WO2017085971A1 - Device, method and program - Google Patents

Device, method and program Download PDF

Info

Publication number
WO2017085971A1
WO2017085971A1 PCT/JP2016/073499 JP2016073499W WO2017085971A1 WO 2017085971 A1 WO2017085971 A1 WO 2017085971A1 JP 2016073499 W JP2016073499 W JP 2016073499W WO 2017085971 A1 WO2017085971 A1 WO 2017085971A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
sub
unit
symbols
wireless communication
Prior art date
Application number
PCT/JP2016/073499
Other languages
French (fr)
Japanese (ja)
Inventor
吉澤 淳
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/773,426 priority Critical patent/US10938608B2/en
Priority to JP2017551550A priority patent/JP6848879B2/en
Publication of WO2017085971A1 publication Critical patent/WO2017085971A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03834Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using pulse shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/26265Arrangements for sidelobes suppression specially adapted to multicarrier systems, e.g. spectral precoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2697Multicarrier modulation systems in combination with other modulation techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J2011/0003Combination with other multiplexing techniques
    • H04J2011/0016Combination with other multiplexing techniques with FDM/FDMA and TDM/TDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control

Definitions

  • the present disclosure relates to an apparatus, a method, and a program.
  • OFDM Orthogonal Frequency Division Multiplexing
  • OFDMA Orthogonal Frequency Division Multiple Access
  • OFDM is resistant to multipath propagation paths, and by employing CP (Cyclic Prefix), it is possible to avoid the occurrence of intersymbol interference due to multipath delay waves.
  • CP Cyclic Prefix
  • a disadvantage of OFDM is that the level of out-of-band radiation is large.
  • PAPR Peak-to-Average Power Ratio
  • This modulation technique introduces a new concept of sub-symbols and divides one symbol into an arbitrary number of sub-symbols, thereby enabling flexible symbol time and frequency design.
  • this modulation technology can reduce the radiation of unnecessary signals outside the band by applying a pulse shaping filter to the symbol, thereby improving the frequency utilization efficiency.
  • UF-OFDM Universal Filtered-OFDM
  • UFMC Universal Filtered Multi-Carrier
  • FBMC Fan Bank Multi-Carrier
  • GOFDM Generalized OFDM
  • this modulation technique can be said to be generalized OFDM, it may also be called GFDM (Generalized Frequency Division Multiplexing), and this name is adopted in this specification.
  • Basic techniques related to GFDM are disclosed in, for example, Patent Document 1 and Non-Patent Document 1 below.
  • undesirable spectrum components eg, out-of-band frequency distortion components
  • CP addition and time window processing which have been performed in OFDM, may be considered, but in that case, frequency utilization efficiency may decrease or noise may increase.
  • An apparatus includes a processing unit that performs filtering on a predetermined number of subcarriers for transmission data.
  • a predetermined symbol mapped to a subsymbol at an end portion in a time direction in a unit resource including one or more subcarriers and a plurality of subsymbols in a signal filtered for a predetermined number of subcarriers, a predetermined symbol mapped to a subsymbol at an end portion in a time direction in a unit resource including one or more subcarriers and a plurality of subsymbols.
  • An apparatus includes a processing unit that obtains the transmission data from value data and transmission data mapped to other sub-symbols in the unit resource.
  • data of a predetermined value mapped to a sub-symbol at an end portion in a time direction in a unit resource composed of one or more subcarriers and a plurality of sub-symbols, and other sub-symbols in the unit resource Filtering by a processor for a predetermined number of subcarriers for mapped transmission data is provided.
  • the computer is configured to store data of a predetermined value mapped to a sub-symbol at an end in a time direction in a unit resource including one or more subcarriers and a plurality of subsymbols, and other data in the unit resource.
  • a program is provided for causing transmission data mapped to sub-symbols to function as a processing unit that performs filtering for each predetermined number of sub-carriers.
  • FIG. 2 is an explanatory diagram illustrating an example of a schematic configuration of a system according to the embodiment. It is a block diagram which shows an example of a structure of the base station which concerns on the same embodiment. It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment. It is explanatory drawing for demonstrating the technical feature of the embodiment.
  • elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numerals.
  • a plurality of elements having substantially the same functional configuration are differentiated as necessary, such as the terminal devices 200A, 200B, and 200C.
  • the terminal devices 200A, 200B, and 200C are simply referred to as the terminal device 200 when it is not necessary to distinguish between them.
  • FIG. 1 is an explanatory diagram for explaining the concept of symbols in GFDM.
  • Reference numeral 10 indicates a radio resource per symbol of OFDM.
  • the radio resource indicated by reference numeral 10 includes a number of subcarriers in the frequency direction while one symbol section is occupied by a single symbol.
  • a CP is added for each symbol.
  • Reference numeral 12 denotes a radio resource in a section corresponding to one OFDM symbol in an SC-FDM (Single Carrier Frequency Division Multiplexing) signal.
  • the radio resource indicated by reference numeral 12 is occupied by a single symbol over the carrier frequency, but has a shorter symbol length than OFDM and includes a large number of symbols in the time direction.
  • Reference numeral 11 denotes a radio resource in a section corresponding to one OFDM symbol in GFDM.
  • the radio resource indicated by reference numeral 11 has an intermediate structure between the radio resource indicated by reference numeral 10 and the radio resource indicated by reference numeral 12. That is, in GFDM, a section corresponding to one OFDM symbol is divided into an arbitrary number of sub-symbols, and accordingly, the number of subcarriers is smaller than that of OFDM.
  • Such a radio resource structure allows a symbol length to be changed by a parameter, and can provide a more flexible transmission format.
  • FIG. 2 is a diagram illustrating an example of a configuration example of a transmission apparatus that supports GFDM.
  • the transmission apparatus performs mapping of input data in order to apply filtering corresponding to the variably set number of subcarriers and number of subsymbols. Note that the mapping for the sub-symbol here has an effect equivalent to performing oversampling as compared with OFDM.
  • the transmission apparatus applies a pulse shaping filter to a predetermined number of subcarriers and a predetermined number of subsymbols (more specifically, a predetermined filtering coefficient is multiplied).
  • the transmitter generates a symbol by performing frequency-time conversion on the pulse-shaped waveform.
  • the transmission device adds a CP, applies a DAC (Digital to Analog Converter), and outputs an RF (Radio Frequency) signal to the high frequency circuit.
  • DAC Digital to Analog Converter
  • GFDM modulation is expressed by the following equation.
  • K is the number of subcarriers
  • M is the number of subsymbols
  • d k, m is input data corresponding to the mth subsymbol of the kth subcarrier
  • g k, m [n] is a filter coefficient.
  • the nth output sample value x [n] of the GFDM symbol is obtained by multiplying the mapped input data by the corresponding GFDM coefficients and then summing all of them.
  • the filter coefficient changes according to the above equation (2), and a total of N sample values are obtained per symbol.
  • a time waveform sample value oversampled K times with respect to the sub-symbol is generated.
  • the transmitting apparatus performs D / A conversion on the GFDM symbol obtained in this way, performs desired amplification and frequency conversion by a high-frequency circuit, and then transmits from the antenna.
  • an RC filter Raised Cosine Filter
  • an RRC filter Root Raised Cosine Filter
  • an IOTA filter Isotropic Orthogonal Transfer Algorithm filter
  • This transformation matrix A is a square matrix having a complex number element of size KM ⁇ KM.
  • FIG. 4 shows signal amplitude values in one unit resource.
  • the time unit of the unit resource in GFDM is also referred to as a GFDM symbol.
  • a GFDM symbol includes one or more subsymbols.
  • a frequency unit of a unit resource in GFDM is also referred to as a resource block.
  • a resource block includes one or more subcarriers. In the example shown in FIG. 4, the unit resource is divided into four subcarriers and seven subsymbols.
  • Reference numerals 20 to 23 represent unit resource signals generated by the respective generation methods, and the horizontal axis represents time and the vertical axis represents amplitude values.
  • reference numeral 20 indicates an OFDM symbol.
  • a sufficient length of CP according to the multipath characteristics of the propagation path is added to the OFDM symbol in order to ensure good reception characteristics.
  • GFDM symbols indicated by reference numerals 21 to 23 are proposed.
  • reference numeral 21 since it is only necessary to add a CP having a length corresponding to the filter length of the pulse shaping filter to the GFDM symbol, there is an advantage that the CP length is shorter than that of OFDM.
  • reference numeral 22 a method has also been proposed in which a window function is applied to a GFDM symbol after the addition of a CP to suppress the amplitude at the joint between symbols and improve the spectrum characteristics.
  • the transmission signal length is longer than the original symbol length (that is, longer than the code 21). Therefore, as indicated by reference numeral 23, a method has also been proposed in which the transmission signal length is shortened by terminating the GFDM symbol multiplied by the window function.
  • FIG. 6 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to an embodiment of the present disclosure.
  • the system 1 includes a base station 100 and a terminal device 200.
  • the terminal device 200 is also called a user.
  • the user may also be called user equipment (UE).
  • the UE here may be a UE defined in LTE or LTE-A, and may more generally mean a communication device.
  • Base station 100 is a base station of a cellular system (or mobile communication system).
  • the base station 100 performs wireless communication with a terminal device (for example, the terminal device 200) located in the cell 101 of the base station 100.
  • a terminal device for example, the terminal device 200
  • the base station 100 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • Terminal device 200 The terminal device 200 can communicate in a cellular system (or mobile communication system).
  • the terminal device 200 performs wireless communication with a base station (for example, the base station 100) of the cellular system.
  • a base station for example, the base station 100
  • the terminal device 200 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • the base station 100 performs wireless communication with a plurality of terminal devices by orthogonal multiple access / non-orthogonal multiple access. More specifically, the base station 100 performs wireless communication with a plurality of terminal devices 200 by multiplexing / multiple access using GFDM.
  • the base station 100 performs wireless communication with a plurality of terminal devices 200 by multiplexing / multiple access using GFDM in the downlink. More specifically, for example, the base station 100 multiplexes signals to a plurality of terminal devices 200 using GFDM. In this case, for example, the terminal device 200 removes one or more other signals as interference from the multiplexed signal including the desired signal (that is, the signal to the terminal device 200), and decodes the desired signal.
  • the desired signal that is, the signal to the terminal device 200
  • the base station 100 may perform wireless communication with a plurality of terminal apparatuses by multiplexing / multiple access using GFDM instead of the downlink or together with the downlink.
  • the base station 100 may decode each of the signals from a multiplexed signal including signals transmitted by the plurality of terminal devices.
  • This technology can also be applied to multi-cell systems such as HetNet (Heterogeneous Network) or SCE (Small Cell Enhancement).
  • HetNet Heterogeneous Network
  • SCE Small Cell Enhancement
  • the present technology can also be applied to an MTC device, an IoT device, and the like.
  • FIG. 7 is a block diagram illustrating an exemplary configuration of the base station 100 according to an embodiment of the present disclosure.
  • the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
  • Antenna unit 110 The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
  • the wireless communication unit 120 transmits and receives signals.
  • the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
  • the network communication unit 130 transmits and receives information.
  • the network communication unit 130 transmits information to other nodes and receives information from other nodes.
  • the other nodes include other base stations and core network nodes.
  • Storage unit 140 The storage unit 140 temporarily or permanently stores a program for operating the base station 100 and various data.
  • Processing unit 150 provides various functions of the base station 100.
  • the processing unit 150 includes a transmission processing unit 151 and a buffer control unit 153.
  • the processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
  • FIG. 8 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure.
  • the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
  • Antenna unit 210 The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
  • the wireless communication unit 220 transmits and receives signals.
  • the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
  • Storage unit 230 The storage unit 230 temporarily or permanently stores a program for operating the terminal device 200 and various data.
  • the processing unit 240 provides various functions of the terminal device 200.
  • the processing unit 240 includes a reception processing unit 241 and a data acquisition unit 243.
  • the processing unit 240 may further include other components than this component. In other words, the processing unit 240 can perform operations other than the operation of this component.
  • reception processing unit 241 and the data acquisition unit 243 The operations of the reception processing unit 241 and the data acquisition unit 243 will be described in detail later.
  • the base station 100 (for example, the transmission processing unit 151) has data of a predetermined value in the sub-symbol at the end in the time direction in a unit resource composed of one or more subcarriers and a plurality of subsymbols. To map. Further, the base station 100 (for example, the transmission processing unit 151) maps transmission data (for example, user data) to other sub-symbols in the unit resource. With these mappings, data of a predetermined value is mapped to an end portion that can overlap with a unit resource to which transmission data is mapped and other unit resources adjacent in the time direction.
  • the base station 100 performs GFDM modulation on these data mapped to the unit resources. Specifically, the base station 100 performs filtering for each predetermined number of subcarriers (that is, applies a pulse shaping filter) as processing for GFDM.
  • the mapping of the predetermined value data suppresses the amplitude discontinuity between the GFDM symbols, so that it is possible to suppress an undesirable spectrum component that has occurred in the GFDM modulation. Since GFDM modulation is as described above, detailed description thereof is omitted here.
  • the sub-symbol at the end may be the first sub-symbol in the time direction of the unit resource.
  • the sub-symbol at the end may be the last sub-symbol in the time direction of the unit resource.
  • the sub-symbol at the end may mean both of them.
  • the sub-symbols at the end are sub-symbols at both ends in the time direction of the unit resource. .
  • the predetermined value data mapped to the sub-symbols at the end is data having the same value.
  • this predetermined value may be zero.
  • zero may be mapped to all subcarriers. In this case, the amplitude discontinuity between the GFDM symbols can be further suppressed.
  • the base station 100 may control the data length of the predetermined value data mapped to the unit resource and the data length of the transmission data. That is, the base station 100 can variably set the ratio between the predetermined value data and the transmission data in the unit resource.
  • the base station 100 (for example, the buffer control unit 153) may set the data length of the predetermined value data equal to the number of subcarriers of the unit resource. That is, data of a predetermined value may be mapped only to the first subsymbol. In this case, it is possible to most suppress the reduction in the amount of information of transmission data occupied per symbol.
  • FIG. 9 is a diagram schematically showing a state of calculation of the above formula (3).
  • reference numeral 30 indicates a transformation matrix A
  • reference numeral 31 indicates input data d
  • reference numeral 32 indicates output data x.
  • the hatched portion in the figure is a portion having a large amplitude, and the larger the hatching is, the larger the amplitude is.
  • Reference numeral 33 denotes a peak portion of the filter coefficient.
  • Reference numeral 34 denotes a portion to which zero is mapped in the input data. As indicated by reference numeral 32, it can be seen that the amplitudes at both ends of the output data (that is, both ends in the time direction) are small (for example, zero).
  • FIG. 10 is a diagram showing the structure of the transmission signal generated in this way, more specifically, the amplitude value of the transmission signal in one unit resource.
  • the out-of-band frequency distortion component due to the non-continuity of the amplitude is suppressed.
  • the terminal device 200 receives a GFDM-modulated signal. Then, the terminal device 200 (for example, the data acquisition unit 243), the data of a predetermined value mapped to the sub-symbol at the end of the unit resource in the time direction, and the reception data mapped to another sub-symbol of the unit resource Received data is acquired from (for example, user data). As a result, the terminal device 200 can acquire user data transmitted from the base station 100 by excluding data of a predetermined value added to suppress amplitude discontinuity between GFDM symbols. It becomes.
  • CP can be omitted as appropriate. Then, by omitting the CP, it is possible to mitigate a decrease in frequency utilization efficiency resulting from mapping of predetermined value data.
  • the technique of omitting the addition of the CP after mapping the data of the predetermined value has a frequency utilization efficiency reduced by about 2% compared to the technique of adding the CP without mapping the data of the predetermined value. Just do it. Further, when the number of subsymbols is large, these differences are smaller.
  • the technique for omitting the addition of the CP after mapping the predetermined value data is equivalent to the performance or the technique compared with the technique for adding the CP without mapping the predetermined value data. Expected to improve performance. Furthermore, the technique of omitting the addition of a CP after mapping data of a predetermined value is caused by a noise increase caused by a method of superimposing a suffix portion on a prefix as shown by reference numeral 23 in FIG. Can be avoided.
  • the GFDM symbol generation method according to the present embodiment exhibits good performance in a communication environment with a relatively small multipath.
  • millimeter waves and the like that are expected to be utilized in cellular communications in the future are communications in which direct waves are considered to be dominant, and are one example in which the application of this method is considered effective.
  • mapping of data of a predetermined value can be realized by various methods. Hereinafter, an example of the mapping method will be described.
  • FIG. 11 is a block diagram illustrating a configuration example of a transmission apparatus for executing the first mapping method.
  • the transmission apparatus converts FEC (Forward Error Correction) coding, rate matching, scrambling, interleaving, and a bit sequence from input data to symbols (for example, complex symbols may also be referred to as signal points).
  • Perform mapping (Constellation Mapping).
  • the generated complex data is buffered by the input buffer.
  • the transmission apparatus inserts data of a predetermined value (zero data in this example) into the transmission data supplied from the buffer, and maps it to the unit resource.
  • the transmission apparatus inserts K zero data and maps it to the first sub-symbol of the unit resource, and maps NK data supplied from the input buffer to other regions in the unit resource.
  • the input controller adjusts the number K of zero data to be inserted and the number N ⁇ K of transmission data supplied from the input buffer.
  • N pieces of data in which K pieces of zero data are inserted into NK pieces of transmission data are mapped to unit resources composed of M pieces of subsymbols and K pieces of subcarriers.
  • K pieces of zero data are mapped to d 0 to d K ⁇ 1
  • NK pieces of transmission data are mapped to d K to d N ⁇ 1 .
  • the transmission apparatus applies a pulse shaping filter, applies a DAC, performs signal processing by analog FE (Front End), and transmits a radio signal from the antenna.
  • analog FE Front End
  • the input controller and zero insertion function may correspond to the buffer control unit 153, the analog FE may correspond to the wireless communication unit 120, the antenna may correspond to the antenna unit 110, and other components. May correspond to the transmission processing unit 151. Of course, any other corresponding relationship is allowed.
  • FIG. 13 is a block diagram illustrating a configuration example of a transmission apparatus for executing the second mapping method.
  • the transmission apparatus performs FEC encoding, rate matching, scrambling, interleaving, and bit string to symbol mapping for input data.
  • the generated complex data is buffered by the input buffer.
  • the transmission apparatus arranges transmission data after initialization of a buffer having a data length corresponding to the unit resource with a predetermined value (zero data in this example), and maps the transmission data to the unit resource.
  • the transmission apparatus initializes a buffer capable of buffering N data to zero, and then writes NK transmission data to the buffer.
  • the K pieces of data in which no transmission data is written in the buffer remain at the initial value of zero.
  • the transmission apparatus maps the initial value zero data to the first sub-symbol of the unit resource, and then maps the transmission data to other regions in the unit resource.
  • the transmission device applies a pulse shaping filter, applies a DAC, performs signal processing by analog FE, and transmits a radio signal from the antenna.
  • this example can achieve the same effect as the first example.
  • the initialization function may correspond to the buffer control unit 153, the analog FE may correspond to the wireless communication unit 120, the antenna may correspond to the antenna unit 110, and other components may be transmission processing. It may correspond to the part 151. Of course, any other corresponding relationship is allowed.
  • mapping method So far, an example of the mapping method has been described. Next, transmission processing in the case of MIMO will be described.
  • FIG. 14 is a block diagram illustrating a configuration example of a transmission apparatus in the case of MIMO.
  • the transmission apparatus performs FEC encoding, rate matching, scrambling, interleaving, and mapping from a bit string to a symbol for each transmission data to be multiplexed.
  • the transmission apparatus multiplexes by transmission layer mapping and performs precoding for each multiplexed signal.
  • the subsequent processing is performed for each multiplexed signal.
  • the transmission apparatus performs data mapping by the first or second mapping method. That is, the transmission device inserts K zero data into NK transmission data supplied from the input buffer by the input controller, or initializes the N input buffers with zero to generate NK transmission data. Is buffered and mapped to unit resources.
  • the transmission device applies a pulse shaping filter, applies a DAC, performs signal processing by analog FE, and transmits a radio signal from the antenna.
  • FIG. 15 is a block diagram illustrating a configuration example of a receiving device.
  • the receiving device performs signal processing by analog FE, A / D conversion by ADC (Analog to Digital Converter), and GFDM demodulation on the signal received by the antenna.
  • ADC Analog to Digital Converter
  • the receiving apparatus extracts the original data d [0] to d [N ⁇ 1] from the received symbols x [0] to x [N ⁇ 1].
  • GFDM demodulator circuit for multiplying the conjugate transpose matrix A H of A as a matched filter receiver for the transformation matrix A of GFDM used for transmission, is multiplied by the inverse matrix A -1 becomes zero force receiving It may be a circuit or a MMSE (Minimum Mean Square Error) receiving circuit. Thereafter, the receiving apparatus performs MIMO equalization and demapping of the transmission layer. Thereafter, the receiving apparatus performs deinterleaving, descrambling, rate matching, and FEC decoding for each received data, and outputs data.
  • MIMO equalization and demapping of the transmission layer Thereafter, the receiving apparatus performs deinterleaving, descrambling, rate matching, and FEC decoding for each received data, and outputs data.
  • the GFDM demodulator may correspond to the data acquisition unit 243, the analog FE may correspond to the wireless communication unit 220, the antenna may correspond to the antenna unit 210, and other components may be reception processing. It may correspond to the part 241. Of course, any other corresponding relationship is allowed.
  • FIG. 16 is a flowchart showing an example of the flow of transmission processing executed in the base station 100 according to the present embodiment.
  • the base station 100 for example, the transmission processing unit 151 generates transmission data (step S102). Specifically, the base station 100 performs FEC encoding, rate matching, scrambling, interleaving, mapping to complex symbols, and the like.
  • the base station 100 for example, the buffer control unit 153) buffers NK pieces of transmission data and K pieces of predetermined data in a size N buffer (step S104).
  • the base station 100 maps data of a predetermined value from the buffer to the sub-symbol at the end of the unit resource in the time direction (for example, the first sub-symbol in the time direction) (step S106). ). Further, the base station 100 (for example, the transmission processing unit 151) maps transmission data from the buffer to other sub-symbols (for example, sub-symbols other than the head in the time direction) of the unit resource (step S108). As a specific method of using the buffer here, the first example described above may be employed, or the second example may be employed. Next, the base station 100 (for example, the transmission processing unit 151) performs GFDM modulation (step S110) and transmits a signal (step S112).
  • FIG. 17 is a flowchart illustrating an example of a flow of reception processing executed in the terminal device 200 according to the present embodiment.
  • the terminal device 200 receives a signal (step S202).
  • the terminal device 200 receives the terminal device 200 (for example, the data acquisition unit 243), the sub-symbol other than the sub-symbol at the end in the time direction to which the predetermined value data is mapped among the unit resources (for example, the sub-symbol other than the head in the time direction).
  • the terminal device 200 for example, the data acquisition unit 243
  • the received data for example, the sub-symbol other than the head in the time direction.
  • the terminal device 200 (for example, the reception processing unit 241) performs, for example, equalization, conversion from complex data to a bit string, deinterleaving, descrambling, rate matching, and FEC decoding on the acquired reception data. Perform signal processing.
  • the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB.
  • the small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB.
  • the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station).
  • Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
  • RRHs Remote Radio Heads
  • the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as.
  • the terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication.
  • MTC Machine Type Communication
  • M2M Machine To Machine
  • at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  • FIG. 18 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
  • Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820.
  • the eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 18, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. 18 illustrates an example in which the eNB 800 includes a plurality of antennas 810, but the eNB 800 may include a single antenna 810.
  • the base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
  • the controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node.
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
  • the network interface 823 is a communication interface for connecting the base station device 820 to the core network 824.
  • the controller 821 may communicate with the core network node or other eNB via the network interface 823.
  • the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface).
  • the network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul.
  • the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
  • the wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810.
  • the wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like.
  • the BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP).
  • Various signal processing of Packet Data Convergence Protocol
  • Packet Data Convergence Protocol is executed.
  • the BB processor 826 may have some or all of the logical functions described above instead of the controller 821.
  • the BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good.
  • the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade.
  • the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
  • the wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 18, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 18, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively. 18 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
  • the eNB 800 illustrated in FIG. 18 one or more components (the transmission processing unit 151 and / or the buffer control unit 153) included in the processing unit 150 described with reference to FIG. 7 are implemented in the wireless communication interface 825. May be. Alternatively, at least some of these components may be implemented in the controller 821.
  • the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program.
  • the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the radio communication unit 120 described with reference to FIG. 7 may be implemented in the radio communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810.
  • the network communication unit 130 may be implemented in the controller 821 and / or the network interface 823.
  • the storage unit 140 may be implemented in the memory 822.
  • FIG. 19 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied.
  • the eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860.
  • the eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 19, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example.
  • FIG. 19 shows an example in which the eNB 830 has a plurality of antennas 840, the eNB 830 may have a single antenna 840.
  • the base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
  • the wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840.
  • the wireless communication interface 855 may typically include a BB processor 856 and the like.
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 18 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG.
  • the wireless communication interface 855 may include a single BB processor 856.
  • connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860.
  • the connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
  • the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850.
  • the connection interface 861 may be a communication module for communication on the high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 may typically include an RF circuit 864 and the like.
  • the RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840.
  • the wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 19, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively.
  • FIG. 19 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
  • the eNB 830 illustrated in FIG. 19 one or more components (the transmission processing unit 151 and / or the buffer control unit 153) included in the processing unit 150 described with reference to FIG. 7 include the wireless communication interface 855 and / or The wireless communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851.
  • the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program.
  • the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 120 described with reference to FIG. 7 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864).
  • the antenna unit 110 may be mounted on the antenna 840.
  • the network communication unit 130 may be implemented in the controller 851 and / or the network interface 853.
  • the storage unit 140 may be mounted in the memory 852.
  • FIG. 20 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure may be applied.
  • the smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915.
  • One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
  • the processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900.
  • the memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data.
  • the storage 903 can include a storage medium such as a semiconductor memory or a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
  • the camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image.
  • the sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor.
  • the microphone 908 converts sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user.
  • the display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900.
  • the speaker 911 converts an audio signal output from the smartphone 900 into audio.
  • the wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like.
  • the BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916.
  • the wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated.
  • the wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 20 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914. However, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
  • the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method.
  • a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
  • Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912.
  • the smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 20 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
  • the smartphone 900 may include an antenna 916 for each wireless communication method.
  • the antenna switch 915 may be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other.
  • the battery 918 supplies power to each block of the smartphone 900 illustrated in FIG. 20 through a power supply line partially illustrated by a broken line in the drawing.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
  • the smartphone 900 illustrated in FIG. 20 one or more components (the reception processing unit 241 and / or the data acquisition unit 243) included in the processing unit 240 described with reference to FIG. 8 are implemented in the wireless communication interface 912. May be. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919. As an example, the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components).
  • the program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed.
  • the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 8 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914).
  • the antenna unit 210 may be mounted on the antenna 916.
  • the storage unit 230 may be mounted in the memory 902.
  • FIG. 21 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication.
  • the interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
  • the processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920.
  • the memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
  • the GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • the sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor.
  • the data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
  • the content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928.
  • the input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user.
  • the display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced.
  • the speaker 931 outputs the navigation function or the audio of the content to be played back.
  • the wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like.
  • the BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication.
  • the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937.
  • the wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated.
  • the wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 21 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
  • the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method.
  • a BB processor 934 and an RF circuit 935 may be included for each communication method.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
  • Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933.
  • the car navigation device 920 may include a plurality of antennas 937 as shown in FIG. 21 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, the car navigation apparatus 920 may include a single antenna 937.
  • the car navigation device 920 may include an antenna 937 for each wireless communication method.
  • the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
  • the battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 21 via a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
  • the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be.
  • the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed.
  • a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program.
  • the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good.
  • a readable recording medium in which the program is recorded may be provided.
  • the wireless communication unit 220 described with reference to FIG. 8 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935).
  • the antenna unit 210 may be mounted on the antenna 937.
  • the storage unit 230 may be implemented in the memory 922.
  • the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, an in-vehicle system (or vehicle) 940 may be provided as a device including the processing unit 240.
  • the vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
  • the base station 100 transmits data of a predetermined value mapped to sub-symbols at the end of the time direction in a unit resource composed of one or more subcarriers and a plurality of subsymbols, and other data in the unit resource.
  • GFDM modulation is performed on transmission data mapped to sub-symbols.
  • the base station 100 can omit the addition of CP and CS, and accordingly, it is possible to mitigate a decrease in frequency utilization efficiency caused by mapping data of a predetermined value.
  • the present technology is not limited to such an example.
  • the terminal device 200 may be a transmission device and the base station 100 may be a reception device.
  • the processing unit 240 has functions as the transmission processing unit 151 and the buffer control unit 153
  • the processing unit 150 has functions as the reception processing unit 241 and the data acquisition unit 243.
  • both the transmission device and the reception device may be the terminal device 200.
  • a processing unit that performs filtering for each predetermined number of subcarriers A device comprising: (2) The apparatus according to (1), wherein the sub-symbols at the end are sub-symbols at both ends in the time direction of the unit resource.
  • a processing unit for obtaining the transmission data from transmission data mapped to other sub-symbols in A device comprising: (11) For data of a predetermined value mapped to a sub-symbol at the end in the time direction in a unit resource composed of one or more subcarriers and a plurality of sub-symbols, and transmission data mapped to other sub-symbols in the unit resource Filtering by a processor every predetermined number of subcarriers, Including methods.
  • System 1 100 base station 110 antenna unit 120 wireless communication unit 130 network communication unit 140 storage unit 150 processing unit 151 transmission processing unit 153 buffer control unit 200 terminal device 210 antenna unit 220 wireless communication unit 230 storage unit 240 processing unit 241 reception processing unit 243 data Acquisition department

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

[Problem] To provide a mechanism for efficiently suppressing out-of-band frequency distortion components that can occur in GFDM. [Solution] A device provided with a processing unit which performs filtering on data having a predetermined value and mapped to a sub-symbol at an end in a time direction of a unit resource comprising one or more sub-carriers and a plurality of sub-symbols, and on transmission data mapped to the other sub-symbols in the unit resource every predetermined number of subcarriers.

Description

装置、方法及びプログラムApparatus, method, and program
 本開示は、装置、方法及びプログラムに関する。 The present disclosure relates to an apparatus, a method, and a program.
 近年、マルチキャリア変調技術(即ち、多重技術又はマルチアクセス技術)の代表として、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)、及びOFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)が、多様な無線システムで実用化されている。実用例としては、ディジタル放送、無線LAN、及びセルラーシステムが挙げられる。OFDMは、マルチパス伝搬路に対する耐性があり、CP(Cyclic Prefix:サイクリックプリフィックス)を採用することで、マルチパス遅延波に起因するシンボル間干渉の発生を回避することが可能である。一方で、OFDMの欠点として、帯域外輻射のレベルが大きい点が挙げられる。また、PAPR(Peak-to-Average Power Ratio:ピーク対平均電力比)が高くなる傾向があり、送受信装置で発生する歪に弱いことも、欠点として挙げられる。 In recent years, OFDM (Orthogonal Frequency Division Multiplexing) and OFDMA (Orthogonal Frequency Division Multiple Access) are representative of multicarrier modulation technology (ie, multiplexing technology or multiaccess technology), It has been put into practical use in various wireless systems. Practical examples include digital broadcasting, wireless LAN, and cellular systems. OFDM is resistant to multipath propagation paths, and by employing CP (Cyclic Prefix), it is possible to avoid the occurrence of intersymbol interference due to multipath delay waves. On the other hand, a disadvantage of OFDM is that the level of out-of-band radiation is large. In addition, there is a tendency that PAPR (Peak-to-Average Power Ratio) tends to be high, and it is vulnerable to distortion generated in the transmission / reception apparatus.
 このようなOFDMの欠点である帯域外輻射を抑制可能な、新たな変調技術が登場している。本変調技術は、サブシンボルという新たな概念を導入し、1シンボルを任意の個数のサブシンボルに分割することで、柔軟なシンボルの時間及び周波数の設計を行うことが可能である。また、本変調技術は、シンボルに対しパルス整形フィルタ(Pulse Shape Filter)を適用して波形整形することによって、帯域外の不要信号の輻射を低減することができ、周波数利用効率の向上が期待される。 A new modulation technology that can suppress out-of-band radiation, which is a drawback of OFDM, has appeared. This modulation technique introduces a new concept of sub-symbols and divides one symbol into an arbitrary number of sub-symbols, thereby enabling flexible symbol time and frequency design. In addition, this modulation technology can reduce the radiation of unnecessary signals outside the band by applying a pulse shaping filter to the symbol, thereby improving the frequency utilization efficiency. The
 本変調技術の呼び名については、UF-OFDM(Universal Filtered-OFDM)、UFMC(Universal Filtered Multi-Carrier)、FBMC(Filter Bank Multi-Carrier)、GOFDM(Generalized OFDM)など、多様に存在する。とりわけ、本変調技術は、一般化されたOFDMであるとも言えることから、GFDM(Generalized Frequency Division Multiplexing)とも称される場合があり、本明細書ではこの名称を採用する。GFDMに関する基本的な技術については、例えば下記特許文献1及び非特許文献1に開示されている。 There are various names for this modulation technology, such as UF-OFDM (Universal Filtered-OFDM), UFMC (Universal Filtered Multi-Carrier), FBMC (Filter Bank Multi-Carrier), and GOFDM (Generalized OFDM). In particular, since this modulation technique can be said to be generalized OFDM, it may also be called GFDM (Generalized Frequency Division Multiplexing), and this name is adopted in this specification. Basic techniques related to GFDM are disclosed in, for example, Patent Document 1 and Non-Patent Document 1 below.
米国特許出願公開第2010/0189132号明細書US Patent Application Publication No. 2010/0189132
 しかし、GFDMにおいては、シンボル間での振幅の不連続性により、望ましくないスペクトラム成分(例えば、帯域外の周波数歪成分)が発生する場合がある。その対策として、例えばOFDMで行われてきたCPの付加及び時間窓処理を行うことも考えられるものの、その場合に周波数利用効率の低下又はノイズの増加等が生じる場合があった。 However, in GFDM, undesirable spectrum components (eg, out-of-band frequency distortion components) may occur due to amplitude discontinuity between symbols. As countermeasures, for example, CP addition and time window processing, which have been performed in OFDM, may be considered, but in that case, frequency utilization efficiency may decrease or noise may increase.
 そのため、GFDMにおいて発生し得る帯域外の周波数歪成分をより効率的に抑制する仕組みが提供されることが望ましい。 Therefore, it is desirable to provide a mechanism for more efficiently suppressing out-of-band frequency distortion components that can occur in GFDM.
 本開示によれば、ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データを対象に、所定の数のサブキャリアごとにフィルタリングを行う処理部、を備える装置が提供される。 According to the present disclosure, data of a predetermined value mapped to a sub-symbol at an end in a time direction in a unit resource composed of one or more subcarriers and a plurality of sub-symbols, and mapped to other sub-symbols in the unit resource. An apparatus is provided that includes a processing unit that performs filtering on a predetermined number of subcarriers for transmission data.
 また、本開示によれば、所定の数のサブキャリアごとにフィルタリングされた信号における、ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データから前記送信データを取得する処理部、を備える装置が提供される。 In addition, according to the present disclosure, in a signal filtered for a predetermined number of subcarriers, a predetermined symbol mapped to a subsymbol at an end portion in a time direction in a unit resource including one or more subcarriers and a plurality of subsymbols. An apparatus is provided that includes a processing unit that obtains the transmission data from value data and transmission data mapped to other sub-symbols in the unit resource.
 また、本開示によれば、ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データを対象に、所定の数のサブキャリアごとにプロセッサによりフィルタリングを行うこと、を含む方法が提供される。 Further, according to the present disclosure, data of a predetermined value mapped to a sub-symbol at an end portion in a time direction in a unit resource composed of one or more subcarriers and a plurality of sub-symbols, and other sub-symbols in the unit resource Filtering by a processor for a predetermined number of subcarriers for mapped transmission data is provided.
 また、本開示によれば、コンピュータを、ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データを対象に、所定の数のサブキャリアごとにフィルタリングを行う処理部、として機能させるためのプログラムが提供される。 In addition, according to the present disclosure, the computer is configured to store data of a predetermined value mapped to a sub-symbol at an end in a time direction in a unit resource including one or more subcarriers and a plurality of subsymbols, and other data in the unit resource. A program is provided for causing transmission data mapped to sub-symbols to function as a processing unit that performs filtering for each predetermined number of sub-carriers.
 以上説明したように本開示によれば、GFDMにおいて発生し得る帯域外の周波数歪成分をより効率的に抑制する仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 As described above, according to the present disclosure, a mechanism for more efficiently suppressing out-of-band frequency distortion components that can occur in GFDM is provided. Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
GFDMに関する技術を説明するための説明図である。It is explanatory drawing for demonstrating the technique regarding GFDM. GFDMに関する技術を説明するための説明図である。It is explanatory drawing for demonstrating the technique regarding GFDM. GFDMに関する技術を説明するための説明図である。It is explanatory drawing for demonstrating the technique regarding GFDM. GFDMに関する技術を説明するための説明図である。It is explanatory drawing for demonstrating the technique regarding GFDM. 本開示の一実施形態の技術的課題を説明するための説明図である。It is explanatory drawing for demonstrating the technical subject of one Embodiment of this indication. 同実施形態に係るシステムの概略的な構成の一例を示す説明図である。FIG. 2 is an explanatory diagram illustrating an example of a schematic configuration of a system according to the embodiment. 同実施形態に係る基地局の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the base station which concerns on the same embodiment. 同実施形態に係る端末装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the terminal device which concerns on the same embodiment. 同実施形態の技術的特徴を説明するための説明図である。It is explanatory drawing for demonstrating the technical feature of the embodiment. 同実施形態の技術的特徴を説明するための説明図である。It is explanatory drawing for demonstrating the technical feature of the embodiment. 同実施形態の技術的特徴を説明するための説明図である。It is explanatory drawing for demonstrating the technical feature of the embodiment. 同実施形態の技術的特徴を説明するための説明図である。It is explanatory drawing for demonstrating the technical feature of the embodiment. 同実施形態の技術的特徴を説明するための説明図である。It is explanatory drawing for demonstrating the technical feature of the embodiment. 同実施形態の技術的特徴を説明するための説明図である。It is explanatory drawing for demonstrating the technical feature of the embodiment. 同実施形態の技術的特徴を説明するための説明図である。It is explanatory drawing for demonstrating the technical feature of the embodiment. 同実施形態に係る基地局において実行される送信処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the transmission process performed in the base station which concerns on the embodiment. 同実施形態に係る端末装置において実行される受信処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the reception process performed in the terminal device which concerns on the same embodiment. eNBの概略的な構成の第1の例を示すブロック図である。It is a block diagram which shows the 1st example of schematic structure of eNB. eNBの概略的な構成の第2の例を示すブロック図である。It is a block diagram which shows the 2nd example of schematic structure of eNB. スマートフォンの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a smart phone. カーナビゲーション装置の概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of a schematic structure of a car navigation apparatus.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて端末装置200A、200B及び200Cのように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、端末装置200A、200B及び200Cを特に区別する必要が無い場合には、単に端末装置200と称する。 In the present specification and drawings, elements having substantially the same functional configuration may be distinguished by adding different alphabets after the same reference numerals. For example, a plurality of elements having substantially the same functional configuration are differentiated as necessary, such as the terminal devices 200A, 200B, and 200C. However, when there is no need to particularly distinguish each of a plurality of elements having substantially the same functional configuration, only the same reference numerals are given. For example, the terminal devices 200A, 200B, and 200C are simply referred to as the terminal device 200 when it is not necessary to distinguish between them.
 なお、説明は以下の順序で行うものとする。
  1.はじめに
   1.1.GFDM
   1.2.技術的課題
  2.システムの概略的な構成
  3.各装置の構成
   3.1.基地局の構成
   3.2.端末装置の構成
  4.技術的特徴
  5.応用例
  6.まとめ
The description will be made in the following order.
1. 1. Introduction 1.1. GFDM
1.2. Technical issues 2. Schematic configuration of system Configuration of each device 3.1. Configuration of base station 3.2. 3. Configuration of terminal device Technical features 5. Application example 6. Summary
 <<1.はじめに>>
  <1.1.GFDM>
 まず、図1~図4を参照して、GFDMについて説明する。
<< 1. Introduction >>
<1.1. GFDM>
First, GFDM will be described with reference to FIGS.
 図1は、GFDMにおけるシンボルの概念を説明するための説明図である。符号10は、OFDMの1シンボル当たりの無線リソースを示している。符号10に示した無線リソースは、1シンボル区間が単一のシンボルで占有されている一方で、周波数方向に多数のサブキャリアを含む。また、OFDMでは、シンボル毎にCPが付加される。符号12は、SC-FDM(Single Carrier Frequency Division Multiplexing)信号における、OFDMの1シンボルに相当する区間の無線リソースを示している。符号12に示した無線リソースは、キャリア周波数に渡って単一のシンボルで専有されている一方で、シンボル長はOFDMと比較して短く、時間方向に多数のシンボルを含む。符号11は、GFDMにおける、OFDMの1シンボルに相当する区間の無線リソースを示している。符号11に示した無線リソースは、符号10に示した無線リソースと符号12に示した無線リソースとの中間の構造を有する。すなわち、GFDMでは、OFDMの1シンボルに相当する区間が任意の数のサブシンボルに分割され、それに伴いサブキャリア数がOFDMよりも少なくなる。このような無線リソースの構造は、パラメータによるシンボル長の変更を可能とし、より柔軟性に富んだ送信フォーマットを提供可能である。 FIG. 1 is an explanatory diagram for explaining the concept of symbols in GFDM. Reference numeral 10 indicates a radio resource per symbol of OFDM. The radio resource indicated by reference numeral 10 includes a number of subcarriers in the frequency direction while one symbol section is occupied by a single symbol. In OFDM, a CP is added for each symbol. Reference numeral 12 denotes a radio resource in a section corresponding to one OFDM symbol in an SC-FDM (Single Carrier Frequency Division Multiplexing) signal. The radio resource indicated by reference numeral 12 is occupied by a single symbol over the carrier frequency, but has a shorter symbol length than OFDM and includes a large number of symbols in the time direction. Reference numeral 11 denotes a radio resource in a section corresponding to one OFDM symbol in GFDM. The radio resource indicated by reference numeral 11 has an intermediate structure between the radio resource indicated by reference numeral 10 and the radio resource indicated by reference numeral 12. That is, in GFDM, a section corresponding to one OFDM symbol is divided into an arbitrary number of sub-symbols, and accordingly, the number of subcarriers is smaller than that of OFDM. Such a radio resource structure allows a symbol length to be changed by a parameter, and can provide a more flexible transmission format.
 図2は、GFDMをサポートする送信装置の構成例の一例を示す図である。まず、データが入力されると、送信装置は、可変に設定されたサブキャリア数及びサブシンボル数に対応するフィルタリングを適用するために、入力データのマッピングを行う。なお、ここでのサブシンボルに対するマッピングは、OFDMに比べて、オーバーサンプリングを施すことと等価の効果を有する。次いで、送信装置は、所定数のサブキャリア及び所定数のサブシンボルに対してパルス整形フィルタを適用する(より具体的には、所定のフィルタリング係数を乗じる)。そして、送信装置は、パルス整形後の波形を周波数-時間変換してシンボルを生成する。最後に、送信装置は、CPを追加し、DAC(Digital to Analog Converter)を適用してRF(Radio Frequency)信号を高周波回路へ出力する。 FIG. 2 is a diagram illustrating an example of a configuration example of a transmission apparatus that supports GFDM. First, when data is input, the transmission apparatus performs mapping of input data in order to apply filtering corresponding to the variably set number of subcarriers and number of subsymbols. Note that the mapping for the sub-symbol here has an effect equivalent to performing oversampling as compared with OFDM. Next, the transmission apparatus applies a pulse shaping filter to a predetermined number of subcarriers and a predetermined number of subsymbols (more specifically, a predetermined filtering coefficient is multiplied). Then, the transmitter generates a symbol by performing frequency-time conversion on the pulse-shaped waveform. Finally, the transmission device adds a CP, applies a DAC (Digital to Analog Converter), and outputs an RF (Radio Frequency) signal to the high frequency circuit.
 ここで、GFDM変調は次式により表現される。 Here, GFDM modulation is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、Kはサブキャリア数であり、Mはサブシンボル数であり、dk,m、はk番目のサブキャリアのm番目のサブシンボルに対応する入力データであり、x[n]はN=KM個の出力データのn番目の値であり、gk,m[n]はフィルタの係数である。 Where K is the number of subcarriers, M is the number of subsymbols, d k, m is input data corresponding to the mth subsymbol of the kth subcarrier, and x [n] is N = This is the n-th value of KM output data, and g k, m [n] is a filter coefficient.
 GFDMシンボルのn番目の出力サンプル値x[n]は、マッピングされた入力データに対応するGFDM係数をそれぞれ掛け合わせたのち、それらすべての和をとったものである。nが0からNまで変化するとき、フィルタ係数は上記数式(2)に従って変化し、1シンボルあたり合計N個のサンプル値が得られる。この結果、サブシンボルに対してK倍にオーバーサンプリングされた時間波形のサンプル値が生成される。この場合、M個のサブシンボルに対してK倍、すなわちKM=N個の出力値が得られる。送信装置は、このようにして得られたGFDMシンボルをD/A変換し、高周波回路により所望の増幅及び周波数変換を施した後、アンテナから送信する。 The nth output sample value x [n] of the GFDM symbol is obtained by multiplying the mapped input data by the corresponding GFDM coefficients and then summing all of them. When n changes from 0 to N, the filter coefficient changes according to the above equation (2), and a total of N sample values are obtained per symbol. As a result, a time waveform sample value oversampled K times with respect to the sub-symbol is generated. In this case, K times, that is, KM = N output values are obtained for M subsymbols. The transmitting apparatus performs D / A conversion on the GFDM symbol obtained in this way, performs desired amplification and frequency conversion by a high-frequency circuit, and then transmits from the antenna.
 なお、パルス整形フィルタとしては、例えば、RCフィルタ(Raised Cosine Filter)、RRCフィルタ(Root Raised Cosine Filter)又はIOTAフィルタ(Isotropic Orthogonal Transfer Algorithm filter)等が採用され得る。 As the pulse shaping filter, for example, an RC filter (Raised Cosine Filter), an RRC filter (Root Raised Cosine Filter), an IOTA filter (Isotropic Orthogonal Transfer Algorithm filter), or the like can be adopted.
 上記定式化したGFDM変調における、入力データ(ベクトル)と出力データ(ベクトル)との関係を、次式のように行列Aで表す。 The relationship between input data (vector) and output data (vector) in the GFDM modulation formulated above is represented by a matrix A as shown in the following equation.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 この変換行列Aは、サイズがKM×KMの、複素数の要素を持つ正方行列である。図3に、変換行列Aの要素(即ち、フィルタ係数)の振幅値(絶対値)をプロットした図を示す。本図は、K=4とし、M=7とし、波形整形のプロトタイプフィルタとしてRCフィルタ(α=0.4)を採用した場合を示している。 This transformation matrix A is a square matrix having a complex number element of size KM × KM. FIG. 3 is a diagram in which the amplitude values (absolute values) of the elements (ie, filter coefficients) of the transformation matrix A are plotted. This figure shows a case where K = 4, M = 7, and an RC filter (α = 0.4) is adopted as a prototype filter for waveform shaping.
 このような、GFDM変調により送信信号が生成されると、その送信信号は図4に示したような構造を有することとなる。図4は、1つの単位リソースにおける信号の振幅値を示している。ここで、GFDMにおける単位リソースの時間単位を、GFDMシンボルとも称する。GFDMシンボルは、1つ以上のサブシンボルを含む。また、GFDMにおける単位リソースの周波数単位を、リソースブロックとも称する。リソースブロックは、1つ以上のサブキャリアを含む。なお、図4に示した例では、単位リソースは、4つのサブキャリア及び7つのサブシンボルに分割されている。 When a transmission signal is generated by such GFDM modulation, the transmission signal has a structure as shown in FIG. FIG. 4 shows signal amplitude values in one unit resource. Here, the time unit of the unit resource in GFDM is also referred to as a GFDM symbol. A GFDM symbol includes one or more subsymbols. A frequency unit of a unit resource in GFDM is also referred to as a resource block. A resource block includes one or more subcarriers. In the example shown in FIG. 4, the unit resource is divided into four subcarriers and seven subsymbols.
  <1.2.技術的課題>
 GFDMシンボルをアナログ信号に変換して任意のデータを連続して送信する場合、シンボル間での振幅の不連続性により、帯域外の周波数歪成分の発生が懸念される。より詳しくは、図4を参照すると、M=0に相当する単位リソースは、時間的に分割されシンボルの両端に存在し、時間方向で隣接するシンボルの単位リソースのM=0の信号と不連続な波形を生成することから、帯域外の周波数歪成分の発生が懸念される。このような問題を回避するために、単位リソースの信号に、GFDM特有のCPを付加することが考案されている。
<1.2. Technical issues>
In the case where GFDM symbols are converted into analog signals and arbitrary data is continuously transmitted, there is a concern about generation of out-of-band frequency distortion components due to amplitude discontinuity between symbols. More specifically, referring to FIG. 4, a unit resource corresponding to M = 0 is temporally divided and exists at both ends of a symbol, and is discontinuous with a signal of M = 0 of a symbol unit resource adjacent in the time direction. Since a simple waveform is generated, there is a concern about generation of frequency distortion components outside the band. In order to avoid such a problem, it has been devised to add a CP specific to GFDM to a signal of a unit resource.
 以下、図5を参照して、GFDMの単位リソースの信号の生成方法の一例を説明する。符号20~符号23は、各生成方法により生成された単位リソースの信号を示しており、それぞれ横軸は時間であり縦軸は振幅値である。 Hereinafter, an example of a method for generating a signal of a unit resource of GFDM will be described with reference to FIG. Reference numerals 20 to 23 represent unit resource signals generated by the respective generation methods, and the horizontal axis represents time and the vertical axis represents amplitude values.
 比較例として、符号20に、OFDMシンボルを示した。OFDMシンボルには、良好な受信特性を確保するために、伝搬路のマルチパス特性に応じた十分な長さのCPが付加されている。 As a comparative example, reference numeral 20 indicates an OFDM symbol. A sufficient length of CP according to the multipath characteristics of the propagation path is added to the OFDM symbol in order to ensure good reception characteristics.
 これに対し、上記特許文献1及び非特許文献1では、符号21~符号23に示すGFDMシンボルが提案されている。符号21に示すように、GFDMシンボルにはパルス整形フィルタのフィルタ長に対応する長さのCPが付加されていればよいため、OFDMと比較してCPの長さが短くなる、という利点がある。符号22に示すように、CP付加後のGFDMシンボルに窓関数を掛けることで、シンボル間のつなぎ目における振幅を抑制し、スペクトラム特性を改善する方法も提案されている。ただし、この場合は、もとのシンボル長よりも(即ち、符号21よりも)送信信号長が長くなる。そこで、符号23に示すように、窓関数を掛けたGFDMシンボルに終端処理を行うことで、送信信号長を短縮する方法も提案されている。 On the other hand, in the above-mentioned Patent Document 1 and Non-Patent Document 1, GFDM symbols indicated by reference numerals 21 to 23 are proposed. As indicated by reference numeral 21, since it is only necessary to add a CP having a length corresponding to the filter length of the pulse shaping filter to the GFDM symbol, there is an advantage that the CP length is shorter than that of OFDM. . As indicated by reference numeral 22, a method has also been proposed in which a window function is applied to a GFDM symbol after the addition of a CP to suppress the amplitude at the joint between symbols and improve the spectrum characteristics. However, in this case, the transmission signal length is longer than the original symbol length (that is, longer than the code 21). Therefore, as indicated by reference numeral 23, a method has also been proposed in which the transmission signal length is shortened by terminating the GFDM symbol multiplied by the window function.
 しかしながら、符号23に示したGFDMシンボルであっても、依然としてCPを使用することに起因する周波数利用効率の低下は起きる。さらに、終端処理によってノイズ成分が加算され、S/N(signal-to-noise ratio)の劣化も懸念される。 However, even with the GFDM symbol indicated by reference numeral 23, the frequency utilization efficiency still decreases due to the use of the CP. Furthermore, noise components are added by the termination process, and there is a concern that the S / N (signal-to-noise ratio) may be deteriorated.
 <<2.システムの概略的な構成>>
 続いて、図6を参照して、本開示の一実施形態に係るシステム1の概略的な構成を説明する。図6は、本開示の一実施形態に係るシステム1の概略的な構成の一例を示す説明図である。図6を参照すると、システム1は、基地局100及び端末装置200を含む。ここでは、端末装置200は、ユーザとも呼ばれる。当該ユーザは、ユーザ機器(User Equipment:UE)とも呼ばれ得る。ここでのUEは、LTE又はLTE-Aにおいて定義されているUEであってもよく、より一般的に通信機器を意味してもよい。
<< 2. Schematic configuration of system >>
Subsequently, a schematic configuration of the system 1 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 6 is an explanatory diagram illustrating an example of a schematic configuration of the system 1 according to an embodiment of the present disclosure. Referring to FIG. 6, the system 1 includes a base station 100 and a terminal device 200. Here, the terminal device 200 is also called a user. The user may also be called user equipment (UE). The UE here may be a UE defined in LTE or LTE-A, and may more generally mean a communication device.
 (1)基地局100
 基地局100は、セルラーシステム(又は移動体通信システム)の基地局である。基地局100は、基地局100のセル101内に位置する端末装置(例えば、端末装置200)との無線通信を行う。例えば、基地局100は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
(1) Base station 100
Base station 100 is a base station of a cellular system (or mobile communication system). The base station 100 performs wireless communication with a terminal device (for example, the terminal device 200) located in the cell 101 of the base station 100. For example, the base station 100 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
 (2)端末装置200
 端末装置200は、セルラーシステム(又は移動体通信システム)において通信可能である。端末装置200は、セルラーシステムの基地局(例えば、基地局100)との無線通信を行う。例えば、端末装置200は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
(2) Terminal device 200
The terminal device 200 can communicate in a cellular system (or mobile communication system). The terminal device 200 performs wireless communication with a base station (for example, the base station 100) of the cellular system. For example, the terminal device 200 receives a downlink signal from the base station and transmits an uplink signal to the base station.
 (3)多重化/多元接続
 とりわけ本開示の一実施形態では、基地局100は、直交多元接続/非直交多元接続により、複数の端末装置との無線通信を行う。より具体的には、基地局100は、GFDMを用いた多重化/多元接続により、複数の端末装置200との無線通信を行う。
(3) Multiplexing / multiple access In particular, in an embodiment of the present disclosure, the base station 100 performs wireless communication with a plurality of terminal devices by orthogonal multiple access / non-orthogonal multiple access. More specifically, the base station 100 performs wireless communication with a plurality of terminal devices 200 by multiplexing / multiple access using GFDM.
 例えば、基地局100は、ダウンリンクにおいて、GFDMを用いた多重化/多元接続により、複数の端末装置200との無線通信を行う。より具体的には、例えば、基地局100は、複数の端末装置200への信号を、GFDMを用いて多重化する。この場合に、例えば、端末装置200は、所望信号(即ち、端末装置200への信号)を含む多重化信号から、干渉として1つ以上の他の信号を除去し、上記所望信号を復号する。 For example, the base station 100 performs wireless communication with a plurality of terminal devices 200 by multiplexing / multiple access using GFDM in the downlink. More specifically, for example, the base station 100 multiplexes signals to a plurality of terminal devices 200 using GFDM. In this case, for example, the terminal device 200 removes one or more other signals as interference from the multiplexed signal including the desired signal (that is, the signal to the terminal device 200), and decodes the desired signal.
 なお、基地局100は、ダウンリンクの代わりに、又はダウンリンクとともに、アップリンクにおいて、GFDMを用いた多重化/多元接続により、複数の端末装置との無線通信を行ってもよい。この場合に、基地局100は、当該複数の端末装置により送信される信号を含む多重化信号から、当該信号の各々を復号してもよい。 Note that the base station 100 may perform wireless communication with a plurality of terminal apparatuses by multiplexing / multiple access using GFDM instead of the downlink or together with the downlink. In this case, the base station 100 may decode each of the signals from a multiplexed signal including signals transmitted by the plurality of terminal devices.
 (4)補足
 本技術は、HetNet(Heterogeneous Network)又はSCE(Small Cell Enhancement)などのマルチセルシステムにおいても適用可能である。また、本技術は、MTC装置及びIoT装置等に関しても適用可能である。
(4) Supplement This technology can also be applied to multi-cell systems such as HetNet (Heterogeneous Network) or SCE (Small Cell Enhancement). The present technology can also be applied to an MTC device, an IoT device, and the like.
 <<3.各装置の構成>>
 続いて、図7及び図8を参照して、本開示の実施形態に係る基地局100及び端末装置200の構成を説明する。
<< 3. Configuration of each device >>
Subsequently, configurations of the base station 100 and the terminal device 200 according to the embodiment of the present disclosure will be described with reference to FIGS. 7 and 8.
  <3.1.基地局の構成>
 まず、図7を参照して、本開示の一実施形態に係る基地局100の構成の一例を説明する。図7は、本開示の一実施形態に係る基地局100の構成の一例を示すブロック図である。図7を参照すると、基地局100は、アンテナ部110、無線通信部120、ネットワーク通信部130、記憶部140及び処理部150を備える。
<3.1. Base station configuration>
First, an example of a configuration of the base station 100 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 7 is a block diagram illustrating an exemplary configuration of the base station 100 according to an embodiment of the present disclosure. Referring to FIG. 7, the base station 100 includes an antenna unit 110, a wireless communication unit 120, a network communication unit 130, a storage unit 140, and a processing unit 150.
 (1)アンテナ部110
 アンテナ部110は、無線通信部120により出力される信号を電波として空間に放射する。また、アンテナ部110は、空間の電波を信号に変換し、当該信号を無線通信部120へ出力する。
(1) Antenna unit 110
The antenna unit 110 radiates a signal output from the wireless communication unit 120 to the space as a radio wave. Further, the antenna unit 110 converts radio waves in space into a signal and outputs the signal to the wireless communication unit 120.
 (2)無線通信部120
 無線通信部120は、信号を送受信する。例えば、無線通信部120は、端末装置へのダウンリンク信号を送信し、端末装置からのアップリンク信号を受信する。
(2) Wireless communication unit 120
The wireless communication unit 120 transmits and receives signals. For example, the radio communication unit 120 transmits a downlink signal to the terminal device and receives an uplink signal from the terminal device.
 (3)ネットワーク通信部130
 ネットワーク通信部130は、情報を送受信する。例えば、ネットワーク通信部130は、他のノードへの情報を送信し、他のノードからの情報を受信する。例えば、上記他のノードは、他の基地局及びコアネットワークノードを含む。
(3) Network communication unit 130
The network communication unit 130 transmits and receives information. For example, the network communication unit 130 transmits information to other nodes and receives information from other nodes. For example, the other nodes include other base stations and core network nodes.
 (4)記憶部140
 記憶部140は、基地局100の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
(4) Storage unit 140
The storage unit 140 temporarily or permanently stores a program for operating the base station 100 and various data.
 (5)処理部150
 処理部150は、基地局100の様々な機能を提供する。処理部150は、送信処理部151及びバッファ制御部153を含む。なお、処理部150は、これらの構成要素以外の他の構成要素をさらに含み得る。即ち、処理部150は、これらの構成要素の動作以外の動作も行い得る。
(5) Processing unit 150
The processing unit 150 provides various functions of the base station 100. The processing unit 150 includes a transmission processing unit 151 and a buffer control unit 153. The processing unit 150 may further include other components other than these components. That is, the processing unit 150 can perform operations other than the operations of these components.
 送信処理部151及びバッファ制御部153の動作は、後に詳細に説明する。 The operations of the transmission processing unit 151 and the buffer control unit 153 will be described in detail later.
  <3.2.端末装置の構成>
 まず、図8を参照して、本開示の一実施形態に係る端末装置200の構成の一例を説明する。図8は、本開示の一実施形態に係る端末装置200の構成の一例を示すブロック図である。図8を参照すると、端末装置200は、アンテナ部210、無線通信部220、記憶部230及び処理部240を備える。
<3.2. Configuration of terminal device>
First, an example of a configuration of the terminal device 200 according to an embodiment of the present disclosure will be described with reference to FIG. FIG. 8 is a block diagram illustrating an exemplary configuration of the terminal device 200 according to an embodiment of the present disclosure. Referring to FIG. 8, the terminal device 200 includes an antenna unit 210, a wireless communication unit 220, a storage unit 230, and a processing unit 240.
 (1)アンテナ部210
 アンテナ部210は、無線通信部220により出力される信号を電波として空間に放射する。また、アンテナ部210は、空間の電波を信号に変換し、当該信号を無線通信部220へ出力する。
(1) Antenna unit 210
The antenna unit 210 radiates the signal output from the wireless communication unit 220 to the space as a radio wave. Further, the antenna unit 210 converts a radio wave in the space into a signal and outputs the signal to the wireless communication unit 220.
 (2)無線通信部220
 無線通信部220は、信号を送受信する。例えば、無線通信部220は、基地局からのダウンリンク信号を受信し、基地局へのアップリンク信号を送信する。
(2) Wireless communication unit 220
The wireless communication unit 220 transmits and receives signals. For example, the radio communication unit 220 receives a downlink signal from the base station and transmits an uplink signal to the base station.
 (3)記憶部230
 記憶部230は、端末装置200の動作のためのプログラム及び様々なデータを一時的に又は恒久的に記憶する。
(3) Storage unit 230
The storage unit 230 temporarily or permanently stores a program for operating the terminal device 200 and various data.
 (4)処理部240
 処理部240は、端末装置200の様々な機能を提供する。処理部240は、受信処理部241及びデータ取得部243を含む。なお、処理部240は、この構成要素以外の他の構成要素をさらに含み得る。即ち、処理部240は、この構成要素の動作以外の動作も行い得る。
(4) Processing unit 240
The processing unit 240 provides various functions of the terminal device 200. The processing unit 240 includes a reception processing unit 241 and a data acquisition unit 243. Note that the processing unit 240 may further include other components than this component. In other words, the processing unit 240 can perform operations other than the operation of this component.
 受信処理部241及びデータ取得部243の動作は、後に詳細に説明する。 The operations of the reception processing unit 241 and the data acquisition unit 243 will be described in detail later.
 <<4.技術的特徴>>
 以下では、基地局100が送信装置であり、端末装置200が受信装置であるものとして、本実施形態の技術的特徴を説明する。
<< 4. Technical features >>
In the following, the technical features of this embodiment will be described assuming that the base station 100 is a transmission device and the terminal device 200 is a reception device.
  (1)所定値のデータのマッピング
 基地局100(例えば、送信処理部151)は、ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルに所定値のデータをマッピングする。また、基地局100(例えば、送信処理部151)は、当該単位リソースにおける他のサブシンボルに送信データ(例えば、ユーザデータ)をマッピングする。これらのマッピングにより、送信データをマッピングする対象の単位リソースと時間方向で隣接する他の単位リソースと重複し得る端部に、所定値のデータがマッピングされることとなる。そして、基地局100(例えば、送信処理部151)は、単位リソースにマッピングされたこれらのデータを対象に、GFDM変調を行う。具体的には、基地局100は、GFDMのための処理として、所定の数のサブキャリアごとにフィルタリングを実施する(即ち、パルス整形フィルタを適用する)。所定値のデータのマッピングにより、GFDMシンボル間での振幅の不連続性が抑制されるので、GFDM変調において発生していた望ましくないスペクトラム成分の抑制が可能となる。なお、GFDM変調に関しては、上記説明した通りであるので、ここでの詳細な説明は省略する。
(1) Mapping of data of predetermined value The base station 100 (for example, the transmission processing unit 151) has data of a predetermined value in the sub-symbol at the end in the time direction in a unit resource composed of one or more subcarriers and a plurality of subsymbols. To map. Further, the base station 100 (for example, the transmission processing unit 151) maps transmission data (for example, user data) to other sub-symbols in the unit resource. With these mappings, data of a predetermined value is mapped to an end portion that can overlap with a unit resource to which transmission data is mapped and other unit resources adjacent in the time direction. Then, the base station 100 (for example, the transmission processing unit 151) performs GFDM modulation on these data mapped to the unit resources. Specifically, the base station 100 performs filtering for each predetermined number of subcarriers (that is, applies a pulse shaping filter) as processing for GFDM. The mapping of the predetermined value data suppresses the amplitude discontinuity between the GFDM symbols, so that it is possible to suppress an undesirable spectrum component that has occurred in the GFDM modulation. Since GFDM modulation is as described above, detailed description thereof is omitted here.
 端部のサブシンボルとは、単位リソースの時間方向の先頭のサブシンボルであってもよい。もちろん、端部のサブシンボルとは、単位リソースの時間方向の末尾のサブシンボルであってもよい。また、その端部のサブシンボルが、これらの両方を意味していてもよい。ただし、図3に示したような、対角成分に振幅値のピークが立つ変換行列の特性を考慮すれば、端部のサブシンボルが単位リソースの時間方向の両端のサブシンボルであることが望ましい。 The sub-symbol at the end may be the first sub-symbol in the time direction of the unit resource. Of course, the sub-symbol at the end may be the last sub-symbol in the time direction of the unit resource. Moreover, the sub-symbol at the end may mean both of them. However, considering the characteristics of the transformation matrix in which the peak of the amplitude value appears in the diagonal component as shown in FIG. 3, it is desirable that the sub-symbols at the end are sub-symbols at both ends in the time direction of the unit resource. .
 端部のサブシンボルにマッピングされる所定値のデータとは、全てが同じ値のデータである。例えば、この所定値はゼロであってもよい。即ち、端部のサブシンボルでは、全てのサブキャリアにゼロがマッピングされてもよい。この場合、GFDMシンボル間での振幅の不連続性が、より抑制され得る。 The predetermined value data mapped to the sub-symbols at the end is data having the same value. For example, this predetermined value may be zero. In other words, in the sub-symbol at the end, zero may be mapped to all subcarriers. In this case, the amplitude discontinuity between the GFDM symbols can be further suppressed.
 基地局100(例えば、バッファ制御部153)は、単位リソースにマッピングされる所定値のデータのデータ長及び送信データのデータ長を制御してもよい。即ち、基地局100は、単位リソースにおける所定値のデータと送信データとの割合を可変に設定可能である。とりわけ、基地局100(例えば、バッファ制御部153)は、所定値のデータのデータ長を単位リソースのサブキャリア数と等しい長さに設定してもよい。即ち、先頭のサブシンボルにのみ所定値のデータがマッピングされてもよい。この場合、シンボル当たりに占める送信データの情報量の低下を最も抑制することが可能である。 The base station 100 (for example, the buffer control unit 153) may control the data length of the predetermined value data mapped to the unit resource and the data length of the transmission data. That is, the base station 100 can variably set the ratio between the predetermined value data and the transmission data in the unit resource. In particular, the base station 100 (for example, the buffer control unit 153) may set the data length of the predetermined value data equal to the number of subcarriers of the unit resource. That is, data of a predetermined value may be mapped only to the first subsymbol. In this case, it is possible to most suppress the reduction in the amount of information of transmission data occupied per symbol.
 以下では、図9及び図10を参照して、所定値がゼロであり、先頭のサブシンボルにのみゼロがマッピングされる例を説明する。 Hereinafter, an example in which the predetermined value is zero and zero is mapped only to the first sub-symbol will be described with reference to FIGS. 9 and 10.
 図9は、上記数式(3)の演算の様子を模式的に示した図である。詳しくは、符号30は変換行列Aを示し、符号31は入力データdを示し、符号32は出力データxを示している。図中のハッチング部分は振幅が大きい部分であり、ハッチングが濃くなるほど振幅が大きいことを意味している。符号33は、フィルタ係数のピーク部分である。また、符号34は入力データのうちゼロがマッピングされる部分である。符号32に示すように、出力データの両端(即ち、時間方向の両端)の振幅は小さくなっている(例えば、ゼロ)ことが分かる。このため、シンボル間の振幅の非連続性に起因する帯域外の周波数歪成分が抑制可能である。このことは、帯域外の周波数歪成分を抑制するための窓関数フィルタの適用を回避することを可能にし、又は極めて軽微な窓関数の使用に留めることを可能にする。 FIG. 9 is a diagram schematically showing a state of calculation of the above formula (3). Specifically, reference numeral 30 indicates a transformation matrix A, reference numeral 31 indicates input data d, and reference numeral 32 indicates output data x. The hatched portion in the figure is a portion having a large amplitude, and the larger the hatching is, the larger the amplitude is. Reference numeral 33 denotes a peak portion of the filter coefficient. Reference numeral 34 denotes a portion to which zero is mapped in the input data. As indicated by reference numeral 32, it can be seen that the amplitudes at both ends of the output data (that is, both ends in the time direction) are small (for example, zero). For this reason, the frequency distortion component outside a band resulting from the discontinuity of the amplitude between symbols can be suppressed. This makes it possible to avoid the application of a window function filter to suppress out-of-band frequency distortion components, or to use only very slight window functions.
 図10は、このようにして生成された送信信号の構造、より詳しくは1つの単位リソースにおける送信信号の振幅値を示す図である。図10を参照すると、図4と比較して、M=0のサブシンボル部分では振幅がゼロであることが分かる。このため、M=6の信号が、時間方向で隣接する他の単位リソースのM=0の信号と重複しないこととなり(より正確には、振幅がゼロの信号と重複することとなり)、シンボル間の振幅の非連続性に起因する帯域外の周波数歪成分が抑制される。 FIG. 10 is a diagram showing the structure of the transmission signal generated in this way, more specifically, the amplitude value of the transmission signal in one unit resource. Referring to FIG. 10, it can be seen that the amplitude is zero in the sub-symbol portion where M = 0 as compared with FIG. For this reason, the signal of M = 6 does not overlap with the signal of M = 0 of other unit resources adjacent in the time direction (more accurately, the signal overlaps with the signal of zero amplitude), and between symbols The out-of-band frequency distortion component due to the non-continuity of the amplitude is suppressed.
 一方で、端末装置200(例えば、受信処理部241)は、GFDM変調された信号を受信する。そして、端末装置200(例えば、データ取得部243)は、単位リソースの時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び当該単位リソースの他のサブシンボルにマッピングされた受信データ(例えば、ユーザデータ)から、受信データを取得する。これにより、端末装置200は、GFDMシンボル間での振幅の不連続性を抑制するために付加された所定値のデータを除外して、基地局100から送信されたユーザデータを取得することが可能となる。 Meanwhile, the terminal device 200 (for example, the reception processing unit 241) receives a GFDM-modulated signal. Then, the terminal device 200 (for example, the data acquisition unit 243), the data of a predetermined value mapped to the sub-symbol at the end of the unit resource in the time direction, and the reception data mapped to another sub-symbol of the unit resource Received data is acquired from (for example, user data). As a result, the terminal device 200 can acquire user data transmitted from the base station 100 by excluding data of a predetermined value added to suppress amplitude discontinuity between GFDM symbols. It becomes.
  (2)性能評価
 上述した所定値のデータのマッピングが行われる場合、シンボル当たりに占める送信データの情報量の低下を招くこととなる。従って、ある程度の周波数利用効率の低下をも招くこととなる。例えば、図10に示す例では、7つのサブシンボルのうち6つのサブシンボルに送信データがマッピングされるので、データの転送効率としては約14%のロスが生じる計算となる。しかしながら、送信データが時間的に又は周波数的に局所化される場合、CPが付加されずとも、ある程度のマルチパスに対する優れた耐性が発揮されることが知られている。例えば、「
Figure JPOXMLDOC01-appb-I000004
」には、送信データが時間的に又は周波数的に局所化された信号が、伝送時の時間的及び周波数的な信号成分の分散に対する耐性を有することが記載されている。
(2) Performance Evaluation When the above-described mapping of data of a predetermined value is performed, the information amount of transmission data occupied per symbol is reduced. Therefore, the frequency utilization efficiency is reduced to some extent. For example, in the example shown in FIG. 10, transmission data is mapped to 6 sub-symbols out of 7 sub-symbols, so that the data transfer efficiency is about 14% loss. However, when transmission data is localized in time or frequency, it is known that a certain degree of resistance against multipath is exhibited even if a CP is not added. For example, "
Figure JPOXMLDOC01-appb-I000004
"It is described that a signal in which transmission data is localized in time or frequency has tolerance to dispersion of signal components in time and frequency during transmission.
 つまり、このような耐性が許す範囲であれば、CPを適宜省くことが可能となる。そして、CPを省くことで、所定値のデータのマッピングを行うことに起因する周波数利用効率の低下を緩和することが可能となる。 In other words, as long as such tolerance allows, CP can be omitted as appropriate. Then, by omitting the CP, it is possible to mitigate a decrease in frequency utilization efficiency resulting from mapping of predetermined value data.
 例えば、7つのサブシンボルにマッピングされた送信データに対し、1つのサブシンボル分の時間長のCPが付加される場合を想定する。この場合、8つのサブシンボルのうち7つのサブシンボルに送信データがマッピングされるので、データの転送効率としては約12%のロスが生じる計算となる。従って、所定値のデータのマッピングを行った上でCPの付加を省略する技術は、所定値のデータのマッピングを行わずにCPを付加する技術と比較して、周波数利用効率が約2%低下するに過ぎない。さらに、サブシンボル数が大きい場合、これらの差はより小さくなる。 For example, it is assumed that a CP having a time length corresponding to one sub-symbol is added to transmission data mapped to seven sub-symbols. In this case, since transmission data is mapped to 7 sub-symbols out of 8 sub-symbols, the data transfer efficiency is about 12% loss. Therefore, the technique of omitting the addition of the CP after mapping the data of the predetermined value has a frequency utilization efficiency reduced by about 2% compared to the technique of adding the CP without mapping the data of the predetermined value. Just do it. Further, when the number of subsymbols is large, these differences are smaller.
 7つのサブシンボルにマッピングされた送信データに対し、前後にプレフィックス及びサフィックス(CS:cyclic suffix)の両方が付加される場合も想定される。この場合、9つのサブシンボルのうち7つのサブシンボルに送信データがマッピングされるので、データの転送効率としては約22%のロスとなる。従って、所定値のデータのマッピングを行った上でCPの付加を省略する技術は、所定値のデータのマッピングを行わずにCP及びCSを付加する技術と比較して、周波数利用効率が改善する。 It is also assumed that both prefix and suffix (CS) are added to the transmission data mapped to 7 subsymbols before and after. In this case, since transmission data is mapped to 7 sub-symbols out of 9 sub-symbols, the data transfer efficiency is about 22% loss. Therefore, the technique of omitting the addition of the CP after mapping the predetermined value data improves the frequency utilization efficiency as compared with the technique of adding the CP and CS without mapping the predetermined value data. .
 以上のことから、所定値のデータのマッピングを行った上でCPの付加を省略する技術は、所定値のデータのマッピングを行わずにCPを付加する技術と比較して、同等程度の性能又は性能の改善が見込まれる。さらに、所定値のデータのマッピングを行った上でCPの付加を省略する技術は、図5の符号23に示したような、サフィックス部分をプレフィックスに重畳する方法で生じる、ノイズの増加などによる劣化を回避することが出来る。 From the above, the technique for omitting the addition of the CP after mapping the predetermined value data is equivalent to the performance or the technique compared with the technique for adding the CP without mapping the predetermined value data. Expected to improve performance. Furthermore, the technique of omitting the addition of a CP after mapping data of a predetermined value is caused by a noise increase caused by a method of superimposing a suffix portion on a prefix as shown by reference numeral 23 in FIG. Can be avoided.
 以上説明したように、本実施形態に係るGFDMシンボルの生成方法は、比較的マルチパスの大きくない通信環境においては、良好な性能を示すことが想定される。例えば、今後、セルラー通信においても活用が期待されるミリ波などは、直接波が支配的だと考えられる通信であり、本手法の適用が有効だと考えられる例のひとつである。 As described above, it is assumed that the GFDM symbol generation method according to the present embodiment exhibits good performance in a communication environment with a relatively small multipath. For example, millimeter waves and the like that are expected to be utilized in cellular communications in the future are communications in which direct waves are considered to be dominant, and are one example in which the application of this method is considered effective.
  (3)送信処理
 上述した、所定値のデータのマッピングは多様な方法により実現され得る。以下、マッピング方法の一例を説明する。
(3) Transmission processing The above-described mapping of data of a predetermined value can be realized by various methods. Hereinafter, an example of the mapping method will be described.
  ・第1の例
 まず、図11及び図12を参照して、第1の例を説明する。
First Example First, a first example will be described with reference to FIGS. 11 and 12.
 図11は、第1のマッピング方法を実行するための送信装置の構成例を示すブロック図である。送信装置は、インプットデータに対し、FEC(Forward Error Correction)符号化、レートマッチング、スクランブリング、インタリービング及びビット列からシンボル(例えば、複素シンボルであってもよく、信号点とも称され得る)へのマッピング(Constellation Mapping)を行う。生成された複素データは、インプットバッファによりバッファリングされる。そして、送信装置は、バッファから供給される送信データに所定値のデータ(本例ではゼロデータ)を挿入して、単位リソースにマッピングする。詳しくは、送信装置は、K個のゼロデータを挿入して単位リソースの先頭のサブシンボルにマッピングすると共に、インプットバッファから供給されるN-K個のデータを当該単位リソースにおけるその他の領域にマッピングする。その際、インプットコントローラは、挿入するゼロデータの個数K及びインプットバッファから供給する送信データの個数N-Kを調整する。ここで、単位リソースへの送信データ及びゼロデータのマッピング例を、より詳しく図12に示した。図12に示すように、N-K個の送信データにK個のゼロデータが挿入されたN個のデータが、M個のサブシンボル及びK個のサブキャリアから成る単位リソースにマッピングされている。例えば、K個のゼロデータは、d~dK-1にマッピングされ、N-K個の送信データは、d~dN-1にマッピングされる。マッピング後、送信装置は、パルス整形フィルタを適用し、DACを適用して、アナログFE(Front End)による信号処理を行って、アンテナから無線信号を送信する。 FIG. 11 is a block diagram illustrating a configuration example of a transmission apparatus for executing the first mapping method. The transmission apparatus converts FEC (Forward Error Correction) coding, rate matching, scrambling, interleaving, and a bit sequence from input data to symbols (for example, complex symbols may also be referred to as signal points). Perform mapping (Constellation Mapping). The generated complex data is buffered by the input buffer. Then, the transmission apparatus inserts data of a predetermined value (zero data in this example) into the transmission data supplied from the buffer, and maps it to the unit resource. Specifically, the transmission apparatus inserts K zero data and maps it to the first sub-symbol of the unit resource, and maps NK data supplied from the input buffer to other regions in the unit resource. To do. At this time, the input controller adjusts the number K of zero data to be inserted and the number N−K of transmission data supplied from the input buffer. Here, an example of mapping transmission data and zero data to unit resources is shown in more detail in FIG. As shown in FIG. 12, N pieces of data in which K pieces of zero data are inserted into NK pieces of transmission data are mapped to unit resources composed of M pieces of subsymbols and K pieces of subcarriers. . For example, K pieces of zero data are mapped to d 0 to d K−1, and NK pieces of transmission data are mapped to d K to d N−1 . After mapping, the transmission apparatus applies a pulse shaping filter, applies a DAC, performs signal processing by analog FE (Front End), and transmits a radio signal from the antenna.
 このような構成により、パルス整形後のGFDMシンボル間での振幅の不連続性が抑制され、帯域外の周波数歪成分を抑制することが可能となる。さらに、帯域外の周波数歪成分を抑制するために用いられてきたCPの付加を省略することが可能となる。 With such a configuration, the amplitude discontinuity between GFDM symbols after pulse shaping is suppressed, and it is possible to suppress out-of-band frequency distortion components. Furthermore, it is possible to omit the addition of a CP that has been used to suppress out-of-band frequency distortion components.
 なお、インプットコントローラ及びゼロ挿入機能はバッファ制御部153に相当してもよく、アナログFEは無線通信部120に相当してもよく、アンテナはアンテナ部110に相当してもよく、その他の構成要素は送信処理部151に相当してもよい。もちろん、その他の任意の対応関係も許容される。 The input controller and zero insertion function may correspond to the buffer control unit 153, the analog FE may correspond to the wireless communication unit 120, the antenna may correspond to the antenna unit 110, and other components. May correspond to the transmission processing unit 151. Of course, any other corresponding relationship is allowed.
  ・第2の例
 続いて、図13を参照して、第2の例を説明する。
Second Example Next, a second example will be described with reference to FIG.
 図13は、第2のマッピング方法を実行するための送信装置の構成例を示すブロック図である。送信装置は、インプットデータに対し、FEC符号化、レートマッチング、スクランブリング、インタリービング及びビット列からシンボルへのマッピングを行う。生成された複素データは、インプットバッファによりバッファリングされる。そして、送信装置は、単位リソースに対応するデータ長のバッファを所定値(本例ではゼロデータ)で初期化(Initialization)後に送信データを配置し、バッファから単位リソースにマッピングする。詳しくは、送信装置は、N個のデータをバッファリング可能なバッファをゼロで初期化し、その後N-K個の送信データをバッファに書き込む。これにより、バッファのうち送信データが書き込まれていないK個分のデータは初期値のゼロのままとなる。そして、送信装置は、初期値のゼロデータを単位リソースの先頭のサブシンボルにマッピングし、その後送信データを当該単位リソースにおけるその他の領域にマッピングする。これにより、本例においても、第1の例と同様のマッピングが実現される。マッピング後、送信装置は、パルス整形フィルタを適用し、DACを適用して、アナログFEによる信号処理を行って、アンテナから無線信号を送信する。 FIG. 13 is a block diagram illustrating a configuration example of a transmission apparatus for executing the second mapping method. The transmission apparatus performs FEC encoding, rate matching, scrambling, interleaving, and bit string to symbol mapping for input data. The generated complex data is buffered by the input buffer. Then, the transmission apparatus arranges transmission data after initialization of a buffer having a data length corresponding to the unit resource with a predetermined value (zero data in this example), and maps the transmission data to the unit resource. Specifically, the transmission apparatus initializes a buffer capable of buffering N data to zero, and then writes NK transmission data to the buffer. As a result, the K pieces of data in which no transmission data is written in the buffer remain at the initial value of zero. Then, the transmission apparatus maps the initial value zero data to the first sub-symbol of the unit resource, and then maps the transmission data to other regions in the unit resource. Thereby, also in this example, the same mapping as the first example is realized. After the mapping, the transmission device applies a pulse shaping filter, applies a DAC, performs signal processing by analog FE, and transmits a radio signal from the antenna.
 このような構成により、本例は第1の例と同様の効果を奏することが可能となる。 With this configuration, this example can achieve the same effect as the first example.
 なお、初期化機能はバッファ制御部153に相当してもよく、アナログFEは無線通信部120に相当してもよく、アンテナはアンテナ部110に相当してもよく、その他の構成要素は送信処理部151に相当してもよい。もちろん、その他の任意の対応関係も許容される。 The initialization function may correspond to the buffer control unit 153, the analog FE may correspond to the wireless communication unit 120, the antenna may correspond to the antenna unit 110, and other components may be transmission processing. It may correspond to the part 151. Of course, any other corresponding relationship is allowed.
 以上、マッピング方法の一例を説明した。続いて、MIMOの場合の送信処理について説明する。 So far, an example of the mapping method has been described. Next, transmission processing in the case of MIMO will be described.
  ・MIMO(multiple-input and multiple-output)の場合
 続いて、図14を参照して、MIMOの場合の送信処理について説明する。
-MIMO (multiple-input and multiple-output) Next, with reference to FIG. 14, a transmission process in the case of MIMO will be described.
 図14は、MIMOの場合の送信装置の構成例を示すブロック図である。図14に示すように、送信装置は、多重する送信データごとに、FEC符号化、レートマッチング、スクランブリング、インタリービング及びビット列からシンボルへのマッピングを行う。次いで、送信装置は、送信レイヤマッピングにより多重化して、多重化信号ごとにプリコーディングを行う。この後の処理は、多重化信号ごとに行われる。送信装置は、上記第1又は第2のマッピング方法によりデータマッピングを行う。即ち、送信装置は、インプットコントローラによりインプットバッファから供給されるN-K個の送信データにK個ゼロデータを挿入し、又はN個のインプットバッファをゼロで初期化してN-K個の送信データをバッファリングし、単位リソースへマッピングする。マッピング後、送信装置は、パルス整形フィルタを適用し、DACを適用して、アナログFEによる信号処理を行って、アンテナから無線信号を送信する。 FIG. 14 is a block diagram illustrating a configuration example of a transmission apparatus in the case of MIMO. As illustrated in FIG. 14, the transmission apparatus performs FEC encoding, rate matching, scrambling, interleaving, and mapping from a bit string to a symbol for each transmission data to be multiplexed. Next, the transmission apparatus multiplexes by transmission layer mapping and performs precoding for each multiplexed signal. The subsequent processing is performed for each multiplexed signal. The transmission apparatus performs data mapping by the first or second mapping method. That is, the transmission device inserts K zero data into NK transmission data supplied from the input buffer by the input controller, or initializes the N input buffers with zero to generate NK transmission data. Is buffered and mapped to unit resources. After the mapping, the transmission device applies a pulse shaping filter, applies a DAC, performs signal processing by analog FE, and transmits a radio signal from the antenna.
  (4)受信処理
 続いて、図15を参照して、受信処理について説明する。ここでは、一例としてMIMOの場合の受信処理について説明する。
(4) Reception Process Next, the reception process will be described with reference to FIG. Here, a reception process in the case of MIMO will be described as an example.
 図15は、受信装置の構成例を示すブロック図である。受信装置は、アンテナにより受信された信号に対し、アナログFEによる信号処理、ADC(Analog to Digital Converter)によりA/D変換し、GFDM復調を行う。GFDM復調器においては、受信装置は、受信したシンボルx[0]~x[N-1]から、元のデータd[0]~d[N-1]を取り出す。このためには、GFDM復調器は、送信に用いられたGFDMの変換行列Aに対する整合フィルタ受信となるAの共役転置行列Aを乗じる回路、ゼロフォース受信となる逆行列A-1を掛け合わせる回路、あるいは、MMSE(Minimum Mean Square Error)受信回路などであってもよい。その後、受信装置は、MIMO等化、送信レイヤのデマッピングを行う。その後、受信装置は、受信データごとにデインタリービング、デスクランブリング、レートマッチング及びFEC復号化を行い、データを出力する。 FIG. 15 is a block diagram illustrating a configuration example of a receiving device. The receiving device performs signal processing by analog FE, A / D conversion by ADC (Analog to Digital Converter), and GFDM demodulation on the signal received by the antenna. In the GFDM demodulator, the receiving apparatus extracts the original data d [0] to d [N−1] from the received symbols x [0] to x [N−1]. For this purpose, GFDM demodulator circuit for multiplying the conjugate transpose matrix A H of A as a matched filter receiver for the transformation matrix A of GFDM used for transmission, is multiplied by the inverse matrix A -1 becomes zero force receiving It may be a circuit or a MMSE (Minimum Mean Square Error) receiving circuit. Thereafter, the receiving apparatus performs MIMO equalization and demapping of the transmission layer. Thereafter, the receiving apparatus performs deinterleaving, descrambling, rate matching, and FEC decoding for each received data, and outputs data.
 なお、GFDM復調器はデータ取得部243に相当してもよく、アナログFEは無線通信部220に相当してもよく、アンテナはアンテナ部210に相当してもよく、その他の構成要素は受信処理部241に相当してもよい。もちろん、その他の任意の対応関係も許容される。 The GFDM demodulator may correspond to the data acquisition unit 243, the analog FE may correspond to the wireless communication unit 220, the antenna may correspond to the antenna unit 210, and other components may be reception processing. It may correspond to the part 241. Of course, any other corresponding relationship is allowed.
  (5)処理の流れ
 続いて、図16及び図17を参照して、基地局100及び端末装置200の処理の流れの一例を説明する。
(5) Process Flow Next, an example of a process flow of the base station 100 and the terminal device 200 will be described with reference to FIGS. 16 and 17.
 図16は、本実施形態に係る基地局100において実行される送信処理の流れの一例を示すフローチャートである。図16に示すように、まず、基地局100(例えば、送信処理部151)は、送信データを生成する(ステップS102)。具体的には、基地局100は、FEC符号化、レートマッチング、スクランブリング、インタリービング及び複素シンボルへのマッピング等を行う。次いで、基地局100(例えば、バッファ制御部153)は、サイズNのバッファに、N-K個の送信データ及びK個の所定値のデータをバッファリングする(ステップS104)。そして、基地局100(例えば、送信処理部151)は、単位リソースの時間方向の端部のサブシンボル(例えば、時間方向の先頭のサブシンボル)にバッファから所定値のデータをマッピングする(ステップS106)。また、基地局100(例えば、送信処理部151)は、当該単位リソースの他のサブシンボル(例えば、時間方向の先頭以外のサブシンボル)にバッファから送信データをマッピングする(ステップS108)。ここでの具体的なバッファの使用方法は、上記説明した第1の例が採用されてもよいし、第2の例が採用されてもよい。次いで、基地局100(例えば、送信処理部151)は、GFDM変調を行って(ステップS110)、信号を送信する(ステップS112)。 FIG. 16 is a flowchart showing an example of the flow of transmission processing executed in the base station 100 according to the present embodiment. As shown in FIG. 16, first, the base station 100 (for example, the transmission processing unit 151) generates transmission data (step S102). Specifically, the base station 100 performs FEC encoding, rate matching, scrambling, interleaving, mapping to complex symbols, and the like. Next, the base station 100 (for example, the buffer control unit 153) buffers NK pieces of transmission data and K pieces of predetermined data in a size N buffer (step S104). Then, the base station 100 (for example, the transmission processing unit 151) maps data of a predetermined value from the buffer to the sub-symbol at the end of the unit resource in the time direction (for example, the first sub-symbol in the time direction) (step S106). ). Further, the base station 100 (for example, the transmission processing unit 151) maps transmission data from the buffer to other sub-symbols (for example, sub-symbols other than the head in the time direction) of the unit resource (step S108). As a specific method of using the buffer here, the first example described above may be employed, or the second example may be employed. Next, the base station 100 (for example, the transmission processing unit 151) performs GFDM modulation (step S110) and transmits a signal (step S112).
 図17は、本実施形態に係る端末装置200において実行される受信処理の流れの一例を示すフローチャートである。図17に示すように、まず、端末装置200(例えば、受信処理部241)は、信号を受信する(ステップS202)。次いで、端末装置200(例えば、データ取得部243)は、単位リソースのうち所定値のデータがマッピングされた時間方向の端部のサブシンボル以外のサブシンボル(例えば、時間方向の先頭以外のサブシンボル)から受信データを取得する(ステップS204)。次に、端末装置200(例えば、受信処理部241)は、取得された受信データに対し、等化、複素データからビット列への変換、デインタリービング、デスクランブリング、レートマッチング及びFEC復号化等の信号処理を行う。 FIG. 17 is a flowchart illustrating an example of a flow of reception processing executed in the terminal device 200 according to the present embodiment. As illustrated in FIG. 17, first, the terminal device 200 (for example, the reception processing unit 241) receives a signal (step S202). Next, the terminal device 200 (for example, the data acquisition unit 243), the sub-symbol other than the sub-symbol at the end in the time direction to which the predetermined value data is mapped among the unit resources (for example, the sub-symbol other than the head in the time direction). ) To obtain the received data (step S204). Next, the terminal device 200 (for example, the reception processing unit 241) performs, for example, equalization, conversion from complex data to a bit string, deinterleaving, descrambling, rate matching, and FEC decoding on the acquired reception data. Perform signal processing.
 <<5.応用例>>
 本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局100は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局100は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局100は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局100として動作してもよい。さらに、基地局100の少なくとも一部の構成要素は、基地局装置又は基地局装置のためのモジュールにおいて実現されてもよい。
<< 5. Application example >>
The technology according to the present disclosure can be applied to various products. For example, the base station 100 may be realized as any type of eNB (evolved Node B) such as a macro eNB or a small eNB. The small eNB may be an eNB that covers a cell smaller than a macro cell, such as a pico eNB, a micro eNB, or a home (femto) eNB. Instead, the base station 100 may be realized as another type of base station such as a NodeB or a BTS (Base Transceiver Station). Base station 100 may include a main body (also referred to as a base station apparatus) that controls radio communication, and one or more RRHs (Remote Radio Heads) that are arranged at locations different from the main body. Further, various types of terminals described later may operate as the base station 100 by temporarily or semi-permanently executing the base station function. Furthermore, at least some components of the base station 100 may be realized in a base station apparatus or a module for the base station apparatus.
 また、例えば、端末装置200は、スマートフォン、タブレットPC(Personal Computer)、ノートPC、携帯型ゲーム端末、携帯型/ドングル型のモバイルルータ若しくはデジタルカメラなどのモバイル端末、又はカーナビゲーション装置などの車載端末として実現されてもよい。また、端末装置200は、M2M(Machine To Machine)通信を行う端末(MTC(Machine Type Communication)端末ともいう)として実現されてもよい。さらに、端末装置200の少なくとも一部の構成要素は、これら端末に搭載されるモジュール(例えば、1つのダイで構成される集積回路モジュール)において実現されてもよい。 Further, for example, the terminal device 200 is a smartphone, a tablet PC (Personal Computer), a notebook PC, a portable game terminal, a mobile terminal such as a portable / dongle type mobile router or a digital camera, or an in-vehicle terminal such as a car navigation device. It may be realized as. The terminal device 200 may be realized as a terminal (also referred to as an MTC (Machine Type Communication) terminal) that performs M2M (Machine To Machine) communication. Furthermore, at least a part of the components of the terminal device 200 may be realized in a module (for example, an integrated circuit module configured by one die) mounted on these terminals.
  <5.1.基地局に関する応用例>
 (第1の応用例)
 図18は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
<5.1. Application examples for base stations>
(First application example)
FIG. 18 is a block diagram illustrating a first example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 800 includes one or more antennas 810 and a base station device 820. Each antenna 810 and the base station apparatus 820 can be connected to each other via an RF cable.
 アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図18に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図18にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。 Each of the antennas 810 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission and reception of radio signals by the base station apparatus 820. The eNB 800 includes a plurality of antennas 810 as illustrated in FIG. 18, and the plurality of antennas 810 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. 18 illustrates an example in which the eNB 800 includes a plurality of antennas 810, but the eNB 800 may include a single antenna 810.
 基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。 The base station apparatus 820 includes a controller 821, a memory 822, a network interface 823, and a wireless communication interface 825.
 コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。 The controller 821 may be a CPU or a DSP, for example, and operates various functions of the upper layer of the base station apparatus 820. For example, the controller 821 generates a data packet from the data in the signal processed by the wireless communication interface 825, and transfers the generated packet via the network interface 823. The controller 821 may generate a bundled packet by bundling data from a plurality of baseband processors, and may transfer the generated bundled packet. In addition, the controller 821 is a logic that executes control such as radio resource control, radio bearer control, mobility management, inflow control, or scheduling. May have a typical function. Moreover, the said control may be performed in cooperation with a surrounding eNB or a core network node. The memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various control data (for example, terminal list, transmission power data, scheduling data, and the like).
 ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。 The network interface 823 is a communication interface for connecting the base station device 820 to the core network 824. The controller 821 may communicate with the core network node or other eNB via the network interface 823. In that case, the eNB 800 and the core network node or another eNB may be connected to each other by a logical interface (for example, an S1 interface or an X2 interface). The network interface 823 may be a wired communication interface or a wireless communication interface for wireless backhaul. When the network interface 823 is a wireless communication interface, the network interface 823 may use a frequency band higher than the frequency band used by the wireless communication interface 825 for wireless communication.
 無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。 The wireless communication interface 825 supports any cellular communication scheme such as LTE (Long Term Evolution) or LTE-Advanced, and provides a wireless connection to terminals located in the cell of the eNB 800 via the antenna 810. The wireless communication interface 825 may typically include a baseband (BB) processor 826, an RF circuit 827, and the like. The BB processor 826 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and each layer (for example, L1, MAC (Medium Access Control), RLC (Radio Link Control), and PDCP). Various signal processing of (Packet Data Convergence Protocol) is executed. The BB processor 826 may have some or all of the logical functions described above instead of the controller 821. The BB processor 826 may be a module that includes a memory that stores a communication control program, a processor that executes the program, and related circuits. The function of the BB processor 826 may be changed by updating the program. Good. Further, the module may be a card or a blade inserted into a slot of the base station apparatus 820, or a chip mounted on the card or the blade. On the other hand, the RF circuit 827 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 810.
 無線通信インタフェース825は、図18に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図18に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図18には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。 The wireless communication interface 825 includes a plurality of BB processors 826 as illustrated in FIG. 18, and the plurality of BB processors 826 may respectively correspond to a plurality of frequency bands used by the eNB 800, for example. Further, the wireless communication interface 825 includes a plurality of RF circuits 827 as shown in FIG. 18, and the plurality of RF circuits 827 may correspond to, for example, a plurality of antenna elements, respectively. 18 shows an example in which the wireless communication interface 825 includes a plurality of BB processors 826 and a plurality of RF circuits 827, the wireless communication interface 825 includes a single BB processor 826 or a single RF circuit 827. But you can.
 図18に示したeNB800において、図7を参照して説明した処理部150に含まれる1つ以上の構成要素(送信処理部151及び/又はバッファ制御部153)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the eNB 800 illustrated in FIG. 18, one or more components (the transmission processing unit 151 and / or the buffer control unit 153) included in the processing unit 150 described with reference to FIG. 7 are implemented in the wireless communication interface 825. May be. Alternatively, at least some of these components may be implemented in the controller 821. As an example, the eNB 800 includes a module including a part (for example, the BB processor 826) or all of the wireless communication interface 825 and / or the controller 821, and the one or more components are mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the eNB 800, and the radio communication interface 825 (eg, the BB processor 826) and / or the controller 821 executes the program. Good. As described above, the eNB 800, the base station apparatus 820, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図18に示したeNB800において、図7を参照して説明した無線通信部120は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、アンテナ部110は、アンテナ810において実装されてもよい。また、ネットワーク通信部130は、コントローラ821及び/又はネットワークインタフェース823において実装されてもよい。また、記憶部140は、メモリ822において実装されてもよい。 18, the radio communication unit 120 described with reference to FIG. 7 may be implemented in the radio communication interface 825 (for example, the RF circuit 827). Further, the antenna unit 110 may be mounted on the antenna 810. The network communication unit 130 may be implemented in the controller 821 and / or the network interface 823. In addition, the storage unit 140 may be implemented in the memory 822.
 (第2の応用例)
 図19は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
(Second application example)
FIG. 19 is a block diagram illustrating a second example of a schematic configuration of an eNB to which the technology according to the present disclosure may be applied. The eNB 830 includes one or more antennas 840, a base station apparatus 850, and an RRH 860. Each antenna 840 and RRH 860 may be connected to each other via an RF cable. Base station apparatus 850 and RRH 860 can be connected to each other via a high-speed line such as an optical fiber cable.
 アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図19に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図19にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。 Each of the antennas 840 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of radio signals by the RRH 860. The eNB 830 includes a plurality of antennas 840 as illustrated in FIG. 19, and the plurality of antennas 840 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Although FIG. 19 shows an example in which the eNB 830 has a plurality of antennas 840, the eNB 830 may have a single antenna 840.
 基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図18を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。 The base station device 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857. The controller 851, the memory 852, and the network interface 853 are the same as the controller 821, the memory 822, and the network interface 823 described with reference to FIG.
 無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図18を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図19に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図19には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。 The wireless communication interface 855 supports a cellular communication method such as LTE or LTE-Advanced, and provides a wireless connection to a terminal located in a sector corresponding to the RRH 860 via the RRH 860 and the antenna 840. The wireless communication interface 855 may typically include a BB processor 856 and the like. The BB processor 856 is the same as the BB processor 826 described with reference to FIG. 18 except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857. The wireless communication interface 855 includes a plurality of BB processors 856 as illustrated in FIG. 19, and the plurality of BB processors 856 may respectively correspond to a plurality of frequency bands used by the eNB 830, for example. Although FIG. 19 shows an example in which the wireless communication interface 855 includes a plurality of BB processors 856, the wireless communication interface 855 may include a single BB processor 856.
 接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 857 is an interface for connecting the base station device 850 (wireless communication interface 855) to the RRH 860. The connection interface 857 may be a communication module for communication on the high-speed line that connects the base station apparatus 850 (wireless communication interface 855) and the RRH 860.
 また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。 In addition, the RRH 860 includes a connection interface 861 and a wireless communication interface 863.
 接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。 The connection interface 861 is an interface for connecting the RRH 860 (wireless communication interface 863) to the base station device 850. The connection interface 861 may be a communication module for communication on the high-speed line.
 無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図19に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図19には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。 The wireless communication interface 863 transmits and receives wireless signals via the antenna 840. The wireless communication interface 863 may typically include an RF circuit 864 and the like. The RF circuit 864 may include a mixer, a filter, an amplifier, and the like, and transmits and receives wireless signals via the antenna 840. The wireless communication interface 863 includes a plurality of RF circuits 864 as shown in FIG. 19, and the plurality of RF circuits 864 may correspond to, for example, a plurality of antenna elements, respectively. FIG. 19 illustrates an example in which the wireless communication interface 863 includes a plurality of RF circuits 864, but the wireless communication interface 863 may include a single RF circuit 864.
 図19に示したeNB830において、図7を参照して説明した処理部150に含まれる1つ以上の構成要素(送信処理部151及び/又はバッファ制御部153)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the eNB 830 illustrated in FIG. 19, one or more components (the transmission processing unit 151 and / or the buffer control unit 153) included in the processing unit 150 described with reference to FIG. 7 include the wireless communication interface 855 and / or The wireless communication interface 863 may be implemented. Alternatively, at least some of these components may be implemented in the controller 851. As an example, the eNB 830 includes a module including a part (for example, the BB processor 856) or the whole of the wireless communication interface 855 and / or the controller 851, and the one or more components are mounted in the module. Good. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the eNB 830, and the wireless communication interface 855 (eg, the BB processor 856) and / or the controller 851 executes the program. Good. As described above, the eNB 830, the base station apparatus 850, or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components is provided. May be. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図19に示したeNB830において、例えば、図7を参照して説明した無線通信部120は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、アンテナ部110は、アンテナ840において実装されてもよい。また、ネットワーク通信部130は、コントローラ851及び/又はネットワークインタフェース853において実装されてもよい。また、記憶部140は、メモリ852において実装されてもよい。 Further, in the eNB 830 illustrated in FIG. 19, for example, the wireless communication unit 120 described with reference to FIG. 7 may be implemented in the wireless communication interface 863 (for example, the RF circuit 864). The antenna unit 110 may be mounted on the antenna 840. The network communication unit 130 may be implemented in the controller 851 and / or the network interface 853. The storage unit 140 may be mounted in the memory 852.
  <5.2.端末装置に関する応用例>
 (第1の応用例)
 図20は、本開示に係る技術が適用され得るスマートフォン900の概略的な構成の一例を示すブロック図である。スマートフォン900は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912、1つ以上のアンテナスイッチ915、1つ以上のアンテナ916、バス917、バッテリー918及び補助コントローラ919を備える。
<5.2. Application examples related to terminal devices>
(First application example)
FIG. 20 is a block diagram illustrating an example of a schematic configuration of a smartphone 900 to which the technology according to the present disclosure may be applied. The smartphone 900 includes a processor 901, a memory 902, a storage 903, an external connection interface 904, a camera 906, a sensor 907, a microphone 908, an input device 909, a display device 910, a speaker 911, a wireless communication interface 912, one or more antenna switches 915. One or more antennas 916, a bus 917, a battery 918 and an auxiliary controller 919 are provided.
 プロセッサ901は、例えばCPU又はSoC(System on Chip)であってよく、スマートフォン900のアプリケーションレイヤ及びその他のレイヤの機能を制御する。メモリ902は、RAM及びROMを含み、プロセッサ901により実行されるプログラム及びデータを記憶する。ストレージ903は、半導体メモリ又はハードディスクなどの記憶媒体を含み得る。外部接続インタフェース904は、メモリーカード又はUSB(Universal Serial Bus)デバイスなどの外付けデバイスをスマートフォン900へ接続するためのインタフェースである。 The processor 901 may be, for example, a CPU or a SoC (System on Chip), and controls the functions of the application layer and other layers of the smartphone 900. The memory 902 includes a RAM and a ROM, and stores programs executed by the processor 901 and data. The storage 903 can include a storage medium such as a semiconductor memory or a hard disk. The external connection interface 904 is an interface for connecting an external device such as a memory card or a USB (Universal Serial Bus) device to the smartphone 900.
 カメラ906は、例えば、CCD(Charge Coupled Device)又はCMOS(Complementary Metal Oxide Semiconductor)などの撮像素子を有し、撮像画像を生成する。センサ907は、例えば、測位センサ、ジャイロセンサ、地磁気センサ及び加速度センサなどのセンサ群を含み得る。マイクロフォン908は、スマートフォン900へ入力される音声を音声信号へ変換する。入力デバイス909は、例えば、表示デバイス910の画面上へのタッチを検出するタッチセンサ、キーパッド、キーボード、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス910は、液晶ディスプレイ(LCD)又は有機発光ダイオード(OLED)ディスプレイなどの画面を有し、スマートフォン900の出力画像を表示する。スピーカ911は、スマートフォン900から出力される音声信号を音声に変換する。 The camera 906 includes, for example, an image sensor such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor), and generates a captured image. The sensor 907 may include a sensor group such as a positioning sensor, a gyro sensor, a geomagnetic sensor, and an acceleration sensor. The microphone 908 converts sound input to the smartphone 900 into an audio signal. The input device 909 includes, for example, a touch sensor that detects a touch on the screen of the display device 910, a keypad, a keyboard, a button, or a switch, and receives an operation or information input from a user. The display device 910 has a screen such as a liquid crystal display (LCD) or an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900. The speaker 911 converts an audio signal output from the smartphone 900 into audio.
 無線通信インタフェース912は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース912は、典型的には、BBプロセッサ913及びRF回路914などを含み得る。BBプロセッサ913は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路914は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ916を介して無線信号を送受信する。無線通信インタフェース912は、BBプロセッサ913及びRF回路914を集積したワンチップのモジュールであってもよい。無線通信インタフェース912は、図20に示したように複数のBBプロセッサ913及び複数のRF回路914を含んでもよい。なお、図20には無線通信インタフェース912が複数のBBプロセッサ913及び複数のRF回路914を含む例を示したが、無線通信インタフェース912は単一のBBプロセッサ913又は単一のRF回路914を含んでもよい。 The wireless communication interface 912 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 912 may typically include a BB processor 913, an RF circuit 914, and the like. The BB processor 913 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 914 may include a mixer, a filter, an amplifier, and the like, and transmits and receives radio signals via the antenna 916. The wireless communication interface 912 may be a one-chip module in which the BB processor 913 and the RF circuit 914 are integrated. The wireless communication interface 912 may include a plurality of BB processors 913 and a plurality of RF circuits 914 as illustrated in FIG. 20 illustrates an example in which the wireless communication interface 912 includes a plurality of BB processors 913 and a plurality of RF circuits 914. However, the wireless communication interface 912 includes a single BB processor 913 or a single RF circuit 914. But you can.
 さらに、無線通信インタフェース912は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN(Local Area Network)方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ913及びRF回路914を含んでもよい。 Furthermore, the wireless communication interface 912 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN (Local Area Network) method in addition to the cellular communication method. In that case, a BB processor 913 and an RF circuit 914 for each wireless communication method may be included.
 アンテナスイッチ915の各々は、無線通信インタフェース912に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ916の接続先を切り替える。 Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits (for example, circuits for different wireless communication systems) included in the wireless communication interface 912.
 アンテナ916の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース912による無線信号の送受信のために使用される。スマートフォン900は、図20に示したように複数のアンテナ916を有してもよい。なお、図20にはスマートフォン900が複数のアンテナ916を有する例を示したが、スマートフォン900は単一のアンテナ916を有してもよい。 Each of the antennas 916 includes a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 912. The smartphone 900 may include a plurality of antennas 916 as illustrated in FIG. Note that although FIG. 20 illustrates an example in which the smartphone 900 includes a plurality of antennas 916, the smartphone 900 may include a single antenna 916.
 さらに、スマートフォン900は、無線通信方式ごとにアンテナ916を備えてもよい。その場合に、アンテナスイッチ915は、スマートフォン900の構成から省略されてもよい。 Furthermore, the smartphone 900 may include an antenna 916 for each wireless communication method. In that case, the antenna switch 915 may be omitted from the configuration of the smartphone 900.
 バス917は、プロセッサ901、メモリ902、ストレージ903、外部接続インタフェース904、カメラ906、センサ907、マイクロフォン908、入力デバイス909、表示デバイス910、スピーカ911、無線通信インタフェース912及び補助コントローラ919を互いに接続する。バッテリー918は、図中に破線で部分的に示した給電ラインを介して、図20に示したスマートフォン900の各ブロックへ電力を供給する。補助コントローラ919は、例えば、スリープモードにおいて、スマートフォン900の必要最低限の機能を動作させる。 The bus 917 connects the processor 901, the memory 902, the storage 903, the external connection interface 904, the camera 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other. . The battery 918 supplies power to each block of the smartphone 900 illustrated in FIG. 20 through a power supply line partially illustrated by a broken line in the drawing. For example, the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900 in the sleep mode.
 図20に示したスマートフォン900において、図8を参照して説明した処理部240に含まれる1つ以上の構成要素(受信処理部241及び/又はデータ取得部243)は、無線通信インタフェース912において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ901又は補助コントローラ919において実装されてもよい。一例として、スマートフォン900は、無線通信インタフェース912の一部(例えば、BBプロセッサ913)若しくは全部、プロセッサ901、及び/又は補助コントローラ919を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがスマートフォン900にインストールされ、無線通信インタフェース912(例えば、BBプロセッサ913)、プロセッサ901、及び/又は補助コントローラ919が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてスマートフォン900又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the smartphone 900 illustrated in FIG. 20, one or more components (the reception processing unit 241 and / or the data acquisition unit 243) included in the processing unit 240 described with reference to FIG. 8 are implemented in the wireless communication interface 912. May be. Alternatively, at least some of these components may be implemented in the processor 901 or the auxiliary controller 919. As an example, the smartphone 900 includes a module including a part (for example, the BB processor 913) or the whole of the wireless communication interface 912, the processor 901, and / or the auxiliary controller 919, and the one or more components in the module. May be implemented. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the smartphone 900, and the wireless communication interface 912 (eg, the BB processor 913), the processor 901, and / or the auxiliary controller 919 is The program may be executed. As described above, the smartphone 900 or the module may be provided as a device including the one or more components, and a program for causing a processor to function as the one or more components may be provided. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図20に示したスマートフォン900において、例えば、図8を参照して説明した無線通信部220は、無線通信インタフェース912(例えば、RF回路914)において実装されてもよい。また、アンテナ部210は、アンテナ916において実装されてもよい。また、記憶部230は、メモリ902において実装されてもよい。 In the smartphone 900 shown in FIG. 20, for example, the wireless communication unit 220 described with reference to FIG. 8 may be implemented in the wireless communication interface 912 (for example, the RF circuit 914). The antenna unit 210 may be mounted on the antenna 916. The storage unit 230 may be mounted in the memory 902.
 (第2の応用例)
 図21は、本開示に係る技術が適用され得るカーナビゲーション装置920の概略的な構成の一例を示すブロック図である。カーナビゲーション装置920は、プロセッサ921、メモリ922、GPS(Global Positioning System)モジュール924、センサ925、データインタフェース926、コンテンツプレーヤ927、記憶媒体インタフェース928、入力デバイス929、表示デバイス930、スピーカ931、無線通信インタフェース933、1つ以上のアンテナスイッチ936、1つ以上のアンテナ937及びバッテリー938を備える。
(Second application example)
FIG. 21 is a block diagram illustrating an example of a schematic configuration of a car navigation device 920 to which the technology according to the present disclosure can be applied. The car navigation device 920 includes a processor 921, a memory 922, a GPS (Global Positioning System) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, and wireless communication. The interface 933 includes one or more antenna switches 936, one or more antennas 937, and a battery 938.
 プロセッサ921は、例えばCPU又はSoCであってよく、カーナビゲーション装置920のナビゲーション機能及びその他の機能を制御する。メモリ922は、RAM及びROMを含み、プロセッサ921により実行されるプログラム及びデータを記憶する。 The processor 921 may be a CPU or SoC, for example, and controls the navigation function and other functions of the car navigation device 920. The memory 922 includes RAM and ROM, and stores programs and data executed by the processor 921.
 GPSモジュール924は、GPS衛星から受信されるGPS信号を用いて、カーナビゲーション装置920の位置(例えば、緯度、経度及び高度)を測定する。センサ925は、例えば、ジャイロセンサ、地磁気センサ及び気圧センサなどのセンサ群を含み得る。データインタフェース926は、例えば、図示しない端子を介して車載ネットワーク941に接続され、車速データなどの車両側で生成されるデータを取得する。 The GPS module 924 measures the position (for example, latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites. The sensor 925 may include a sensor group such as a gyro sensor, a geomagnetic sensor, and an atmospheric pressure sensor. The data interface 926 is connected to the in-vehicle network 941 through a terminal (not shown), for example, and acquires data generated on the vehicle side such as vehicle speed data.
 コンテンツプレーヤ927は、記憶媒体インタフェース928に挿入される記憶媒体(例えば、CD又はDVD)に記憶されているコンテンツを再生する。入力デバイス929は、例えば、表示デバイス930の画面上へのタッチを検出するタッチセンサ、ボタン又はスイッチなどを含み、ユーザからの操作又は情報入力を受け付ける。表示デバイス930は、LCD又はOLEDディスプレイなどの画面を有し、ナビゲーション機能又は再生されるコンテンツの画像を表示する。スピーカ931は、ナビゲーション機能又は再生されるコンテンツの音声を出力する。 The content player 927 reproduces content stored in a storage medium (for example, CD or DVD) inserted into the storage medium interface 928. The input device 929 includes, for example, a touch sensor, a button, or a switch that detects a touch on the screen of the display device 930, and receives an operation or information input from the user. The display device 930 has a screen such as an LCD or an OLED display, and displays a navigation function or an image of content to be reproduced. The speaker 931 outputs the navigation function or the audio of the content to be played back.
 無線通信インタフェース933は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、無線通信を実行する。無線通信インタフェース933は、典型的には、BBプロセッサ934及びRF回路935などを含み得る。BBプロセッサ934は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、無線通信のための様々な信号処理を実行する。一方、RF回路935は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ937を介して無線信号を送受信する。無線通信インタフェース933は、BBプロセッサ934及びRF回路935を集積したワンチップのモジュールであってもよい。無線通信インタフェース933は、図21に示したように複数のBBプロセッサ934及び複数のRF回路935を含んでもよい。なお、図21には無線通信インタフェース933が複数のBBプロセッサ934及び複数のRF回路935を含む例を示したが、無線通信インタフェース933は単一のBBプロセッサ934又は単一のRF回路935を含んでもよい。 The wireless communication interface 933 supports any cellular communication method such as LTE or LTE-Advanced, and performs wireless communication. The wireless communication interface 933 may typically include a BB processor 934, an RF circuit 935, and the like. The BB processor 934 may perform, for example, encoding / decoding, modulation / demodulation, and multiplexing / demultiplexing, and performs various signal processing for wireless communication. On the other hand, the RF circuit 935 may include a mixer, a filter, an amplifier, and the like, and transmits and receives a radio signal via the antenna 937. The wireless communication interface 933 may be a one-chip module in which the BB processor 934 and the RF circuit 935 are integrated. The wireless communication interface 933 may include a plurality of BB processors 934 and a plurality of RF circuits 935 as shown in FIG. 21 illustrates an example in which the wireless communication interface 933 includes a plurality of BB processors 934 and a plurality of RF circuits 935, the wireless communication interface 933 includes a single BB processor 934 or a single RF circuit 935. But you can.
 さらに、無線通信インタフェース933は、セルラー通信方式に加えて、近距離無線通信方式、近接無線通信方式又は無線LAN方式などの他の種類の無線通信方式をサポートしてもよく、その場合に、無線通信方式ごとのBBプロセッサ934及びRF回路935を含んでもよい。 Further, the wireless communication interface 933 may support other types of wireless communication methods such as a short-range wireless communication method, a proximity wireless communication method, or a wireless LAN method in addition to the cellular communication method. A BB processor 934 and an RF circuit 935 may be included for each communication method.
 アンテナスイッチ936の各々は、無線通信インタフェース933に含まれる複数の回路(例えば、異なる無線通信方式のための回路)の間でアンテナ937の接続先を切り替える。 Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933 (for example, circuits for different wireless communication systems).
 アンテナ937の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、無線通信インタフェース933による無線信号の送受信のために使用される。カーナビゲーション装置920は、図21に示したように複数のアンテナ937を有してもよい。なお、図21にはカーナビゲーション装置920が複数のアンテナ937を有する例を示したが、カーナビゲーション装置920は単一のアンテナ937を有してもよい。 Each of the antennas 937 has a single or a plurality of antenna elements (for example, a plurality of antenna elements constituting a MIMO antenna), and is used for transmission / reception of a radio signal by the radio communication interface 933. The car navigation device 920 may include a plurality of antennas 937 as shown in FIG. 21 illustrates an example in which the car navigation apparatus 920 includes a plurality of antennas 937, the car navigation apparatus 920 may include a single antenna 937.
 さらに、カーナビゲーション装置920は、無線通信方式ごとにアンテナ937を備えてもよい。その場合に、アンテナスイッチ936は、カーナビゲーション装置920の構成から省略されてもよい。 Furthermore, the car navigation device 920 may include an antenna 937 for each wireless communication method. In that case, the antenna switch 936 may be omitted from the configuration of the car navigation device 920.
 バッテリー938は、図中に破線で部分的に示した給電ラインを介して、図21に示したカーナビゲーション装置920の各ブロックへ電力を供給する。また、バッテリー938は、車両側から給電される電力を蓄積する。 The battery 938 supplies power to each block of the car navigation device 920 shown in FIG. 21 via a power supply line partially shown by broken lines in the drawing. Further, the battery 938 stores electric power supplied from the vehicle side.
 図21に示したカーナビゲーション装置920において、図8を参照して説明した処理部240に含まれる1つ以上の構成要素(受信処理部241及び/又はデータ取得部243)は、無線通信インタフェース933において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、プロセッサ921において実装されてもよい。一例として、カーナビゲーション装置920は、無線通信インタフェース933の一部(例えば、BBプロセッサ934)若しくは全部及び/又はプロセッサ921を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがカーナビゲーション装置920にインストールされ、無線通信インタフェース933(例えば、BBプロセッサ934)及び/又はプロセッサ921が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてカーナビゲーション装置920又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。 In the car navigation device 920 shown in FIG. 21, one or more components (the reception processing unit 241 and / or the data acquisition unit 243) included in the processing unit 240 described with reference to FIG. May be implemented. Alternatively, at least some of these components may be implemented in the processor 921. As an example, the car navigation apparatus 920 includes a module including a part (for example, the BB processor 934) or the whole of the wireless communication interface 933 and / or the processor 921, and the one or more components are mounted in the module. May be. In this case, the module stores a program for causing the processor to function as the one or more components (in other words, a program for causing the processor to execute the operation of the one or more components). The program may be executed. As another example, a program for causing a processor to function as the one or more components is installed in the car navigation device 920, and the wireless communication interface 933 (eg, the BB processor 934) and / or the processor 921 executes the program. May be. As described above, the car navigation apparatus 920 or the module may be provided as an apparatus including the one or more components, and a program for causing a processor to function as the one or more components may be provided. Good. In addition, a readable recording medium in which the program is recorded may be provided.
 また、図21に示したカーナビゲーション装置920において、例えば、図8を参照して説明した無線通信部220は、無線通信インタフェース933(例えば、RF回路935)において実装されてもよい。また、アンテナ部210は、アンテナ937において実装されてもよい。また、記憶部230は、メモリ922において実装されてもよい。 21, for example, the wireless communication unit 220 described with reference to FIG. 8 may be implemented in the wireless communication interface 933 (for example, the RF circuit 935). The antenna unit 210 may be mounted on the antenna 937. Further, the storage unit 230 may be implemented in the memory 922.
 また、本開示に係る技術は、上述したカーナビゲーション装置920の1つ以上のブロックと、車載ネットワーク941と、車両側モジュール942とを含む車載システム(又は車両)940として実現されてもよい。即ち、処理部240を備える装置として車載システム(又は車両)940が提供されてもよい。車両側モジュール942は、車速、エンジン回転数又は故障情報などの車両側データを生成し、生成したデータを車載ネットワーク941へ出力する。 Also, the technology according to the present disclosure may be realized as an in-vehicle system (or vehicle) 940 including one or more blocks of the car navigation device 920 described above, an in-vehicle network 941, and a vehicle side module 942. That is, an in-vehicle system (or vehicle) 940 may be provided as a device including the processing unit 240. The vehicle-side module 942 generates vehicle-side data such as vehicle speed, engine speed, or failure information, and outputs the generated data to the in-vehicle network 941.
 <<6.まとめ>>
 以上、図1~図21を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、基地局100は、ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び当該単位リソースにおける他のサブシンボルにマッピングされた送信データを対象に、GFDM変調を行う。これにより、GFDMシンボル間の振幅の非連続性を抑制することが可能となり、これに伴いシンボル間の振幅の非連続性に起因する帯域外の周波数歪成分が抑制可能となる。また、基地局100は、CP及びCSの付加を省略することも可能となり、これに伴い所定値のデータのマッピングを行うことに起因する周波数利用効率の低下を緩和することが可能である。
<< 6. Summary >>
The embodiment of the present disclosure has been described in detail above with reference to FIGS. As described above, the base station 100 transmits data of a predetermined value mapped to sub-symbols at the end of the time direction in a unit resource composed of one or more subcarriers and a plurality of subsymbols, and other data in the unit resource. GFDM modulation is performed on transmission data mapped to sub-symbols. Thereby, it is possible to suppress amplitude discontinuity between GFDM symbols, and accordingly, it is possible to suppress out-of-band frequency distortion components due to amplitude discontinuity between symbols. In addition, the base station 100 can omit the addition of CP and CS, and accordingly, it is possible to mitigate a decrease in frequency utilization efficiency caused by mapping data of a predetermined value.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the technical scope of the present disclosure is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 例えば、上記実施形態では、基地局100が送信装置であり端末装置200が受信装置である例を説明したが、本技術はかかる例に限定されない。例えば、端末装置200が送信装置で、基地局100が受信装置であってもよい。その場合、処理部240が送信処理部151及びバッファ制御部153としての機能を有し、処理部150が受信処理部241及びデータ取得部243としての機能を有することとなる。他にもD2D(Device to Device)通信を考慮すれば、送信装置及び受信装置が共に端末装置200であってもよい。 For example, in the above-described embodiment, an example in which the base station 100 is a transmission device and the terminal device 200 is a reception device has been described, but the present technology is not limited to such an example. For example, the terminal device 200 may be a transmission device and the base station 100 may be a reception device. In that case, the processing unit 240 has functions as the transmission processing unit 151 and the buffer control unit 153, and the processing unit 150 has functions as the reception processing unit 241 and the data acquisition unit 243. In addition, in consideration of D2D (Device to Device) communication, both the transmission device and the reception device may be the terminal device 200.
 また、本明細書においてフローチャートを用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。図11、図14及び図15に示した信号処理の各種ブロックの順序に関しても同様である。 In addition, the processes described using the flowcharts in this specification do not necessarily have to be executed in the order shown. Some processing steps may be performed in parallel. Further, additional processing steps may be employed, and some processing steps may be omitted. The same applies to the order of the various blocks of the signal processing shown in FIGS. 11, 14, and 15.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データを対象に、所定の数のサブキャリアごとにフィルタリングを行う処理部、
を備える装置。
(2)
 前記端部のサブシンボルは、前記単位リソースの時間方向の両端のサブシンボルである、前記(1)に記載の装置。
(3)
 前記処理部は、前記単位リソースにマッピングされる前記所定値のデータのデータ長及び前記送信データのデータ長を制御する、前記(1)又は(2)に記載の装置。
(4)
 前記処理部は、前記所定値のデータのデータ長を、前記単位リソースのサブキャリア数と等しい長さに設定する、前記(3)に記載の装置。
(5)
 前記処理部は、前記送信データに前記所定値のデータを挿入して、前記単位リソースにマッピングする、前記(1)~(4)のいずれか一項に記載の装置。
(6)
 前記処理部は、前記単位リソースに対応するデータ長のバッファを前記所定値で初期化後に前記送信データを配置し、前記バッファから前記単位リソースにマッピングする、前記(1)~(4)のいずれか一項に記載の装置。
(7)
 前記所定値は、ゼロである、前記(1)~(6)のいずれか一項に記載の装置。
(8)
 前記フィルタリングには、RC(Raised Cosine)フィルタ、RRC(Root Raised Cosine)フィルタ、又はIOTA(Isotropic Orthogonal Transfer Algorithm)フィルタが用いられる、前記(1)~(7)のいずれか一項に記載の装置。
(9)
 前記フィルタリングは、一般化されたOFDM(Orthogonal Frequency Division Multiplexing)のための処理である、前記(1)~(8)のいずれか一項に記載の装置。
(10)
 所定の数のサブキャリアごとにフィルタリングされた信号における、ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データから前記送信データを取得する処理部、
を備える装置。
(11)
 ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データを対象に、所定の数のサブキャリアごとにプロセッサによりフィルタリングを行うこと、
を含む方法。
(12)
 コンピュータを、
 ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データを対象に、所定の数のサブキャリアごとにフィルタリングを行う処理部、
として機能させるためのプログラム。
The following configurations also belong to the technical scope of the present disclosure.
(1)
For data of a predetermined value mapped to a sub-symbol at the end in the time direction in a unit resource composed of one or more subcarriers and a plurality of sub-symbols, and transmission data mapped to other sub-symbols in the unit resource A processing unit that performs filtering for each predetermined number of subcarriers,
A device comprising:
(2)
The apparatus according to (1), wherein the sub-symbols at the end are sub-symbols at both ends in the time direction of the unit resource.
(3)
The apparatus according to (1) or (2), wherein the processing unit controls a data length of the predetermined value data mapped to the unit resource and a data length of the transmission data.
(4)
The apparatus according to (3), wherein the processing unit sets a data length of the predetermined value data to a length equal to a number of subcarriers of the unit resource.
(5)
The apparatus according to any one of (1) to (4), wherein the processing unit inserts the data of the predetermined value into the transmission data and maps the data to the unit resource.
(6)
The processing unit allocates the transmission data after initializing a buffer having a data length corresponding to the unit resource with the predetermined value, and maps the transmission data from the buffer to the unit resource. A device according to claim 1.
(7)
The apparatus according to any one of (1) to (6), wherein the predetermined value is zero.
(8)
The apparatus according to any one of (1) to (7), wherein an RC (Raised Cosine) filter, an RRC (Root Raised Cosine) filter, or an IOTA (Isotropic Orthogonal Transfer Algorithm) filter is used for the filtering. .
(9)
The apparatus according to any one of (1) to (8), wherein the filtering is processing for generalized OFDM (Orthogonal Frequency Division Multiplexing).
(10)
Predetermined value data mapped to sub-symbols at the end in the time direction in a unit resource composed of one or more sub-carriers and a plurality of sub-symbols in a signal filtered for a predetermined number of sub-carriers, and the unit resource A processing unit for obtaining the transmission data from transmission data mapped to other sub-symbols in
A device comprising:
(11)
For data of a predetermined value mapped to a sub-symbol at the end in the time direction in a unit resource composed of one or more subcarriers and a plurality of sub-symbols, and transmission data mapped to other sub-symbols in the unit resource Filtering by a processor every predetermined number of subcarriers,
Including methods.
(12)
Computer
For data of a predetermined value mapped to a sub-symbol at the end in the time direction in a unit resource composed of one or more subcarriers and a plurality of sub-symbols, and transmission data mapped to other sub-symbols in the unit resource A processing unit that performs filtering for each predetermined number of subcarriers,
Program to function as.
 1  システム1
 100  基地局
 110  アンテナ部
 120  無線通信部
 130  ネットワーク通信部
 140  記憶部
 150  処理部
 151  送信処理部
 153  バッファ制御部
 200  端末装置
 210  アンテナ部
 220  無線通信部
 230  記憶部
 240  処理部
 241  受信処理部
 243  データ取得部
1 System 1
100 base station 110 antenna unit 120 wireless communication unit 130 network communication unit 140 storage unit 150 processing unit 151 transmission processing unit 153 buffer control unit 200 terminal device 210 antenna unit 220 wireless communication unit 230 storage unit 240 processing unit 241 reception processing unit 243 data Acquisition department

Claims (12)

  1.  ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データを対象に、所定の数のサブキャリアごとにフィルタリングを行う処理部、
    を備える装置。
    For data of a predetermined value mapped to a sub-symbol at the end in the time direction in a unit resource composed of one or more subcarriers and a plurality of sub-symbols, and transmission data mapped to other sub-symbols in the unit resource A processing unit that performs filtering for each predetermined number of subcarriers,
    A device comprising:
  2.  前記端部のサブシンボルは、前記単位リソースの時間方向の両端のサブシンボルである、請求項1に記載の装置。 The apparatus according to claim 1, wherein the sub-symbols at the ends are sub-symbols at both ends in the time direction of the unit resource.
  3.  前記処理部は、前記単位リソースにマッピングされる前記所定値のデータのデータ長及び前記送信データのデータ長を制御する、請求項1に記載の装置。 The apparatus according to claim 1, wherein the processing unit controls a data length of the predetermined value data mapped to the unit resource and a data length of the transmission data.
  4.  前記処理部は、前記所定値のデータのデータ長を、前記単位リソースのサブキャリア数と等しい長さに設定する、請求項3に記載の装置。 The apparatus according to claim 3, wherein the processing unit sets a data length of the predetermined value data to a length equal to a number of subcarriers of the unit resource.
  5.  前記処理部は、前記送信データに前記所定値のデータを挿入して、前記単位リソースにマッピングする、請求項1に記載の装置。 The apparatus according to claim 1, wherein the processing unit inserts the data of the predetermined value into the transmission data and maps the data to the unit resource.
  6.  前記処理部は、前記単位リソースに対応するデータ長のバッファを前記所定値で初期化後に前記送信データを配置し、前記バッファから前記単位リソースにマッピングする、請求項1に記載の装置。 The apparatus according to claim 1, wherein the processing unit arranges the transmission data after initializing a buffer having a data length corresponding to the unit resource with the predetermined value, and maps the transmission data from the buffer to the unit resource.
  7.  前記所定値は、ゼロである、請求項1に記載の装置。 The apparatus according to claim 1, wherein the predetermined value is zero.
  8.  前記フィルタリングには、RC(Raised Cosine)フィルタ、RRC(Root Raised Cosine)フィルタ、又はIOTA(Isotropic Orthogonal Transfer Algorithm)フィルタが用いられる、請求項1に記載の装置。 The apparatus according to claim 1, wherein an RC (Raised Cosine) filter, an RRC (Root Raised Cosine) filter, or an IOTA (Isotropic Orthogonal Transfer Algorithm) filter is used for the filtering.
  9.  前記フィルタリングは、一般化されたOFDM(Orthogonal Frequency Division Multiplexing)のための処理である、請求項1に記載の装置。 The apparatus according to claim 1, wherein the filtering is a process for generalized OFDM (Orthogonal Frequency Division Multiplexing).
  10.  所定の数のサブキャリアごとにフィルタリングされた信号における、ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データから前記送信データを取得する処理部、
    を備える装置。
    Predetermined value data mapped to sub-symbols at the end in the time direction in a unit resource composed of one or more sub-carriers and a plurality of sub-symbols in a signal filtered for a predetermined number of sub-carriers, and the unit resource A processing unit for obtaining the transmission data from transmission data mapped to other sub-symbols in
    A device comprising:
  11.  ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データを対象に、所定の数のサブキャリアごとにプロセッサによりフィルタリングを行うこと、
    を含む方法。
    For data of a predetermined value mapped to a sub-symbol at the end in the time direction in a unit resource composed of one or more subcarriers and a plurality of sub-symbols, and transmission data mapped to other sub-symbols in the unit resource Filtering by a processor every predetermined number of subcarriers,
    Including methods.
  12.  コンピュータを、
     ひとつ以上のサブキャリア及び複数のサブシンボルから成る単位リソースにおける時間方向の端部のサブシンボルにマッピングされた所定値のデータ、及び前記単位リソースにおける他のサブシンボルにマッピングされた送信データを対象に、所定の数のサブキャリアごとにフィルタリングを行う処理部、
    として機能させるためのプログラム。
    Computer
    For data of a predetermined value mapped to a sub-symbol at the end in the time direction in a unit resource composed of one or more subcarriers and a plurality of sub-symbols, and transmission data mapped to other sub-symbols in the unit resource A processing unit that performs filtering for each predetermined number of subcarriers,
    Program to function as.
PCT/JP2016/073499 2015-11-19 2016-08-09 Device, method and program WO2017085971A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/773,426 US10938608B2 (en) 2015-11-19 2016-08-09 Apparatus and method
JP2017551550A JP6848879B2 (en) 2015-11-19 2016-08-09 Equipment, methods and programs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015226893 2015-11-19
JP2015-226893 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017085971A1 true WO2017085971A1 (en) 2017-05-26

Family

ID=58718560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/073499 WO2017085971A1 (en) 2015-11-19 2016-08-09 Device, method and program

Country Status (3)

Country Link
US (1) US10938608B2 (en)
JP (1) JP6848879B2 (en)
WO (1) WO2017085971A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083925A1 (en) * 2016-11-01 2018-05-11 日本電気株式会社 Wireless communication device, method, program, and recording medium
JP2018093325A (en) * 2016-12-01 2018-06-14 ソニーセミコンダクタソリューションズ株式会社 Information processing device, information processing method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142082A1 (en) * 2013-03-13 2014-09-18 三菱電機株式会社 Transmission device, reception device and communication system
EP2911320A1 (en) * 2012-10-22 2015-08-26 LG Electronics Inc. Method for configuring wireless frame of user equipment and user equipment, and method for configuring wireless frame of base station and base station

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9628231B2 (en) * 2002-05-14 2017-04-18 Genghiscomm Holdings, LLC Spreading and precoding in OFDM
DE102004014562A1 (en) * 2004-03-25 2005-10-20 Atmel Germany Gmbh Data transmission methods in RFID and remote sensor systems
US8644363B2 (en) * 2006-12-31 2014-02-04 Intellectual Discovery Co., Ltd. Apparatus and method for estimating channel in MIMO system based OFDM/OFDMA
WO2009107985A1 (en) * 2008-02-28 2009-09-03 Lg Electronics Inc. Method for multiplexing data and control information
CN101572684B (en) * 2008-04-30 2013-06-12 中兴通讯股份有限公司 Lead code configuration method and cell search method
US8565065B2 (en) * 2008-06-23 2013-10-22 Qualcomm Incorporated Methods and systems for utilizing a multicast/broadcast CID scheduling MAC management message
US8929352B2 (en) 2008-12-18 2015-01-06 Gerhard Fettweis Method and apparatus for multi-carrier frequency division multiplexing transmission
WO2010073987A1 (en) * 2008-12-22 2010-07-01 株式会社日立製作所 Method of positioning of signal, and communication device
CN103037397B (en) * 2011-09-30 2017-11-24 华为技术有限公司 Interferometry indicating means and interference detecting method and relevant device and communication system
US9763248B2 (en) 2012-10-22 2017-09-12 Lg Electronics Inc. Method for configuring wireless frame of user equipment, user equipment, method for configuring wireless frame of base station, and base station
GB2511796A (en) * 2013-03-13 2014-09-17 Sony Corp Transmitters, receivers and methods of transmitting and receiving
US10057389B2 (en) * 2013-05-28 2018-08-21 Intel Deutschland Gmbh Methods and devices for processing a data frame
US9294247B2 (en) * 2013-07-05 2016-03-22 Lg Electronics Inc. Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
CN104734826B (en) * 2013-12-20 2020-08-11 中兴通讯股份有限公司 Ultra-large bandwidth data sending control method and ultra-large bandwidth data sending equipment
JP2015156532A (en) * 2014-02-19 2015-08-27 ソニー株式会社 Data processor and data processing method
JP6345949B2 (en) * 2014-03-04 2018-06-20 株式会社Nttドコモ User terminal, radio base station, radio communication method, and radio communication system
US9693172B2 (en) 2014-03-27 2017-06-27 Huawei Technologies Co., Ltd. System and method for machine-type communications
WO2015196408A1 (en) * 2014-06-26 2015-12-30 华为技术有限公司 Fbmc-based pilot sending method, channel estimating method and related devices
US10454634B2 (en) * 2015-03-19 2019-10-22 Lg Electronics Inc. Method for allocating resources for supporting plurality of wireless communication modes in wireless communication system, and device for same
US9985760B2 (en) * 2015-03-31 2018-05-29 Huawei Technologies Co., Ltd. System and method for an adaptive frame structure with filtered OFDM
WO2017082793A1 (en) * 2015-11-13 2017-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Mixed numerology of dma system for single dft receiver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2911320A1 (en) * 2012-10-22 2015-08-26 LG Electronics Inc. Method for configuring wireless frame of user equipment and user equipment, and method for configuring wireless frame of base station and base station
WO2014142082A1 (en) * 2013-03-13 2014-09-18 三菱電機株式会社 Transmission device, reception device and communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NICOLA MICHAILOW ET AL.: "Generalized Frequency Division Multiplexing for 5th Generation Cellular Networks", IEEE TRANSACTIONS ON COMMUNICATIONS, vol. 62, no. 9, September 2014 (2014-09-01), pages 3045 - 3061, XP011559563, DOI: doi:10.1109/TCOMM.2014.2345566 *
SHASHANK TIWARI ET AL.: "Precoded generalised frequency division multiplexing system to combat inter-carrier interference: performance analysis", IET COMMUNICATIONS, vol. 9, no. 15, 15 October 2015 (2015-10-15), pages 1829 - 1841, XP006053762, DOI: doi:10.1049/iet-com.2015.0081 *

Also Published As

Publication number Publication date
US20180331869A1 (en) 2018-11-15
JP6848879B2 (en) 2021-03-24
JPWO2017085971A1 (en) 2018-09-06
US10938608B2 (en) 2021-03-02

Similar Documents

Publication Publication Date Title
JP7003658B2 (en) Equipment, methods and programs
JP7039864B2 (en) Transmitter, receiver, method and recording medium
WO2016157918A1 (en) Device
AU2019280050A1 (en) Device and method
WO2019233373A1 (en) Electronic device and communication method
US20220109595A1 (en) Apparatus and method
WO2017047210A1 (en) Device and method
JP6848879B2 (en) Equipment, methods and programs
JP6828694B2 (en) Equipment, methods and programs
WO2017130499A1 (en) Device and method
WO2017145477A1 (en) Device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16865974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551550

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15773426

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16865974

Country of ref document: EP

Kind code of ref document: A1