WO2017082186A1 - New use for npr-a agonist - Google Patents

New use for npr-a agonist Download PDF

Info

Publication number
WO2017082186A1
WO2017082186A1 PCT/JP2016/082919 JP2016082919W WO2017082186A1 WO 2017082186 A1 WO2017082186 A1 WO 2017082186A1 JP 2016082919 W JP2016082919 W JP 2016082919W WO 2017082186 A1 WO2017082186 A1 WO 2017082186A1
Authority
WO
WIPO (PCT)
Prior art keywords
natriuretic peptide
agonist
anp
peptide receptor
tumor
Prior art date
Application number
PCT/JP2016/082919
Other languages
French (fr)
Japanese (ja)
Inventor
寒川 賢治
崇 野尻
細田 洋司
Original Assignee
国立研究開発法人国立循環器病研究センター
塩野義製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人国立循環器病研究センター, 塩野義製薬株式会社 filed Critical 国立研究開発法人国立循環器病研究センター
Priority to JP2017550300A priority Critical patent/JP6782932B2/en
Publication of WO2017082186A1 publication Critical patent/WO2017082186A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/58Atrial natriuretic factor complex; Atriopeptin; Atrial natriuretic peptide [ANP]; Cardionatrin; Cardiodilatin

Definitions

  • the present invention relates to a medicine.
  • natriuretic peptides include atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). These specifically bind to receptors having a guanylate cyclase domain.
  • ANP and BNP are natriuretic peptide receptors GC-A (also known as NPR-A), and CNP is a natriuretic peptide. It is known that by binding to the receptor GC-B (also known as NPR-B), the intracellular GMP concentration is increased and various physiological activities are expressed.
  • ANP is a peptide consisting of 28 amino acids that is produced and secreted by atrial cells, but exhibits diuretic action in the kidney and exerts blood pressure regulating actions such as relaxing and dilating vascular smooth muscle in the blood vessels.
  • Human type ANP hANP
  • hANP Human type ANP
  • Patent Documents 1 and 2 and Non-Patent Document 1 in addition to ANP, four peptides of Long Acting Natriuretic Peptide, Vessel Dilator, and Kaliuretic Peptide are included in pancreatic cancer, prostate cancer, small cell lung cancer, breast cancer and the like. It has been reported that tumor growth can be suppressed by directly acting on each tumor cell and inhibiting DNA synthesis.
  • Patent Document 3 focuses on ANP receptors, and inhibits NPR-A activity using siRNA or the like to inhibit NPR-A synthesis or ANP analogs. It is disclosed that diseases such as cancer induced by the ANP cascade can be treated.
  • Non-Patent Document 2 reports that ANP suppresses the inflammatory reaction of vascular endothelial cells, thereby suppressing the adsorption of cancer cells themselves to vascular endothelial cells and suppressing the metastasis of cancer cells. Yes.
  • a natriuretic peptide receptor GC-A agonist directly acts on tumor cells expressing GC-A to migrate and infiltrate including epithelial-mesenchymal transition (EMT).
  • EMT epithelial-mesenchymal transition
  • the signaling substance generated with the increase of intracellular cGMP acts on the endothelial cells of blood vessels and lymph vessels It is disclosed that adhesion / invasion of tumor cells to the vascular endothelium is inhibited and an effect of suppressing tumor metastasis (indirect effect) is also exhibited.
  • a GC-A agonist can suppress metastasis and invasion of tumor cells, and therefore may be used in combination with other antitumor agents.
  • cisplatin enhances apoptosis-inducing activity to cancer cells by a GC-A agonist.
  • a natriuretic peptide receptor GC-B agonist suppresses the production of various factors and cytokines that exacerbate malignant tumors in cancer-associated fibroblasts (CAF), and natriuretic peptide receptor GC- A agonist suppresses the EMT of cancer cells and specifically suppresses the production of each factor and cytokine that exacerbate malignant tumors from cancer cells.
  • CAF cancer-associated fibroblasts
  • natriuretic peptide receptor GC- A agonist suppresses the EMT of cancer cells and specifically suppresses the production of each factor and cytokine that exacerbate malignant tumors from cancer cells.
  • Non-Patent Documents 3 and 4 discloses that pulmonary fibrosis is suppressed by using ANP and sildenafil in combination.
  • Patent Document 1 1 ⁇ M ANP shows a decrease in cancer cells of about 34% compared to controls in cell experiments (Patent Document 1, FIG. 2), but many cancer cells survive, The effectiveness as an anticancer agent is not suggested.
  • Patent Document 2 describes that 89% of cancer cells decrease when the concentration of ANP is increased to 1 mM in cell experiments (Patent Document 2, FIG. 3). It is suspected that the cell proliferation is suppressed due to the cytotoxicity. Since ANP has a side effect of lowering blood pressure in clinical practice, it is known as a drug that requires attention to the dose. Therefore, ANP is suppressed because the growth of cancer cells was suppressed at a high concentration in cell experiments.
  • the blood vessel structure in the tumor tissue is made of many immature blood vessels and takes an abnormal structure, so the vessel wall collapses. It is known that a drug is difficult to reach cancer cells in a tumor tissue due to leakage of blood components to surrounding tissues as blood vessel permeability increases. Therefore, even if the tumor growth inhibitory effect of ANP is confirmed in an in vitro experimental system, the action of ANP confirmed in in vivo is unlikely to be due to a direct action on cancer cells. It can be seen that the report that the apoptosis-inducing activity of ANP was enhanced by the cisplatin disclosed in 4 is not sufficient as a mechanism.
  • An object of the present invention is to provide a medicament capable of effectively treating malignant tumors, pulmonary fibrosis, or interstitial pneumonia or suppressing malignant transformation thereof.
  • the present inventors combine a compound having a microtubule inhibitory action with an natriuretic peptide receptor GC-A agonist as an anticancer agent that is difficult to reach the deep part of the tumor.
  • an natriuretic peptide receptor GC-A agonist As a result of repeated studies to solve the above-mentioned problems, the present inventors combine a compound having a microtubule inhibitory action with an natriuretic peptide receptor GC-A agonist as an anticancer agent that is difficult to reach the deep part of the tumor.
  • a GC-A agonist By protecting (maturating) the blood vessels in the tumor tissue with a GC-A agonist, it becomes possible to efficiently reach the cancer cell with a compound having a microtubule inhibitory effect.
  • the inventors have newly found that the tumor effect is more exerted, and have completed the present invention.
  • the present invention relates to the following [1] to [10].
  • the (B) anti-malignant tumor agent which comprises (A) a natriuretic peptide receptor GC-A agonist and is administered 5 days or more before the administration of the (B) antineoplastic agent The therapeutic effect enhancer.
  • a pharmaceutical comprising a combination of (A) a natriuretic peptide receptor GC-A agonist and (B ′) a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor.
  • a pharmaceutical composition for a patient undergoing treatment with a natriuretic peptide receptor GC-A agonist comprising as an active ingredient a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor object.
  • a pharmaceutical composition used for the prevention or treatment of pulmonary fibrosis or interstitial pneumonia comprising a natriuretic peptide receptor GC-A agonist.
  • a method for preventing or treating pulmonary fibrosis or interstitial pneumonia comprising administering a natriuretic peptide receptor GC-A agonist.
  • the medicament of the present invention exhibits an excellent effect of exerting an antitumor effect more strongly than when a compound having a microtubule inhibitory action is taken alone.
  • the present invention is based on the concept of efficiently bringing an anticancer drug to cancer cells by protecting (maturating) blood vessels in tumor tissue with a GC-A agonist. Even if it is an anticancer drug other than the compound having an inhibitory action, the same effect is expected for a drug that is difficult to reach cancer cells.
  • FIG. 1 is a diagram showing a vascular state in a tumor in a breast cancer mouse orthotopic transplantation model.
  • the upper row is the control group
  • the lower row is the ANP group
  • the left row is a diagram showing vascular endothelial cells
  • the middle row is staining the mural cells
  • the right row is a combined view of all staining including nuclear staining.
  • FIG. 2 is a diagram showing the lining rate of wall cells of tumor blood vessels in a breast cancer mouse orthotopic transplantation model.
  • FIG. 3 is a graph showing the cisplatin concentration in a tumor in a breast cancer mouse orthotopic transplantation model.
  • FIG. 4 is a diagram showing the intravascular vascular state in genetically modified mice transplanted with lung cancer at the same site.
  • FIG. 5 is a graph showing the lining ratio of tumor vascular wall cells in genetically modified mice transplanted with lung cancer at the same site.
  • FIG. 6 is a diagram showing the cisplatin concentration in the tumor in a lung cancer mouse orthotopic transplantation model.
  • FIG. 7 is a graph showing changes in body weight and blood components in a cisplatin-induced bone marrow suppression model.
  • FIG. 8 is a graph showing the transition of bone marrow components in a cisplatin-induced myelosuppression model.
  • FIG. 9 is a graph showing changes in serum G-CSF concentration in a cisplatin-induced myelosuppression model.
  • FIG. 10 is a graph showing the combined effect after administration of ANP and DTX in a breast cancer mouse orthotopic transplantation model.
  • FIG. 11 is a graph showing changes in tumor volume according to the ANP administration period when ANP and CDDP (cisplatin) are used in combination in a breast cancer mouse orthotopic transplantation model.
  • FIG. 12 is a diagram showing the combined effect of ANP and anti-PD-1 antibody in a breast cancer mouse orthotopic transplantation model.
  • FIG. 13 is a diagram showing a lung fibrosis area by ANP administration in a pulmonary fibrosis mouse model.
  • FIG. 14 is a diagram showing lung fibrosis area in tissue-specific transgenics.
  • the medicament of the present invention is characterized in that (A) a natriuretic peptide receptor GC-A agonist and (B) an antineoplastic agent are used in combination as active ingredients.
  • a natriuretic peptide receptor GC-A agonist and a platinum preparation or
  • a natriuretic peptide receptor GC-A agonist and (B ′) a microtubule examples thereof include those used in combination with compounds having an inhibitory action, and those used in combination with (A) a natriuretic peptide receptor GC-A agonist and (B ′) a PD-1 pathway inhibitor.
  • natriuretic peptide receptor GC-A agonist is sometimes referred to as natriuretic peptide receptor GC-A (hereinafter simply “GC-A”) (Chinkers M, etal., Nature 338). 78-83, 1989)) and has the action of activating guanylate cyclase (hereinafter referred to as “GC-A agonist activity”). Sometimes referred to as an “agonist”.
  • Typical GC-A agonists include, for example, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP).
  • the GC-A agonist of the present invention is not particularly limited as long as it has GC-A agonist activity, and ANP, BNP, and variants thereof are used singly or in combination of two or more. Can do.
  • Examples of the ANP in the present invention include a human-derived ANP (SLRRSSCFGG RMDRIGAQSG LGCNSFRY: SEQ ID NO: 1), a rat-derived ANP / mouse-derived ANP (SLRRSSCFGGIDRIDRIGAGSGSG LGCNSFRY: SEQ ID NO: 2), and the like.
  • human-derived ANP ⁇ -hANP described in Biochem. Biophys. Res. Commun., 118, 131, 1984 obtained the marketing approval in Japan under the generic name carperitide and sold ( Product name: Hump, HANP).
  • ⁇ -ANP is also commonly known as Human pro-ANP [99-126].
  • human-derived BNP consisting of 32 amino acids (SPKMVQGSGC FGRKMDRISSS SGLGCKVLR RH: SEQ ID NO: 3), porcine-derived BNP (SPKTMRDSGC FGLRLDRIGS LSGLGCCNVLR RY: can be exemplified as SEQ ID NO: 4).
  • rat-derived BNP consisting of 45 amino acids (SQDSAFRIQE RLRNSKMAHS SSCFFGQKIDR IGAVSLLGCD GLRLF: SEQ ID NO: 5), mouse-derived BNP (SQGSTLLVQQ RPQNSKVTHI SSCFGHKIDRL IGSVRLC) Human-derived BNP has received regulatory approval in the United States, etc., under the general name nesiritide, and is sold under the trade name: Natrecor.
  • a “variant” of ANP or BNP refers to substitution, deletion, insertion, and / or addition (hereinafter referred to as “one” to several amino acids in one to several amino acid sequences of ANP or BNP). , Collectively referred to as “substitution etc.” and having GC-A agonist activity. "Several places” is usually about 3 places, preferably about 2 places. “Several” is usually about 10, preferably about 5, more preferably about 3, and still more preferably about 2. When substitution is made at a plurality of locations, any one of substitution, deletion, insertion, and addition may be used, or two or more may be combined.
  • the amino acid to be substituted may be a naturally occurring amino acid, a modified product such as an acylated product thereof, or an artificially synthesized amino acid analog.
  • the ANP mutant has GC-A agonist activity
  • one to several amino acids are substituted at one to several desired positions in the amino acid sequence shown in SEQ ID NO: 1 or 2. May be.
  • the BNP mutant has GC-A agonist activity
  • 1 to several amino acids are substituted at one to several desired positions of the amino acid sequence shown in SEQ ID NO: 3, 4, 5, or 6. May be.
  • ANP mutants include, for example, rat ⁇ -rANP (Biochem. Biophys. Res. Commun., Vol. 121, p. 585, p. 1984) in which the Met at position 12 of hANP has been replaced with Ile.
  • ANP etc. from which N-terminal Ser-Leu-Arg-Arg-Ser-Ser has been deleted.
  • Examples of such ANP or BNP mutants include a series of peptides described in Medicinal Research, Review 10, Vol. 10, p. 115, 1990.
  • mini-ANP Science, 270 Volume, 1657, 1995).
  • the ANP or BNP of the present invention may be a derivative or a modified product as long as it has GC-A agonist activity.
  • a “derivative” of ANP or BNP is a fusion peptide comprising the amino acid sequence of ANP, BNP or a variant thereof, to which another peptide or protein is added, and at least the biological activity of ANP or BNP. It means a fusion peptide that retains a part.
  • a fusion peptide having at least a part of such biological activity is also referred to as an ANP or BNP derivative.
  • an additional peptide may be fused to either the C-terminal or N-terminal of ANP, BNP or a variant thereof, and the additional peptide is fused to both the C-terminal and the N-terminal.
  • the peptide to be added is not particularly limited, but a peptide having no physiological activity is preferable.
  • the additional peptide may be directly bonded, or may be bonded via a linker sequence consisting of 1 to several amino acids. Various linker sequences are known, but those containing a large amount of Gly, Ala, Ser and the like are preferably used.
  • an additional peptide examples include an Fc site of immunoglobulin (preferably IgG), serum albumin, C-terminal sequence of ghrelin and the like (for example, a fusion protein in which ANP is bound to an Fc site of immunoglobulin ( US Patent Application Publication No. 2010/0310561, etc.), fusion protein in which GLP-1 is bound to serum albumin (see International Patent Publication No. 2002/046227, etc.)).
  • immunoglobulin preferably IgG
  • serum albumin C-terminal sequence of ghrelin and the like
  • the “derivatives” are preferably hANP derivatives and hBNP derivatives.
  • a fusion protein in which ANP is bound to an Fc site of an immunoglobulin improves the retention in blood while retaining the biological activity of ANP.
  • various derivatives of ANP and BNP for example, a series of peptides described in Medicinal Research Review, Vol. 10, p. 115, 1990 can be mentioned.
  • ANP derivatives include various ANP derivatives disclosed in International Publication No. 2009/142307 (corresponding to US Patent Application Publication No. 2010/305031).
  • a derivative in which a partial sequence derived from the C-terminal of ghrelin is added to ANP the retention in blood is improved while maintaining the physiological activity of the original peptide.
  • GC-A agonist activity is retained in any of various derivatives obtained by adding a partial peptide derived from the C-terminus of ghrelin to either the N-terminus or C-terminus of hANP and both.
  • Medium half-life was extended.
  • the “modified form” of ANP or BNP is one in which one to several amino acids contained in ANP, BNP or a variant thereof are modified by a chemical reaction with another chemical substance, and ANP or BNP It means that retains at least part of the biological activity of BNP. Any site may be selected as the site to be modified as long as it retains the activity of ANP or BNP. For example, in a modification that adds a somewhat large chemical substance such as a polymer, the modification is preferably performed at a site other than the active site of ANP or BNP or the receptor binding site. In addition, in the case of modification for preventing cleavage by a degrading enzyme, it is also possible to employ a modification in which the portion that undergoes the cleavage is modified. Further, another chemical substance may be directly bonded, or may be bonded through a linker sequence consisting of 1 to several amino acids. Various linker sequences are known, but those containing Gly, Ala, Arg, Lys, etc. are preferably used.
  • a method of adding a high molecular polymer (pharmacologically used) used in pharmaceutical technology such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), etc.
  • a method of adding a compound serving as a linker to a side chain amino group such as a Lys residue and binding it to another protein (eg, serum albumin) via the chain is known, but is not limited thereto.
  • a side chain amino group such as a Lys residue and binding it to another protein (eg, serum albumin) via the chain
  • Various methods can be employed.
  • the modified product is preferably chemically modified by adding a high-molecular polymer used for pharmaceutical use.
  • the modified ANP may be modified at one or more desired positions in the amino acid sequence of SEQ ID NO: 1 or 2 as long as it has GC-A agonist activity. It contains the amino acid sequence of SEQ ID NO: 1 or 2, and its SEQ ID NO: 7 Xaa10 -Xaa11 -Xaa12 -Arg (where Xaa3 is Met, Leu or Ile) ("ring structure") and at least one amino acid other than the amino acid corresponding to the amino acid is chemically modified More preferably, the amino acid other than the amino acid represented by SEQ ID NO: 7 in the amino acid sequence of SEQ ID NO: 1 or 2 is modified at one to several positions, more preferably SEQ ID NO: 1 or 2.
  • a variant of BNP is a desired one of the amino acid sequences of SEQ ID NOs: 3 to 6.
  • the amino acid sequence may be modified at a plurality of positions, but preferably contains at least one amino acid other than the amino acid sequence represented by SEQ ID NO: 7 including the amino acid sequence of SEQ ID NO: 3 to 6 in the sequence listing More preferably, the amino acid sequence of SEQ ID NOs: 3 to 6 is modified at one to several positions in an amino acid other than the amino acid represented by SEQ ID NO: 7, More preferably, the amino acid sequence of SEQ ID NO: 3 or 4 is modified at one to several positions of positions 1 to 9, 31 and 32, or the amino acid sequence of SEQ ID NO: 5 or 6 The acid sequence is modified at any one to several positions from positions 1 to 22, 44 and 45. Furthermore, the above-mentioned active fragments, mutants and derivatives of ANP or BNP are modified. Such modified compounds can also be used in the present invention as long as they retain GC-A agonist activity.
  • GC-A agonists include, for example, hANP, hBNP, or variants thereof, hydrophilic polymers such as PEG and PVA, and hydrocarbon groups such as alkyl groups and aryl groups. It is known that a representative hydrophobic group retains GC-A agonist activity in various modified forms bound thereto, with or without a linker (US Pat. No. 7,662,773, International Patent). Publication 2009/020934 etc.).
  • the binding between ANP or BNP and the GC-A receptor is important for the ring structure of ANP and BNP and its C-terminal tail, so that derivatives and modifications in which a sequence or substance of N is bound to its N-terminal are particularly important.
  • the body has little effect on the ring structure by the added peptide or modification, and retains the GC-A agonist activity without inhibiting the binding to the GC-A receptor. This has been demonstrated by many documents mentioned above.
  • ANP, BNP, and variants thereof may be collected from natural cells or tissues, or may be prepared using genetic engineering or cell engineering techniques, It may be chemically synthesized. Such preparation can be performed according to known techniques.
  • a certain substance has a GC-A agonist activity can be easily measured by a person skilled in the art by a conventionally known method. Specifically, for example, it is possible by adding a substance to cultured cells in which GC-A (Chinkers M, et al., Nature 338; 78-83, 1989) is forcibly expressed and measuring intracellular cGMP levels. It is.
  • the peak of cGMP increasing activity by the agonist substance is at least about 10% of the peak of cGMP increasing activity exhibited by ANP or BNP.
  • it means to hold the above, but preferably means to hold about 30% or more, more preferably about 50% or more, and still more preferably about 70% or more. Even if the increase in activity is not large at the peak, those having a long activity duration when administered to a living body can be used in the present invention.
  • a preferable GC-A agonist in the present invention is ANP, BNP, or a variant thereof, and more preferably hANP or hBNP.
  • a pharmaceutically acceptable salt of the agonist may be used.
  • Pharmaceutically acceptable salts include acid addition salts such as inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, or organic acids such as formic acid, acetic acid, butyric acid, succinic acid, citric acid. Further, it may take the form of a metal salt such as sodium, potassium, lithium or calcium, or a salt with an organic base.
  • antineoplastic agent in the present invention a platinum preparation, a compound having a microtubule inhibitory action, or a PD-1 pathway inhibitor can be used.
  • an antineoplastic agent may be described as an anticancer agent.
  • Platinum preparation A platinum preparation (platinum preparation) binds to a double helical structure of DNA to inhibit DNA replication, and also has a function of leading cancer cells to self-destruction (apoptosis).
  • platinum preparation a preparation containing an antitumor platinum complex as an active ingredient can be used.
  • specific examples include cisplatin, carboplatin, oxaliplatin, nedaplatin, xeniplatin, enroplatin, lobaplatin, ormaplatin, loboplatin, seriplatin, miboplatin, and spiroplatin. These can be used alone or in combination of two or more.
  • Microtubules have an inhibitory effect on microtubules because they form a spindle during cell division and play an important role in maintaining normal cell functions such as the arrangement of organelles and mass transport. It is considered that the growth of tumor cells can be suppressed by acting a compound.
  • compounds having a microtubule inhibitory action include taxane anticancer agents and bin alkaloid malignant tumor agents.
  • a taxane antineoplastic agent inhibits microtubule depolymerization to form an abnormally shaped tubulin, and specific examples include paclitaxel, docetaxel, cabazitaxel, and the like.
  • Vin alkaloid-based malignant tumor agents inhibit tubulin from depolymerizing to form microtubules, and specific examples include vincristine, vinblastine, vindesine, vinorelbine and the like.
  • Examples of other compounds having a microtubule inhibitory action include eribulin and the like. These can be used alone or in combination of two or more.
  • PD-1 is an immune checkpoint protein that is expressed on activated T cells and B cells to limit T cell activation in the periphery and suppress antitumor T cell responses during immune responses to infection Since it has an action, it is considered that a compound that inhibits the PD-1 pathway can induce an immune response and suppress tumor growth.
  • PD-1 pathway inhibitors include inhibitors against PD-1, PD-L1, PD-L2, etc., and antibodies against PD-1 or PD-1 ligand, PD-1 or A nucleic acid encoding an antibody against PD-1 ligand is exemplified. Specifically, nivolumab, pembrolizumab, atezolizumab and the like are exemplified. These can be used alone or in combination of two or more.
  • cancer treatment is performed by setting a cycle (course or cool) of about 1 to several weeks, which is a combination of a day when treatment is performed and a day when treatment is not performed. If the cancer treatment is prolonged, the dose of the anticancer agent must be reduced, and eventually it becomes difficult to continue using the anticancer agent, and the treatment must be stopped. Therefore, measures for preventing or reducing side effects are important.
  • docetaxel a compound having an inhibitory action on microtubules
  • severe myelosuppression prancytopenia, leukopenia, neutropenia (pyrogenic) (Including neutropenia), hemoglobin reduction, thrombocytopenia, etc.
  • G-CSF granulocyte colony stimulating factor
  • natriuretic peptide receptor GC-A agonist protects blood vessels in the tumor tissue and suppresses the collapse. Therefore, a compound having a microtubule inhibitory action can be efficiently delivered into tumor cells via the bloodstream, or a PD-1 pathway inhibitor can be efficiently delivered to immune cells present in tumor tissues.
  • the growth of the tumor can be suppressed by increasing the concentration of the compound having a microtubule inhibitory action in the tumor cells or by activating the autoimmune reaction. Furthermore, tumor growth can be efficiently inhibited by efficiently delivering tumor-damaging immune cells induced by cancer peptide vaccines or oncolytic viruses to the tumor tissue via the bloodstream. .
  • a compound having a microtubule inhibitory action has a bone marrow inhibitory action as a side effect, the dose of a compound having a microtubule inhibitory action can be reduced by using it together with a natriuretic peptide receptor GC-A agonist.
  • the present inventors have confirmed that when an anticancer agent was administered to a place where ANP was pre-administered several days ago, leukopenia (myelosuppression), which is the main side effect of the anticancer agent, was not observed, As a mechanism, it has been confirmed that the endogenous serum G-CSF concentration is increased. When used in combination with a natriuretic peptide receptor GC-A agonist, the occurrence of side effects of myelosuppression is reduced, and further, the blood G-CSF concentration is increased. It is thought that the effect that weight reduction is possible or it becomes completely unnecessary is also exhibited.
  • the pharmaceutical of the present invention is not particularly limited as long as it is a combination of the component (A) and the component (B), and can contain other antitumor components as long as the effects of the present invention are not impaired. Specifically, alkylating agents, antimetabolites, antitumor antibiotics, antitumor plant components, BRM (biological response regulator), hormones, vitamins, antitumor antibodies, molecular targeted drugs, etc. Antitumor agents and the like. These contents are not particularly limited.
  • an alkylating agent such as nitrogen mustard, nitrogen mustard N-oxide or chlorambutyl; an aziridine alkylating agent such as carbocon or thiotepa; dibromomannitol or dibromodarsi Epoxide alkylating agents such as Thor; nitrosourea alkylating agents such as carmustine, lomustine, semustine, nimustine hydrochloride, streptozocin, chlorozotocin or ranimustine; busulfan, improsulfan tosylate, dacarbazine, ifosfamide, cyclophosphami And melphalan or temozolomide.
  • an alkylating agent such as nitrogen mustard, nitrogen mustard N-oxide or chlorambutyl
  • an aziridine alkylating agent such as carbocon or thiotepa
  • dibromomannitol or dibromodarsi Epoxide alkylating agents such as Thor
  • antimetabolites include, for example, purine antimetabolites such as 6-mercaptopurine, 6-thioguanine, thioinosine, nelarabine, fludarabine or pentostatin; fluorouracil, tegafur, tegafur uracil, carmofur, doxyfluridine, broxuridine, cytarabine And pyrimidine antimetabolite such as enositabine, capecitabine or gemcitabine; antifolate antimetabolite such as methotrexate, trimetrexate or pemetrexed.
  • purine antimetabolites such as 6-mercaptopurine, 6-thioguanine, thioinosine, nelarabine, fludarabine or pentostatin
  • fluorouracil tegafur, tegafur uracil, carmofur, doxyfluridine, broxuridine, cytarabine
  • pyrimidine antimetabolite such as e
  • antitumor antibiotics examples include anthracycline antibiotics such as mitomycin C, bleomycin, pepromycin, daunorubicin, aclarubicin, doxorubicin, pirarubicin, THP-adriamycin, 4′-epidoxorubicin, epirubicin, idarubicin or mitoxantrone.
  • anthracycline antibiotics such as mitomycin C, bleomycin, pepromycin, daunorubicin, aclarubicin, doxorubicin, pirarubicin, THP-adriamycin, 4′-epidoxorubicin, epirubicin, idarubicin or mitoxantrone.
  • Tumor agents chromomycin A3 or actinomycin D.
  • anti-tumor plant component examples include taxanes (paclitaxel, docetaxel, etc.) other than the component used as the component (B); vin alkaloids other than the component used as the component (B) (vincristine, vinblastine, vindesine, vinorelbine) Etc.); camptothecin derivatives such as irinotecan and nogitecan; or epipodophyllotoxins such as etoposide, teniposide and sobuzoxane.
  • taxanes paclitaxel, docetaxel, etc.
  • vin alkaloids other than the component used as the component (B) (vincristine, vinblastine, vindesine, vinorelbine) Etc.
  • camptothecin derivatives such as irinotecan and nogitecan
  • epipodophyllotoxins such as etoposide, teniposide and sobuzoxane.
  • BRM examples include tumor necrosis factor and indomethacin.
  • Hormones include, for example, hydrocortisone, dexamethasone, methylprednisolone, prednisolone, plasterone, betamethasone, triamcinolone, oxymetholone, nandrolone, metenolone, phosphaterol, ethinylestradiol, chlormadinone, medroxyprogesterone, tamoxifen, anastrozole, exemestane, Examples include goserelin, bicalutamide, flutamide, leuprorelin, letrozole and the like.
  • vitamins examples include vitamin C and vitamin A.
  • Antitumor antibodies and molecular targeted drugs include trastuzumab, rituximab, cetuximab, nimotuzumab, denosumab, bevacizumab, infliximab, imatinib mesylate, gefitinib, erlotinib, sunitinib, lapatinib, i Examples include gamicin, dasatinib, tamibarotene, tretinoin, panitumumab, bortezomib and the like.
  • antitumor agents include, for example, platinum preparations other than the component (B) component (cisplatin, carboplatin, oxaliplatin, etc.), L-asparaginase, acecraton, schizophyllan, picibanil, procarbazine, pipobroman, neocartinostatin , Hydroxyurea, krestin and the like.
  • immunoantibody drugs anti-PD-1 antibodies other than those used as component (B): nivolumab, pembrolizumab, etc., PD-L1 antibodies: atezolizumab, etc., anti-CTLA4 antibody: ipilimumab, etc.
  • biologics related interferon / ⁇ , Interferon / ⁇ , interferon / ⁇ , interleukin 2, ubenimex dried BCG, lentinan, etc.
  • PDE5 inhibitors represented by Viagra have a suppressive effect on malignant tumors (DasDet al.,. Proc. Natl. Acad. Sci. (2010),) vol / 107, No. 42, pp. 18202-18207), the medicament of the present invention can be used in combination with these PDE5 inhibitors.
  • the PDE5 inhibitor is not particularly limited as long as it is a substance having an activity of inhibiting cGMP degradation by the PDE5 enzyme (for example, M. ⁇ ⁇ P. Govannoni, et al. Curr. Med. Chem. (2010) 17, pp. 2564-2587)).
  • medical agents, manufacture and a formulation can be carried out by description of said reference (including the cited reference) and a well-known technique.
  • other pharmaceutical ingredients include excipients, binders, disintegrants, lubricants, sweeteners, flavoring agents, preservatives, chelating agents, antioxidants, cooling agents, coating agents, stabilizers, fluids Agent, thickener, solubilizer, thickener, buffer, fragrance, colorant, adsorbent, wetting agent, moisture-proofing agent, antistatic agent, plasticizer, antifoaming agent, surfactant, emulsifier, dilution You may contain additives, such as an agent. These contents are not particularly limited.
  • the pharmaceutical of the present invention is not particularly limited as long as it is a combination of component (A) and component (B), and can be prepared according to methods known to those skilled in the art.
  • the shape and size are not particularly limited, and any dosage form of oral administration and parenteral administration can be employed.
  • parenteral administration it is also possible to administer directly to the tumor site.
  • tablets including intraoral quick disintegrating tablets, chewable tablets, effervescent tablets, jelly-like drops, etc.
  • capsules including hard capsules and soft capsules
  • Fine granules, powders, granules, pills, solutions, syrups and the like can be mentioned.
  • pulmonary dosage forms for example, those using a nephriser
  • nasal dosage forms for example, transdermal dosage forms (for example, ointments, creams), injection dosage forms and the like
  • injection dosage forms can be mentioned.
  • an injection dosage form it can be administered systemically or locally by intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection or the like.
  • intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection or the like.
  • (A) component is included, the formulation design which makes it difficult to be decomposed
  • a combination (including kit) of an injection of component (A) and an injection of component (B) may be mentioned.
  • the combination (including a kit) etc. which combined the transpulmonary inhalation agent of (A) component, and the injection of (B) component are illustrated.
  • the medicament of the present invention is characterized by combining the (A) component and the (B) component as active ingredients, and the use form thereof was prepared separately for each of the (A) component and the (B) component.
  • a mode in which a single agent is used at the same time a mode in which single agents separately prepared for each of the components (A) and (B) are used sequentially, and a unit separately prepared for each of the components (A) and (B).
  • a mode in which the agent is used separately and a mode in which the agent (A) and the component (B) are formulated together and used as a preparation (mixture) prepared by combining them are mentioned.
  • component (B) component is also included in the present invention.
  • the interval when using separately depends on the patient's symptoms, etc. Can be appropriately set according to the judgment of the doctor.
  • component (A) is administered 1 to 7 days before the administration date of component (B) (for example, 2 to 3 days before, 5 days or more before) May be.
  • the dosage of component (A) and component (B) is the dosage form, patient symptoms, age, body weight, sex, or other drugs (if any) to be used in combination. It will depend on the doctor's judgment. Examples include an embodiment in which 0.1 to 1000 mg of component (A) is administered intravenously and 0.1 to 10,000 mg of component (B) is administered intravenously per day for an adult weighing 60 kg, preferably component (A) Of 0.1 to 100 mg intravenously and 0.1 to 1000 mg of component (B) intravenously administered, more preferably 1 to 10 mg of component (A) intravenously and 1 to 500 mg of component (B) intravenously A mode of internal administration is exemplified.
  • Such dose may be administered at once or dividedly, and the administration period is appropriately set for each component.
  • parenteral administration for example, intravenous administration, not only bolus administration but also continuous administration using an infusion pump, a catheter or the like may be used.
  • a freeze-dried preparation is dissolved in water for injection and continuously administered (also referred to as continual administration) using a micro infusion pump (a pediatric micro infusion set in the absence). )can do.
  • the administration period is usually several hours to several days, for example, 1 to 14 days, preferably about 3 to 7 days.
  • the upper limit of the dose is, for example, a concentration of about 50 ⁇ g / kg / min (per day, about 72 mg / kg) or less can be appropriately employed, and about 5 ⁇ g / kg / min (per day, about 7.
  • 2 mg / kg) or less preferably about 0.5 ⁇ g / kg / min (per day, about 720 ⁇ g / kg) or less, more preferably about 0.2 ⁇ g / kg / min or less, Preferably it is about 0.1 ⁇ g / kg / min or less, and even more preferably about 0.05 ⁇ g / kg / min or less.
  • the lower limit is usually about 0.0001 ⁇ g / kg / min (about 0.144 ⁇ g / kg per day) or more, preferably about 0.001 ⁇ g / kg / min (about 1.44 ⁇ g / kg per day).
  • the daily dose is about 36 ⁇ g / kg.
  • the component (A) Since the component (A) has the action of relaxing and dilating blood vessels and reducing blood pressure as described above, it is administered at a rate that does not lower blood pressure more than necessary when treating malignant tumors or suppressing or preventing malignant transformation. It is preferable to monitor blood pressure during and immediately after administration.
  • the administration period of the component (A) is usually several hours or longer, preferably 1 day or longer. During this period, continuous administration is preferable, and the period is usually 1 day or longer, preferably about 1 to 14 days, and more preferably about 1 to 5 days.
  • the above administration method can be repeated as appropriate, or the dosage and administration period can be appropriately changed according to the patient's condition.
  • the concentration of component (A) in the blood (for example, about 0.01 ng / mL to about 1.6 ng / mL, preferably about 0.1 ng / mL to about 1 so as to bring about the same effect as the above intravenous injection.
  • (6 ng / mL, more preferably about 0.4 ng / mL to about 1.6 ng / mL) can be used as a sustained-release preparation, such as continuous subcutaneous injection.
  • the dose and administration interval can be appropriately changed according to the preparation and the patient's condition, but it is preferably administered once a week.
  • hANP for example, 1000 for Hump Injection (trade name), manufactured by Daiichi Sankyo Co., Ltd.
  • hANP for example, 1000 for Hump Injection (trade name), manufactured by Daiichi Sankyo Co., Ltd.
  • weight ⁇ about It is preferred to administer at a rate of "0.06 mL / hour" (about 0.1 ⁇ g / kg / min) or less.
  • the administration rate is not limited to the above rate, and blood pressure and heart rate are monitored at a rate of about 0.2 ⁇ g / kg / min or less (preferably about 0.01 ⁇ g / kg / min or more) depending on the medical condition. However, it is preferable to adjust appropriately.
  • hBNP When hBNP is administered, for example, intravenously, for example, it is preferable to administer about 0.01 ⁇ g / kg / min continuously, and further combined with bolus administration of about 2 ⁇ g / kg hBNP before the continuous administration. An administration method can also be adopted. Also in this case, it is preferable to administer the blood pressure at a rate that does not lower the blood pressure more than necessary, and it is recommended to monitor the blood pressure at the time of administration and immediately after administration.
  • the administration rate may be further increased.
  • hANP hANP
  • hBNP hANP
  • the invention is not limited to continuous administration or bolus administration, It is possible to select an administration method, administration frequency, etc. with less burden on the patient.
  • Component (B) can be administered with reference to known clinical practice, for example, intravenously administered as a bolus.
  • the dosage and dosing schedule can be varied according to the specific disease symptoms and the overall symptoms of the patient.
  • the medicament of the present invention can protect blood vessels in tumor tissue with the component (A) and allow the component (B) to reach cancer cells efficiently. Therefore, the amount can be reduced as appropriate.
  • (B) component is not particularly limited, adult 0.01 per day - 10000 mg / m 2, preferably 0.1 ⁇ 1000 mg / m 2, more preferably 1 to It is 500 mg / m 2 and can be administered usually in 1 to 3 divided doses per day. If the patient experiences excessive toxicity, dose reduction is necessary.
  • Dosage amount and regimen may be varied if one or more additional chemotherapeutic agents are used in addition to the combination therapy of the invention.
  • the dosage regimen can be determined by the physician treating the particular patient.
  • the dose for adults (body weight 60kg) per day 0.01 ⁇ 10000mg / m 2, preferably 0.1 ⁇ 1000mg / m 2, More preferably, it is 1 to 500 mg / m 2 , and further preferably 10 to 150 mg / m 2 .
  • the dosage is 0.01 to 10,000 mg / m 2 , preferably 0.1 to 1000 mg per day for an adult (body weight 60 kg).
  • / M 2 more preferably 1 to 500 mg / m 2 , still more preferably 50 to 250 mg / m 2 .
  • docetaxel intravenously when administering docetaxel intravenously, but are not limited to, for example, the dose for adults (body weight 60kg) per day, 0.01 ⁇ 10000mg / m 2, preferably 0.1 ⁇ 1000mg / m 2, More preferably, it is 1 to 500 mg / m 2 , still more preferably 50 to 100 mg / m 2 .
  • the dose is 0.01 to 50 mg / kg (body weight), preferably 0.1 to adult (body weight 60 kg) per day. To 20 mg / kg, more preferably 1 to 10 mg / kg, still more preferably 1 to 5 mg / kg.
  • the medicament of the present invention has an excellent effect that the anti-malignant tumor effect of the component (B) is enhanced and exerted by the blood vessel protecting action of the component (A) as compared to the case of using the component (B) alone. That is, the pharmaceutical composition of the present invention is used for treatment of malignant tumors or suppression of malignant transformation.
  • the malignant tumor may be a solid cancer or an invasive cancer, such as breast cancer, non-small cell lung cancer, gastric cancer, head and neck cancer, ovarian cancer, esophageal cancer, endometrial cancer, prostate cancer, angiosarcoma, Examples include cervical cancer and germ cell tumor (testicular tumor, ovarian tumor, extragonadal tumor).
  • the medicament of the present invention can be used not only for cancer treatment but also for prevention of recurrence and metastasis after cancer treatment. Accordingly, preferred embodiments of the medicament of the present invention include cancer treatment medicaments, cancer recurrence prevention medicaments, and cancer metastasis restraint medicaments.
  • the present invention also provides a method for treating a malignant tumor, comprising administering a therapeutically effective amount of the combination of the component (A) and the component (B) to an individual who needs to treat the malignant tumor or suppress the malignant transformation. To do.
  • an individual who needs to treat a malignant tumor or suppress malignant transformation is preferably a human who needs to reduce or cure the malignant tumor, but may be a pet animal or the like.
  • the therapeutically effective amount means that when the combination of the component (A) and the component (B) is administered to the individual, the growth of malignant tumor is suppressed as compared with the individual not administered. It is a quantity.
  • the specific effective amount is appropriately set according to the administration form, administration method, purpose of use, individual age, weight, symptoms, etc., and is not constant.
  • the component (A) and the component (B) may be combined and administered to the individual as they are so as to be the therapeutically effective amount, and are administered according to the use form of the medicament of the present invention. be able to.
  • the present invention is based on the concept that an anticancer agent can be efficiently reached to cancer cells by protecting (maturating) blood vessels in tumor tissue with a GC-A agonist. Even if it is an anticancer drug other than the component B ′), the same effect is expected for a drug that is difficult to reach cancer cells. Therefore, the medicament of the present invention is a combination of the above-described component (A) and a platinum preparation or component (B ′). However, as the component (B), the other antitumor components described above are used as the component (A). It does not prevent the combination. In addition to the above, there is no particular limitation as long as it is a drug that is present in the blood after administration but is difficult to reach cancer cells.
  • an immune antibody drug (anti-CTLA4 antibody: ipilimumab, etc.) Tim-3 antibody: MBG453 etc., anti-LAG3 antibody: BMS-986016 etc., anti-OX-40 antibody: MEDI-6469 etc., anti-ICOS antibody: GSK-3359609 etc., anti-B7RP-1 antibody: AMG-557 etc., anti-B7 -H3 antibody: enobrituzumab etc., anti-4-1-BB antibody: urelmab etc., anti-GITR antibody: MK-4166 etc., anti-CD27 antibody: valrilumab etc., anti-CSF-1 receptor antibody: emacuzumab etc.), immunoregulatory protein ( Soluble LAG3: IMP-321, etc.), immunoregulatory small molecule (JAK2 inhibitor: paclitinib, etc., Fms / Kit / Flt-3 inhibitor) Agent: Pekidaruchinibu etc.), on
  • Immune antibody drugs target tumor cells or immune cells such as T cells infiltrating the tumor, and in order to exert an effect, the blood flow in the patient's tumor is improved, and a sufficient amount of T cells
  • the antitumor effect of the immunoantibody drug is further exhibited by combining with the natriuretic peptide receptor GC-A agonist as in the present invention. It is expected.
  • a cancer peptide vaccine which is a kind of cancer vaccine, it promotes the production of cytotoxic T cells by being phagocytosed by immune cells. It is expected that the anti-tumor effect of the vaccine will be exerted more.
  • the component (A) is preferably administered 1 day or more before the administration date of the component (B), more preferably 2 days or more, more preferably 3 days or more, still more preferably 5 days or more, more preferably 7 days ago. It is desirable to administer daily or a continuous preparation from the day before the day.
  • Another aspect of the present invention is based on the excellent effect that the anti-malignant tumor effect of the component (B) is enhanced as compared with the case of using the component (B) alone due to the vascular protective action of the component (A).
  • an agent for enhancing the therapeutic effect of an antineoplastic agent comprising (A) a natriuretic peptide receptor GC-A agonist.
  • the term of the pharmaceutical of this invention can refer to the item of the medicine of this invention, the kind of each component said here, its usage amount, and the usage method, for example, (A) It contains the natriuretic peptide receptor GC-A agonist, (B) An agent for enhancing the therapeutic effect of an antineoplastic agent (B), which is administered 5 days or more before the administration of an antineoplastic agent can be exemplified.
  • the maximum blood concentration of the component (A) is preferably 0.01 ng / mL to 1.6 ng / mL three days before the administration of the component (B).
  • a potentiator characterized in that it is administered at a dose of about 0.1 ng / mL to 1.6 ng / mL, more preferably about 0.4 ng / mL to about 1.6 ng / mL. It is done.
  • the present invention also provides the following: A pharmaceutical composition is provided. -Pharmaceutical composition for using together with (B) component which contains (A) component as an active ingredient. -Pharmaceutical composition for using together with (A) component which contains (B) component as an active ingredient. A medicine for a patient receiving treatment with the component (B) containing the component (A) as an active ingredient. A medicine for a patient receiving treatment with the ingredient (A) containing the component (B) as an active ingredient. Composition.
  • the term of the medicine of this invention can be referred for the kind of each component here, the usage-amount, usage method, and the objective.
  • the present invention is characterized by combining the components (A) and (B) described above.
  • the PD-1 antibody that can be used as the component (B) has pulmonary fibrosis and idiopathic stroma as side effects. It is known to have pneumonia.
  • component (A) specifically acts on vascular endothelial cells and suppresses the production of various growth factors and various inflammatory cytokines from blood vessels, it becomes possible to reduce the occurrence of side effects due to component (B).
  • the present invention also provides a pharmaceutical composition for use in the prevention or treatment of pulmonary fibrosis or interstitial pneumonia, which contains (A) a natriuretic peptide receptor GC-A agonist.
  • the pharmaceutical composition used for the prevention or treatment of pulmonary fibrosis or interstitial pneumonia only needs to contain the above-described component (A).
  • the component (A) can be administered usually for several hours to several days, preferably 1 to 14 days, more preferably about 3 to 7 days.
  • the upper limit of the dose is, for example, a concentration of about 50 ⁇ g / kg / min (per day, about 72 mg / kg) or less can be appropriately employed, and about 5 ⁇ g / kg / min (per day, about 7.
  • 2 mg / kg) or less preferably about 0.5 ⁇ g / kg / min (per day, about 720 ⁇ g / kg) or less, more preferably about 0.2 ⁇ g / kg / min or less, Preferably it is about 0.1 ⁇ g / kg / min or less, and even more preferably about 0.05 ⁇ g / kg / min or less.
  • the lower limit is usually about 0.0001 ⁇ g / kg / min (about 0.144 ⁇ g / kg per day) or more, preferably about 0.001 ⁇ g / kg / min (about 1.44 ⁇ g / kg per day). More preferably, it is about 0.01 ⁇ g / kg / min (about 14.4 ⁇ g / kg per day) or more.
  • the component (B) is not particularly limited, but preferred examples include an inhibitor for at least one selected from PD-1, PD-L1, and PD-L2.
  • Test Example 1 series experimental examples in which the protective action of blood vessels by a natriuretic peptide receptor GC-A agonist was examined are shown as Test Example 1 series.
  • one-way analysis of variance and Tukey-Kramer's multiple comparison test were used for comparison of measured values between groups, and the significance level was set to less than 5%.
  • Test Example 1-1-1 ANP Tumor Vascular Protective Effect on Breast Cancer Mouse Orthotopic Transplant Model Seven-week-old female Balb / c mice (Japan SLC) were used as mice.
  • the Osmotic pump used was ALZET (Cupertino, CA) MODEL 2001 (for 7 days administration).
  • hANP SEQ ID NO: 1 was prepared according to a known method.
  • 4T1 breast cancer cells (Wako Pure Chemical Industries) were prepared to 1 ⁇ 10 6 cells / 100 ⁇ L using RPMI-1640 of FBS free. This suspension was injected into the right mammary gland at 100 ⁇ L per mouse. One week later, the tumor was excised, and a 3 ⁇ 3 mm tumor piece was prepared from this tumor. Next, 3 x 3 mm tumor pieces were orthotopically transplanted into the right mammary gland, one for each newly prepared mouse. On the 5th day after transplantation, the mice were randomly divided into 2 groups (control group, ANP group) (5-7 mice in each group), and the control group was treated with an osmotic pump filled with physiological saline in the ANP group.
  • hANP hANP
  • the excised tumor sample was immersed in 4% formalin for 1 to 2 days, and then a paraffin section was prepared. After deparaffinization, immunostaining was performed.
  • the primary antibody used for immunostaining (for vascular endothelial cell staining) was Rabbit anti-mouse CD31 (abcam, ab28364), and the secondary antibody was Alexa Fluor 488 goat anti-rabbit (abcam, A11034).
  • Anti-actin, ⁇ -smooth muscle-Cy3 antibody (Sigma-Aldrich, C6198) was used as the primary antibody for ⁇ SMA (for wall cell staining).
  • ⁇ SMA for wall cell staining.
  • Vectashield hard set with DAPI (Vector Laboratories, H1500) was used.
  • the fluorescent microscope was IX-81 (Olympus) and photographed (FIG. 1).
  • the “CD31” portion shows a state where vascular endothelial cells are stained
  • the “ ⁇ SMA” portion shows a state where wall cells are stained.
  • the “Merged” section an image showing all the stained nuclei of blue cells in addition to vascular endothelial cells and mural cells is shown.
  • ANP administration has a structure in which vascular endothelial cells in the tumor site are lined with mural cells, and ANP has a maturation action (protective action) of tumor blood vessels. It is suggested.
  • pericyte-coating index (number of CD31 and ⁇ SMA double positive blood vessels) / CD31 positive blood vessels ⁇ 100 Measured and calculated according to Specifically, 10 blood vessels in the tumor area were randomly extracted per animal, and the measured and calculated values were averaged according to the above formula, and the results of calculating the average of each group are shown in FIG. FIG. 2 shows that the pericyte-coated index was significantly higher in the ANP group than in the control group, suggesting that the ANP administration exerted a tumor blood vessel maturation effect.
  • Test Example 1-1-2 Tumor Vascular Protective Action of ANP on Breast Cancer Mouse Orthotopic Transplant Model A breast cancer mouse orthotopic transplant model was prepared in the same manner as in Test Example 1-1-1, and the mouse was Randomly divided into 2 groups (control group, ANP group) (5-7 mice in each group), control group was filled with physiological pump Osmotic pump, and ANP group was filled with hANP filled Osmotic pump Each of the mice was implanted subcutaneously in the back of the mouse, and hANP was started to be administered at a dose of 1.5 ⁇ g / kg / min.
  • the excised tumor was measured for intracisternal cisplatin concentration using ICP-MS (inductively coupled plasma mass spectrometer) method, and the average value of each group was calculated.
  • ICP-MS inductively coupled plasma mass spectrometer
  • Test Example 1-2-1 Tumor Vascular Protection Effect of ANP on Vascular Mice Orthotopic Transplantation Model
  • ANP acts specifically on blood vessels
  • GC-A gene-modified mouse was used.
  • mice prepared as previously reported were used (Nojiri et al., PNAS 2015).
  • Test Example 1-2-2 Avascular blood vessel maturation effect of ANP on pulmonary cancer mouse orthotopic transplantation model
  • a blood vessel-specific GC-A gene-modified mouse was used as in Test Example 2-1. It was.
  • male C57BL / 6 mice (Japan SLC) aged 8 to 10 weeks were used.
  • the Osmotic pump used was ALZET (Cupertino, CA) MODEL 2002 (for 14 days administration).
  • hANP SEQ ID NO: 1 was prepared according to a known method.
  • a orthotopic transplantation model of lung cancer mice was prepared in the same manner as in Test Example 1-2-1, and one mouse was used for genetically modified mice on the 7th day after transplantation using Nippon Kayaku's cisplatin injection “Marco”. Ten mg / kg (about 300 ⁇ L) of cisplatin (CDDP) was administered via the tail vein, and the tumor was removed 5 minutes later.
  • CDDP cisplatin
  • the mice were randomly divided into 2 groups (control group, ANP group) on the 5th day after transplantation (5-7 mice in each group), and physiological saline was given to the control group.
  • Osmotic pump filled with Osmotic pump filled with hANP in the ANP group was implanted subcutaneously in the back of the mouse, and hANP was administered at a dose of 1.5 ⁇ g / kg / min. 7 days after transplantation
  • 10 mg / kg (approximately 300 ⁇ L) of cisplatin (CDDP) was administered to each group using Nippon Kayaku's cisplatin injection “Marco”, and the tumor was removed 5 minutes later. .
  • the cisplatin concentration in the tumor was measured in the same manner as in Test Example 1-1-2, and the average value of each group was calculated. The results are shown in FIG. FIG. 6 shows that in the ANP group, the cisplatin concentration in the tumor was significantly higher than that in the control group, and the drug arrival (cisplatin amount) was efficiently performed by ANP administration.
  • the intratumoral cisplatin concentration was significantly higher than that in the WT (wild type) group. From the above, it can be seen that ANP protects the blood vessels in the tumor and suppresses the collapse by acting specifically on the blood vessels.
  • Test Example 1-3 Effect of ANP on Cisplatin-Induced Bone Marrow Suppression Model 8-week-old male C57BL / 6 mice (Japan SLC) were used.
  • the Osmotic pump used was ALZET (Cupertino, CA) MODEL 2002 (for 14 days administration).
  • hANP SEQ ID NO: 1
  • CDDP cisplatin
  • mice were randomly divided into 2 groups (control group, ANP group) (5-7 mice in each group), the control group was filled with osmotic pump filled with physiological saline, and the ANP group was filled with hANP. Each osmotic pump was previously implanted under the back of the mouse.
  • osmotic pump was previously implanted under the back of the mouse.
  • CDDP one day before CDDP administration (Day-1)
  • administration was started at a dose of 1.5 ⁇ g / kg / min for the ANP group.
  • each group received CDDP at 16 mg / kg (approximately 480 ⁇ L) per mouse intraperitoneally, and weighed 6 mice on Day 0 (before CDDP administration), 2, 4, 8 and 14, respectively. After slaughtering and collecting blood from the femoral vein, bone marrow was also collected.
  • the white blood cell count, platelet count, and hemoglobin value were measured using a fully automatic blood cell counter “SELTAC ⁇ ” MEK-6450 (Nihon Kohden).
  • SELTAC ⁇ fully automatic blood cell counter
  • the total number of cells in the bone marrow, the number of living cells, and granulocyte macrophage colony forming units (GM-CFU) were measured using an assay kit from StemCell Technologies.
  • the blood results are shown in FIG. 7, and the bone marrow results are shown in FIG.
  • FIG. 7 shows that the white blood cell count in Day 2 and Day 4 was significantly higher in the ANP group than in the control group.
  • FIG. 8 shows that the number of viable cells in the bone marrow and the GM-CFU value were significantly higher in Day 2, 4, and 8 in the ANP group than in the control group.
  • the ANP group showed a higher tendency at Day 0.5, and the Day 1 was significantly higher. From the above, it is considered that ANP exerts a reducing effect on bone marrow suppression, which is a side effect induced by an anticancer agent such as cisplatin, by increasing plasma G-CSF level.
  • Test Example 2 Combined Effect of ANP and Taxane Anticancer Agent on Breast Cancer Mouse Orthotopic Transplant Model
  • a 7-week-old female Balb / c mouse (Japan SLC) was used as the mouse.
  • the Osmotic pump used was ALZET (Cupertino, CA) MODEL 2004 (for 28-day administration).
  • hANP SEQ ID NO: 1 produced according to a known method was used as a representative taxane anticancer agent, docetaxel intravenous infusion 20 mg / 1 mL “NK” of Nippon Kayaku Co., Ltd.
  • 4T1 breast cancer cells (Wako Pure Chemical Industries) were prepared to 1 ⁇ 10 6 cells / 100 ⁇ L using RPMI-1640 of FBS free. This suspension was injected into the right mammary gland at 100 ⁇ L per mouse. One week later, the tumor was excised, and a 3 ⁇ 3 mm tumor piece was prepared from this tumor. Next, 3 x 3 mm tumor pieces were orthotopically transplanted into the right mammary gland, one for each newly prepared mouse.
  • mice On the 5th day after transplantation, the mice were randomly divided into 4 groups (control group, ANP group, docetaxel (DTX) group, combined use group) (6 mice for each group) and filled with the contents described in Table 1
  • the Osmotic pump was implanted subcutaneously in the back of the mouse, and hANP-filled one was set to a dose of 1.5 ⁇ g / kg / min and administration was started. Thereafter, on the seventh day after transplantation, physiological saline or DTX described in Table 1 was administered at about 100 ⁇ L tail vein per mouse.
  • Test Example 3 Examination of ANP Administration Period for Combined Effects of ANP and Platinum Anticancer Agent on Breast Cancer Mouse Orthotopic Transplant Model
  • a 7-week-old female Balb / c mouse was used.
  • Osmotic pump used ALZET MODEL1002 (for 14 days administration).
  • a control group was obtained by implanting an osmotic pump containing physiological saline under the back of a Balb / c mouse.
  • an ANP administration group was prepared in which an osmotic pump prepared to administer hANP at a dose of 0.5 ⁇ g / kg / min (ANP group) was implanted subcutaneously in mice.
  • CDDP cisplatin
  • 10 mg / kg (about 300 ⁇ L) of CDDP per mouse was administered via the tail vein, and in the control group, the same amount of physiological saline was administered via the tail vein.
  • 4T1 breast cancer cells were prepared using FBS-free RPMI-1640 so that 4T1 cells were 1 ⁇ 10 6 cells / 100 ⁇ L. This suspension was injected into the right mammary gland at 100 ⁇ L per mouse. One week later, the tumor was removed and 5 ⁇ 5 mm strips were made from this tumor. For each newly prepared mouse, one 5 x 5 mm tumor piece was orthotopically transplanted into the right mammary gland. The mice were randomly divided into 6 groups (6 groups shown below), and an osmotic pump adjusted to the timing of ANP administration according to each group was implanted subcutaneously into the mice and administration was started. On the seventh day after transplantation, physiological saline or cisplatin 10 mg / kg was administered via the tail vein.
  • Control group Osmotic pump filled with physiological saline was implanted on Day 0, and physiological saline was administered to the tail vein on Day 7.
  • vehicle + CDDP group Osmotic pump filled with physiological saline is implanted on Day 0, and 10 mg / kg of CDDP is administered on the tail vein on Day 7
  • ANP daily administration + CDDP group An osmotic pump filled with hANP at a dose of 0.5 ⁇ g / kg / min was implanted on Day 6, and 10 mg / kg CDDP was administered on Day 7 on the tail vein.
  • ANP 3 days + CDDP group An osmotic pump filled with hANP at a dose of 0.5 ⁇ g / kg / min was implanted on Day 4, and 10 mg / kg CDDP was administered on Day 7 via the tail vein.
  • ANP 5 days + CDDP group Osmotic pump filled with hANP at a dose of 0.5 ⁇ g / kg / min was implanted on Day 2 and 10 mg / kg CDDP was administered on Day 7 on the tail vein
  • ANP 7 days + CDDP group Osmotic pump filled with hANP at a dose of 0.5 ⁇ g / kg / min was implanted on Day 0, and 10 mg / kg CDDP was administered on Day 7 on the tail vein
  • tumor growth was significantly suppressed in the vehicle + CDDP group as compared with the control group.
  • the ANP 1 day administration + CDDP group and the ANP 3 day administration + CDDP group showed no significant difference in tumor growth suppression effect, but the ANP 5 day administration + CDDP group and ANP 7 day administration + CDDP group control + CDDP group
  • the tumor growth inhibitory effect was significantly large. From the above results, it was shown that in order to enhance the antitumor action (tumor growth inhibitory action) of CDDP by ANP administration, the ANP administration period requires at least 5 days or more.
  • Test Example 4 Combined Effect of ANP and Anti-PD-1 Antibody on Breast Cancer Mouse Orthotopic Transplant Model
  • a 7-week-old female Balb / c mouse was used.
  • the Osmotic pump used was ALZET MODEL 2004 (for 28-day administration).
  • Balb / c mice were implanted with an osmotic pump containing physiological saline in the dorsal skin, and were used as the vehicle group.
  • an ANP group was prepared in which an osmotic pump prepared to administer hANP at a dose of 0.5 ⁇ g / kg / min (ANP group) was implanted subcutaneously in mice.
  • anti-PD-1 antibody which is a typical immune checkpoint inhibitor
  • 20 or 10 mg / kg total of 100 ⁇ L / injection was made using BioXCell anti-mouse PD-1 antibody. (Prepared using irrigation water) was intraperitoneally administered, and in the control group, anti-mouse IgG (BE0260, BioXCell) was intraperitoneally administered in the same amount (100 ⁇ L).
  • 4T1 breast cancer cells (Wako Pure Chemical Industries) were prepared using RPMI-1640 of FBS free so that 4T1 cells became 1 ⁇ 10 6 cells / 100 ⁇ l. This suspension was injected into the right mammary gland at 100 ⁇ l per mouse. One week later, the tumor was removed and 3 ⁇ 3 mm strips were made from this tumor. For each newly prepared mouse, one 3 x 3 mm tumor piece was orthotopic transplanted into the right mammary gland. On the same day as the transplantation, the mice were randomly divided into 4 groups (4 groups shown below), and an osmotic pump adjusted for administration according to each group was implanted subcutaneously into the mice as shown below. did.
  • anti-mouse IgG or anti-PD-1 antibody adjusted to administration according to each group was intraperitoneally administered as follows.
  • Control group Osmotic pump filled with physiological saline was implanted on Day 0, and anti-mouse IgG was administered intraperitoneally at 20 mg / kg on Day 7 and 10 mg / kg on Day 13 and 19 respectively.
  • ANP group An Osmotic pump filled with hANP at a dose of 0.5 ⁇ g / kg / min was embedded in Day 0 vehicle + anti-PD-1 antibody group: Osmotic pump filled with physiological saline is implanted on Day 0, and anti-mouse PD-1 antibody is administered intraperitoneally at 20 mg / kg on Day 7 and 10 mg / kg on Day 13 and 19 respectively.
  • ANP + DTX group An osmotic pump filled with hANP at a dose of 0.5 ⁇ g / kg / min was implanted on Day 0, and anti-mouse PD-1 antibody was 20 mg / kg on Day 7 and 10 mg / kg on Day 13 and 19 respectively.
  • Test Example 5-1 Effect of ANP on Pulmonary Fibrosis Mouse Model
  • 7-week-old male C57BL / 6N mice (Japan SLC) were used.
  • the Osmotic pump used was ALZET (Cupertino, CA) MODEL1002 (for 14 days administration).
  • a control group was obtained by implanting an osmotic pump containing physiological saline under the back of C57BL / 6N mice.
  • an ANP group was prepared in which an osmotic pump prepared so that hANP was administered at a dose of 0.5 ⁇ g / kg / min (ANP group) was implanted subcutaneously in mice.
  • a typical pulmonary fibrosis inducer 1 mg / kg (prepared with water for injection to give a total of 80 ⁇ L / animal) using 5 mg for bleo injection from Nippon Kayaku Co., Ltd. was administered intratracheally, and in the control group, the same amount (80 ⁇ L) of physiological saline was administered intratracheally.
  • the mice were sacrificed on the 21st day, mouse lungs were stretched and fixed with 4% paraformaldehyde (Wako Pure Chemical Industries), paraffin-embedded blocks were prepared, and Masson trichrome staining was performed.
  • the stained specimen was photographed with a box type fluorescence imaging apparatus FSX100 (Olympus).
  • the lung fibrosis area ratio was defined as fibrosis area / total lung area, and was automatically calculated with CellSens Dimension software version 1.6 (Olympus). The results are shown in FIG.
  • Control group group in which physiological saline was administered intratracheally
  • Vehicle + bleomycin administration group Osmotic pump filled with physiological saline was implanted, and bleomycin (1 mg / kg) was administered intratracheally 3 days later
  • ANP + bleomycin administration group A group in which an osmotic pump filled with ANP at a dose of 0.5 ⁇ g / kg / min was implanted, and bleomycin (1 mg / kg) was administered intratracheally 3 days later
  • the pulmonary fibrosis area that was not observed in the control group was significantly increased in the vehicle + bleomycin group, but was significantly suppressed by ANP administration.
  • Test Example 5-2 Lung Fibrosis Inhibitory Effect Using Tissue-Specific Transgenic (Tg) Mice
  • Tg Tissue-Specific Transgenic mice
  • 12-week-old wild type mice, vascular endothelium-specific GC-A-Tg (Tie2-Cre-GC) -A-Tg) mice and fibroblast-specific GC-A-Tg (Periostin-Cre-GC-A-Tg) mice were used, and bleomycin was administered in the same manner as described above.
  • bleomycin (1 mg / kg) was administered intratracheally to mice in each group, sacrificed on day 21, and mouse lungs were stretched and fixed with 4% paraformaldehyde to produce paraffin-embedded blocks Later, Masson trichrome staining was performed. The stained specimen was photographed with a box type fluorescence imaging apparatus FSX100 (Olympus). The pulmonary fibrosis area ratio was calculated in the same manner as in Test Example 5-1, and the pulmonary fibrosis area was expressed as the ratio of each group when the wild-type mouse was 1. The results are shown in FIG.
  • Wild-type mouse group Bleomycin (1 mg / kg) administered intratracheally to wild-type mice
  • Vascular endothelium-specific GC-A-Tg group Bleomycin (1 mg / kg) to vascular endothelium-specific GC-A-Tg mice
  • Intratracheally administered group Fibroblast-specific GC-A-Tg group: Fibroblast-specific GC-A-Tg mice administered bleomycin (1 mg / kg) intratracheally
  • pulmonary fibrosis area was significantly suppressed in the vascular endothelium-specific GC-A-Tg mice compared to the wild-type mouse group, and fibroblast-specific GC-A-Tg mice. There was no significant suppression. From the above, it is suggested that ANP exerts an effect of suppressing pulmonary fibrosis via blood vessels.
  • the medicament of the present invention is useful as a medicament for treating malignant tumors having a powerful effect because it can effectively reach the tumor cells through the bloodstream.
  • Sequence number 1 of a sequence table is a polypeptide of human origin ANP.
  • Sequence number 2 of a sequence table is a polypeptide of rat origin ANP / mouse origin ANP.
  • Sequence number 3 of a sequence table is a polypeptide of human origin BNP.
  • Sequence number 4 of a sequence table is a polypeptide of porcine origin BNP.
  • Sequence number 5 of a sequence table is a polypeptide of rat origin BNP.
  • Sequence number 6 of a sequence table is a polypeptide of mouse-derived BNP.
  • Sequence number 7 of a sequence table is a polypeptide of the ring structure in ANP or BNP.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endocrinology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A drug combining (A) a natriuretic peptide receptor GC-A agonist, with, as (B) an anti-malignant tumor agent, a compound having anti-microtubule action, or a PD-1 pathway inhibitor [(B')]. By administering the drug at least 5 days before administering the (B) anti-malignant tumor agent, the natriuretic peptide receptor GC-A agonist effect is exhibited, and the (B) anti-malignant tumor agent can effectively reach the inside of the tumor cells via the bloodstream, thereby making the drug useful as an anti-malignant tumor treatment drug having a strong effect.

Description

NPR-Aアゴニストの新規用途New uses of NPR-A agonists
 本発明は、医薬に関する。 The present invention relates to a medicine.
 ナトリウム利尿ペプチドと称されるペプチドには、心房性ナトリウム利尿ペプチド(ANP)、脳性ナトリウム利尿ペプチド(BNP)、及びC型ナトリウム利尿ペプチド(CNP)がある。これらは、グアニレートシクラーゼドメインを有する受容体と特異的に結合し、具体的には、ANPとBNPはナトリウム利尿ペプチド受容体GC-A(別名:NPR-A)と、CNPはナトリウム利尿ペプチド受容体GC-B(別名:NPR-B)とそれぞれ結合することで、細胞内のGMP濃度を上昇させて様々な生理活性を発現することが知られている。 Peptides called natriuretic peptides include atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). These specifically bind to receptors having a guanylate cyclase domain. Specifically, ANP and BNP are natriuretic peptide receptors GC-A (also known as NPR-A), and CNP is a natriuretic peptide. It is known that by binding to the receptor GC-B (also known as NPR-B), the intracellular GMP concentration is increased and various physiological activities are expressed.
 ANPは、心房細胞で産生されて分泌されるアミノ酸28個から成るペプチドであるが、腎臓では利尿作用を示し、血管では血管平滑筋を弛緩・拡張する等の血圧調整作用を奏することから、臨床において、ヒト型ANP(hANP)は急性心不全治療薬として用いられている。また、近年では、癌細胞の増殖や転移を抑制する報告や、各臓器の線維化を抑制する報告も多数なされている。 ANP is a peptide consisting of 28 amino acids that is produced and secreted by atrial cells, but exhibits diuretic action in the kidney and exerts blood pressure regulating actions such as relaxing and dilating vascular smooth muscle in the blood vessels. , Human type ANP (hANP) is used as a therapeutic agent for acute heart failure. In recent years, there have been many reports on suppression of proliferation and metastasis of cancer cells and suppression of fibrosis of each organ.
 例えば、特許文献1、2、及び非特許文献1には、ANPに加えて、Long Acting Natriuretic Peptide、Vessel Dilator、及びKaliuretic Peptideの4つのペプチドが、膵癌、前立腺癌、小細胞性肺癌、乳癌等の各腫瘍細胞に直接作用して、DNA合成を阻害したりすることで、腫瘍の増殖を抑制できると報告している。 For example, in Patent Documents 1 and 2 and Non-Patent Document 1, in addition to ANP, four peptides of Long Acting Natriuretic Peptide, Vessel Dilator, and Kaliuretic Peptide are included in pancreatic cancer, prostate cancer, small cell lung cancer, breast cancer and the like. It has been reported that tumor growth can be suppressed by directly acting on each tumor cell and inhibiting DNA synthesis.
 また、特許文献3は、ANPの受容体に着目したものであり、siRNA等を用いてNPR-Aの合成を阻害したり、ANPアナログを用いたりしてNPR-Aの活性を抑制することで、ANPカスケードによって誘導される癌等の疾患を治療できると開示されている。 Patent Document 3 focuses on ANP receptors, and inhibits NPR-A activity using siRNA or the like to inhibit NPR-A synthesis or ANP analogs. It is disclosed that diseases such as cancer induced by the ANP cascade can be treated.
 非特許文献2には、ANPが血管内皮細胞の炎症反応を抑制することで、癌細胞そのものの血管内皮細胞への吸着を抑制して、癌細胞の転移が抑制されるとの報告がなされている。 Non-Patent Document 2 reports that ANP suppresses the inflammatory reaction of vascular endothelial cells, thereby suppressing the adsorption of cancer cells themselves to vascular endothelial cells and suppressing the metastasis of cancer cells. Yes.
 また、特許文献4では、ナトリウム利尿ペプチド受容体GC-Aアゴニストが、GC-Aを発現する腫瘍細胞に対しては、直接作用して上皮間葉転換(EMT)をはじめとした遊走能及び浸潤能の取得を抑制することで転移を抑制する効果(直接効果)を示すことに加え、細胞内cGMPの上昇に伴って生成されたシグナル伝達物質が血管やリンパ管の内皮細胞に作用することによって該血管内皮への腫瘍細胞の接着・浸潤が阻害されて、腫瘍の転移を抑制する効果(間接効果)をも発揮すると開示されている。そして、かかるGC-Aアゴニストは腫瘍細胞の転移や浸潤を抑制することができることから、他の抗腫瘍剤と併用してもよいことが記載されており、例えば、実施例において、シスプラチンとの併用により、シスプラチンがGC-Aアゴニストによる癌細胞へのアポトーシス誘導活性を増強していると開示されている。 Further, in Patent Document 4, a natriuretic peptide receptor GC-A agonist directly acts on tumor cells expressing GC-A to migrate and infiltrate including epithelial-mesenchymal transition (EMT). In addition to showing the effect (direct effect) of suppressing metastasis by suppressing the acquisition of ability, the signaling substance generated with the increase of intracellular cGMP acts on the endothelial cells of blood vessels and lymph vessels It is disclosed that adhesion / invasion of tumor cells to the vascular endothelium is inhibited and an effect of suppressing tumor metastasis (indirect effect) is also exhibited. Further, it has been described that such a GC-A agonist can suppress metastasis and invasion of tumor cells, and therefore may be used in combination with other antitumor agents. Thus, it is disclosed that cisplatin enhances apoptosis-inducing activity to cancer cells by a GC-A agonist.
 特許文献5には、ナトリウム利尿ペプチド受容体GC-Bアゴニストが癌関連線維芽細胞(CAF)の、悪性腫瘍を増悪させる各因子やサイトカインの産生を抑制し、また、ナトリウム利尿ペプチド受容体GC-Aアゴニストが癌細胞のEMTを抑制し、癌細胞からの悪性腫瘍を増悪させる各因子やサイトカインの産生を特異的に抑制することから、これらを併用することで、悪性腫瘍を増悪させる各成長因子や炎症性サイトカイン等の産生がより顕著に抑制され、且つ、癌細胞のEMTが抑制されることが報告されている。 In Patent Document 5, a natriuretic peptide receptor GC-B agonist suppresses the production of various factors and cytokines that exacerbate malignant tumors in cancer-associated fibroblasts (CAF), and natriuretic peptide receptor GC- A agonist suppresses the EMT of cancer cells and specifically suppresses the production of each factor and cytokine that exacerbate malignant tumors from cancer cells. By using these in combination, each growth factor that exacerbates malignant tumors It has been reported that the production of inflammatory cytokines and the like is remarkably suppressed, and the EMT of cancer cells is suppressed.
 また、線維化抑制については、腹膜線維症や腎線維症のモデル動物にANPを投与することで改善効果があることが報告されている(非特許文献3、4参照)。非特許文献5では、ANPとシルデナフィルを併用することで、肺線維症が抑制されることが開示されている。 In addition, it has been reported that fibrosis suppression has an improving effect by administering ANP to a model animal of peritoneal fibrosis or renal fibrosis (see Non-Patent Documents 3 and 4). Non-Patent Document 5 discloses that pulmonary fibrosis is suppressed by using ANP and sildenafil in combination.
US6943147号公報US6943147 US2005/0209139号公報US2005 / 0209139 US2005/0272650号公報US2005 / 0272650 gazette WO2012/118042号公報WO2012 / 118042 WO2013/027680号公報WO2013 / 027680 publication
 しかしながら、ANPによる悪性腫瘍の増殖抑制効果は未だ不明なものである。例えば、特許文献1では、1μMのANPが細胞実験においてコントロールと比較して約34%の癌細胞の減少を示す(特許文献1、Fig.2)が、多くの癌細胞は生き残ることになり、抗癌剤としての有効性は示唆されない。特許文献2では、細胞実験においてANPの濃度を1mMに上げると89%の癌細胞が減少することが記載されている(特許文献2、Fig.3)が、細胞実験としては高濃度での実験であり、細胞毒性を生じて細胞増殖が抑制されている可能性が疑われる。ANPは臨床において血圧低下の副作用が見られるため、投与量に注意が必要な薬剤として知られていることからも、細胞実験において高濃度で癌細胞の増殖が抑制されたからといって、ANPが抗癌剤として利用できるとは言えない。また、例えば、SCIENCE 307, 58-62, (2005)に記載されているように、腫瘍組織中の血管構造は未熟な血管が多く作られて異常構造をとることから、血管壁が崩れたり、血管透過性の亢進に伴って血液内成分が周囲組織に漏出することによって、腫瘍組織中の癌細胞まで薬剤が届きにくいことが知られている。よって、in vitroの実験系においてANPの腫瘍増殖抑制効果が確認されたとしても、in vivoにおいて確認されるANPの作用は癌細胞への直接作用によるものであるとは考えにくく、例えば、特許文献4において開示されたシスプラチンによってANPのアポトーシス誘導活性が増強されたとする報告は、メカニズムとして十分ではないことが分かる。 However, the growth inhibitory effect of malignant tumors by ANP is still unclear. For example, in Patent Document 1, 1 μM ANP shows a decrease in cancer cells of about 34% compared to controls in cell experiments (Patent Document 1, FIG. 2), but many cancer cells survive, The effectiveness as an anticancer agent is not suggested. Patent Document 2 describes that 89% of cancer cells decrease when the concentration of ANP is increased to 1 mM in cell experiments (Patent Document 2, FIG. 3). It is suspected that the cell proliferation is suppressed due to the cytotoxicity. Since ANP has a side effect of lowering blood pressure in clinical practice, it is known as a drug that requires attention to the dose. Therefore, ANP is suppressed because the growth of cancer cells was suppressed at a high concentration in cell experiments. It cannot be said that it can be used as an anticancer agent. In addition, for example, as described in SCIENCE 307, 58-62, (2005), the blood vessel structure in the tumor tissue is made of many immature blood vessels and takes an abnormal structure, so the vessel wall collapses, It is known that a drug is difficult to reach cancer cells in a tumor tissue due to leakage of blood components to surrounding tissues as blood vessel permeability increases. Therefore, even if the tumor growth inhibitory effect of ANP is confirmed in an in vitro experimental system, the action of ANP confirmed in in vivo is unlikely to be due to a direct action on cancer cells. It can be seen that the report that the apoptosis-inducing activity of ANP was enhanced by the cisplatin disclosed in 4 is not sufficient as a mechanism.
 また、線維化抑制の報告についても、線維化状態が進行することによって血管構造が壊れ、薬剤が届きにくいことから、ANPが直接作用しているとは考えにくい。また、非特許文献5の図4からは、ヒト肺線維芽細胞を用いた実験ではANPとシルデナフィルを併用すると分化能の抑制が確認された一方、ANP単独では分化能の抑制が確認されないことからも、ANPの直接作用は不明であり、メカニズムは十分でないことが分かる。 Also, regarding the report of fibrosis suppression, it is unlikely that ANP is acting directly because the vascular structure is broken by the progress of fibrosis and the drug is difficult to reach. Further, from FIG. 4 of Non-Patent Document 5, in experiments using human lung fibroblasts, when ANP and sildenafil were used together, suppression of differentiation potential was confirmed, whereas suppression of differentiation potential was not confirmed with ANP alone. However, it is clear that the direct action of ANP is unknown and the mechanism is not sufficient.
 本発明の課題は、悪性腫瘍あるいは肺線維症又は間質性肺炎を効果的に治療又はその悪性化を抑制することができる医薬を提供することにある。 An object of the present invention is to provide a medicament capable of effectively treating malignant tumors, pulmonary fibrosis, or interstitial pneumonia or suppressing malignant transformation thereof.
 本発明者らは、前記課題を解決する為に検討を重ねた結果、腫瘍深部への到達が難しい抗癌剤として、微小管阻害作用を有する化合物を、ナトリウム利尿ペプチド受容体GC-Aアゴニストと組み合わせることにより、腫瘍組織中の血管をGC-Aアゴニストによって保護する(成熟化する)ことで、微小管阻害作用を有する化合物を癌細胞へ効率的に到達させることが可能となって、該化合物による抗腫瘍効果がより発揮されることを新たに見出し、本発明を完成するに至った。 As a result of repeated studies to solve the above-mentioned problems, the present inventors combine a compound having a microtubule inhibitory action with an natriuretic peptide receptor GC-A agonist as an anticancer agent that is difficult to reach the deep part of the tumor. By protecting (maturating) the blood vessels in the tumor tissue with a GC-A agonist, it becomes possible to efficiently reach the cancer cell with a compound having a microtubule inhibitory effect. The inventors have newly found that the tumor effect is more exerted, and have completed the present invention.
 即ち、本発明は、下記〔1〕~〔10〕に関する。
〔1〕 (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを含有し、(B)抗悪性腫瘍剤投与の5日以上前に投与されることを特徴とする、前記(B)抗悪性腫瘍剤の治療効果の増強剤。
〔2〕 (A)ナトリウム利尿ペプチド受容体GC-Aアゴニスト、及び(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤を組み合わせてなる医薬。
〔3〕 (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを含有する、(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤の悪性腫瘍の治療効果の増強剤。
〔4〕 (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを有効成分として含む、(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤と併用するための医薬組成物。
〔5〕 (B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤を有効成分として含む、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストと併用するための医薬組成物。
〔6〕 (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを有効成分として含む、(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤による治療を受けている患者用の医薬組成物。
〔7〕 (B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤を有効成分として含む、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストによる治療を受けている患者用の医薬組成物。
〔8〕 ナトリウム利尿ペプチド受容体GC-Aアゴニストを含有する、肺線維症又は間質性肺炎の予防又は治療のために用いられる医薬組成物。
〔9〕 ナトリウム利尿ペプチド受容体GC-Aアゴニストを投与することを特徴とする、肺線維症又は間質性肺炎の予防又は治療方法。
〔10〕 肺線維症又は間質性肺炎の予防又は治療のための、ナトリウム利尿ペプチド受容体GC-Aアゴニスト。
That is, the present invention relates to the following [1] to [10].
[1] The (B) anti-malignant tumor agent, which comprises (A) a natriuretic peptide receptor GC-A agonist and is administered 5 days or more before the administration of the (B) antineoplastic agent The therapeutic effect enhancer.
[2] A pharmaceutical comprising a combination of (A) a natriuretic peptide receptor GC-A agonist and (B ′) a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor.
[3] (B) A compound having a microtubule inhibitory action or a PD-1 pathway inhibitor containing a natriuretic peptide receptor GC-A agonist, or an agent for enhancing the therapeutic effect of a malignant tumor.
[4] A pharmaceutical composition for use in combination with (B ′) a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor, comprising (A) a natriuretic peptide receptor GC-A agonist as an active ingredient.
[5] A pharmaceutical composition for use in combination with (A) a natriuretic peptide receptor GC-A agonist, comprising (B ′) a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor as an active ingredient.
[6] A pharmaceutical composition for a patient who is treated with (B ′) a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor, comprising (A) a natriuretic peptide receptor GC-A agonist as an active ingredient object.
[7] (B ′) A pharmaceutical composition for a patient undergoing treatment with a natriuretic peptide receptor GC-A agonist, comprising as an active ingredient a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor object.
[8] A pharmaceutical composition used for the prevention or treatment of pulmonary fibrosis or interstitial pneumonia, comprising a natriuretic peptide receptor GC-A agonist.
[9] A method for preventing or treating pulmonary fibrosis or interstitial pneumonia, comprising administering a natriuretic peptide receptor GC-A agonist.
[10] A natriuretic peptide receptor GC-A agonist for the prevention or treatment of pulmonary fibrosis or interstitial pneumonia.
 本発明の医薬は、微小管阻害作用を有する化合物を単独で服用する場合に比べて、より強力に抗腫瘍効果を発揮するという優れた効果を奏するものである。 The medicament of the present invention exhibits an excellent effect of exerting an antitumor effect more strongly than when a compound having a microtubule inhibitory action is taken alone.
 また、本発明は、腫瘍組織中の血管をGC-Aアゴニストによって保護する(成熟化する)ことで、抗癌剤を癌細胞へ効率的に到達させる、というコンセプトがもとになっており、微小管阻害作用を有する化合物以外の抗癌剤であっても、癌細胞に到達させることが困難な薬剤にとっては、同様の効果が期待される。 In addition, the present invention is based on the concept of efficiently bringing an anticancer drug to cancer cells by protecting (maturating) blood vessels in tumor tissue with a GC-A agonist. Even if it is an anticancer drug other than the compound having an inhibitory action, the same effect is expected for a drug that is difficult to reach cancer cells.
図1は、乳癌マウス同所移植モデルにおける腫瘍内の血管状態を示す図である。上段がコントロール群、下段がANP群であり、左列が血管内皮細胞を染色した図、真ん中列が壁細胞を染色した図、右列が核染色も含めた全染色図を合わせた図である。FIG. 1 is a diagram showing a vascular state in a tumor in a breast cancer mouse orthotopic transplantation model. The upper row is the control group, the lower row is the ANP group, the left row is a diagram showing vascular endothelial cells, the middle row is staining the mural cells, and the right row is a combined view of all staining including nuclear staining. . 図2は、乳癌マウス同所移植モデルにおける腫瘍血管の壁細胞の裏打ち率を示す図である。FIG. 2 is a diagram showing the lining rate of wall cells of tumor blood vessels in a breast cancer mouse orthotopic transplantation model. 図3は、乳癌マウス同所移植モデルにおける腫瘍内のシスプラチン濃度を示す図である。FIG. 3 is a graph showing the cisplatin concentration in a tumor in a breast cancer mouse orthotopic transplantation model. 図4は、肺癌を同所移植した遺伝子改変マウスにおける腫瘍内の血管状態を示す図である。上から順に、WT(野生型)群、EC-GCA-Tg(GC-A過剰発現)群、Flox/flox(コントロール)群、EC-GCA-KO(GC-Aノックアウト)群であり、左列が血管内皮細胞を染色した図、真ん中列が壁細胞を染色した図、右列が核染色も含めた全染色図を合わせた図である。FIG. 4 is a diagram showing the intravascular vascular state in genetically modified mice transplanted with lung cancer at the same site. From top to bottom, WT (wild type) group, EC-GCA-Tg (GC-A overexpression) group, Flox / flox (control) group, EC-GCA-KO (GC-A knockout) group, left column Is a diagram in which vascular endothelial cells are stained, a middle row is a diagram in which mural cells are stained, and a right column is a diagram in which all staining diagrams including nuclear staining are combined. 図5は、肺癌を同所移植した遺伝子改変マウスにおける腫瘍血管の壁細胞の裏打ち率を示す図である。FIG. 5 is a graph showing the lining ratio of tumor vascular wall cells in genetically modified mice transplanted with lung cancer at the same site. 図6は、肺癌マウス同所移植モデルにおける腫瘍内のシスプラチン濃度を示す図である。FIG. 6 is a diagram showing the cisplatin concentration in the tumor in a lung cancer mouse orthotopic transplantation model. 図7は、シスプラチン誘発骨髄抑制モデルにおける体重と血液成分の推移を示す図である。FIG. 7 is a graph showing changes in body weight and blood components in a cisplatin-induced bone marrow suppression model. 図8は、シスプラチン誘発骨髄抑制モデルにおける骨髄成分の推移を示す図である。FIG. 8 is a graph showing the transition of bone marrow components in a cisplatin-induced myelosuppression model. 図9は、シスプラチン誘発骨髄抑制モデルにおける血清中G-CSF濃度の推移を示す図である。FIG. 9 is a graph showing changes in serum G-CSF concentration in a cisplatin-induced myelosuppression model. 図10は、乳癌マウス同所移植モデルにおけるANPとDTX投与後の併用効果を示す図である。FIG. 10 is a graph showing the combined effect after administration of ANP and DTX in a breast cancer mouse orthotopic transplantation model. 図11は、乳癌マウス同所移植モデルにおけるANPとCDDP(シスプラチン)の併用時のANP投与期間による腫瘍ボリュームの推移を示す図である。FIG. 11 is a graph showing changes in tumor volume according to the ANP administration period when ANP and CDDP (cisplatin) are used in combination in a breast cancer mouse orthotopic transplantation model. 図12は、乳癌マウス同所移植モデルにおけるANPと抗PD-1抗体の併用効果を示す図である。FIG. 12 is a diagram showing the combined effect of ANP and anti-PD-1 antibody in a breast cancer mouse orthotopic transplantation model. 図13は、肺線維症マウスモデルにおけるANP投与による肺線維化面積を示す図である。FIG. 13 is a diagram showing a lung fibrosis area by ANP administration in a pulmonary fibrosis mouse model. 図14は、組織特異的トランスジェニックにおける肺線維化面積を示す図である。FIG. 14 is a diagram showing lung fibrosis area in tissue-specific transgenics.
 本発明の医薬は、有効成分として、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストと(B)抗悪性腫瘍剤とを併用することを特徴とする。具体的には、例えば、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストと白金製剤とを併用するものであったり、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストと(B’)微小管阻害作用を有する化合物とを併用するものであったり、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストと(B’)PD-1経路阻害剤とを併用するものが挙げられる。 The medicament of the present invention is characterized in that (A) a natriuretic peptide receptor GC-A agonist and (B) an antineoplastic agent are used in combination as active ingredients. Specifically, for example, (A) a combination of a natriuretic peptide receptor GC-A agonist and a platinum preparation, or (A) a natriuretic peptide receptor GC-A agonist and (B ′) a microtubule Examples thereof include those used in combination with compounds having an inhibitory action, and those used in combination with (A) a natriuretic peptide receptor GC-A agonist and (B ′) a PD-1 pathway inhibitor.
<(A)ナトリウム利尿ペプチド受容体GC-Aアゴニスト>
 本発明において、「ナトリウム利尿ペプチド受容体GC-Aアゴニスト」とは、ナトリウム利尿ペプチド受容体GC-A(以下、単に「GC-A」と表記する場合もある(Chinkers M,etal.,Nature 338;78-83,1989))に結合し、そのグアニレートシクラーゼを活性化する作用(以下、「GC-Aアゴニスト活性」)を有する物質を意味し、本明細書においては単に「GC-Aアゴニスト」と表記される場合もある。代表的なGC-Aアゴニストとしては、例えば、心房性ナトリウム利尿ペプチド(Atrial Natriuretic Peptide:ANP)や脳性ナトリウム利尿ペプチド(Brain Natriuretic Peptide:BNP)が挙げられる。本発明のGC-Aアゴニストとしては、GC-Aアゴニスト活性を有するものであれば特に限定されず、ANP、BNP、並びにそれらの変異体などを1種単独で又は2種以上を組み合わせて用いることができる。
<(A) Natriuretic peptide receptor GC-A agonist>
In the present invention, the “natriuretic peptide receptor GC-A agonist” is sometimes referred to as natriuretic peptide receptor GC-A (hereinafter simply “GC-A”) (Chinkers M, etal., Nature 338). 78-83, 1989)) and has the action of activating guanylate cyclase (hereinafter referred to as “GC-A agonist activity”). Sometimes referred to as an “agonist”. Typical GC-A agonists include, for example, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP). The GC-A agonist of the present invention is not particularly limited as long as it has GC-A agonist activity, and ANP, BNP, and variants thereof are used singly or in combination of two or more. Can do.
 本発明におけるANPとしては、28個のアミノ酸よりなるヒト由来ANP(SLRRSSCFGG RMDRIGAQSG LGCNSFRY:配列番号1)、ラット由来ANP/マウス由来ANP(SLRRSSCFGG RIDRIGAQSG LGCNSFRY:配列番号2)などが挙げられる。ヒト由来ANPについては、Biochem.Biophys.Res.Commun., 118巻, 131頁, 1984年に記載のα-hANPが、一般名カルペリチド(carperitide)として、日本において製造販売承認を取得し、販売(商品名:ハンプ、HANP)されている。α-ANPは、一般的にはHuman pro-ANP[99-126]としても知られている。 Examples of the ANP in the present invention include a human-derived ANP (SLRRSSCFGG RMDRIGAQSG LGCNSFRY: SEQ ID NO: 1), a rat-derived ANP / mouse-derived ANP (SLRRSSCFGGIDRIDRIGAGSGSG LGCNSFRY: SEQ ID NO: 2), and the like. Regarding human-derived ANP, α-hANP described in Biochem. Biophys. Res. Commun., 118, 131, 1984 obtained the marketing approval in Japan under the generic name carperitide and sold ( Product name: Hump, HANP). α-ANP is also commonly known as Human pro-ANP [99-126].
 本発明におけるBNPとしては、32個のアミノ酸よりなるヒト由来BNP(SPKMVQGSGC FGRKMDRISS SSGLGCKVLR RH:配列番号3)、ブタ由来BNP(SPKTMRDSGC FGRRLDRIGS LSGLGCNVLR RY:配列番号4)を例示することができる。また、45個のアミノ酸よりなるラット由来BNP(SQDSAFRIQE RLRNSKMAHS SSCFGQKIDR IGAVSRLGCD GLRLF:配列番号5)、マウス由来BNP(SQGSTLRVQQ RPQNSKVTHI SSCFGHKIDR IGSVSRLGCN ALKLL:配列番号6)も例示することができる。ヒト由来BNPは、一般名ネシリチド(nesiritide)として、米国等で薬事承認を受けており、商品名:ナトレコール(Natrecor)として販売されている。 As the BNP in the present invention, human-derived BNP consisting of 32 amino acids (SPKMVQGSGC FGRKMDRISSS SGLGCKVLR RH: SEQ ID NO: 3), porcine-derived BNP (SPKTMRDSGC FGLRLDRIGS LSGLGCCNVLR RY: can be exemplified as SEQ ID NO: 4). In addition, rat-derived BNP consisting of 45 amino acids (SQDSAFRIQE RLRNSKMAHS SSCFFGQKIDR IGAVSLLGCD GLRLF: SEQ ID NO: 5), mouse-derived BNP (SQGSTLLVQQ RPQNSKVTHI SSCFGHKIDRL IGSVRLC) Human-derived BNP has received regulatory approval in the United States, etc., under the general name nesiritide, and is sold under the trade name: Natrecor.
 本発明において、ANP又はBNPの「変異体」とは、ANP又はBNPのアミノ酸配列の一箇所~数箇所において、1~数個のアミノ酸が置換、欠失、挿入、及び/又は、付加(以下、まとめて「置換等」という)されたものであって、且つ、GC-Aアゴニスト活性を有するもの、を意味する。「数箇所」とは、通常3箇所程度、好ましくは2箇所程度である。「数個」とは、通常10個程度、好ましくは5個程度、より好ましくは3個程度、更に好ましくは2個程度である。複数箇所で置換等される場合には、置換、欠失、挿入、及び付加の何れか一つであっても良く、二つ以上が組み合わされていても良い。また、置換等されるアミノ酸は、天然に存在するアミノ酸であってもよく、そのアシル化体等の修飾物であってもよく、人工的に合成されたアミノ酸類似体であってもよい。 In the present invention, a “variant” of ANP or BNP refers to substitution, deletion, insertion, and / or addition (hereinafter referred to as “one” to several amino acids in one to several amino acid sequences of ANP or BNP). , Collectively referred to as “substitution etc.” and having GC-A agonist activity. "Several places" is usually about 3 places, preferably about 2 places. “Several” is usually about 10, preferably about 5, more preferably about 3, and still more preferably about 2. When substitution is made at a plurality of locations, any one of substitution, deletion, insertion, and addition may be used, or two or more may be combined. The amino acid to be substituted may be a naturally occurring amino acid, a modified product such as an acylated product thereof, or an artificially synthesized amino acid analog.
 例えば、ANPの変異体は、GC-Aアゴニスト活性を有する限り、例えば、配列番号1又は2に記載のアミノ酸配列中の所望の一箇所~数箇所において1~数個のアミノ酸が置換等されていても良い。また、BNPの変異体は、GC-Aアゴニスト活性を有する限り、配列番号3、4、5、又は6に記載のアミノ酸配列の所望の一箇所~数箇所において1~数個のアミノ酸が置換等されていても良い。 For example, as long as the ANP mutant has GC-A agonist activity, for example, one to several amino acids are substituted at one to several desired positions in the amino acid sequence shown in SEQ ID NO: 1 or 2. May be. In addition, as long as the BNP mutant has GC-A agonist activity, 1 to several amino acids are substituted at one to several desired positions of the amino acid sequence shown in SEQ ID NO: 3, 4, 5, or 6. May be.
 ANPの変異体の具体例としては、例えば、hANPの12位のMetがIleに置換されたラットα-rANP(Biochem.Biophys.Res.Commun., 121巻, 585頁, 1984年)、hANPにおいてN末のSer-Leu-Arg-Arg-Ser-Serが欠失したANP等が挙げられる。この様なANP又はBNP変異体に関しては、例えば、Medicinal Research Review, 10巻, 115頁, 1990年に記載されている一連のペプチド等が挙げられる。また、アミノ酸配列の1乃至複数のアミノ酸が欠失するとともにアミノ酸配列の1乃至複数のアミノ酸が他のアミノ酸に置換された例としては、例えば、15アミノ酸残基から成るmini-ANP(Science, 270巻, 1657頁, 1995年)等が挙げられる。 Specific examples of ANP mutants include, for example, rat α-rANP (Biochem. Biophys. Res. Commun., Vol. 121, p. 585, p. 1984) in which the Met at position 12 of hANP has been replaced with Ile. ANP etc. from which N-terminal Ser-Leu-Arg-Arg-Ser-Ser has been deleted. Examples of such ANP or BNP mutants include a series of peptides described in Medicinal Research, Review 10, Vol. 10, p. 115, 1990. In addition, as an example in which one or more amino acids in the amino acid sequence are deleted and one or more amino acids in the amino acid sequence are substituted with other amino acids, for example, mini-ANP (Science, 270 Volume, 1657, 1995).
 さらに、本発明のANP又はBNPは、GC-Aアゴニスト活性を有する限り、誘導体や修飾体であってもよい。 Furthermore, the ANP or BNP of the present invention may be a derivative or a modified product as long as it has GC-A agonist activity.
 ANP又はBNPの「誘導体」とは、ANP、BNP又はそれらの変異体のアミノ酸配列を含み、さらに別のペプチド又はタンパク質が付加された融合ペプチドであり、且つ、ANP又はBNPの有する生物活性の少なくとも一部を保持する融合ペプチドを意味する。このような生物活性(本発明においては、GC-Aに結合し、そのグアニレートシクラーゼを活性化する作用)の少なくとも一部を有する融合ペプチドを、ANP又はBNPの誘導体ともいう。本発明の誘導体において、ANP、BNP又はそれらの変異体の、C末端又はN末端の一方に付加ペプチドが融合されていてもよく、C末端及びN末端の両方に付加ペプチドが融合されたものであっても良い。付加されるペプチドとしては、特に限定されないが、そのペプチド自身が生理活性を有さないものが好ましい。また、付加ペプチドは直接結合していてもよく、1~数個のアミノ酸からなるリンカー配列を介して結合していても良い。リンカー配列としては、様々なものが知られているが、Gly、Ala、Ser等を多く含むものが好ましく使用される。そのような付加ペプチドとしては、免疫グロブリン(好ましくはIgG)のFc部位、血清アルブミン、グレリンのC末端側配列などを挙げることができる(例えばANPを免疫グロブリンのFc部位と結合させた融合タンパク質(米国特許出願公開2010/0310561号明細書等参照)、GLP-1を血清アルブミンと結合させた融合タンパク質(国際特許公開第2002/046227号等参照))。 A “derivative” of ANP or BNP is a fusion peptide comprising the amino acid sequence of ANP, BNP or a variant thereof, to which another peptide or protein is added, and at least the biological activity of ANP or BNP. It means a fusion peptide that retains a part. A fusion peptide having at least a part of such biological activity (in the present invention, an action of binding to GC-A and activating guanylate cyclase) is also referred to as an ANP or BNP derivative. In the derivative of the present invention, an additional peptide may be fused to either the C-terminal or N-terminal of ANP, BNP or a variant thereof, and the additional peptide is fused to both the C-terminal and the N-terminal. There may be. The peptide to be added is not particularly limited, but a peptide having no physiological activity is preferable. Further, the additional peptide may be directly bonded, or may be bonded via a linker sequence consisting of 1 to several amino acids. Various linker sequences are known, but those containing a large amount of Gly, Ala, Ser and the like are preferably used. Examples of such an additional peptide include an Fc site of immunoglobulin (preferably IgG), serum albumin, C-terminal sequence of ghrelin and the like (for example, a fusion protein in which ANP is bound to an Fc site of immunoglobulin ( US Patent Application Publication No. 2010/0310561, etc.), fusion protein in which GLP-1 is bound to serum albumin (see International Patent Publication No. 2002/046227, etc.)).
 「誘導体」としては、好ましくはhANPの誘導体及びhBNPの誘導体である。具体的には、例えばANPを免疫グロブリンのFc部位と結合させた融合タンパク質(米国特許出願公開第2010/0310561号明細書等参照)がANPの生物活性を保持したまま、血中滞留性が改善されることが知られている。また、ANP及びBNPの各種誘導体に関しては、例えば、Medicinal Research Review,10巻,115頁,1990年に記載されている一連のペプチドが挙げられる。 The “derivatives” are preferably hANP derivatives and hBNP derivatives. Specifically, for example, a fusion protein in which ANP is bound to an Fc site of an immunoglobulin (see US Patent Application Publication No. 2010/0310561, etc.) improves the retention in blood while retaining the biological activity of ANP. It is known that Moreover, regarding various derivatives of ANP and BNP, for example, a series of peptides described in Medicinal Research Review, Vol. 10, p. 115, 1990 can be mentioned.
 また、ANPの誘導体の具体例として、国際公開第2009/142307号(対応米国特許出願公開第2010/305031号明細書)に開示された各種のANP誘導体などを挙げることができる。ここでは、ANPに、グレリンのC末端に由来する部分配列を付加した誘導体において、元ペプチドの生理活性を保持したまま、血中滞留性が改善されたことが報告されている。この報告では、hANPのN末端又はC末端の何れか一方及びそれらの両方にグレリンのC末端由来の部分ペプチドを付加した多様な誘導体のいずれにおいても、GC-Aアゴニスト活性が保持され、その血中半減期が延長された。 Further, specific examples of ANP derivatives include various ANP derivatives disclosed in International Publication No. 2009/142307 (corresponding to US Patent Application Publication No. 2010/305031). Here, it has been reported that in a derivative in which a partial sequence derived from the C-terminal of ghrelin is added to ANP, the retention in blood is improved while maintaining the physiological activity of the original peptide. In this report, GC-A agonist activity is retained in any of various derivatives obtained by adding a partial peptide derived from the C-terminus of ghrelin to either the N-terminus or C-terminus of hANP and both. Medium half-life was extended.
 ANP又はBNPの「修飾体」とは、ANP、BNP又はそれらの変異体に含まれるアミノ酸の1箇所から数箇所が、別の化学物質との化学反応により修飾されたもので、且つ、ANP又はBNPの有する生物活性の少なくとも一部を保持するもの、を意味する。修飾を受ける部位は、ANP又はBNPの活性を保持する限り、いずれの部位を選択してもよい。例えばポリマーのようなある程度大きな化学物質を付加する修飾では、ANP又はBNPの活性部位、又は、受容体結合部位以外の箇所において修飾されることが好ましい。また、分解酵素による切断を防止するための修飾の場合、当該切断を受ける箇所が修飾されたものも採用する事ができる。また、別の化学物質は直接結合していてもよく、1~数個のアミノ酸からなるリンカー配列を介して結合していても良い。リンカー配列としては、様々なものが知られているが、Gly、Ala、Arg、Lys等を含むものが好ましく使用される。 The “modified form” of ANP or BNP is one in which one to several amino acids contained in ANP, BNP or a variant thereof are modified by a chemical reaction with another chemical substance, and ANP or BNP It means that retains at least part of the biological activity of BNP. Any site may be selected as the site to be modified as long as it retains the activity of ANP or BNP. For example, in a modification that adds a somewhat large chemical substance such as a polymer, the modification is preferably performed at a site other than the active site of ANP or BNP or the receptor binding site. In addition, in the case of modification for preventing cleavage by a degrading enzyme, it is also possible to employ a modification in which the portion that undergoes the cleavage is modified. Further, another chemical substance may be directly bonded, or may be bonded through a linker sequence consisting of 1 to several amino acids. Various linker sequences are known, but those containing Gly, Ala, Arg, Lys, etc. are preferably used.
 化学修飾の方法としては、様々な方法が知られているが、例えばポリエチレングリコール(PEG)、ポリビニルアルコール(PVA)など製薬技術において利用される(薬理上用いられる)高分子ポリマーを付加する方法や、Lys残基等の側鎖のアミノ基にリンカーとなる化合物を付加させ、それを介して別のタンパク質等(例えば血清アルブミン)と結合させる方法などが知られているが、これらに限定されず、様々な方法を採用することができる。また、ANP又はBNPの修飾体の製造方法については、米国特許出願公開第2009/0175821号明細書などを参考に、適宜作製することができる。修飾体は、好ましくは製薬上用いられる高分子ポリマーを付加することにより化学修飾されたものである。 Various methods are known as methods of chemical modification. For example, a method of adding a high molecular polymer (pharmacologically used) used in pharmaceutical technology such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), etc. Further, a method of adding a compound serving as a linker to a side chain amino group such as a Lys residue and binding it to another protein (eg, serum albumin) via the chain is known, but is not limited thereto. Various methods can be employed. Moreover, about the manufacturing method of the modified body of ANP or BNP, it can produce suitably with reference to US Patent application publication 2009/0175821 specification. The modified product is preferably chemically modified by adding a high-molecular polymer used for pharmaceutical use.
 例えば、ANPの修飾体は、GC-Aアゴニスト活性を有する限り、配列番号1又は2のアミノ酸配列中の所望の1つ~複数の箇所において修飾されていても良いが、好ましくは、配列表の配列番号1又は2のアミノ酸配列を含み、その配列番号7(Cys -Phe -Gly -Xaa1 -Xaa2 -Xaa3 -Asp -Arg -Ile -Xaa5 -Xaa6 -Xaa7 -Xaa8 -Xaa9 -Leu -Gly -Cys -Xaa10 -Xaa11 -Xaa12 -Arg(ここで、Xaa3はMet、Leu又はIle)(「リング構造」)に表示されたアミノ酸に相当するもの以外のアミノ酸の少なくとも一つにおいて、化学修飾を受けているものである。より好ましくは、配列番号1又は2のアミノ酸配列中の配列番号7に表示されたアミノ酸以外のアミノ酸において1箇所~数箇所で修飾されたものであり、さらに好ましくは配列番号1又は2のアミノ酸配列の1乃至6位及び28位の何れか1箇所~数箇所で修飾されたものである。また、BNPの変異体は、GC-Aアゴニスト活性を有する限り、配列番号3~6のアミノ酸配列の所望の1つ~複数の箇所において修飾されていても良いが、好ましくは、配列表の配列番号3~6のアミノ酸配列を含み、その配列番号7に表示されたアミノ酸に相当するもの以外のアミノ酸の少なくとも一つにおいて、化学修飾を受けているものである。より好ましくは、配列番号3~6のアミノ酸配列中の配列番号7に表示されたアミノ酸以外のアミノ酸において1箇所~数箇所で修飾されたものであり、より好ましくは配列番号3又は4のアミノ酸配列の1乃至9位、31位及び32位の何れか1箇所~数箇所で修飾されたもの、或いは、配列番号5又は6に記載のアミノ酸配列の1位乃至22位、44位及び45位の何れか1箇所~数箇所で修飾されたものである。さらに、上述したANP又はBNPの活性断片、変異体及びそれらの誘導体の修飾体も本発明に含まれる。このような各種修飾体もGC-Aアゴニスト活性を保持する限り、本発明に用いることができる。 For example, the modified ANP may be modified at one or more desired positions in the amino acid sequence of SEQ ID NO: 1 or 2 as long as it has GC-A agonist activity. It contains the amino acid sequence of SEQ ID NO: 1 or 2, and its SEQ ID NO: 7 Xaa10 -Xaa11 -Xaa12 -Arg (where Xaa3 is Met, Leu or Ile) ("ring structure") and at least one amino acid other than the amino acid corresponding to the amino acid is chemically modified More preferably, the amino acid other than the amino acid represented by SEQ ID NO: 7 in the amino acid sequence of SEQ ID NO: 1 or 2 is modified at one to several positions, more preferably SEQ ID NO: 1 or 2. 1 to 6 of the amino acid sequence of And modified at any one to several positions at position 28. Moreover, as long as it has GC-A agonist activity, a variant of BNP is a desired one of the amino acid sequences of SEQ ID NOs: 3 to 6. The amino acid sequence may be modified at a plurality of positions, but preferably contains at least one amino acid other than the amino acid sequence represented by SEQ ID NO: 7 including the amino acid sequence of SEQ ID NO: 3 to 6 in the sequence listing More preferably, the amino acid sequence of SEQ ID NOs: 3 to 6 is modified at one to several positions in an amino acid other than the amino acid represented by SEQ ID NO: 7, More preferably, the amino acid sequence of SEQ ID NO: 3 or 4 is modified at one to several positions of positions 1 to 9, 31 and 32, or the amino acid sequence of SEQ ID NO: 5 or 6 The acid sequence is modified at any one to several positions from positions 1 to 22, 44 and 45. Furthermore, the above-mentioned active fragments, mutants and derivatives of ANP or BNP are modified. Such modified compounds can also be used in the present invention as long as they retain GC-A agonist activity.
 このようなGC-Aアゴニストとして採用されうる修飾体の具体例としては、例えばhANP、hBNP、又はその変異体に、PEG、PVA等の親水性ポリマーやアルキル基、アリール基などの炭化水素基に代表される疎水性基が、リンカーを介して又は介さずに、結合された各種修飾体において、GC-Aアゴニスト活性を保持することが知られている(米国特許第7662773号明細書、国際特許公開第2009/020934号等参照)。 Specific examples of such modifications that can be employed as GC-A agonists include, for example, hANP, hBNP, or variants thereof, hydrophilic polymers such as PEG and PVA, and hydrocarbon groups such as alkyl groups and aryl groups. It is known that a representative hydrophobic group retains GC-A agonist activity in various modified forms bound thereto, with or without a linker (US Pat. No. 7,662,773, International Patent). Publication 2009/020934 etc.).
 ANP又はBNPと、GC-A受容体との結合は、ANP及びBNPのリング構造とそのC末端テール部分が重要であるため、特にそのN末端部に別の配列又は物質が結合した誘導体や修飾体は、その付加ペプチドや修飾物がリング構造に影響を与えることが少なく、GC-A受容体との結合を阻害することなくGC-Aアゴニスト活性を保持することになる。このことは、上述の多くの文献により実証されている。 The binding between ANP or BNP and the GC-A receptor is important for the ring structure of ANP and BNP and its C-terminal tail, so that derivatives and modifications in which a sequence or substance of N is bound to its N-terminal are particularly important. The body has little effect on the ring structure by the added peptide or modification, and retains the GC-A agonist activity without inhibiting the binding to the GC-A receptor. This has been demonstrated by many documents mentioned above.
 本発明においては、ANP、BNP、並びにそれらの変異体は、天然の細胞又は組織から採取されたものでもよく、遺伝子工学的、細胞工学的な手法を用いて調製したものであってもよく、化学合成したものであってもよい。このような調製は、公知技術に従って行うことができる。 In the present invention, ANP, BNP, and variants thereof may be collected from natural cells or tissues, or may be prepared using genetic engineering or cell engineering techniques, It may be chemically synthesized. Such preparation can be performed according to known techniques.
 なお、ある物質がGC-Aアゴニスト活性を有するか否かについては、当業者であれば従来知られている方法により容易に測定を実施することができる。具体的には、例えば、GC-A(Chinkers M,et al., Nature 338; 78-83, 1989)を強制発現させた培養細胞に物質を添加し、細胞内cGMPレベルを測定することで可能である。GC-Aアゴニスト活性の一部が保持されるとは、同一の試験系を用いて、GC-Aアゴニスト物質とANP又はBNP(当該アゴニスト物質がANP又はBNPの配列を参考にして作製されたものである場合は、当該参考としたペプチド)とを並べてGC-Aアゴニスト活性を測定した場合に、該アゴニスト物質によるcGMP上昇活性のピークが、少なくともANP又はBNPが示すcGMP上昇活性ピークの約10%以上を保持することを通常意味するが、好ましくは約30%以上、より好ましくは約50%以上、更に好ましくは約70%以上を保持することを意味する。また、ピークにおいて活性の上昇が大きくなくても、生体に投与した場合の活性持続時間が長いものは、本発明に用いることができる。 It should be noted that whether or not a certain substance has a GC-A agonist activity can be easily measured by a person skilled in the art by a conventionally known method. Specifically, for example, it is possible by adding a substance to cultured cells in which GC-A (Chinkers M, et al., Nature 338; 78-83, 1989) is forcibly expressed and measuring intracellular cGMP levels. It is. That a part of the GC-A agonist activity is retained means that the same test system is used, and the GC-A agonist substance and ANP or BNP (the agonist substance was prepared with reference to the sequence of ANP or BNP) When the GC-A agonist activity is measured along with the reference peptide), the peak of cGMP increasing activity by the agonist substance is at least about 10% of the peak of cGMP increasing activity exhibited by ANP or BNP. Usually, it means to hold the above, but preferably means to hold about 30% or more, more preferably about 50% or more, and still more preferably about 70% or more. Even if the increase in activity is not large at the peak, those having a long activity duration when administered to a living body can be used in the present invention.
 本発明におけるGC-Aアゴニストとして好ましいものは、ANP、BNP、それらの変異体であり、より好ましくは、hANP又はhBNPである。 A preferable GC-A agonist in the present invention is ANP, BNP, or a variant thereof, and more preferably hANP or hBNP.
 また、上述したGC-Aアゴニストとして、当該アゴニストの薬学的に許容される塩を用いてもよい。薬学的に許容される塩としては、無機酸、例えば塩酸、硫酸、リン酸、又は有機酸、例えばギ酸、酢酸、酪酸、コハク酸、クエン酸等の酸付加塩を挙げることができる。また、ナトリウム、カリウム、リチウム、カルシウム等の金属塩、有機塩基による塩の形態をとるものであってもよい。 Also, as the above-mentioned GC-A agonist, a pharmaceutically acceptable salt of the agonist may be used. Pharmaceutically acceptable salts include acid addition salts such as inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, or organic acids such as formic acid, acetic acid, butyric acid, succinic acid, citric acid. Further, it may take the form of a metal salt such as sodium, potassium, lithium or calcium, or a salt with an organic base.
<(B)抗悪性腫瘍剤>
 本発明における抗悪性腫瘍剤としては、白金製剤、微小管阻害作用を有する化合物又はPD-1経路阻害剤を用いることができる。なお、本明細書において、抗悪性腫瘍剤のことを抗癌剤と記載することもある。
<(B) Antineoplastic agent>
As the antineoplastic agent in the present invention, a platinum preparation, a compound having a microtubule inhibitory action, or a PD-1 pathway inhibitor can be used. In addition, in this specification, an antineoplastic agent may be described as an anticancer agent.
〔白金製剤〕
 白金製剤(プラチナ製剤)は、DNAの二重らせん構造に結合してDNAの複製を阻害する他、癌細胞を自滅(アポトーシス)へ導く働きも併せ持つものである。
[Platinum preparation]
A platinum preparation (platinum preparation) binds to a double helical structure of DNA to inhibit DNA replication, and also has a function of leading cancer cells to self-destruction (apoptosis).
 本発明において、白金製剤(プラチナ製剤)としては、抗腫瘍性白金錯体を有効成分として含む製剤を用いることができる。具体的には、シスプラチン、カルボプラチン、オキサリプラチン、ネダプラチン、ゼニプラチン、エンロプラチン、ロバプラチン、オルマプラチン、ロボプラチン、セブリプラチン、ミボプラチン又はスピロプラチン等が例示される。これらは1種単独で又は2種以上を組み合わせて用いることができる。 In the present invention, as the platinum preparation (platinum preparation), a preparation containing an antitumor platinum complex as an active ingredient can be used. Specific examples include cisplatin, carboplatin, oxaliplatin, nedaplatin, xeniplatin, enroplatin, lobaplatin, ormaplatin, loboplatin, seriplatin, miboplatin, and spiroplatin. These can be used alone or in combination of two or more.
〔(B’-1)微小管阻害作用を有する化合物〕
 微小管は細胞分裂の際に紡錘体を形成したり、細胞内小器官の配置や物質輸送など、細胞の正常機能の維持に重要な役割を果たしていることから、当該微小管の阻害作用を有する化合物を作用させることで腫瘍細胞の増殖を抑制できると考えられている。
[(B′-1) Compound having microtubule inhibitory effect]
Microtubules have an inhibitory effect on microtubules because they form a spindle during cell division and play an important role in maintaining normal cell functions such as the arrangement of organelles and mass transport. It is considered that the growth of tumor cells can be suppressed by acting a compound.
 本発明において、微小管阻害作用を有する化合物としては、タキサン系抗悪性腫瘍剤、ビンアルカロイド系悪性腫瘍剤が含まれる。タキサン系抗悪性腫瘍剤は、微小管の脱重合を阻害して異常な形のチューブリンを形成するものであり、具体的には、パクリタキセル、ドセタキセル、カバジタキセル等が例示される。ビンアルカロイド系悪性腫瘍剤は、チューブリンが脱重合して微小管を形成するのを阻害するものであり、具体的には、ビンクリスチン、ビンブラスチン、ビンデシン、ビノレルビン等が例示される。また、その他の微小管阻害作用を有する化合物としては、エリブリン等が例示される。これらは1種単独で又は2種以上を組み合わせて用いることができる。 In the present invention, compounds having a microtubule inhibitory action include taxane anticancer agents and bin alkaloid malignant tumor agents. A taxane antineoplastic agent inhibits microtubule depolymerization to form an abnormally shaped tubulin, and specific examples include paclitaxel, docetaxel, cabazitaxel, and the like. Vin alkaloid-based malignant tumor agents inhibit tubulin from depolymerizing to form microtubules, and specific examples include vincristine, vinblastine, vindesine, vinorelbine and the like. Examples of other compounds having a microtubule inhibitory action include eribulin and the like. These can be used alone or in combination of two or more.
〔(B’-2)PD-1経路阻害剤〕
 PD-1は、免疫チェックポイントプロテインであり、活性化T細胞やB細胞上に発現して、感染に対する免疫反応中に末梢におけるT細胞活性化を制限したり、抗腫瘍T細胞反応を抑制する作用を有することから、当該PD-1の経路を阻害する化合物を作用させることで免疫反応を誘導して、腫瘍増殖を抑制できると考えられている。
[(B′-2) PD-1 pathway inhibitor]
PD-1 is an immune checkpoint protein that is expressed on activated T cells and B cells to limit T cell activation in the periphery and suppress antitumor T cell responses during immune responses to infection Since it has an action, it is considered that a compound that inhibits the PD-1 pathway can induce an immune response and suppress tumor growth.
 本発明において、PD-1経路阻害剤としては、PD-1、PD-L1、及びPD-L2等に対する阻害剤が含まれており、PD-1もしくはPD-1リガンドに対する抗体、PD-1もしくはPD-1リガンドに対する抗体をコードする核酸が例示される。具体的には、ニボルマブ、ペンブロリズマブ、アテゾリズマブ等が例示される。これらは1種単独で又は2種以上を組み合わせて用いることができる。 In the present invention, PD-1 pathway inhibitors include inhibitors against PD-1, PD-L1, PD-L2, etc., and antibodies against PD-1 or PD-1 ligand, PD-1 or A nucleic acid encoding an antibody against PD-1 ligand is exemplified. Specifically, nivolumab, pembrolizumab, atezolizumab and the like are exemplified. These can be used alone or in combination of two or more.
 現在上市されている抗癌剤の副作用としては、体重減少、骨髄抑制、腎障害等がよく知られている。癌治療は一般的に、治療が行われる日と行わない日を組み合せた1~数週間程度の周期(コース又はクール)を設定して治療を行うが、上記副作用が原因となり、周期を重ね、癌治療が長期化すると抗癌剤の投与量を減らさざるを得ず、最終的には抗癌剤を使用し続けることが難しくなり、治療を中止せざるを得なくなる。そのため、副作用を予防又は軽減する対策が重要となってくる。例えば、微小管阻害作用を有する化合物である、ドセタキセルは、従来、単独でも抗悪性腫瘍剤として用いられているが、重篤な骨髄抑制(汎血球減少、白血球減少、好中球減少(発熱性好中球減少を含む)、ヘモグロビン減少、血小板減少等)が高頻度に起こることが知られており、異常が認められた場合、投与間隔の延長、投与量の減量、休薬等の適切な処置を行うこと、発熱性好中球減少症を抑制するG-CSF(顆粒球コロニー刺激因子)製剤の適切な使用について考慮することが推奨されている。但し、多くのG-CSF製剤は血中半減期が短いことから、好中球数が回復するまで連日投与が必要となり、患者の身体的かつ金銭的負担が大きいことが知られている。本発明では、詳細なメカニズムは不明なるも、ナトリウム利尿ペプチド受容体GC-Aアゴニストと併用した場合、ナトリウム利尿ペプチド受容体GC-Aアゴニストにより腫瘍組織中の血管が保護されて崩壊が抑制されることから、血流を介して、微小管阻害作用を有する化合物が腫瘍細胞中に効率よく送達されたり、PD-1経路阻害剤が腫瘍組織中に存在する免疫細胞に効率よく送達されることになり、ひいては、腫瘍細胞中の微小管阻害作用を有する化合物濃度が上昇し、あるいは自己免疫反応が活性化することで腫瘍増殖を抑制することができると考えられる。さらには、癌ペプチドワクチンや腫瘍溶解性ウイルスなどによって誘導された腫瘍障害性の免疫細胞などが血流を介して腫瘍組織へ効率よく送達されることにより、腫瘍増殖を効率よく阻害できると考えられる。また、微小管阻害作用を有する化合物は副作用として骨髄抑制作用を有することから、ナトリウム利尿ペプチド受容体GC-Aアゴニストと併用することにより、微小管阻害作用を有する化合物の投与量の減量が可能となり、これまで、副作用が原因で治療を中止せざるを得なかった患者への抗癌剤の投与を続けることが可能になるという効果が奏されると考えられる。さらに、本発明者らは、ANPを数日前から事前投与した所に抗癌剤を投与したところ、抗癌剤の主たる副作用である白血球減少(骨髄抑制作用)が見られなかったことを確認しており、その機序として、内因性の血清G-CSF濃度が高められることを確認している。ナトリウム利尿ペプチド受容体GC-Aアゴニストと併用することにより、骨髄抑制の副作用の出現を低減し、さらには血中G-CSF濃度が高められることから、本発明によりG-CSF製剤の投与量の減量が可能となる、あるいは、全く不要となるという効果も奏されると考えられる。 As side effects of anticancer drugs currently on the market, weight loss, bone marrow suppression, kidney damage and the like are well known. In general, cancer treatment is performed by setting a cycle (course or cool) of about 1 to several weeks, which is a combination of a day when treatment is performed and a day when treatment is not performed. If the cancer treatment is prolonged, the dose of the anticancer agent must be reduced, and eventually it becomes difficult to continue using the anticancer agent, and the treatment must be stopped. Therefore, measures for preventing or reducing side effects are important. For example, docetaxel, a compound having an inhibitory action on microtubules, has been used as an antineoplastic agent alone, but severe myelosuppression (pancytopenia, leukopenia, neutropenia (pyrogenic) (Including neutropenia), hemoglobin reduction, thrombocytopenia, etc.) are known to occur frequently, and if abnormalities are observed, appropriate intervals such as prolonged dosing intervals, reduced doses, and withdrawal It is recommended to consider treatment and proper use of G-CSF (granulocyte colony stimulating factor) formulations that suppress febrile neutropenia. However, since many G-CSF preparations have a short blood half-life, it is known that daily administration is necessary until the neutrophil count is recovered, and it is known that the physical and financial burden on the patient is large. Although the detailed mechanism is unknown in the present invention, when used in combination with a natriuretic peptide receptor GC-A agonist, the natriuretic peptide receptor GC-A agonist protects blood vessels in the tumor tissue and suppresses the collapse. Therefore, a compound having a microtubule inhibitory action can be efficiently delivered into tumor cells via the bloodstream, or a PD-1 pathway inhibitor can be efficiently delivered to immune cells present in tumor tissues. Thus, it is considered that the growth of the tumor can be suppressed by increasing the concentration of the compound having a microtubule inhibitory action in the tumor cells or by activating the autoimmune reaction. Furthermore, tumor growth can be efficiently inhibited by efficiently delivering tumor-damaging immune cells induced by cancer peptide vaccines or oncolytic viruses to the tumor tissue via the bloodstream. . In addition, since a compound having a microtubule inhibitory action has a bone marrow inhibitory action as a side effect, the dose of a compound having a microtubule inhibitory action can be reduced by using it together with a natriuretic peptide receptor GC-A agonist. So far, it is considered that the effect that it becomes possible to continue the administration of the anticancer drug to a patient who had to stop the treatment due to a side effect. Furthermore, the present inventors have confirmed that when an anticancer agent was administered to a place where ANP was pre-administered several days ago, leukopenia (myelosuppression), which is the main side effect of the anticancer agent, was not observed, As a mechanism, it has been confirmed that the endogenous serum G-CSF concentration is increased. When used in combination with a natriuretic peptide receptor GC-A agonist, the occurrence of side effects of myelosuppression is reduced, and further, the blood G-CSF concentration is increased. It is thought that the effect that weight reduction is possible or it becomes completely unnecessary is also exhibited.
 本発明の医薬は、(A)成分と(B)成分を組み合わせたものであれば特に限定はなく、本発明の効果を損なわない範囲で、その他の抗腫瘍成分を含有することができる。具体的には、アルキル化剤、代謝拮抗剤、抗腫瘍性抗生物質、抗腫瘍性植物成分、BRM(生物学的応答性制御物質)、ホルモン、ビタミン、抗腫瘍性抗体、分子標的薬、その他の抗腫瘍剤等を挙げることができる。これらの含有量は特に限定されない。 The pharmaceutical of the present invention is not particularly limited as long as it is a combination of the component (A) and the component (B), and can contain other antitumor components as long as the effects of the present invention are not impaired. Specifically, alkylating agents, antimetabolites, antitumor antibiotics, antitumor plant components, BRM (biological response regulator), hormones, vitamins, antitumor antibodies, molecular targeted drugs, etc. Antitumor agents and the like. These contents are not particularly limited.
 より具体的に、アルキル化剤としては、例えば、ナイトロジェンマスタード、ナイトロジェンマスタードN-オキシドもしくはクロラムブチル等のアルキル化剤;カルボコンもしくはチオテパ等のアジリジン系アルキル化剤;ディブロモマンニトールもしくはディブロモダルシトール等のエポキシド系アルキル化剤;カルムスチン、ロムスチン、セムスチン、ニムスチンハイドロクロライド、ストレプトゾシン、クロロゾトシンもしくはラニムスチン等のニトロソウレア系アルキル化剤;ブスルファン、トシル酸インプロスルファン、ダカルバジン、イホスファミド、シクロホスファミド、メルファラン又はテモゾロミド等が挙げられる。 More specifically, as the alkylating agent, for example, an alkylating agent such as nitrogen mustard, nitrogen mustard N-oxide or chlorambutyl; an aziridine alkylating agent such as carbocon or thiotepa; dibromomannitol or dibromodarsi Epoxide alkylating agents such as Thor; nitrosourea alkylating agents such as carmustine, lomustine, semustine, nimustine hydrochloride, streptozocin, chlorozotocin or ranimustine; busulfan, improsulfan tosylate, dacarbazine, ifosfamide, cyclophosphami And melphalan or temozolomide.
 各種代謝拮抗剤としては、例えば、6-メルカプトプリン、6-チオグアニン、チオイノシン、ネララビン、フルダラビンもしくはペントスタチン等のプリン代謝拮抗剤;フルオロウラシル、テガフール、テガフール・ウラシル、カルモフール、ドキシフルリジン、ブロクスウリジン、シタラビン、エノシタビン、カペシタビンもしくはゲムシタビン等のピリミジン代謝拮抗剤;メトトレキサート、トリメトレキサートもしくはペメトレキセド等の葉酸代謝拮抗剤等が挙げられる。 Examples of various antimetabolites include, for example, purine antimetabolites such as 6-mercaptopurine, 6-thioguanine, thioinosine, nelarabine, fludarabine or pentostatin; fluorouracil, tegafur, tegafur uracil, carmofur, doxyfluridine, broxuridine, cytarabine And pyrimidine antimetabolite such as enositabine, capecitabine or gemcitabine; antifolate antimetabolite such as methotrexate, trimetrexate or pemetrexed.
 抗腫瘍性抗生物質としては、例えば、マイトマイシンC、ブレオマイシン、ペプロマイシン、ダウノルビシン、アクラルビシン、ドキソルビシン、ピラルビシン、THP-アドリアマイシン、4’-エピドキソルビシン、エピルビシン、イダルビシンもしくはミトキサントロン等のアントラサイクリン系抗生物質抗腫瘍剤;クロモマイシンA3又はアクチノマイシンD等が挙げられる。 Examples of antitumor antibiotics include anthracycline antibiotics such as mitomycin C, bleomycin, pepromycin, daunorubicin, aclarubicin, doxorubicin, pirarubicin, THP-adriamycin, 4′-epidoxorubicin, epirubicin, idarubicin or mitoxantrone. Tumor agents; chromomycin A3 or actinomycin D.
 抗腫瘍性植物成分としては、例えば、(B)成分として用いた成分以外のタキサン類(パクリタキセル、ドセタキセル等);(B)成分として用いた成分以外のビンアルカロイド類(ビンクリスチン、ビンブラスチン、ビンデシン、ビノレルビン等);イリノテカン、ノギテカン等のカンプトテシン誘導体;又はエトポシド、テニポシド、ソブゾキサン等のエピポドフィロトキシン類が挙げられる。 Examples of the anti-tumor plant component include taxanes (paclitaxel, docetaxel, etc.) other than the component used as the component (B); vin alkaloids other than the component used as the component (B) (vincristine, vinblastine, vindesine, vinorelbine) Etc.); camptothecin derivatives such as irinotecan and nogitecan; or epipodophyllotoxins such as etoposide, teniposide and sobuzoxane.
 BRMとしては、例えば、腫瘍壊死因子又はインドメタシン等が挙げられる。 Examples of BRM include tumor necrosis factor and indomethacin.
 ホルモンとしては、例えば、ヒドロコルチゾン、デキサメタゾン、メチルプレドニゾロン、プレドニゾロン、プラステロン、ベタメタゾン、トリアムシノロン、オキシメトロン、ナンドロロン、メテノロン、ホスフェストロール、エチニルエストラジオール、クロルマジノン、メドロキシプロゲステロン、タモキシフェン、アナストロゾール、エキセメスタン、ゴセレリン、ビカルタミド、フルタミド、リュープロレリン、レトロゾール等が挙げられる。 Hormones include, for example, hydrocortisone, dexamethasone, methylprednisolone, prednisolone, plasterone, betamethasone, triamcinolone, oxymetholone, nandrolone, metenolone, phosphaterol, ethinylestradiol, chlormadinone, medroxyprogesterone, tamoxifen, anastrozole, exemestane, Examples include goserelin, bicalutamide, flutamide, leuprorelin, letrozole and the like.
 ビタミンとしては、例えば、ビタミンC又はビタミンA等が挙げられる。 Examples of vitamins include vitamin C and vitamin A.
 抗腫瘍性抗体、分子標的薬としては、トラスツズマブ、リツキシマブ、セツキシマブ、ニモツズマブ、デノスマブ、ベバシズマブ、インフリキシマブ、メシル酸イマチニブ、ゲフィチニブ、エルロチニブ、スニチニブ、ラパチニブ、ソラフェニブ、イブリツモマブチウキセタン、ゲムツズマブオゾガマイシン、ダサチニブ、タミバロテン、トレチノイン、パニツムマブ、ボルテゾミブ等が挙げられる。 Antitumor antibodies and molecular targeted drugs include trastuzumab, rituximab, cetuximab, nimotuzumab, denosumab, bevacizumab, infliximab, imatinib mesylate, gefitinib, erlotinib, sunitinib, lapatinib, i Examples include gamicin, dasatinib, tamibarotene, tretinoin, panitumumab, bortezomib and the like.
 その他の抗腫瘍剤としては、例えば、(B)成分として用いた成分以外の白金製剤(シスプラチン、カルボプラチン、オキサリプラチン等)、L-アスパラギナーゼ、アセクラトン、シゾフィラン、ピシバニール、プロカルバジン、ピポブロマン、ネオカルチノスタチン、ヒドロキシウレア、クレスチン等が挙げられる。また、免疫抗体薬((B)成分として用いた成分以外の抗PD-1抗体:ニボルマブ、ペムブロリズマブ等、PD-L1抗体:アテゾリズマブ等、抗CTLA4抗体:イピリムマブ等)、生物製剤関連(インターフェロン・α、インターフェロン・β、インターフェロン・γ、インターロイキン2、ウベニメクス乾燥BCG、レンチナン等)等が挙げられる。 Other antitumor agents include, for example, platinum preparations other than the component (B) component (cisplatin, carboplatin, oxaliplatin, etc.), L-asparaginase, acecraton, schizophyllan, picibanil, procarbazine, pipobroman, neocartinostatin , Hydroxyurea, krestin and the like. In addition, immunoantibody drugs (anti-PD-1 antibodies other than those used as component (B): nivolumab, pembrolizumab, etc., PD-L1 antibodies: atezolizumab, etc., anti-CTLA4 antibody: ipilimumab, etc.), biologics related (interferon / α , Interferon / β, interferon / γ, interleukin 2, ubenimex dried BCG, lentinan, etc.).
 さらに、近年ではバイアグラ(登録商標)に代表されるPDE5阻害剤が悪性腫瘍に対する抑制効果を有することが報告されており(Das et al., Proc. Natl. Acad. Sci. (2010), vol/107, No. 42, pp.18202-18207)、本発明の医薬はこれらPDE5阻害剤と併用することもできる。PDE5阻害剤としては、PDE5酵素によるcGMPの分解を阻害する活性を有する物質であれば、特に限定されず、様々な薬剤を採用することができる(例えば、M. P. Govannoni, et al.(Curr. Med. Chem.(2010)  17, pp. 2564-2587)等参照)。好ましくは、シルデナフィル(sildenafil)、バルデナフィル(vardenafil)、タダラフィル(tadalafil)、ウデナフィル(udenafil)、ミロデナフィル(mirodenafil)、SLx-2101、ロデナフィル(lodenafil)、 Lodenafil carbonate、Exisulindなど、及びそれらの誘導体、ならびにそれらの薬理学的に許容される塩であり、より好ましくは、シルデナフィル、バルデナフィル、タダラフィル、ウデナフィル、ミロデナフィル又はそれらの薬理学上許容される塩であり、更に好ましくは、クエン酸シルデナフィル、塩酸バルデナフィル、タダラフィル、ウデナフィル又はミロデナフィルであり、更により好ましくは、クエン酸シルデナフィルである。これらの薬剤については、上記の参考文献(その引用文献を含む)の記載及び周知の技術により、製造及び製剤化することができる。 Furthermore, recently, it has been reported that PDE5 inhibitors represented by Viagra (registered trademark) have a suppressive effect on malignant tumors (DasDet al.,. Proc. Natl. Acad. Sci. (2010),) vol / 107, No. 42, pp. 18202-18207), the medicament of the present invention can be used in combination with these PDE5 inhibitors. The PDE5 inhibitor is not particularly limited as long as it is a substance having an activity of inhibiting cGMP degradation by the PDE5 enzyme (for example, M. 薬 剤 P. Govannoni, et al. Curr. Med. Chem. (2010) 17, pp. 2564-2587)). Preferably, sildenafil, vardenafil, tadalafil, udenafil, mirodenafil, SLx-2101, lodenafil, Lodenafil carbonate, Exisulind, and their derivatives, and More preferably, it is sildenafil, vardenafil, tadalafil, udenafil, milodenafil or a pharmacologically acceptable salt thereof, more preferably sildenafil citrate, vardenafil hydrochloride, tadalafil. , Udenafil or mirodenafil, even more preferably sildenafil citrate. About these chemical | medical agents, manufacture and a formulation can be carried out by description of said reference (including the cited reference) and a well-known technique.
 また、その他の製剤原料として、賦形剤、結合剤、崩壊剤、滑沢剤、甘味剤、矯味剤、防腐剤、キレート剤、抗酸化剤、清涼化剤、コーティング剤、安定化剤、流動化剤、粘稠剤、溶解補助剤、増粘剤、緩衝剤、香料、着色剤、吸着剤、湿潤剤、防湿剤、帯電防止剤、可塑剤、消泡剤、界面活性剤、乳化剤、希釈剤等の添加剤を含有してもよい。これらの含有量は特に限定されない。 In addition, other pharmaceutical ingredients include excipients, binders, disintegrants, lubricants, sweeteners, flavoring agents, preservatives, chelating agents, antioxidants, cooling agents, coating agents, stabilizers, fluids Agent, thickener, solubilizer, thickener, buffer, fragrance, colorant, adsorbent, wetting agent, moisture-proofing agent, antistatic agent, plasticizer, antifoaming agent, surfactant, emulsifier, dilution You may contain additives, such as an agent. These contents are not particularly limited.
 本発明の医薬は、(A)成分と(B)成分を組み合わせたものであれば特に限定はなく、当業者に公知の方法に従って、調製することができる。また、その形状や大きさも特に限定はなく、経口投与及び非経口投与のいずれの剤形をも採用することができる。非経口投与の場合は、腫瘍部位に直接投与することも可能である。具体的には、経口投与の場合は、錠剤(口腔内速崩解錠、咀嚼可能錠、発泡錠、ゼリー状ドロップ剤などを含む)、カプセル剤(硬カプセル剤、軟カプセル剤を含む)、細粒剤、粉末剤、顆粒剤、丸剤、液剤、シロップ剤等が挙げられる。非経口投与の場合は、経肺剤形(例えばネフライザーなどを用いたもの)、経鼻投与剤形、経皮投与剤形(例えば軟膏、クリーム剤)、注射剤形等が挙げられる。注射剤形の場合は、例えば点滴等の静脈内注射、筋肉内注射、腹腔内注射、皮下注射等により全身又は局部的に投与することができる。また、(A)成分を含む場合は、消化管内での分解を受けにくい製剤設計を行ったり、消化管以外の粘膜から吸収可能な剤形とする製剤設計も可能である。 The pharmaceutical of the present invention is not particularly limited as long as it is a combination of component (A) and component (B), and can be prepared according to methods known to those skilled in the art. Moreover, the shape and size are not particularly limited, and any dosage form of oral administration and parenteral administration can be employed. In the case of parenteral administration, it is also possible to administer directly to the tumor site. Specifically, in the case of oral administration, tablets (including intraoral quick disintegrating tablets, chewable tablets, effervescent tablets, jelly-like drops, etc.), capsules (including hard capsules and soft capsules), Fine granules, powders, granules, pills, solutions, syrups and the like can be mentioned. In the case of parenteral administration, pulmonary dosage forms (for example, those using a nephriser), nasal dosage forms, transdermal dosage forms (for example, ointments, creams), injection dosage forms and the like can be mentioned. In the case of an injection dosage form, it can be administered systemically or locally by intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection or the like. Moreover, when (A) component is included, the formulation design which makes it difficult to be decomposed | disassembled in a digestive tract, or the dosage form which can be absorbed from mucous membranes other than a digestive tract is also possible.
 例えば、(A)成分の注射剤と、(B)成分の注射剤を組み合わせたもの(キットを含む)が挙げられる。また、(A)成分の経肺吸入剤と、(B)成分の注射剤を組み合わせたもの(キットを含む)等も例示される。 For example, a combination (including kit) of an injection of component (A) and an injection of component (B) may be mentioned. Moreover, the combination (including a kit) etc. which combined the transpulmonary inhalation agent of (A) component, and the injection of (B) component are illustrated.
 本発明の医薬は、(A)成分と(B)成分を有効成分として組み合わせることを特徴とするのであって、その使用形態としては、(A)成分と(B)成分それぞれについて別途調製された単剤を同時に使用する態様と、(A)成分と(B)成分それぞれについて別途調製された単剤を順次に使用する態様と、(A)成分と(B)成分それぞれについて別途調製された単剤を別々に使用する態様と、(A)成分と(B)成分を一緒に処方して調製された製剤(合剤)として使用する態様とが挙げられる。また、(A)成分による治療を受けている患者に(B)成分を有効成分として使用する態様、あるいは、(B)成分による治療を受けている患者に(A)成分を有効成分として使用する態様、も本発明に含まれる。なお、(A)成分と(B)成分を順次に又は別々に使用する場合は、いずれの使用が先であってもよく、別々に使用する場合の間隔は患者の症状などにより異なり、最終的には医師の判断に従って適宜設定することができる。特に(B)成分の副作用を回避することを目的とする場合は、(A)成分を(B)成分の投与日の1~7日前(例えば、2~3日前、5日以上前)に投与してもよい。 The medicament of the present invention is characterized by combining the (A) component and the (B) component as active ingredients, and the use form thereof was prepared separately for each of the (A) component and the (B) component. A mode in which a single agent is used at the same time, a mode in which single agents separately prepared for each of the components (A) and (B) are used sequentially, and a unit separately prepared for each of the components (A) and (B). A mode in which the agent is used separately and a mode in which the agent (A) and the component (B) are formulated together and used as a preparation (mixture) prepared by combining them are mentioned. Moreover, the aspect which uses (B) component as an active ingredient for the patient who is receiving treatment with (A) ingredient, or the (A) ingredient is used as an active ingredient for the patient who is receiving treatment with (B) ingredient Embodiments are also included in the present invention. In addition, when using (A) component and (B) component sequentially or separately, whichever may be used first, the interval when using separately depends on the patient's symptoms, etc. Can be appropriately set according to the judgment of the doctor. Particularly when the purpose is to avoid the side effects of component (B), component (A) is administered 1 to 7 days before the administration date of component (B) (for example, 2 to 3 days before, 5 days or more before) May be.
 本発明の医薬として用いる場合の(A)成分と(B)成分の投与量は、投与形態、患者の症状、年令、体重、性別、あるいは他の併用される薬物(あるとすれば)などにより異なり、最終的には医師の判断に委ねられる。例えば、体重60kgの成人1日あたり、(A)成分を0.1~1000mg静脈内投与、及び(B)成分を0.1~10000mg静脈内投与する態様が挙げられ、好ましくは(A)成分を0.1~100mg静脈内投与及び(B)成分を0.1~1000mg静脈内投与する態様、より好ましくは(A)成分を1~10mg静脈内投与及び(B)成分を1~500mg静脈内投与する態様が挙げられる。かかる投与量は一度に投与しても分割して投与してもよく、投与期間は各成分で適宜設定される。なお、非経口投与、例えば静脈内投与する場合は、ボーラス投与のみならず、インフュージョンポンプ、カテーテル等を用いて持続的に投与してもよい。 When used as a medicament of the present invention, the dosage of component (A) and component (B) is the dosage form, patient symptoms, age, body weight, sex, or other drugs (if any) to be used in combination. It will depend on the doctor's judgment. Examples include an embodiment in which 0.1 to 1000 mg of component (A) is administered intravenously and 0.1 to 10,000 mg of component (B) is administered intravenously per day for an adult weighing 60 kg, preferably component (A) Of 0.1 to 100 mg intravenously and 0.1 to 1000 mg of component (B) intravenously administered, more preferably 1 to 10 mg of component (A) intravenously and 1 to 500 mg of component (B) intravenously A mode of internal administration is exemplified. Such dose may be administered at once or dividedly, and the administration period is appropriately set for each component. In the case of parenteral administration, for example, intravenous administration, not only bolus administration but also continuous administration using an infusion pump, a catheter or the like may be used.
 (A)成分を投与する場合には、例えば凍結乾燥製剤を注射用水に溶解して微量輸液ポンプ(それがない場合には、小児用微量輸液セット)等を用いて連続投与(継続投与ともいう)することができる。連続投与する場合の投与期間としては、通常数時間~数日間であり、例えば、1~14日間であり、好ましくは3~7日間程度である。この場合の投与量としての上限は、例えば約50μg/kg/分(一日当たり、約72mg/kg)以下の濃度を適宜採用することができ、約5μg/kg/分(一日当たり、約7.2mg/kg)以下であってもよく、好ましくは約0.5μg/kg/分(一日当たり、約720μg/kg)以下であり、より好ましくは約0.2μg/kg/分以下であり、更に好ましくは約0.1μg/kg/分以下であり、更により好ましくは約0.05μg/kg/分以下である。また下限としては、通常約0.0001μg/kg/分(一日あたり約0.144μg/kg)以上であり、好ましくは約0.001μg/kg/分(一日あたり約1.44μg/kg)以上、より好ましくは約0.01μg/kg/分(一日あたり約14.4μg/kg)以上である。これらは、投与期間中、一定であっても適宜組み合わせて変動させてもよい。具体的な投与方法としては、例えば、3~4日間程度、約0.025μg/kg/分を採用することができ、この場合の1日当りの投与量は、約36μg/kgとなる。 In the case of administering the component (A), for example, a freeze-dried preparation is dissolved in water for injection and continuously administered (also referred to as continual administration) using a micro infusion pump (a pediatric micro infusion set in the absence). )can do. In the case of continuous administration, the administration period is usually several hours to several days, for example, 1 to 14 days, preferably about 3 to 7 days. In this case, the upper limit of the dose is, for example, a concentration of about 50 μg / kg / min (per day, about 72 mg / kg) or less can be appropriately employed, and about 5 μg / kg / min (per day, about 7. 2 mg / kg) or less, preferably about 0.5 μg / kg / min (per day, about 720 μg / kg) or less, more preferably about 0.2 μg / kg / min or less, Preferably it is about 0.1 μg / kg / min or less, and even more preferably about 0.05 μg / kg / min or less. The lower limit is usually about 0.0001 μg / kg / min (about 0.144 μg / kg per day) or more, preferably about 0.001 μg / kg / min (about 1.44 μg / kg per day). More preferably, it is about 0.01 μg / kg / min (about 14.4 μg / kg per day) or more. These may be constant during the administration period or may be varied in combination as appropriate. As a specific administration method, for example, about 0.025 μg / kg / min can be adopted for about 3 to 4 days. In this case, the daily dose is about 36 μg / kg.
 (A)成分は、前述のように血管を弛緩・拡張し血圧を低下させる作用を有することから、悪性腫瘍の治療又は悪性化の抑制若しくは予防に当たっては、血圧を必要以上に低下させない速度で投与することが好ましく、投与時及び投与直後には血圧をモニターすることが好ましい。また、この場合の(A)成分の投与期間は、通常数時間以上、好ましくは1日間以上である。この期間、継続投与することが好ましく、その期間は通常1日以上であり、好ましくは1~14日間程度であり、より好ましくは、1~5日間程度である。長期間に亘って悪性腫瘍を制御する場合、上記の投与方法を適宜繰り返したり、患者の状態に応じて投与量や投与期間を適宜変更したりすることができる。 Since the component (A) has the action of relaxing and dilating blood vessels and reducing blood pressure as described above, it is administered at a rate that does not lower blood pressure more than necessary when treating malignant tumors or suppressing or preventing malignant transformation. It is preferable to monitor blood pressure during and immediately after administration. In this case, the administration period of the component (A) is usually several hours or longer, preferably 1 day or longer. During this period, continuous administration is preferable, and the period is usually 1 day or longer, preferably about 1 to 14 days, and more preferably about 1 to 5 days. When a malignant tumor is controlled over a long period of time, the above administration method can be repeated as appropriate, or the dosage and administration period can be appropriately changed according to the patient's condition.
 また、上記の静脈注射と同様の効果をもたらすように(A)成分の血中濃度(例えば、約0.01ng/mL~約1.6ng/mL、好ましくは約0.1ng/mL~約1.6ng/mL、より好ましくは約0.4ng/mL~約1.6ng/mL)をコントロール可能な持続性製剤、例えば、持続性皮下注射等を用いることもできる。持続性製剤を用いる場合は、製剤及び患者の状態に応じて投与量や投与間隔を適宜変更することが可能であるが、好ましくは、週1回投与である。 Further, the concentration of component (A) in the blood (for example, about 0.01 ng / mL to about 1.6 ng / mL, preferably about 0.1 ng / mL to about 1 so as to bring about the same effect as the above intravenous injection. (6 ng / mL, more preferably about 0.4 ng / mL to about 1.6 ng / mL) can be used as a sustained-release preparation, such as continuous subcutaneous injection. In the case of using a sustained-release preparation, the dose and administration interval can be appropriately changed according to the preparation and the patient's condition, but it is preferably administered once a week.
 具体的にANPを例えば静脈に投与する場合には、例えば、hANPの1000μg(例えば、ハンプ注射用1000(商品名)、第一三共社製)を注射用水10mLに溶解し、“体重×約0.06mL/時間”の速度(約0.1μg/kg/分)又はそれ以下の投与速度で投与することが好ましい。投与速度は、上記の速度に限られることなく、病状により、約0.2μg/kg/分以下の速度(好ましくは、約0.01μg/kg/分以上)で、血圧や心拍数をモニターしながら適宜調整することが好ましい。特に、hANPを、約0.025μg/kg/分の用量で3又は4日間程度継続投与しても、血圧、心拍等の血行動態を大きく変動させないことが確認されており、この用量用法を採用することも好ましい。 Specifically, for example, when ANP is administered intravenously, for example, 1000 μg of hANP (for example, 1000 for Hump Injection (trade name), manufactured by Daiichi Sankyo Co., Ltd.) is dissolved in 10 mL of water for injection, and “weight × about It is preferred to administer at a rate of "0.06 mL / hour" (about 0.1 μg / kg / min) or less. The administration rate is not limited to the above rate, and blood pressure and heart rate are monitored at a rate of about 0.2 μg / kg / min or less (preferably about 0.01 μg / kg / min or more) depending on the medical condition. However, it is preferable to adjust appropriately. In particular, it has been confirmed that even if hANP is continuously administered at a dose of about 0.025 μg / kg / min for about 3 or 4 days, hemodynamics such as blood pressure and heart rate are not greatly changed, and this dosage method is adopted. It is also preferable to do.
 hBNPを例えば静脈に投与する場合には、例えば、約0.01μg/kg/分を連続投与することが好ましく、更にその連続投与前に、約2μg/kgのhBNPをボーラス投与することを組み合わせた投与方法を採用することもできる。この場合にも、血圧を必要以上に低下させない速度で投与することが好ましく、投与時及び投与直後には血圧をモニターすることが推奨される。 When hBNP is administered, for example, intravenously, for example, it is preferable to administer about 0.01 μg / kg / min continuously, and further combined with bolus administration of about 2 μg / kg hBNP before the continuous administration. An administration method can also be adopted. Also in this case, it is preferable to administer the blood pressure at a rate that does not lower the blood pressure more than necessary, and it is recommended to monitor the blood pressure at the time of administration and immediately after administration.
 ANP及びBNPが上記の投与速度で血圧や心拍数等に大きな影響を与えない場合には、さらに投与速度を上げてもよい。 If ANP and BNP do not significantly affect blood pressure, heart rate, etc. at the above administration rate, the administration rate may be further increased.
 天然型(hANP、hBNPなど)ではなく、ANP、BNPの変異体を用いる場合、その活性の強さ、体内における持続性、分子量等、その物質の特徴を考慮して、投与量、投与方法、投与速度、投与頻度等を適宜決定することができる。また、hANP又はhBNPについて、放出制御製剤技術又は持続化製剤技術、ペプチドの分解を受けにくくした各種の変異体、誘導体又は修飾体等を採用することにより、連続投与又はボーラス投与に限定されず、より患者への負担の少ない投与方法、投与頻度等の選択が可能となる。 When using a mutant of ANP or BNP instead of a natural type (hANP, hBNP, etc.), taking into account the characteristics of the substance such as strength of its activity, persistence in the body, molecular weight, The administration rate, administration frequency, etc. can be determined as appropriate. In addition, for hANP or hBNP, by adopting controlled-release preparation technology or sustained-release preparation technology, various mutants, derivatives or modifications that are difficult to undergo peptide degradation, the invention is not limited to continuous administration or bolus administration, It is possible to select an administration method, administration frequency, etc. with less burden on the patient.
 (B)成分は、既知の臨床実践を参照して投与することができ、例えば、静脈内にボーラス投与することができる。投与量および投与計画は特定の疾病症状および患者の全症状にしたがって変更することができる。年齢、症状または副作用の発現に応じて、また、本発明の医薬は腫瘍組織中の血管を(A)成分によって保護して(B)成分を効率的に癌細胞へ到達させることが可能となることから、適宜減量することもできる。本発明の医薬を使用する場合、(B)成分は、特に限定されないが、通常成人1日あたり0.01~10000mg/m、好ましくは0.1~1000mg/m、より好ましくは1~500mg/mであり、これを通常1日1~3回に分けて投与することができる。患者が過度の毒性を経験した場合は、投与量の減量が必要となる。投与量および投与計画は、本発明の併用療法に加えて、1またはそれ以上の追加の化学療法剤が使用される場合にも変更してもよい。投与計画は、特定の患者を治療している医師により決定することができる。 Component (B) can be administered with reference to known clinical practice, for example, intravenously administered as a bolus. The dosage and dosing schedule can be varied according to the specific disease symptoms and the overall symptoms of the patient. Depending on the age, symptoms or occurrence of side effects, the medicament of the present invention can protect blood vessels in tumor tissue with the component (A) and allow the component (B) to reach cancer cells efficiently. Therefore, the amount can be reduced as appropriate. When using the medicament of the present invention, (B) component is not particularly limited, adult 0.01 per day - 10000 mg / m 2, preferably 0.1 ~ 1000 mg / m 2, more preferably 1 to It is 500 mg / m 2 and can be administered usually in 1 to 3 divided doses per day. If the patient experiences excessive toxicity, dose reduction is necessary. Dosage amount and regimen may be varied if one or more additional chemotherapeutic agents are used in addition to the combination therapy of the invention. The dosage regimen can be determined by the physician treating the particular patient.
 また、シスプラチンを静脈に投与する場合、特に限定されないが、例えば、投与量を、成人(体重60kg)1日あたり、0.01~10000mg/m、好ましくは0.1~1000mg/m、より好ましくは1~500mg/mであり、更に好ましくは10~150mg/mとする。 In the case of cisplatin intravenously, but are not limited to, for example, the dose for adults (body weight 60kg) per day, 0.01 ~ 10000mg / m 2, preferably 0.1 ~ 1000mg / m 2, More preferably, it is 1 to 500 mg / m 2 , and further preferably 10 to 150 mg / m 2 .
 より具体的には、パクリタキセルを静脈に投与する場合、特に限定されないが、例えば、投与量を、成人(体重60kg)1日あたり、0.01~10000mg/m、好ましくは0.1~1000mg/m、より好ましくは1~500mg/m、更に好ましくは50~250mg/mとする。 More specifically, when paclitaxel is administered intravenously, it is not particularly limited. For example, the dosage is 0.01 to 10,000 mg / m 2 , preferably 0.1 to 1000 mg per day for an adult (body weight 60 kg). / M 2 , more preferably 1 to 500 mg / m 2 , still more preferably 50 to 250 mg / m 2 .
 また、ドセタキセルを静脈に投与する場合、特に限定されないが、例えば、投与量を、成人(体重60kg)1日あたり、0.01~10000mg/m、好ましくは0.1~1000mg/m、より好ましくは1~500mg/m、更に好ましくは50~100mg/mとする。 Furthermore, when administering docetaxel intravenously, but are not limited to, for example, the dose for adults (body weight 60kg) per day, 0.01 ~ 10000mg / m 2, preferably 0.1 ~ 1000mg / m 2, More preferably, it is 1 to 500 mg / m 2 , still more preferably 50 to 100 mg / m 2 .
 また、PD-1抗体を静脈に投与する場合は、特に限定されないが、例えば、投与量を、成人(体重60kg)1日あたり、0.01~50mg/kg(体重)、好ましくは0.1~20mg/kg、より好ましくは1~10mg/kg、更に好ましくは1~5mg/kgとする。 In addition, when the PD-1 antibody is administered intravenously, it is not particularly limited. For example, the dose is 0.01 to 50 mg / kg (body weight), preferably 0.1 to adult (body weight 60 kg) per day. To 20 mg / kg, more preferably 1 to 10 mg / kg, still more preferably 1 to 5 mg / kg.
 本発明の医薬は、(A)成分の血管保護作用により(B)成分の抗悪性腫瘍効果が、(B)成分の単独使用時に比べて増強されて発揮されるという優れた効果を奏する。即ち、本発明の医薬組成物は、悪性腫瘍の治療又は悪性化の抑制のために用いられる。悪性腫瘍としては、固形癌であっても浸潤癌であってもよく、例えば、乳癌、非小細胞肺癌、胃癌、頭頸部癌、卵巣癌、食道癌、子宮体癌、前立腺癌、血管肉腫、子宮頸癌、胚細胞腫瘍(精巣腫瘍、卵巣腫瘍、性腺外腫瘍)が例示される。 The medicament of the present invention has an excellent effect that the anti-malignant tumor effect of the component (B) is enhanced and exerted by the blood vessel protecting action of the component (A) as compared to the case of using the component (B) alone. That is, the pharmaceutical composition of the present invention is used for treatment of malignant tumors or suppression of malignant transformation. The malignant tumor may be a solid cancer or an invasive cancer, such as breast cancer, non-small cell lung cancer, gastric cancer, head and neck cancer, ovarian cancer, esophageal cancer, endometrial cancer, prostate cancer, angiosarcoma, Examples include cervical cancer and germ cell tumor (testicular tumor, ovarian tumor, extragonadal tumor).
 また、本発明の医薬は、癌の治療だけでなく、癌治療後の再発予防、転移の防止にも使用できる。よって、本発明の医薬の好適態様として、癌治療用医薬、癌再発予防用医薬、癌転移抑制用医薬が挙げられる。 Moreover, the medicament of the present invention can be used not only for cancer treatment but also for prevention of recurrence and metastasis after cancer treatment. Accordingly, preferred embodiments of the medicament of the present invention include cancer treatment medicaments, cancer recurrence prevention medicaments, and cancer metastasis restraint medicaments.
 本発明はまた、悪性腫瘍の治療又は悪性化の抑制を必要とする個体に、(A)成分と(B)成分を組み合わせて治療有効量を投与することを含む、悪性腫瘍の治療方法を提供する。 The present invention also provides a method for treating a malignant tumor, comprising administering a therapeutically effective amount of the combination of the component (A) and the component (B) to an individual who needs to treat the malignant tumor or suppress the malignant transformation. To do.
 本明細書中において悪性腫瘍の治療又は悪性化の抑制を必要とする個体とは、好ましくは悪性腫瘍の縮小又は根治を必要とするヒトであるが、ペット動物等であってもよい。 In the present specification, an individual who needs to treat a malignant tumor or suppress malignant transformation is preferably a human who needs to reduce or cure the malignant tumor, but may be a pet animal or the like.
 また、本明細書中において治療有効量とは、(A)成分と(B)成分を組み合わせて上記個体に投与した場合に、投与していない個体と比較して、悪性腫瘍の増殖を抑制する量のことである。具体的な有効量としては、投与形態、投与方法、使用目的及び個体の年齢、体重、症状等によって適宜設定され一定ではない。 Further, in this specification, the therapeutically effective amount means that when the combination of the component (A) and the component (B) is administered to the individual, the growth of malignant tumor is suppressed as compared with the individual not administered. It is a quantity. The specific effective amount is appropriately set according to the administration form, administration method, purpose of use, individual age, weight, symptoms, etc., and is not constant.
 本発明の治療方法においては、前記治療有効量となるよう、(A)成分と(B)成分を組み合わせてそのまま上記個体に投与してもよく、本発明の医薬の使用形態に応じて投与することができる。 In the treatment method of the present invention, the component (A) and the component (B) may be combined and administered to the individual as they are so as to be the therapeutically effective amount, and are administered according to the use form of the medicament of the present invention. be able to.
 また、本発明は、腫瘍組織中の血管をGC-Aアゴニストによって保護する(成熟化する)ことで、抗癌剤を癌細胞へ効率的に到達させる、というコンセプトが基になっていることから、(B’)成分以外の抗癌剤であっても、癌細胞に到達させることが困難な薬剤にとっては、同様の効果が期待される。よって、本発明の医薬は、前記した(A)成分と白金製剤又は(B’)成分を組み合わせたものであるが、(B)成分として、前記したその他の抗腫瘍成分を(A)成分に組み合わせることを妨げるものではない。また、前記以外にも、投与後、血中に存在するが、癌細胞に到達させることが困難な薬剤であれば、特に限定されず、例えば、免疫抗体薬(抗CTLA4抗体:イピリムマブ等、抗Tim-3抗体:MBG453等、抗LAG3抗体:BMS-986016等、抗OX-40抗体:MEDI-6469等、抗ICOS抗体:GSK-3359609等、抗B7RP-1抗体:AMG-557等、抗B7-H3抗体:エノブリツズマブ等、抗4-1-BB抗体:ウレルマブ等、抗GITR抗体:MK-4166等、抗CD27抗体:ヴァルリルマブ等、抗CSF-1受容体抗体:エマクツズマブ等)、免疫調節蛋白質(可溶性LAG3:IMP-321等)、免疫調節低分子(JAK2阻害剤:パクリチニブ等、Fms/Kit/Flt-3阻害剤:ペキダルチニブ等)、腫瘍溶解性ウイルス(T-VEC等)、癌ワクチン(NeuVax、ITK-1、TG-4010、シュプーラセル-T等)等が挙げられる。免疫抗体薬は腫瘍細胞、もしくは腫瘍に浸潤したT細胞をはじめとする免疫細胞を標的にしており、効果を発揮するためには、患者の腫瘍における血流を改善し、十分な量のT細胞及び免疫抗体薬が腫瘍深部に到達することが重要であることから、本発明と同様に、ナトリウム利尿ペプチド受容体GC-Aアゴニストと組み合わせることにより、免疫抗体薬の抗腫瘍効果がより発揮されることが期待される。また、例えば、癌ワクチンの1種である癌ペプチドワクチンの場合は、免疫細胞に貪食されることで細胞傷害性T細胞の産生を促進することから、(A)成分と組み合わせることにより、癌ペプチドワクチンの抗腫瘍効果がより発揮されることが期待される。 In addition, the present invention is based on the concept that an anticancer agent can be efficiently reached to cancer cells by protecting (maturating) blood vessels in tumor tissue with a GC-A agonist. Even if it is an anticancer drug other than the component B ′), the same effect is expected for a drug that is difficult to reach cancer cells. Therefore, the medicament of the present invention is a combination of the above-described component (A) and a platinum preparation or component (B ′). However, as the component (B), the other antitumor components described above are used as the component (A). It does not prevent the combination. In addition to the above, there is no particular limitation as long as it is a drug that is present in the blood after administration but is difficult to reach cancer cells. For example, an immune antibody drug (anti-CTLA4 antibody: ipilimumab, etc.) Tim-3 antibody: MBG453 etc., anti-LAG3 antibody: BMS-986016 etc., anti-OX-40 antibody: MEDI-6469 etc., anti-ICOS antibody: GSK-3359609 etc., anti-B7RP-1 antibody: AMG-557 etc., anti-B7 -H3 antibody: enobrituzumab etc., anti-4-1-BB antibody: urelmab etc., anti-GITR antibody: MK-4166 etc., anti-CD27 antibody: valrilumab etc., anti-CSF-1 receptor antibody: emacuzumab etc.), immunoregulatory protein ( Soluble LAG3: IMP-321, etc.), immunoregulatory small molecule (JAK2 inhibitor: paclitinib, etc., Fms / Kit / Flt-3 inhibitor) Agent: Pekidaruchinibu etc.), oncolytic virus (T-VEC, etc.), cancer vaccine (NeuVax, ITK-1, TG-4010, include Shupuraseru -T etc.) and the like. Immune antibody drugs target tumor cells or immune cells such as T cells infiltrating the tumor, and in order to exert an effect, the blood flow in the patient's tumor is improved, and a sufficient amount of T cells In addition, since it is important that the immunoantibody drug reaches the deep part of the tumor, the antitumor effect of the immunoantibody drug is further exhibited by combining with the natriuretic peptide receptor GC-A agonist as in the present invention. It is expected. In addition, for example, in the case of a cancer peptide vaccine which is a kind of cancer vaccine, it promotes the production of cytotoxic T cells by being phagocytosed by immune cells. It is expected that the anti-tumor effect of the vaccine will be exerted more.
 また、(A)成分を(B)成分の投与日の好ましくは1日以上前、より好ましくは2日以上前、更に好ましくは3日以上前、更に好ましくは5日以上前、更に好ましくは7日以上前の日から連日投与又は持続性製剤により投与することが望ましい。 The component (A) is preferably administered 1 day or more before the administration date of the component (B), more preferably 2 days or more, more preferably 3 days or more, still more preferably 5 days or more, more preferably 7 days ago. It is desirable to administer daily or a continuous preparation from the day before the day.
 本発明の別の態様としては、(A)成分の血管保護作用により、(B)成分の抗悪性腫瘍効果が(B)成分単独使用時に比べて増強されて発揮されるという優れた効果に基づいて、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを含有する、(B)抗悪性腫瘍剤の治療効果の増強剤を提供する。なお、ここでいう各成分の種類やその使用量、使用方法は、本発明の医薬の項を参照することができるが、例えば、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを含有し、(B)抗悪性腫瘍剤投与の5日以上前に投与されることを特徴とする、(B)抗悪性腫瘍剤の治療効果の増強剤を例示することができる。 Another aspect of the present invention is based on the excellent effect that the anti-malignant tumor effect of the component (B) is enhanced as compared with the case of using the component (B) alone due to the vascular protective action of the component (A). And (B) an agent for enhancing the therapeutic effect of an antineoplastic agent, comprising (A) a natriuretic peptide receptor GC-A agonist. In addition, although the term of the pharmaceutical of this invention can refer to the item of the medicine of this invention, the kind of each component said here, its usage amount, and the usage method, for example, (A) It contains the natriuretic peptide receptor GC-A agonist, (B) An agent for enhancing the therapeutic effect of an antineoplastic agent (B), which is administered 5 days or more before the administration of an antineoplastic agent can be exemplified.
 前記した増強剤において、好適な例としては、具体的には、(B)成分投与の3日前に、(A)成分の最高血中濃度が好ましくは0.01ng/mL~1.6ng/mL、より好ましくは約0.1ng/mL~1.6ng/mL、更に好ましくは約0.4ng/mL~約1.6ng/mLとなるように投与されることを特徴とする、増強剤が挙げられる。 In the enhancer described above, as a preferable example, specifically, the maximum blood concentration of the component (A) is preferably 0.01 ng / mL to 1.6 ng / mL three days before the administration of the component (B). A potentiator characterized in that it is administered at a dose of about 0.1 ng / mL to 1.6 ng / mL, more preferably about 0.4 ng / mL to about 1.6 ng / mL. It is done.
 また更に、(A)成分の血管保護作用により、(B)成分の抗悪性腫瘍効果が(B)成分単独使用時に比べて増強されて発揮されるという効果の観点から、本発明はまた、以下の医薬組成物を提供する。
・ (A)成分を有効成分として含む、(B)成分と併用するための医薬組成物。
・ (B)成分を有効成分として含む、(A)成分と併用するための医薬組成物。
・ (A)成分を有効成分として含む、(B)成分による治療を受けている患者用の医薬・ (B)成分を有効成分として含む、(A)成分による治療を受けている患者用の医薬組成物。
 なお、ここでいう各成分の種類やその使用量、使用方法、その目的は、本発明の医薬の項を参照することができる
Furthermore, from the viewpoint of the effect that the antineoplastic effect of the component (B) is enhanced as compared with the case of using the component (B) alone due to the vascular protective action of the component (A), the present invention also provides the following: A pharmaceutical composition is provided.
-Pharmaceutical composition for using together with (B) component which contains (A) component as an active ingredient.
-Pharmaceutical composition for using together with (A) component which contains (B) component as an active ingredient.
A medicine for a patient receiving treatment with the component (B) containing the component (A) as an active ingredient. A medicine for a patient receiving treatment with the ingredient (A) containing the component (B) as an active ingredient. Composition.
In addition, the term of the medicine of this invention can be referred for the kind of each component here, the usage-amount, usage method, and the objective.
 本発明では、前記した(A)成分と(B)成分を組み合わせることを特徴とするが、(B)成分として用いることが可能なPD-1抗体は、副作用として肺線維症や突発性間質性肺炎を有することが知られている。しかしながら、(A)成分は血管内皮細胞に特異的に作用して血管からの様々な増殖因子や各種炎症サイトカインの産生を抑制するため、(B)成分による副作用発現を低減することが可能となって、肺線維症や突発性間質性肺炎の治療又は改善効果を得ることが可能になると推察される。よって、本発明はまた、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを含有する、肺線維症又は間質性肺炎の予防又は治療のために用いられる医薬組成物を提供する。 The present invention is characterized by combining the components (A) and (B) described above. The PD-1 antibody that can be used as the component (B) has pulmonary fibrosis and idiopathic stroma as side effects. It is known to have pneumonia. However, since component (A) specifically acts on vascular endothelial cells and suppresses the production of various growth factors and various inflammatory cytokines from blood vessels, it becomes possible to reduce the occurrence of side effects due to component (B). Thus, it is presumed that it becomes possible to obtain a treatment or improvement effect for pulmonary fibrosis or idiopathic interstitial pneumonia. Therefore, the present invention also provides a pharmaceutical composition for use in the prevention or treatment of pulmonary fibrosis or interstitial pneumonia, which contains (A) a natriuretic peptide receptor GC-A agonist.
 肺線維症又は間質性肺炎の予防又は治療のために用いられる医薬組成物としては、前記した(A)成分を含有するものであればよく、(A)成分の詳細については、本発明の医薬の項を参照することができるが、例えば、(A)成分を通常数時間~数日間、好ましくは1~14日間、より好ましくは3~7日間程度で投与することができる。この場合の投与量としての上限は、例えば約50μg/kg/分(一日当たり、約72mg/kg)以下の濃度を適宜採用することができ、約5μg/kg/分(一日当たり、約7.2mg/kg)以下であってもよく、好ましくは約0.5μg/kg/分(一日当たり、約720μg/kg)以下であり、より好ましくは約0.2μg/kg/分以下であり、更に好ましくは約0.1μg/kg/分以下であり、更により好ましくは約0.05μg/kg/分以下である。また下限としては、通常約0.0001μg/kg/分(一日あたり約0.144μg/kg)以上であり、好ましくは約0.001μg/kg/分(一日あたり約1.44μg/kg)以上、より好ましくは約0.01μg/kg/分(一日あたり約14.4μg/kg)以上である。 The pharmaceutical composition used for the prevention or treatment of pulmonary fibrosis or interstitial pneumonia only needs to contain the above-described component (A). For details of the component (A), For example, the component (A) can be administered usually for several hours to several days, preferably 1 to 14 days, more preferably about 3 to 7 days. In this case, the upper limit of the dose is, for example, a concentration of about 50 μg / kg / min (per day, about 72 mg / kg) or less can be appropriately employed, and about 5 μg / kg / min (per day, about 7. 2 mg / kg) or less, preferably about 0.5 μg / kg / min (per day, about 720 μg / kg) or less, more preferably about 0.2 μg / kg / min or less, Preferably it is about 0.1 μg / kg / min or less, and even more preferably about 0.05 μg / kg / min or less. The lower limit is usually about 0.0001 μg / kg / min (about 0.144 μg / kg per day) or more, preferably about 0.001 μg / kg / min (about 1.44 μg / kg per day). More preferably, it is about 0.01 μg / kg / min (about 14.4 μg / kg per day) or more.
 なお、対象となる肺線維症又は間質性肺炎としては、特に限定はないが、本発明の医薬の項で説明した(B)成分の副作用である場合が例示される。なお、ここで、(B)成分の限定は特にないが、例えば、PD-1、PD-L1、及びPD-L2から選ばれる少なくとも1種に対する阻害剤が好適例としてが挙げられる。 In addition, although it does not specifically limit as target pulmonary fibrosis or interstitial pneumonia, the case where it is a side effect of the (B) component demonstrated by the term of the medicine of this invention is illustrated. Here, the component (B) is not particularly limited, but preferred examples include an inhibitor for at least one selected from PD-1, PD-L1, and PD-L2.
 以下、本発明を実施例に基づいて説明するが、実施例は本発明をより良く理解するために例示するものであって、本発明の範囲がこれらの実施例に限定されることを意図するものではない。 Hereinafter, the present invention will be described based on examples. However, the examples are provided for better understanding of the present invention, and the scope of the present invention is intended to be limited to these examples. It is not a thing.
 本実施例では、まずは、ナトリウム利尿ペプチド受容体GC-Aアゴニストによる血管の保護作用を検討した実験例を試験例1シリーズとして示す。なお、全ての実験において、測定値の群間比較には、一元配置分散分析とTukey-Kramerの多重比較検定を用い、有意水準は5%未満とした。 In this example, first, experimental examples in which the protective action of blood vessels by a natriuretic peptide receptor GC-A agonist was examined are shown as Test Example 1 series. In all experiments, one-way analysis of variance and Tukey-Kramer's multiple comparison test were used for comparison of measured values between groups, and the significance level was set to less than 5%.
試験例1-1-1 乳癌マウス同所移植モデルに対するANPの腫瘍血管保護作用
 マウスは7週齢の雌のBalb/cマウス(日本SLC)を使用した。また、Osmotic pumpはALZET(Cupertino,CA)のMODEL2001(7日間投与用)を使用した。hANP(配列番号1)は公知の方法に従って製造したものを用いた。
Test Example 1-1-1 ANP Tumor Vascular Protective Effect on Breast Cancer Mouse Orthotopic Transplant Model Seven-week-old female Balb / c mice (Japan SLC) were used as mice. The Osmotic pump used was ALZET (Cupertino, CA) MODEL 2001 (for 7 days administration). hANP (SEQ ID NO: 1) was prepared according to a known method.
 4T1乳癌細胞(和光純薬)を、FBS freeのRPMI-1640を用いて1×106 cell/100μLになるように調製した。この懸濁液を、上記マウスに1匹当たり100μL、右乳腺内に注入した。1週間後に腫瘍を摘出し、この腫瘍から3×3mmサイズの腫瘍片を作製した。
 次に、新しく準備したマウスに、1匹につき1個ずつ右乳腺へ3×3mm腫瘍片を同所移植した。移植後5日目に、マウスを無作為に2群(コントロール群、ANP群)に群分けし(各群5~7匹)、コントロール群には生理食塩水を充填したOsmotic pumpを、ANP群にはhANPを充填したOsmotic pumpを、それぞれマウスの背部皮下に埋め込んだ後、hANPについては1.5μg/kg/分の投与量で投与を開始し、移植後7日目に腫瘍を摘出した。
4T1 breast cancer cells (Wako Pure Chemical Industries) were prepared to 1 × 10 6 cells / 100 μL using RPMI-1640 of FBS free. This suspension was injected into the right mammary gland at 100 μL per mouse. One week later, the tumor was excised, and a 3 × 3 mm tumor piece was prepared from this tumor.
Next, 3 x 3 mm tumor pieces were orthotopically transplanted into the right mammary gland, one for each newly prepared mouse. On the 5th day after transplantation, the mice were randomly divided into 2 groups (control group, ANP group) (5-7 mice in each group), and the control group was treated with an osmotic pump filled with physiological saline in the ANP group. Then, an osmotic pump filled with hANP was implanted subcutaneously in the back of each mouse, and administration of hANP was started at a dose of 1.5 μg / kg / min, and the tumor was excised 7 days after transplantation.
 摘出した腫瘍サンプルを4%ホルマリンで1~2日間浸けた後、パラフィン切片を作製し、脱パラフィン処理後、免疫染色を行った。免疫染色に使用した一次抗体(血管内皮細胞染色用)はRabbit anti-mouse CD31(abcam、ab28364)であり、二次抗体はAlexa Fluor 488 goat anti-rabbit(abcam、A11034)を使用した。αSMA(壁細胞染色用)の一次抗体は、Anti-actin,α-smooth muscle-Cy3 antibody(Sigma-Aldrich、C6198)を使用した。核染色は、Vectashield hard set with DAPI(Vector Laboratories、H1500)を使用した。蛍光顕微鏡はIX-81(Olympus)を使用し、撮影を行った(図1)。図1に示す写真のうち、“CD31”の箇所では、血管内皮細胞が染色されている様子を示しており、“αSMA”の箇所では、壁細胞が染色されている様子を示している。“Merged”の箇所では、血管内皮細胞と壁細胞に加えて、青色の細胞核が染色されているものが全て写し出された像が示されている。 The excised tumor sample was immersed in 4% formalin for 1 to 2 days, and then a paraffin section was prepared. After deparaffinization, immunostaining was performed. The primary antibody used for immunostaining (for vascular endothelial cell staining) was Rabbit anti-mouse CD31 (abcam, ab28364), and the secondary antibody was Alexa Fluor 488 goat anti-rabbit (abcam, A11034). Anti-actin, α-smooth muscle-Cy3 antibody (Sigma-Aldrich, C6198) was used as the primary antibody for αSMA (for wall cell staining). For nuclear staining, Vectashield hard set with DAPI (Vector Laboratories, H1500) was used. The fluorescent microscope was IX-81 (Olympus) and photographed (FIG. 1). In the photograph shown in FIG. 1, the “CD31” portion shows a state where vascular endothelial cells are stained, and the “αSMA” portion shows a state where wall cells are stained. In the “Merged” section, an image showing all the stained nuclei of blue cells in addition to vascular endothelial cells and mural cells is shown.
 一般に、正常な(成熟した)血管は、血管内皮細胞の周りに壁細胞がきちんと裏打ちをした(ほぼ100%)構造をとるものであるが、図1より、コントロール群では壁細胞が認められないことから、腫瘍血管は壁細胞が脱落した未熟な構造をとることが分かる。一方、ANP群は壁細胞が認められることから、ANP投与により腫瘍部における血管内皮細胞が壁細胞により裏打ちされた構造をとることが分かり、ANPは腫瘍血管の成熟化作用(保護作用)を有することが示唆される。 In general, normal (mature) blood vessels have a structure in which mural cells are properly lined around vascular endothelial cells (almost 100%), but from FIG. 1, mural cells are not observed in the control group. This shows that tumor blood vessels have an immature structure in which mural cells have fallen off. On the other hand, since the ANP group shows mural cells, it can be seen that ANP administration has a structure in which vascular endothelial cells in the tumor site are lined with mural cells, and ANP has a maturation action (protective action) of tumor blood vessels. It is suggested.
 ここで、CD31陽性血管における抗αSMA陽性血管の割合(pericyte-coating index、血管成熟化の指標)を、下記式:
 pericyte-coating index = (CD31とαSMAの二重陽性血管数)/CD31陽性血管数×100
に従って測定・算出した。具体的には、腫瘍部の血管を1匹につき無作為に10ヶ所抽出し、上記計算式に従い、測定・算出したものを平均化し、各群の平均を算出した結果を図2に示す。図2より、ANP群では、コントロール群と比較して、pericyte-coated indexは有意に高値であり、ANP投与により、腫瘍血管の成熟化作用が発揮されたことが示唆されている。
Here, the ratio (pericyte-coating index, index of blood vessel maturation) of anti-αSMA positive blood vessels in CD31 positive blood vessels is expressed by the following formula:
pericyte-coating index = (number of CD31 and αSMA double positive blood vessels) / CD31 positive blood vessels × 100
Measured and calculated according to Specifically, 10 blood vessels in the tumor area were randomly extracted per animal, and the measured and calculated values were averaged according to the above formula, and the results of calculating the average of each group are shown in FIG. FIG. 2 shows that the pericyte-coated index was significantly higher in the ANP group than in the control group, suggesting that the ANP administration exerted a tumor blood vessel maturation effect.
試験例1-1-2 乳癌マウス同所移植モデルに対するANPの腫瘍血管保護作用
 試験例1-1-1と同様にして乳癌マウス同所移植モデルを作製し、移植後5日目に、マウスを無作為に2群(コントロール群、ANP群)に群分けし(各群5~7匹)、コントロール群には生理食塩水を充填したOsmotic pumpを、ANP群にはhANPを充填したOsmotic pumpを、それぞれマウスの背部皮下に埋め込んだ後、hANPについては1.5μg/kg/分の投与量で投与を開始した。次いで、移植後7日目に、それぞれの群に、日本化薬社のシスプラチン注「マルコ」を用いて、1匹当たり10mg/kg(約300μL)のシスプラチン(CDDP)を尾静脈投与し、5分後に腫瘍を摘出した。
Test Example 1-1-2 Tumor Vascular Protective Action of ANP on Breast Cancer Mouse Orthotopic Transplant Model A breast cancer mouse orthotopic transplant model was prepared in the same manner as in Test Example 1-1-1, and the mouse was Randomly divided into 2 groups (control group, ANP group) (5-7 mice in each group), control group was filled with physiological pump Osmotic pump, and ANP group was filled with hANP filled Osmotic pump Each of the mice was implanted subcutaneously in the back of the mouse, and hANP was started to be administered at a dose of 1.5 μg / kg / min. Next, on the 7th day after transplantation, 10 mg / kg (about 300 μL) of cisplatin (CDDP) per mouse was administered to each group using cisplatin injection “Marco” manufactured by Nippon Kayaku Co., Ltd. The tumor was removed after a minute.
 摘出した腫瘍について、ICP-MS(誘導結合プラズマ質量分析計)法を用いて、腫瘍内シスプラチン濃度を測定し、各群の平均値を算出した。結果を図3に示す。図3より、ANP群では、コントロール群と比較して、腫瘍内シスプラチン濃度は有意に高値であり、ANP投与により腫瘍内の血管が保護されて、薬剤到達(シスプラチン量)が効率良く行われたことが分かる。 The excised tumor was measured for intracisternal cisplatin concentration using ICP-MS (inductively coupled plasma mass spectrometer) method, and the average value of each group was calculated. The results are shown in FIG. From FIG. 3, in the ANP group, the cisplatin concentration in the tumor was significantly higher than in the control group, and the blood vessels in the tumor were protected by the administration of ANP, and the drug arrival (cisplatin amount) was efficiently performed. I understand that.
試験例1-2-1 肺癌マウス同所移植モデルに対するANPの血管を介した腫瘍血管保護作用
 本試験例では、ANPが血管に特異的に作用していることを示す為、血管特異的GC-A遺伝子改変マウスを用いた。遺伝子改変マウスについては、既報の通りに作製されたマウスを使用した(Nojiri et al., PNAS 2015)。
Test Example 1-2-1 Tumor Vascular Protection Effect of ANP on Vascular Mice Orthotopic Transplantation Model In this test example, in order to show that ANP acts specifically on blood vessels, blood vessel-specific GC- A gene-modified mouse was used. For genetically modified mice, mice prepared as previously reported were used (Nojiri et al., PNAS 2015).
 LLC肺癌細胞(和光純薬)を、PBSを用いて5×104cell/20μLになるように調製した。この懸濁液にマトリジェル(Corning)を同量(20μL)加えたものを、各マウスに1匹当たり40μL、右下肺内に注入した。1週間後に腫瘍を摘出し、この腫瘍から3×3mmサイズの腫瘍片を作製した。
 次に、新しく準備したマウスに、1匹につき1個ずつ右肺へ3×3mm腫瘍片を同所移植し、移植後7日目に腫瘍を摘出した。
LLC lung cancer cells (Wako Pure Chemical Industries) were prepared to 5 × 10 4 cells / 20 μL using PBS. The same amount (20 μL) of Matrigel (Corning) added to this suspension was injected into the right lower lung, 40 μL per mouse. One week later, the tumor was excised, and a 3 × 3 mm tumor piece was prepared from this tumor.
Next, 3 x 3 mm tumor pieces were transplanted into the right lung one by one in newly prepared mice, and tumors were excised 7 days after transplantation.
 試験例1-1-1と同様にして、腫瘍内の血管状態について、免疫染色を行って調べた。結果を図4に示す。また、壁細胞の裏打ち率についても同様に調べた。結果を図5に示す。その結果、血管内皮特異的EC-GCA-Tg(過剰発現)マウスでは、WT(野生型)群と比較して、pericyte-coated indexは有意に高値であった。以上より、ANPは血管に特異的に作用し、腫瘍血管の成熟化作用を発揮したことが示された。なお、血管内皮特異的EC-GCA-KO(ノックアウト)マウスでは、コントロールマウス(Flox/flox)と比較して、pericyte-coated indexについて有意差を認めなかった。 In the same manner as in Test Example 1-1-1, the vascular state in the tumor was examined by immunostaining. The results are shown in FIG. The wall cell lining ratio was also examined in the same manner. The results are shown in FIG. As a result, pericyte-coated index was significantly higher in vascular endothelium-specific EC-GCA-Tg (overexpression) mice than in the WT (wild type) group. From the above, it was shown that ANP acted specifically on blood vessels and exerted a maturation effect on tumor blood vessels. In vascular endothelium-specific EC-GCA-KO (knockout) mice, no significant difference was observed in pericyte-coated index compared to control mice (Flox / flox).
試験例1-2-2 肺癌マウス同所移植モデルに対するANPの血管を介した腫瘍血管成熟化作用
 本試験例では、試験例2-1と同様に、血管特異的GC-A遺伝子改変マウスを用いた。また、他のマウスについては、8~10週齢の雄のC57BL/6マウス(日本SLC)を使用した。Osmotic pumpはALZET(Cupertino,CA)のMODEL2002(14日間投与用)を使用した。hANP(配列番号1)は公知の方法に従って製造したものを用いた。
Test Example 1-2-2 Avascular blood vessel maturation effect of ANP on pulmonary cancer mouse orthotopic transplantation model In this test example, a blood vessel-specific GC-A gene-modified mouse was used as in Test Example 2-1. It was. As for other mice, male C57BL / 6 mice (Japan SLC) aged 8 to 10 weeks were used. The Osmotic pump used was ALZET (Cupertino, CA) MODEL 2002 (for 14 days administration). hANP (SEQ ID NO: 1) was prepared according to a known method.
 試験例1-2-1と同様にして肺癌マウス同所移植モデルを作製し、遺伝子改変マウスについては、移植後7日目に、日本化薬社のシスプラチン注「マルコ」を用いて、1匹当たり10mg/kg(約300μL)のシスプラチン(CDDP)を尾静脈投与し、5分後に腫瘍を摘出した。また、C57BL/6マウスについては、移植後5日目にマウスを無作為に2群(コントロール群、ANP群)に群分けし(各群5~7匹)、コントロール群には生理食塩水を充填したOsmotic pumpを、ANP群にはhANPを充填したOsmotic pumpを、それぞれマウスの背部皮下に埋め込んだ後、hANPについては1.5μg/kg/分の投与量で投与を開始し、移植後7日目に、それぞれの群に、日本化薬社のシスプラチン注「マルコ」を用いて、1匹当たり10mg/kg(約300μL)のシスプラチン(CDDP)を尾静脈投与し、5分後に腫瘍を摘出した。 A orthotopic transplantation model of lung cancer mice was prepared in the same manner as in Test Example 1-2-1, and one mouse was used for genetically modified mice on the 7th day after transplantation using Nippon Kayaku's cisplatin injection “Marco”. Ten mg / kg (about 300 μL) of cisplatin (CDDP) was administered via the tail vein, and the tumor was removed 5 minutes later. For C57BL / 6 mice, the mice were randomly divided into 2 groups (control group, ANP group) on the 5th day after transplantation (5-7 mice in each group), and physiological saline was given to the control group. Osmotic pump filled with Osmotic pump filled with hANP in the ANP group was implanted subcutaneously in the back of the mouse, and hANP was administered at a dose of 1.5 μg / kg / min. 7 days after transplantation In each group, 10 mg / kg (approximately 300 μL) of cisplatin (CDDP) was administered to each group using Nippon Kayaku's cisplatin injection “Marco”, and the tumor was removed 5 minutes later. .
 摘出した腫瘍について、試験例1-1-2と同様にして、腫瘍内シスプラチン濃度を測定し、各群の平均値を算出した。結果を図6に示す。図6より、ANP群では、コントロール群と比較して、腫瘍内シスプラチン濃度は有意に高値であり、ANP投与により薬剤到達(シスプラチン量)が効率良く行われたことを示している。また、血管内皮特異的EC-GCA-Tg(過剰発現)マウスでは、WT(野生型)群と比較して、腫瘍内シスプラチン濃度は有意に高値であった。以上より、ANPは血管に特異的に作用することにより、腫瘍内の血管を保護して崩壊を抑制することが分かる。 For the excised tumor, the cisplatin concentration in the tumor was measured in the same manner as in Test Example 1-1-2, and the average value of each group was calculated. The results are shown in FIG. FIG. 6 shows that in the ANP group, the cisplatin concentration in the tumor was significantly higher than that in the control group, and the drug arrival (cisplatin amount) was efficiently performed by ANP administration. In addition, in the vascular endothelium-specific EC-GCA-Tg (overexpression) mouse, the intratumoral cisplatin concentration was significantly higher than that in the WT (wild type) group. From the above, it can be seen that ANP protects the blood vessels in the tumor and suppresses the collapse by acting specifically on the blood vessels.
試験例1-3 シスプラチン誘発骨髄抑制モデルに対するANPの作用
 8週齢の雄のC57BL/6マウス(日本SLC)を使用した。Osmotic pumpはALZET(Cupertino,CA)のMODEL2002(14日間投与用)を使用した。hANP(配列番号1)は公知の方法に従って製造したものを、シスプラチン(CDDP)は日本化薬社のシスプラチン注「マルコ」を用いた。
Test Example 1-3 Effect of ANP on Cisplatin-Induced Bone Marrow Suppression Model 8-week-old male C57BL / 6 mice (Japan SLC) were used. The Osmotic pump used was ALZET (Cupertino, CA) MODEL 2002 (for 14 days administration). hANP (SEQ ID NO: 1) was prepared according to a known method, and cisplatin (CDDP) used was Nippon Kayaku's cisplatin injection “Marco”.
 先ず、マウスを無作為に2群(コントロール群、ANP群)に群分けし(各群5~7匹)、コントロール群には生理食塩水を充填したOsmotic pumpを、ANP群にはhANPを充填したOsmotic pumpを、それぞれマウスの背部皮下に予め埋め込んだ。
 次に、CDDP投与を行う1日前(Day-1)に、ANP群については1.5μg/kg/分の投与量で投与を開始した。翌日それぞれの群にCDDPを1匹当たり16mg/kg(約480μL)で腹腔内投与し、Day0(CDDP投与前)、2、4、8、14に、マウス6匹ずつ、体重測定を行ってから屠殺し、大腿静脈より血液採取を行った後、骨髄採取も行った。
First, mice were randomly divided into 2 groups (control group, ANP group) (5-7 mice in each group), the control group was filled with osmotic pump filled with physiological saline, and the ANP group was filled with hANP. Each osmotic pump was previously implanted under the back of the mouse.
Next, one day before CDDP administration (Day-1), administration was started at a dose of 1.5 μg / kg / min for the ANP group. The next day, each group received CDDP at 16 mg / kg (approximately 480 μL) per mouse intraperitoneally, and weighed 6 mice on Day 0 (before CDDP administration), 2, 4, 8 and 14, respectively. After slaughtering and collecting blood from the femoral vein, bone marrow was also collected.
 得られた血液からは、白血球数、血小板数、ヘモグロビン値を、動物用全自動血球計数器「セルタックα」MEK-6450(日本光電)を用いて測定した。骨髄からは、骨髄内全細胞数、生細胞数、及びgranulocyte macrophage colony forming units (GM-CFU)を、StemCell Technologies社のアッセイキットを用いて測定した。血液の結果を図7に、骨髄の結果を図8に示す。 From the obtained blood, the white blood cell count, platelet count, and hemoglobin value were measured using a fully automatic blood cell counter “SELTAC α” MEK-6450 (Nihon Kohden). From the bone marrow, the total number of cells in the bone marrow, the number of living cells, and granulocyte macrophage colony forming units (GM-CFU) were measured using an assay kit from StemCell Technologies. The blood results are shown in FIG. 7, and the bone marrow results are shown in FIG.
 また、CDDP投与後早期のメカニズムを明らかにする為に、同様の実験を、Day0(CDDP投与前)、0.5、1、2に、マウス大腿静脈より採血を行い、血清保存後、血清中G-CSF濃度を、Mouse G-CSF Quantikine ELISA Kit (Cat. MCS00;R&D systems社)を用いて測定した。結果を図9に示す。 In addition, in order to clarify the early mechanism after CDDP administration, blood was collected from the femoral vein of mice on Day 0 (before CDDP administration), 0.5, 1, and 2, and after serum preservation, serum G- The CSF concentration was measured using Mouse G-CSF Quantikine ELISA Kit (Cat. MCS00; R & D systems). The results are shown in FIG.
 図7より、コントロール群と比較して、ANP群で白血球数がDay2、4で有意に高値であった。図8より、コントロール群と比較して、ANP群で骨髄内生細胞数及びGM-CFU値がDay2、4、8で有意に高値であった。また、図9より、コントロール群と比較して、ANP群ではDay0.5で高い傾向を示し、Day1では有意に高値であった。
 以上より、ANPは血漿G-CSF値を増加させることによって、シスプラチン等の抗癌剤により誘発される副作用である骨髄抑制に対して軽減効果を発揮すると考えられる。
FIG. 7 shows that the white blood cell count in Day 2 and Day 4 was significantly higher in the ANP group than in the control group. FIG. 8 shows that the number of viable cells in the bone marrow and the GM-CFU value were significantly higher in Day 2, 4, and 8 in the ANP group than in the control group. Moreover, from FIG. 9, compared with the control group, the ANP group showed a higher tendency at Day 0.5, and the Day 1 was significantly higher.
From the above, it is considered that ANP exerts a reducing effect on bone marrow suppression, which is a side effect induced by an anticancer agent such as cisplatin, by increasing plasma G-CSF level.
試験例2 乳癌マウス同所移植モデルに対するANPとタキサン系抗癌剤の併用効果
 マウスは7週齢の雌のBalb/cマウス(日本SLC)を使用した。また、Osmotic pumpはALZET(Cupertino,CA)のMODEL2004(28日間投与用)を使用した。hANP(配列番号1)は公知の方法に従って製造したものを、代表的なタキサン系抗癌剤である、日本化薬社のドセタキセル点滴静注液20mg/1mL「NK」を用いた。
Test Example 2 Combined Effect of ANP and Taxane Anticancer Agent on Breast Cancer Mouse Orthotopic Transplant Model A 7-week-old female Balb / c mouse (Japan SLC) was used as the mouse. The Osmotic pump used was ALZET (Cupertino, CA) MODEL 2004 (for 28-day administration). hANP (SEQ ID NO: 1) produced according to a known method was used as a representative taxane anticancer agent, docetaxel intravenous infusion 20 mg / 1 mL “NK” of Nippon Kayaku Co., Ltd.
 4T1乳癌細胞(和光純薬)を、FBS freeのRPMI-1640を用いて1×106 cell/100μLになるように調製した。この懸濁液を、上記マウスに1匹当たり100μL、右乳腺内に注入した。1週間後に腫瘍を摘出し、この腫瘍から3×3mmサイズの腫瘍片を作製した。
 次に、新しく準備したマウスに、1匹につき1個ずつ右乳腺へ3×3mm腫瘍片を同所移植した。移植後5日目に、マウスを無作為に4群(コントロール群、ANP群、ドセタキセル(DTX)群、併用群)に群分けし(各群6匹)、表1に記載の内容物を充填したOsmotic pumpをマウスの背部皮下に埋め込み、hANPを充填したものについては1.5μg/kg/分の投与量となるよう設定して投与を開始した。その後、移植後7日目に、表1に記載の生理食塩水又はDTXを1匹当たり約100μL尾静脈投与した。
4T1 breast cancer cells (Wako Pure Chemical Industries) were prepared to 1 × 10 6 cells / 100 μL using RPMI-1640 of FBS free. This suspension was injected into the right mammary gland at 100 μL per mouse. One week later, the tumor was excised, and a 3 × 3 mm tumor piece was prepared from this tumor.
Next, 3 x 3 mm tumor pieces were orthotopically transplanted into the right mammary gland, one for each newly prepared mouse. On the 5th day after transplantation, the mice were randomly divided into 4 groups (control group, ANP group, docetaxel (DTX) group, combined use group) (6 mice for each group) and filled with the contents described in Table 1 The Osmotic pump was implanted subcutaneously in the back of the mouse, and hANP-filled one was set to a dose of 1.5 μg / kg / min and administration was started. Thereafter, on the seventh day after transplantation, physiological saline or DTX described in Table 1 was administered at about 100 μL tail vein per mouse.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 投与期間も含めて移植後4週間観察を続け、1週毎に、移植した腫瘍の大きさを計測し、腫瘍ボリュームを以下の推定式で求め、各群の平均値を算出した。結果を図10に示す。
     腫瘍ボリューム(mm)=(π/6)×d
          d=縦と横の平均径(mm)
Observation was continued for 4 weeks after the transplantation including the administration period, and the size of the transplanted tumor was measured every week, the tumor volume was determined by the following estimation formula, and the average value of each group was calculated. The results are shown in FIG.
Tumor volume (mm 3 ) = (π / 6) × d 3
d = average vertical and horizontal diameter (mm)
 図10より、コントロール群とANP群は特に差を認めなかった。一方、DTX群は、コントロール群やANP群と比較して腫瘍の増殖が有意に抑制されたが、併用群はDTX群と比較しても腫瘍の増殖が有意に抑制された。以上の結果より、DTXの抗腫瘍作用(腫瘍増殖抑制作用)がANP投与によって増強される効果があることが示された。 From FIG. 10, there was no particular difference between the control group and the ANP group. On the other hand, in the DTX group, tumor growth was significantly suppressed as compared with the control group and ANP group, but in the combination group, tumor growth was significantly suppressed as compared with the DTX group. From the above results, it was shown that the antitumor action (tumor growth inhibitory action) of DTX is enhanced by ANP administration.
試験例3 乳癌マウス同所移植モデルに対するANPとプラチナ系抗癌剤の併用効果に関するANP投与期間の検討
 本試験例では、マウスは7週齢の雌のBalb/cマウスを使用した。また、Osmotic pumpはALZETのMODEL1002(14日間投与用)を使用した。
 Balb/cマウスの背部皮下に、生理食塩水を入れたOsmotic pumpを埋め込んだものをコントロール群とした。同様に、hANPを0.5μg/kg/分(ANP群)の投与量で投与されるように調製されたOsmotic pumpをマウスの皮下に埋め込んだANP投与群を作製した。
 シスプラチン(CDDP)投与は、1匹当たり10mg/kg(約300μL)のCDDPを尾静脈投与し、コントロール群では、生理食塩水を同量尾静脈投与した。
Test Example 3 Examination of ANP Administration Period for Combined Effects of ANP and Platinum Anticancer Agent on Breast Cancer Mouse Orthotopic Transplant Model In this test example, a 7-week-old female Balb / c mouse was used. Moreover, Osmotic pump used ALZET MODEL1002 (for 14 days administration).
A control group was obtained by implanting an osmotic pump containing physiological saline under the back of a Balb / c mouse. Similarly, an ANP administration group was prepared in which an osmotic pump prepared to administer hANP at a dose of 0.5 μg / kg / min (ANP group) was implanted subcutaneously in mice.
For cisplatin (CDDP) administration, 10 mg / kg (about 300 μL) of CDDP per mouse was administered via the tail vein, and in the control group, the same amount of physiological saline was administered via the tail vein.
 4T1乳癌細胞を、FBS freeのRPMI-1640を用いて、4T1細胞が1×106cell/100μLになるように調製した。この懸濁液を、上記マウスに1匹当たり100μL、右乳腺内に注入した。1週間後に、腫瘍を摘出し、この腫瘍から5×5mm細片を作成した。新しく準備したマウスに1匹につき、1個ずつ右乳腺へ5×5mm腫瘍片を同所移植した。マウスを無作為に6群(下記に示す6群)に分け、それぞれの群に応じたANP投与のタイミングに調整したOsmotic pumpをマウス皮下に埋め込み、投与を開始した。移植後7日目に、生理食塩水もしくはシスプラチン10mg/kgを尾静脈投与した。
 (各群)
コントロール群:生理食塩水を充填したOsmotic pumpをDay0に埋め込み、Day7に生理食塩水を尾静脈投与
vehicle+CDDP群:生理食塩水を充填したOsmotic pumpをDay0に埋め込み、Day7に10mg/kgのCDDPを尾静脈投与
ANP1日投与+CDDP群:hANPを0.5μg/kg/分の投与量で投与するように充填したOsmotic pumpをDay6に埋め込み、Day7に10mg/kgのCDDPを尾静脈投与
ANP3日投与+CDDP群:hANPを0.5μg/kg/分の投与量で投与するように充填したOsmotic pumpをDay4に埋め込み、Day7に10mg/kgのCDDPを尾静脈投与
ANP5日投与+CDDP群:hANPを0.5μg/kg/分の投与量で投与するように充填したOsmotic pumpをDay2に埋め込み、Day7に10mg/kgのCDDPを尾静脈投与
ANP7日投与+CDDP群:hANPを0.5μg/kg/分の投与量で投与するように充填したOsmotic pumpをDay0に埋め込み、Day7に10mg/kgのCDDPを尾静脈投与
4T1 breast cancer cells were prepared using FBS-free RPMI-1640 so that 4T1 cells were 1 × 10 6 cells / 100 μL. This suspension was injected into the right mammary gland at 100 μL per mouse. One week later, the tumor was removed and 5 × 5 mm strips were made from this tumor. For each newly prepared mouse, one 5 x 5 mm tumor piece was orthotopically transplanted into the right mammary gland. The mice were randomly divided into 6 groups (6 groups shown below), and an osmotic pump adjusted to the timing of ANP administration according to each group was implanted subcutaneously into the mice and administration was started. On the seventh day after transplantation, physiological saline or cisplatin 10 mg / kg was administered via the tail vein.
(Each group)
Control group: Osmotic pump filled with physiological saline was implanted on Day 0, and physiological saline was administered to the tail vein on Day 7.
vehicle + CDDP group: Osmotic pump filled with physiological saline is implanted on Day 0, and 10 mg / kg of CDDP is administered on the tail vein on Day 7
ANP daily administration + CDDP group: An osmotic pump filled with hANP at a dose of 0.5 μg / kg / min was implanted on Day 6, and 10 mg / kg CDDP was administered on Day 7 on the tail vein.
ANP 3 days + CDDP group: An osmotic pump filled with hANP at a dose of 0.5 μg / kg / min was implanted on Day 4, and 10 mg / kg CDDP was administered on Day 7 via the tail vein.
ANP 5 days + CDDP group: Osmotic pump filled with hANP at a dose of 0.5 μg / kg / min was implanted on Day 2 and 10 mg / kg CDDP was administered on Day 7 on the tail vein
ANP 7 days + CDDP group: Osmotic pump filled with hANP at a dose of 0.5 μg / kg / min was implanted on Day 0, and 10 mg / kg CDDP was administered on Day 7 on the tail vein
 投与期間も含めて移植後4週間観察を続け、1週毎に、細胞注入部の腫瘍の大きさを計測し、腫瘍ボリュームを試験例2と同様にして算出し、各群の平均値を算出した。結果を図11に示す。 Continue to observe for 4 weeks after transplantation, including the administration period, measure the tumor size at the cell injection site every week, calculate the tumor volume in the same manner as in Test Example 2, and calculate the average value for each group did. The results are shown in FIG.
 図11に示されるように、コントロール群と比較して、vehicle+CDDP群では有意に腫瘍増殖が抑制された。一方、vehicle+CDDP群と比較して、ANP1日投与+CDDP群及びANP3日投与+CDDP群では、腫瘍増殖抑制効果に関して有意差を認めなかったが、ANP5日投与+CDDP群及びANP7日投与+CDDP群コントロール+CDDP群では、有意に腫瘍増殖抑制効果が大きかった。以上の結果より、CDDPの抗腫瘍作用(腫瘍増殖抑制作用)が、ANP投与によって増強させる為には、ANP投与期間が少なくとも5日間以上要することが示された。 As shown in FIG. 11, tumor growth was significantly suppressed in the vehicle + CDDP group as compared with the control group. On the other hand, compared with the vehicle + CDDP group, the ANP 1 day administration + CDDP group and the ANP 3 day administration + CDDP group showed no significant difference in tumor growth suppression effect, but the ANP 5 day administration + CDDP group and ANP 7 day administration + CDDP group control + CDDP group The tumor growth inhibitory effect was significantly large. From the above results, it was shown that in order to enhance the antitumor action (tumor growth inhibitory action) of CDDP by ANP administration, the ANP administration period requires at least 5 days or more.
試験例4 乳癌マウス同所移植モデルに対するANPと抗PD-1抗体の併用効果
 本試験例では、マウスは7週齢の雌のBalb/cマウスを使用した。また、Osmotic pumpはALZETのMODEL2004(28日間投与用)を使用した。
 Balb/cマウスの背部皮下に、生理食塩水を入れたOsmotic pumpを埋め込んだものをvehicle群とした。同様に、hANPを0.5μg/kg/分(ANP群)の投与量で投与されるように調製されたOsmotic pumpをマウスの皮下に埋め込んだANP群を作製した。
 代表的な免疫チェックポイント阻害剤である、抗PD-1抗体の投与に関しては、BioXCell社の抗マウスPD-1抗体を用いて、20又は10mg/kg(計100μL/1匹になるように注射用水を用いて調製)を腹腔内投与し、コントロール群では、抗マウスIgG(BE0260, BioXCell社)を同量(100μL)腹腔内投与した。
Test Example 4 Combined Effect of ANP and Anti-PD-1 Antibody on Breast Cancer Mouse Orthotopic Transplant Model In this test example, a 7-week-old female Balb / c mouse was used. The Osmotic pump used was ALZET MODEL 2004 (for 28-day administration).
Balb / c mice were implanted with an osmotic pump containing physiological saline in the dorsal skin, and were used as the vehicle group. Similarly, an ANP group was prepared in which an osmotic pump prepared to administer hANP at a dose of 0.5 μg / kg / min (ANP group) was implanted subcutaneously in mice.
As for administration of anti-PD-1 antibody, which is a typical immune checkpoint inhibitor, 20 or 10 mg / kg (total of 100 μL / injection was made using BioXCell anti-mouse PD-1 antibody. (Prepared using irrigation water) was intraperitoneally administered, and in the control group, anti-mouse IgG (BE0260, BioXCell) was intraperitoneally administered in the same amount (100 μL).
 4T1乳癌細胞(和光純薬)を、FBS freeのRPMI-1640を用いて、4T1細胞が1×106cell/100 μlになるように調製した。この懸濁液を、上記マウスに1匹当たり100μl、右乳腺内に注入した。1週間後に、腫瘍を摘出し、この腫瘍から3×3mm細片を作成した。新しく準備したマウスに1匹につき、1個ずつ右乳腺へ3×3mm腫瘍片を同所移植した。移植と同じ日に、マウスを無作為に4群(下記に示す4群)に群分けし、以下の通り、それぞれの群に応じた投与に調整したOsmotic pumpをマウス皮下に埋め込み、投与を開始した。また、移植後7,13,19日目には、以下の通り、それぞれの群に応じた投与に調整した抗マウスIgG又は抗PD-1抗体を腹腔内投与した。
 (各群)
コントロール群:生理食塩水を充填したOsmotic pumpをDay0に埋め込み、抗マウスIgGをDay7に20mg/kg、Day13、19に10mg/kgをそれぞれ腹腔内投与
ANP群:hANPを0.5μg/kg/分の投与量で投与するように充填したOsmotic pumpをDay0に埋め込んだ
vehicle+抗PD-1抗体群:生理食塩水を充填したOsmotic pumpをDay0に埋め込み、抗マウスPD-1抗体をDay7に20mg/kg、Day13、19に10mg/kgをそれぞれ腹腔内投与
ANP+DTX群:hANPを0.5μg/kg/分の投与量で投与するように充填したOsmotic pumpをDay0に埋め込み、抗マウスPD-1抗体をDay7に20mg/kg、Day13、19に10mg/kgをそれぞれ腹腔内投与
4T1 breast cancer cells (Wako Pure Chemical Industries) were prepared using RPMI-1640 of FBS free so that 4T1 cells became 1 × 10 6 cells / 100 μl. This suspension was injected into the right mammary gland at 100 μl per mouse. One week later, the tumor was removed and 3 × 3 mm strips were made from this tumor. For each newly prepared mouse, one 3 x 3 mm tumor piece was orthotopic transplanted into the right mammary gland. On the same day as the transplantation, the mice were randomly divided into 4 groups (4 groups shown below), and an osmotic pump adjusted for administration according to each group was implanted subcutaneously into the mice as shown below. did. In addition, on days 7, 13, and 19 after transplantation, anti-mouse IgG or anti-PD-1 antibody adjusted to administration according to each group was intraperitoneally administered as follows.
(Each group)
Control group: Osmotic pump filled with physiological saline was implanted on Day 0, and anti-mouse IgG was administered intraperitoneally at 20 mg / kg on Day 7 and 10 mg / kg on Day 13 and 19 respectively.
ANP group: An Osmotic pump filled with hANP at a dose of 0.5 μg / kg / min was embedded in Day 0
vehicle + anti-PD-1 antibody group: Osmotic pump filled with physiological saline is implanted on Day 0, and anti-mouse PD-1 antibody is administered intraperitoneally at 20 mg / kg on Day 7 and 10 mg / kg on Day 13 and 19 respectively.
ANP + DTX group: An osmotic pump filled with hANP at a dose of 0.5 μg / kg / min was implanted on Day 0, and anti-mouse PD-1 antibody was 20 mg / kg on Day 7 and 10 mg / kg on Day 13 and 19 respectively. Intraperitoneal administration
 投与開始後さらに4週間観察を続け、1週毎に、細胞注入部の腫瘍の大きさを計測し、腫瘍ボリュームを試験例2と同様にして算出し、各群の平均値を算出した。結果を図12に示す。 The observation was continued for 4 weeks after the start of administration, and the tumor size at the cell injection site was measured every week, the tumor volume was calculated in the same manner as in Test Example 2, and the average value of each group was calculated. The results are shown in FIG.
 図12に示されるように、コントロール群とANP群は特に差を認めなかった。一方、vehicle+抗PD-1抗体群は、コントロール群やANP群と比較して、腫瘍の増殖が有意に抑制された。さらに、ANP+抗PD-1抗体群は、vehicle+抗PD-1抗体群と比較しても、腫瘍の増殖が有意に抑制された。以上の結果より、抗PD-1抗体の抗腫瘍作用(腫瘍増殖抑制作用)が、ANP投与によって、増強させる効果があることが示された。 As shown in FIG. 12, there was no particular difference between the control group and the ANP group. On the other hand, in the vehicle + anti-PD-1 antibody group, tumor growth was significantly suppressed as compared with the control group and ANP group. Furthermore, tumor growth was significantly suppressed in the ANP + anti-PD-1 antibody group as compared with the vehicle + anti-PD-1 antibody group. From the above results, it was shown that the antitumor action (tumor growth inhibitory action) of the anti-PD-1 antibody is enhanced by ANP administration.
試験例5-1 肺線維症マウスモデルに対するANPの効果
 本試験例では、マウスは7週齢の雄のC57BL/6Nマウス(日本SLC)を使用した。また、Osmotic pumpはALZET(Cupertino, CA)のMODEL1002(14日間投与用)を使用した。
 C57BL/6Nマウスの背部皮下に、生理食塩水を入れたOsmotic pumpを埋め込んだものをコントロール群とした。同様に、hANPを0.5μg/kg/分(ANP群)の投与量で投与されるように調製されたOsmotic pumpをマウスの皮下に埋め込んだANP群を作製した。
Test Example 5-1 Effect of ANP on Pulmonary Fibrosis Mouse Model In this test example, 7-week-old male C57BL / 6N mice (Japan SLC) were used. The Osmotic pump used was ALZET (Cupertino, CA) MODEL1002 (for 14 days administration).
A control group was obtained by implanting an osmotic pump containing physiological saline under the back of C57BL / 6N mice. Similarly, an ANP group was prepared in which an osmotic pump prepared so that hANP was administered at a dose of 0.5 μg / kg / min (ANP group) was implanted subcutaneously in mice.
 代表的な肺線維症誘発剤である、ブレオマイシンの投与に関しては、日本化薬社のブレオ注射用5mgを用いて、1mg/kg(計80μL/1匹になるように注射用水を用いて調製)を気管内投与し、コントロール群では、生理食塩水を同量(80μL)気管内投与した。ブレオマイシン及び生理食塩水投与後、21日目に犠牲死させ、マウス肺を4%パラホルムアルデヒド(和光純薬)で伸展固定し、パラフィン包埋ブロックを作製後、マッソン・トリクローム染色を行った。染色標本について、ボックス型蛍光撮像装置 FSX100(Olympus)で撮影を行った。肺線維化面積率については、線維化面積/全体の肺面積と定義し、CellSens Dimension software version 1.6 (Olympus)で自動算出を行った。結果を図13に示す。
 (各群)
コントロール群:生理食塩水を気管内投与した群
Vehicle+ブレオマイシン投与群:生理食塩水を充填したOsmotic pumpを埋め込み、3日後にブレオマイシン(1mg/kg)を気管内投与した群
ANP+ブレオマイシン投与群:ANPを0.5μg/kg/分の投与量で投与するように充填したOsmotic pumpを埋め込み、3日後にブレオマイシン(1mg/kg)を気管内投与した群
Regarding the administration of bleomycin, a typical pulmonary fibrosis inducer, 1 mg / kg (prepared with water for injection to give a total of 80 μL / animal) using 5 mg for bleo injection from Nippon Kayaku Co., Ltd. Was administered intratracheally, and in the control group, the same amount (80 μL) of physiological saline was administered intratracheally. After administration of bleomycin and physiological saline, the mice were sacrificed on the 21st day, mouse lungs were stretched and fixed with 4% paraformaldehyde (Wako Pure Chemical Industries), paraffin-embedded blocks were prepared, and Masson trichrome staining was performed. The stained specimen was photographed with a box type fluorescence imaging apparatus FSX100 (Olympus). The lung fibrosis area ratio was defined as fibrosis area / total lung area, and was automatically calculated with CellSens Dimension software version 1.6 (Olympus). The results are shown in FIG.
(Each group)
Control group: group in which physiological saline was administered intratracheally
Vehicle + bleomycin administration group: Osmotic pump filled with physiological saline was implanted, and bleomycin (1 mg / kg) was administered intratracheally 3 days later
ANP + bleomycin administration group: A group in which an osmotic pump filled with ANP at a dose of 0.5 μg / kg / min was implanted, and bleomycin (1 mg / kg) was administered intratracheally 3 days later
 図13に示されるように、コントロール群では認められない肺線維化面積が、vehicle+ブレオマイシン群では、顕著に増大するが、ANP投与によって、有意に抑制されることが示された。 As shown in FIG. 13, the pulmonary fibrosis area that was not observed in the control group was significantly increased in the vehicle + bleomycin group, but was significantly suppressed by ANP administration.
試験例5-2 組織特異的トランスジェニック(Tg)マウスを用いた肺線維症抑制効果
 本試験例では、12週齢の野生型マウス、血管内皮特異的GC-A-Tg(Tie2-Cre-GC-A-Tg)マウス、繊維芽細胞特異的GC-A-Tg(Periostin-Cre-GC-A-Tg)マウスを使用し、ブレオマイシンの投与は前述と同様の方法で行った。
Test Example 5-2 Lung Fibrosis Inhibitory Effect Using Tissue-Specific Transgenic (Tg) Mice In this test example, 12-week-old wild type mice, vascular endothelium-specific GC-A-Tg (Tie2-Cre-GC) -A-Tg) mice and fibroblast-specific GC-A-Tg (Periostin-Cre-GC-A-Tg) mice were used, and bleomycin was administered in the same manner as described above.
 前述と同様に、各群のマウスに対してブレオマイシン(1mg/kg)を気管内投与し、21日目に犠牲死させ、マウス肺を4%パラホルムアルデヒドで伸展固定し、パラフィン包埋ブロックを作製後、マッソン・トリクローム染色を行った。染色標本について、ボックス型蛍光撮像装置 FSX100(Olympus)で撮影を行った。肺線維化面積率については、試験例5-1と同様にして算出し、肺線維化面積について、野生型マウスを1とした場合の各群の割合を表示した。結果を図14に示す。
 (各群)
野生型マウス群:野生型マウスにブレオマイシン(1mg/kg)を気管内投与した群
血管内皮特異的GC-A-Tg群:血管内皮特異的GC-A-Tgマウスにブレオマイシン(1mg/kg)を気管内投与した群
繊維芽細胞特異的GC-A-Tg群:繊維芽細胞特異的GC-A-Tg マウスにブレオマイシン(1mg/kg)を気管内投与した群
As before, bleomycin (1 mg / kg) was administered intratracheally to mice in each group, sacrificed on day 21, and mouse lungs were stretched and fixed with 4% paraformaldehyde to produce paraffin-embedded blocks Later, Masson trichrome staining was performed. The stained specimen was photographed with a box type fluorescence imaging apparatus FSX100 (Olympus). The pulmonary fibrosis area ratio was calculated in the same manner as in Test Example 5-1, and the pulmonary fibrosis area was expressed as the ratio of each group when the wild-type mouse was 1. The results are shown in FIG.
(Each group)
Wild-type mouse group: Bleomycin (1 mg / kg) administered intratracheally to wild-type mice Vascular endothelium-specific GC-A-Tg group: Bleomycin (1 mg / kg) to vascular endothelium-specific GC-A-Tg mice Intratracheally administered group Fibroblast-specific GC-A-Tg group: Fibroblast-specific GC-A-Tg mice administered bleomycin (1 mg / kg) intratracheally
 図14に示されるように、野生型マウス群と比較して、血管内皮特異的GC-A-Tgマウスでは肺線維化面積が有意に抑制されており、繊維芽細胞特異GC-A-Tgマウスでは有意な抑制は認められなかった。以上より、ANPは血管を介して肺線維化抑制効果を発揮することが示唆される。 As shown in FIG. 14, pulmonary fibrosis area was significantly suppressed in the vascular endothelium-specific GC-A-Tg mice compared to the wild-type mouse group, and fibroblast-specific GC-A-Tg mice. There was no significant suppression. From the above, it is suggested that ANP exerts an effect of suppressing pulmonary fibrosis via blood vessels.
 本発明の医薬は、血流を介して抗悪性腫瘍剤を効果的に腫瘍細胞内に到達させることができることから、強力な効果を有する悪性腫瘍治療用医薬として有用である。 The medicament of the present invention is useful as a medicament for treating malignant tumors having a powerful effect because it can effectively reach the tumor cells through the bloodstream.
配列表の配列番号1は、ヒト由来ANPのポリペプチドである。
配列表の配列番号2は、ラット由来ANP/マウス由来ANPのポリペプチドである。
配列表の配列番号3は、ヒト由来BNPのポリペプチドである。
配列表の配列番号4は、ブタ由来BNPのポリペプチドである。
配列表の配列番号5は、ラット由来BNPのポリペプチドである。
配列表の配列番号6は、マウス由来BNPのポリペプチドである。
配列表の配列番号7は、ANP又はBNPにおけるリング構造のポリペプチドである。
Sequence number 1 of a sequence table is a polypeptide of human origin ANP.
Sequence number 2 of a sequence table is a polypeptide of rat origin ANP / mouse origin ANP.
Sequence number 3 of a sequence table is a polypeptide of human origin BNP.
Sequence number 4 of a sequence table is a polypeptide of porcine origin BNP.
Sequence number 5 of a sequence table is a polypeptide of rat origin BNP.
Sequence number 6 of a sequence table is a polypeptide of mouse-derived BNP.
Sequence number 7 of a sequence table is a polypeptide of the ring structure in ANP or BNP.

Claims (29)

  1.  (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを含有し、(B)抗悪性腫瘍剤投与の5日以上前に投与されることを特徴とする、前記(B)抗悪性腫瘍剤の治療効果の増強剤。 (A) A therapeutic effect of (B) antineoplastic agent comprising natriuretic peptide receptor GC-A agonist and (B) administered at least 5 days before administration of the antineoplastic agent Enhancer.
  2.  (B)抗悪性腫瘍剤投与の3日前に、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストの最高血中濃度が0.01ng/mL~1.6ng/mLとなるように投与されることを特徴とする、請求項1記載の増強剤。 (B) Three days before administration of the antineoplastic agent, (A) the natriuretic peptide receptor GC-A agonist is administered so that the maximum blood concentration is 0.01 ng / mL to 1.6 ng / mL. The enhancer according to claim 1, wherein
  3.  (B)抗悪性腫瘍剤が、白金製剤、微小管阻害作用を有する化合物、及びPD-1経路阻害剤からなる群より選ばれる1種又は2種以上である、請求項1又は2記載の増強剤。 (B) The enhancement according to claim 1 or 2, wherein the antineoplastic agent is one or more selected from the group consisting of a platinum preparation, a compound having a microtubule inhibitory action, and a PD-1 pathway inhibitor. Agent.
  4.  白金製剤が、シスプラチンである、請求項3記載の増強剤。 4. The enhancer according to claim 3, wherein the platinum preparation is cisplatin.
  5.  (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストが、心房性ナトリウム利尿ペプチド又は脳性ナトリウム利尿ペプチドである、請求項1~4いずれかに記載の増強剤。 The enhancer according to any one of claims 1 to 4, wherein the (A) natriuretic peptide receptor GC-A agonist is an atrial natriuretic peptide or a brain natriuretic peptide.
  6.  心房性ナトリウム利尿ペプチドが、
    (1)配列表の配列番号1又は2に記載のアミノ酸配列からなるペプチド、及び
    (2)配列表の配列番号1又は2に記載のアミノ酸配列において1~数個のアミノ酸が置換、欠失、挿入及び/又は付加された配列からなり、かつ、ナトリウム利尿ペプチド受容体GC-Aに対してアゴニスト活性を有するペプチド
    である、請求項5記載の増強剤。
    Atrial natriuretic peptide
    (1) a peptide comprising the amino acid sequence set forth in SEQ ID NO: 1 or 2 in the sequence listing, and (2) 1 to several amino acids in the amino acid sequence set forth in SEQ ID NO: 1 or 2 in the sequence listing are substituted, deleted, 6. The enhancer according to claim 5, which is a peptide comprising an inserted and / or added sequence and having agonist activity for the natriuretic peptide receptor GC-A.
  7.  (A)ナトリウム利尿ペプチド受容体GC-Aアゴニスト、及び(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤を組み合わせてなる医薬。 (A) A pharmaceutical comprising a combination of a natriuretic peptide receptor GC-A agonist and (B ′) a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor.
  8.  配合剤である、請求項7記載の医薬。 The medicine according to claim 7, which is a combination drug.
  9.  (A)ナトリウム利尿ペプチド受容体GC-Aアゴニスト、及び(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤が併用されることを特徴とする、請求項7記載の医薬。 The medicament according to claim 7, wherein (A) a natriuretic peptide receptor GC-A agonist and (B ') a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor are used in combination.
  10.  (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストと(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤とが同時または順次に投与されることを特徴とする、請求項9に記載の医薬。 10. (A) A natriuretic peptide receptor GC-A agonist and (B ′) a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor are administered simultaneously or sequentially. The pharmaceutical described.
  11.  (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストと(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤とが別々に投与されることを特徴とする、請求項9に記載の医薬。 10. The (A) natriuretic peptide receptor GC-A agonist and (B ′) a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor are administered separately. Medicine.
  12.  (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストが、心房性ナトリウム利尿ペプチド又は脳性ナトリウム利尿ペプチドである、請求項7~11いずれかに記載の医薬。 The medicament according to any one of claims 7 to 11, wherein (A) the natriuretic peptide receptor GC-A agonist is atrial natriuretic peptide or brain natriuretic peptide.
  13.  心房性ナトリウム利尿ペプチドが、
    (1)配列表の配列番号1又は2に記載のアミノ酸配列からなるペプチド、及び
    (2)配列表の配列番号1又は2に記載のアミノ酸配列において1~数個のアミノ酸が置換、欠失、挿入及び/又は付加された配列からなり、かつ、ナトリウム利尿ペプチド受容体GC-Aに対してアゴニスト活性を有するペプチド
    から選ばれる、請求項12記載の医薬。
    Atrial natriuretic peptide
    (1) a peptide comprising the amino acid sequence set forth in SEQ ID NO: 1 or 2 in the sequence listing, and (2) 1 to several amino acids in the amino acid sequence set forth in SEQ ID NO: 1 or 2 in the sequence listing are substituted, deleted, The medicament according to claim 12, which is selected from peptides having an inserted and / or added sequence and having agonist activity against the natriuretic peptide receptor GC-A.
  14.  微小管阻害作用を有する化合物が、タキサン系抗悪性腫瘍剤である、請求項7~13いずれかに記載の医薬。 The medicament according to any one of claims 7 to 13, wherein the compound having a microtubule inhibitory action is a taxane antineoplastic agent.
  15.  タキサン系抗悪性腫瘍剤が、ドセタキセルである、請求項14記載の医薬。 The medicament according to claim 14, wherein the taxane antineoplastic agent is docetaxel.
  16.  PD-1経路阻害剤が、PD-1、PD-L1、及びPD-L2から選ばれる少なくとも1種に対する阻害剤から選択される、請求項7~13いずれかに記載の医薬。 The medicament according to any one of claims 7 to 13, wherein the PD-1 pathway inhibitor is selected from inhibitors against at least one selected from PD-1, PD-L1, and PD-L2.
  17.  PD-1経路阻害剤が、PD-1もしくはPD-1リガンドに対する抗体又はPD-1もしくはPD-1リガンドに対する抗体をコードする核酸である、請求項7~13いずれかに記載の医薬。 The medicament according to any one of claims 7 to 13, wherein the PD-1 pathway inhibitor is an antibody against PD-1 or PD-1 ligand or a nucleic acid encoding an antibody against PD-1 or PD-1 ligand.
  18.  悪性腫瘍の治療又は悪性化の抑制のために用いられる、請求項7~17のいずれかに記載の医薬。 The medicament according to any one of claims 7 to 17, which is used for treatment of malignant tumors or suppression of malignant transformation.
  19.  (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを含有する、(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤の悪性腫瘍の治療効果の増強剤。 (A) An agent for enhancing the therapeutic effect of a malignant tumor of a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor, which contains a natriuretic peptide receptor GC-A agonist.
  20.  (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを有効成分として含む、(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤と併用するための医薬組成物。 (A) A pharmaceutical composition for use in combination with a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor, which comprises a natriuretic peptide receptor GC-A agonist as an active ingredient.
  21.  (B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤を有効成分として含む、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストと併用するための医薬組成物。 (B ′) A pharmaceutical composition for use in combination with a natriuretic peptide receptor GC-A agonist, comprising a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor as an active ingredient.
  22.  悪性腫瘍の治療又は悪性化の抑制のために用いられる、請求項20又は21記載の医薬組成物。 The pharmaceutical composition according to claim 20 or 21, which is used for treatment of malignant tumor or suppression of malignant transformation.
  23.  (A)ナトリウム利尿ペプチド受容体GC-Aアゴニストを有効成分として含む、(B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤による治療を受けている患者用の医薬組成物。 (A) A pharmaceutical composition for a patient who is treated with a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor, comprising a natriuretic peptide receptor GC-A agonist as an active ingredient.
  24.  (B’)微小管阻害作用を有する化合物又はPD-1経路阻害剤を有効成分として含む、(A)ナトリウム利尿ペプチド受容体GC-Aアゴニストによる治療を受けている患者用の医薬組成物。 (B ′) A pharmaceutical composition for a patient undergoing treatment with a natriuretic peptide receptor GC-A agonist, comprising a compound having a microtubule inhibitory action or a PD-1 pathway inhibitor as an active ingredient.
  25.  ナトリウム利尿ペプチド受容体GC-Aアゴニストを含有する、肺線維症又は間質性肺炎の予防又は治療のために用いられる医薬組成物。 A pharmaceutical composition containing a natriuretic peptide receptor GC-A agonist and used for the prevention or treatment of pulmonary fibrosis or interstitial pneumonia.
  26.  ナトリウム利尿ペプチド受容体GC-Aアゴニストが、心房性ナトリウム利尿ペプチド又は脳性ナトリウム利尿ペプチドである、請求項25記載の医薬組成物。 26. The pharmaceutical composition according to claim 25, wherein the natriuretic peptide receptor GC-A agonist is atrial natriuretic peptide or brain natriuretic peptide.
  27.  心房性ナトリウム利尿ペプチドが、
    (1)配列表の配列番号1又は2に記載のアミノ酸配列からなるペプチド、及び
    (2)配列表の配列番号1又は2に記載のアミノ酸配列において1~数個のアミノ酸が置換、欠失、挿入及び/又は付加された配列からなり、かつ、ナトリウム利尿ペプチド受容体GC-Aに対してアゴニスト活性を有するペプチド
    である、請求項26記載の医薬組成物。
    Atrial natriuretic peptide
    (1) a peptide comprising the amino acid sequence set forth in SEQ ID NO: 1 or 2 in the sequence listing, and (2) 1 to several amino acids in the amino acid sequence set forth in SEQ ID NO: 1 or 2 in the sequence listing are substituted, deleted, 27. The pharmaceutical composition according to claim 26, which is a peptide comprising an inserted and / or added sequence and having agonistic activity against the natriuretic peptide receptor GC-A.
  28.  ナトリウム利尿ペプチド受容体GC-Aアゴニストを投与することを特徴とする、肺線維症又は間質性肺炎の予防又は治療方法。 A method for preventing or treating pulmonary fibrosis or interstitial pneumonia, comprising administering a natriuretic peptide receptor GC-A agonist.
  29.  肺線維症又は間質性肺炎の予防又は治療のための、ナトリウム利尿ペプチド受容体GC-Aアゴニスト。 Natriuretic peptide receptor GC-A agonist for the prevention or treatment of pulmonary fibrosis or interstitial pneumonia.
PCT/JP2016/082919 2015-11-12 2016-11-07 New use for npr-a agonist WO2017082186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017550300A JP6782932B2 (en) 2015-11-12 2016-11-07 New Uses of NPR-A Agonists

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015222136 2015-11-12
JP2015-222136 2015-11-12

Publications (1)

Publication Number Publication Date
WO2017082186A1 true WO2017082186A1 (en) 2017-05-18

Family

ID=58695375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/082919 WO2017082186A1 (en) 2015-11-12 2016-11-07 New use for npr-a agonist

Country Status (2)

Country Link
JP (1) JP6782932B2 (en)
WO (1) WO2017082186A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10441654B2 (en) 2014-01-24 2019-10-15 Children's Hospital Of Eastern Ontario Research Institute Inc. SMC combination therapy for the treatment of cancer
US11066469B2 (en) 2019-06-12 2021-07-20 Novartis Ag Natriuretic peptide receptor 1 antibodies and methods of use
WO2021252931A3 (en) * 2020-06-12 2022-02-03 Pharmain Corporation C-type natriuretic peptides and methods thereof in treating cancer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118042A1 (en) * 2011-02-28 2012-09-07 独立行政法人国立循環器病研究センター Medicinal agent for inhibiting metastasis of malignant tumor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118042A1 (en) * 2011-02-28 2012-09-07 独立行政法人国立循環器病研究センター Medicinal agent for inhibiting metastasis of malignant tumor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AKITAKA MAKIYAMA ET AL.: "Aratana Kotai Chiryo no Tenkai Aratani Kaihatsu sareta Kotai Chiryo Igan", MOLECULAR TARGETED THERAPY FOR CANCER, vol. 13, no. 2, 24 July 2015 (2015-07-24), pages 194 - 202, ISSN: 1347-6955 *
BALIGA,R.S. ET AL.: "Intrinsic defence capacity and therapeutic potential of natriuretic peptides in pulmonary hypertension associated with lung fibrosis", BR. J. PHARMACOL., vol. 171, no. 14, July 2014 (2014-07-01), pages 3463 - 3475, XP055384130, ISSN: 1476-5381 *
KENJIRO NAMIKAWA: "Tokushu . Hifu Akusei Shuyo Akusei Kokushokushu ni Taisuru Bunshi Hyoteki Chiryo", THE JOURNAL OF MEDICINE, vol. 72, no. 2, 27 January 2015 (2015-01-27), pages 247 - 254, ISSN: 0389-3898 *
SHINSUKE MURAKAMI ET AL.: "POS116 C Type Natriuretic Peptide wa Koensho Sayo, Kosen'ika Sayo ni yori Mouse Hai Sen'isho o Keigen saseru", THE JOURNAL OF THE JAPANESE RESPIRATORY SOCIETY, vol. 43, 10 April 2005 (2005-04-10), pages 150, ISSN: 1343-3490 *
YOSHIHIKO TOMITA: "Tokushu Hinyokigan ni Taisuru Men'eki Ryoho no Genjo to Shin Tenkai Shinki Men'eki Ryoho (Immune checkpoint inhibitor) -Jin Saibogan o Chushin ni", JAPANESE JOURNAL OF UROLOGICAL SURGERY, vol. 28, no. 7, 15 July 2015 (2015-07-15), pages 1157 - 1163, ISSN: 0914-6180 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10441654B2 (en) 2014-01-24 2019-10-15 Children's Hospital Of Eastern Ontario Research Institute Inc. SMC combination therapy for the treatment of cancer
US11066469B2 (en) 2019-06-12 2021-07-20 Novartis Ag Natriuretic peptide receptor 1 antibodies and methods of use
WO2021252931A3 (en) * 2020-06-12 2022-02-03 Pharmain Corporation C-type natriuretic peptides and methods thereof in treating cancer

Also Published As

Publication number Publication date
JP6782932B2 (en) 2020-11-11
JPWO2017082186A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP7157181B2 (en) Use of plinabulin in combination with immune checkpoint inhibitors
JP7095028B2 (en) Pharmaceutical compositions and methods
US20210338701A1 (en) Dna hypomethylating agents for cancer therapy
EP3851122A1 (en) Methods of reversing cachexia and prolonging survival comprising administering a gdf15 modulator and an anti-cancer agent
JP2023524530A (en) Triple therapy to enhance cancer cell killing in poorly immunogenic cancers
JP5948683B2 (en) Medicament for inhibiting malignant tumor metastasis
JP6782932B2 (en) New Uses of NPR-A Agonists
US20100330093A1 (en) Treatment of melanoma with alpha thymosin peptides in combination with antibodies against cytotoxic t lymphocyte-associated antigen 4 (ctla4)
US20160256460A1 (en) Activators or stimulators of soluble guanylate cyclase for use in treating chronic fatigue syndrome
CA3149324A1 (en) Combined cancer therapy of anti-galectin-9 antibodies and chemotherapeutics
US20200093789A1 (en) Cancer Treatment with a CXCL12 Signaling Inhibitor and an Immune Checkpoint Inhibitor
JP6928611B2 (en) combination
US20240034788A1 (en) Abscopal therapy for cancer
KR102239752B1 (en) Pharmaceutical composition for preventing or treating cancer comprising PD-L1 antibody and cancer-specific prodrug nanocomplex
JP6038795B2 (en) Pharmaceutical for preventing exacerbation of malignant tumor comprising a combination of natriuretic peptide receptor GC-A agonist and GC-B agonist
WO2020036987A1 (en) Peptides and compositions for targeted treatment and imaging
WO2024011946A1 (en) Polypeptide dimers for the treatment of systemic sclerosis
US20170281574A1 (en) Method and Kit for Treating a Solid Tumor and Associated Desmoplasia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16864147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017550300

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16864147

Country of ref document: EP

Kind code of ref document: A1