WO2017081857A1 - Adsorption-member support body - Google Patents

Adsorption-member support body Download PDF

Info

Publication number
WO2017081857A1
WO2017081857A1 PCT/JP2016/004812 JP2016004812W WO2017081857A1 WO 2017081857 A1 WO2017081857 A1 WO 2017081857A1 JP 2016004812 W JP2016004812 W JP 2016004812W WO 2017081857 A1 WO2017081857 A1 WO 2017081857A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxyhydroxide
adsorbent carrier
adsorbent
particles
carrier according
Prior art date
Application number
PCT/JP2016/004812
Other languages
French (fr)
Japanese (ja)
Inventor
載泰 廣川
剛 野一色
木村 信夫
正登 天池
Original Assignee
高橋金属株式会社
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高橋金属株式会社, 日本曹達株式会社 filed Critical 高橋金属株式会社
Priority to JP2017549983A priority Critical patent/JP6835319B2/en
Publication of WO2017081857A1 publication Critical patent/WO2017081857A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Definitions

  • the present invention relates to an adsorbent comprising particles having iron oxyhydroxide as a main component supported on a porous support.
  • Patent Document 4 discloses that a raw water in which an adsorbent such as iron hydroxide fine particles is mixed in a treatment layer filled with rectangular sponge-like granules and foamed synthetic resin globules is passed in an upward flow. A method for removing phosphorus is described. This method is not suitable for phosphorus desorption or repeated use of adsorbents.
  • Patent Document 5 describes a phosphate ion remover in which iron ions are supported on zeolite as iron hydroxide.
  • Patent Document 6 describes an adsorbent produced by filling a synthetic resin foam cavity with iron oxyhydroxide having an average particle size of 0.5 to 2 mm.
  • Patent Document 7 describes an anion adsorbent in which a microcrystalline iron hydroxide material is supported on a continuous porous molded body made of a synthetic resin. Specifically, the molded body is supported by drying after being immersed in a liquid containing iron hydroxide substance particles having a diameter of 1 ⁇ m or more and a binder such as a polymer.
  • the adsorbent is usually used in a porous granular form, and the amount of adsorption can be increased by making the adsorbent porous.
  • the process in which the substance to be adsorbed reaches the porous pores becomes rate-determining, it takes time to achieve sufficient adsorption, which is not always practical.
  • the fine particle dispersion is used as an adsorbent, it is not easy to collect or use repeatedly. Then, this inventor aims at providing the adsorbent carrier which carry
  • the present inventors diligently studied to solve the above problems. As a result, the dispersion of fine particles mainly composed of specific iron oxyhydroxide can be easily supported on the porous material without necessarily using other binders, and this support is easy to recover. It was found that it exhibits high adsorption efficiency.
  • the present invention has been completed based on the above findings.
  • the present invention relates to the following inventions.
  • the anion adsorbent carrier according to (7), wherein the binder is a polyolefin resin.
  • the anion adsorbent carrier containing 1 g of iron oxyhydroxide is introduced into 150 mL of an aqueous potassium dihydrogen phosphate solution having a phosphorous conversion concentration of 400 mg / L adjusted to pH 3.5 with hydrochloric acid, In the batch type adsorption test conducted with stirring, the anion adsorbent carrying material according to any one of (6) to (10), wherein after 24 hours, the phosphorus-equivalent adsorption amount per gram of iron oxyhydroxide is 25 mg or more body.
  • the anion adsorbent carrier containing 1 g of iron oxyhydroxide is put into 150 mL of an aqueous potassium dihydrogen phosphate solution having a phosphorus conversion concentration of 400 mg / L adjusted to pH 3.5 with hydrochloric acid, (6) to (11), characterized in that, in a batch test conducted with stirring at pH, the pH after 24 hours rises by 0.3 or more with respect to the pH after 1 hour.
  • Anion adsorbent carrier is
  • a method for producing an adsorbent carrier comprising drying.
  • a porous support is impregnated with a dispersion in which particles having an average particle diameter d50 containing iron oxyhydroxide as a main component and having an average particle diameter d50 of 5 ⁇ m or more and dispersed in a solvent are dried.
  • the manufacturing method of the adsorbent carrier including carrying out.
  • the adsorbent of the present invention it is possible to obtain an adsorbent that is excellent in adsorption speed and adsorption efficiency and that can be easily recovered and repeatedly used after adsorption.
  • FIG. 4 is a diagram showing a TEM image of iron oxyhydroxide crystals obtained in Reference Example 1.
  • FIG. It is a figure which shows the particle size distribution of the 10 micrometer mesh classification product of powder B and powder B.
  • the adsorbent carrier of the present invention is an adsorbent carrier formed by supporting particles mainly composed of iron oxyhydroxide on a porous support, and has a BET specific surface area of 50 m 2 / g or more. It is.
  • particle means that the component mainly composed of iron oxyhydroxide is present continuously in the adsorbent carrier, not continuously, and the presence state is maintained by the porous support. This means that the shape of the particles themselves is not limited. Further, “supported” expresses the state of the adsorbent carrier, and does not limit the manufacturing method.
  • the adsorbent carrier of the present invention preferably has a large specific surface area.
  • the BET specific surface area is preferably 100 m 2 / g or more.
  • Iron oxyhydroxide is excellent in adsorptivity to anions.
  • the particles containing iron oxyhydroxide as a main component in the adsorbent carrier of the present invention have a content of iron oxyhydroxide of 99% by mass or more and a content of substances other than iron compounds of 1% by mass or less. Preferably there is. Most preferably, the content of iron oxyhydroxide is substantially 100% by mass.
  • Iron oxyhydroxide includes ⁇ -type, ⁇ -type, ⁇ -type, amorphous type, and the like depending on the crystal structure.
  • ⁇ -iron oxyhydroxide is particularly excellent in terms of adsorption performance, and adsorbents such as phosphate ions, phosphite ions, hypophosphite ions, sulfate ions, nitrate ions, fluoride ions, etc. Suitable for It is also suitable as a raw material for the nanodispersion because it is easy to form a stable nanodispersion.
  • ⁇ -iron oxyhydroxide generally has a hydroxyl group partially substituted by chloride ions. When in contact with water during manufacture or use, the chloride ions are removed leaving small vacancies.
  • the iron oxyhydroxide in the adsorbent carrier of the present invention is preferably ⁇ -iron oxyhydroxide because it has a large specific surface area and high anion adsorption efficiency.
  • the particles containing iron oxyhydroxide as a main component preferably have an average crystallite diameter of 10 nm or less, and more preferably 3 nm or less. It has been clarified by the present inventors that the smaller the average crystallite size, the higher the phosphate adsorption rate when used as a phosphate adsorbent in water.
  • the adsorbent carrier of the present invention preferably has a true density of 2 g / cm 3 or more, depending on the type of support.
  • the true density can be measured, for example, by a method based on JIS Z 8807.
  • the porous support has a low density, and the true density can be adjusted to the above range by supporting a certain amount or more of particles mainly composed of ⁇ -iron oxyhydroxide. More specifically, in the adsorbent carrier of the present invention, it is preferable that particles containing ⁇ -iron oxyhydroxide as a main component account for 60% by mass or more of the total amount of the adsorbent carrier.
  • the adsorbent carrier of the present invention is not particularly limited in its production method, but as a raw material for particles mainly composed of ⁇ -iron oxyhydroxide, a solid component mainly composed of ⁇ -iron oxyhydroxide is fixed. It is preferable to use a dispersion composed of particles pulverized to a particle size of 1 and a solvent.
  • Examples of a method for producing the dispersion include a method (manufacturing method A) in which the dispersion is directly wet-pulverized in a solvent. In this method, it is preferable to grind until the average particle diameter d50 is 0.2 ⁇ m or less.
  • the average particle diameter is more preferably 0.02 to 0.2 ⁇ m, and further preferably 0.05 to 0.15 ⁇ m.
  • d90 is preferably 1 ⁇ m or less, and the particle diameter is preferably in the range of 0.01 to 1 ⁇ m.
  • crystallization is granular.
  • granular means that it is not needle-shaped or plate-shaped, and more specifically, the ratio of the major axis / minor axis of the crystal is 3 or less.
  • water or a solution containing water as a main component is most easily and preferably used as an aqueous dispersion.
  • a dispersion in another solvent such as an organic solvent can be obtained by solvent replacement from the aqueous dispersion.
  • a dispersion in the solvent can be obtained.
  • the dispersion liquid to this solvent can be obtained by mixing a solvent with a boiling point higher than water in an aqueous dispersion liquid, and removing water with a rotary evaporator.
  • the dispersion obtained by the above method is preferably a nano-dispersion from the viewpoint that the production of the adsorbent carrier is easier.
  • the nano-dispersion is a dispersion in which so-called nanoparticles having a particle size of 1 ⁇ m or less are dispersed in a liquid phase, and the particles do not settle by standing or normal centrifugation.
  • a binder is not necessarily required.
  • Examples of the method for producing the dispersion include a method (manufacturing method B) in which particles obtained by dry pulverization are dispersed in a solvent. This method is preferable when the average particle diameter d50 is 5 ⁇ m or more. In this case, the average particle size is preferably 70 ⁇ m or less.
  • a binder is used in combination, or instead of the binder, a dispersion obtained by wet pulverization in the above solvent and dispersing as it is used in combination. Is preferred.
  • the dispersion can be supported by a method in which the dispersion is mixed and dispersed in the raw material of the support and thereafter molded, or a method of externally adding to the solid support.
  • a method in which the dispersion is mixed and dispersed in the raw material of the support and thereafter molded or a method of externally adding to the solid support.
  • various resins are used as the raw material of the support, and fine particles are used in the solvent having compatibility with the resin as the dispersion. It is preferable to use a dispersed one.
  • the method of drying a support body after immersing a support body in the said dispersion liquid is preferable.
  • the solvent of the dispersion is not particularly limited, and water, various organic solvents, a mixture thereof, or a solution in which additives such as a binder, a surfactant, and an antifoaming agent are dissolved in the above liquid as necessary. .
  • a dispersion obtained by pulverizing particles containing ⁇ -iron oxyhydroxide as a main component in a solvent until the average particle diameter d50 is 0.2 ⁇ m or less is used as the dispersion, the particles themselves Since it has the same effect as a binder, a binder is not necessarily required.
  • This method is preferable in that it is easy to operate, and the particles having ⁇ -iron oxyhydroxide as a main component are supported on the surface of the support and can be efficiently adsorbed and desorbed.
  • the solid containing ⁇ -iron oxyhydroxide as a main component is preferably a dry gel obtained by a method including a step of reacting an iron compound-containing solution with a base to form a precipitate at pH 9 or lower.
  • the iron compound is preferably an iron salt, particularly a trivalent iron salt. Specific examples include ferric chloride, ferric sulfate, and ferric nitrate. Among these, ferric chloride is particularly preferable.
  • the base is used to neutralize the acidic iron compound aqueous solution and generate a precipitate containing iron oxyhydroxide. Specific examples include sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, sodium carbonate, potassium carbonate, calcium carbonate and the like.
  • sodium hydroxide is particularly preferable. More preferably, the pH during the purification of the precipitate is adjusted to a range of pH 3.3 to 6.
  • the precipitate containing iron oxyhydroxide as a main component obtained by the above method can be collected by filtration and dried to form a dry gel.
  • a step of drying the precipitate and a step of drying the precipitate after bringing it into contact with water.
  • the step of drying the precipitate is preferably performed at 120 ° C. or less, and more preferably at 100 to 120 ° C.
  • the drying temperature requires a long time at a low temperature and is not suitable for efficient production. Further, there is a tendency that the number of anion adsorption sites tends to decrease at a high temperature, and even higher temperature is not preferable because it changes to iron oxide. Drying can be done in air, vacuum, or in an inert gas.
  • the dry gel obtained by the above method contains ⁇ -iron oxyhydroxide as a main component.
  • the adsorbent carrier of the present invention can be used in the gas phase, for example, to adsorb harmful substances in the exhaust gas, but is preferably used in the liquid phase.
  • an adsorbent when used in the liquid phase, it takes time for the components contained in the liquid to reach the pores due to diffusion, so it takes time to reach the adsorption equilibrium.
  • the adsorbent if the adsorbent is dispersed in the liquid as fine particles, the adsorption equilibrium is quickly reached, but there is a problem in the separation and recovery of the fine particles.
  • the adsorbent carrier of the present invention is particularly suitable for use in a liquid phase because it has the purpose of simultaneously solving these problems.
  • the above liquid phase can be used without any problem as long as the portion other than the adsorbent carrier is a uniform liquid phase.
  • an organic solvent solution can be used, but removal of harmful substances, recovery of useful substances, etc.
  • the adsorbent carrier of the present invention is particularly suitable for an anion adsorbent. Furthermore, it is suitable for a fluorine and phosphoric acid adsorbent, and is particularly suitable for a phosphoric acid adsorbent.
  • a binder for binding the adsorbent and the carrier is not necessarily required, but in order to strengthen the bond and withstand long-term repeated use, a binder is used in combination. May be.
  • a binder is preferably stable in the range of pH 2.5 to pH 12.5 and more preferably stable in the range of pH 1 to 14 so that there is no inconvenience when used as an anion adsorbent carrier.
  • the binder should not lower the adsorption performance by covering the surface of the adsorbent.
  • the material of the binder is not particularly limited as long as it meets the above conditions.
  • an inorganic compound can be used.
  • Inorganic compounds generally take the form of particles, and therefore are less likely to cover the surface of the adsorbent and are suitable for binders.
  • the ratio of the mass of particles mainly composed of iron oxyhydroxide, in particular the average particle size d50 of 5 ⁇ m or more, to the mass of the binder is preferably 7: 3 to 10: 0.
  • the inorganic compound examples include a metal compound selected from zirconium, titanium, and tin.
  • a metal compound selected from zirconium, titanium, and tin examples include a metal compound selected from zirconium, titanium, and tin.
  • the above-mentioned metal oxides or hydroxides are preferable.
  • a dispersion composed of zirconium oxide is particularly preferable.
  • the zirconium oxide dispersion is used as a binder, particles mainly composed of iron oxyhydroxide are supported not only on the surface of the support but also on the pores in the support, thereby adsorbing the adsorbent support. Efficiency is very high.
  • the mass ratio of particles mainly composed of iron oxyhydroxide and zirconium oxide is preferably 8: 2 to 9.5: 0.5. Even if zirconium oxide is further increased, the adsorption efficiency is not further increased, and this range is preferable from the viewpoint of cost.
  • the binder may be a polyolefin resin. Some resins may cover the surface of the adsorbent, but polyolefin resins are hydrophobic and thus do not have such a fear.
  • the polyolefin resin is preferably in the form of an emulsion from the viewpoint of easy production of the adsorbent carrier.
  • polyolefin resins include polyethylene (low density polyethylene such as linear low density polyethylene, medium density polyethylene, high density polyethylene, etc.), polypropylene, ethylene-propylene copolymer, ethylene or propylene and other ⁇ -olefins.
  • the copolymer include copolymers of ethylene or propylene with unsaturated monomers such as (meth) acrylic acid, (meth) acrylic acid ester, vinyl acetate, vinyl alcohol, and styrene.
  • the support used for the adsorbent support of the present invention is not particularly limited as long as it is porous, but is stable particularly in the range of pH 2.5 to pH 12.5 so that there is no inconvenience when used as an anion adsorbent support. And is more preferably stable in the range of pH 1-14.
  • the support used for the adsorbent carrier of the present invention is also preferably a porous polymer material from the viewpoint of easy processing. Even when only water is used as the solvent, the porous polymer material can be used regardless of whether it is hydrophilic or hydrophobic.
  • the polymer material include natural polymers such as cellulose, semi-synthetic polymers such as cellulose derivatives, polyolefin, polystyrene, polyacrylic acid ester, polyvinyl acetate, polyvinyl chloride, polyvinyl alcohol, polyurethane, polyester, and polycarbonate. And synthetic polymers such as phenol resin, urea resin, and polyimide. Of these, polyolefin resins are particularly preferable.
  • the polyolefin-based resin is hydrophobic, the adsorption performance is not deteriorated by covering the surface of the adsorbent.
  • various methods such as a phase separation method, a foaming method, a fusion method, an extraction method, a chemical treatment method, and a stretching method can be used.
  • the shape of a support body is not specifically limited, Sponge shape, a sheet form, a particulate form etc. are illustrated, From these, it selects suitably according to a use.
  • the spongy one is not particularly limited in specific shape (square, spherical, etc.), but the adsorbent is easily carried inside during the production of the carrier, and the liquid to be adsorbed can be quickly brought into the interior during use. It is preferable that the size is smaller in terms of reaching. Further, from the same meaning, it is more preferable to be in the form of a sheet or particles, and the thickness of the sheet or the diameter of the particles is preferably 5 mm or less. Moreover, you may use combining several things from each said shape.
  • the support may be preliminarily shaped as described above, but may be prepared to have a specific shape or size by cutting the carrier after production.
  • the adsorbent carrier of the present invention is characterized by a high adsorption rate, similar to the dispersion.
  • This adsorption rate can be measured by the following batch adsorption test.
  • a 150 mL aqueous solution of potassium dihydrogen phosphate having a phosphorus conversion concentration of 400 mg / L adjusted to a constant pH with hydrochloric acid is prepared. 1 g of adsorbent is put into this and stirred at room temperature. After a certain period of time, the aqueous solution is sampled and the phosphate ion concentration is measured to determine the amount of adsorption.
  • the phosphate ion adsorption amount is obtained over time, and the final adsorption amount can be estimated from the adsorption amount at the time when the change with time is lost. More simply, the final adsorption amount can be estimated from the adsorption amount after 24 hours.
  • the adsorbent carrier of the present invention has a phosphorus equivalent adsorption amount of 25 mg or more, preferably 30 mg or more after 24 hours.
  • the adsorbent carrier of the present invention is characterized in that the pH rises remarkably in the process of using it as an anion adsorbent in water. This is specifically shown by the following method.
  • a 150 mL aqueous solution of potassium dihydrogen phosphate having a phosphorus conversion concentration of 400 mg / L adjusted to a constant pH with hydrochloric acid is prepared.
  • 1 g of adsorbent carrier is put into this and stirred at room temperature. The aqueous solution is sampled after a certain time and the pH is measured.
  • the pH of the aqueous solution after 24 hours rises by 0.3 or more relative to the pH of the aqueous solution after 1 hour.
  • ⁇ -iron oxyhydroxide used as the material of the adsorbent carrier of the present invention hardly changes the pH of the aqueous solution even when used as an adsorbent when not pulverized.
  • the adsorbed anions are exchanged with hydroxyl groups, and the anions are directly bonded to the adsorbent, and at the same time, the hydroxyl groups are converted into hydroxide ions as water ions.
  • the pH of the aqueous solution rises.
  • substitution does not occur in ⁇ -iron oxyhydroxide that has not been subjected to a treatment such as pulverization, and therefore no increase in pH occurs.
  • the content of chlorine ions in the ⁇ -iron oxyhydroxide used in the present invention is preferably 0.5% by mass or more, and more preferably 3% by mass or more.
  • the adsorbent carrier of the present invention not only simply adsorbs anions, but then the anion binds to the adsorbent carrier and does not easily dissociate, and therefore exhibits high adsorption efficiency. it is conceivable that.
  • the X-ray diffraction (XRD) pattern was measured using an X-ray diffractometer Ultima IV (manufactured by Rigaku Corporation). A CuK ⁇ tube was used for the measurement. The average crystallite size was calculated from XRD according to Scherrer's formula.
  • the specific surface area was measured by a gas adsorption method using a specific surface area measuring device MacsorbHM 1210 (manufactured by Mountec).
  • TEM observation The TEM (transmission electron microscope) observation of the sample was performed using a transmission electron microscope JEM 2010F (manufactured by JEOL, acceleration voltage 200 kV).
  • the particle size, particle size distribution, cumulative 50% particle size (D50), and cumulative 90% particle size (D90) of the nano-dispersion liquid are measured using a dynamic light scattering particle size distribution analyzer Zeta Sizer Nano S (Spectres). Measured. (True density) True density measurement by a He gas substitution method (dry density meter: Accupic 1340TC, manufactured by Shimadzu Corporation / Micromeritex Corporation) was performed.
  • NaOH ferric chloride
  • FeCl 3 ferric chloride
  • the particle diameter of the oxyhydroxide powder (powder A) obtained as described above was 0.25 mm to 5 mm. It was confirmed by X-ray diffraction that the crystal structure was ⁇ -iron oxyhydroxide and the average crystallite size was 5 nm.
  • FIG. 1 shows a state observed with a transmission electron microscope (TEM). Most of the crystal shapes were granular with an aspect ratio of 1: 3 or less. The crystallite diameter by TEM observation was 5 to 10 nm, and each crystal was granular, and these were condensed to form particles. The specific surface area was 280 m 2 / g, and the chloride ion content was 5.8 wt%.
  • Reference Example 2 (Production of iron oxyhydroxide adsorbent particles) Iron oxyhydroxide powder (powder A) was dry-pulverized with a pin mill to obtain a powder (powder B) having a particle size distribution shown in FIG. Powder B had a particle size range of 0.6 to 300 ⁇ m and an average particle size of 26.5 ⁇ m.
  • Reference Example 4 Production of nano-dispersion of iron oxyhydroxide
  • Powder B was mixed in ion-exchanged water so as to have a solid content concentration of 10% by mass, and then coarsely pulverized with a bead mill (zirconia beads, bead diameter: 1 mm) for 30 minutes to obtain a suspension. This was further pulverized with a bead mill (zirconia beads, bead diameter 0.1 mm) for 60 minutes to obtain dispersion D. By this pulverization, the liquid suspended in brown was changed to a black and transparent nano-dispersion D.
  • the pH of the nanodispersion D was 2.8, the average particle diameter d50 was 0.15 ⁇ m, d90 was 0.27 ⁇ m, and the isoelectric point was pH 7.1.
  • the crystal structure of the powder obtained by drying the dispersion D at 50 ° C. was ⁇ -iron oxyhydroxide, the crystallite diameter was 2 nm, and the specific surface area was 285 m 2 / g.
  • Dispersion E used in Examples 3 and 4 below is a nano-dispersion of zirconia (ZrO 2 ) having a particle size of 60 to 100 nm, pH 2.2, and a solid content concentration of 10% by mass, and was used as a binder. .
  • Support 1 polymer continuous pore sponge, 1 cm square, porosity 90%
  • Support 2 Polyolefin water absorbent sheet, thickness 2 mm, water absorption 1000% ⁇ Preparation of adsorbent carrier>
  • Example 1 The support 1 was impregnated with the dispersion D and dried to produce a support 1 having an iron oxyhydroxide content of 78.0 wt% in the support.
  • Example 2 The support 2 was impregnated with the dispersion D and dried, and further cut into 1 cm square to produce a support 2 having an iron oxyhydroxide content of 78.1 wt% in the support.
  • Test example 1 Potassium dihydrogen phosphate was dissolved in ion-exchanged water, the pH was adjusted to 3.5 with hydrochloric acid, and a test solution G having a phosphorus conversion concentration of 400 mg / L was prepared.
  • a test solution G having a phosphorus conversion concentration of 400 mg / L was prepared.
  • an amount containing 1 g of iron oxyhydroxide of each of the carriers 1 to 4 was immersed and stirred at room temperature to perform an adsorption test.
  • the liquid was collected after a predetermined time, separated from the solid content with a filter syringe, and the phosphorus concentration in the solution was analyzed by ICP (inductively coupled plasma method) to calculate the phosphorus adsorption amount.
  • ICP inductively coupled plasma method
  • the adsorbent carrier of the present invention is excellent in the adsorption rate and adsorption amount of phosphoric acid. Moreover, the characteristic that pH rose with adsorption of phosphoric acid was shown.
  • Test example 2 (alkali resistance test) The supports 1 to 4 were immersed in a hydrochloric acid solution having a pH of 2.5 and a sodium hydroxide solution having a pH of 12.5 for 1 week each, washed with water, dried, and inspected for appearance. For all the supports, there was no change before and after the test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Compounds Of Iron (AREA)

Abstract

The purpose of the present invention is to provide an adsorption-member support body for supporting a microparticle dispersion that principally comprises an iron oxyhydroxide, said support body allowing adsorption to be conducted in a high-efficiency manner and the adsorption member to be easy to separate. In this adsorbent-member support body, particles principally comprising an iron oxyhydroxide are supported on a porous support, and the adsorbent-member support body has a BET specific surface area of 50 m2/g or greater. β-iron oxyhydroxide is preferable as the iron oxyhydroxide. The average crystallite diameter of the particles is preferably 10 nm or less, and the true density of the particles is preferably 2 g/cm3 or more.

Description

吸着材担持体Adsorbent carrier
 本発明は、オキシ水酸化鉄を主成分とする粒子を多孔質の支持体に担持してなる吸着材に関する。
 本願は、2015年11月10日に出願された日本国特許出願第2015-220647号に対し優先権を主張し、その内容をここに援用する。
The present invention relates to an adsorbent comprising particles having iron oxyhydroxide as a main component supported on a porous support.
This application claims priority to Japanese Patent Application No. 2015-220647 filed on November 10, 2015, the contents of which are incorporated herein by reference.
 各種の排水から、環境や人体に有害性を有する物質を除去し浄化するため、あるいは希少金属等の有用物質を回収するために、吸着材や、それを用いた吸着方法、吸着物質の脱着・回収方法等が盛んに研究されている。
 例えば、リンは肥料成分として、また化学工業にも不可欠の成分であるが、日本においてはほぼ100%を輸入に頼っている。一方で排水中に多量のリンが含まれる場合は、富栄養化の原因となるため、このような排水を排出することは環境に好ましくない。これらの問題を一挙に解決するために、排水中に含まれるリン酸等のリン化合物の除去および回収が注目されている。
 リン化合物やその他の陰イオンを効率的に吸着、回収できる吸着材として、オキシ水酸化鉄(FeOOH)からなるものが開発されており、特許文献1、2、3等に記載されている。
In order to remove and purify substances that are harmful to the environment and the human body from various wastewaters, or to recover useful substances such as rare metals, adsorbents, adsorption methods using them, desorption / desorption of adsorbed substances, The collection method is actively researched.
For example, phosphorus is an indispensable component as a fertilizer component and also in the chemical industry, but in Japan, almost 100% depends on imports. On the other hand, when a large amount of phosphorus is contained in the wastewater, it causes eutrophication, and it is not preferable for the environment to discharge such wastewater. In order to solve these problems all at once, removal and recovery of phosphorus compounds such as phosphoric acid contained in waste water have attracted attention.
As an adsorbent capable of efficiently adsorbing and recovering phosphorus compounds and other anions, those made of iron oxyhydroxide (FeOOH) have been developed and described in Patent Documents 1, 2, 3 and the like.
 これらのオキシ水酸化鉄からなる吸着材は、マイクロメートルからナノメートル単位の微細粒子とすれば、比表面積が大きくなり吸着性能が優れたものとなる。しかしそのまま吸着材として用いるには困難な場合もあり、解決法として、支持体に担持して使用することが考えられる。
 この用途に関して、特許文献4には、角形スポンジ状粒状物と発泡合成樹脂小球を充填した処理層に、水酸化鉄微粒子等の吸着材を混合した原水を上向流で通水する、水中のリンの除去方法が記載されている。この方法はリンの脱着や吸着材の反復使用には適していない。
 特許文献5には、ゼオライトに鉄イオンを水酸化鉄として担持させたリン酸イオン除去剤が記載されている。
 特許文献6には、合成樹脂フォームのキャビティ中に平均粒径0.5~2mmのオキシ水酸化鉄が充填された形で製造された吸着材が記載されている。
 特許文献7には、微結晶質の水酸化鉄系物質を、合成樹脂製の連通多孔性成形体に担持させた陰イオン吸着材が記載されている。具体的には径1μm以上の水酸化鉄系物質粒子およびポリマー等のバインダーを含む液中に、成形体を浸漬後、乾燥させることにより担持させている。
If these adsorbents made of iron oxyhydroxide are made into fine particles of micrometer to nanometer units, the specific surface area becomes large and the adsorption performance is excellent. However, it may be difficult to use as an adsorbent as it is, and as a solution, it can be considered to be supported on a support.
With respect to this application, Patent Document 4 discloses that a raw water in which an adsorbent such as iron hydroxide fine particles is mixed in a treatment layer filled with rectangular sponge-like granules and foamed synthetic resin globules is passed in an upward flow. A method for removing phosphorus is described. This method is not suitable for phosphorus desorption or repeated use of adsorbents.
Patent Document 5 describes a phosphate ion remover in which iron ions are supported on zeolite as iron hydroxide.
Patent Document 6 describes an adsorbent produced by filling a synthetic resin foam cavity with iron oxyhydroxide having an average particle size of 0.5 to 2 mm.
Patent Document 7 describes an anion adsorbent in which a microcrystalline iron hydroxide material is supported on a continuous porous molded body made of a synthetic resin. Specifically, the molded body is supported by drying after being immersed in a liquid containing iron hydroxide substance particles having a diameter of 1 μm or more and a binder such as a polymer.
特開2006-124239号公報JP 2006-124239 A WO2006/088083号パンフレットWO2006 / 088083 pamphlet 特開2011-235222号公報JP 2011-235222 A 特開平8-89951号公報JP-A-8-89951 特開平10-192845号公報JP-A-10-192845 特開2005-320548号公報JP 2005-320548 A 特開2005-270933号公報JP 2005-270933 A
 吸着材は通常、多孔質の粒状形態で用いられており、多孔質にすることで吸着量を増大させることができる。しかしながら、吸着対象物質が多孔質の細孔内に達する過程が律速となるため、十分な吸着を達成するには時間がかかり、必ずしも実用的ではなかった。
 また、微粒子分散体を吸着材として用いようとすると、回収や反復使用が容易でない。そこで本発明者は、高い吸着効率と、吸着材の容易な分離とを両立させることのできる、微粒子分散体を担持した吸着材担持体を提供することを目的とする。 
The adsorbent is usually used in a porous granular form, and the amount of adsorption can be increased by making the adsorbent porous. However, since the process in which the substance to be adsorbed reaches the porous pores becomes rate-determining, it takes time to achieve sufficient adsorption, which is not always practical.
In addition, if the fine particle dispersion is used as an adsorbent, it is not easy to collect or use repeatedly. Then, this inventor aims at providing the adsorbent carrier which carry | supported the fine particle dispersion which can make high adsorption | suction efficiency and easy separation of adsorbent compatible.
 本発明者らは、上記課題を解決すべく鋭意検討した。その結果、特定のオキシ水酸化鉄を主成分とする微粒子の分散液は、多孔質材料に、必ずしも他のバインダー等を用いずとも容易に担持させることができ、この担持体は回収が容易でありながら高い吸着効率を発揮することを見出した。本発明は以上の知見を基に完成されたものである。 The present inventors diligently studied to solve the above problems. As a result, the dispersion of fine particles mainly composed of specific iron oxyhydroxide can be easily supported on the porous material without necessarily using other binders, and this support is easy to recover. It was found that it exhibits high adsorption efficiency. The present invention has been completed based on the above findings.
 すなわち、本発明は、以下の発明に関する。
(1)オキシ水酸化鉄を主成分とする粒子を多孔質の支持体に担持してなる、BET比表面積が50m/g以上の吸着材担持体。
(2)前記オキシ水酸化鉄がβ-オキシ水酸化鉄である、(1)に記載の吸着材担持体。
(3)前記粒子の平均結晶子径が10nm以下である、(1)又は(2)に記載の吸着材担持体。
(4)真密度が2g/cm以上である、(1)~(3)のいずれかに記載の吸着材担持体。
(5)オキシ水酸化鉄を主成分とする粒子が総量の60質量%以上を占める、(1)~(4)のいずれかに記載の吸着材担持体。
(6)陰イオン吸着材担持体である、(1)~(5)のいずれかに記載の吸着材担持体。
(7)さらにバインダーを含有し、該バインダーがpH2.5~12.5の範囲で安定である、(6)に記載の吸着材担持体。
(8)バインダーが鉄、ジルコニウム、チタンおよびスズから選ばれる少なくとも1種の金属の化合物である、(7)に記載の陰イオン吸着材担持体。
(9)バインダーがポリオレフィン系樹脂である、(7)に記載の陰イオン吸着材担持体。
(10)前記多孔質の支持体がポリオレフィン系樹脂からなるものである、(6)~(9)のいずれかに記載の陰イオン吸着材担持体。
(11)塩酸でpHを3.5に調整したリン換算濃度400mg/Lのリン酸二水素カリウム水溶液150mL中に、オキシ水酸化鉄1gを含有する前記陰イオン吸着材担持体を投入し、室温で撹拌して行う回分式の吸着試験において、24時間後にオキシ水酸化鉄1g当たりのリン換算吸着量が25mg以上である、(6)~(10)のいずれかに記載の陰イオン吸着材担持体。
(12)塩酸でpHを3.5に調整したリン換算濃度400mg/Lのリン酸二水素カリウム水溶液150mL中に、オキシ水酸化鉄1gを含有する前記陰イオン吸着材担持体を投入し、室温で撹拌して行う回分式の試験において、1時間後のpHに対し、24時間後のpHが0.3以上上昇することを特徴とする、(6)~(11)のいずれかに記載の陰イオン吸着材担持体。
(13)オキシ水酸化鉄を主成分とする粒子を溶媒中で平均粒径d50が0.2μm以下となるまで粉砕したものを含有する分散液を、多孔質の支持体へ含浸させた後、乾燥することを含む吸着材担持体の製造方法。
(14)オキシ水酸化鉄を主成分とする平均粒径d50が5μm以上である粒子と、バインダーとが、溶媒に分散してなる分散液を、多孔質の支持体へ含浸させた後、乾燥することを含む吸着材担持体の製造方法。
(15)前記バインダーが、オキシ水酸化鉄を主成分とする平均粒径d50が0.2μm以下である粒子を含む、(14)に記載の吸着材担持体の製造方法。
That is, the present invention relates to the following inventions.
(1) An adsorbent carrier having a BET specific surface area of 50 m 2 / g or more, comprising particles having iron oxyhydroxide as a main component supported on a porous support.
(2) The adsorbent carrier according to (1), wherein the iron oxyhydroxide is β-iron oxyhydroxide.
(3) The adsorbent carrier according to (1) or (2), wherein the average crystallite size of the particles is 10 nm or less.
(4) The adsorbent carrier according to any one of (1) to (3), wherein the true density is 2 g / cm 3 or more.
(5) The adsorbent carrier according to any one of (1) to (4), wherein the particles mainly composed of iron oxyhydroxide account for 60% by mass or more of the total amount.
(6) The adsorbent carrier according to any one of (1) to (5), which is an anion adsorbent carrier.
(7) The adsorbent carrier according to (6), further comprising a binder, wherein the binder is stable in the range of pH 2.5 to 12.5.
(8) The anion adsorbent carrier according to (7), wherein the binder is a compound of at least one metal selected from iron, zirconium, titanium, and tin.
(9) The anion adsorbent carrier according to (7), wherein the binder is a polyolefin resin.
(10) The anion adsorbent carrier according to any one of (6) to (9), wherein the porous support is made of a polyolefin resin.
(11) The anion adsorbent carrier containing 1 g of iron oxyhydroxide is introduced into 150 mL of an aqueous potassium dihydrogen phosphate solution having a phosphorous conversion concentration of 400 mg / L adjusted to pH 3.5 with hydrochloric acid, In the batch type adsorption test conducted with stirring, the anion adsorbent carrying material according to any one of (6) to (10), wherein after 24 hours, the phosphorus-equivalent adsorption amount per gram of iron oxyhydroxide is 25 mg or more body.
(12) The anion adsorbent carrier containing 1 g of iron oxyhydroxide is put into 150 mL of an aqueous potassium dihydrogen phosphate solution having a phosphorus conversion concentration of 400 mg / L adjusted to pH 3.5 with hydrochloric acid, (6) to (11), characterized in that, in a batch test conducted with stirring at pH, the pH after 24 hours rises by 0.3 or more with respect to the pH after 1 hour. Anion adsorbent carrier.
(13) After impregnating a porous support with a dispersion containing particles in which iron oxyhydroxide as a main component is pulverized in a solvent until the average particle size d50 is 0.2 μm or less, A method for producing an adsorbent carrier comprising drying.
(14) A porous support is impregnated with a dispersion in which particles having an average particle diameter d50 containing iron oxyhydroxide as a main component and having an average particle diameter d50 of 5 μm or more and dispersed in a solvent are dried. The manufacturing method of the adsorbent carrier including carrying out.
(15) The method for producing an adsorbent carrier according to (14), wherein the binder includes particles having an average particle diameter d50 having iron oxyhydroxide as a main component and not more than 0.2 μm.
 本発明の吸着材を使用することにより、吸着速度及び吸着効率が優れ、しかも吸着後の回収及び反復使用が容易な吸着材が得られる。 By using the adsorbent of the present invention, it is possible to obtain an adsorbent that is excellent in adsorption speed and adsorption efficiency and that can be easily recovered and repeatedly used after adsorption.
参考例1で得られたオキシ水酸化鉄結晶のTEM像を示す図である。4 is a diagram showing a TEM image of iron oxyhydroxide crystals obtained in Reference Example 1. FIG. 粉末B、及び粉末Bの10μmメッシュ分級品の粒度分布を示す図である。It is a figure which shows the particle size distribution of the 10 micrometer mesh classification product of powder B and powder B.
(吸着材担持体)
 本発明の吸着材担持体は、オキシ水酸化鉄を主成分とする粒子を、多孔質の支持体に担持してなる吸着材担持体であって、BET比表面積が50m/g以上のものである。
 ここで「粒子」とは、オキシ水酸化鉄を主成分とする成分が、吸着材担持体中において連続的ではなく断続的に存在し、多孔質の支持体によって該存在状態が維持されていることを意味するものであって、粒子自体の形状を限定するものではない。また「担持してなる」とは、吸着材担持体の状態を表現するものであって、製造方法を限定するものではない。
(Adsorbent carrier)
The adsorbent carrier of the present invention is an adsorbent carrier formed by supporting particles mainly composed of iron oxyhydroxide on a porous support, and has a BET specific surface area of 50 m 2 / g or more. It is.
Here, the term “particle” means that the component mainly composed of iron oxyhydroxide is present continuously in the adsorbent carrier, not continuously, and the presence state is maintained by the porous support. This means that the shape of the particles themselves is not limited. Further, “supported” expresses the state of the adsorbent carrier, and does not limit the manufacturing method.
 本発明の吸着材担持体は、比表面積が大きい方が好ましい。具体的には、BET比表面積が100m2/g以上であることが好ましい。 The adsorbent carrier of the present invention preferably has a large specific surface area. Specifically, the BET specific surface area is preferably 100 m 2 / g or more.
 オキシ水酸化鉄は、陰イオンに対する吸着性に優れている。
 本発明の吸着材担持体における、オキシ水酸化鉄を主成分とする粒子は、オキシ水酸化鉄の含有率が99質量%以上であり、鉄化合物以外の物質の含有率は1質量%以下であることが好ましい。オキシ水酸化鉄の含有率が実質的に100質量%であるものが最も好ましい。
 オキシ水酸化鉄には、結晶構造の相違によって、α型、β型、γ型、非晶質型等がある。これらのうち、β-オキシ水酸化鉄が、吸着性能の点で特に優れており、リン酸イオン、亜リン酸イオン、次亜リン酸イオン、硫酸イオン、硝酸イオン、フッ化物イオン等の吸着材に適している。また安定なナノ分散液を形成しやすい点でナノ分散液の原料としても適している。
 β-オキシ水酸化鉄は、一般に、水酸基の一部が塩化物イオンにより置換されている。製造または使用の過程で水と接触すると、この塩化物イオンが除去されて小型の空孔が残る。この空孔がフッ素等の陰イオンの吸着に関与すると考えられており、さらに本発明における効率的な陰イオン吸着もこの空孔に由来する特徴であると考えられる。
 本発明の吸着材担持体におけるオキシ水酸化鉄が、比表面積が大きく、陰イオン吸着効率が高い点で、β-オキシ水酸化鉄が好ましい。
Iron oxyhydroxide is excellent in adsorptivity to anions.
The particles containing iron oxyhydroxide as a main component in the adsorbent carrier of the present invention have a content of iron oxyhydroxide of 99% by mass or more and a content of substances other than iron compounds of 1% by mass or less. Preferably there is. Most preferably, the content of iron oxyhydroxide is substantially 100% by mass.
Iron oxyhydroxide includes α-type, β-type, γ-type, amorphous type, and the like depending on the crystal structure. Of these, β-iron oxyhydroxide is particularly excellent in terms of adsorption performance, and adsorbents such as phosphate ions, phosphite ions, hypophosphite ions, sulfate ions, nitrate ions, fluoride ions, etc. Suitable for It is also suitable as a raw material for the nanodispersion because it is easy to form a stable nanodispersion.
β-iron oxyhydroxide generally has a hydroxyl group partially substituted by chloride ions. When in contact with water during manufacture or use, the chloride ions are removed leaving small vacancies. These vacancies are considered to be involved in the adsorption of anions such as fluorine, and efficient anion adsorption in the present invention is also considered to be a feature derived from these vacancies.
The iron oxyhydroxide in the adsorbent carrier of the present invention is preferably β-iron oxyhydroxide because it has a large specific surface area and high anion adsorption efficiency.
 前記のオキシ水酸化鉄を主成分とする粒子は、平均結晶子径が10nm以下であることが好ましく、3nm以下であることがより好ましい。
 この平均結晶子径が小さいほど、水中でリン酸吸着材として使用する場合のリン酸吸着速度が高いことが、本発明者らにより明らかにされた。
 平均結晶子径Dは、X線回折でβ-オキシ水酸化鉄に特徴的な2θ=35°付近の回折線から、下記のシェラーの式を用いて計算される。
 D=Kλ/βcosθ
 ただし、βは装置に起因する機械幅を補正した真の回折ピークの半値幅、Kはシェラー定数、λはX線の波長である。
 このような、平均結晶子径が3nm以下であるβ-オキシ水酸化鉄を主成分とする粒子は、後述のように、固体状のβ-オキシ水酸化鉄を湿式粉砕することにより得ることができる。
The particles containing iron oxyhydroxide as a main component preferably have an average crystallite diameter of 10 nm or less, and more preferably 3 nm or less.
It has been clarified by the present inventors that the smaller the average crystallite size, the higher the phosphate adsorption rate when used as a phosphate adsorbent in water.
The average crystallite diameter D is calculated from the diffraction line near 2θ = 35 ° characteristic of β-iron oxyhydroxide by X-ray diffraction, using the following Scherrer equation.
D = Kλ / βcos θ
Where β is the half width of the true diffraction peak corrected for the machine width caused by the apparatus, K is the Scherrer constant, and λ is the wavelength of the X-ray.
Such particles mainly composed of β-iron oxyhydroxide having an average crystallite diameter of 3 nm or less can be obtained by wet-grinding solid β-iron oxyhydroxide as described later. it can.
 本発明の吸着材担持体は、支持体の種類にもよるが、真密度が2g/cm以上であることが好ましい。真密度は、例えば、JIS Z 8807に準拠した方法により測定することができる。多孔質の支持体は低密度であって、β-オキシ水酸化鉄を主成分とする粒子を一定量以上これに担持することにより、真密度を上記範囲とすることができる。
 より具体的には、本発明の吸着材担持体は、β-オキシ水酸化鉄を主成分とする粒子が、吸着材担持体総量の60質量%以上を占めることが好ましい。
 本発明の吸着材担持体を上記いずれかの範囲とすることにより、高効率の吸着を達成することができる。
The adsorbent carrier of the present invention preferably has a true density of 2 g / cm 3 or more, depending on the type of support. The true density can be measured, for example, by a method based on JIS Z 8807. The porous support has a low density, and the true density can be adjusted to the above range by supporting a certain amount or more of particles mainly composed of β-iron oxyhydroxide.
More specifically, in the adsorbent carrier of the present invention, it is preferable that particles containing β-iron oxyhydroxide as a main component account for 60% by mass or more of the total amount of the adsorbent carrier.
By making the adsorbent carrier of the present invention in any of the above ranges, highly efficient adsorption can be achieved.
(製造方法)
 本発明の吸着材担持体は、その製造方法において特に限定されないが、β-オキシ水酸化鉄を主成分とする粒子の原料としては、β-オキシ水酸化鉄を主成分とする固形成分を一定の粒度に粉砕した粒子と、溶媒とからなる分散液を用いることが好ましい。
(Production method)
The adsorbent carrier of the present invention is not particularly limited in its production method, but as a raw material for particles mainly composed of β-iron oxyhydroxide, a solid component mainly composed of β-iron oxyhydroxide is fixed. It is preferable to use a dispersion composed of particles pulverized to a particle size of 1 and a solvent.
 該分散液の製造方法としては、例えば、溶媒中で湿式粉砕してそのまま分散させる方法(製造法A)が挙げられる。この方法では、平均粒径d50が0.2μm以下となるまで粉砕することが好ましい。平均粒径は0.02~0.2μmであることがより好ましく、0.05~0.15μmであることがさらに好ましい。またd90が1μm以下とすることが好ましく、粒径が0.01~1μmの範囲にあることが好ましい。 Examples of a method for producing the dispersion include a method (manufacturing method A) in which the dispersion is directly wet-pulverized in a solvent. In this method, it is preferable to grind until the average particle diameter d50 is 0.2 μm or less. The average particle diameter is more preferably 0.02 to 0.2 μm, and further preferably 0.05 to 0.15 μm. Further, d90 is preferably 1 μm or less, and the particle diameter is preferably in the range of 0.01 to 1 μm.
 また前記湿式粉砕により得られる粒子においては、結晶の形状は粒状である。ここで粒状とは、針状あるいは板状ではないということを意味し、より具体的には、結晶の長径/短径の比が3以下である。
 以上で用いる溶媒としては、水または水を主成分とする溶液を用いて、水性分散液とすることが最も容易であり好ましい。
Moreover, in the particle | grains obtained by the said wet grinding, the shape of a crystal | crystallization is granular. Here, granular means that it is not needle-shaped or plate-shaped, and more specifically, the ratio of the major axis / minor axis of the crystal is 3 or less.
As the solvent used above, water or a solution containing water as a main component is most easily and preferably used as an aqueous dispersion.
 一方、有機溶媒等の他の溶媒を要する場合には、水性分散液から溶媒置換により有機溶媒等の他の溶媒中における分散液とすることもできる。例えば、限外濾過膜中で水性分散液に溶媒を混合しながら溶媒交換を行うことにより、該溶媒への分散液を得ることができる。また、水性分散液に水よりも沸点の高い溶媒を混合しロータリーエバポレーター等で水を除去することにより、該溶媒への分散液を得ることができる。
 以上の方法で得られる分散液は、さらに吸着材担持体の製造が容易である点から、ナノ分散液であることが好ましい。ナノ分散液とは、粒径1μm以下のいわゆるナノ粒子が液相中に分散してなる分散液で、静置や通常の遠心操作によって粒子が沈降しないものをいう。
 以上の各分散液を原料として本発明の吸着材担持体を製造する場合は、必ずしもバインダーは必要ではない。
On the other hand, when another solvent such as an organic solvent is required, a dispersion in another solvent such as an organic solvent can be obtained by solvent replacement from the aqueous dispersion. For example, by performing solvent exchange while mixing a solvent in an aqueous dispersion in an ultrafiltration membrane, a dispersion in the solvent can be obtained. Moreover, the dispersion liquid to this solvent can be obtained by mixing a solvent with a boiling point higher than water in an aqueous dispersion liquid, and removing water with a rotary evaporator.
The dispersion obtained by the above method is preferably a nano-dispersion from the viewpoint that the production of the adsorbent carrier is easier. The nano-dispersion is a dispersion in which so-called nanoparticles having a particle size of 1 μm or less are dispersed in a liquid phase, and the particles do not settle by standing or normal centrifugation.
When the adsorbent carrier of the present invention is produced using the above dispersions as raw materials, a binder is not necessarily required.
 該分散液の製造方法としては、また、例えば、乾式粉砕により得られた粒子を溶媒中に分散させる方法(製造法B)が挙げられる。この方法では、平均粒径d50を5μm以上とする場合に好ましい。この場合、平均粒径は70μm以下であることが好ましい。この分散液を原料として本発明の吸着材担持体を製造する場合は、バインダーを併用するか、またはバインダーに代えて、前記の溶媒中で湿式粉砕してそのまま分散させてなる分散液を併用するのが好ましい。 Examples of the method for producing the dispersion include a method (manufacturing method B) in which particles obtained by dry pulverization are dispersed in a solvent. This method is preferable when the average particle diameter d50 is 5 μm or more. In this case, the average particle size is preferably 70 μm or less. When the adsorbent carrier of the present invention is produced using this dispersion as a raw material, a binder is used in combination, or instead of the binder, a dispersion obtained by wet pulverization in the above solvent and dispersing as it is is used in combination. Is preferred.
 次いで、前記分散液を、支持体の原料に混合分散させた後にこれから成形を行う方法、あるいは固形の支持体に外部から添加する方法により、担持させることができる。これらにより、吸着性能に優れ、しかも回収、脱着等の操作が容易な吸着材の製造が可能である。 Next, the dispersion can be supported by a method in which the dispersion is mixed and dispersed in the raw material of the support and thereafter molded, or a method of externally adding to the solid support. As a result, it is possible to produce an adsorbent that is excellent in adsorption performance and that can be easily collected and desorbed.
 支持体の原料に混合分散させた後にこれから成形を行う方法を用いる場合、支持体の原料としては各種の樹脂を用い、前記分散液としては、この樹脂に対して相溶性を有する溶媒に微粒子を分散させたものを用いるのが好ましい。 When using a method in which molding is performed after mixing and dispersing in the raw material of the support, various resins are used as the raw material of the support, and fine particles are used in the solvent having compatibility with the resin as the dispersion. It is preferable to use a dispersed one.
 固形の支持体に外部から前記分散液を添加する方法を用いる場合、前記分散液に、支持体を浸漬したのち、支持体を乾燥させる方法が好ましい。
 前記分散液の溶媒は特に限定されず、水、各種の有機溶媒、これらの混合物、あるいは以上の液体に必要に応じて例えばバインダー、界面活性剤、消泡剤等の添加剤を溶解させた溶液、が挙げられる。
 前記分散液として、β-オキシ水酸化鉄を主成分とする粒子を溶媒中で平均粒径d50が0.2μm以下となるまで粉砕してなる分散液を用いた場合には、該粒子自体がバインダーと同様の効果を有するため、バインダーは必ずしも要しない。
 この方法は、操作が容易であり、しかもβ-オキシ水酸化鉄を主成分とする粒子が支持体表面に担持されて効率的な吸着および脱着が可能となる点で好ましい。
When using the method of adding the said dispersion liquid from the exterior to a solid support body, the method of drying a support body after immersing a support body in the said dispersion liquid is preferable.
The solvent of the dispersion is not particularly limited, and water, various organic solvents, a mixture thereof, or a solution in which additives such as a binder, a surfactant, and an antifoaming agent are dissolved in the above liquid as necessary. .
When a dispersion obtained by pulverizing particles containing β-iron oxyhydroxide as a main component in a solvent until the average particle diameter d50 is 0.2 μm or less is used as the dispersion, the particles themselves Since it has the same effect as a binder, a binder is not necessarily required.
This method is preferable in that it is easy to operate, and the particles having β-iron oxyhydroxide as a main component are supported on the surface of the support and can be efficiently adsorbed and desorbed.
 前記のβ-オキシ水酸化鉄を主成分とする固体としては、鉄化合物含有溶液を塩基と反応させpH9以下で沈殿物を生成させる工程を含む方法により得られる乾燥ゲルが好ましい。
 前記の鉄化合物としては、鉄塩、特に3価の鉄塩が好ましい。具体的には、塩化第二鉄、硫酸第二鉄、硝酸第二鉄等を挙げることができ、この中で特に塩化第二鉄が好ましい。
 前記の塩基は、酸性の鉄化合物水溶液を中和しオキシ水酸化鉄を含む沈殿を生成させるために使用する。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム等を挙げることができ、この中で特に水酸化ナトリウムが好ましい。
 沈殿物の精製の際のpHは、pH3.3~6の範囲に調整することがより好ましい。
 以上の方法で得られたオキシ水酸化鉄を主成分とする沈殿物は、濾別して回収することができ、これを乾燥すれば乾燥ゲルとなる。
The solid containing β-iron oxyhydroxide as a main component is preferably a dry gel obtained by a method including a step of reacting an iron compound-containing solution with a base to form a precipitate at pH 9 or lower.
The iron compound is preferably an iron salt, particularly a trivalent iron salt. Specific examples include ferric chloride, ferric sulfate, and ferric nitrate. Among these, ferric chloride is particularly preferable.
The base is used to neutralize the acidic iron compound aqueous solution and generate a precipitate containing iron oxyhydroxide. Specific examples include sodium hydroxide, potassium hydroxide, calcium hydroxide, ammonia, sodium carbonate, potassium carbonate, calcium carbonate and the like. Among these, sodium hydroxide is particularly preferable.
More preferably, the pH during the purification of the precipitate is adjusted to a range of pH 3.3 to 6.
The precipitate containing iron oxyhydroxide as a main component obtained by the above method can be collected by filtration and dried to form a dry gel.
 さらに以上の工程の後に、沈殿物を乾燥させる工程、および該乾燥物を水と接触させた後、乾燥させる工程を実施することが好ましい。
 沈殿物を乾燥させる工程は、120℃以下で行うことが好ましく、100~120℃で行うことがより好ましい。乾燥温度は、低温では時間を要し効率的な製造に適しない。また高温では陰イオン吸着サイトが少なくなる傾向があり、さらに高温では酸化鉄に変化するので好ましくない。乾燥は、空気中、真空中、または不活性ガス中で行うことができる。
 乾燥物を水と接触させる工程では、塩化ナトリウム等の不純物が溶出して後に細孔を残し、比表面積が増大するとともに陰イオン吸着サイトも増加すると考えられる。
 乾燥物を水と接触させた後、水を除去して、再度乾燥させる。この乾燥工程も上記と同様の条件で行うことが好ましい。
 以上の方法により得られる乾燥ゲルは、β-オキシ水酸化鉄を主成分として含む。
Further, after the above steps, it is preferable to carry out a step of drying the precipitate, and a step of drying the precipitate after bringing it into contact with water.
The step of drying the precipitate is preferably performed at 120 ° C. or less, and more preferably at 100 to 120 ° C. The drying temperature requires a long time at a low temperature and is not suitable for efficient production. Further, there is a tendency that the number of anion adsorption sites tends to decrease at a high temperature, and even higher temperature is not preferable because it changes to iron oxide. Drying can be done in air, vacuum, or in an inert gas.
In the step of bringing the dried product into contact with water, impurities such as sodium chloride are eluted to leave pores later, and the specific surface area is increased and the anion adsorption site is also increased.
After contacting the dried product with water, the water is removed and dried again. This drying step is also preferably performed under the same conditions as described above.
The dry gel obtained by the above method contains β-iron oxyhydroxide as a main component.
 本発明の吸着材担持体は、気相中で、例えば排ガス中の有害物質等を吸着するために使用することもできるが、液相中で使用することが好ましい。
 一般に、液相中で吸着材を使用する場合、液体に含まれる成分が拡散により細孔中に達するには時間を要するため、吸着平衡に達するのには時間を要する。一方吸着材を微粒子として液中に分散させれば速やかに吸着平衡に達するが、微粒子の分離、回収に問題がある。本発明の吸着材担持体は、これらの問題を同時に解決する目的を有するものであるから、液相中で使用するのに特に適している。
 上記の液相としては、吸着材担持体以外の部分が均一な液相であれば問題なく使用可能であり、例えば有機溶媒溶液も用いることができるが、有害物質の除去、有用物質の回収等を目的として、水溶液中で使用することが好ましい。
 本発明の吸着材担持体は、特に、陰イオン吸着材に適している。さらにフッ素及びリン酸吸着材に適しており、中でもリン酸吸着材に適している。
The adsorbent carrier of the present invention can be used in the gas phase, for example, to adsorb harmful substances in the exhaust gas, but is preferably used in the liquid phase.
In general, when an adsorbent is used in the liquid phase, it takes time for the components contained in the liquid to reach the pores due to diffusion, so it takes time to reach the adsorption equilibrium. On the other hand, if the adsorbent is dispersed in the liquid as fine particles, the adsorption equilibrium is quickly reached, but there is a problem in the separation and recovery of the fine particles. The adsorbent carrier of the present invention is particularly suitable for use in a liquid phase because it has the purpose of simultaneously solving these problems.
The above liquid phase can be used without any problem as long as the portion other than the adsorbent carrier is a uniform liquid phase. For example, an organic solvent solution can be used, but removal of harmful substances, recovery of useful substances, etc. For the purpose of, it is preferable to use in an aqueous solution.
The adsorbent carrier of the present invention is particularly suitable for an anion adsorbent. Furthermore, it is suitable for a fluorine and phosphoric acid adsorbent, and is particularly suitable for a phosphoric acid adsorbent.
 本発明の吸着材担持体の製造に当たっては、吸着材と担体とを結合するためのバインダーは必ずしも必要ないが、結合をより強固にして長期反復使用に耐えるものとするために、バインダーを併用してもよい。特に、β-オキシ水酸化鉄を主成分とする粒子の平均粒径d50が5μm以上である場合には、バインダーを併用することが好ましい。
 バインダーは、陰イオン吸着材担持体として使用するにあたって不都合がないよう、pH2.5~pH12.5の範囲で安定であることが好ましく、pH1~14の範囲で安定であることがより好ましい。
 またバインダーは、吸着材の表面を覆うことによって吸着性能を低下させるものであってはならない。
 バインダーの材質は、以上の条件に合致すれば特に限定されないが、例えば無機化合物を用いることができる。無機化合物は一般に粒子状の形状をとるため、吸着材の表面を覆うことが少なく、バインダーに適している。
In the production of the adsorbent carrier of the present invention, a binder for binding the adsorbent and the carrier is not necessarily required, but in order to strengthen the bond and withstand long-term repeated use, a binder is used in combination. May be. In particular, when the average particle diameter d50 of particles containing β-iron oxyhydroxide as a main component is 5 μm or more, it is preferable to use a binder in combination.
The binder is preferably stable in the range of pH 2.5 to pH 12.5 and more preferably stable in the range of pH 1 to 14 so that there is no inconvenience when used as an anion adsorbent carrier.
Also, the binder should not lower the adsorption performance by covering the surface of the adsorbent.
The material of the binder is not particularly limited as long as it meets the above conditions. For example, an inorganic compound can be used. Inorganic compounds generally take the form of particles, and therefore are less likely to cover the surface of the adsorbent and are suitable for binders.
 オキシ水酸化鉄を主成分とする粒子、特に平均粒径d50が5μm以上である粒子の質量と、バインダーの質量との比は、7:3~10:0であることが好ましい。 The ratio of the mass of particles mainly composed of iron oxyhydroxide, in particular the average particle size d50 of 5 μm or more, to the mass of the binder is preferably 7: 3 to 10: 0.
 前記無機化合物としては、ジルコニウム、チタン及びスズから選ばれる金属の化合物が例示される。特に、上掲の金属の酸化物又は水酸化物が好ましい。
 このうち特に、酸化ジルコニウムからなる分散液が好ましい。酸化ジルコニウム分散液をバインダーとして用いると、オキシ水酸化鉄を主成分とする粒子が、支持体表面部のみならず、支持体中の細孔にまで担持され、これによって本吸着材担持体の吸着効率は非常に高いものとなる。
 この場合、オキシ水酸化鉄を主成分とする粒子と、酸化ジルコニウムとの質量比は、8:2~9.5:0.5が好ましい。酸化ジルコニウムをさらに多くしても、吸着効率がさらに高まるものではなく、費用の点から見てもこの範囲であることが好ましい。
Examples of the inorganic compound include a metal compound selected from zirconium, titanium, and tin. In particular, the above-mentioned metal oxides or hydroxides are preferable.
Among these, a dispersion composed of zirconium oxide is particularly preferable. When the zirconium oxide dispersion is used as a binder, particles mainly composed of iron oxyhydroxide are supported not only on the surface of the support but also on the pores in the support, thereby adsorbing the adsorbent support. Efficiency is very high.
In this case, the mass ratio of particles mainly composed of iron oxyhydroxide and zirconium oxide is preferably 8: 2 to 9.5: 0.5. Even if zirconium oxide is further increased, the adsorption efficiency is not further increased, and this range is preferable from the viewpoint of cost.
 一方、バインダーはポリオレフィン系樹脂であってもよい。樹脂には、吸着材の表面を覆う恐れがあるものもあるが、ポリオレフィン系樹脂は、疎水性であるため、このような恐れがない。また吸着材担持体の製造が容易である点から、ポリオレフィン系樹脂は、エマルジョン形態であることが好ましい。
 ポリオレフィン系樹脂としては、ポリエチレン(直鎖状低密度ポリエチレン等の低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン等)、ポリプロピレン、エチレン-プロピレン共重合体、エチレン又はプロピレンと他のα-オレフィンとの共重合体、さらにエチレン又はプロピレンと(メタ)アクリル酸、(メタ)アクリル酸エステル、酢酸ビニル、ビニルアルコール、スチレン等の不飽和単量体との共重合体等が例示される。
On the other hand, the binder may be a polyolefin resin. Some resins may cover the surface of the adsorbent, but polyolefin resins are hydrophobic and thus do not have such a fear. The polyolefin resin is preferably in the form of an emulsion from the viewpoint of easy production of the adsorbent carrier.
Examples of polyolefin resins include polyethylene (low density polyethylene such as linear low density polyethylene, medium density polyethylene, high density polyethylene, etc.), polypropylene, ethylene-propylene copolymer, ethylene or propylene and other α-olefins. Examples of the copolymer include copolymers of ethylene or propylene with unsaturated monomers such as (meth) acrylic acid, (meth) acrylic acid ester, vinyl acetate, vinyl alcohol, and styrene.
 本発明の吸着材担持体に用いる支持体は、多孔質であれば特に限定されないが、陰イオン吸着材担持体として使用するにあたって不都合がないよう、特にpH2.5~pH12.5の範囲で安定であることが好ましく、pH1~14の範囲で安定であることがより好ましい。 The support used for the adsorbent support of the present invention is not particularly limited as long as it is porous, but is stable particularly in the range of pH 2.5 to pH 12.5 so that there is no inconvenience when used as an anion adsorbent support. And is more preferably stable in the range of pH 1-14.
 本発明の吸着材担持体に用いる支持体は、また、加工が容易である点から、多孔質高分子材料であることが好ましい。
 溶媒として水のみを用いる場合でも、多孔質高分子材料としては、親水性か疎水性かに関わりなく使用することができる。高分子材料として具体的には、セルロース等の天然高分子、セルロース誘導体等の半合成高分子、ポリオレフィン、ポリスチレン、ポリアクリル酸エステル、ポリ酢酸ビニル、ポリ塩化ビニル、ポリビニルアルコール、ポリウレタン、ポリエステル、ポリカーボネート、フェノール樹脂、尿素樹脂、ポリイミド等の合成高分子を挙げることができる。
 このうち、ポリオレフィン系樹脂が特に好ましい。既述のように、ポリオレフィン系樹脂は疎水性であるため、吸着材の表面を覆って吸着性能を低下させることがない。
 またこれらの材料を多孔質にする方法としては、相分離法、発泡法、融着法、抽出法、化学処理法、延伸法等の各種方法を用いることができる。
The support used for the adsorbent carrier of the present invention is also preferably a porous polymer material from the viewpoint of easy processing.
Even when only water is used as the solvent, the porous polymer material can be used regardless of whether it is hydrophilic or hydrophobic. Specific examples of the polymer material include natural polymers such as cellulose, semi-synthetic polymers such as cellulose derivatives, polyolefin, polystyrene, polyacrylic acid ester, polyvinyl acetate, polyvinyl chloride, polyvinyl alcohol, polyurethane, polyester, and polycarbonate. And synthetic polymers such as phenol resin, urea resin, and polyimide.
Of these, polyolefin resins are particularly preferable. As described above, since the polyolefin-based resin is hydrophobic, the adsorption performance is not deteriorated by covering the surface of the adsorbent.
In addition, as a method for making these materials porous, various methods such as a phase separation method, a foaming method, a fusion method, an extraction method, a chemical treatment method, and a stretching method can be used.
 支持体の形状は、特に限定されないが、スポンジ状、シート状、粒子状等が例示され、これらから用途に応じて適宜選択される。このうちスポンジ状のものは、具体的な形状(角形、球形等)は特に限定されないが、担持体製造時に吸着材が内部に容易に担持され、かつ使用時に吸着対象液が内部まで短時間で達するという点で、寸法が小さい方が好ましい。また同じ意味から、シート状または粒子状である方がより好ましく、該シートの厚さまたは該粒子の直径は5mm以下とするのが好ましい。また以上の各形状から複数のものを組み合わせて使用してもよい。
 支持体としては予め上記の各形状にしておいてもよいが、担持体を製造後に切断して特定の形状あるいは寸法を有するものに調製してもよい。
Although the shape of a support body is not specifically limited, Sponge shape, a sheet form, a particulate form etc. are illustrated, From these, it selects suitably according to a use. Of these, the spongy one is not particularly limited in specific shape (square, spherical, etc.), but the adsorbent is easily carried inside during the production of the carrier, and the liquid to be adsorbed can be quickly brought into the interior during use. It is preferable that the size is smaller in terms of reaching. Further, from the same meaning, it is more preferable to be in the form of a sheet or particles, and the thickness of the sheet or the diameter of the particles is preferably 5 mm or less. Moreover, you may use combining several things from each said shape.
The support may be preliminarily shaped as described above, but may be prepared to have a specific shape or size by cutting the carrier after production.
 本発明の吸着材担持体は、分散液と同様に、吸着速度が高い特徴を有する。
 この吸着速度は、次のような回分式吸着試験により測定できる。
 塩酸でpHを一定に調整したリン換算濃度400mg/Lのリン酸二水素カリウム水溶液150mLを準備する。この中に吸着材1gを投入し、室温で撹拌する。一定時間後に水溶液をサンプリングしてリン酸イオン濃度を測定し、吸着量を求める。
 また以上の試験において、経時的にリン酸イオン吸着量を求め、経時変化がなくなった時点での吸着量により、最終的吸着量を見積もることができる。より簡便には、24時間後の吸着量により最終的吸着量を見積もることができる。
 本発明の吸着材担持体は、この方法において、水溶液のpHを3.5に調整した場合、24時間後にリン換算吸着量が25mg以上、好ましくは30mg以上となる。
The adsorbent carrier of the present invention is characterized by a high adsorption rate, similar to the dispersion.
This adsorption rate can be measured by the following batch adsorption test.
A 150 mL aqueous solution of potassium dihydrogen phosphate having a phosphorus conversion concentration of 400 mg / L adjusted to a constant pH with hydrochloric acid is prepared. 1 g of adsorbent is put into this and stirred at room temperature. After a certain period of time, the aqueous solution is sampled and the phosphate ion concentration is measured to determine the amount of adsorption.
In the above test, the phosphate ion adsorption amount is obtained over time, and the final adsorption amount can be estimated from the adsorption amount at the time when the change with time is lost. More simply, the final adsorption amount can be estimated from the adsorption amount after 24 hours.
When the pH of the aqueous solution is adjusted to 3.5 in this method, the adsorbent carrier of the present invention has a phosphorus equivalent adsorption amount of 25 mg or more, preferably 30 mg or more after 24 hours.
 また本発明の吸着材担持体は、水中で陰イオン吸着材として使用する過程で、pHが顕著に上昇することを特徴とする。これは、具体的には次の方法で示される。
 塩酸でpHを一定に調整したリン換算濃度400mg/Lのリン酸二水素カリウム水溶液150mLを準備する。この中に吸着材担持体1gを投入し、室温で撹拌する。一定時間後に水溶液をサンプリングしてpHを測定する。
 本発明の吸着材担持体は、この方法において、水溶液のpHを3.5に調整した場合、1時間後の水溶液のpHに対して24時間後の水溶液のpHが0.3以上上昇する。
 ところが、本発明の吸着材担持体の材料として用いられるβ-オキシ水酸化鉄は、粉砕等をしていない状態では、吸着材として使用してもほとんど水溶液のpHの変化をもたらさない。
Further, the adsorbent carrier of the present invention is characterized in that the pH rises remarkably in the process of using it as an anion adsorbent in water. This is specifically shown by the following method.
A 150 mL aqueous solution of potassium dihydrogen phosphate having a phosphorus conversion concentration of 400 mg / L adjusted to a constant pH with hydrochloric acid is prepared. 1 g of adsorbent carrier is put into this and stirred at room temperature. The aqueous solution is sampled after a certain time and the pH is measured.
In the adsorbent carrier of the present invention, when the pH of the aqueous solution is adjusted to 3.5 in this method, the pH of the aqueous solution after 24 hours rises by 0.3 or more relative to the pH of the aqueous solution after 1 hour.
However, β-iron oxyhydroxide used as the material of the adsorbent carrier of the present invention hardly changes the pH of the aqueous solution even when used as an adsorbent when not pulverized.
 これらの原因は、次のように推察される。粉砕等の処理をしていないβ-オキシ水酸化鉄では、水酸基がリン酸イオンのような大きな陰イオンの容易に到達し得ない細孔中にある。このような細孔は、特に塩素イオンが離脱することにより形成されるものである。一方、本発明の吸着材担持体は、このような細孔構造が破壊されているため、リン酸イオンも容易に該水酸基の近傍に到達する。
 粉砕等の処理をしていないβ-オキシ水酸化鉄でも、大型の空孔があるため、吸着速度は遅いもののリン酸イオンの吸着は可能である。
 本発明の吸着材担持体においては、これに続き、吸着された陰イオンが水酸基と交換され、吸着材に該陰イオンが直接結合した形に変化し、それとともに、水酸基は水酸イオンとして水中に放出されるため、水溶液のpHは上昇する。しかし粉砕等の処理をしていないβ-オキシ水酸化鉄では、このような置換は起こらず、従ってpHの上昇も起こらないものと推察される。
 さらに本発明に用いられるβ-オキシ水酸化鉄中における塩素イオンの含有量は、0.5質量%以上であることが好ましく、3質量%以上であることがより好ましい。
 以上により、本発明の吸着材担持体は、陰イオンを単に吸着するのみでなく、その後陰イオンは吸着材担持体に結合して容易に解離しない状態となるため、高い吸着効率を発揮するものと考えられる。
These causes are presumed as follows. In β-iron oxyhydroxide that has not been pulverized or the like, the hydroxyl groups are in the pores where large anions such as phosphate ions cannot easily reach. Such pores are particularly formed when chlorine ions are released. On the other hand, since the adsorbent carrier of the present invention has such a pore structure destroyed, phosphate ions easily reach the vicinity of the hydroxyl group.
Even β-iron oxyhydroxide that has not been pulverized or the like has large pores, and thus adsorption of phosphate ions is possible although the adsorption rate is slow.
In the adsorbent carrier of the present invention, subsequently, the adsorbed anions are exchanged with hydroxyl groups, and the anions are directly bonded to the adsorbent, and at the same time, the hydroxyl groups are converted into hydroxide ions as water ions. The pH of the aqueous solution rises. However, it is assumed that such substitution does not occur in β-iron oxyhydroxide that has not been subjected to a treatment such as pulverization, and therefore no increase in pH occurs.
Furthermore, the content of chlorine ions in the β-iron oxyhydroxide used in the present invention is preferably 0.5% by mass or more, and more preferably 3% by mass or more.
As described above, the adsorbent carrier of the present invention not only simply adsorbs anions, but then the anion binds to the adsorbent carrier and does not easily dissociate, and therefore exhibits high adsorption efficiency. it is conceivable that.
 次に、本発明の実施例によってさらに詳細に説明するが、本発明はこれにより限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
測定方法
(粉末X線回折)
 X線回折(XRD)パターンは、X線回折装置Ultima IV(リガク社製)を用いて測定した。測定にはCuKα管球を使用した。平均結晶子径はXRDよりシェラーの式に従って算出した。
(比表面積)
 比表面積測定装置MacsorbHM 1210(マウンテック社製)を使用して、ガス吸着法により比表面積を測定した。
(TEM観察)
 試料のTEM(透過電子顕微鏡)観察は、透過型電子顕微鏡JEM 2010F(JEOL社製、加速電圧200kV)を用いて行った。
(オキシ水酸化鉄中の塩素イオンの含有量)
 オキシ水酸化鉄試料を3M硫酸に溶解した後、アルカリ溶液で希釈して鉄分を沈殿させ、フィルターでろ過してろ液を回収し、イオンクロマトグラフ法(日本ダイオネクス社製DX-500型)により定量した。
(分散液の粒度分布)
 ミクロン単位の分散液の粒子径に関しては、レーザ回折/散乱式粒度分布測定装置LA-920(堀場製作所製)を使用して、体積基準の累積50%粒子径(D50)、及び体積基準の累積90%粒子径(D90)を測定した。
 ナノ分散液の粒子径、粒度分布、累積50%粒子径(D50)、及び累積90%粒子径(D90)は、動的光散乱粒度分布測定装置ゼータサイザーナノS(スペクトリス社製)を使用して測定した。
(真密度)
 Heガス置換法による真密度測定(乾式密度計:アキュピック1340TC、島津製作所・マイクロメリテックス社製)を行った。
Measurement method (powder X-ray diffraction)
The X-ray diffraction (XRD) pattern was measured using an X-ray diffractometer Ultima IV (manufactured by Rigaku Corporation). A CuKα tube was used for the measurement. The average crystallite size was calculated from XRD according to Scherrer's formula.
(Specific surface area)
The specific surface area was measured by a gas adsorption method using a specific surface area measuring device MacsorbHM 1210 (manufactured by Mountec).
(TEM observation)
The TEM (transmission electron microscope) observation of the sample was performed using a transmission electron microscope JEM 2010F (manufactured by JEOL, acceleration voltage 200 kV).
(Chlorine ion content in iron oxyhydroxide)
An iron oxyhydroxide sample is dissolved in 3M sulfuric acid, diluted with an alkaline solution to precipitate iron, filtered through a filter, and the filtrate is collected and quantified by ion chromatography (DX-500, manufactured by Nippon Dionex). did.
(Particle size distribution of the dispersion)
Regarding the particle size of the dispersion liquid in micron units, the laser diffraction / scattering type particle size distribution measuring device LA-920 (manufactured by Horiba Ltd.) is used, the volume-based cumulative 50% particle size (D50), and the volume-based cumulative. The 90% particle size (D90) was measured.
The particle size, particle size distribution, cumulative 50% particle size (D50), and cumulative 90% particle size (D90) of the nano-dispersion liquid are measured using a dynamic light scattering particle size distribution analyzer Zeta Sizer Nano S (Spectres). Measured.
(True density)
True density measurement by a He gas substitution method (dry density meter: Accupic 1340TC, manufactured by Shimadzu Corporation / Micromeritex Corporation) was performed.
参考例1(オキシ水酸化鉄の製造)
 塩化第二鉄(FeCl)水溶液に、室温でpH6以下に調整しながら水酸化ナトリウム(NaOH)水溶液を滴下し、NaOHの最終添加量をNaOH/FeCl(モル比)=2.75として反応させ、オキシ水酸化鉄の粒子懸濁液を得た。得られた懸濁液中の粒子の平均粒子径d50は17μmであった。
 懸濁液を濾別後、空気中120℃で乾燥し、イオン交換水で洗浄し、さらに空気中120℃で乾燥し、オキシ水酸化鉄の粉末(粉末A)を得た。
 以上により得られたオキシ水酸化物粉末(粉末A)の粒子径は0.25mm~5mmであった。X線回折により、結晶構造はβ-オキシ水酸化鉄であり、平均結晶子径は5nmであることを確認した。
 透過電子顕微鏡(TEM)観察での様子を図1に示す。結晶形状はほとんどがアスペクト比1:3以下の粒状であった。TEM観察による結晶子径は5~10nm、個々の結晶は粒状であり、これらが凝結して粒子を形成していた。
 また比表面積は280m/g、塩素イオン含有量は、5.8wt%であった。
Reference Example 1 (Production of iron oxyhydroxide)
A sodium hydroxide (NaOH) aqueous solution was added dropwise to a ferric chloride (FeCl 3 ) aqueous solution while adjusting the pH to 6 or less at room temperature, and the final amount of NaOH added was NaOH / FeCl 3 (molar ratio) = 2.75. To obtain a particle suspension of iron oxyhydroxide. The average particle diameter d50 of the particles in the obtained suspension was 17 μm.
The suspension was filtered, dried in air at 120 ° C., washed with ion-exchanged water, and further dried in air at 120 ° C. to obtain iron oxyhydroxide powder (powder A).
The particle diameter of the oxyhydroxide powder (powder A) obtained as described above was 0.25 mm to 5 mm. It was confirmed by X-ray diffraction that the crystal structure was β-iron oxyhydroxide and the average crystallite size was 5 nm.
FIG. 1 shows a state observed with a transmission electron microscope (TEM). Most of the crystal shapes were granular with an aspect ratio of 1: 3 or less. The crystallite diameter by TEM observation was 5 to 10 nm, and each crystal was granular, and these were condensed to form particles.
The specific surface area was 280 m 2 / g, and the chloride ion content was 5.8 wt%.
参考例2(オキシ水酸化鉄吸着材粒子の製造)
 オキシ水酸化鉄粉末(粉末A)をピンミルで乾式粉砕し、図2に示す粒度分布の粉末(粉末B)を得た。粉末Bの粒子径範囲は0.6~300μm、平均粒子径26.5μmであった。
Reference Example 2 (Production of iron oxyhydroxide adsorbent particles)
Iron oxyhydroxide powder (powder A) was dry-pulverized with a pin mill to obtain a powder (powder B) having a particle size distribution shown in FIG. Powder B had a particle size range of 0.6 to 300 μm and an average particle size of 26.5 μm.
参考例3(10μmアンダーを除去した粒子の製造)
 粉末Bを篩目10μmのナイロンメッシュで包み、イオン交換水に入れ、十分に洗浄して粒径10μm以下を除去し、粒子径範囲8~300μm、平均粒子径40.3μmの粉末(粉末C)を得た。
 以上の粉末B、粉末C(メッシュ残存物)及びメッシュ通過品(上記の除去分)の粒径分布を図2に示した。
Reference Example 3 (Production of particles with 10 μm under removed)
Wrapped powder B with nylon mesh with a mesh size of 10μm, put in ion-exchanged water, washed thoroughly to remove particle size less than 10μm, powder with particle size range of 8 ~ 300μm, average particle size of 40.3μm (powder C) Got.
The particle size distribution of the above powder B, powder C (mesh residue), and a mesh-passed product (removed part) is shown in FIG.
参考例4(オキシ水酸化鉄のナノ分散液の製造)
 粉末Bをイオン交換水中に固形分濃度10質量%となるように混合した後、ビーズミル(ジルコニアビーズ、ビーズ径1mm)で30分間粗粉砕し懸濁液とした。これをさらに、ビーズミル(ジルコニアビーズ、ビーズ径0.1mm)で60分間粉砕し、分散液Dを得た。この粉砕により、茶色に懸濁していた液が黒色で透明なナノ分散液Dへ変化した。
 ナノ分散液DのpHは2.8、平均粒子径d50は0.15μm、d90は0.27μm、等電点はpH7.1であった。
 また本分散液Dを50℃で乾燥した粉末の結晶構造はβ-オキシ水酸化鉄、結晶子径は2nmで、比表面積は285m/gであった。
Reference Example 4 (Production of nano-dispersion of iron oxyhydroxide)
Powder B was mixed in ion-exchanged water so as to have a solid content concentration of 10% by mass, and then coarsely pulverized with a bead mill (zirconia beads, bead diameter: 1 mm) for 30 minutes to obtain a suspension. This was further pulverized with a bead mill (zirconia beads, bead diameter 0.1 mm) for 60 minutes to obtain dispersion D. By this pulverization, the liquid suspended in brown was changed to a black and transparent nano-dispersion D.
The pH of the nanodispersion D was 2.8, the average particle diameter d50 was 0.15 μm, d90 was 0.27 μm, and the isoelectric point was pH 7.1.
The crystal structure of the powder obtained by drying the dispersion D at 50 ° C. was β-iron oxyhydroxide, the crystallite diameter was 2 nm, and the specific surface area was 285 m 2 / g.
実施例1~4(吸着材担持体の製造)
 下記の各支持体に、下記の各分散液を室温で含浸させ取り出して約50℃で乾燥させる工程を反復することにより、吸着材担持体を作製した。
 なお、以下の実施例3及び4において用いられる分散液Eは、粒径60~100nm、pH2.2、固形分濃度10質量%のジルコニア(ZrO)のナノ分散液であり、バインダーとして用いた。
<支持体>
・支持体1:高分子製連続気孔スポンジ、1cm角、気孔率90%
・支持体2:ポリオレフィン製吸水シート、厚み2mm、吸水率1000%
<吸着材担持体の作製>
(実施例1)
 支持体1に分散液Dを含浸・乾燥させ、担持体中のオキシ水酸化鉄含有量78.0wt%の担持体1を製造した。
(実施例2)
 支持体2に分散液Dを含浸・乾燥させ、さらに1cm角に切断し、担持体中のオキシ水酸化鉄含有量78.1wt%の担持体2を製造した。
(実施例3)
 分散液Dと分散液Eを固形分質量比オキシ水酸化鉄:ジルコニア=80:20で混合した液を調製し、支持体2に本混合分散液を含浸・乾燥させ、さらに1cm角に切断し、担持体中のオキシ水酸化鉄含有量76.1wt%の担持体)を製造した。
(実施例4)
 粉末Cを分散液Eに加えて混合し、固形分質量比オキシ水酸化鉄:ジルコニア=80:20の分散液を調製し、支持体1に本分散液を含浸・乾燥させ、担持体中のオキシ水酸化鉄含有量82.5wt%の担持体4を製造した。
 以上の各担持体につき真密度および比表面積を測定した。その結果を表1に示す。
Examples 1 to 4 (Production of adsorbent carrier)
Each of the following supports was impregnated with each of the following dispersions at room temperature, removed, and dried at about 50 ° C. to produce an adsorbent carrier.
Dispersion E used in Examples 3 and 4 below is a nano-dispersion of zirconia (ZrO 2 ) having a particle size of 60 to 100 nm, pH 2.2, and a solid content concentration of 10% by mass, and was used as a binder. .
<Support>
Support 1: polymer continuous pore sponge, 1 cm square, porosity 90%
Support 2: Polyolefin water absorbent sheet, thickness 2 mm, water absorption 1000%
<Preparation of adsorbent carrier>
Example 1
The support 1 was impregnated with the dispersion D and dried to produce a support 1 having an iron oxyhydroxide content of 78.0 wt% in the support.
(Example 2)
The support 2 was impregnated with the dispersion D and dried, and further cut into 1 cm square to produce a support 2 having an iron oxyhydroxide content of 78.1 wt% in the support.
(Example 3)
Prepare a liquid in which dispersion D and dispersion E were mixed at a solid mass ratio of iron oxyhydroxide: zirconia = 80: 20, impregnate and dry the mixed dispersion on support 2, and cut into 1 cm squares. And a carrier having an iron oxyhydroxide content of 76.1 wt% in the carrier).
Example 4
Powder C is added to dispersion E and mixed to prepare a dispersion having a solid content mass ratio of iron oxyhydroxide: zirconia = 80: 20. The support 1 is impregnated with this dispersion and dried. A carrier 4 having an iron oxyhydroxide content of 82.5 wt% was produced.
The true density and specific surface area of each of the above supports were measured. The results are shown in Table 1.
試験例1(リン酸吸着試験)
 リン酸二水素カリウムをイオン交換水に溶解し、塩酸によりpHを3.5に調整し、リン換算濃度400mg/Lの試験液Gを調製した。
 試験液Gの150mLに、担持体1~4の各担持体の、オキシ水酸化鉄1gを含有する量を浸漬し、室温で撹拌し吸着試験を行った。所定の時間後に液を採取し、フィルタシリンジで固形分と分離し、溶液中のリン濃度をICP(誘導結合プラズマ法)により分析し、リン吸着量を算出した。同時にpHを測定した。結果を表1に示す。
Test example 1 (phosphate adsorption test)
Potassium dihydrogen phosphate was dissolved in ion-exchanged water, the pH was adjusted to 3.5 with hydrochloric acid, and a test solution G having a phosphorus conversion concentration of 400 mg / L was prepared.
In 150 mL of the test liquid G, an amount containing 1 g of iron oxyhydroxide of each of the carriers 1 to 4 was immersed and stirred at room temperature to perform an adsorption test. The liquid was collected after a predetermined time, separated from the solid content with a filter syringe, and the phosphorus concentration in the solution was analyzed by ICP (inductively coupled plasma method) to calculate the phosphorus adsorption amount. At the same time, the pH was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上から、本発明の吸着材担持体は、リン酸の吸着速度と吸着量が優れていることがわかった。またリン酸の吸着に伴ってpHが上昇する特徴が示された。 From the above, it was found that the adsorbent carrier of the present invention is excellent in the adsorption rate and adsorption amount of phosphoric acid. Moreover, the characteristic that pH rose with adsorption of phosphoric acid was shown.
試験例2(耐アルカリ性試験)
 担持体1~4をpH2.5の塩酸水中およびpH12.5の水酸化ナトリウム水中に各1週間浸漬後、水洗、乾燥し外観検査を行った。全ての担持体で、試験前後での変化は見られなかった。
Test example 2 (alkali resistance test)
The supports 1 to 4 were immersed in a hydrochloric acid solution having a pH of 2.5 and a sodium hydroxide solution having a pH of 12.5 for 1 week each, washed with water, dried, and inspected for appearance. For all the supports, there was no change before and after the test.

Claims (15)

  1. オキシ水酸化鉄を主成分とする粒子を多孔質の支持体に担持してなる、BET比表面積が50m/g以上の吸着材担持体。 An adsorbent carrier having a BET specific surface area of 50 m 2 / g or more, comprising particles having iron oxyhydroxide as a main component supported on a porous support.
  2. 前記オキシ水酸化鉄がβ-オキシ水酸化鉄である、請求項1に記載の吸着材担持体。 The adsorbent carrier according to claim 1, wherein the iron oxyhydroxide is β-iron oxyhydroxide.
  3. 前記粒子の平均結晶子径が10nm以下である、請求項1又は2に記載の吸着材担持体。 The adsorbent carrier according to claim 1 or 2, wherein an average crystallite diameter of the particles is 10 nm or less.
  4. 真密度が2g/cm以上である、請求項1~3のいずれかに記載の吸着材担持体。 The adsorbent carrier according to any one of claims 1 to 3, wherein the true density is 2 g / cm 3 or more.
  5. オキシ水酸化鉄を主成分とする粒子が総量の60質量%以上を占める、請求項1~4のいずれかに記載の吸着材担持体。 The adsorbent carrier according to any one of claims 1 to 4, wherein particles containing iron oxyhydroxide as a main component occupy 60 mass% or more of the total amount.
  6. 陰イオン吸着材担持体である、請求項1~5のいずれかに記載の吸着材担持体。 The adsorbent carrier according to any one of claims 1 to 5, which is an anion adsorbent carrier.
  7. さらにバインダーを含有し、該バインダーがpH2.5~12.5の範囲で安定である、請求項6に記載の吸着材担持体。 The adsorbent carrier according to claim 6, further comprising a binder, wherein the binder is stable in the range of pH 2.5 to 12.5.
  8. バインダーが鉄、ジルコニウム、チタンおよびスズから選ばれる少なくとも1種の金属の化合物である、請求項7に記載の陰イオン吸着材担持体。 The anion adsorbent carrier according to claim 7, wherein the binder is a compound of at least one metal selected from iron, zirconium, titanium, and tin.
  9. バインダーがポリオレフィン系樹脂である、請求項7に記載の陰イオン吸着材担持体。 The anion adsorbent carrier according to claim 7, wherein the binder is a polyolefin resin.
  10. 前記多孔質の支持体がポリオレフィン系樹脂からなるものである、請求項6~9のいずれかに記載の陰イオン吸着材担持体。 The anion adsorbent carrier according to any one of claims 6 to 9, wherein the porous support is made of a polyolefin resin.
  11. 塩酸でpHを3.5に調整したリン換算濃度400mg/Lのリン酸二水素カリウム水溶液150mL中に、オキシ水酸化鉄1gを含有する前記陰イオン吸着材担持体を投入し、室温で撹拌して行う回分式の吸着試験において、24時間後にオキシ水酸化鉄1g当たりのリン換算吸着量が25mg以上である、請求項6~10のいずれかに記載の陰イオン吸着材担持体。 The anion adsorbent carrier containing 1 g of iron oxyhydroxide is put into 150 mL of an aqueous solution of potassium dihydrogen phosphate having a phosphorous equivalent concentration of 400 mg / L adjusted to pH 3.5 with hydrochloric acid and stirred at room temperature. The anion adsorbent carrier according to any one of claims 6 to 10, wherein, in a batch-type adsorption test conducted in 24 hours, an adsorption amount converted to phosphorus per gram of iron oxyhydroxide after 24 hours is 25 mg or more.
  12. 塩酸でpHを3.5に調整したリン換算濃度400mg/Lのリン酸二水素カリウム水溶液150mL中に、オキシ水酸化鉄1gを含有する前記陰イオン吸着材担持体を投入し、室温で撹拌して行う回分式の試験において、1時間後のpHに対し、24時間後のpHが0.3以上上昇することを特徴とする、請求項6~11のいずれかに記載の陰イオン吸着材担持体。 The anion adsorbent carrier containing 1 g of iron oxyhydroxide is put into 150 mL of an aqueous solution of potassium dihydrogen phosphate having a phosphorous equivalent concentration of 400 mg / L adjusted to pH 3.5 with hydrochloric acid and stirred at room temperature. The anion adsorbent carrying material according to any one of claims 6 to 11, wherein the pH after 24 hours rises by 0.3 or more with respect to the pH after 1 hour in a batch test body.
  13. オキシ水酸化鉄を主成分とする粒子を溶媒中で平均粒径d50が0.2μm以下となるまで粉砕したものを含有する分散液を、多孔質の支持体へ含浸させた後、乾燥することを含む吸着材担持体の製造方法。 Impregnating a porous support with a dispersion containing particles containing iron oxyhydroxide as a main component in a solvent until the average particle size d50 is 0.2 μm or less, and then drying. The manufacturing method of the adsorbent carrier containing this.
  14. オキシ水酸化鉄を主成分とする平均粒径d50が5μm以上である粒子と、バインダーとが、溶媒に分散してなる分散液を、多孔質の支持体へ含浸させた後、乾燥することを含む吸着材担持体の製造方法。 A porous support is impregnated with a dispersion in which particles having an average particle diameter d50 containing iron oxyhydroxide as a main component and having an average particle diameter d50 of 5 μm or more and dispersed in a solvent are dried. The manufacturing method of the adsorbent carrier which contains.
  15. 前記バインダーが、オキシ水酸化鉄を主成分とする平均粒径d50が0.2μm以下である粒子を含む、請求項14に記載の吸着材担持体の製造方法。 The method for producing an adsorbent carrier according to claim 14, wherein the binder includes particles having an average particle diameter d50 mainly composed of iron oxyhydroxide of 0.2 μm or less.
PCT/JP2016/004812 2015-11-10 2016-11-04 Adsorption-member support body WO2017081857A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017549983A JP6835319B2 (en) 2015-11-10 2016-11-04 Adsorbent carrier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-220647 2015-11-10
JP2015220647 2015-11-10

Publications (1)

Publication Number Publication Date
WO2017081857A1 true WO2017081857A1 (en) 2017-05-18

Family

ID=58696044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004812 WO2017081857A1 (en) 2015-11-10 2016-11-04 Adsorption-member support body

Country Status (3)

Country Link
JP (1) JP6835319B2 (en)
TW (1) TWI620598B (en)
WO (1) WO2017081857A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118876A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
WO2020166570A1 (en) * 2019-02-14 2020-08-20 日本曹達株式会社 Adsorbent particles
US11865509B2 (en) 2018-01-04 2024-01-09 Asahi Kasei Kabushiki Kaisha Porous molding

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192845A (en) * 1996-12-27 1998-07-28 Shiga Pref Gov Phosphate ion removing agent, removing-recovering method thereof
JP2004509753A (en) * 2000-09-26 2004-04-02 バイエル アクチェンゲゼルシャフト Adsorption vessel and iron oxide adsorbent
JP2004358396A (en) * 2003-06-05 2004-12-24 Nippon Steel Chem Co Ltd Treatment material for treating harmful substance in wastewater and its manufacturing method
US20040262225A1 (en) * 2003-04-04 2004-12-30 New Mexico State University Technology Transfer Corporation Treatment of arsenic-contaminated water using akaganeite adsorption
JP2005270933A (en) * 2004-03-26 2005-10-06 Nittetsu Mining Co Ltd Anion adsorbent, elimination method of anion, recycle method of anion adsorbent, and recovery method of elements
JP2005320548A (en) * 2004-05-05 2005-11-17 Lanxess Deutschland Gmbh Foam containing iron oxy-hydroxide granule and its use
JP2007117923A (en) * 2005-10-28 2007-05-17 Univ Of Tokyo Anion adsorbing material, its manufacturing method, method for removing anion, method for regenerating anion adsorbing material and method for recovering element
JP2011235222A (en) * 2010-05-08 2011-11-24 Takahashi Kinzoku Kk Hypophosphorous acid based ion adsorbent, and method and apparatus of treating hypophosphorous acid based ion
JP2013133582A (en) * 2011-12-27 2013-07-08 Kao Corp Cellulose composite

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10192845A (en) * 1996-12-27 1998-07-28 Shiga Pref Gov Phosphate ion removing agent, removing-recovering method thereof
JP2004509753A (en) * 2000-09-26 2004-04-02 バイエル アクチェンゲゼルシャフト Adsorption vessel and iron oxide adsorbent
US20040262225A1 (en) * 2003-04-04 2004-12-30 New Mexico State University Technology Transfer Corporation Treatment of arsenic-contaminated water using akaganeite adsorption
JP2004358396A (en) * 2003-06-05 2004-12-24 Nippon Steel Chem Co Ltd Treatment material for treating harmful substance in wastewater and its manufacturing method
JP2005270933A (en) * 2004-03-26 2005-10-06 Nittetsu Mining Co Ltd Anion adsorbent, elimination method of anion, recycle method of anion adsorbent, and recovery method of elements
JP2005320548A (en) * 2004-05-05 2005-11-17 Lanxess Deutschland Gmbh Foam containing iron oxy-hydroxide granule and its use
JP2007117923A (en) * 2005-10-28 2007-05-17 Univ Of Tokyo Anion adsorbing material, its manufacturing method, method for removing anion, method for regenerating anion adsorbing material and method for recovering element
JP2011235222A (en) * 2010-05-08 2011-11-24 Takahashi Kinzoku Kk Hypophosphorous acid based ion adsorbent, and method and apparatus of treating hypophosphorous acid based ion
JP2013133582A (en) * 2011-12-27 2013-07-08 Kao Corp Cellulose composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019118876A (en) * 2018-01-04 2019-07-22 旭化成株式会社 Porous molding
US11865509B2 (en) 2018-01-04 2024-01-09 Asahi Kasei Kabushiki Kaisha Porous molding
WO2020166570A1 (en) * 2019-02-14 2020-08-20 日本曹達株式会社 Adsorbent particles
JPWO2020166570A1 (en) * 2019-02-14 2021-10-28 日本曹達株式会社 Adsorbent particles
JP7176014B2 (en) 2019-02-14 2022-11-21 日本曹達株式会社 adsorbent particles

Also Published As

Publication number Publication date
JPWO2017081857A1 (en) 2018-08-30
TWI620598B (en) 2018-04-11
JP6835319B2 (en) 2021-02-24
TW201718085A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
Deng et al. Mn–Ce oxide as a high-capacity adsorbent for fluoride removal from water
Tang et al. Preferable phosphate removal by nano-La (III) hydroxides modified mesoporous rice husk biochars: Role of the host pore structure and point of zero charge
Li et al. Extremely high arsenic removal capacity for mesoporous aluminium magnesium oxide composites
Qiu et al. Preferable phosphate sequestration by nano-La (III)(hydr) oxides modified wheat straw with excellent properties in regeneration
Nie et al. Efficient removal of phosphate by a millimeter-sized nanocomposite of titanium oxides encapsulated in positively charged polymer
JP5482979B2 (en) Adsorbent
Chen et al. Nanocasted synthesis of ordered mesoporous cerium iron mixed oxide and its excellent performances for As (V) and Cr (VI) removal from aqueous solutions
Zhi et al. Ordered mesoporous MnO 2 as a synergetic adsorbent for effective arsenic (III) removal
Choong et al. Granular Mg-Fe layered double hydroxide prepared using dual polymers: Insights into synergistic removal of As (III) and As (V)
JP6641286B2 (en) Hybrid ion exchange material and method for producing the same
WO2004026464A1 (en) Removal of arsenic and other anions using novel adsorbents
Yuan et al. Adsorption performance and mechanism for phosphate removal by cerium hydroxide loaded on molecular sieve
WO2017081857A1 (en) Adsorption-member support body
KR101910403B1 (en) Method for preparing hto lithium ion adsorbent and lithium ion recovery uses thereof
WO2017110736A1 (en) Absorbent particles
JP6644804B2 (en) Adsorbent particles and granulated adsorbent
US8664150B2 (en) Methods of producing adsorption media including a metal oxide
US11273427B2 (en) Fabrication of hydroxyapatite based hybrid sorbent media for removal of fluoride and other contaminants
JP2008062184A (en) Selenium adsorbent and method for adsorbing, removing and recovering selenium from selenium-containing water by using the same
WO2017061117A1 (en) Adsorbent dispersion and adsorption method
JP5099349B2 (en) Adsorbent
JP4189652B2 (en) Adsorbent
He et al. Characterization and application of adsorption material with hematite and polystyrene
JP5099348B2 (en) Adsorbent
JP2018008861A (en) Manufacturing method of zirconium carrier and zirconium carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16863824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017549983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16863824

Country of ref document: EP

Kind code of ref document: A1