や多孔質粒子を含有する層などを挙げることができる。
<Transparent insulation layer>
The transparent heat-insulating layer according to the present invention is not particularly limited as long as it is transparent and has an effect of suppressing heat transfer, for example, a transparent polymer layer, a transparent porous layer, a layer containing hollow particles or porous particles, etc. Can be mentioned.
 熱の伝達を抑えるため、透明断熱層の熱抵抗(R)は、1.0×10-4~2.5×10-3・K/Wの範囲内であることが好ましく、1.5×10-4~1.5×10-3の範囲内であることがより好ましい。透明断熱層の熱抵抗(R)が1.0×10-4・K/W以上であれば、エア・コンディショナー等の外部の環境の影響を防ぐ効果が大きく、2.5×10-3・K/W以下であれば、昇温した光学フィルムに当たる太陽光が弱くなった際、光学フィルムの降温が早く、近赤外光の遮蔽を継続することを抑制することができる。
 なお、熱抵抗(R)(m・K/W)は、厚さ(d)(m)÷材料の熱伝導率(λ)(W/(m・K))で求めることができる。
In order to suppress heat transfer, the thermal resistance (R) of the transparent heat insulating layer is preferably in the range of 1.0 × 10 −4 to 2.5 × 10 −3 m 2 · K / W. More preferably, it is in the range of 5 × 10 −4 to 1.5 × 10 −3 . If the thermal resistance of the transparent heat insulating layer (R) is 1.0 × 10 -4 m 2 · K / W or more, a large effect of preventing the influence of the external environment such as air conditioning, 2.5 × 10 - If it is 3 m < 2 > * K / W or less, when the sunlight which hits the heated optical film will become weak, it can suppress that the temperature of an optical film falls quickly and continues shielding of near-infrared light.
The thermal resistance (R) (m 2 · K / W) can be obtained by thickness (d) (m) ÷ material thermal conductivity (λ) (W / (m · K)).
 透明断熱層の厚さは、透明断熱層の構成材料(熱伝導率(λ))に応じて、適宜設定すればよい。 The thickness of the transparent heat insulating layer may be appropriately set according to the constituent material (thermal conductivity (λ)) of the transparent heat insulating layer.
(透明ポリマー層)
 透明ポリマー層としては、例えば、透明樹脂フィルムを挙げることができる。透明樹脂フィルムとしては、例えば、ポリオレフィンフィルム(例えば、シクロオレフィン、ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、ポリカーボネートフィルム、トリアセチルセルロースフィルム、アクリルフィルム(ポリメチルメタクリレート等)等を用いることができ、好ましくはポリエチレンテレフタレートフィルムである。
(Transparent polymer layer)
An example of the transparent polymer layer is a transparent resin film. Examples of transparent resin films include polyolefin films (eg, cycloolefin, polyethylene, polypropylene, etc.), polyester films (eg, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, polycarbonate films, triacetylcellulose films, acrylic films. (Polymethylmethacrylate etc.) etc. can be used, Preferably it is a polyethylene terephthalate film.
(透明多孔質層)
 透明多孔質層を形成する方法としては、例えば、ゾル-ゲル法を用いる多孔質層の形成方法を利用することができる。例えば、シリカ多孔質体の製造方法は、一般に、アルコキシシランを加水分解し、生成したシリカゾルを重縮合して湿潤ゲルとし、これを乾燥してシリカ多孔質体とすることができる。
(Transparent porous layer)
As a method for forming the transparent porous layer, for example, a method for forming a porous layer using a sol-gel method can be used. For example, in the method for producing a porous silica material, generally, alkoxysilane is hydrolyzed, and the generated silica sol is polycondensed to form a wet gel, which is dried to obtain a porous silica material.
(中空粒子含有層)
 中空粒子含有層としては、例えば、特表2000-500113号公報、特開2005-263550号公報、特開2012-144394号公報等に記載の中空粒子を透明樹脂に含有させた層を利用することができる。中空粒子を透明樹脂に含有させて層を形成する方法としては、前述の光学機能層において、二酸化バナジウム含有粒子の代わりに中空粒子を用いることで同様に作製することができる。
(Hollow particle-containing layer)
As the hollow particle-containing layer, for example, a layer in which hollow particles described in JP-T-2000-500113, JP-A-2005-263550, JP-A-2012-144394, etc. are contained in a transparent resin is used. Can do. As a method for forming a layer by incorporating hollow particles in a transparent resin, the layer can be similarly produced by using hollow particles instead of vanadium dioxide-containing particles in the optical functional layer described above.
(多孔質粒子含有層)
 多孔質粒子含有層としては、例えば、メチルシリケートモノマーを常圧乾燥又は臨界乾燥でエアロゲル化したものを微粒子化した粒子を透明樹脂に含有させた層を利用することができる。例えば、特開2013-100406号公報等を参考にすることができる。
(Porous particle containing layer)
As the porous particle-containing layer, for example, it is possible to use a layer in which transparent resin contains particles obtained by atomizing methyl silicate monomer obtained by air drying by atmospheric pressure drying or critical drying. For example, JP 2013-100406 A can be referred to.
〈透明基材〉
 本発明に適用可能な透明基材としては、透明であれば特に制限はなく、ガラス、石英、透明樹脂フィルム等を挙げることができるが、可撓性の付与及び生産適性(製造工程適性)の観点からは、透明樹脂フィルムであることが好ましい。
<Transparent substrate>
The transparent substrate applicable to the present invention is not particularly limited as long as it is transparent, and examples thereof include glass, quartz, and a transparent resin film. However, it is possible to impart flexibility and suitability for production (manufacturing process suitability). From the viewpoint, a transparent resin film is preferable.
 透明基材の熱抵抗(R)は、1.0×10-4~2.5×10-3・K/Wの範囲内であることが好ましい。透明基材の熱抵抗(R)が1.0×10-4・K/W以上であれば、エア・コンディショナー等の外部の環境の影響を防ぐ効果が大きい。また、光学フィルムに対してガラスの熱容量が大きいために、外気の温度が下がって、近赤外光の遮蔽の必要がなくなっても太陽で温められたガラスの余熱の影響で近赤外光遮蔽状態を継続することがあった。透明基材の熱抵抗(R)が2.5×10-3・K/W以下であることでガラスの熱の影響を抑えることができ、より外部環境の影響を受けない光学フィルムとすることができる。 The thermal resistance (R) of the transparent substrate is preferably in the range of 1.0 × 10 −4 to 2.5 × 10 −3 m 2 · K / W. When the thermal resistance (R) of the transparent substrate is 1.0 × 10 −4 m 2 · K / W or more, the effect of preventing the influence of an external environment such as an air conditioner is great. In addition, because of the large heat capacity of glass compared to the optical film, even if the temperature of the outside air drops and there is no need to shield near-infrared light, it is possible to shield near-infrared light by the influence of the residual heat of the glass heated by the sun. The condition continued. An optical film that can suppress the influence of the heat of glass because the thermal resistance (R) of the transparent substrate is 2.5 × 10 −3 m 2 · K / W or less, and is less affected by the external environment can do.
 本発明に係る透明基材の厚さは、30~200μmの範囲内であることが好ましく、より好ましくは30~100μmの範囲内であり、更に好ましくは35~70μmでの範囲内である。透明基材の厚さが30μm以上であれば、取扱い中にシワ等が発生しにくくなり、厚さが200μm以下であれば、ガラス基材と貼り合わせる際のガラス曲面への追従性がよくなる。 The thickness of the transparent substrate according to the present invention is preferably in the range of 30 to 200 μm, more preferably in the range of 30 to 100 μm, and still more preferably in the range of 35 to 70 μm. If the thickness of the transparent substrate is 30 μm or more, wrinkles and the like are less likely to occur during handling, and if the thickness is 200 μm or less, the followability to the curved glass surface when bonded to the glass substrate is improved.
 本発明に係る透明基材は、二軸配向ポリエステルフィルムであることが好ましいが、未延伸又は少なくとも一方に延伸されたポリエステルフィルムを用いることもできる。強度向上、熱膨張抑制の点から延伸フィルムが好ましい。特に、本発明の光学フィルムを具備した合わせガラスを、自動車用のガラスとして用いられる際に、延伸フィルムがより好ましい。 The transparent substrate according to the present invention is preferably a biaxially oriented polyester film, but an unstretched or at least one stretched polyester film can also be used. A stretched film is preferable from the viewpoint of strength improvement and thermal expansion suppression. In particular, when the laminated glass provided with the optical film of the present invention is used as glass for automobiles, a stretched film is more preferable.
 本発明に係る透明基材は、光学フィルムのシワの生成や光学機能層の割れを防止する観点から、温度150℃において、熱収縮率が0.1~3.0%の範囲内であることが好ましく、1.5~3.0%の範囲内であることがより好ましく、1.9~2.7%であることが更に好ましい。 The transparent substrate according to the present invention has a thermal shrinkage within a range of 0.1 to 3.0% at a temperature of 150 ° C. from the viewpoint of preventing generation of wrinkles of the optical film and cracking of the optical functional layer. Is preferable, more preferably in the range of 1.5 to 3.0%, still more preferably 1.9 to 2.7%.
 本発明の光学フィルムに適用可能な透明基材としては、透明であれば特に制限されることはいが、種々の樹脂フィルムを用いることが好ましく、例えば、ポリオレフィンフィルム(例えば、シクロオレフィン、ポリエチレン、ポリプロピレン等)、ポリエステルフィルム(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリ塩化ビニル、トリアセチルセルロースフィルム等を用いることができ、好ましくは、シクロオレフィンフィルム、ポリエステルフィルム、トリアセチルセルロースフィルムである。 The transparent substrate applicable to the optical film of the present invention is not particularly limited as long as it is transparent, but various resin films are preferably used. For example, polyolefin films (for example, cycloolefin, polyethylene, polypropylene) Etc.), polyester films (for example, polyethylene terephthalate, polyethylene naphthalate, etc.), polyvinyl chloride, triacetyl cellulose films and the like can be used, and cycloolefin films, polyester films, and triacetyl cellulose films are preferable.
 透明樹脂フィルムは、成膜過程で片面又は両面にインラインで下引層塗布液を塗布することが好ましい。本発明においては、成膜工程中での下引塗布をインライン下引という。 The transparent resin film is preferably coated with an undercoat layer coating solution inline on one or both sides during the film formation process. In the present invention, undercoating during the film forming process is referred to as in-line undercoating.
〈着色剤層〉
 本発明においては、光学フィルムの層構成のうち、上記(5)又は(7)の層構成のように(図1E又は図1G参照。)、本発明に係る染料又は顔料を、二酸化バナジウム含有粒子が含有された光学機能層に直接接触する隣接層として着色剤層に含有させてもよい。着色剤層のバインダーとしては、例えば、前述の疎水性バインダー樹脂を用いることができる。
<Colorant layer>
In the present invention, among the layer configurations of the optical film, as in the layer configuration of (5) or (7) above (see FIG. 1E or FIG. 1G), the dye or pigment according to the present invention is added to vanadium dioxide-containing particles. You may make it contain in a colorant layer as an adjacent layer which contacts the optical function layer in which was contained. As the binder of the colorant layer, for example, the aforementioned hydrophobic binder resin can be used.
〈クリアハードコート層〉
 本発明に係るクリアハードコート層(CHC層)は、透明断熱層の光学機能層とは反対側に設けられる層である。
 本発明においては、上記(3)の層構成のように(図1C参照。)、染料又は顔料をクリアハードコート層に含有させてもよい。
<Clear hard coat layer>
The clear hard coat layer (CHC layer) according to the present invention is a layer provided on the opposite side of the transparent heat insulating layer from the optical functional layer.
In the present invention, a dye or pigment may be included in the clear hard coat layer as in the layer configuration of (3) above (see FIG. 1C).
 クリアハードコート層のクリアハードコート材としては、ポリシロキサンに代表される無機系材料、活性エネルギー線硬化樹脂等を使用することができる。
 無機系材料は、湿気硬化(常温~加温)が必要であり、硬化温度、硬化時間、コストの観点から、本発明では活性エネルギー線硬化樹脂を使用することが好ましい。
As the clear hard coat material of the clear hard coat layer, an inorganic material typified by polysiloxane, an active energy ray curable resin, or the like can be used.
Inorganic materials need to be moisture-cured (from room temperature to warming). From the viewpoint of curing temperature, curing time, and cost, it is preferable to use an active energy ray-curable resin in the present invention.
 活性エネルギー線樹脂とは、紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性エネルギー線硬化樹脂層が形成される。活性エネルギー線硬化樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が好ましい。 The active energy ray resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active rays such as ultraviolet rays and electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active energy ray curable resin layer is cured by irradiation with an active ray such as an ultraviolet ray or an electron beam. It is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and a resin curable by ultraviolet irradiation is preferable.
 紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられる。中でも、紫外線硬化型アクリレート系樹脂が好ましい。紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー又はプレポリマーを反応させて得られた生成物に、更に2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下、アクリレートにはメタクリレートを包含するものとしてアクリレートのみを表示する。)、2-ヒドロキシプロピルアクリレート等のヒドロキシ基を有するアクリレート系のモノマーを反応させることによって容易に得ることができる。 As the ultraviolet curable resin, for example, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, or an ultraviolet curable epoxy resin is preferable. Used. Of these, UV curable acrylate resins are preferred. UV curable acrylic urethane resins generally contain 2-hydroxyethyl acrylate and 2-hydroxyethyl methacrylate (hereinafter referred to as methacrylates) in addition to products obtained by reacting polyester polyols with isocyanate monomers or prepolymers. Only acrylates are indicated as such), and can be easily obtained by reacting an acrylate monomer having a hydroxy group such as 2-hydroxypropyl acrylate.
 例えば、特開昭59-151110号公報に記載の、ユニディック17-806(DIC(株)製)100質量部とコロネートL(東ソー(株)製)1質量部との混合物等が好ましく用いられる。
 紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステル末端のヒドロキシ基やカルボキシ基に2-ヒドロキシエチルアクリレート、グリシジルアクリレート、アクリル酸のようなモノマーを反応させることによって容易に得ることができる(例えば、特開昭59-151112号公報参照。)。
 紫外線硬化型エポキシアクリレート系樹脂は、エポキシ樹脂の末端のヒドロキシ基にアクリル酸、アクリル酸クロライド、グリシジルアクリレートのようなモノマーを反応させて得られる。
 紫外線硬化型ポリオールアクリレート系樹脂としては、エチレングリコール(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることができる。
For example, a mixture of 100 parts by mass of Unidic 17-806 (manufactured by DIC Corporation) and 1 part by mass of Coronate L (manufactured by Tosoh Corporation) described in JP-A-59-151110 is preferably used. .
An ultraviolet curable polyester acrylate resin can be easily obtained by reacting a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylic acid with a hydroxyl group or carboxy group at the end of the polyester (see, for example, JP (See Sho 59-151112).
The ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride, or glycidyl acrylate.
UV curable polyol acrylate resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerin tri (meth) acrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipenta Examples include erythritol pentaacrylate, dipentaerythritol hexaacrylate, and alkyl-modified dipentaerythritol pentaacrylate.
〈粘着層〉
 粘着層は、本発明の光学フィルムを他の基材等に粘着させるための層である。本発明の光学フィルムをウインドウフィルムとして用いる場合には、窓ガラスに粘着させるための層である。
 本発明においては、光学フィルムの層構成のうち、上記(9)の層構成のように(図1I参照。)、染料又は顔料を粘着層に含有させてもよい。
<Adhesive layer>
An adhesion layer is a layer for making the optical film of this invention adhere to another base material. When using the optical film of this invention as a window film, it is a layer for making it adhere to a window glass.
In the present invention, among the layer configuration of the optical film, a dye or pigment may be contained in the adhesive layer as in the layer configuration of (9) above (see FIG. 1I).
 粘着層に用いる粘着剤は、ゴム系、アクリル系、シリコーン系、ウレタン系等の粘着剤から選ばれる。経時での黄変がないことからアクリル系、シリコーン系が好ましく、汎用離型シートが使用できる点でアクリル系が最も好ましい。 The pressure-sensitive adhesive used for the pressure-sensitive adhesive layer is selected from rubber-based, acrylic-based, silicone-based and urethane-based pressure-sensitive adhesives. Since there is no yellowing over time, acrylic and silicone are preferred, and acrylic is most preferred because a general-purpose release sheet can be used.
 また、粘着層の厚さは、5~30μmの範囲内が好ましい。5μm以上あれば粘着性が安定し、30μm以下であれば粘着剤がフィルムのわきからはみ出すことがなく取扱いやすい。 Further, the thickness of the adhesive layer is preferably in the range of 5 to 30 μm. If it is 5 μm or more, the adhesiveness is stable, and if it is 30 μm or less, the adhesive does not protrude from the side of the film and is easy to handle.
 粘着層に貼り合わせるセパレーター(剥離シート)の種類については、ポリエステル、ポリエチレン、ポリプロピレン、紙等の基材にシリコーンコート、ポリアルキレンコート、フッ素樹脂コートしたものが使用できるが、寸法安定性、平滑性、剥離安定性の点からポリエステルフィルムにシリコーンコートしたものが特に好ましい。
 セパレーターの厚さは、10~100μmの範囲内が好ましく、更に好ましくは20~60μmの範囲内である。10μm以上であれば塗布、乾燥時の熱により、フィルムに搬送ジワが生じることがないため好ましい、また、100μm以下であれば経済性の観点から好ましい。
As for the type of separator (release sheet) to be bonded to the adhesive layer, a substrate such as polyester, polyethylene, polypropylene, paper, etc., which is coated with silicone coat, polyalkylene coat or fluororesin can be used. However, dimensional stability and smoothness can be used. From the viewpoint of peel stability, a polyester film coated with silicone is particularly preferred.
The thickness of the separator is preferably in the range of 10 to 100 μm, more preferably in the range of 20 to 60 μm. If it is 10 μm or more, the film is not wrinkled due to heat during coating and drying, and it is preferably 100 μm or less from the viewpoint of economy.
《光学フィルムの用途》
 本発明の光学フィルムの用途としては、ガラスに後貼りする構成とすることができ、このフィルムを貼合したガラスは、自動車、鉄道車両、航空機、船舶、建築物等に使用できる。フィルムを貼合したガラスは、これらの用途以外にも使用できる。上記フィルムを貼合したガラスは、建築用又は車両に用いることが好ましい。上記フィルムを貼合したガラスは、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。
<< Use of optical film >>
As an application of the optical film of the present invention, it can be configured to be pasted on glass, and the glass on which this film is bonded can be used for automobiles, railway vehicles, aircraft, ships, buildings, and the like. The glass bonded together can be used for other purposes. The glass bonded with the film is preferably used for construction or for vehicles. The glass bonded with the film can be used for a windshield, side glass, rear glass or roof glass of an automobile.
 ガラス部材としては、無機ガラス及び有機ガラス(樹脂グレージング)が挙げられる。
 無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、線入り板ガラス、グリーンガラス等の着色ガラス等が挙げられる。
 有機ガラスは、無機ガラスに代用される合成樹脂ガラスである。有機ガラス(樹脂グレージング)としては、ポリカーボネート板、ポリ(メタ)アクリル樹脂板等が挙げられる。ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。
Examples of the glass member include inorganic glass and organic glass (resin glazing).
Examples of the inorganic glass include colored glass such as float plate glass, heat ray absorbing plate glass, polished plate glass, mold plate glass, meshed plate glass, wire-containing plate glass, and green glass.
Organic glass is a synthetic resin glass that can be substituted for inorganic glass. Examples of organic glass (resin glazing) include polycarbonate plates and poly (meth) acrylic resin plates. Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
《二酸化バナジウム含有粒子の分散液の調製》
〈二酸化バナジウム含有粒子の分散液1の調製〉
 純水25gにバナジン酸アンモニウム(V)(NHVO、和光純薬製、特級)を1g混合し、ヒドラジン一水和物(N・HO、和光純薬社製、特級)の5質量%水溶液0.1gをゆっくり滴下した。
 調製した反応液を、高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、100℃で2時間、続いて275℃で24時間の水熱反応を行った。
 反応後、得られた生成物について限外ろ過を用いて洗浄を行い、仕上がりの二酸化バナジウム含有粒子の濃度を3.0質量%に調整し、更に二酸化バナジウム含有粒子100質量部に対して15質量部の割合でポリビニルピロリドン(PVP、日本触媒社製、K-30)を加え、粒径30μmのジルコニアビーズを用いて寿社製スーパーアペックスミルにより1時間分散し、二酸化バナジウム含有粒子の分散液1を調製した。
<< Preparation of dispersion of vanadium dioxide-containing particles >>
<Preparation of dispersion 1 of vanadium dioxide-containing particles>
1 g of vanadate ammonium (V) (NH 4 VO 3 , Wako Pure Chemicals, special grade) is mixed with 25 g of pure water, and hydrazine monohydrate (N 2 H 4 · H 2 O, Wako Pure Chemical Industries, special grade) is mixed. ) Was slowly added dropwise.
The prepared reaction solution is placed in a high-pressure reaction decomposition vessel stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample vessel HUTc-50: manufactured by Sanai Kagaku Co., Ltd.), 100 ° C. for 2 hours, and subsequently 275 ° C. The hydrothermal reaction was carried out for 24 hours.
After the reaction, the resulting product is washed using ultrafiltration, the concentration of the finished vanadium dioxide-containing particles is adjusted to 3.0% by mass, and further 15 masses per 100 parts by mass of the vanadium dioxide-containing particles. Polyvinylpyrrolidone (PVP, manufactured by Nippon Shokubai Co., Ltd., K-30) was added at a ratio of 1 part, and dispersed with a super apex mill manufactured by Kotobukisha using zirconia beads having a particle size of 30 μm. Was prepared.
〈二酸化バナジウム含有粒子の分散液2の調製〉
 3.5質量%の過酸化水素水(和光純薬社製)1gと純水30gとを混合した水溶液に、五酸化二バナジウム(V)(V、特級、和光純薬)1gを加え、30℃で4時間撹拌後、ヒドラジン一水和物(N・HO、和光純薬社製、特級)の5質量%水溶液0.15gをゆっくり滴下し、1時間撹拌を行った。
 この後、アンモニア水(和光純薬、30質量%水溶液)を4質量%に希釈したものを加えて、pH(25℃換算)を5.0に調整した。加えたアンモニア水は、0.2gだった。
 調製した反応液を、高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、275℃・48時間の水熱反応を行った。反応液の水熱反応後のpH(25℃換算)は、8.7であった。
 反応後、得られた生成物について限外ろ過を用いて洗浄を行い、仕上がりの二酸化バナジウム含有粒子の濃度を3.0質量%に調整し、更に二酸化バナジウム含有粒子100質量部に対して15質量部の割合でポリビニルピロリドン(PVP、日本触媒社製、K-30)を加え、30μmのジルコニアビーズを用いて寿社製スーパーアペックスミルにより1時間分散し、二酸化バナジウム含有粒子の分散液2を調製した。
<Preparation of dispersion 2 of vanadium dioxide-containing particles>
3.5 wt% of hydrogen peroxide solution (Wako Pure Chemical Industries, Ltd.) aqueous solution was mixed with 1g of pure water 30g, vanadium pentoxide (V) (V 2 O 5, special grade, Wako Pure Chemical) to 1g In addition, after stirring at 30 ° C. for 4 hours, 0.15 g of a 5 mass% aqueous solution of hydrazine monohydrate (N 2 H 4 .H 2 O, manufactured by Wako Pure Chemical Industries, Ltd., special grade) was slowly added dropwise and stirred for 1 hour. went.
Thereafter, a solution obtained by diluting ammonia water (Wako Pure Chemicals, 30 mass% aqueous solution) to 4 mass% was added to adjust pH (25 ° C. conversion) to 5.0. The added ammonia water was 0.2 g.
The prepared reaction solution is placed in a high-pressure reaction decomposition container stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample container HUTc-50: manufactured by Sanai Kagaku Co., Ltd.) and subjected to a hydrothermal reaction at 275 ° C. for 48 hours. went. PH (25 degreeC conversion) after hydrothermal reaction of the reaction liquid was 8.7.
After the reaction, the resulting product is washed using ultrafiltration, the concentration of the finished vanadium dioxide-containing particles is adjusted to 3.0% by mass, and further 15 masses per 100 parts by mass of the vanadium dioxide-containing particles. Polyvinylpyrrolidone (PVP, manufactured by Nippon Shokubai Co., Ltd., K-30) was added at a ratio of 1 part, and dispersed with a super apex mill manufactured by Kotobukisha using 30 μm zirconia beads to prepare a dispersion 2 of vanadium dioxide-containing particles. did.
〈二酸化バナジウム含有粒子の分散液3の調製〉
 純水25gにバナジン酸アンモニウム(V)(NHVO、和光純薬製、特級)を1g混合し、ヒドラジン一水和物(N・HO、和光純薬社製、特級)の5質量%水溶液0.1gをゆっくり滴下した。
 調製した反応液を、高圧用反応分解容器 静置型HU 50mlセット(耐圧ステンレス製外筒、PTFE製試料容器 HUTc-50:三愛科学社製)に入れて、100℃で2時間、続いて275℃で24時間の水熱反応を行った。
 反応後、反応液を20℃に保った状態で、系内循環させる形で接続したポリエーテルスルホン製で分画分子量が30万のろ過膜を有する限外ろ過装置(日本ミリポア株式会社製ペリコン2カセット)を具備した図2に示す溶媒置換処理装置を用いて濃縮操作を行い、初期の体積を100体積%としたとき、20体積%まで濃縮した後、エチルアルコールを添加して、100体積%とした。次いで、この分散液を再度20体積%まで濃縮した後、溶媒としてメチルエチルケトンを添加して100体積%として、2回の溶媒置換処理を施し、粒子濃度が3質量%の溶媒系の二酸化バナジウム含有粒子の分散液3を調製した。
<Preparation of dispersion 3 of vanadium dioxide-containing particles>
1 g of vanadate ammonium (V) (NH 4 VO 3 , Wako Pure Chemicals, special grade) is mixed with 25 g of pure water, and hydrazine monohydrate (N 2 H 4 · H 2 O, Wako Pure Chemical Industries, special grade) is mixed. ) Was slowly added dropwise.
The prepared reaction solution is placed in a high-pressure reaction decomposition vessel stationary HU 50 ml set (pressure-resistant stainless steel outer tube, PTFE sample vessel HUTc-50: manufactured by Sanai Kagaku Co., Ltd.), 100 ° C. for 2 hours, and subsequently 275 ° C. The hydrothermal reaction was carried out for 24 hours.
After the reaction, an ultrafiltration apparatus having a filtration membrane made of polyethersulfone and having a molecular weight cut off of 300,000 (Pericon 2 manufactured by Nihon Millipore Corporation) with the reaction solution kept at 20 ° C. while circulating in the system. Concentration operation was performed using the solvent displacement treatment apparatus shown in FIG. 2 equipped with a cassette), and when the initial volume was 100% by volume, after concentration to 20% by volume, ethyl alcohol was added and 100% by volume. It was. Next, the dispersion was concentrated again to 20% by volume, then methyl ethyl ketone was added as a solvent to make 100% by volume, and the solvent was subjected to two solvent substitution treatments. The solvent-based vanadium dioxide-containing particles having a particle concentration of 3% by mass A dispersion 3 was prepared.
《光学フィルムの作製》
〈光学フィルム101の作製〉
(光学機能層の形成)
 厚さ50μmのポリエチレンテレフタレート(PET)フィルム(東洋紡製A4300、両面易接着層)の透明基材上に、押出コーターを用いて、下記組成の光学機能層形成用塗布液1を、乾燥後の厚さが1.5μmとなる条件で湿式塗布を行い、次いで、50℃の温風を2分間吹きつけて乾燥させて、二酸化バナジウム含有粒子が含有された光学機能層を形成し、光学フィルム101を作製した。
<< Production of optical film >>
<Preparation of optical film 101>
(Formation of optical functional layer)
On a transparent base material of a polyethylene terephthalate (PET) film (Toyobo A4300, double-sided easy-adhesion layer) having a thickness of 50 μm, using an extrusion coater, the coating solution 1 for forming an optical functional layer having the following composition was dried. Is applied by wet coating under a condition of 1.5 μm, and then dried by blowing hot air at 50 ° C. for 2 minutes to form an optical functional layer containing vanadium dioxide-containing particles. Produced.
〔光学機能層形成用塗布液1〕
 二酸化バナジウム含有粒子の分散液1           10質量部
 4質量%のヒドロキシプロピルメチルセルロース(メトロース60SH-50、信越化学工業社製)水溶液              75質量部
 5質量%の界面活性剤水溶液(Triton X-100、シグマアルドリッチ社製)                        2質量部
 純水                          13質量部
[Optical functional layer forming coating solution 1]
Dispersion 1 of vanadium dioxide-containing particles 1 10 parts by weight Aqueous solution of 4% by weight of hydroxypropyl methylcellulose (Metroose 60SH-50, manufactured by Shin-Etsu Chemical Co., Ltd.) 75 parts by weight 5% by weight of an aqueous surfactant solution (Triton X-100, Sigma-Aldrich) 2 parts by mass pure water 13 parts by mass
(クリアハードコート層の形成)
 光学機能層上に直接隣接して、下記組成のクリアハードコート層形成用塗布液1を押出コーターを用いて、乾燥膜厚が2μmになるように塗布量を調整して湿式塗布を行い、90℃で1分間乾燥させた。次に、紫外線ランプを用いて、照度100mW/cm、照射量0.2J/cm、酸素濃度200ppmの条件で紫外線を照射することにより塗膜を硬化させて、クリアハードコート層を形成した。
(Formation of clear hard coat layer)
Directly adjacent on the optical functional layer, a clear hard coat layer forming coating solution 1 having the following composition is wet coated by adjusting the coating amount so that the dry film thickness becomes 2 μm using an extrusion coater. Dry at 1 ° C. for 1 minute. Next, using an ultraviolet lamp, the coating film was cured by irradiating ultraviolet rays under the conditions of an illuminance of 100 mW / cm 2 , an irradiation amount of 0.2 J / cm 2 , and an oxygen concentration of 200 ppm to form a clear hard coat layer. .
〔クリアハードコート層形成用塗布液1〕
 アロニックス(登録商標)M-305(3、4官能アクリレート、3官能成分60質量%、東亞合成株式会社製)          196質量部
 EBECRYL(登録商標)350(2官能シリコンアクリレート、ダイセル・オルネクス株式会社製) MIBK(メチルイソブチルケトン)希釈液(1質量%)                      18質量部
 ヘキソエートコバルト8%(金属石鹸、東栄化工株式会社製) 3質量部
 Irgacure(登録商標)184(光重合開始剤、BASF株式会社製)                           13質量部
 メガファック(登録商標)F-552(界面活性剤、DIC株式会社製)MIBK(メチルイソブチルケトン)希釈液(1質量%)    9質量部
 MIBK(メチルイソブチルケトン)          446質量部
[Clear hard coat layer coating solution 1]
Aronix (registered trademark) M-305 (3, 4-functional acrylate, trifunctional component 60 mass%, manufactured by Toagosei Co., Ltd.) 196 parts by mass EBECRYL (registered trademark) 350 (bifunctional silicon acrylate, manufactured by Daicel Ornex Corp.) MIBK (methyl isobutyl ketone) diluted solution (1% by mass) 18 parts by mass Hexoate cobalt 8% (metal soap, manufactured by Toei Chemical Co., Ltd.) 3 parts by mass Irgacure (registered trademark) 184 (photopolymerization initiator, BASF Corporation) (Manufactured) 13 parts by mass MegaFac (registered trademark) F-552 (surfactant, manufactured by DIC Corporation) MIBK (methyl isobutyl ketone) diluent (1% by mass) 9 parts by mass MIBK (methyl isobutyl ketone) 446 parts by mass
(粘着層の形成)
 PETフィルムを挟んで光学機能層とは反対側の面に、下記組成の粘着層形成用塗布液1を乾燥膜厚が10μmとなるように塗布を行い、90℃で1分間乾燥させて粘着層を形成することにより、光学フィルム101を作製した。
 なお、粘着層側の最表面には、離型フィルム(MRF#25、三菱樹脂株式会社製)を貼り合わせて表面を保護した。
(Formation of adhesive layer)
An adhesive layer forming coating solution 1 having the following composition is applied on the surface opposite to the optical functional layer across the PET film so that the dry film thickness is 10 μm, and dried at 90 ° C. for 1 minute. The optical film 101 was produced by forming.
A release film (MRF # 25, manufactured by Mitsubishi Resin Co., Ltd.) was bonded to the outermost surface on the adhesive layer side to protect the surface.
〔粘着層形成用塗布液1〕
 N-2147(アクリル系粘着剤、日本合成化学工業株式会社製)
                            100質量部
 Tinuvin(登録商標)477(紫外線吸収剤、BASFジャパン株式会社製)                       2.1質量部
 コロネート(登録商標)HL(硬化剤、東ソー株式会社製)  5質量部
 MIBK(メチルイソブチルケトン)          300質量部
[Coating layer forming coating solution 1]
N-2147 (acrylic adhesive, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
100 parts by mass Tinuvin (registered trademark) 477 (ultraviolet absorber, manufactured by BASF Japan Ltd.) 2.1 parts by mass Coronate (registered trademark) HL (curing agent, manufactured by Tosoh Corporation) 5 parts by mass MIBK (methyl isobutyl ketone) 300 Parts by mass
〈光学フィルム102の作製〉
 PETフィルム上に光学機能層を形成するまでは、光学フィルム101と同様に作製した。
<Preparation of optical film 102>
It was produced in the same manner as the optical film 101 until the optical functional layer was formed on the PET film.
(透明断熱層用PET1の準備)
 市販のポリエチレンテレフタレート(PET、固有粘度0.65)を150℃で8時間真空乾燥した後、押出機を用いて280℃でTダイで溶融押出し、冷却ドラム上に静電印加しながら密着させ、冷却固化させて未延伸シートを得た。この未延伸シートを、ロール式縦延伸機を用いて90℃で縦方向に3.5倍延伸した。得られた1軸延伸フィルムをテンター式横延伸機を用いて、第1延伸ゾーン100℃で総横延伸倍率の50%延伸し、更に第2延伸ゾーン120℃で総横延伸倍率3.6倍となるように延伸した。次いで、100℃で2秒間熱処理し、更に第1熱固定ゾーン170℃で5秒間熱固定し、第2熱固定ゾーン210℃で15秒間熱固定した。次いで、横方向に5%弛緩処理しながら室温(25℃)まで30秒かけて徐冷して、厚さ12μmの透明断熱層用PET1を得た。透明断熱層用PET1の熱抵抗は、0.86×10-4・K/Wであった。
(Preparation of transparent insulation layer PET1)
After commercially available polyethylene terephthalate (PET, intrinsic viscosity 0.65) was vacuum-dried at 150 ° C. for 8 hours, it was melt-extruded with a T-die at 280 ° C. using an extruder, and adhered to a cooling drum while applying electrostatic force, Cooled and solidified to obtain an unstretched sheet. This unstretched sheet was stretched 3.5 times in the longitudinal direction at 90 ° C. using a roll type longitudinal stretching machine. The obtained uniaxially stretched film was stretched by 50% of the total transverse stretching ratio in the first stretching zone 100 ° C. using a tenter-type transverse stretching machine, and further in the second stretching zone 120 ° C., the total transverse stretching ratio 3.6 times. It extended | stretched so that it might become. Next, heat treatment was performed at 100 ° C. for 2 seconds, heat setting was further performed at the first heat setting zone 170 ° C. for 5 seconds, and heat setting was performed at the second heat setting zone 210 ° C. for 15 seconds. Subsequently, it was gradually cooled to room temperature (25 ° C.) over 30 seconds while being subjected to a 5% relaxation treatment in the lateral direction to obtain PET 1 for a transparent heat insulation layer having a thickness of 12 μm. The thermal resistance of the transparent insulating layer PET1 was 0.86 × 10 −4 m 2 · K / W.
 透明断熱層用PET1のそれぞれの表面に12W・min/mのコロナ放電処理を施し、下記組成の易接着層形成用塗布液1を乾燥膜厚0.4μmになるように塗布し、その上に12W・min/mのコロナ放電処理を施し、下記組成の易接着層形成用塗布液2を乾燥膜厚0.06μmになるように塗布し、易接着層塗布済み透明断熱層用PET1とした。 Each surface of PET 1 for transparent heat insulation layer is subjected to a corona discharge treatment of 12 W · min / m 2 , and an easy-adhesion layer-forming coating solution 1 having the following composition is applied to a dry film thickness of 0.4 μm. 12 W · min / m 2 of corona discharge treatment, and the easy-adhesion layer-forming coating solution 2 having the following composition was applied so as to have a dry film thickness of 0.06 μm. did.
〔易接着層形成用塗布液1〕
 ブチルアクリレート30重量%、t-ブチルアクリレート20重量%、スチレン25重量%、2-ヒドロキシエチルアクリレート25重量%の共重合体ラテックス液(固形分30%)                50g
 化合物(UL-1)                    0.2g
 ヘキサメチレン-1,6-ビス(エチレン尿素)      0.05g
 純水                         1000ml
[Coating liquid 1 for easy adhesion layer formation]
Copolymer latex solution (30% solid content) of 30% by weight of butyl acrylate, 20% by weight of t-butyl acrylate, 25% by weight of styrene and 25% by weight of 2-hydroxyethyl acrylate 50 g
Compound (UL-1) 0.2g
Hexamethylene-1,6-bis (ethyleneurea) 0.05g
1000ml of pure water
〔易接着層形成用塗布液2〕
 ゼラチン                          10g
 化合物(UL-1)                    0.2g
 化合物(UL-2)                    0.2g
 硬膜剤(UL-3)                      1g
 純水                         1000ml
[Coating liquid 2 for easy adhesion layer formation]
10g gelatin
Compound (UL-1) 0.2g
Compound (UL-2) 0.2g
Hardener (UL-3) 1g
1000ml of pure water
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(クリアハードコート層の形成)
 易接着層塗布済み透明断熱層用PET1の一方の面にクリアハードコート層形成用塗布液1を光学フィルム101と同様の方法で塗布した。
(Formation of clear hard coat layer)
The clear hard coat layer-forming coating solution 1 was applied to one surface of the transparent heat-insulating layer-coated PET 1 with the easy adhesion layer applied in the same manner as the optical film 101.
 クリアハードコート層形成用塗布液1を塗布した面とは反対側の面に下記組成の接着層形成用塗布液1を乾燥膜厚が10μmの厚さとなるように塗布を行い、90℃で1分間乾燥させて、あらかじめ準備したPETフィルムの光学機能層と貼り合わせた。 The adhesive layer forming coating solution 1 having the following composition is applied on the surface opposite to the surface coated with the clear hard coat layer forming coating solution 1 so that the dry film thickness is 10 μm. It dried for minutes and bonded together with the optical function layer of the PET film prepared previously.
〔接着層形成用塗布液1〕
 N-2147(アクリル系粘着剤、日本合成化学工業株式会社製)
                            100質量部
 コロネート(登録商標)HL(硬化剤、東ソー株式会社製)  5質量部
 MIBK(メチルイソブチルケトン)          300質量部
[Adhesive layer forming coating solution 1]
N-2147 (acrylic adhesive, manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
100 parts by mass Coronate (registered trademark) HL (curing agent, manufactured by Tosoh Corporation) 5 parts by mass MIBK (methyl isobutyl ketone) 300 parts by mass
(粘着層の形成)
 さらに、PETフィルムを挟んで光学機能層とは反対側の面に、粘着層形成用塗布液1を乾燥膜厚が10μmとなるように塗布を行い、90℃で1分間乾燥させて粘着層を形成することにより、光学フィルム102を作製した。
 なお、粘着層側の最表面には、離型フィルム(MRF#25、三菱樹脂株式会社製)を貼り合わせて表面を保護した。
(Formation of adhesive layer)
Further, the adhesive layer forming coating solution 1 is applied on the surface opposite to the optical functional layer across the PET film so that the dry film thickness is 10 μm, and dried at 90 ° C. for 1 minute to form the adhesive layer. The optical film 102 was produced by forming.
A release film (MRF # 25, manufactured by Mitsubishi Resin Co., Ltd.) was bonded to the outermost surface on the adhesive layer side to protect the surface.
〈光学フィルム103~111の作製〉
 光学フィルム102の作製において、透明断熱層用PET1を以下の各透明断熱層用PETに置き換えた以外は同様にして、光学フィルム103~111を作製した。
<Preparation of optical films 103-111>
Optical films 103 to 111 were produced in the same manner as in the production of the optical film 102 except that the transparent heat insulating layer PET1 was replaced with the following transparent heat insulating layer PET.
 光学フィルム103:透明断熱層用PET2(厚さ15μm、熱抵抗1.07×10-4・K/W)
 光学フィルム104:透明断熱層用PET3(厚さ25μm、熱抵抗1.79×10-4・K/W)
 光学フィルム105:透明断熱層用PET4(厚さ50μm、熱抵抗3.57×10-4・K/W)
 光学フィルム106:透明断熱層用PET5(厚さ100μm、熱抵抗7.14×10-4・K/W)
 光学フィルム107:透明断熱層用PET6(厚さ150μm、熱抵抗1.07×10-3・K/W)
 光学フィルム108:透明断熱層用PET7(厚さ200μm、熱抵抗1.43×10-3・K/W)
 光学フィルム109:透明断熱層用PET8(厚さ250μm、熱抵抗1.79×10-3・K/W)
 光学フィルム110:透明断熱層用PET9(厚さ350μm、熱抵抗2.50×10-3・K/W)
 光学フィルム111:透明断熱層用PET10(厚さ400μm、熱抵抗2.86×10-3・K/W)
The optical film 103: transparent heat insulating layer PET 2 (thickness 15 [mu] m, the thermal resistance 1.07 × 10 -4 m 2 · K / W)
Optical film 104: PET3 for transparent heat insulation layer (thickness 25 μm, thermal resistance 1.79 × 10 −4 m 2 · K / W)
Optical film 105: PET4 for transparent heat insulation layer (thickness 50 μm, thermal resistance 3.57 × 10 −4 m 2 · K / W)
Optical film 106: PET5 for transparent heat insulating layer (thickness 100 μm, thermal resistance 7.14 × 10 −4 m 2 · K / W)
Optical film 107: PET6 for transparent heat insulating layer (thickness 150 μm, thermal resistance 1.07 × 10 −3 m 2 · K / W)
Optical film 108: PET7 for transparent heat insulation layer (thickness 200 μm, thermal resistance 1.43 × 10 −3 m 2 · K / W)
Optical film 109: PET8 for transparent heat insulation layer (thickness 250 μm, thermal resistance 1.79 × 10 −3 m 2 · K / W)
Optical film 110: PET9 for transparent heat insulation layer (thickness 350 μm, thermal resistance 2.50 × 10 −3 m 2 · K / W)
Optical film 111: PET10 for transparent heat insulation layer (thickness 400 μm, thermal resistance 2.86 × 10 −3 m 2 · K / W)
〈光学フィルム112~121の作製〉
 光学フィルム102~111の作製において、接着層に光波長400~700nmの範囲内の光を吸収する顔料として、御国色素社製HTPブルー#B012Mを15質量部、御国色素社製HTPマゼンタ#B002Mを25質量部の比率で混合した液を、光波長400~700nmの範囲内における光学フィルムの平均光吸収率が55%となるように添加量を調整して添加した以外は同様にして、光学フィルム112~121をそれぞれ作製した。
<Preparation of optical films 112-121>
In the production of the optical films 102 to 111, 15 parts by mass of HTP Blue # B012M manufactured by Gokoku Dye Co., Ltd. An optical film was prepared in the same manner except that the liquid mixed at a ratio of 25 parts by mass was added by adjusting the addition amount so that the average optical absorptance of the optical film in the light wavelength range of 400 to 700 nm was 55%. 112 to 121 were produced.
〈光学フィルム122~124の作製〉
 光学フィルム115の作製において、光波長400~700nmの範囲内の光を吸収する顔料の添加量を、光波長400~700nmの範囲内における光学フィルムの平均光吸収率が表1に記載のとおりとなるように調整した以外は同様にして、光学フィルム122~124を作製した。
<Preparation of optical films 122 to 124>
In the production of the optical film 115, the addition amount of the pigment that absorbs light within the light wavelength range of 400 to 700 nm is the average light absorption rate of the optical film within the light wavelength range of 400 to 700 nm as shown in Table 1. Optical films 122 to 124 were produced in the same manner except that the adjustment was performed.
〈光学フィルム125の作製〉
 光学フィルム115の作製において、二酸化バナジウム含有粒子の分散液1に代えて二酸化バナジウム含有粒子の分散液2を用いた以外は同様にして、光学フィルム125を作製した。
<Preparation of optical film 125>
An optical film 125 was produced in the same manner as in the production of the optical film 115 except that the dispersion 2 of vanadium dioxide-containing particles was used instead of the dispersion 1 of vanadium dioxide-containing particles.
〈光学フィルム126の作製〉
 光学フィルム115の作製において、光波長400~700nmの範囲内の光を吸収する顔料を染料であるC.I.ソルベントブルー63(1-メチルアミノ-4-[(3-メチルフェニル)アミノ]-9,10-アントラキノン、極大吸収波長645nm)に変更した以外は同様にして、光学フィルム126を作製した。
<Preparation of Optical Film 126>
In the production of the optical film 115, a pigment that absorbs light within a light wavelength range of 400 to 700 nm is used as a dye. I. An optical film 126 was produced in the same manner except that the solvent was changed to Solvent Blue 63 (1-methylamino-4-[(3-methylphenyl) amino] -9,10-anthraquinone, maximum absorption wavelength 645 nm).
〈光学フィルム127の作製〉
 光学フィルム115の作製において、光学機能層形成用塗布液1を用いて光学機能層を設ける代わりに、接着層塗布液1に、更に二酸化バナジウム含有粒子の分散液3を光波長400~700nmの範囲内における光学フィルムの平均光吸収率が55%となるように添加量を調整して加えた以外は同様にして、光学フィルム127を作製した。
<Preparation of optical film 127>
In the production of the optical film 115, instead of providing the optical functional layer using the coating liquid 1 for forming the optical functional layer, the dispersion liquid 3 of vanadium dioxide-containing particles is further added to the adhesive layer coating liquid 1 in the light wavelength range of 400 to 700 nm. An optical film 127 was produced in the same manner except that the addition amount was adjusted so that the average optical absorptance of the optical film was 55%.
〈光学フィルム128の作製〉
 光学フィルム101の作製において、光学機能層とクリアハードコート層との間に、下記組成の透明断熱層形成用塗布液1を用いてエアロゲル微粒子を含有する透明断熱層(厚さ8μm、熱抵抗1.00×10-4・K/W)を設けた以外は同様にして、光学フィルム128を作製した。
<Preparation of optical film 128>
In the production of the optical film 101, a transparent heat insulating layer containing airgel fine particles (thickness 8 μm, heat resistance 1) using a coating solution 1 for forming a transparent heat insulating layer having the following composition between the optical functional layer and the clear hard coat layer. 0.004 × 10 −4 m 2 · K / W), an optical film 128 was produced in the same manner.
〔透明断熱層形成用塗布液1〕
 5質量%のポリビニルアルコール(5質量%水溶液、PVA-124:クラレ株式会社製)                     52質量部
 エアロゲル微粒子(キャボット社製IC3100)    2.3質量部
 界面活性剤(アデカプロニックP-84:ADEKA社製)1.5質量部
[Transparent insulation layer forming coating solution 1]
5% by mass of polyvinyl alcohol (5% by mass aqueous solution, PVA-124: manufactured by Kuraray Co., Ltd.) 52 parts by mass Aerogel fine particles (IC3100 manufactured by Cabot) 2.3 parts by mass Surfactant (Adekapronic P-84: ADEKA) 1.5 parts by mass
〈光学フィルム129及び130の作製〉
 光学フィルム128において、透明断熱層の厚さをそれぞれ13μm(熱抵抗1.63×10-4・K/W)、20μm(熱抵抗2.50×10-4・K/W)に変更した以外は同様にして、光学フィルム129及び130を作製した。
<Preparation of optical films 129 and 130>
In the optical film 128, the thickness of the transparent heat insulating layer is 13 μm (thermal resistance 1.63 × 10 −4 m 2 · K / W) and 20 μm (thermal resistance 2.50 × 10 −4 m 2 · K / W), respectively. Optical films 129 and 130 were produced in the same manner except that the film was changed to.
《評価》
〈評価1〉
 エア・コンディショナーで20℃に調整した部屋の南面のガラス窓に各光学フィルムを貼合し、エア・コンディショナーの風が直接当たるモデルとして、窓から2m離れた位置から扇風機(東芝社製F-ALT55W)で、風をメモリの強、中、弱の3段階で各光学フィルムに吹き付け、その際の各光学フィルムの近赤外光透過率を紫外可視近赤外分光光度計V-670(日本分光社製)を用いて測定して、相転移を起こしているか(近赤外光の遮蔽効果の発現)を確認し、下記評価基準に従って評価した。
 評価結果を表1に示す。
<Evaluation>
<Evaluation 1>
Each optical film is bonded to the glass window on the south side of the room adjusted to 20 ° C with an air conditioner, and a fan (T-F55 from Toshiba Corp.) is placed at a position 2m away from the window as a model where the wind of the air conditioner directly hits. ), Wind is blown onto each optical film in three stages of strong, medium and weak memory, and the near-infrared light transmittance of each optical film at that time is measured with an ultraviolet-visible near-infrared spectrophotometer V-670 (JASCO) To make a phase transition (appearance of near-infrared light shielding effect), and evaluated according to the following evaluation criteria.
The evaluation results are shown in Table 1.
  ◎:扇風機を1mに近づけて、強風としても相転移を起こした。
  ○:強風でも相転移を起こした。
 ○△:中風なら相転移を起こすが、強風では相転移を起こさない。
  △:弱風なら相転移を起こすが、中風では相転移を起こさない。
  ×:弱風でも相転移を起こさない。
(Double-circle): The electric fan was brought close to 1 m, and a phase transition occurred even as a strong wind.
○: Phase transition occurred even in strong winds.
○ △: Phase transition occurs in medium wind, but no phase transition in strong wind.
Δ: A phase transition occurs if the wind is weak, but no phase transition occurs if the wind is medium.
X: No phase transition occurs even in weak winds.
〈評価2〉
 上記評価1と同じ場所で扇風機を駆動させず、エア・コンディショナーを28℃に設定し、各光学フィルムを30分以上太陽光が当たる状態にした。このとき、いずれの光学フィルムも相転移を起こしていた。
 この状態で、ブラインドを下げて太陽光をカットし、相転移が戻る(近赤外光の透過効果の発現)までの時間を測定し、下記評価基準に従って評価した。
 評価結果を表1に示す。
<Evaluation 2>
The fan was not driven in the same place as in the above evaluation 1, the air conditioner was set to 28 ° C., and each optical film was exposed to sunlight for 30 minutes or more. At this time, all optical films had undergone a phase transition.
In this state, the blind was lowered to cut sunlight, and the time until the phase transition returned (expression of near-infrared light transmission effect) was measured and evaluated according to the following evaluation criteria.
The evaluation results are shown in Table 1.
  ○:15分未満
 ○△:15分以上30分未満
  △:30分以上1時間未満
  ×:1時間以上
○: Less than 15 minutes ○ △: 15 minutes or more and less than 30 minutes △: 30 minutes or more and less than 1 hour ×: 1 hour or more
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
〈まとめ〉
 表1から明らかなように、本発明の光学フィルムは、比較例の光学フィルムと比較して、エア・コンディショナーの風が直接当たる場所で使用した場合であっても、温度上昇が抑えられることなく、効果的に近赤外光を遮蔽できることがわかる。
 以上から、透明基材上に、サーモクロミック性を有する二酸化バナジウム含有粒子が含有された光学機能層を有し、光学機能層の透明基材とは反対側に、少なくとも1層の透明断熱層を有することが、使用環境による影響を受けにくい光学フィルムを提供することに有用であることが確認できた。
<Summary>
As is apparent from Table 1, the optical film of the present invention is not suppressed in temperature rise even when it is used in a place where the air of the air conditioner directly hits, as compared with the optical film of the comparative example. It can be seen that near-infrared light can be effectively shielded.
From the above, it has an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties on a transparent substrate, and at least one transparent heat insulating layer is provided on the opposite side of the optical functional layer from the transparent substrate. It was confirmed that it was useful to provide an optical film that is hardly affected by the use environment.
 また、本発明の光学フィルムは、二酸化バナジウム含有粒子が含有された光学機能層が、透明断熱層とともに、透明基材で挟持された構造となっているため、太陽光で温められたガラス窓の余熱による影響が小さく、近赤外光の遮蔽が必要とされない環境下での近赤外光遮蔽効果の継続時間を短縮できることが確認された。 The optical film of the present invention has a structure in which the optical functional layer containing the vanadium dioxide-containing particles is sandwiched between the transparent base material and the transparent base material, so that the glass window heated by sunlight is used. It was confirmed that the duration of the near-infrared light shielding effect can be shortened in an environment where the influence of residual heat is small and near-infrared light shielding is not required.
 本発明は、温度環境に応じて近赤外光遮蔽率を調節できる二酸化バナジウム含有粒子を含有する光学フィルムであって、使用環境による影響を受けにくい光学フィルムを提供することに、特に好適に利用することができる。 INDUSTRIAL APPLICABILITY The present invention is an optical film containing vanadium dioxide-containing particles that can adjust the near-infrared light shielding rate according to the temperature environment, and is particularly preferably used for providing an optical film that is not easily affected by the use environment. can do.
1 光学フィルム
2 透明基材
3 光学機能層
4 着色剤層
5 透明断熱層
6 クリアハードコート層
7 粘着層
10 溶媒置換処理装置
11 調製釜
12 分散液
13 循環ライン
14 循環ポンプ
15 限外ろ過部
16 排出口
17 溶媒ストック釜
18 溶媒
19 溶媒供給ライン
DESCRIPTION OF SYMBOLS 1 Optical film 2 Transparent base material 3 Optical functional layer 4 Colorant layer 5 Transparent heat insulation layer 6 Clear hard coat layer 7 Adhesive layer 10 Solvent displacement processing apparatus 11 Preparation kettle 12 Dispersion liquid 13 Circulation line 14 Circulation pump 15 Ultrafiltration part 16 Discharge port 17 Solvent stock pot 18 Solvent 19 Solvent supply line

Claims (4)

  1.  透明基材上に、サーモクロミック性を有する二酸化バナジウム含有粒子が含有された光学機能層を有する光学フィルムであって、
     前記光学機能層の前記透明基材とは反対側に、少なくとも1層の透明断熱層を有することを特徴とする光学フィルム。
    An optical film having an optical functional layer containing vanadium dioxide-containing particles having thermochromic properties on a transparent substrate,
    An optical film comprising at least one transparent heat insulating layer on the side of the optical functional layer opposite to the transparent substrate.
  2.  前記透明断熱層の熱抵抗が、1.0×10-4~2.5×10-3・K/Wの範囲内であることを特徴とする請求項1に記載の光学フィルム。 2. The optical film according to claim 1, wherein the heat resistance of the transparent heat insulating layer is in the range of 1.0 × 10 −4 to 2.5 × 10 −3 m 2 · K / W.
  3.  前記透明基材若しくは前記透明断熱層、又は前記透明基材と前記透明断熱層との間の層に、光波長400~700nmの範囲内の光を吸収する染料又は顔料が含有されていることを特徴とする請求項1又は請求項2に記載の光学フィルム。 The transparent substrate or the transparent heat insulating layer, or the layer between the transparent substrate and the transparent heat insulating layer contains a dye or pigment that absorbs light within a light wavelength range of 400 to 700 nm. The optical film according to claim 1, wherein the optical film is a film.
  4.  光波長400~700nmの範囲内における前記光学フィルムの平均光吸収率が、23℃において、20~80%の範囲内であることを特徴とする請求項1から請求項3までのいずれか一項に記載の光学フィルム。 The average optical absorptance of the optical film within a light wavelength range of 400 to 700 nm is within a range of 20 to 80% at 23 ° C. The optical film described in 1.
PCT/JP2016/083342 2015-12-17 2016-11-10 Optical film WO2017104313A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017556417A JPWO2017104313A1 (en) 2015-12-17 2016-11-10 Optical film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015245892 2015-12-17
JP2015-245892 2015-12-17

Publications (1)

Publication Number Publication Date
WO2017104313A1 true WO2017104313A1 (en) 2017-06-22

Family

ID=59056075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083342 WO2017104313A1 (en) 2015-12-17 2016-11-10 Optical film

Country Status (2)

Country Link
JP (1) JPWO2017104313A1 (en)
WO (1) WO2017104313A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019121650A1 (en) 2017-12-21 2019-06-27 Lumileds Holding B.V. Lighting device
US11054112B2 (en) 2017-12-22 2021-07-06 Lumileds Llc Ceramic phosphor with lateral light barriers
US11489095B2 (en) 2017-12-21 2022-11-01 Lumileds Llc Method of addressing an LED array with light intensity adaptive LED sidewalls

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311189A (en) * 1997-05-09 1998-11-24 Kanegafuchi Chem Ind Co Ltd Dimming glass and window using the same
JP2004346261A (en) * 2003-05-26 2004-12-09 Toagosei Co Ltd Thermochromic material and thermochromic film or thermochromic glass using the same
JP2012072039A (en) * 2010-09-29 2012-04-12 Sekisui Chem Co Ltd Intermediate film for laminated glass, and the laminated glass
JP2015063453A (en) * 2013-08-30 2015-04-09 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311189A (en) * 1997-05-09 1998-11-24 Kanegafuchi Chem Ind Co Ltd Dimming glass and window using the same
JP2004346261A (en) * 2003-05-26 2004-12-09 Toagosei Co Ltd Thermochromic material and thermochromic film or thermochromic glass using the same
JP2012072039A (en) * 2010-09-29 2012-04-12 Sekisui Chem Co Ltd Intermediate film for laminated glass, and the laminated glass
JP2015063453A (en) * 2013-08-30 2015-04-09 積水化学工業株式会社 Intermediate film for laminated glass and laminated glass

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019121650A1 (en) 2017-12-21 2019-06-27 Lumileds Holding B.V. Lighting device
US10892387B2 (en) 2017-12-21 2021-01-12 Lumileds, LLC Lighting device with switching material
US11437553B2 (en) 2017-12-21 2022-09-06 Lumileds Llc Lighting device with switching material
US11489095B2 (en) 2017-12-21 2022-11-01 Lumileds Llc Method of addressing an LED array with light intensity adaptive LED sidewalls
US11557703B2 (en) 2017-12-21 2023-01-17 Lumileds Llc Light intensity adaptive LED sidewalls
US11791445B2 (en) 2017-12-21 2023-10-17 Lumileds Llc Lighting device with switching material
US11888100B2 (en) 2017-12-21 2024-01-30 Lumileds Llc LED array with light intensity adaptive LED sidewalls
US11054112B2 (en) 2017-12-22 2021-07-06 Lumileds Llc Ceramic phosphor with lateral light barriers
US11480315B2 (en) 2017-12-22 2022-10-25 Lumileds Llc Phosphor with light barriers

Also Published As

Publication number Publication date
JPWO2017104313A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US10816829B2 (en) Optical film and method for producing optical film
WO2016017604A1 (en) Optical film and method for manufacturing optical film
JP5994849B2 (en) Laminated glass
WO2014156822A1 (en) Laminated glass
WO2014162864A1 (en) Heat ray shielding laminated glass and manufacturing method for heat ray shielding laminated glass
JPWO2013111735A1 (en) Optical film
JP6384247B2 (en) Optical film and optical film manufacturing method
WO2017104313A1 (en) Optical film
WO2015146674A1 (en) Optical film, and window film employing same
WO2016006388A1 (en) Optical film
JPWO2014199872A1 (en) Infrared shielding film, infrared shielding body using the same and heat ray reflective laminated glass
WO2017010280A1 (en) Heat ray shielding film
WO2015115329A1 (en) Optical film
JP6465117B2 (en) Manufacturing method of optical film
WO2015146676A1 (en) Optical film, infrared reflective film using same and laminated glass
WO2017068948A1 (en) Thermochromic film and thermochromic composite
WO2016158620A1 (en) Optical film
WO2018092502A1 (en) Thermochromic composition and thermochromic film
JP6747450B2 (en) Thermochromic film and thermochromic composite
WO2017006767A1 (en) Vanadium dioxide particle aqueous dispersion, method for producing vanadium dioxide particle aqueous dispersion, thermochromic film, and thermochromic complex
WO2017073183A1 (en) Thermochromic film and method for producing thermochromic film
JP2017203965A (en) Optical reflection film in roll state
WO2017056897A1 (en) Thermochromic film and thermochromic composite body
WO2016158603A1 (en) Method for producing rutile vanadium dioxide-containing particle and method for producing optical film
WO2017033533A1 (en) Thermochromic film and thermochromic composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875297

Country of ref document: EP

Kind code of ref document: A1