WO2017090107A1 - Capsule endoscope position measurement device - Google Patents

Capsule endoscope position measurement device Download PDF

Info

Publication number
WO2017090107A1
WO2017090107A1 PCT/JP2015/083015 JP2015083015W WO2017090107A1 WO 2017090107 A1 WO2017090107 A1 WO 2017090107A1 JP 2015083015 W JP2015083015 W JP 2015083015W WO 2017090107 A1 WO2017090107 A1 WO 2017090107A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
capsule endoscope
phase difference
signal
endoscope position
Prior art date
Application number
PCT/JP2015/083015
Other languages
French (fr)
Japanese (ja)
Inventor
吉徳 池田
慎一 中島
明広 窪田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2015/083015 priority Critical patent/WO2017090107A1/en
Publication of WO2017090107A1 publication Critical patent/WO2017090107A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor

Definitions

  • the present invention relates to a capsule endoscope position measuring device.
  • a capsule endoscope for observing the inside of a living body is used.
  • the position where the capsule endoscope has taken an image is referred to for treatment. For this reason, it is important to measure the position of the capsule endoscope.
  • Patent Document 1 A method for measuring the position of a capsule endoscope is disclosed in Patent Document 1.
  • signals from a radio apparatus inside a living body, that is, a capsule endoscope are received by a plurality of antennas.
  • the position of the capsule endoscope is measured based on the phase difference between the received signals.
  • FIG. 16 shows a configuration of a conventional capsule endoscope position measuring apparatus 9.
  • the capsule endoscope position measuring device 9 includes a plurality of antennas 900, an antenna selection circuit 901, a processing circuit 902, a processing circuit 903, a phase difference measuring circuit 904, and a position calculating circuit 905. And have.
  • the plurality of antennas 900 are arranged outside the living body and receive signals transmitted from the capsule endoscope 2 wirelessly. For example, as shown in FIG. 16, eight antennas 900 are arranged.
  • the antenna selection circuit 901 sequentially selects two antennas 900 from the plurality of antennas 900.
  • Each of the processing circuit 902 and the processing circuit 903 processes each of the signals received by the two antennas 900 selected by the antenna selection circuit 901.
  • the processing circuit 902 and the processing circuit 903 include a filter and an amplifier.
  • the filter removes a signal having a frequency other than a predetermined frequency band from the signal received by the antenna 900.
  • the amplifier amplifies the signal that has passed through the filter.
  • the phase difference measurement circuit 904 measures the phase difference between the signal processed by the processing circuit 902 and the signal processed by the processing circuit 903.
  • the position calculation circuit 905 calculates the position of the capsule endoscope 2 based on the phase difference measured by the phase difference measurement circuit 904.
  • FIG. 17 shows a procedure for measuring the position of the capsule endoscope 2 by a conventional method. A method for measuring the position of the capsule endoscope 2 will be described with reference to FIG.
  • the capsule endoscope 2 transmits a signal wirelessly (step S1001).
  • the plurality of antennas 900 receive the signal from the capsule endoscope 2 (step S1002).
  • the variable N1 is set to 1 and the variable N2 is set to 2 (step S1003).
  • the variables N1 and N2 are managed by a control circuit (not shown).
  • step S1003 when variable N1 and variable N2 are the same (step S1004), variable N2 is incremented by 1 (step S1005).
  • the antenna selection circuit 901 switches between the two antennas 900 (step S1006). Immediately after the position measurement is started, the first two antennas 900 are selected in step S1006.
  • step S1006 When the process in step S1006 is performed again, a combination different from the combination of the two antennas 900 already selected is selected.
  • step S1003 when the variable N1 and the variable N2 are not the same (step S1004), the antenna selection circuit 901 switches between the two antennas 900 (step S1006).
  • each of the processing circuit 902 and the processing circuit 903 processes each of the signals received by the two antennas 900 selected by the antenna selection circuit 901.
  • the phase difference measurement circuit 904 measures the phase difference between the signal processed by the processing circuit 902 and the signal processed by the processing circuit 903 (step S1007).
  • the position calculation circuit 905 holds phase difference information indicating the measured phase difference (step S1008).
  • step S1009 After the phase difference information is held, if the variable N2 is not 8 (step S1009), the variable N2 is incremented by 1 (step S1010). After the variable N2 is incremented by 1, determination in step S1004 is performed. After the phase difference information is held, when the variable N2 is 8 (step S1009), the following processing is performed. If the variable N1 is not 7 (step S1011), the variable N1 is incremented by 1 and the variable N2 is set to a value that is 1 larger than the variable N1 (step S1012). Thereafter, the determination in step S1004 is performed. When the variable N1 is 7 (step S1011), the position calculation circuit 905 calculates the position of the capsule endoscope 2 based on the phase difference information (step S1013).
  • At least three combinations of two antennas 900 are necessary.
  • the number of combinations of the two antennas 900 is large, the calculation accuracy increases.
  • the maximum number of combinations of two antennas 900 is 28. In the method shown in FIG. 17, the phase difference is measured for a maximum of 28 combinations.
  • the position calculation circuit 905 can calculate the distance d nm by the equation (1).
  • the distance d nm is a difference in distance from the capsule endoscope 2 to each of the two antennas 900.
  • ⁇ nm is a phase difference between signals received by each of the two antennas 900.
  • f is the frequency of the signal.
  • V is the transmission speed of the signal in the medium.
  • (x, y, z) is the position coordinate of the capsule endoscope 2.
  • (X m , y m , z m ) and (x n , y n , z n ) are the position coordinates of each of the two antennas 900.
  • Equation (2) is one equation regarding the position coordinates (x, y, z) of the capsule endoscope 2.
  • the unknown is 3.
  • the position calculation circuit 905 can calculate the position of the capsule endoscope 2 by solving simultaneous equations including three or more equations represented by Expression (2).
  • the capsule endoscope position measuring device 9 switches the two antennas 900 sequentially. For this reason, the amount of processing required for selecting the antenna 900 is large.
  • An object of the present invention is to provide a capsule endoscope position measuring device with a reduced processing amount.
  • a capsule endoscope position measurement apparatus includes at least four antennas, an antenna selection circuit, a processing circuit, a reference signal generation circuit, a phase difference measurement circuit, and a position calculation. Circuit.
  • the at least four antennas are disposed outside the living body and receive signals transmitted wirelessly from the capsule endoscope.
  • the antenna selection circuit sequentially selects one antenna from the at least four antennas.
  • a processing circuit processes the signal received by the antenna selected by the antenna selection circuit.
  • the reference signal generation circuit generates a reference signal.
  • the phase difference measurement circuit measures a phase difference between the signal processed by the processing circuit and the reference signal.
  • the position calculation circuit calculates the position of the capsule endoscope based on the phase difference for each of the at least four antennas measured by the phase difference measurement circuit.
  • the capsule endoscope position measurement apparatus further includes a down-conversion circuit that down-converts the frequency of the signal processed by the processing circuit to an intermediate frequency. You may have.
  • the capsule endoscope position measuring device adjusts the intermediate frequency based on the phase difference measured by the phase difference measuring circuit.
  • An adjustment circuit may be further included.
  • the down-conversion circuit may include a voltage controlled oscillator and a mixer.
  • the voltage controlled oscillator generates a signal having a frequency different from the frequency of the signal received by the at least four antennas.
  • the mixer mixes the signal processed by the processing circuit with the signal generated by the voltage controlled oscillator.
  • the capsule endoscope position measuring device uses the frequency band of the signal down-converted by the down-conversion circuit. You may further have the narrow-band filter to restrict
  • the frequency of the reference signal may be set to be the same as the intermediate frequency.
  • the frequency of the reference signal may be set to be the same as the frequency of the signal received by the at least four antennas.
  • the capsule endoscope position measuring device is based on the phase difference measured by the phase difference measuring circuit.
  • a reference frequency adjusting circuit for adjusting the frequency of the reference signal may be further included.
  • the capsule endoscope position measurement device includes a time change measurement circuit and a first phase difference correction circuit. Furthermore, you may have.
  • the time change measuring circuit measures the time change of the phase difference for each of the at least four antennas measured by the phase difference measuring circuit.
  • the first phase difference correction circuit corrects the phase difference for each of the at least four antennas measured by the phase difference measurement circuit based on the time change measured by the time change measurement circuit. To do.
  • the reference signal generation circuit may be a voltage controlled oscillator.
  • the reference signal generation circuit may be a crystal oscillator.
  • the reference signal generation circuit may be any one of the at least four antennas.
  • the reference signal generation circuit may be the antenna having the highest reception intensity among the at least four antennas.
  • the capsule endoscope position measuring device includes: a voltage of the signal processed by the processing circuit; a reference voltage; And a comparator that outputs a binary signal having any one of the two values according to the comparison result.
  • the phase difference measurement circuit may measure the phase difference between the binary signal and the reference signal.
  • the phase difference measurement circuit may be a TDC (Time to Digital Converter).
  • the phase difference measurement circuit may include a phase comparator and a charge pump.
  • the phase comparator compares the phase of the binary signal with the phase of the reference signal.
  • the charge pump outputs a voltage signal corresponding to a difference between the phase of the binary signal compared by the phase comparator and the phase of the reference signal.
  • the phase difference measuring circuit may be a counter.
  • the capsule endoscope position measurement device further includes an intensity measurement circuit and a second phase difference correction circuit.
  • the intensity measurement circuit measures the intensity of the signal processed by the processing circuit.
  • the second phase difference correction circuit corrects the phase difference for each of the at least four antennas measured by the phase difference measurement circuit based on the intensity measured by the intensity measurement circuit.
  • the capsule endoscope position measuring device further includes a variable gain amplifier and a first control circuit.
  • the variable gain amplifier amplifies the signal processed by the processing circuit, and an amplification gain is variable.
  • the first control circuit measures the intensity of the signal processed by the processing circuit, and based on the measured intensity, the intensity of the signal output from the variable gain amplifier is constant.
  • the variable gain amplifier is controlled.
  • the comparator may compare the voltage of the signal output from the variable gain amplifier with the reference voltage, and output the binary signal according to a comparison result.
  • the capsule endoscope position measuring device may further include an attenuator and a second control circuit.
  • the attenuator attenuates the signal processed by the processing circuit, and the attenuation amount is variable.
  • the second control circuit measures the intensity of the signal processed by the processing circuit, and based on the measured intensity, the intensity of the signal output from the attenuator is constant.
  • the comparator may compare the voltage of the signal output from the attenuator with the reference voltage and output the binary signal according to the comparison result.
  • the capsule endoscope position measuring device includes: the signal processed by the processing circuit; and the reference signal. You may further have AD converter which converts each into a digital value.
  • the phase difference measurement circuit may measure the phase difference based on the digital value of the signal processed by the processing circuit and the digital value of the reference signal.
  • the capsule endoscope position measurement apparatus has the antenna selection circuit that sequentially selects one antenna to be detected from at least four antennas. For this reason, the amount of processing is reduced.
  • FIG. 1 shows a configuration of a capsule endoscope position measuring apparatus 1A according to the first embodiment of the present invention.
  • the capsule endoscope position measurement apparatus 1A includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, A position calculation circuit 105.
  • the at least four antennas 100 are arranged outside the living body and receive signals transmitted from the capsule endoscope 2 by radio.
  • the antenna selection circuit 101 sequentially selects one antenna 100 from at least four antennas 100.
  • the processing circuit 102 processes a signal received by the antenna 100 selected by the antenna selection circuit 101.
  • the reference signal generation circuit 103 generates a reference signal.
  • the phase difference measurement circuit 104 measures the phase difference between the signal processed by the processing circuit 102 and the reference signal.
  • the position calculation circuit 105 calculates the position of the capsule endoscope 2 based on the phase difference for each of the at least four antennas 100 measured by the phase difference measurement circuit 104.
  • the capsule endoscope 2 is disposed inside the living body.
  • the antenna selection circuit 101 outputs a signal received by the selected antenna 100 to the processing circuit 102.
  • the processing circuit 102 includes a filter and an amplifier.
  • the filter removes a signal having a frequency other than a predetermined frequency band from the signal received by the antenna 100.
  • the amplifier amplifies the signal that has passed through the filter. That is, the processing circuit 102 removes a signal having a frequency other than a predetermined frequency band from the signal received by the antenna 100 with a filter, and amplifies the signal that has passed through the filter with an amplifier.
  • the reference signal is a signal having a predetermined frequency.
  • FIG. 2 shows a procedure for measuring the position of the capsule endoscope 2 in the first embodiment. A method for measuring the position of the capsule endoscope 2 will be described with reference to FIG.
  • the capsule endoscope 2 transmits a signal wirelessly (step S101).
  • the signal transmitted by the capsule endoscope 2 is a signal including an image captured by the capsule endoscope 2 or a signal for position measurement.
  • the reference signal generation circuit 103 After signals are transmitted from the capsule endoscope 2, at least four antennas 100 receive signals from the capsule endoscope 2 (step S102).
  • the reference signal generation circuit 103 After at least four antennas 100 receive the signal, the reference signal generation circuit 103 generates a reference signal (step S103).
  • the variable n is set to 1 (step S104).
  • the variable n is managed by a control circuit (not shown).
  • the antenna selection circuit 101 switches one antenna 100 (step S105). Immediately after the position measurement is started, the first antenna 100 is selected in step S105. When the process in step S105 is performed again, an antenna 100 different from the already selected one antenna 100 is selected.
  • the processing circuit 102 processes the signal received by the single antenna 100 selected by the antenna selection circuit 101.
  • the phase difference measurement circuit 104 measures the phase difference between the signal processed by the processing circuit 102 and the reference signal output from the reference signal generation circuit 103 (step S106).
  • the position calculation circuit 105 holds phase difference information indicating the measured phase difference (step S107).
  • step S108 After the phase difference information is held, if the variable n is not 8 (step S108), the variable n is incremented by 1 (step S109). After the variable n is incremented by 1, the process in step S105 is performed. After the phase difference information is held, when the variable n is 8 (step S108), the position calculation circuit 105 calculates the position of the capsule endoscope 2 based on the phase difference information (step S110).
  • the position of the capsule endoscope 2 In order to calculate the position of the capsule endoscope 2 by the method described later, at least three combinations of the two antennas 100 are necessary. When the number of combinations of the two antennas 100 is large, the calculation accuracy increases. In the method shown in FIG. 2, the phase difference between the signal received by each of the eight antennas 100 and the reference signal is measured. Based on the measurement result, the phase difference between the signals received by each of the two antennas 100 is calculated.
  • the position calculation circuit 105 calculates the phase difference ⁇ nm of the signals received by each of the two antennas 100 using Expression (3).
  • ⁇ m and ⁇ n are phase differences between the signal received by each of the two antennas 100 and the reference signal.
  • ⁇ nm ⁇ n ⁇ m (3)
  • the position calculation circuit 105 receives each of the two antennas 100 by calculating the difference in phase difference between the signal received by each of the two antennas 100 and the reference signal based on Expression (3).
  • the phase difference ⁇ nm of the obtained signal is calculated.
  • Information on the phase of the reference signal is removed by equation (3).
  • the position calculation circuit 105 can calculate the distance d nm by using the phase difference ⁇ nm calculated by the equation (3) in the above-described equation (1).
  • the frequency of the reference signal may be set to be the same as the frequency of signals received by at least four antennas 100.
  • the reference signal generation circuit 103 may be a crystal oscillator.
  • the crystal oscillator may be a temperature compensated crystal oscillator (TCXO).
  • TCXO temperature compensated crystal oscillator
  • the antenna selection circuit 901 selects two antennas 900.
  • the antenna selection circuit 101 selects one antenna 100.
  • the antenna selection circuit 101 can be made smaller than the antenna selection circuit 901.
  • the capsule endoscope position measuring apparatus 1A can measure the phase differences for the 28 combinations of the two antennas 100. For this reason, the processing amount required for selection of the antenna 100 is reduced.
  • the capsule endoscope position measuring device 9 has two processing circuits, that is, a processing circuit 902 and a processing circuit 903. Since two processing circuits are required, the circuit scale is large.
  • the capsule endoscope position measurement apparatus 1 ⁇ / b> A includes a processing circuit 102 that processes a signal received by one antenna 100 selected by the antenna selection circuit 101. Compared with the capsule endoscope position measuring apparatus 9 having two processing circuits, the number of processing circuits is small. For this reason, the circuit scale is reduced.
  • the capsule endoscope position measurement device 9 When position measurement is performed by the capsule endoscope position measurement device 9, the measurement value of the phase difference between the signals received by each of the two antennas 900 is likely to contain an error due to variations in the configuration of the two processing circuits. . The above-mentioned error is reduced by the capsule endoscope position measuring apparatus 1A performing position measurement.
  • FIG. 3 shows a configuration of a capsule endoscope position measuring apparatus 1B according to the second embodiment of the present invention.
  • the capsule endoscope position measuring apparatus 1B includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, A position calculation circuit 105 and a down-conversion circuit 106 are included. The difference between the configuration shown in FIG. 3 and the configuration shown in FIG. 1 will be described.
  • the down-conversion circuit 106 down-converts the frequency of the signal processed by the processing circuit 102 to an intermediate frequency.
  • the down-conversion circuit 106 includes a local oscillator 1060 and a mixer 1061.
  • the local oscillator 1060 generates a signal having a frequency different from the frequency of signals received by the plurality of antennas 100.
  • the mixer 1061 mixes the signal processed by the processing circuit 102 and the signal generated by the local oscillator 1060. As a result, the mixer 1061 generates a signal having an intermediate frequency and outputs the generated signal.
  • the frequency (intermediate frequency Fi) of the signal output from the mixer 1061 is the difference between the frequency (Fr) of the signal received by at least four antennas 100 and the frequency (Fd) of the signal generated by the local oscillator 1060. It is. When the frequency (Fd) of the signal generated by the local oscillator 1060 is lower than the frequency (Fr) of the signal received by at least four antennas 100, the intermediate frequency Fi is (Fr ⁇ Fd). When the frequency (Fd) of the signal generated by the local oscillator 1060 is higher than the frequency (Fr) of the signal received by at least four antennas 100, the intermediate frequency Fi is (Fd ⁇ Fr).
  • the phase difference measurement circuit 104 measures the phase difference between the signal processed by the down-conversion circuit 106 and the reference signal.
  • the frequency of the reference signal may be set to be the same as the intermediate frequency. That is, the reference signal generation circuit 103 may generate a reference signal having an intermediate frequency.
  • FIG. 3 other than the above, the configuration shown in FIG. 3 is the same as the configuration shown in FIG.
  • the phase difference is measured based on a signal having a frequency lower than the frequency of signals received by at least four antennas 100.
  • the time resolution in the capsule endoscope position measurement apparatus 1A of the first embodiment is the same as the time resolution in the capsule endoscope position measurement apparatus 1B, the resolution of the phase difference in the capsule endoscope position measurement apparatus 1B Is higher than the resolution of the phase difference in the capsule endoscope position measurement apparatus 1A. For this reason, the accuracy of position measurement is improved.
  • FIG. 4 shows a configuration of a capsule endoscope position measuring apparatus 1C according to the third embodiment of the present invention.
  • the capsule endoscope position measurement apparatus 1C includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, A position calculation circuit 105, a down-conversion circuit 106A, and an intermediate frequency adjustment circuit 107 are included.
  • the difference between the configuration shown in FIG. 4 and the configuration shown in FIG. 3 will be described.
  • the down-conversion circuit 106A includes a voltage controlled oscillator (VCO) 1060A and a mixer 1061.
  • the local oscillator 1060 is a voltage controlled oscillator 1060A.
  • the voltage controlled oscillator 1060A outputs a signal having a frequency corresponding to the frequency setting value indicated by the input voltage value.
  • the mixer 1061 is the same as the mixer 1061 in the down-conversion circuit 106.
  • the intermediate frequency adjustment circuit 107 controls the down-conversion circuit 106A based on the phase difference measured by the phase difference measurement circuit 104. Specifically, the intermediate frequency adjustment circuit 107 controls the frequency setting value of the signal generated by the voltage controlled oscillator 1060A based on the phase difference measured by the phase difference measurement circuit 104. As a result, the intermediate frequency adjustment circuit 107 adjusts the intermediate frequency based on the phase difference measured by the phase difference measurement circuit 104. The intermediate frequency adjustment circuit 107 controls the frequency setting value so that the phase difference measured by the phase difference measurement circuit 104 is constant.
  • the capsule endoscope position measurement apparatus 1B of the second embodiment it is difficult to make the frequency of the signal output from the down-conversion circuit 106 and the reference signal completely the same due to the influence of individual differences in the circuit. For this reason, the phase difference between the signal output from the down-conversion circuit 106 and the reference signal may change over time. Since the phase difference includes a time-dependent error, the accuracy of position measurement may be reduced. The error included in the phase difference measured by the position measurement using the antenna 100 last selected by the antenna selection circuit 101 was measured by the position measurement using the antenna 100 first selected by the antenna selection circuit 101. It tends to be larger than the error included in the phase difference.
  • the capsule endoscope position measurement apparatus 1C according to the third embodiment can reduce the error of the phase difference depending on time by adjusting the intermediate frequency.
  • FIG. 5 shows a configuration of a capsule endoscope position measuring apparatus 1D according to the fourth embodiment of the present invention.
  • the capsule endoscope position measurement apparatus 1D includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a voltage controlled oscillator (VCO) 103A, and a phase difference measurement circuit 104.
  • a position calculation circuit 105, a down-conversion circuit 106, and a reference frequency adjustment circuit 108 The configuration shown in FIG. 5 will be described while referring to differences from the configuration shown in FIG.
  • the reference signal generation circuit 103 is a voltage controlled oscillator (VCO) 103A.
  • the voltage controlled oscillator 103A outputs a signal having a frequency corresponding to the frequency setting value indicated by the input voltage value.
  • the reference frequency adjusting circuit 108 controls the voltage controlled oscillator 103A based on the phase difference measured by the phase difference measuring circuit 104. Specifically, the reference frequency adjusting circuit 108 controls the frequency setting value of the signal generated by the voltage controlled oscillator 103A based on the phase difference measured by the phase difference measuring circuit 104. Thus, the reference frequency adjustment circuit 108 adjusts the reference frequency based on the phase difference measured by the phase difference measurement circuit 104.
  • the reference frequency adjustment circuit 108 controls the frequency setting value so that the phase difference measured by the phase difference measurement circuit 104 is constant.
  • the reference signal generation circuit 103 may be a voltage controlled oscillator 103A.
  • the at least one capsule endoscope position measurement device according to the first to third embodiments may include a reference frequency adjustment circuit 108.
  • the capsule endoscope position measuring apparatus 1D can reduce the time-dependent phase difference error by adjusting the frequency of the reference signal.
  • FIG. 6 shows a configuration of a capsule endoscope position measuring apparatus 1E according to the fifth embodiment of the present invention.
  • the capsule endoscope position measurement apparatus 1E includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, The position calculation circuit 105, the down-conversion circuit 106A, the intermediate frequency adjustment circuit 107, the time change measurement circuit 109, and the first phase difference correction circuit 110 are included.
  • the configuration shown in FIG. 6 will be described while referring to differences from the configuration shown in FIG.
  • the time change measuring circuit 109 measures the time change of the phase difference for each of at least four antennas 100 measured by the phase difference measuring circuit 104.
  • the first phase difference correction circuit 110 corrects the phase difference for each of the at least four antennas 100 measured by the phase difference measurement circuit 104 based on the time change measured by the time change measurement circuit 109.
  • the phase difference between the signal output from the down-conversion circuit 106A and the reference signal may change over time.
  • the time change measurement circuit 109 and the first phase difference correction circuit 110 are circuits for further reducing a time-dependent phase difference error. An example of processing by the time change measurement circuit 109 and the first phase difference correction circuit 110 will be described.
  • the phase difference measurement circuit 104 measures the first phase difference.
  • the phase difference measurement circuit 104 measures the second phase difference.
  • the antenna selection circuit 101 selects the first antenna from at least four antennas 100.
  • the time change measuring circuit 109 calculates the time change of the phase difference by dividing the difference between the first phase difference and the second phase difference by the time from the first time to the second time.
  • the time change of the calculated phase difference is a change amount of the phase difference per unit time.
  • the time change measurement circuit 109 outputs the calculated time change of the phase difference to the first phase difference correction circuit 110.
  • the phase difference corresponding to the first antenna is the first phase difference.
  • the antenna selection circuit 101 selects a second antenna different from the first antenna among at least four antennas 100.
  • the phase difference measurement circuit 104 measures a third phase difference based on the signal received by the second antenna.
  • the first phase difference correction circuit 110 corrects the third phase difference based on the time change of the phase difference and the time from the first time to the third time. Specifically, the first phase difference correction circuit 110 multiplies the time change of the phase difference by the time from the first time to the third time, thereby reducing the error included in the third phase difference. calculate.
  • the first phase difference correction circuit 110 corrects the third phase difference by subtracting the calculated error from the third phase difference.
  • the first phase difference correction circuit 110 corrects the phase difference by the above processing.
  • the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1E may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D.
  • the at least one capsule endoscope position measurement device may include a time change measurement circuit 109 and a first phase difference correction circuit 110.
  • the capsule endoscope position measuring apparatus 1E can reduce the time-dependent phase difference error by correcting the phase difference based on the time change of the phase difference.
  • FIG. 7 shows a configuration of a capsule endoscope position measuring apparatus 1F according to the sixth embodiment of the present invention.
  • the capsule endoscope position measuring apparatus 1F includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a phase difference measurement circuit 104, a position calculation circuit 105, a maximum An intensity selection circuit 111 and a processing circuit 112 are included. The difference between the configuration shown in FIG. 7 and the configuration shown in FIG. 1 will be described.
  • the reference signal generation circuit 103 is any one of at least four antennas 100. Specifically, the reference signal generation circuit 103 is the antenna 100 having the highest reception strength among at least four antennas 100.
  • the maximum intensity selection circuit 111 selects the antenna 100 having the highest reception intensity, and outputs a signal received by the selected antenna 100 to the processing circuit 112.
  • the configuration of the processing circuit 112 is the same as the configuration of the processing circuit 102.
  • the processing circuit 112 processes the signal output from the maximum intensity selection circuit 111.
  • the phase difference measurement circuit 104 measures the phase difference between signals processed by the processing circuit 102 and the processing circuit 112.
  • FIG. 7 is similar to the configuration shown in FIG.
  • the reference signal generation circuit 103 may be an antenna 100 other than the antenna 100 having the highest reception intensity. That is, the reference signal generation circuit 103 may be any one of at least four antennas 100.
  • the capsule endoscope position measurement apparatus 1F may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E.
  • the reference signal generation circuit 103 may be any one of at least four antennas 100.
  • the capsule endoscope position measuring device 1F measures the phase difference between two signals received from the same capsule endoscope 2. Since the frequency of the two signals is the same, the time change of the measured phase difference is unlikely to occur. For this reason, the capsule endoscope position measurement apparatus 1F can perform position measurement with higher accuracy.
  • the capsule endoscope position measurement apparatus 1F can use a signal having a high signal-to-noise ratio (S / N ratio). For this reason, the capsule endoscope position measurement apparatus 1F can perform position measurement with higher accuracy.
  • FIG. 8 shows a configuration of a capsule endoscope position measuring apparatus 1G according to the seventh embodiment of the present invention.
  • the capsule endoscope position measuring apparatus 1G includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, A position calculation circuit 105, a down-conversion circuit 106A, an intermediate frequency adjustment circuit 107, and a narrow band filter 113 are included.
  • the difference between the configuration shown in FIG. 8 and the configuration shown in FIG. 4 will be described.
  • the narrow band filter 113 limits the frequency band of the signal down-converted by the down-conversion circuit 106A.
  • the narrowband filter 113 passes only a signal having a frequency in a predetermined band including an intermediate frequency among signals output from the down-conversion circuit 106A.
  • the width of the pass band of the narrow band filter 113 is 0.1% or less of the intermediate frequency.
  • the phase difference measurement circuit 104 measures the phase difference between the signal output from the narrowband filter 113 and the reference signal.
  • the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measuring apparatus 1D.
  • the capsule endoscope position measurement device 1G may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement device 1D.
  • the capsule endoscope position measurement apparatus 1G may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E.
  • the reference signal generation circuit 103 may be any one of at least four antennas 100.
  • the at least one capsule endoscope position measurement device may include the narrowband filter 113.
  • the capsule endoscope position measuring apparatus 1G includes the narrow band filter 113, so that noise of signals received by at least four antennas 100 can be removed. For this reason, the capsule endoscope position measurement apparatus 1G can perform position measurement with higher accuracy.
  • the intermediate frequency adjustment circuit 107 adjusts the intermediate frequency so that the intermediate frequency becomes constant, the pass band of the narrow band filter 113 can be made narrower. That is, the effect of noise removal by the narrow band filter 113 is further improved. For this reason, the capsule endoscope position measurement apparatus 1G can perform position measurement with higher accuracy.
  • FIG. 9 shows a configuration of a capsule endoscope position measuring apparatus 1H according to the eighth embodiment of the present invention.
  • the capsule endoscope position measuring apparatus 1H includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, and a TDC (Time to Digital Converter).
  • 104A a position calculation circuit 105, a down-conversion circuit 106A, an intermediate frequency adjustment circuit 107, and a comparator 114.
  • the difference between the configuration illustrated in FIG. 9 and the configuration illustrated in FIG. 4 will be described.
  • the comparator 114 compares the voltage of the signal processed by the processing circuit 102 with the reference voltage, and outputs a binary signal having any one of the two values according to the comparison result.
  • the phase difference measurement circuit 104 measures the phase difference between the binary signal and the reference signal.
  • the phase difference measuring circuit 104 is a TDC 104A.
  • the capsule endoscope position measuring apparatus 1H includes a reference voltage generation circuit that generates a reference voltage.
  • the reference voltage generated by the reference voltage generation circuit is input to the comparator 114.
  • the comparator 114 may include a reference voltage generation circuit. For example, when the voltage of the signal processed by the processing circuit 102 is equal to or higher than the reference voltage, the comparator 114 outputs a high level signal. When the voltage of the signal processed by the processing circuit 102 is less than the reference voltage, the comparator 114 outputs a low level signal. High in the first condition may be changed to Low, and Low in the second condition may be changed to High.
  • the reference signal is a binary signal.
  • the TDC 104A measures the time difference between the first time at which the binary signal pulse output from the comparator 114 is detected and the second time at which the reference signal pulse is detected. Measure. The time measured by the TDC 104A corresponds to the phase difference. The TDC 104A outputs the measured time as a digital value.
  • the position calculation circuit 105 calculates the position of the capsule endoscope 2 based on the phase difference measured by the TDC 104A, that is, time.
  • the time measured by the TDC 104A is t nm and the transmission speed of the signal in the medium is V
  • the distance d nm in the above-described formula (1) and formula (2) is the time t nm and the transmission speed.
  • the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1H may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1H may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E.
  • the reference signal generation circuit 103 may be any one of at least four antennas 100.
  • the capsule endoscope position measuring apparatus 1H may include the narrow band filter 113 in the capsule endoscope position measuring apparatus 1G.
  • the capsule endoscope position measurement apparatus 1A may include a TDC 104A and a comparator 114.
  • the capsule endoscope position measuring device 1H includes the TDC 104A and the comparator 114, the configuration is simplified and the power consumption is reduced.
  • the capsule endoscope position measurement apparatus 1H can perform position measurement with higher accuracy.
  • FIG. 10 shows a configuration of a capsule endoscope position measuring apparatus 1I according to the ninth embodiment of the present invention.
  • the capsule endoscope position measuring apparatus 1I includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104B, A position calculation circuit 105, a down-conversion circuit 106A, a comparator 114, and an AD converter 115 are included.
  • the configuration shown in FIG. 10 will be described while referring to differences from the configuration shown in FIG.
  • the comparator 114 is the same as the comparator 114 in the capsule endoscope position measuring apparatus 1H.
  • the phase difference measurement circuit 104B includes a phase comparator 1040, a charge pump 1041, and a loop filter 1042.
  • the phase comparator 1040 compares the phase of the binary signal output from the comparator 114 with the phase of the reference signal.
  • the charge pump 1041 outputs a voltage signal corresponding to the difference between the phase of the binary signal compared by the phase comparator 1040 and the phase of the reference signal.
  • the loop filter 1042 removes unnecessary frequency components from the voltage signal output from the charge pump 1041.
  • the loop filter 1042 outputs a signal from which unnecessary frequency components are removed.
  • the loop filter 1042 is a low-pass filter.
  • the analog signal output from the loop filter 1042 has a voltage corresponding to the phase difference between the binary signal output from the comparator 114 and the reference signal.
  • the phase comparator 1040, the charge pump 1041, and the loop filter 1042 constitute a general PLL (Phase Locked Loop).
  • the phase difference measurement circuit 104B may not include the loop filter 1042.
  • the AD converter 115 converts the signal output from the loop filter 1042 into a digital value.
  • the frequency of the signal generated by the voltage controlled oscillator 1060A is controlled based on the signal output from the loop filter 1042. For this reason, the capsule endoscope position measuring apparatus 1H does not have the intermediate frequency adjusting circuit 107 in the capsule endoscope position measuring apparatus 1C.
  • the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1I may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1I may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E.
  • the reference signal generation circuit 103 may be any one of at least four antennas 100.
  • the capsule endoscope position measuring apparatus 1I may include the narrow band filter 113 in the capsule endoscope position measuring apparatus 1G.
  • the capsule endoscope position measuring device 1I includes the phase difference measuring circuit 104B configured by a PLL, the circuit scale is reduced and the cost is reduced.
  • FIG. 11 shows the configuration of a capsule endoscope position measuring apparatus 1J according to the tenth embodiment of the present invention.
  • the capsule endoscope position measurement apparatus 1J includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a counter 104C, and a position calculation circuit. 105, a down-conversion circuit 106A, an intermediate frequency adjustment circuit 107, and a comparator 114. The difference between the configuration shown in FIG. 11 and the configuration shown in FIG. 4 will be described.
  • the comparator 114 is the same as the comparator 114 in the capsule endoscope position measuring apparatus 1H.
  • the phase difference measurement circuit 104 is a counter 104C.
  • the counter 104C counts the time between the first time when the pulse of the binary signal output from the comparator 114 is detected and the second time when the pulse of the reference signal is detected. Measure the phase difference.
  • the counter 104C starts counting when a pulse of the binary signal output from the comparator 114 is detected, and ends counting when a pulse of the reference signal is detected.
  • the counter 104C may start counting when a pulse of the reference signal is detected, and may end counting when a pulse of the binary signal output from the comparator 114 is detected. Accordingly, the counter 104C measures the phase difference between the binary signal output from the comparator 114 and the reference signal.
  • the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measuring device 1J may include the reference frequency adjusting circuit 108 in the capsule endoscope position measuring device 1D.
  • the capsule endoscope position measurement device 1J may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement device 1E.
  • the reference signal generation circuit 103 may be any one of at least four antennas 100.
  • the capsule endoscope position measuring device 1J may include the narrow band filter 113 in the capsule endoscope position measuring device 1G.
  • the circuit scale is reduced.
  • FIG. 12 shows a configuration of a capsule endoscope position measuring apparatus 1K according to the eleventh embodiment of the present invention.
  • the capsule endoscope position measurement apparatus 1K includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a TDC 104A, and a position calculation circuit 105.
  • the configuration shown in FIG. 12 will be described while referring to differences from the configuration shown in FIG.
  • the intensity measurement circuit 116 measures the intensity of the signal processed by the processing circuit 102.
  • the second phase difference correction circuit 117 corrects the phase difference for each of the at least four antennas 100 measured by the phase difference measurement circuit 104, that is, the TDC 104A, based on the intensity measured by the intensity measurement circuit 116.
  • the intensity measurement circuit 116 measures the intensity of the signal down-converted by the down-conversion circuit 106A. That is, the intensity measurement circuit 116 measures the intensity of the signal output from the down-conversion circuit 106A. The intensity measurement circuit 116 may measure the intensity of the signal input to the down-conversion circuit 106A.
  • the binary signal output from the comparator 114 has characteristics according to the intensity of the signal input to the comparator 114. Specifically, each time of the rise and fall of the binary signal changes according to the strength of the signal input to the comparator 114. When the intensity of the signal input to the comparator 114 is larger, each time of rising and falling of the binary signal is shorter. If each time of the rise and fall of the binary signal is not constant, an error is included in the phase difference, that is, the time measured by the TDC 104A. Therefore, the second phase difference correction circuit 117 corrects the time measured by the TDC 104A based on the intensity measured by the intensity measurement circuit 116.
  • the second phase difference correction circuit 117 calculates a time correction value based on the difference between the intensity measured by the intensity measurement circuit 116 and the reference intensity.
  • the time correction value is based on the difference between the rise or fall time of the binary signal corresponding to the reference intensity and the rise or fall time of the binary signal corresponding to the intensity measured by the intensity measurement circuit 116.
  • the second phase difference correction circuit 117 corrects the time measured by the TDC 104A based on the time correction value.
  • the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1K may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1K may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E.
  • the reference signal generation circuit 103 may be any one of at least four antennas 100.
  • the capsule endoscope position measuring apparatus 1K may include the narrow band filter 113 in the capsule endoscope position measuring apparatus 1G.
  • the capsule endoscope position measuring apparatus 1K may include a counter 104C in the capsule endoscope position measuring apparatus 1J instead of the TDC 104A.
  • the capsule endoscope position measurement apparatus 1K includes the intensity measurement circuit 116 and the second phase difference correction circuit 117, so that the position measurement can be performed with higher accuracy.
  • FIG. 13 shows the configuration of a capsule endoscope position measuring apparatus 1L according to the twelfth embodiment of the present invention.
  • the capsule endoscope position measuring apparatus 1L includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a TDC 104A, and a position calculation circuit 105.
  • the configuration shown in FIG. 13 is different from the configuration shown in FIG.
  • the variable gain amplifier 118 amplifies the signal processed by the processing circuit 102 and the amplification gain is variable.
  • the first control circuit 119 measures the intensity of the signal processed by the processing circuit 102, and based on the measured intensity, the variable gain is set so that the intensity of the signal output from the variable gain amplifier 118 is constant.
  • the amplifier 118 is controlled.
  • the comparator 114 compares the voltage of the signal output from the variable gain amplifier 118 with a reference voltage, and outputs a binary signal according to the comparison result.
  • the variable gain amplifier 118 amplifies the signal down-converted by the down-conversion circuit 106A. That is, the variable gain amplifier 118 amplifies the signal output from the down-conversion circuit 106A.
  • the variable gain amplifier 118 may amplify the signal input to the down-conversion circuit 106A.
  • the first control circuit 119 measures the intensity of the signal down-converted by the down-conversion circuit 106A. That is, the first control circuit 119 measures the intensity of the signal output from the down-conversion circuit 106A. The first control circuit 119 may measure the strength of the signal input to the down-conversion circuit 106A.
  • the rise time and fall time of the binary signal change according to the intensity of the signal input to the comparator 114. Since the intensity of the signal output from the variable gain amplifier 118 becomes constant, the rise and fall times of the binary signal become constant.
  • the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1L may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1L may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E.
  • the reference signal generation circuit 103 may be any one of at least four antennas 100.
  • the capsule endoscope position measuring device 1L may include the narrow band filter 113 in the capsule endoscope position measuring device 1G.
  • the capsule endoscope position measuring apparatus 1L may include a counter 104C in the capsule endoscope position measuring apparatus 1J instead of the TDC 104A.
  • the capsule endoscope position measuring apparatus 1L includes the variable gain amplifier 118 and the first control circuit 119, so that position measurement can be performed with higher accuracy.
  • FIG. 14 shows a configuration of a capsule endoscope position measuring apparatus 1M according to the thirteenth embodiment of the present invention.
  • the capsule endoscope position measuring apparatus 1M includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a TDC 104A, and a position calculation circuit 105.
  • the configuration shown in FIG. 14 will be described while referring to differences from the configuration shown in FIG.
  • the attenuator 120 attenuates the signal processed by the processing circuit 102, and the attenuation amount is variable.
  • the second control circuit 121 measures the intensity of the signal processed by the processing circuit 102, and controls the attenuator 120 so that the intensity of the signal output from the attenuator 120 is constant based on the measured intensity. To do.
  • the comparator 114 compares the voltage of the signal output from the attenuator 120 with a reference voltage, and outputs a binary signal according to the comparison result.
  • the attenuator 120 attenuates the signal down-converted by the down-conversion circuit 106A. That is, the attenuator 120 attenuates the signal output from the down-conversion circuit 106A.
  • the attenuator 120 may attenuate the signal input to the down-conversion circuit 106A.
  • the second control circuit 121 measures the intensity of the signal down-converted by the down-conversion circuit 106A. That is, the second control circuit 121 measures the intensity of the signal output from the down-conversion circuit 106A. The second control circuit 121 may measure the strength of the signal input to the down-conversion circuit 106A.
  • the rise time and fall time of the binary signal change according to the intensity of the signal input to the comparator 114. Since the intensity of the signal output from the attenuator 120 becomes constant, each time of the rise and fall of the binary signal becomes constant.
  • the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1M may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1M may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E.
  • the reference signal generation circuit 103 may be any one of at least four antennas 100.
  • the capsule endoscope position measuring device 1M may include the narrow band filter 113 in the capsule endoscope position measuring device 1G.
  • the capsule endoscope position measuring apparatus 1M may include a counter 104C in the capsule endoscope position measuring apparatus 1J instead of the TDC 104A.
  • the capsule endoscope position measurement apparatus 1M includes the attenuator 120 and the second control circuit 121, so that the position measurement can be performed with higher accuracy.
  • the attenuator 120 has a smaller delay given to the signal than the variable gain amplifier 118 in the capsule endoscope position measuring apparatus 1L.
  • FIG. 15 shows a configuration of a capsule endoscope position measuring apparatus 1N according to the fourteenth embodiment of the present invention.
  • the capsule endoscope position measuring apparatus 1N includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, A position calculation circuit 105, a down-conversion circuit 106A, an intermediate frequency adjustment circuit 107, and an AD converter 122 are included.
  • the configuration shown in FIG. 15 will be described while referring to differences from the configuration shown in FIG.
  • the AD converter 122 converts each of the signal processed by the processing circuit 102 and the reference signal into a digital value.
  • the phase difference measurement circuit 104 measures the phase difference based on the digital value of the signal processed by the processing circuit 102 and the digital value of the reference signal.
  • the AD converter 122 periodically performs AD conversion.
  • a first digital value sequence of the signal processed by the processing circuit 102 and a second digital value sequence of the reference signal are output from the AD converter 122.
  • the first digital value sequence and the second digital value sequence include a plurality of digital values generated at different times.
  • the AD converter 122 may include a first AD converter that converts the signal processed by the processing circuit 102 into a digital value, and a second AD converter that converts the reference signal into a digital value.
  • the phase difference measurement circuit 104 calculates the correlation between the first digital value sequence and the second digital value sequence using the cross-correlation function. In the first digital value sequence and the second digital value sequence, a shift in the time direction at a position having a high correlation is a phase difference.
  • the phase difference measurement circuit 104 calculates a phase difference by calculating a time direction deviation between the first digital value sequence and the second digital value sequence.
  • the AD converter 122 converts the signal down-converted by the down-conversion circuit 106A into a digital value. That is, the AD converter 122 converts the signal output from the down-conversion circuit 106A into a digital value.
  • the AD converter 122 may convert the signal input to the down-conversion circuit 106A into a digital value.
  • the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement apparatus 1N may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D.
  • the capsule endoscope position measurement device 1N may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement device 1E.
  • the reference signal generation circuit 103 may be any one of at least four antennas 100.
  • the capsule endoscope position measuring apparatus 1N may include the narrow band filter 113 in the capsule endoscope position measuring apparatus 1G.
  • the at least one capsule endoscope position measurement device may include the AD converter 122.
  • the capsule endoscope position measurement device 1N can measure the position with higher accuracy by measuring the phase difference based on the digital value.
  • the amount of processing is reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Abstract

Disclosed is a capsule endoscope position measurement device wherein at least four antennas are disposed outside of a living body, and receive signals transmitted from a capsule endoscope in a wireless manner. An antenna selection circuit sequentially selects one antenna from among at least the four antennas. A processing circuit processes the signal received by the antenna selected by the antenna selection circuit. A reference signal generation circuit generates a reference signal. A phase difference measurement circuit measures a phase difference between the signal processed by the processing circuit, and the reference signal. A position calculation circuit calculates the position of the capsule endoscope on the basis of the phase differences measured with respect to at least the four antennas, said phase differences having been measured by the phase difference measurement circuit.

Description

カプセル内視鏡位置測定装置Capsule endoscope position measuring device
 本発明は、カプセル内視鏡位置測定装置に関する。 The present invention relates to a capsule endoscope position measuring device.
 生体の内部を観察するためのカプセル内視鏡が利用されている。カプセル内視鏡が撮影を行った位置は、治療のために参照される。このため、カプセル内視鏡の位置の測定が重要である。 A capsule endoscope for observing the inside of a living body is used. The position where the capsule endoscope has taken an image is referred to for treatment. For this reason, it is important to measure the position of the capsule endoscope.
 カプセル内視鏡の位置を測定する方法が特許文献1に開示されている。特許文献1の段落0035から0043に開示された方法において、生体の内部の無線装置すなわちカプセル内視鏡からの信号が複数のアンテナによって受信される。受信された各信号の位相差に基づいてカプセル内視鏡の位置が測定される。 A method for measuring the position of a capsule endoscope is disclosed in Patent Document 1. In the method disclosed in paragraphs 0035 to 0043 of Patent Document 1, signals from a radio apparatus inside a living body, that is, a capsule endoscope, are received by a plurality of antennas. The position of the capsule endoscope is measured based on the phase difference between the received signals.
 特許文献1に開示された方法によりカプセル内視鏡の位置を測定するカプセル内視鏡位置測定装置の例を説明する。図16は、従来技術のカプセル内視鏡位置測定装置9の構成を示している。図16に示すように、カプセル内視鏡位置測定装置9は、複数のアンテナ900と、アンテナ選択回路901と、処理回路902と、処理回路903と、位相差測定回路904と、位置算出回路905とを有する。 An example of a capsule endoscope position measuring apparatus that measures the position of a capsule endoscope by the method disclosed in Patent Document 1 will be described. FIG. 16 shows a configuration of a conventional capsule endoscope position measuring apparatus 9. As shown in FIG. 16, the capsule endoscope position measuring device 9 includes a plurality of antennas 900, an antenna selection circuit 901, a processing circuit 902, a processing circuit 903, a phase difference measuring circuit 904, and a position calculating circuit 905. And have.
 複数のアンテナ900は、生体の外部に配置され、かつカプセル内視鏡2から無線で送信された信号を受信する。例えば、図16に示すように8本のアンテナ900が配置される。アンテナ選択回路901は、複数のアンテナ900から2本のアンテナ900を順次選択する。処理回路902と処理回路903との各々は、アンテナ選択回路901によって選択された2本のアンテナ900によって受信された信号の各々を処理する。例えば、処理回路902と処理回路903とは、フィルタとアンプとを有する。フィルタは、アンテナ900によって受信された信号のうち所定の周波数帯域以外の周波数を有する信号を除去する。アンプは、フィルタを通過した信号を増幅する。位相差測定回路904は、処理回路902によって処理された信号と、処理回路903によって処理された信号との位相差を測定する。位置算出回路905は、位相差測定回路904によって測定された位相差に基づいて、カプセル内視鏡2の位置を算出する。 The plurality of antennas 900 are arranged outside the living body and receive signals transmitted from the capsule endoscope 2 wirelessly. For example, as shown in FIG. 16, eight antennas 900 are arranged. The antenna selection circuit 901 sequentially selects two antennas 900 from the plurality of antennas 900. Each of the processing circuit 902 and the processing circuit 903 processes each of the signals received by the two antennas 900 selected by the antenna selection circuit 901. For example, the processing circuit 902 and the processing circuit 903 include a filter and an amplifier. The filter removes a signal having a frequency other than a predetermined frequency band from the signal received by the antenna 900. The amplifier amplifies the signal that has passed through the filter. The phase difference measurement circuit 904 measures the phase difference between the signal processed by the processing circuit 902 and the signal processed by the processing circuit 903. The position calculation circuit 905 calculates the position of the capsule endoscope 2 based on the phase difference measured by the phase difference measurement circuit 904.
 図17は、従来技術の方法によりカプセル内視鏡2の位置を測定する手順を示す。図17を参照し、カプセル内視鏡2の位置を測定する方法を説明する。 FIG. 17 shows a procedure for measuring the position of the capsule endoscope 2 by a conventional method. A method for measuring the position of the capsule endoscope 2 will be described with reference to FIG.
 カプセル内視鏡2が無線で信号を送信する(ステップS1001)。カプセル内視鏡2から信号が送信された後、複数のアンテナ900は、カプセル内視鏡2からの信号を受信する(ステップS1002)。複数のアンテナ900が信号を受信した後、変数N1が1に設定され、かつ変数N2が2に設定される(ステップS1003)。変数N1と変数N2とは、図示していない制御回路によって管理される。ステップS1003の後、変数N1と変数N2とが同一である場合(ステップS1004)、変数N2が1増加する(ステップS1005)。その後、アンテナ選択回路901は、2本のアンテナ900を切り替える(ステップS1006)。位置測定が開始された直後は、ステップS1006において、最初の2本のアンテナ900が選択される。ステップS1006における処理が再度行われる場合、既に選択された2本のアンテナ900の組合せと異なる組合せが選択される。ステップS1003の後、変数N1と変数N2とが同一でない場合(ステップS1004)、アンテナ選択回路901は、2本のアンテナ900を切り替える(ステップS1006)。 The capsule endoscope 2 transmits a signal wirelessly (step S1001). After the signal is transmitted from the capsule endoscope 2, the plurality of antennas 900 receive the signal from the capsule endoscope 2 (step S1002). After the plurality of antennas 900 receive the signal, the variable N1 is set to 1 and the variable N2 is set to 2 (step S1003). The variables N1 and N2 are managed by a control circuit (not shown). After step S1003, when variable N1 and variable N2 are the same (step S1004), variable N2 is incremented by 1 (step S1005). Thereafter, the antenna selection circuit 901 switches between the two antennas 900 (step S1006). Immediately after the position measurement is started, the first two antennas 900 are selected in step S1006. When the process in step S1006 is performed again, a combination different from the combination of the two antennas 900 already selected is selected. After step S1003, when the variable N1 and the variable N2 are not the same (step S1004), the antenna selection circuit 901 switches between the two antennas 900 (step S1006).
 2本のアンテナ900が切り替えられた後、処理回路902と処理回路903との各々は、アンテナ選択回路901によって選択された2本のアンテナ900によって受信された信号の各々を処理する。位相差測定回路904は、処理回路902によって処理された信号と、処理回路903によって処理された信号との位相差を測定する(ステップS1007)。位置算出回路905は、測定された位相差を示す位相差情報を保持する(ステップS1008)。 After the two antennas 900 are switched, each of the processing circuit 902 and the processing circuit 903 processes each of the signals received by the two antennas 900 selected by the antenna selection circuit 901. The phase difference measurement circuit 904 measures the phase difference between the signal processed by the processing circuit 902 and the signal processed by the processing circuit 903 (step S1007). The position calculation circuit 905 holds phase difference information indicating the measured phase difference (step S1008).
 位相差情報が保持された後、変数N2が8でない場合(ステップS1009)、変数N2が1増加する(ステップS1010)。変数N2が1増加した後、ステップS1004における判断が行われる。位相差情報が保持された後、変数N2が8である場合(ステップS1009)、以下の処理が行われる。変数N1が7でない場合(ステップS1011)、変数N1が1増加し、かつ変数N2が、変数N1よりも1大きい値に設定される(ステップS1012)。その後、ステップS1004における判断が行われる。変数N1が7である場合(ステップS1011)、位置算出回路905は、位相差情報に基づいて、カプセル内視鏡2の位置を算出する(ステップS1013)。 After the phase difference information is held, if the variable N2 is not 8 (step S1009), the variable N2 is incremented by 1 (step S1010). After the variable N2 is incremented by 1, determination in step S1004 is performed. After the phase difference information is held, when the variable N2 is 8 (step S1009), the following processing is performed. If the variable N1 is not 7 (step S1011), the variable N1 is incremented by 1 and the variable N2 is set to a value that is 1 larger than the variable N1 (step S1012). Thereafter, the determination in step S1004 is performed. When the variable N1 is 7 (step S1011), the position calculation circuit 905 calculates the position of the capsule endoscope 2 based on the phase difference information (step S1013).
 2本のアンテナ900の組合せが少なくとも3組必要である。2本のアンテナ900の組合せの数が多い場合、算出精度が上がる。例えば、8本のアンテナ900が配置されている場合、2本のアンテナ900の組合せの最大数は28である。図17に示す方法では、最大で28通りの組合せに対して、位相差が測定される。 少 な く と も At least three combinations of two antennas 900 are necessary. When the number of combinations of the two antennas 900 is large, the calculation accuracy increases. For example, when eight antennas 900 are arranged, the maximum number of combinations of two antennas 900 is 28. In the method shown in FIG. 17, the phase difference is measured for a maximum of 28 combinations.
 位置算出回路905がカプセル内視鏡2の位置を算出する方法を説明する。位置算出回路905は、式(1)により距離dnmを算出することができる。式(1)において、距離dnmは、カプセル内視鏡2から2本のアンテナ900の各々までの距離の差である。φnmは、2本のアンテナ900の各々によって受信された信号の位相差である。fは、信号の周波数である。Vは、媒質内の信号の伝達速度である。 A method by which the position calculation circuit 905 calculates the position of the capsule endoscope 2 will be described. The position calculation circuit 905 can calculate the distance d nm by the equation (1). In equation (1), the distance d nm is a difference in distance from the capsule endoscope 2 to each of the two antennas 900. φ nm is a phase difference between signals received by each of the two antennas 900. f is the frequency of the signal. V is the transmission speed of the signal in the medium.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 距離dnmは、式(2)を満たす。式(2)において、(x,y,z)は、カプセル内視鏡2の位置座標である。(x,y,z)と(x,y,z)とは、2本のアンテナ900の各々の位置座標である。 The distance d nm satisfies the formula (2). In equation (2), (x, y, z) is the position coordinate of the capsule endoscope 2. (X m , y m , z m ) and (x n , y n , z n ) are the position coordinates of each of the two antennas 900.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(2)は、カプセル内視鏡2の位置座標(x,y,z)に関する1つの方程式である。式(2)において未知数は3である。式(2)が示す方程式を3つ以上含む連立方程式を解くことにより、位置算出回路905は、カプセル内視鏡2の位置を算出することができる。 Equation (2) is one equation regarding the position coordinates (x, y, z) of the capsule endoscope 2. In Equation (2), the unknown is 3. The position calculation circuit 905 can calculate the position of the capsule endoscope 2 by solving simultaneous equations including three or more equations represented by Expression (2).
日本国特開2004-219329号公報Japanese Unexamined Patent Publication No. 2004-219329
 カプセル内視鏡位置測定装置9は、2本のアンテナ900を順次切り替える。このため、アンテナ900の選択に要する処理量が多い。 The capsule endoscope position measuring device 9 switches the two antennas 900 sequentially. For this reason, the amount of processing required for selecting the antenna 900 is large.
 本発明は、処理量が削減されたカプセル内視鏡位置測定装置を提供することを目的とする。 An object of the present invention is to provide a capsule endoscope position measuring device with a reduced processing amount.
 本発明の第1の態様によれば、カプセル内視鏡位置測定装置は、少なくとも4本のアンテナと、アンテナ選択回路と、処理回路と、基準信号生成回路と、位相差測定回路と、位置算出回路とを有する。前記少なくとも4本のアンテナは、生体の外部に配置され、かつカプセル内視鏡から無線で送信された信号を受信する。アンテナ選択回路は、前記少なくとも4本のアンテナから1本の前記アンテナを順次選択する。処理回路は、前記アンテナ選択回路によって選択された前記アンテナによって受信された前記信号を処理する。基準信号生成回路は、基準信号を生成する。位相差測定回路は、前記処理回路によって処理された前記信号と前記基準信号との位相差を測定する。位置算出回路は、前記位相差測定回路によって測定された、前記少なくとも4本のアンテナの各々に対する前記位相差に基づいて、前記カプセル内視鏡の位置を算出する。 According to the first aspect of the present invention, a capsule endoscope position measurement apparatus includes at least four antennas, an antenna selection circuit, a processing circuit, a reference signal generation circuit, a phase difference measurement circuit, and a position calculation. Circuit. The at least four antennas are disposed outside the living body and receive signals transmitted wirelessly from the capsule endoscope. The antenna selection circuit sequentially selects one antenna from the at least four antennas. A processing circuit processes the signal received by the antenna selected by the antenna selection circuit. The reference signal generation circuit generates a reference signal. The phase difference measurement circuit measures a phase difference between the signal processed by the processing circuit and the reference signal. The position calculation circuit calculates the position of the capsule endoscope based on the phase difference for each of the at least four antennas measured by the phase difference measurement circuit.
 本発明の第2の態様によれば、第1の態様において、前記カプセル内視鏡位置測定装置は、前記処理回路によって処理された前記信号の周波数を中間周波数にダウンコンバートするダウンコンバート回路をさらに有してもよい。 According to a second aspect of the present invention, in the first aspect, the capsule endoscope position measurement apparatus further includes a down-conversion circuit that down-converts the frequency of the signal processed by the processing circuit to an intermediate frequency. You may have.
 本発明の第3の態様によれば、第2の態様において、前記カプセル内視鏡位置測定装置は、前記位相差測定回路によって測定された位相差に基づいて、前記中間周波数を調整する中間周波数調整回路をさらに有してもよい。 According to a third aspect of the present invention, in the second aspect, the capsule endoscope position measuring device adjusts the intermediate frequency based on the phase difference measured by the phase difference measuring circuit. An adjustment circuit may be further included.
 本発明の第4の態様によれば、第2または第3の態様において、前記ダウンコンバート回路は、電圧制御発振器と、ミキサとを有してもよい。前記電圧制御発振器は、前記少なくとも4本のアンテナによって受信される前記信号の周波数と異なる周波数を有する信号を生成する。前記ミキサは、前記処理回路によって処理された前記信号と、前記電圧制御発振器によって生成された前記信号とを混合する。 According to the fourth aspect of the present invention, in the second or third aspect, the down-conversion circuit may include a voltage controlled oscillator and a mixer. The voltage controlled oscillator generates a signal having a frequency different from the frequency of the signal received by the at least four antennas. The mixer mixes the signal processed by the processing circuit with the signal generated by the voltage controlled oscillator.
 本発明の第5の態様によれば、第2から第4の態様のいずれか1つにおいて、前記カプセル内視鏡位置測定装置は、前記ダウンコンバート回路によってダウンコンバートされた前記信号の周波数帯域を制限する狭帯域フィルタをさらに有してもよい。 According to a fifth aspect of the present invention, in any one of the second to fourth aspects, the capsule endoscope position measuring device uses the frequency band of the signal down-converted by the down-conversion circuit. You may further have the narrow-band filter to restrict | limit.
 本発明の第6の態様によれば、第2から第5の態様のいずれか1つにおいて、前記基準信号の周波数は、前記中間周波数と同一になるように設定されてもよい。 According to the sixth aspect of the present invention, in any one of the second to fifth aspects, the frequency of the reference signal may be set to be the same as the intermediate frequency.
 本発明の第7の態様によれば、第1の態様において、前記基準信号の周波数は、前記少なくとも4本のアンテナによって受信される前記信号の周波数と同一になるように設定されてもよい。 According to a seventh aspect of the present invention, in the first aspect, the frequency of the reference signal may be set to be the same as the frequency of the signal received by the at least four antennas.
 本発明の第8の態様によれば、第1から第7の態様のいずれか1つにおいて、前記カプセル内視鏡位置測定装置は、前記位相差測定回路によって測定された位相差に基づいて、前記基準信号の周波数を調整する基準周波数調整回路をさらに有してもよい。 According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the capsule endoscope position measuring device is based on the phase difference measured by the phase difference measuring circuit. A reference frequency adjusting circuit for adjusting the frequency of the reference signal may be further included.
 本発明の第9の態様によれば、第1から第8の態様のいずれか1つにおいて、前記カプセル内視鏡位置測定装置は、時間変化測定回路と、第1の位相差補正回路とをさらに有してもよい。前記時間変化測定回路は、前記位相差測定回路によって測定された、前記少なくとも4本のアンテナの各々に対する前記位相差の時間変化を測定する。前記第1の位相差補正回路は、前記時間変化測定回路によって測定された前記時間変化に基づいて、前記位相差測定回路によって測定された、前記少なくとも4本のアンテナの各々に対する前記位相差を補正する。 According to a ninth aspect of the present invention, in any one of the first to eighth aspects, the capsule endoscope position measurement device includes a time change measurement circuit and a first phase difference correction circuit. Furthermore, you may have. The time change measuring circuit measures the time change of the phase difference for each of the at least four antennas measured by the phase difference measuring circuit. The first phase difference correction circuit corrects the phase difference for each of the at least four antennas measured by the phase difference measurement circuit based on the time change measured by the time change measurement circuit. To do.
 本発明の第10の態様によれば、第1から第9の態様のいずれか1つにおいて、前記基準信号生成回路は、電圧制御発振器であってもよい。 According to a tenth aspect of the present invention, in any one of the first to ninth aspects, the reference signal generation circuit may be a voltage controlled oscillator.
 本発明の第11の態様によれば、第1から第9の態様のいずれか1つにおいて、前記基準信号生成回路は、水晶発振器であってもよい。 According to an eleventh aspect of the present invention, in any one of the first to ninth aspects, the reference signal generation circuit may be a crystal oscillator.
 本発明の第12の態様によれば、第1から第7の態様のいずれか1つにおいて、前記基準信号生成回路は、前記少なくとも4本のアンテナのいずれか1つであってもよい。 According to a twelfth aspect of the present invention, in any one of the first to seventh aspects, the reference signal generation circuit may be any one of the at least four antennas.
 本発明の第13の態様によれば、第12の態様において、前記基準信号生成回路は、前記少なくとも4本のアンテナのうち受信強度が最も高い前記アンテナであってもよい。 According to a thirteenth aspect of the present invention, in the twelfth aspect, the reference signal generation circuit may be the antenna having the highest reception intensity among the at least four antennas.
 本発明の第14の態様によれば、第1から第13の態様のいずれか1つにおいて、前記カプセル内視鏡位置測定装置は、前記処理回路によって処理された前記信号の電圧と基準電圧とを比較し、かつ比較結果に応じて2値のいずれか1つを有する2値信号を出力する比較器をさらに有してもよい。前記位相差測定回路は、前記2値信号と前記基準信号との前記位相差を測定してもよい。 According to a fourteenth aspect of the present invention, in any one of the first to thirteenth aspects, the capsule endoscope position measuring device includes: a voltage of the signal processed by the processing circuit; a reference voltage; And a comparator that outputs a binary signal having any one of the two values according to the comparison result. The phase difference measurement circuit may measure the phase difference between the binary signal and the reference signal.
 本発明の第15の態様によれば、第14の態様において、前記位相差測定回路は、TDC(Time to Digital Converter)であってもよい。 According to a fifteenth aspect of the present invention, in the fourteenth aspect, the phase difference measurement circuit may be a TDC (Time to Digital Converter).
 本発明の第16の態様によれば、第14の態様において、前記位相差測定回路は、位相比較器と、チャージポンプとを有してもよい。前記位相比較器は、前記2値信号の位相と前記基準信号の位相とを比較する。前記チャージポンプは、前記位相比較器によって比較された前記2値信号の位相と前記基準信号の位相との差に応じた電圧信号を出力する。 According to a sixteenth aspect of the present invention, in the fourteenth aspect, the phase difference measurement circuit may include a phase comparator and a charge pump. The phase comparator compares the phase of the binary signal with the phase of the reference signal. The charge pump outputs a voltage signal corresponding to a difference between the phase of the binary signal compared by the phase comparator and the phase of the reference signal.
 本発明の第17の態様によれば、第14の態様において、前記位相差測定回路は、カウンタであってもよい。 According to a seventeenth aspect of the present invention, in the fourteenth aspect, the phase difference measuring circuit may be a counter.
 本発明の第18の態様によれば、第14から第17の態様のいずれか1つにおいて、前記カプセル内視鏡位置測定装置は、強度測定回路と、第2の位相差補正回路とをさらに有してもよい。前記強度測定回路は、前記処理回路によって処理された前記信号の強度を測定する。前記第2の位相差補正回路は、前記強度測定回路によって測定された前記強度に基づいて、前記位相差測定回路によって測定された、前記少なくとも4本のアンテナの各々に対する前記位相差を補正する。 According to an eighteenth aspect of the present invention, in any one of the fourteenth to seventeenth aspects, the capsule endoscope position measurement device further includes an intensity measurement circuit and a second phase difference correction circuit. You may have. The intensity measurement circuit measures the intensity of the signal processed by the processing circuit. The second phase difference correction circuit corrects the phase difference for each of the at least four antennas measured by the phase difference measurement circuit based on the intensity measured by the intensity measurement circuit.
 本発明の第19の態様によれば、第14から第17の態様のいずれか1つにおいて、前記カプセル内視鏡位置測定装置は、可変ゲインアンプと、第1の制御回路とをさらに有してもよい。前記可変ゲインアンプは、前記処理回路によって処理された前記信号を増幅し、かつ増幅のゲインが可変である。前記第1の制御回路は、前記処理回路によって処理された前記信号の強度を測定し、かつ測定された前記強度に基づいて、前記可変ゲインアンプから出力される信号の強度が一定になるように前記可変ゲインアンプを制御する。前記比較器は、前記可変ゲインアンプから出力された前記信号の電圧と前記基準電圧とを比較し、かつ比較結果に応じて前記2値信号を出力してもよい。 According to a nineteenth aspect of the present invention, in any one of the fourteenth to seventeenth aspects, the capsule endoscope position measuring device further includes a variable gain amplifier and a first control circuit. May be. The variable gain amplifier amplifies the signal processed by the processing circuit, and an amplification gain is variable. The first control circuit measures the intensity of the signal processed by the processing circuit, and based on the measured intensity, the intensity of the signal output from the variable gain amplifier is constant. The variable gain amplifier is controlled. The comparator may compare the voltage of the signal output from the variable gain amplifier with the reference voltage, and output the binary signal according to a comparison result.
 本発明の第20の態様によれば、第14から第17の態様のいずれか1つにおいて、前記カプセル内視鏡位置測定装置は、アッテネータと、第2の制御回路とをさらに有してもよい。前記アッテネータは、前記処理回路によって処理された前記信号を減衰させ、かつ減衰量が可変である。前記第2の制御回路は、前記処理回路によって処理された前記信号の強度を測定し、かつ測定された前記強度に基づいて、前記アッテネータから出力される信号の強度が一定になるように前記アッテネータを制御する。前記比較器は、前記アッテネータから出力された前記信号の電圧と前記基準電圧とを比較し、かつ比較結果に応じて前記2値信号を出力してもよい。 According to a twentieth aspect of the present invention, in any one of the fourteenth to seventeenth aspects, the capsule endoscope position measuring device may further include an attenuator and a second control circuit. Good. The attenuator attenuates the signal processed by the processing circuit, and the attenuation amount is variable. The second control circuit measures the intensity of the signal processed by the processing circuit, and based on the measured intensity, the intensity of the signal output from the attenuator is constant. To control. The comparator may compare the voltage of the signal output from the attenuator with the reference voltage and output the binary signal according to the comparison result.
 本発明の第21の態様によれば、第1から第13の態様のいずれか1つにおいて、前記カプセル内視鏡位置測定装置は、前記処理回路によって処理された前記信号と前記基準信号との各々をデジタル値に変換するAD変換器をさらに有してもよい。前記位相差測定回路は、前記処理回路によって処理された前記信号の前記デジタル値と前記基準信号の前記デジタル値とに基づいて、前記位相差を測定してもよい。 According to a twenty-first aspect of the present invention, in any one of the first to thirteenth aspects, the capsule endoscope position measuring device includes: the signal processed by the processing circuit; and the reference signal. You may further have AD converter which converts each into a digital value. The phase difference measurement circuit may measure the phase difference based on the digital value of the signal processed by the processing circuit and the digital value of the reference signal.
 上記の各態様によれば、カプセル内視鏡位置測定装置は、少なくとも4本のアンテナから検出対象の1本のアンテナを順次選択するアンテナ選択回路を有する。このため、処理量が削減される。 According to each of the above aspects, the capsule endoscope position measurement apparatus has the antenna selection circuit that sequentially selects one antenna to be detected from at least four antennas. For this reason, the amount of processing is reduced.
本発明の第1の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 1st Embodiment of this invention. 本発明の第1の実施形態においてカプセル内視鏡の位置を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the position of a capsule endoscope in the 1st Embodiment of this invention. 本発明の第2の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 2nd Embodiment of this invention. 本発明の第3の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 3rd Embodiment of this invention. 本発明の第4の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 4th Embodiment of this invention. 本発明の第5の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 5th Embodiment of this invention. 本発明の第6の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 6th Embodiment of this invention. 本発明の第7の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 7th Embodiment of this invention. 本発明の第8の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 8th Embodiment of this invention. 本発明の第9の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 9th Embodiment of this invention. 本発明の第10の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 10th Embodiment of this invention. 本発明の第11の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 11th Embodiment of this invention. 本発明の第12の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 12th Embodiment of this invention. 本発明の第13の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 13th Embodiment of this invention. 本発明の第14の実施形態のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of the 14th Embodiment of this invention. 従来技術のカプセル内視鏡位置測定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the capsule endoscope position measuring apparatus of a prior art. 従来技術の方法によりカプセル内視鏡の位置を測定する手順を示すフローチャートである。It is a flowchart which shows the procedure which measures the position of a capsule endoscope by the method of a prior art.
 図面を参照し、本発明の実施形態を説明する。 Embodiments of the present invention will be described with reference to the drawings.
 (第1の実施形態)
 図1は、本発明の第1の実施形態のカプセル内視鏡位置測定装置1Aの構成を示している。図1に示すように、カプセル内視鏡位置測定装置1Aは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、位相差測定回路104と、位置算出回路105とを有する。
(First embodiment)
FIG. 1 shows a configuration of a capsule endoscope position measuring apparatus 1A according to the first embodiment of the present invention. As shown in FIG. 1, the capsule endoscope position measurement apparatus 1A includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, A position calculation circuit 105.
 少なくとも4本のアンテナ100は、生体の外部に配置され、かつカプセル内視鏡2から無線で送信された信号を受信する。アンテナ選択回路101は、少なくとも4本のアンテナ100から1本のアンテナ100を順次選択する。処理回路102は、アンテナ選択回路101によって選択されたアンテナ100によって受信された信号を処理する。基準信号生成回路103は、基準信号を生成する。位相差測定回路104は、処理回路102によって処理された信号と基準信号との位相差を測定する。位置算出回路105は、位相差測定回路104によって測定された、少なくとも4本のアンテナ100の各々に対する位相差に基づいて、カプセル内視鏡2の位置を算出する。 The at least four antennas 100 are arranged outside the living body and receive signals transmitted from the capsule endoscope 2 by radio. The antenna selection circuit 101 sequentially selects one antenna 100 from at least four antennas 100. The processing circuit 102 processes a signal received by the antenna 100 selected by the antenna selection circuit 101. The reference signal generation circuit 103 generates a reference signal. The phase difference measurement circuit 104 measures the phase difference between the signal processed by the processing circuit 102 and the reference signal. The position calculation circuit 105 calculates the position of the capsule endoscope 2 based on the phase difference for each of the at least four antennas 100 measured by the phase difference measurement circuit 104.
 カプセル内視鏡2は、生体の内部に配置される。アンテナ選択回路101は、選択されたアンテナ100によって受信された信号を処理回路102に出力する。例えば、処理回路102は、フィルタとアンプとを有する。フィルタは、アンテナ100によって受信された信号のうち所定の周波数帯域以外の周波数を有する信号を除去する。アンプは、フィルタを通過した信号を増幅する。つまり、処理回路102は、アンテナ100によって受信された信号のうち所定の周波数帯域以外の周波数を有する信号をフィルタによって除去し、かつフィルタを通過した信号をアンプによって増幅する。基準信号は、所定の周波数を有する信号である。 The capsule endoscope 2 is disposed inside the living body. The antenna selection circuit 101 outputs a signal received by the selected antenna 100 to the processing circuit 102. For example, the processing circuit 102 includes a filter and an amplifier. The filter removes a signal having a frequency other than a predetermined frequency band from the signal received by the antenna 100. The amplifier amplifies the signal that has passed through the filter. That is, the processing circuit 102 removes a signal having a frequency other than a predetermined frequency band from the signal received by the antenna 100 with a filter, and amplifies the signal that has passed through the filter with an amplifier. The reference signal is a signal having a predetermined frequency.
 図2は、第1の実施形態においてカプセル内視鏡2の位置を測定する手順を示す。図2を参照し、カプセル内視鏡2の位置を測定する方法を説明する。 FIG. 2 shows a procedure for measuring the position of the capsule endoscope 2 in the first embodiment. A method for measuring the position of the capsule endoscope 2 will be described with reference to FIG.
 カプセル内視鏡2が無線で信号を送信する(ステップS101)。例えば、カプセル内視鏡2が送信する信号は、カプセル内視鏡2が撮影した画像を含む信号、または位置測定のための信号である。カプセル内視鏡2から信号が送信された後、少なくとも4本のアンテナ100は、カプセル内視鏡2からの信号を受信する(ステップS102)。少なくとも4本のアンテナ100が信号を受信した後、基準信号生成回路103は、基準信号を生成する(ステップS103)。基準信号が生成された後、変数nが1に設定される(ステップS104)。変数nは、図示していない制御回路によって管理される。ステップS104の後、アンテナ選択回路101は、1本のアンテナ100を切り替える(ステップS105)。位置測定が開始された直後は、ステップS105において、最初の1本のアンテナ100が選択される。ステップS105における処理が再度行われる場合、既に選択された1本のアンテナ100と異なるアンテナ100が選択される。 The capsule endoscope 2 transmits a signal wirelessly (step S101). For example, the signal transmitted by the capsule endoscope 2 is a signal including an image captured by the capsule endoscope 2 or a signal for position measurement. After signals are transmitted from the capsule endoscope 2, at least four antennas 100 receive signals from the capsule endoscope 2 (step S102). After at least four antennas 100 receive the signal, the reference signal generation circuit 103 generates a reference signal (step S103). After the reference signal is generated, the variable n is set to 1 (step S104). The variable n is managed by a control circuit (not shown). After step S104, the antenna selection circuit 101 switches one antenna 100 (step S105). Immediately after the position measurement is started, the first antenna 100 is selected in step S105. When the process in step S105 is performed again, an antenna 100 different from the already selected one antenna 100 is selected.
 1本のアンテナ100が切り替えられた後、処理回路102は、アンテナ選択回路101によって選択された1本のアンテナ100によって受信された信号を処理する。位相差測定回路104は、処理回路102によって処理された信号と、基準信号生成回路103から出力された基準信号との位相差を測定する(ステップS106)。位置算出回路105は、測定された位相差を示す位相差情報を保持する(ステップS107)。 After the single antenna 100 is switched, the processing circuit 102 processes the signal received by the single antenna 100 selected by the antenna selection circuit 101. The phase difference measurement circuit 104 measures the phase difference between the signal processed by the processing circuit 102 and the reference signal output from the reference signal generation circuit 103 (step S106). The position calculation circuit 105 holds phase difference information indicating the measured phase difference (step S107).
 位相差情報が保持された後、変数nが8でない場合(ステップS108)、変数nが1増加する(ステップS109)。変数nが1増加した後、ステップS105における処理が行われる。位相差情報が保持された後、変数nが8である場合(ステップS108)、位置算出回路105は、位相差情報に基づいて、カプセル内視鏡2の位置を算出する(ステップS110)。 After the phase difference information is held, if the variable n is not 8 (step S108), the variable n is incremented by 1 (step S109). After the variable n is incremented by 1, the process in step S105 is performed. After the phase difference information is held, when the variable n is 8 (step S108), the position calculation circuit 105 calculates the position of the capsule endoscope 2 based on the phase difference information (step S110).
 後述する方法によりカプセル内視鏡2の位置を算出するためには、2本のアンテナ100の組合せが少なくとも3組必要である。2本のアンテナ100の組合せの数が多い場合、算出精度が上がる。図2に示す方法では、8本のアンテナ100の各々によって受信された信号と基準信号との位相差が測定される。その測定結果に基づいて、2本のアンテナ100の各々によって受信された信号の位相差が算出される。 In order to calculate the position of the capsule endoscope 2 by the method described later, at least three combinations of the two antennas 100 are necessary. When the number of combinations of the two antennas 100 is large, the calculation accuracy increases. In the method shown in FIG. 2, the phase difference between the signal received by each of the eight antennas 100 and the reference signal is measured. Based on the measurement result, the phase difference between the signals received by each of the two antennas 100 is calculated.
 位置算出回路105がカプセル内視鏡2の位置を算出する方法を説明する。位置算出回路105は、式(3)により、2本のアンテナ100の各々によって受信された信号の位相差φnmを算出する。式(3)において、φとφとは、2本のアンテナ100の各々によって受信された信号と基準信号との位相差である。
 φnm=φ-φ ・・・(3)
A method by which the position calculation circuit 105 calculates the position of the capsule endoscope 2 will be described. The position calculation circuit 105 calculates the phase difference φ nm of the signals received by each of the two antennas 100 using Expression (3). In Expression (3), φ m and φ n are phase differences between the signal received by each of the two antennas 100 and the reference signal.
φ nm = φ n −φ m (3)
 位置算出回路105は、式(3)に基づいて、2本のアンテナ100の各々によって受信された信号と基準信号との位相差の差を算出することにより、2本のアンテナ100の各々によって受信された信号の位相差φnmを算出する。式(3)により、基準信号の位相に関する情報は除去される。位置算出回路105は、前述した式(1)において、式(3)により算出された位相差φnmを使用することにより、距離dnmを算出することができる。 The position calculation circuit 105 receives each of the two antennas 100 by calculating the difference in phase difference between the signal received by each of the two antennas 100 and the reference signal based on Expression (3). The phase difference φ nm of the obtained signal is calculated. Information on the phase of the reference signal is removed by equation (3). The position calculation circuit 105 can calculate the distance d nm by using the phase difference φ nm calculated by the equation (3) in the above-described equation (1).
 基準信号の周波数は、少なくとも4本のアンテナ100によって受信される信号の周波数と同一になるように設定されてもよい。 The frequency of the reference signal may be set to be the same as the frequency of signals received by at least four antennas 100.
 基準信号生成回路103は、水晶発振器であってもよい。水晶発振器は、温度補償水晶発振器(TCXO)であってもよい。水晶発振器を使用することにより、基準信号の周波数の精度が高まり、かつ基準信号が安定する。このため、位置測定の精度が向上する。 The reference signal generation circuit 103 may be a crystal oscillator. The crystal oscillator may be a temperature compensated crystal oscillator (TCXO). By using a crystal oscillator, the accuracy of the frequency of the reference signal is increased and the reference signal is stabilized. For this reason, the accuracy of position measurement is improved.
 カプセル内視鏡位置測定装置9において、アンテナ選択回路901は2本のアンテナ900を選択する。一方、カプセル内視鏡位置測定装置1Aにおいて、アンテナ選択回路101は1本のアンテナ100を選択する。このため、アンテナ選択回路101をアンテナ選択回路901よりも小さくすることができる。アンテナ選択回路101が8本のアンテナ100を順次選択することにより、カプセル内視鏡位置測定装置1Aは、2本のアンテナ100に関する28通りの組合せに対する位相差を測定することができる。このため、アンテナ100の選択に要する処理量が削減される。 In the capsule endoscope position measuring apparatus 9, the antenna selection circuit 901 selects two antennas 900. On the other hand, in the capsule endoscope position measuring apparatus 1A, the antenna selection circuit 101 selects one antenna 100. For this reason, the antenna selection circuit 101 can be made smaller than the antenna selection circuit 901. When the antenna selection circuit 101 sequentially selects the eight antennas 100, the capsule endoscope position measuring apparatus 1A can measure the phase differences for the 28 combinations of the two antennas 100. For this reason, the processing amount required for selection of the antenna 100 is reduced.
 カプセル内視鏡位置測定装置9は、2つの処理回路すなわち処理回路902と処理回路903とを有する。2つの処理回路が必要であるため、回路規模が大きい。一方、カプセル内視鏡位置測定装置1Aは、アンテナ選択回路101によって選択された1本のアンテナ100によって受信された信号を処理する処理回路102を有する。2つの処理回路を有するカプセル内視鏡位置測定装置9と比較して、処理回路の数が少ない。このため、回路規模が削減される。 The capsule endoscope position measuring device 9 has two processing circuits, that is, a processing circuit 902 and a processing circuit 903. Since two processing circuits are required, the circuit scale is large. On the other hand, the capsule endoscope position measurement apparatus 1 </ b> A includes a processing circuit 102 that processes a signal received by one antenna 100 selected by the antenna selection circuit 101. Compared with the capsule endoscope position measuring apparatus 9 having two processing circuits, the number of processing circuits is small. For this reason, the circuit scale is reduced.
 カプセル内視鏡位置測定装置9により位置測定が行われる場合、2つの処理回路の構成のばらつきにより、2本のアンテナ900の各々によって受信された信号の位相差の測定値に誤差が含まれやすい。カプセル内視鏡位置測定装置1Aが位置測定を行うことにより、上記の誤差が低減される。 When position measurement is performed by the capsule endoscope position measurement device 9, the measurement value of the phase difference between the signals received by each of the two antennas 900 is likely to contain an error due to variations in the configuration of the two processing circuits. . The above-mentioned error is reduced by the capsule endoscope position measuring apparatus 1A performing position measurement.
 (第2の実施形態)
 図3は、本発明の第2の実施形態のカプセル内視鏡位置測定装置1Bの構成を示している。図3に示すように、カプセル内視鏡位置測定装置1Bは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、位相差測定回路104と、位置算出回路105と、ダウンコンバート回路106とを有する。図3に示す構成について、図1に示す構成と異なる点を説明する。
(Second Embodiment)
FIG. 3 shows a configuration of a capsule endoscope position measuring apparatus 1B according to the second embodiment of the present invention. As shown in FIG. 3, the capsule endoscope position measuring apparatus 1B includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, A position calculation circuit 105 and a down-conversion circuit 106 are included. The difference between the configuration shown in FIG. 3 and the configuration shown in FIG. 1 will be described.
 ダウンコンバート回路106は、処理回路102によって処理された信号の周波数を中間周波数にダウンコンバートする。ダウンコンバート回路106は、局部発振器1060と、ミキサ1061とを有する。局部発振器1060は、複数のアンテナ100によって受信される信号の周波数と異なる周波数を有する信号を生成する。ミキサ1061は、処理回路102によって処理された信号と、局部発振器1060によって生成された信号とを混合する。これによって、ミキサ1061は、中間周波数を有する信号を生成し、かつ生成された信号を出力する。ミキサ1061から出力される信号の周波数(中間周波数Fi)は、少なくとも4本のアンテナ100によって受信される信号の周波数(Fr)と、局部発振器1060によって生成される信号の周波数(Fd)との差である。局部発振器1060が生成する信号の周波数(Fd)が、少なくとも4本のアンテナ100によって受信される信号の周波数(Fr)よりも低い場合、中間周波数Fiは、(Fr-Fd)である。局部発振器1060が生成する信号の周波数(Fd)が、少なくとも4本のアンテナ100によって受信される信号の周波数(Fr)よりも高い場合、中間周波数Fiは、(Fd-Fr)である。 The down-conversion circuit 106 down-converts the frequency of the signal processed by the processing circuit 102 to an intermediate frequency. The down-conversion circuit 106 includes a local oscillator 1060 and a mixer 1061. The local oscillator 1060 generates a signal having a frequency different from the frequency of signals received by the plurality of antennas 100. The mixer 1061 mixes the signal processed by the processing circuit 102 and the signal generated by the local oscillator 1060. As a result, the mixer 1061 generates a signal having an intermediate frequency and outputs the generated signal. The frequency (intermediate frequency Fi) of the signal output from the mixer 1061 is the difference between the frequency (Fr) of the signal received by at least four antennas 100 and the frequency (Fd) of the signal generated by the local oscillator 1060. It is. When the frequency (Fd) of the signal generated by the local oscillator 1060 is lower than the frequency (Fr) of the signal received by at least four antennas 100, the intermediate frequency Fi is (Fr−Fd). When the frequency (Fd) of the signal generated by the local oscillator 1060 is higher than the frequency (Fr) of the signal received by at least four antennas 100, the intermediate frequency Fi is (Fd−Fr).
 位相差測定回路104は、ダウンコンバート回路106によって処理された信号と基準信号との位相差を測定する。基準信号の周波数は、中間周波数と同一になるように設定されてもよい。つまり、基準信号生成回路103は、中間周波数を有する基準信号を生成してもよい。 The phase difference measurement circuit 104 measures the phase difference between the signal processed by the down-conversion circuit 106 and the reference signal. The frequency of the reference signal may be set to be the same as the intermediate frequency. That is, the reference signal generation circuit 103 may generate a reference signal having an intermediate frequency.
 上記以外の点については、図3に示す構成は、図1に示す構成と同様である。 3 other than the above, the configuration shown in FIG. 3 is the same as the configuration shown in FIG.
 第2の実施形態のカプセル内視鏡位置測定装置1Bにおいて、少なくとも4本のアンテナ100によって受信される信号の周波数よりも低い周波数を有する信号に基づいて位相差が測定される。第1の実施形態のカプセル内視鏡位置測定装置1Aにおける時間分解能と、カプセル内視鏡位置測定装置1Bにおける時間分解能とが同一である場合、カプセル内視鏡位置測定装置1Bにおける位相差の分解能は、カプセル内視鏡位置測定装置1Aにおける位相差の分解能よりも高い。このため、位置測定の精度が向上する。 In the capsule endoscope position measurement apparatus 1B of the second embodiment, the phase difference is measured based on a signal having a frequency lower than the frequency of signals received by at least four antennas 100. When the time resolution in the capsule endoscope position measurement apparatus 1A of the first embodiment is the same as the time resolution in the capsule endoscope position measurement apparatus 1B, the resolution of the phase difference in the capsule endoscope position measurement apparatus 1B Is higher than the resolution of the phase difference in the capsule endoscope position measurement apparatus 1A. For this reason, the accuracy of position measurement is improved.
 (第3の実施形態)
 図4は、本発明の第3の実施形態のカプセル内視鏡位置測定装置1Cの構成を示している。図4に示すように、カプセル内視鏡位置測定装置1Cは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、位相差測定回路104と、位置算出回路105と、ダウンコンバート回路106Aと、中間周波数調整回路107とを有する。図4に示す構成について、図3に示す構成と異なる点を説明する。
(Third embodiment)
FIG. 4 shows a configuration of a capsule endoscope position measuring apparatus 1C according to the third embodiment of the present invention. As shown in FIG. 4, the capsule endoscope position measurement apparatus 1C includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, A position calculation circuit 105, a down-conversion circuit 106A, and an intermediate frequency adjustment circuit 107 are included. The difference between the configuration shown in FIG. 4 and the configuration shown in FIG. 3 will be described.
 ダウンコンバート回路106Aは、電圧制御発振器(VCO)1060Aと、ミキサ1061とを有する。ダウンコンバート回路106Aにおいて、局部発振器1060は電圧制御発振器1060Aである。電圧制御発振器1060Aは、入力された電圧値が示す周波数設定値に対応する周波数を有する信号を出力する。ミキサ1061は、ダウンコンバート回路106におけるミキサ1061と同一である。 The down-conversion circuit 106A includes a voltage controlled oscillator (VCO) 1060A and a mixer 1061. In the down conversion circuit 106A, the local oscillator 1060 is a voltage controlled oscillator 1060A. The voltage controlled oscillator 1060A outputs a signal having a frequency corresponding to the frequency setting value indicated by the input voltage value. The mixer 1061 is the same as the mixer 1061 in the down-conversion circuit 106.
 中間周波数調整回路107は、位相差測定回路104によって測定された位相差に基づいて、ダウンコンバート回路106Aを制御する。具体的には、中間周波数調整回路107は、位相差測定回路104によって測定された位相差に基づいて、電圧制御発振器1060Aによって生成される信号の周波数設定値を制御する。これによって、中間周波数調整回路107は、位相差測定回路104によって測定された位相差に基づいて、中間周波数を調整する。中間周波数調整回路107は、位相差測定回路104によって測定された位相差が一定となるように周波数設定値を制御する。 The intermediate frequency adjustment circuit 107 controls the down-conversion circuit 106A based on the phase difference measured by the phase difference measurement circuit 104. Specifically, the intermediate frequency adjustment circuit 107 controls the frequency setting value of the signal generated by the voltage controlled oscillator 1060A based on the phase difference measured by the phase difference measurement circuit 104. As a result, the intermediate frequency adjustment circuit 107 adjusts the intermediate frequency based on the phase difference measured by the phase difference measurement circuit 104. The intermediate frequency adjustment circuit 107 controls the frequency setting value so that the phase difference measured by the phase difference measurement circuit 104 is constant.
 上記以外の点については、図4に示す構成は、図3に示す構成と同様である。 4 is the same as the configuration shown in FIG. 3 with respect to points other than those described above.
 第2の実施形態のカプセル内視鏡位置測定装置1Bにおいて、回路の個体差の影響により、ダウンコンバート回路106から出力される信号と基準信号との周波数を完全に同一にすることが難しい。このため、ダウンコンバート回路106から出力される信号と基準信号との位相差が時間の経過により変化する場合がある。位相差が、時間に依存する誤差を含むため、位置測定の精度が低下する場合がある。アンテナ選択回路101によって最後に選択されたアンテナ100を使用する位置測定により測定された位相差に含まれる誤差は、アンテナ選択回路101によって最初に選択されたアンテナ100を使用する位置測定により測定された位相差に含まれる誤差よりも大きくなりやすい。第3の実施形態のカプセル内視鏡位置測定装置1Cは、中間周波数を調整することにより、時間に依存する位相差の誤差を低減することができる。 In the capsule endoscope position measurement apparatus 1B of the second embodiment, it is difficult to make the frequency of the signal output from the down-conversion circuit 106 and the reference signal completely the same due to the influence of individual differences in the circuit. For this reason, the phase difference between the signal output from the down-conversion circuit 106 and the reference signal may change over time. Since the phase difference includes a time-dependent error, the accuracy of position measurement may be reduced. The error included in the phase difference measured by the position measurement using the antenna 100 last selected by the antenna selection circuit 101 was measured by the position measurement using the antenna 100 first selected by the antenna selection circuit 101. It tends to be larger than the error included in the phase difference. The capsule endoscope position measurement apparatus 1C according to the third embodiment can reduce the error of the phase difference depending on time by adjusting the intermediate frequency.
 (第4の実施形態)
 図5は、本発明の第4の実施形態のカプセル内視鏡位置測定装置1Dの構成を示している。図5に示すように、カプセル内視鏡位置測定装置1Dは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、電圧制御発振器(VCO)103Aと、位相差測定回路104と、位置算出回路105と、ダウンコンバート回路106と、基準周波数調整回路108とを有する。図5に示す構成について、図3に示す構成と異なる点を説明する。
(Fourth embodiment)
FIG. 5 shows a configuration of a capsule endoscope position measuring apparatus 1D according to the fourth embodiment of the present invention. As shown in FIG. 5, the capsule endoscope position measurement apparatus 1D includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a voltage controlled oscillator (VCO) 103A, and a phase difference measurement circuit 104. A position calculation circuit 105, a down-conversion circuit 106, and a reference frequency adjustment circuit 108. The configuration shown in FIG. 5 will be described while referring to differences from the configuration shown in FIG.
 基準信号生成回路103は、電圧制御発振器(VCO)103Aである。電圧制御発振器103Aは、入力された電圧値が示す周波数設定値に対応する周波数を有する信号を出力する。基準周波数調整回路108は、位相差測定回路104によって測定された位相差に基づいて、電圧制御発振器103Aを制御する。具体的には、基準周波数調整回路108は、位相差測定回路104によって測定された位相差に基づいて、電圧制御発振器103Aによって生成される信号の周波数設定値を制御する。これによって、基準周波数調整回路108は、位相差測定回路104によって測定された位相差に基づいて、基準周波数を調整する。基準周波数調整回路108は、位相差測定回路104によって測定された位相差が一定となるように周波数設定値を制御する。 The reference signal generation circuit 103 is a voltage controlled oscillator (VCO) 103A. The voltage controlled oscillator 103A outputs a signal having a frequency corresponding to the frequency setting value indicated by the input voltage value. The reference frequency adjusting circuit 108 controls the voltage controlled oscillator 103A based on the phase difference measured by the phase difference measuring circuit 104. Specifically, the reference frequency adjusting circuit 108 controls the frequency setting value of the signal generated by the voltage controlled oscillator 103A based on the phase difference measured by the phase difference measuring circuit 104. Thus, the reference frequency adjustment circuit 108 adjusts the reference frequency based on the phase difference measured by the phase difference measurement circuit 104. The reference frequency adjustment circuit 108 controls the frequency setting value so that the phase difference measured by the phase difference measurement circuit 104 is constant.
 上記以外の点については、図5に示す構成は、図3に示す構成と同様である。 5 is the same as the configuration shown in FIG. 3 with respect to points other than those described above.
 第1および第3の実施形態の少なくとも1つのカプセル内視鏡位置測定装置において、基準信号生成回路103は電圧制御発振器103Aであってもよい。第1から第3の実施形態の少なくとも1つのカプセル内視鏡位置測定装置は、基準周波数調整回路108を有してもよい。 In the at least one capsule endoscope position measuring device of the first and third embodiments, the reference signal generation circuit 103 may be a voltage controlled oscillator 103A. The at least one capsule endoscope position measurement device according to the first to third embodiments may include a reference frequency adjustment circuit 108.
 カプセル内視鏡位置測定装置1Dは、基準信号の周波数を調整することにより、時間に依存する位相差の誤差を低減することができる。 The capsule endoscope position measuring apparatus 1D can reduce the time-dependent phase difference error by adjusting the frequency of the reference signal.
 (第5の実施形態)
 図6は、本発明の第5の実施形態のカプセル内視鏡位置測定装置1Eの構成を示している。図6に示すように、カプセル内視鏡位置測定装置1Eは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、位相差測定回路104と、位置算出回路105と、ダウンコンバート回路106Aと、中間周波数調整回路107と、時間変化測定回路109と、第1の位相差補正回路110とを有する。図6に示す構成について、図4に示す構成と異なる点を説明する。
(Fifth embodiment)
FIG. 6 shows a configuration of a capsule endoscope position measuring apparatus 1E according to the fifth embodiment of the present invention. As shown in FIG. 6, the capsule endoscope position measurement apparatus 1E includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, The position calculation circuit 105, the down-conversion circuit 106A, the intermediate frequency adjustment circuit 107, the time change measurement circuit 109, and the first phase difference correction circuit 110 are included. The configuration shown in FIG. 6 will be described while referring to differences from the configuration shown in FIG.
 時間変化測定回路109は、位相差測定回路104によって測定された、少なくとも4本のアンテナ100の各々に対する位相差の時間変化を測定する。第1の位相差補正回路110は、時間変化測定回路109によって測定された時間変化に基づいて、位相差測定回路104によって測定された、少なくとも4本のアンテナ100の各々に対する位相差を補正する。 The time change measuring circuit 109 measures the time change of the phase difference for each of at least four antennas 100 measured by the phase difference measuring circuit 104. The first phase difference correction circuit 110 corrects the phase difference for each of the at least four antennas 100 measured by the phase difference measurement circuit 104 based on the time change measured by the time change measurement circuit 109.
 上記以外の点については、図6に示す構成は、図4に示す構成と同様である。 Regarding the points other than the above, the configuration shown in FIG. 6 is the same as the configuration shown in FIG.
 前述したように、ダウンコンバート回路106Aから出力される信号と基準信号との位相差が時間の経過により変化する場合がある。時間変化測定回路109と第1の位相差補正回路110とは、時間に依存する位相差の誤差をより低減するための回路である。時間変化測定回路109と第1の位相差補正回路110とによる処理の例を説明する。 As described above, the phase difference between the signal output from the down-conversion circuit 106A and the reference signal may change over time. The time change measurement circuit 109 and the first phase difference correction circuit 110 are circuits for further reducing a time-dependent phase difference error. An example of processing by the time change measurement circuit 109 and the first phase difference correction circuit 110 will be described.
 第1の時刻において、位相差測定回路104は第1の位相差を測定する。第1の時刻よりも後の第2の時刻において、位相差測定回路104は第2の位相差を測定する。第1の時刻と第2の時刻とにおいて、アンテナ選択回路101は、少なくとも4本のアンテナ100のうち第1のアンテナを選択する。時間変化測定回路109は、第1の位相差と第2の位相差との差を第1の時刻から第2の時刻までの時間で除算することにより、位相差の時間変化を算出する。算出された位相差の時間変化は、単位時間当たりの位相差の変化量である。時間変化測定回路109は、算出された位相差の時間変化を第1の位相差補正回路110に出力する。第1のアンテナに対応する位相差は、第1の位相差である。 At the first time, the phase difference measurement circuit 104 measures the first phase difference. At a second time after the first time, the phase difference measurement circuit 104 measures the second phase difference. At the first time and the second time, the antenna selection circuit 101 selects the first antenna from at least four antennas 100. The time change measuring circuit 109 calculates the time change of the phase difference by dividing the difference between the first phase difference and the second phase difference by the time from the first time to the second time. The time change of the calculated phase difference is a change amount of the phase difference per unit time. The time change measurement circuit 109 outputs the calculated time change of the phase difference to the first phase difference correction circuit 110. The phase difference corresponding to the first antenna is the first phase difference.
 アンテナ選択回路101は、少なくとも4本のアンテナ100のうち第1のアンテナと異なる第2のアンテナを選択する。第2の時刻よりも後の第3の時刻において、位相差測定回路104は、第2のアンテナによって受信された信号に基づく第3の位相差を測定する。第1の位相差補正回路110は、位相差の時間変化と第1の時刻から第3の時刻までの時間とに基づいて、第3の位相差を補正する。具体的には、第1の位相差補正回路110は、位相差の時間変化と第1の時刻から第3の時刻までの時間とを乗算することにより、第3の位相差に含まれる誤差を算出する。第1の位相差補正回路110は、第3の位相差から、算出された誤差を減算することにより、第3の位相差を補正する。アンテナ選択回路101によって第2のアンテナが切り替えられる毎に、第1の位相差補正回路110は、上記の処理により位相差を補正する。 The antenna selection circuit 101 selects a second antenna different from the first antenna among at least four antennas 100. At a third time after the second time, the phase difference measurement circuit 104 measures a third phase difference based on the signal received by the second antenna. The first phase difference correction circuit 110 corrects the third phase difference based on the time change of the phase difference and the time from the first time to the third time. Specifically, the first phase difference correction circuit 110 multiplies the time change of the phase difference by the time from the first time to the third time, thereby reducing the error included in the third phase difference. calculate. The first phase difference correction circuit 110 corrects the third phase difference by subtracting the calculated error from the third phase difference. Each time the second antenna is switched by the antenna selection circuit 101, the first phase difference correction circuit 110 corrects the phase difference by the above processing.
 カプセル内視鏡位置測定装置1Eにおいて、基準信号生成回路103は、カプセル内視鏡位置測定装置1Dにおける電圧制御発振器103Aであってもよい。カプセル内視鏡位置測定装置1Eは、カプセル内視鏡位置測定装置1Dにおける基準周波数調整回路108を有してもよい。 In the capsule endoscope position measurement apparatus 1E, the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1E may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D.
 第1から第4の実施形態の少なくとも1つのカプセル内視鏡位置測定装置は、時間変化測定回路109と第1の位相差補正回路110とを有してもよい。 The at least one capsule endoscope position measurement device according to the first to fourth embodiments may include a time change measurement circuit 109 and a first phase difference correction circuit 110.
 カプセル内視鏡位置測定装置1Eは、位相差の時間変化に基づいて位相差を補正することにより、時間に依存する位相差の誤差を低減することができる。 The capsule endoscope position measuring apparatus 1E can reduce the time-dependent phase difference error by correcting the phase difference based on the time change of the phase difference.
 (第6の実施形態)
 図7は、本発明の第6の実施形態のカプセル内視鏡位置測定装置1Fの構成を示している。図7に示すように、カプセル内視鏡位置測定装置1Fは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、位相差測定回路104と、位置算出回路105と、最大強度選択回路111と、処理回路112とを有する。図7に示す構成について、図1に示す構成と異なる点を説明する。
(Sixth embodiment)
FIG. 7 shows a configuration of a capsule endoscope position measuring apparatus 1F according to the sixth embodiment of the present invention. As shown in FIG. 7, the capsule endoscope position measuring apparatus 1F includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a phase difference measurement circuit 104, a position calculation circuit 105, a maximum An intensity selection circuit 111 and a processing circuit 112 are included. The difference between the configuration shown in FIG. 7 and the configuration shown in FIG. 1 will be described.
 基準信号生成回路103は、少なくとも4本のアンテナ100のいずれか1つである。具体的には、基準信号生成回路103は、少なくとも4本のアンテナ100のうち受信強度が最も高いアンテナ100である。最大強度選択回路111は、受信強度が最も高いアンテナ100を選択し、かつ選択されたアンテナ100によって受信された信号を処理回路112に出力する。処理回路112の構成は、処理回路102の構成と同一である。処理回路112は、最大強度選択回路111から出力された信号を処理する。位相差測定回路104は、処理回路102と処理回路112との各々によって処理された信号の位相差を測定する。 The reference signal generation circuit 103 is any one of at least four antennas 100. Specifically, the reference signal generation circuit 103 is the antenna 100 having the highest reception strength among at least four antennas 100. The maximum intensity selection circuit 111 selects the antenna 100 having the highest reception intensity, and outputs a signal received by the selected antenna 100 to the processing circuit 112. The configuration of the processing circuit 112 is the same as the configuration of the processing circuit 102. The processing circuit 112 processes the signal output from the maximum intensity selection circuit 111. The phase difference measurement circuit 104 measures the phase difference between signals processed by the processing circuit 102 and the processing circuit 112.
 上記以外の点については、図7に示す構成は、図1に示す構成と同様である。 Regarding the points other than the above, the configuration shown in FIG. 7 is similar to the configuration shown in FIG.
 基準信号生成回路103は、受信強度が最も高いアンテナ100以外のアンテナ100であってもよい。つまり、基準信号生成回路103は、少なくとも4本のアンテナ100の任意の1つであってもよい。 The reference signal generation circuit 103 may be an antenna 100 other than the antenna 100 having the highest reception intensity. That is, the reference signal generation circuit 103 may be any one of at least four antennas 100.
 カプセル内視鏡位置測定装置1Fは、カプセル内視鏡位置測定装置1Eにおける時間変化測定回路109と第1の位相差補正回路110とを有してもよい。 The capsule endoscope position measurement apparatus 1F may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E.
 第1から第3の実施形態の少なくとも1つのカプセル内視鏡位置測定装置において、基準信号生成回路103は、少なくとも4本のアンテナ100のいずれか1つであってもよい。 In the at least one capsule endoscope position measurement device according to the first to third embodiments, the reference signal generation circuit 103 may be any one of at least four antennas 100.
 カプセル内視鏡位置測定装置1Fは、同一のカプセル内視鏡2から受信された2つの信号の位相差を測定する。2つの信号の周波数は同一であるため、測定される位相差の時間変化は発生しにくい。このため、カプセル内視鏡位置測定装置1Fは、位置測定をより高精度に行うことができる。 The capsule endoscope position measuring device 1F measures the phase difference between two signals received from the same capsule endoscope 2. Since the frequency of the two signals is the same, the time change of the measured phase difference is unlikely to occur. For this reason, the capsule endoscope position measurement apparatus 1F can perform position measurement with higher accuracy.
 受信強度が最も高いアンテナ100が選択されることにより、カプセル内視鏡位置測定装置1Fは、信号対雑音比(S/N比)が高い信号を使用することができる。このため、カプセル内視鏡位置測定装置1Fは、位置測定をより高精度に行うことができる。 By selecting the antenna 100 having the highest reception intensity, the capsule endoscope position measurement apparatus 1F can use a signal having a high signal-to-noise ratio (S / N ratio). For this reason, the capsule endoscope position measurement apparatus 1F can perform position measurement with higher accuracy.
 (第7の実施形態)
 図8は、本発明の第7の実施形態のカプセル内視鏡位置測定装置1Gの構成を示している。図8に示すように、カプセル内視鏡位置測定装置1Gは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、位相差測定回路104と、位置算出回路105と、ダウンコンバート回路106Aと、中間周波数調整回路107と、狭帯域フィルタ113とを有する。図8に示す構成について、図4に示す構成と異なる点を説明する。
(Seventh embodiment)
FIG. 8 shows a configuration of a capsule endoscope position measuring apparatus 1G according to the seventh embodiment of the present invention. As shown in FIG. 8, the capsule endoscope position measuring apparatus 1G includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, A position calculation circuit 105, a down-conversion circuit 106A, an intermediate frequency adjustment circuit 107, and a narrow band filter 113 are included. The difference between the configuration shown in FIG. 8 and the configuration shown in FIG. 4 will be described.
 狭帯域フィルタ113は、ダウンコンバート回路106Aによってダウンコンバートされた信号の周波数帯域を制限する。狭帯域フィルタ113は、ダウンコンバート回路106Aから出力される信号のうち中間周波数を含む所定の帯域の周波数を有する信号のみを通過させる。例えば、狭帯域フィルタ113の通過帯域の幅は、中間周波数の0.1%以下である。位相差測定回路104は、狭帯域フィルタ113から出力された信号と基準信号との位相差を測定する。 The narrow band filter 113 limits the frequency band of the signal down-converted by the down-conversion circuit 106A. The narrowband filter 113 passes only a signal having a frequency in a predetermined band including an intermediate frequency among signals output from the down-conversion circuit 106A. For example, the width of the pass band of the narrow band filter 113 is 0.1% or less of the intermediate frequency. The phase difference measurement circuit 104 measures the phase difference between the signal output from the narrowband filter 113 and the reference signal.
 上記以外の点については、図8に示す構成は、図4に示す構成と同様である。 Other than the above, the configuration shown in FIG. 8 is the same as the configuration shown in FIG.
 カプセル内視鏡位置測定装置1Gにおいて、基準信号生成回路103は、カプセル内視鏡位置測定装置1Dにおける電圧制御発振器103Aであってもよい。カプセル内視鏡位置測定装置1Gは、カプセル内視鏡位置測定装置1Dにおける基準周波数調整回路108を有してもよい。カプセル内視鏡位置測定装置1Gは、カプセル内視鏡位置測定装置1Eにおける時間変化測定回路109と第1の位相差補正回路110とを有してもよい。カプセル内視鏡位置測定装置1Gにおいて、基準信号生成回路103は、少なくとも4本のアンテナ100のいずれか1つであってもよい。 In the capsule endoscope position measuring apparatus 1G, the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measuring apparatus 1D. The capsule endoscope position measurement device 1G may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement device 1D. The capsule endoscope position measurement apparatus 1G may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E. In the capsule endoscope position measurement apparatus 1G, the reference signal generation circuit 103 may be any one of at least four antennas 100.
 第2から第6の実施形態の少なくとも1つのカプセル内視鏡位置測定装置は、狭帯域フィルタ113を有してもよい。 The at least one capsule endoscope position measurement device according to the second to sixth embodiments may include the narrowband filter 113.
 カプセル内視鏡位置測定装置1Gは、狭帯域フィルタ113を有することにより、少なくとも4本のアンテナ100によって受信された信号の雑音を除去することができる。このため、カプセル内視鏡位置測定装置1Gは、位置測定をより高精度に行うことができる。 The capsule endoscope position measuring apparatus 1G includes the narrow band filter 113, so that noise of signals received by at least four antennas 100 can be removed. For this reason, the capsule endoscope position measurement apparatus 1G can perform position measurement with higher accuracy.
 中間周波数が一定となるように中間周波数調整回路107が中間周波数を調整することにより、狭帯域フィルタ113の通過帯域をより狭くすることができる。つまり、狭帯域フィルタ113による雑音除去の効果がより向上する。このため、カプセル内視鏡位置測定装置1Gは、位置測定をより高精度に行うことができる。 When the intermediate frequency adjustment circuit 107 adjusts the intermediate frequency so that the intermediate frequency becomes constant, the pass band of the narrow band filter 113 can be made narrower. That is, the effect of noise removal by the narrow band filter 113 is further improved. For this reason, the capsule endoscope position measurement apparatus 1G can perform position measurement with higher accuracy.
 (第8の実施形態)
 図9は、本発明の第8の実施形態のカプセル内視鏡位置測定装置1Hの構成を示している。図9に示すように、カプセル内視鏡位置測定装置1Hは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、TDC(Time to Digital Converter)104Aと、位置算出回路105と、ダウンコンバート回路106Aと、中間周波数調整回路107と、比較器114とを有する。図9に示す構成について、図4に示す構成と異なる点を説明する。
(Eighth embodiment)
FIG. 9 shows a configuration of a capsule endoscope position measuring apparatus 1H according to the eighth embodiment of the present invention. As shown in FIG. 9, the capsule endoscope position measuring apparatus 1H includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, and a TDC (Time to Digital Converter). 104A, a position calculation circuit 105, a down-conversion circuit 106A, an intermediate frequency adjustment circuit 107, and a comparator 114. The difference between the configuration illustrated in FIG. 9 and the configuration illustrated in FIG. 4 will be described.
 比較器114は、処理回路102によって処理された信号の電圧と基準電圧とを比較し、かつ比較結果に応じて2値のいずれか1つを有する2値信号を出力する。位相差測定回路104は、2値信号と基準信号との位相差を測定する。位相差測定回路104は、TDC104Aである。 The comparator 114 compares the voltage of the signal processed by the processing circuit 102 with the reference voltage, and outputs a binary signal having any one of the two values according to the comparison result. The phase difference measurement circuit 104 measures the phase difference between the binary signal and the reference signal. The phase difference measuring circuit 104 is a TDC 104A.
 例えば、カプセル内視鏡位置測定装置1Hは、基準電圧を生成する基準電圧生成回路を有する。基準電圧生成回路によって生成された基準電圧が比較器114に入力される。比較器114は、基準電圧生成回路を含んでもよい。例えば、処理回路102によって処理された信号の電圧が基準電圧以上である場合、比較器114は、Highレベルの信号を出力する。処理回路102によって処理された信号の電圧が基準電圧未満である場合、比較器114は、Lowレベルの信号を出力する。上記の最初の条件におけるHighがLowに変更され、かつ上記の2番目の条件におけるLowがHighに変更されてもよい。 For example, the capsule endoscope position measuring apparatus 1H includes a reference voltage generation circuit that generates a reference voltage. The reference voltage generated by the reference voltage generation circuit is input to the comparator 114. The comparator 114 may include a reference voltage generation circuit. For example, when the voltage of the signal processed by the processing circuit 102 is equal to or higher than the reference voltage, the comparator 114 outputs a high level signal. When the voltage of the signal processed by the processing circuit 102 is less than the reference voltage, the comparator 114 outputs a low level signal. High in the first condition may be changed to Low, and Low in the second condition may be changed to High.
 例えば、基準信号は、2値信号である。TDC104Aは、比較器114から出力された2値信号のパルスが検出される第1の時刻と、基準信号のパルスが検出される第2の時刻との間の時間を測定することにより、位相差を測定する。TDC104Aによって測定された時間は、位相差に対応する。TDC104Aは、測定された時間をデジタル値として出力する。 For example, the reference signal is a binary signal. The TDC 104A measures the time difference between the first time at which the binary signal pulse output from the comparator 114 is detected and the second time at which the reference signal pulse is detected. Measure. The time measured by the TDC 104A corresponds to the phase difference. The TDC 104A outputs the measured time as a digital value.
 位置算出回路105は、TDC104Aによって測定された位相差すなわち時間に基づいて、カプセル内視鏡2の位置を算出する。TDC104Aによって測定された時間がtnmであり、かつ媒質内の信号の伝達速度がVである場合、前述した式(1)と式(2)とにおける距離dnmは、時間tnmと伝達速度Vとの積である。 The position calculation circuit 105 calculates the position of the capsule endoscope 2 based on the phase difference measured by the TDC 104A, that is, time. When the time measured by the TDC 104A is t nm and the transmission speed of the signal in the medium is V, the distance d nm in the above-described formula (1) and formula (2) is the time t nm and the transmission speed. The product of V.
 上記以外の点については、図9に示す構成は、図4に示す構成と同様である。 For the points other than the above, the configuration shown in FIG. 9 is the same as the configuration shown in FIG.
 カプセル内視鏡位置測定装置1Hにおいて、基準信号生成回路103は、カプセル内視鏡位置測定装置1Dにおける電圧制御発振器103Aであってもよい。カプセル内視鏡位置測定装置1Hは、カプセル内視鏡位置測定装置1Dにおける基準周波数調整回路108を有してもよい。カプセル内視鏡位置測定装置1Hは、カプセル内視鏡位置測定装置1Eにおける時間変化測定回路109と第1の位相差補正回路110とを有してもよい。カプセル内視鏡位置測定装置1Hにおいて、基準信号生成回路103は、少なくとも4本のアンテナ100のいずれか1つであってもよい。カプセル内視鏡位置測定装置1Hは、カプセル内視鏡位置測定装置1Gにおける狭帯域フィルタ113を有してもよい。 In the capsule endoscope position measurement apparatus 1H, the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1H may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1H may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E. In the capsule endoscope position measurement apparatus 1H, the reference signal generation circuit 103 may be any one of at least four antennas 100. The capsule endoscope position measuring apparatus 1H may include the narrow band filter 113 in the capsule endoscope position measuring apparatus 1G.
 第1の実施形態のカプセル内視鏡位置測定装置1Aは、TDC104Aと比較器114とを有してもよい。 The capsule endoscope position measurement apparatus 1A according to the first embodiment may include a TDC 104A and a comparator 114.
 カプセル内視鏡位置測定装置1HがTDC104Aと比較器114とを有することにより、構成が簡単となり、かつ消費電力が低減される。TDC104Aが位相差を測定することにより、カプセル内視鏡位置測定装置1Hは、位置測定をより高精度に行うことができる。 Since the capsule endoscope position measuring device 1H includes the TDC 104A and the comparator 114, the configuration is simplified and the power consumption is reduced. When the TDC 104A measures the phase difference, the capsule endoscope position measurement apparatus 1H can perform position measurement with higher accuracy.
 (第9の実施形態)
 図10は、本発明の第9の実施形態のカプセル内視鏡位置測定装置1Iの構成を示している。図10に示すように、カプセル内視鏡位置測定装置1Iは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、位相差測定回路104Bと、位置算出回路105と、ダウンコンバート回路106Aと、比較器114と、AD変換器115とを有する。図10に示す構成について、図4に示す構成と異なる点を説明する。
(Ninth embodiment)
FIG. 10 shows a configuration of a capsule endoscope position measuring apparatus 1I according to the ninth embodiment of the present invention. As shown in FIG. 10, the capsule endoscope position measuring apparatus 1I includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104B, A position calculation circuit 105, a down-conversion circuit 106A, a comparator 114, and an AD converter 115 are included. The configuration shown in FIG. 10 will be described while referring to differences from the configuration shown in FIG.
 比較器114は、カプセル内視鏡位置測定装置1Hにおける比較器114と同一である。位相差測定回路104Bは、位相比較器1040と、チャージポンプ1041と、ループフィルタ1042とを有する。位相比較器1040は、比較器114から出力された2値信号の位相と基準信号の位相とを比較する。チャージポンプ1041は、位相比較器1040によって比較された2値信号の位相と基準信号の位相との差に応じた電圧信号を出力する。ループフィルタ1042は、チャージポンプ1041から出力された電圧信号から、不要な周波数成分を除去する。ループフィルタ1042は、不要な周波数成分が除去された信号を出力する。例えば、ループフィルタ1042は、ローパスフィルタである。ループフィルタ1042から出力されるアナログ信号は、比較器114から出力された2値信号と、基準信号との位相差に応じた電圧を有する。位相比較器1040とチャージポンプ1041とループフィルタ1042とは、一般的なPLL(Phase Locked Loop)を構成する。位相差測定回路104Bは、ループフィルタ1042を有していなくてもよい。 The comparator 114 is the same as the comparator 114 in the capsule endoscope position measuring apparatus 1H. The phase difference measurement circuit 104B includes a phase comparator 1040, a charge pump 1041, and a loop filter 1042. The phase comparator 1040 compares the phase of the binary signal output from the comparator 114 with the phase of the reference signal. The charge pump 1041 outputs a voltage signal corresponding to the difference between the phase of the binary signal compared by the phase comparator 1040 and the phase of the reference signal. The loop filter 1042 removes unnecessary frequency components from the voltage signal output from the charge pump 1041. The loop filter 1042 outputs a signal from which unnecessary frequency components are removed. For example, the loop filter 1042 is a low-pass filter. The analog signal output from the loop filter 1042 has a voltage corresponding to the phase difference between the binary signal output from the comparator 114 and the reference signal. The phase comparator 1040, the charge pump 1041, and the loop filter 1042 constitute a general PLL (Phase Locked Loop). The phase difference measurement circuit 104B may not include the loop filter 1042.
 AD変換器115は、ループフィルタ1042から出力された信号をデジタル値に変換する。電圧制御発振器1060Aによって生成される信号の周波数は、ループフィルタ1042から出力された信号に基づいて制御される。このため、カプセル内視鏡位置測定装置1Hは、カプセル内視鏡位置測定装置1Cにおける中間周波数調整回路107を有していない。 The AD converter 115 converts the signal output from the loop filter 1042 into a digital value. The frequency of the signal generated by the voltage controlled oscillator 1060A is controlled based on the signal output from the loop filter 1042. For this reason, the capsule endoscope position measuring apparatus 1H does not have the intermediate frequency adjusting circuit 107 in the capsule endoscope position measuring apparatus 1C.
 上記以外の点については、図10に示す構成は、図4に示す構成と同様である。 Other than the above, the configuration shown in FIG. 10 is the same as the configuration shown in FIG.
 カプセル内視鏡位置測定装置1Iにおいて、基準信号生成回路103は、カプセル内視鏡位置測定装置1Dにおける電圧制御発振器103Aであってもよい。カプセル内視鏡位置測定装置1Iは、カプセル内視鏡位置測定装置1Dにおける基準周波数調整回路108を有してもよい。カプセル内視鏡位置測定装置1Iは、カプセル内視鏡位置測定装置1Eにおける時間変化測定回路109と第1の位相差補正回路110とを有してもよい。カプセル内視鏡位置測定装置1Iにおいて、基準信号生成回路103は、少なくとも4本のアンテナ100のいずれか1つであってもよい。カプセル内視鏡位置測定装置1Iは、カプセル内視鏡位置測定装置1Gにおける狭帯域フィルタ113を有してもよい。 In the capsule endoscope position measurement apparatus 1I, the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1I may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1I may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E. In the capsule endoscope position measuring apparatus 1I, the reference signal generation circuit 103 may be any one of at least four antennas 100. The capsule endoscope position measuring apparatus 1I may include the narrow band filter 113 in the capsule endoscope position measuring apparatus 1G.
 カプセル内視鏡位置測定装置1Iが、PLLで構成された位相差測定回路104Bを有することにより、回路規模が削減され、かつコストが低下する。 Since the capsule endoscope position measuring device 1I includes the phase difference measuring circuit 104B configured by a PLL, the circuit scale is reduced and the cost is reduced.
 (第10の実施形態)
 図11は、本発明の第10の実施形態のカプセル内視鏡位置測定装置1Jの構成を示している。図11に示すように、カプセル内視鏡位置測定装置1Jは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、カウンタ104Cと、位置算出回路105と、ダウンコンバート回路106Aと、中間周波数調整回路107と、比較器114とを有する。図11に示す構成について、図4に示す構成と異なる点を説明する。
(Tenth embodiment)
FIG. 11 shows the configuration of a capsule endoscope position measuring apparatus 1J according to the tenth embodiment of the present invention. As shown in FIG. 11, the capsule endoscope position measurement apparatus 1J includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a counter 104C, and a position calculation circuit. 105, a down-conversion circuit 106A, an intermediate frequency adjustment circuit 107, and a comparator 114. The difference between the configuration shown in FIG. 11 and the configuration shown in FIG. 4 will be described.
 比較器114は、カプセル内視鏡位置測定装置1Hにおける比較器114と同一である。位相差測定回路104は、カウンタ104Cである。カウンタ104Cは、比較器114から出力された2値信号のパルスが検出される第1の時刻と、基準信号のパルスが検出される第2の時刻との間の時間をカウントすることにより、位相差を測定する。例えば、カウンタ104Cは、比較器114から出力された2値信号のパルスが検出されたときにカウントを開始し、かつ基準信号のパルスが検出されたときにカウントを終了する。カウンタ104Cは、基準信号のパルスが検出されたときにカウントを開始し、かつ比較器114から出力された2値信号のパルスが検出されたときにカウントを終了してもよい。これによって、カウンタ104Cは、比較器114から出力された2値信号と基準信号との位相差を測定する。 The comparator 114 is the same as the comparator 114 in the capsule endoscope position measuring apparatus 1H. The phase difference measurement circuit 104 is a counter 104C. The counter 104C counts the time between the first time when the pulse of the binary signal output from the comparator 114 is detected and the second time when the pulse of the reference signal is detected. Measure the phase difference. For example, the counter 104C starts counting when a pulse of the binary signal output from the comparator 114 is detected, and ends counting when a pulse of the reference signal is detected. The counter 104C may start counting when a pulse of the reference signal is detected, and may end counting when a pulse of the binary signal output from the comparator 114 is detected. Accordingly, the counter 104C measures the phase difference between the binary signal output from the comparator 114 and the reference signal.
 上記以外の点については、図11に示す構成は、図4に示す構成と同様である。 Other than the above, the configuration shown in FIG. 11 is the same as the configuration shown in FIG.
 カプセル内視鏡位置測定装置1Jにおいて、基準信号生成回路103は、カプセル内視鏡位置測定装置1Dにおける電圧制御発振器103Aであってもよい。カプセル内視鏡位置測定装置1Jは、カプセル内視鏡位置測定装置1Dにおける基準周波数調整回路108を有してもよい。カプセル内視鏡位置測定装置1Jは、カプセル内視鏡位置測定装置1Eにおける時間変化測定回路109と第1の位相差補正回路110とを有してもよい。カプセル内視鏡位置測定装置1Jにおいて、基準信号生成回路103は、少なくとも4本のアンテナ100のいずれか1つであってもよい。カプセル内視鏡位置測定装置1Jは、カプセル内視鏡位置測定装置1Gにおける狭帯域フィルタ113を有してもよい。 In the capsule endoscope position measurement apparatus 1J, the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measuring device 1J may include the reference frequency adjusting circuit 108 in the capsule endoscope position measuring device 1D. The capsule endoscope position measurement device 1J may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement device 1E. In the capsule endoscope position measurement apparatus 1J, the reference signal generation circuit 103 may be any one of at least four antennas 100. The capsule endoscope position measuring device 1J may include the narrow band filter 113 in the capsule endoscope position measuring device 1G.
 カプセル内視鏡位置測定装置1Jがカウンタ104Cを有することにより、回路規模が削減される。 Since the capsule endoscope position measuring device 1J has the counter 104C, the circuit scale is reduced.
 (第11の実施形態)
 図12は、本発明の第11の実施形態のカプセル内視鏡位置測定装置1Kの構成を示している。図12に示すように、カプセル内視鏡位置測定装置1Kは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、TDC104Aと、位置算出回路105と、ダウンコンバート回路106Aと、中間周波数調整回路107と、比較器114と、強度測定回路116と、第2の位相差補正回路117とを有する。図12に示す構成について、図9に示す構成と異なる点を説明する。
(Eleventh embodiment)
FIG. 12 shows a configuration of a capsule endoscope position measuring apparatus 1K according to the eleventh embodiment of the present invention. As shown in FIG. 12, the capsule endoscope position measurement apparatus 1K includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a TDC 104A, and a position calculation circuit 105. A down conversion circuit 106A, an intermediate frequency adjustment circuit 107, a comparator 114, an intensity measurement circuit 116, and a second phase difference correction circuit 117. The configuration shown in FIG. 12 will be described while referring to differences from the configuration shown in FIG.
 強度測定回路116は、処理回路102によって処理された信号の強度を測定する。第2の位相差補正回路117は、強度測定回路116によって測定された強度に基づいて、位相差測定回路104すなわちTDC104Aによって測定された、少なくとも4本のアンテナ100の各々に対する位相差を補正する。 The intensity measurement circuit 116 measures the intensity of the signal processed by the processing circuit 102. The second phase difference correction circuit 117 corrects the phase difference for each of the at least four antennas 100 measured by the phase difference measurement circuit 104, that is, the TDC 104A, based on the intensity measured by the intensity measurement circuit 116.
 カプセル内視鏡位置測定装置1Kにおいて、強度測定回路116は、ダウンコンバート回路106Aによってダウンコンバートされた信号の強度を測定する。つまり、強度測定回路116は、ダウンコンバート回路106Aから出力された信号の強度を測定する。強度測定回路116は、ダウンコンバート回路106Aに入力される信号の強度を測定してもよい。 In the capsule endoscope position measuring apparatus 1K, the intensity measurement circuit 116 measures the intensity of the signal down-converted by the down-conversion circuit 106A. That is, the intensity measurement circuit 116 measures the intensity of the signal output from the down-conversion circuit 106A. The intensity measurement circuit 116 may measure the intensity of the signal input to the down-conversion circuit 106A.
 比較器114から出力される2値信号は、比較器114に入力される信号の強度に応じた特性を有する。具体的には、比較器114に入力される信号の強度に応じて、2値信号の立ち上がりと立ち下がりとの各々の時間が変化する。比較器114に入力される信号の強度がより大きい場合、2値信号の立ち上がりと立ち下がりとの各々の時間がより短い。2値信号の立ち上がりと立ち下がりとの各々の時間が一定でない場合、TDC104Aによって測定された位相差すなわち時間に誤差が含まれる。このため、第2の位相差補正回路117は、強度測定回路116によって測定された強度に基づいて、TDC104Aによって測定された時間を補正する。例えば、第2の位相差補正回路117は、強度測定回路116によって測定された強度と基準強度との差に基づいて、時間補正値を算出する。時間補正値は、基準強度に対応する2値信号の立ち上がりまたは立ち下がりの時間と、強度測定回路116によって測定された強度に対応する2値信号の立ち上がりまたは立ち下がりの時間との差に基づく。第2の位相差補正回路117は、TDC104Aによって測定された時間を時間補正値に基づいて補正する。 The binary signal output from the comparator 114 has characteristics according to the intensity of the signal input to the comparator 114. Specifically, each time of the rise and fall of the binary signal changes according to the strength of the signal input to the comparator 114. When the intensity of the signal input to the comparator 114 is larger, each time of rising and falling of the binary signal is shorter. If each time of the rise and fall of the binary signal is not constant, an error is included in the phase difference, that is, the time measured by the TDC 104A. Therefore, the second phase difference correction circuit 117 corrects the time measured by the TDC 104A based on the intensity measured by the intensity measurement circuit 116. For example, the second phase difference correction circuit 117 calculates a time correction value based on the difference between the intensity measured by the intensity measurement circuit 116 and the reference intensity. The time correction value is based on the difference between the rise or fall time of the binary signal corresponding to the reference intensity and the rise or fall time of the binary signal corresponding to the intensity measured by the intensity measurement circuit 116. The second phase difference correction circuit 117 corrects the time measured by the TDC 104A based on the time correction value.
 上記以外の点については、図12に示す構成は、図9に示す構成と同様である。 Other than the above, the configuration shown in FIG. 12 is the same as the configuration shown in FIG.
 カプセル内視鏡位置測定装置1Kにおいて、基準信号生成回路103は、カプセル内視鏡位置測定装置1Dにおける電圧制御発振器103Aであってもよい。カプセル内視鏡位置測定装置1Kは、カプセル内視鏡位置測定装置1Dにおける基準周波数調整回路108を有してもよい。カプセル内視鏡位置測定装置1Kは、カプセル内視鏡位置測定装置1Eにおける時間変化測定回路109と第1の位相差補正回路110とを有してもよい。カプセル内視鏡位置測定装置1Kにおいて、基準信号生成回路103は、少なくとも4本のアンテナ100のいずれか1つであってもよい。カプセル内視鏡位置測定装置1Kは、カプセル内視鏡位置測定装置1Gにおける狭帯域フィルタ113を有してもよい。カプセル内視鏡位置測定装置1Kは、TDC104Aの代わりにカプセル内視鏡位置測定装置1Jにおけるカウンタ104Cを有してもよい。 In the capsule endoscope position measurement apparatus 1K, the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1K may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1K may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E. In the capsule endoscope position measurement apparatus 1K, the reference signal generation circuit 103 may be any one of at least four antennas 100. The capsule endoscope position measuring apparatus 1K may include the narrow band filter 113 in the capsule endoscope position measuring apparatus 1G. The capsule endoscope position measuring apparatus 1K may include a counter 104C in the capsule endoscope position measuring apparatus 1J instead of the TDC 104A.
 カプセル内視鏡位置測定装置1Kは、強度測定回路116と第2の位相差補正回路117とを有することにより、位置測定をより高精度に行うことができる。 The capsule endoscope position measurement apparatus 1K includes the intensity measurement circuit 116 and the second phase difference correction circuit 117, so that the position measurement can be performed with higher accuracy.
 (第12の実施形態)
 図13は、本発明の第12の実施形態のカプセル内視鏡位置測定装置1Lの構成を示している。図13に示すように、カプセル内視鏡位置測定装置1Lは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、TDC104Aと、位置算出回路105と、ダウンコンバート回路106Aと、中間周波数調整回路107と、比較器114と、可変ゲインアンプ(VGA)118と、第1の制御回路119とを有する。図13に示す構成について、図9に示す構成と異なる点を説明する。
(Twelfth embodiment)
FIG. 13 shows the configuration of a capsule endoscope position measuring apparatus 1L according to the twelfth embodiment of the present invention. As shown in FIG. 13, the capsule endoscope position measuring apparatus 1L includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a TDC 104A, and a position calculation circuit 105. A down conversion circuit 106A, an intermediate frequency adjustment circuit 107, a comparator 114, a variable gain amplifier (VGA) 118, and a first control circuit 119. The configuration shown in FIG. 13 is different from the configuration shown in FIG.
 可変ゲインアンプ118は、処理回路102によって処理された信号を増幅し、かつ増幅のゲインが可変である。第1の制御回路119は、処理回路102によって処理された信号の強度を測定し、かつ測定された強度に基づいて、可変ゲインアンプ118から出力される信号の強度が一定になるように可変ゲインアンプ118を制御する。比較器114は、可変ゲインアンプ118から出力された信号の電圧と基準電圧とを比較し、かつ比較結果に応じて2値信号を出力する。 The variable gain amplifier 118 amplifies the signal processed by the processing circuit 102 and the amplification gain is variable. The first control circuit 119 measures the intensity of the signal processed by the processing circuit 102, and based on the measured intensity, the variable gain is set so that the intensity of the signal output from the variable gain amplifier 118 is constant. The amplifier 118 is controlled. The comparator 114 compares the voltage of the signal output from the variable gain amplifier 118 with a reference voltage, and outputs a binary signal according to the comparison result.
 カプセル内視鏡位置測定装置1Lにおいて、可変ゲインアンプ118は、ダウンコンバート回路106Aによってダウンコンバートされた信号を増幅する。つまり、可変ゲインアンプ118は、ダウンコンバート回路106Aから出力された信号を増幅する。可変ゲインアンプ118は、ダウンコンバート回路106Aに入力される信号を増幅してもよい。 In the capsule endoscope position measuring apparatus 1L, the variable gain amplifier 118 amplifies the signal down-converted by the down-conversion circuit 106A. That is, the variable gain amplifier 118 amplifies the signal output from the down-conversion circuit 106A. The variable gain amplifier 118 may amplify the signal input to the down-conversion circuit 106A.
 カプセル内視鏡位置測定装置1Lにおいて、第1の制御回路119は、ダウンコンバート回路106Aによってダウンコンバートされた信号の強度を測定する。つまり、第1の制御回路119は、ダウンコンバート回路106Aから出力された信号の強度を測定する。第1の制御回路119は、ダウンコンバート回路106Aに入力される信号の強度を測定してもよい。 In the capsule endoscope position measurement apparatus 1L, the first control circuit 119 measures the intensity of the signal down-converted by the down-conversion circuit 106A. That is, the first control circuit 119 measures the intensity of the signal output from the down-conversion circuit 106A. The first control circuit 119 may measure the strength of the signal input to the down-conversion circuit 106A.
 前述したように、比較器114に入力される信号の強度に応じて、2値信号の立ち上がりと立ち下がりとの各々の時間が変化する。可変ゲインアンプ118から出力される信号の強度が一定になることにより、2値信号の立ち上がりと立ち下がりとの各々の時間が一定になる。 As described above, the rise time and fall time of the binary signal change according to the intensity of the signal input to the comparator 114. Since the intensity of the signal output from the variable gain amplifier 118 becomes constant, the rise and fall times of the binary signal become constant.
 上記以外の点については、図13に示す構成は、図9に示す構成と同様である。 Other than the above, the configuration shown in FIG. 13 is the same as the configuration shown in FIG.
 カプセル内視鏡位置測定装置1Lにおいて、基準信号生成回路103は、カプセル内視鏡位置測定装置1Dにおける電圧制御発振器103Aであってもよい。カプセル内視鏡位置測定装置1Lは、カプセル内視鏡位置測定装置1Dにおける基準周波数調整回路108を有してもよい。カプセル内視鏡位置測定装置1Lは、カプセル内視鏡位置測定装置1Eにおける時間変化測定回路109と第1の位相差補正回路110とを有してもよい。カプセル内視鏡位置測定装置1Lにおいて、基準信号生成回路103は、少なくとも4本のアンテナ100のいずれか1つであってもよい。カプセル内視鏡位置測定装置1Lは、カプセル内視鏡位置測定装置1Gにおける狭帯域フィルタ113を有してもよい。カプセル内視鏡位置測定装置1Lは、TDC104Aの代わりにカプセル内視鏡位置測定装置1Jにおけるカウンタ104Cを有してもよい。 In the capsule endoscope position measurement apparatus 1L, the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1L may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1L may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E. In the capsule endoscope position measuring apparatus 1L, the reference signal generation circuit 103 may be any one of at least four antennas 100. The capsule endoscope position measuring device 1L may include the narrow band filter 113 in the capsule endoscope position measuring device 1G. The capsule endoscope position measuring apparatus 1L may include a counter 104C in the capsule endoscope position measuring apparatus 1J instead of the TDC 104A.
 カプセル内視鏡位置測定装置1Lは、可変ゲインアンプ118と第1の制御回路119とを有することにより、位置測定をより高精度に行うことができる。 The capsule endoscope position measuring apparatus 1L includes the variable gain amplifier 118 and the first control circuit 119, so that position measurement can be performed with higher accuracy.
 (第13の実施形態)
 図14は、本発明の第13の実施形態のカプセル内視鏡位置測定装置1Mの構成を示している。図14に示すように、カプセル内視鏡位置測定装置1Mは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、TDC104Aと、位置算出回路105と、ダウンコンバート回路106Aと、中間周波数調整回路107と、比較器114と、アッテネータ(ATT)120と、第2の制御回路121とを有する。図14に示す構成について、図9に示す構成と異なる点を説明する。
(13th Embodiment)
FIG. 14 shows a configuration of a capsule endoscope position measuring apparatus 1M according to the thirteenth embodiment of the present invention. As shown in FIG. 14, the capsule endoscope position measuring apparatus 1M includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a TDC 104A, and a position calculation circuit 105. A down-conversion circuit 106A, an intermediate frequency adjustment circuit 107, a comparator 114, an attenuator (ATT) 120, and a second control circuit 121. The configuration shown in FIG. 14 will be described while referring to differences from the configuration shown in FIG.
 アッテネータ120は、処理回路102によって処理された信号を減衰させ、かつ減衰量が可変である。第2の制御回路121は、処理回路102によって処理された信号の強度を測定し、かつ測定された強度に基づいて、アッテネータ120から出力される信号の強度が一定になるようにアッテネータ120を制御する。比較器114は、アッテネータ120から出力された信号の電圧と基準電圧とを比較し、かつ比較結果に応じて2値信号を出力する。 The attenuator 120 attenuates the signal processed by the processing circuit 102, and the attenuation amount is variable. The second control circuit 121 measures the intensity of the signal processed by the processing circuit 102, and controls the attenuator 120 so that the intensity of the signal output from the attenuator 120 is constant based on the measured intensity. To do. The comparator 114 compares the voltage of the signal output from the attenuator 120 with a reference voltage, and outputs a binary signal according to the comparison result.
 カプセル内視鏡位置測定装置1Mにおいて、アッテネータ120は、ダウンコンバート回路106Aによってダウンコンバートされた信号を減衰させる。つまり、アッテネータ120は、ダウンコンバート回路106Aから出力された信号を減衰させる。アッテネータ120は、ダウンコンバート回路106Aに入力される信号を減衰させてもよい。 In the capsule endoscope position measurement apparatus 1M, the attenuator 120 attenuates the signal down-converted by the down-conversion circuit 106A. That is, the attenuator 120 attenuates the signal output from the down-conversion circuit 106A. The attenuator 120 may attenuate the signal input to the down-conversion circuit 106A.
 カプセル内視鏡位置測定装置1Mにおいて、第2の制御回路121は、ダウンコンバート回路106Aによってダウンコンバートされた信号の強度を測定する。つまり、第2の制御回路121は、ダウンコンバート回路106Aから出力された信号の強度を測定する。第2の制御回路121は、ダウンコンバート回路106Aに入力される信号の強度を測定してもよい。 In the capsule endoscope position measuring apparatus 1M, the second control circuit 121 measures the intensity of the signal down-converted by the down-conversion circuit 106A. That is, the second control circuit 121 measures the intensity of the signal output from the down-conversion circuit 106A. The second control circuit 121 may measure the strength of the signal input to the down-conversion circuit 106A.
 前述したように、比較器114に入力される信号の強度に応じて、2値信号の立ち上がりと立ち下がりとの各々の時間が変化する。アッテネータ120から出力される信号の強度が一定になることにより、2値信号の立ち上がりと立ち下がりとの各々の時間が一定になる。 As described above, the rise time and fall time of the binary signal change according to the intensity of the signal input to the comparator 114. Since the intensity of the signal output from the attenuator 120 becomes constant, each time of the rise and fall of the binary signal becomes constant.
 上記以外の点については、図14に示す構成は、図9に示す構成と同様である。 Other than the above, the configuration shown in FIG. 14 is the same as the configuration shown in FIG.
 カプセル内視鏡位置測定装置1Mにおいて、基準信号生成回路103は、カプセル内視鏡位置測定装置1Dにおける電圧制御発振器103Aであってもよい。カプセル内視鏡位置測定装置1Mは、カプセル内視鏡位置測定装置1Dにおける基準周波数調整回路108を有してもよい。カプセル内視鏡位置測定装置1Mは、カプセル内視鏡位置測定装置1Eにおける時間変化測定回路109と第1の位相差補正回路110とを有してもよい。カプセル内視鏡位置測定装置1Mにおいて、基準信号生成回路103は、少なくとも4本のアンテナ100のいずれか1つであってもよい。カプセル内視鏡位置測定装置1Mは、カプセル内視鏡位置測定装置1Gにおける狭帯域フィルタ113を有してもよい。カプセル内視鏡位置測定装置1Mは、TDC104Aの代わりにカプセル内視鏡位置測定装置1Jにおけるカウンタ104Cを有してもよい。 In the capsule endoscope position measurement apparatus 1M, the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1M may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1M may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement apparatus 1E. In the capsule endoscope position measurement apparatus 1M, the reference signal generation circuit 103 may be any one of at least four antennas 100. The capsule endoscope position measuring device 1M may include the narrow band filter 113 in the capsule endoscope position measuring device 1G. The capsule endoscope position measuring apparatus 1M may include a counter 104C in the capsule endoscope position measuring apparatus 1J instead of the TDC 104A.
 カプセル内視鏡位置測定装置1Mは、アッテネータ120と第2の制御回路121とを有することにより、位置測定をより高精度に行うことができる。アッテネータ120は、カプセル内視鏡位置測定装置1Lにおける可変ゲインアンプ118と比較して、信号に与える遅延が小さい。 The capsule endoscope position measurement apparatus 1M includes the attenuator 120 and the second control circuit 121, so that the position measurement can be performed with higher accuracy. The attenuator 120 has a smaller delay given to the signal than the variable gain amplifier 118 in the capsule endoscope position measuring apparatus 1L.
 (第14の実施形態)
 図15は、本発明の第14の実施形態のカプセル内視鏡位置測定装置1Nの構成を示している。図15に示すように、カプセル内視鏡位置測定装置1Nは、少なくとも4本のアンテナ100と、アンテナ選択回路101と、処理回路102と、基準信号生成回路103と、位相差測定回路104と、位置算出回路105と、ダウンコンバート回路106Aと、中間周波数調整回路107と、AD変換器122とを有する。図15に示す構成について、図4に示す構成と異なる点を説明する。
(Fourteenth embodiment)
FIG. 15 shows a configuration of a capsule endoscope position measuring apparatus 1N according to the fourteenth embodiment of the present invention. As shown in FIG. 15, the capsule endoscope position measuring apparatus 1N includes at least four antennas 100, an antenna selection circuit 101, a processing circuit 102, a reference signal generation circuit 103, a phase difference measurement circuit 104, A position calculation circuit 105, a down-conversion circuit 106A, an intermediate frequency adjustment circuit 107, and an AD converter 122 are included. The configuration shown in FIG. 15 will be described while referring to differences from the configuration shown in FIG.
 AD変換器122は、処理回路102によって処理された信号と基準信号との各々をデジタル値に変換する。位相差測定回路104は、処理回路102によって処理された信号のデジタル値と基準信号のデジタル値とに基づいて、位相差を測定する。 The AD converter 122 converts each of the signal processed by the processing circuit 102 and the reference signal into a digital value. The phase difference measurement circuit 104 measures the phase difference based on the digital value of the signal processed by the processing circuit 102 and the digital value of the reference signal.
 AD変換器122は、周期的にAD変換を行う。処理回路102によって処理された信号の第1のデジタル値列と基準信号の第2のデジタル値列とがAD変換器122から出力される。第1のデジタル値列と第2のデジタル値列とは、互いに異なる時刻に生成された複数のデジタル値を含む。AD変換器122は、処理回路102によって処理された信号をデジタル値に変換する第1のAD変換器と、基準信号をデジタル値に変換する第2のAD変換器とを含んでもよい。例えば、位相差測定回路104は、相互相関関数を使用して第1のデジタル値列と第2のデジタル値列との相関を算出する。第1のデジタル値列と第2のデジタル値列とにおいて、相関が高い位置の時間方向のずれが位相差である。位相差測定回路104は、第1のデジタル値列と第2のデジタル値列との時間方向のずれを算出することにより、位相差を算出する。 The AD converter 122 periodically performs AD conversion. A first digital value sequence of the signal processed by the processing circuit 102 and a second digital value sequence of the reference signal are output from the AD converter 122. The first digital value sequence and the second digital value sequence include a plurality of digital values generated at different times. The AD converter 122 may include a first AD converter that converts the signal processed by the processing circuit 102 into a digital value, and a second AD converter that converts the reference signal into a digital value. For example, the phase difference measurement circuit 104 calculates the correlation between the first digital value sequence and the second digital value sequence using the cross-correlation function. In the first digital value sequence and the second digital value sequence, a shift in the time direction at a position having a high correlation is a phase difference. The phase difference measurement circuit 104 calculates a phase difference by calculating a time direction deviation between the first digital value sequence and the second digital value sequence.
 カプセル内視鏡位置測定装置1Nにおいて、AD変換器122は、ダウンコンバート回路106Aによってダウンコンバートされた信号をデジタル値に変換する。つまり、AD変換器122は、ダウンコンバート回路106Aから出力された信号をデジタル値に変換する。AD変換器122は、ダウンコンバート回路106Aに入力される信号をデジタル値に変換してもよい。 In the capsule endoscope position measuring apparatus 1N, the AD converter 122 converts the signal down-converted by the down-conversion circuit 106A into a digital value. That is, the AD converter 122 converts the signal output from the down-conversion circuit 106A into a digital value. The AD converter 122 may convert the signal input to the down-conversion circuit 106A into a digital value.
 上記以外の点については、図15に示す構成は、図4に示す構成と同様である。 Other than the above, the configuration shown in FIG. 15 is the same as the configuration shown in FIG.
 カプセル内視鏡位置測定装置1Nにおいて、基準信号生成回路103は、カプセル内視鏡位置測定装置1Dにおける電圧制御発振器103Aであってもよい。カプセル内視鏡位置測定装置1Nは、カプセル内視鏡位置測定装置1Dにおける基準周波数調整回路108を有してもよい。カプセル内視鏡位置測定装置1Nは、カプセル内視鏡位置測定装置1Eにおける時間変化測定回路109と第1の位相差補正回路110とを有してもよい。カプセル内視鏡位置測定装置1Nにおいて、基準信号生成回路103は、少なくとも4本のアンテナ100のいずれか1つであってもよい。カプセル内視鏡位置測定装置1Nは、カプセル内視鏡位置測定装置1Gにおける狭帯域フィルタ113を有してもよい。 In the capsule endoscope position measurement apparatus 1N, the reference signal generation circuit 103 may be the voltage controlled oscillator 103A in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement apparatus 1N may include the reference frequency adjustment circuit 108 in the capsule endoscope position measurement apparatus 1D. The capsule endoscope position measurement device 1N may include the time change measurement circuit 109 and the first phase difference correction circuit 110 in the capsule endoscope position measurement device 1E. In the capsule endoscope position measurement apparatus 1N, the reference signal generation circuit 103 may be any one of at least four antennas 100. The capsule endoscope position measuring apparatus 1N may include the narrow band filter 113 in the capsule endoscope position measuring apparatus 1G.
 第1および第2の実施形態の少なくとも1つのカプセル内視鏡位置測定装置は、AD変換器122を有してもよい。 The at least one capsule endoscope position measurement device according to the first and second embodiments may include the AD converter 122.
 カプセル内視鏡位置測定装置1Nは、デジタル値に基づいて位相差を測定することにより、位置測定をより高精度に行うことができる。 The capsule endoscope position measurement device 1N can measure the position with higher accuracy by measuring the phase difference based on the digital value.
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。 As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment and its modification. Additions, omissions, substitutions, and other modifications can be made without departing from the spirit of the present invention. Further, the present invention is not limited by the above description, and is limited only by the scope of the appended claims.
 本発明の各実施形態によれば、処理量が削減される。 According to each embodiment of the present invention, the amount of processing is reduced.
 1A,1B,1C,1D,1E,1F,1G,1H,1I,1J,1K,1L,1M,1N,9 カプセル内視鏡位置測定装置
 100,900 アンテナ
 101,901 アンテナ選択回路
 102,112,902,903 処理回路
 103 基準信号生成回路
 103A,1060A VCO
 104,104B,904 位相差測定回路
 104A TDC
 104C カウンタ
 105,905 位置算出回路
 106,106A ダウンコンバート回路
 107 中間周波数調整回路
 108 基準周波数調整回路
 109 時間変化測定回路
 110 第1の位相差補正回路
 111 最大強度選択回路
 113 狭帯域フィルタ
 114 比較器
 115,122 AD変換器
 116 強度測定回路
 117 第2の位相差補正回路
 118 可変ゲインアンプ
 119 第1の制御回路
 120 アッテネータ
 121 第2の制御回路
 1040 位相比較器
 1041 チャージポンプ
 1042 ループフィルタ
 1060 局部発振器
 1061 ミキサ
1A, 1B, 1C, 1D, 1E, 1F, 1G, 1H, 1I, 1J, 1K, 1L, 1M, 1N, 9 Capsule endoscope position measuring device 100, 900 Antenna 101, 901 Antenna selection circuit 102, 112, 902, 903 Processing circuit 103 Reference signal generation circuit 103A, 1060A VCO
104, 104B, 904 Phase difference measuring circuit 104A TDC
104C Counter 105, 905 Position calculation circuit 106, 106A Down-conversion circuit 107 Intermediate frequency adjustment circuit 108 Reference frequency adjustment circuit 109 Time variation measurement circuit 110 First phase difference correction circuit 111 Maximum intensity selection circuit 113 Narrow band filter 114 Comparator 115 , 122 AD converter 116 Intensity measuring circuit 117 Second phase difference correction circuit 118 Variable gain amplifier 119 First control circuit 120 Attenuator 121 Second control circuit 1040 Phase comparator 1041 Charge pump 1042 Loop filter 1060 Local oscillator 1061 Mixer

Claims (21)

  1.  生体の外部に配置され、かつカプセル内視鏡から無線で送信された信号を受信する少なくとも4本のアンテナと、
     前記少なくとも4本のアンテナから1本の前記アンテナを順次選択するアンテナ選択回路と、
     前記アンテナ選択回路によって選択された前記アンテナによって受信された前記信号を処理する処理回路と、
     基準信号を生成する基準信号生成回路と、
     前記処理回路によって処理された前記信号と前記基準信号との位相差を測定する位相差測定回路と、
     前記位相差測定回路によって測定された、前記少なくとも4本のアンテナの各々に対する前記位相差に基づいて、前記カプセル内視鏡の位置を算出する位置算出回路と、
     を有するカプセル内視鏡位置測定装置。
    At least four antennas arranged outside the living body and receiving signals transmitted wirelessly from the capsule endoscope;
    An antenna selection circuit that sequentially selects one of the at least four antennas;
    A processing circuit for processing the signal received by the antenna selected by the antenna selection circuit;
    A reference signal generation circuit for generating a reference signal;
    A phase difference measuring circuit for measuring a phase difference between the signal processed by the processing circuit and the reference signal;
    A position calculating circuit that calculates the position of the capsule endoscope based on the phase difference for each of the at least four antennas measured by the phase difference measuring circuit;
    A capsule endoscope position measuring device having
  2.  前記処理回路によって処理された前記信号の周波数を中間周波数にダウンコンバートするダウンコンバート回路をさらに有する
     請求項1に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measurement apparatus according to claim 1, further comprising a down-conversion circuit that down-converts the frequency of the signal processed by the processing circuit to an intermediate frequency.
  3.  前記位相差測定回路によって測定された位相差に基づいて、前記中間周波数を調整する中間周波数調整回路をさらに有する
     請求項2に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measuring device according to claim 2, further comprising an intermediate frequency adjusting circuit that adjusts the intermediate frequency based on the phase difference measured by the phase difference measuring circuit.
  4.  前記ダウンコンバート回路は、
     前記少なくとも4本のアンテナによって受信される前記信号の周波数と異なる周波数を有する信号を生成する電圧制御発振器と、
     前記処理回路によって処理された前記信号と、前記電圧制御発振器によって生成された前記信号とを混合するミキサと、
     を有する
     請求項2または請求項3に記載のカプセル内視鏡位置測定装置。
    The down-conversion circuit is
    A voltage controlled oscillator that generates a signal having a frequency different from the frequency of the signal received by the at least four antennas;
    A mixer that mixes the signal processed by the processing circuit with the signal generated by the voltage controlled oscillator;
    The capsule endoscope position measuring device according to claim 2 or 3.
  5.  前記ダウンコンバート回路によってダウンコンバートされた前記信号の周波数帯域を制限する狭帯域フィルタをさらに有する
     請求項2から請求項4のいずれか一項に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measurement apparatus according to any one of claims 2 to 4, further comprising a narrowband filter that limits a frequency band of the signal downconverted by the downconversion circuit.
  6.  前記基準信号の周波数は、前記中間周波数と同一になるように設定される
     請求項2から請求項5のいずれか一項に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measurement apparatus according to any one of claims 2 to 5, wherein a frequency of the reference signal is set to be the same as the intermediate frequency.
  7.  前記基準信号の周波数は、前記少なくとも4本のアンテナによって受信される前記信号の周波数と同一になるように設定される
     請求項1に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measurement apparatus according to claim 1, wherein a frequency of the reference signal is set to be the same as a frequency of the signal received by the at least four antennas.
  8.  前記位相差測定回路によって測定された位相差に基づいて、前記基準信号の周波数を調整する基準周波数調整回路をさらに有する請求項1から請求項7のいずれか一項に記載のカプセル内視鏡位置測定装置。 The capsule endoscope position according to any one of claims 1 to 7, further comprising a reference frequency adjustment circuit that adjusts a frequency of the reference signal based on a phase difference measured by the phase difference measurement circuit. measuring device.
  9.  前記位相差測定回路によって測定された、前記少なくとも4本のアンテナの各々に対する前記位相差の時間変化を測定する時間変化測定回路と、
     前記時間変化測定回路によって測定された前記時間変化に基づいて、前記位相差測定回路によって測定された、前記少なくとも4本のアンテナの各々に対する前記位相差を補正する第1の位相差補正回路と、
     をさらに有する請求項1から請求項8のいずれか一項に記載のカプセル内視鏡位置測定装置。
    A time change measuring circuit for measuring a time change of the phase difference for each of the at least four antennas measured by the phase difference measuring circuit;
    A first phase difference correction circuit that corrects the phase difference for each of the at least four antennas measured by the phase difference measurement circuit based on the time change measured by the time change measurement circuit;
    The capsule endoscope position measuring device according to any one of claims 1 to 8, further comprising:
  10.  前記基準信号生成回路は、電圧制御発振器である
     請求項1から請求項9のいずれか一項に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measurement apparatus according to any one of claims 1 to 9, wherein the reference signal generation circuit is a voltage controlled oscillator.
  11.  前記基準信号生成回路は、水晶発振器である
     請求項1から請求項9のいずれか一項に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measurement apparatus according to any one of claims 1 to 9, wherein the reference signal generation circuit is a crystal oscillator.
  12.  前記基準信号生成回路は、前記少なくとも4本のアンテナのいずれか1つである
     請求項1から請求項7のいずれか一項に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measurement apparatus according to any one of claims 1 to 7, wherein the reference signal generation circuit is any one of the at least four antennas.
  13.  前記基準信号生成回路は、前記少なくとも4本のアンテナのうち受信強度が最も高い前記アンテナである
     請求項12に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measurement apparatus according to claim 12, wherein the reference signal generation circuit is the antenna having the highest reception intensity among the at least four antennas.
  14.  前記処理回路によって処理された前記信号の電圧と基準電圧とを比較し、かつ比較結果に応じて2値のいずれか1つを有する2値信号を出力する比較器をさらに有し、
     前記位相差測定回路は、前記2値信号と前記基準信号との前記位相差を測定する
     請求項1から請求項13のいずれか一項に記載のカプセル内視鏡位置測定装置。
    A comparator that compares the voltage of the signal processed by the processing circuit with a reference voltage and outputs a binary signal having any one of the two values according to the comparison result;
    The capsule endoscope position measurement device according to any one of claims 1 to 13, wherein the phase difference measurement circuit measures the phase difference between the binary signal and the reference signal.
  15.  前記位相差測定回路は、TDC(Time to Digital Converter)である
     請求項14に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measuring device according to claim 14, wherein the phase difference measuring circuit is a TDC (Time to Digital Converter).
  16.  前記位相差測定回路は、
     前記2値信号の位相と前記基準信号の位相とを比較する位相比較器と、
     前記位相比較器によって比較された前記2値信号の位相と前記基準信号の位相との差に応じた電圧信号を出力するチャージポンプと、
     を有する
     請求項14に記載のカプセル内視鏡位置測定装置。
    The phase difference measuring circuit is
    A phase comparator that compares the phase of the binary signal with the phase of the reference signal;
    A charge pump that outputs a voltage signal according to a difference between the phase of the binary signal compared with the phase of the reference signal and the phase of the reference signal;
    The capsule endoscope position measuring device according to claim 14.
  17.  前記位相差測定回路は、カウンタである
     請求項14に記載のカプセル内視鏡位置測定装置。
    The capsule endoscope position measuring device according to claim 14, wherein the phase difference measuring circuit is a counter.
  18.  前記処理回路によって処理された前記信号の強度を測定する強度測定回路と、
     前記強度測定回路によって測定された前記強度に基づいて、前記位相差測定回路によって測定された、前記少なくとも4本のアンテナの各々に対する前記位相差を補正する第2の位相差補正回路と、
     をさらに有する
     請求項14から請求項17のいずれか一項に記載のカプセル内視鏡位置測定装置。
    An intensity measurement circuit for measuring the intensity of the signal processed by the processing circuit;
    A second phase difference correction circuit that corrects the phase difference for each of the at least four antennas measured by the phase difference measurement circuit based on the intensity measured by the intensity measurement circuit;
    The capsule endoscope position measuring device according to any one of claims 14 to 17, further comprising:
  19.  前記処理回路によって処理された前記信号を増幅し、かつ増幅のゲインが可変である可変ゲインアンプと、
     前記処理回路によって処理された前記信号の強度を測定し、かつ測定された前記強度に基づいて、前記可変ゲインアンプから出力される信号の強度が一定になるように前記可変ゲインアンプを制御する第1の制御回路と、
     をさらに有し、
     前記比較器は、前記可変ゲインアンプから出力された前記信号の電圧と前記基準電圧とを比較し、かつ比較結果に応じて前記2値信号を出力する
     請求項14から請求項17のいずれか一項に記載のカプセル内視鏡位置測定装置。
    A variable gain amplifier that amplifies the signal processed by the processing circuit and has a variable gain;
    Measuring the intensity of the signal processed by the processing circuit, and controlling the variable gain amplifier so that the intensity of the signal output from the variable gain amplifier is constant based on the measured intensity. 1 control circuit;
    Further comprising
    The comparator compares the voltage of the signal output from the variable gain amplifier with the reference voltage, and outputs the binary signal according to a comparison result. The capsule endoscope position measuring device according to Item.
  20.  前記処理回路によって処理された前記信号を減衰させ、かつ減衰量が可変であるアッテネータと、
     前記処理回路によって処理された前記信号の強度を測定し、かつ測定された前記強度に基づいて、前記アッテネータから出力される信号の強度が一定になるように前記アッテネータを制御する第2の制御回路と、
     をさらに有し、
     前記比較器は、前記アッテネータから出力された前記信号の電圧と前記基準電圧とを比較し、かつ比較結果に応じて前記2値信号を出力する
     請求項14から請求項17のいずれか一項に記載のカプセル内視鏡位置測定装置。
    An attenuator that attenuates the signal processed by the processing circuit and has a variable attenuation;
    A second control circuit that measures the intensity of the signal processed by the processing circuit and controls the attenuator so that the intensity of the signal output from the attenuator is constant based on the measured intensity When,
    Further comprising
    18. The comparator according to claim 14, wherein the comparator compares the voltage of the signal output from the attenuator with the reference voltage, and outputs the binary signal according to a comparison result. The capsule endoscope position measuring device as described.
  21.  前記処理回路によって処理された前記信号と前記基準信号との各々をデジタル値に変換するAD変換器をさらに有し、
     前記位相差測定回路は、前記処理回路によって処理された前記信号の前記デジタル値と前記基準信号の前記デジタル値とに基づいて、前記位相差を測定する
     請求項1から請求項13のいずれか一項に記載のカプセル内視鏡位置測定装置。
    An AD converter that converts each of the signal processed by the processing circuit and the reference signal into a digital value;
    The phase difference measurement circuit measures the phase difference based on the digital value of the signal processed by the processing circuit and the digital value of the reference signal. The capsule endoscope position measuring device according to Item.
PCT/JP2015/083015 2015-11-25 2015-11-25 Capsule endoscope position measurement device WO2017090107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083015 WO2017090107A1 (en) 2015-11-25 2015-11-25 Capsule endoscope position measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/083015 WO2017090107A1 (en) 2015-11-25 2015-11-25 Capsule endoscope position measurement device

Publications (1)

Publication Number Publication Date
WO2017090107A1 true WO2017090107A1 (en) 2017-06-01

Family

ID=58764095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083015 WO2017090107A1 (en) 2015-11-25 2015-11-25 Capsule endoscope position measurement device

Country Status (1)

Country Link
WO (1) WO2017090107A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219329A (en) * 2003-01-16 2004-08-05 Ntt Docomo Inc Method, system and instrument for measuring position, and in-vivo wireless device
JP2007010639A (en) * 2004-08-16 2007-01-18 Rcs:Kk Active tag apparatus
JP2013540261A (en) * 2010-08-23 2013-10-31 アメド スマート トラッキング ソリューションズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Position determination by RFID tag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219329A (en) * 2003-01-16 2004-08-05 Ntt Docomo Inc Method, system and instrument for measuring position, and in-vivo wireless device
JP2007010639A (en) * 2004-08-16 2007-01-18 Rcs:Kk Active tag apparatus
JP2013540261A (en) * 2010-08-23 2013-10-31 アメド スマート トラッキング ソリューションズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Position determination by RFID tag

Similar Documents

Publication Publication Date Title
US9577771B1 (en) Radio frequency time skew calibration systems and methods
JP6663115B2 (en) FMCW radar
CN108169736B (en) In-phase (I) and quadrature (Q) imbalance estimation in radar systems
US8805313B2 (en) Magnitude and phase response calibration of receivers
US20140294199A1 (en) Signal analysis apparatus and signal analysis method
KR102136798B1 (en) Super-regenerative receiver and super-regenerative reception method with improved channel selectivity
KR102354060B1 (en) Method for Path Calibration in Multi-Path Radio-frequency Transceiver and Apparatus Using the Same
EP3584964B1 (en) Narrow band received signal strength indicator system
JP2011004073A5 (en) Wireless communication device
JP6714462B2 (en) Wireless sensor terminal, wireless sensor system, and sensor data collection method
CN112204421B (en) Radar apparatus, control circuit, and program storage medium
WO2017090107A1 (en) Capsule endoscope position measurement device
JP2016045176A (en) Received signal processing device, radar device, and target detection method
US9644964B2 (en) IC for sensor with a switchable low pass filter, sensor device and electronic apparatus
JP6466200B2 (en) Receiving device and adjusting method of receiving device
JP5947943B1 (en) Signal analysis apparatus and method
JP2016186443A (en) Signal measurement device, signal measurement system, and signal measurement method
JP5739499B2 (en) Burst signal measuring apparatus and measuring method
JP6394369B2 (en) Method of detecting filter characteristics in wireless communication device and wireless communication device having the function
JP5202591B2 (en) Binarization circuit, demodulation circuit, and in-vehicle tuner
JP2005073258A (en) Method for measuring gps air sensitivity and mobile terminal having function of measuring gps air sensitivity
JP6959315B2 (en) Signal analyzer and signal analysis method
JP2011215128A (en) Glonass receiving device
US7643380B2 (en) Receiving circuit and time piece
JP2008224599A (en) Signal measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15909226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15909226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP