WO2017078289A1 - Method for obtaining signal and apparatus performing same - Google Patents

Method for obtaining signal and apparatus performing same Download PDF

Info

Publication number
WO2017078289A1
WO2017078289A1 PCT/KR2016/011614 KR2016011614W WO2017078289A1 WO 2017078289 A1 WO2017078289 A1 WO 2017078289A1 KR 2016011614 W KR2016011614 W KR 2016011614W WO 2017078289 A1 WO2017078289 A1 WO 2017078289A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
value
correlation
unit
calculating
Prior art date
Application number
PCT/KR2016/011614
Other languages
French (fr)
Korean (ko)
Inventor
브도비첸코브이에고르
벗앤드리
페도린일리야
세이포노브이반
그레시첸코세르지
불리진비탈리
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to EP16862307.2A priority Critical patent/EP3346657B1/en
Priority to US15/766,986 priority patent/US20180302259A1/en
Publication of WO2017078289A1 publication Critical patent/WO2017078289A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2672Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2681Details of algorithms characterised by constraints
    • H04L27/2688Resistance to perturbation, e.g. noise, interference or fading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B2001/1063Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal using a notch filter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03592Adaptation methods
    • H04L2025/03598Algorithms
    • H04L2025/03611Iterative algorithms
    • H04L2025/03636Algorithms using least mean square [LMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols

Definitions

  • the present invention relates to a method for acquiring a signal and an electronic device providing the same, and more particularly, to an electronic device for acquiring a desired signal through a specific algorithm.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a radio receiver may have a cross-correlator.
  • the cross signal correlator converts an electromagnetic pulse train of monocycle pulses into a baseband signal in a single stage. Each data bit modulates a number of pulses of a periodic timing signal based on a time position. This yields a modulated coded timing signal that includes the same string of pulses for each single data bit.
  • the cross signal correlator of the radio receiver integrates multiple pulses to recover the transmitted information.
  • a method of acquiring a signal of an electronic device an operation of receiving a signal through at least one channel from an external device, generating a reference signal based on frequency-related values, and Calculating a correlation value of the reference signal, identifying a time value corresponding to a value in which the calculated correlation value exceeds a preset reference value, and a magnitude value of frequency based on the identified time value And calculating a value of at least one of the phase values.
  • An electronic device for receiving a signal through at least one channel from an external device, a reference signal generator for generating a reference signal based on frequency-related values and transmitting it to a signal correlation unit, the signal And a time value corresponding to a correlation value exceeding a preset reference value among the signal correlator calculating the correlation value of the reference signal and the correlation value calculated from the signal correlator, and checking the identified time value.
  • a correlation maximum signal checking unit for transmitting the minimum square calculation unit to the minimum square calculating unit, and calculating the least square value of a frequency value and a phase value based on the identified time value and transmitting the calculated value to the reference signal generating unit. It may include a calculation unit.
  • the present invention by filtering narrowband interference elements, it is possible to increase the signal-to-noise ratio (SNR) of the accumulated correlation value.
  • SNR signal-to-noise ratio
  • the probability of obtaining a desired signal may be increased.
  • FIG. 1 is a block diagram illustrating an apparatus according to various embodiments of the present disclosure.
  • FIG. 2 is a block diagram illustrating a signal correlation unit of an apparatus according to various embodiments of the present disclosure.
  • 3A-3E illustrate block diagrams representing multiple paths of an apparatus in accordance with various embodiments of the present invention.
  • FIG. 4 is a block diagram of detecting an error signal of an apparatus according to various embodiments of the present disclosure.
  • FIG. 5 is a block diagram of an apparatus according to various embodiments of the present disclosure.
  • FIG. 6 illustrates a result screen by a non-interference blocking unit according to various embodiments of the present disclosure.
  • FIG. 7 is a view illustrating a result screen by a maximum signal checking unit according to various embodiments of the present disclosure.
  • FIG 8A-8D illustrate the use of an apparatus in accordance with various embodiments of the present invention.
  • FIG. 9 is a flowchart illustrating signal acquisition of an apparatus according to various embodiments of the present disclosure.
  • 10A to 10C illustrate result values for signal acquisition of an apparatus according to various embodiments of the present disclosure.
  • expressions such as “A or B,” “at least one of A or / and B,” or “one or more of A or / and B” may include all possible combinations of items listed together.
  • “A or B,” “at least one of A and B,” or “at least one of A or B,” includes (1) at least one A, (2) at least one B, Or (3) both of cases including at least one A and at least one B.
  • first,” “second,” “first,” or “second,” as used herein may modify various components, regardless of order and / or importance, and may form a component. It is used to distinguish it from other components and does not limit the components.
  • the first user device and the second user device may represent different user devices regardless of the order or importance.
  • the first component may be called a second component, and similarly, the second component may be renamed to the first component.
  • One component (such as a first component) is "(functionally or communicatively) coupled with / to" to another component (such as a second component) or " When referred to as “connected to”, it should be understood that any component may be directly connected to the other component or may be connected through another component (eg, a third component).
  • a component e.g., a first component
  • another component e.g., a second component
  • no other component e.g., a third component
  • the expression “configured to” as used in this document is, for example, “having the capacity to” depending on the context, for example, “suitable for,” “. It may be used interchangeably with “designed to,” “adapted to,” “made to,” or “capable of.”
  • the term “configured to” may not necessarily mean only “specifically designed to” in hardware. Instead, in some situations, the expression “device configured to” may mean that the device “can” along with other devices or components.
  • the phrase “processor configured (or configured to) perform A, B, and C” may be implemented by executing a dedicated processor (eg, an embedded processor) to perform its operation, or one or more software programs stored in a memory device. It may mean a general-purpose processor (eg, a CPU or an application processor) capable of performing corresponding operations.
  • FIG. 1 is a block diagram illustrating an electronic device 101 according to various embodiments of the present disclosure.
  • the electronic device 101 may include an antenna 100, a signal correlator 200, a maximum signal checker 300, a least square calculator 400, a reference signal generator 500, and the like.
  • the signal processing unit 600 may be included.
  • the antenna 100 may receive a signal through at least one channel from an external device.
  • the antenna 100 may transmit the received signal to the signal correlation unit 200 through a transmission line.
  • the signal correlator 200 may calculate a correlation value between the signal received from the antenna 100 and the reference signal received from the reference signal processor 500.
  • the calculation of the correlation value may be a measure of similarity through cross-correlation of two signals.
  • the correlation value may be a value converted into a baseband signal by integration over time of cross correlation of two signals.
  • the signal correlator 200 may accumulate cross-correlation values to remove noise for a desired signal. For example, a jamming signal having regularity causing interference of the signal through cross correlation may be sampled to remove the influence of the jamming signal.
  • the signal correlator 200 may include a filter for notching narrowband interference.
  • a filter may remove narrowband interference based on a threshold of narrowband harmonic noise or a bandwidth of noise. For example, if the value of the noise spectrum is higher than the threshold, or if the bandwidth of the noise spectrum is not greater than the threshold, it can be adjusted by the filter to match a predetermined value.
  • the signal correlator 200 may be configured as a correlator having a plurality of channels.
  • the correlator having a plurality of channels can calculate a cross correlation between the input process of the two signals and the reference type, and can eliminate narrowband interference.
  • the signal correlator 200 stores a signal energy in a plurality of channels by the correlation maximum signal confirming unit 300 and the least square calculation unit 400, and has a maximum correlation value. Based on the detection of repeatability, a correlation value can be calculated.
  • the maximum signal checking unit 300 may check a time value corresponding to a value in which a correlation value calculated from the signal correlation unit exceeds a preset reference value.
  • the maximum signal confirming unit 300 may transmit the identified time value to the least square calculation unit 400. For example, when the correlation value calculated by the signal correlation unit 200 is the maximum value (eg, 0.5 or more, 0.7 or more), the maximum signal checker 300 may determine a time value corresponding to the maximum value. have.
  • the least-squares calculator 400 may calculate and transmit at least one of a magnitude value and a phase value of the frequency to the reference signal generator based on the identified time value.
  • the least square calculator 400 may calculate the least square method based on a least square method (LSM) when calculating at least one of a magnitude value and a phase value of a frequency.
  • LSM least square method
  • the least square method may be calculated based on the identified time value, the value corresponding to the trench time, and the time sequence value.
  • the reference signal generator 500 may generate a reference signal based on frequency-related values and transmit the reference signal to the signal correlator 200.
  • the reference signal generator 500 may include at least one of a phase modulator, an orthogonal demodulator, and an analog-digital converter (ADC).
  • the phase modulator may modulate a phase with respect to an input signal (eg, harmonic oscillation).
  • the phase modulation may be performed through a pseudorandom sequence or the like.
  • the modulated phase can be passed to the input of the quadrature demodulator.
  • the quadrature demodulator can calculate a signal through a zero-frequency scheme.
  • the calculated signal can be converted into a binarization signal through an ADC.
  • the reference signal generator 500 has been described in the form of a structure for binarizing a signal when generating the reference signal, the reference signal generator 500 is not limited thereto and other structures may be added or some of the structures may be omitted.
  • Signals can be transmitted and received in a variety of spectrum ways.
  • the signal may be transmitted and received through a frequency hopping spread spectrum (FHSS) scheme, a direct sequence spread spectrum (DSSS) scheme, or the like.
  • FHSS frequency hopping spread spectrum
  • DSSS direct sequence spread spectrum
  • the frequency hopping spread spectrum method is a method of communicating by changing a frequency position at a transmitting side and a receiving side, and the direct sequence spread spectrum transmits and receives a signal through a promised value (eg, a bit value). That's the way.
  • the reference signal generator 500 may generate a reference signal based on a pre-stored value.
  • the pre-stored value may be obtained directly from an analog-to-digital converter (ADC) mounted on one side of the electronic device 101, or may be a value simulated through mathematical software.
  • ADC analog-to-digital converter
  • the reference signal generator 500 may generate a reference signal in real time when a signal is received. For example, while receiving a signal including noise, interference, and the like, the reference signal generator 500 may generate the reference signal when the specific signal is recognized or just before the recognized time.
  • the specific signal may be a signal determined based on an error value calculated through a dispreading process in the case of the DSSS method.
  • the signal processor 600 may process a signal based on a correlation value calculated from the signal correlator 200, the maximum signal checker 300, and the least square calculator 400.
  • processing the signal may be a signal (eg, a true signal) desired by the electronic device 101.
  • a PLMN code which is a unique identifier of the terminal (for example, the electronic device 101)
  • each terminal device may check whether the terminal is a desired counterpart by checking a media access control address (MAC) of the terminal.
  • MAC media access control address
  • the terminal devices may periodically transmit and receive mutual discovery signals (eg, beacon signals, etc.) between the terminal devices, and store the identifier of the counterpart terminal device in advance.
  • the electronic device 101 may determine a signal received from the external electronic device as a desired signal based on the identifier of the previously stored external electronic device.
  • FIG. 2 is a block diagram illustrating a signal correlation unit 200 of an electronic device 101 according to various embodiments of the present disclosure.
  • the signal correlator 200 may include an analog digital converter (ADC) 210, a fast fourier transformer (FFT), a filter (TR: Threshold Rejector, 230), and a multiplier.
  • the multiplier 240 may include at least one of an inverse fast fast Fourier transformer (IFFT) 250, an interface 260, and a second fast Fourier transformer 270.
  • IFFT inverse fast fast fast Fourier transformer
  • the analog to digital converter 210 may convert the analog signal received from the antenna 100 into a digital signal.
  • the analog-to-digital converter 210 may transmit the converted digital signal to the fast Fourier transformer 220.
  • Analog-to-digital converter 210 may perform sampling, quantization and coding.
  • the fast Fourier transformer 220 may convert the received signal into the frequency domain through the fast Fourier transform.
  • the fast Fourier transform may be a transform that represents one wave as a sum of a plurality of simple waves such as a frequency, an amplitude, and a pattern.
  • the fast Fourier transformer 200 may transmit the converted signal to the filter 230 and the interface 260.
  • the filter 230 may receive a signal from the fast Fourier transformer 220 and the interface 260.
  • the filter 230 may remove narrowband interference.
  • filter 230 may remove narrowband harmonic interference signals.
  • the filter 230 may adjust the bandwidth and cutoff threshold of narrowband noise.
  • the signal correlator 200 may determine whether the bandwidth of the noise is analyzed and whether the noise is before the narrowband is blocked.
  • the multiplier 240 and the inverse fast Fourier transformer 250 may receive a signal from the filter 230 and the second fast Fourier transformer 270 to perform multiplication.
  • the inverse fast Fourier transformer 250 may convert the signal received from the multiplier 240 into the time domain.
  • the multiplier 240 may multiply the signal received from the antenna 100 by the reference signal.
  • the multiplier 240 may be included in the signal correlation unit 200 or may be configured as a device having a separate configuration.
  • the interface 260 may receive a signal from the fast Fourier transformer 220. Based on the received signal, a threshold interference value to be removed and a bandwidth related value of noise may be set and transmitted to the filter 230.
  • the second fast Fourier transformer 270 may perform Fourier transform on a signal received from the interface 260 into a frequency domain and then transfer the signal to the multiplier 240.
  • 3A to 3E are block diagrams illustrating multiple paths of an electronic device 101 according to various embodiments of the present disclosure.
  • the electronic device 101 may acquire a signal by accumulating signal energy in a plurality of path ranges. According to an embodiment, the electronic device 101 may acquire a signal by detecting a repeatability of a time position of a correlation maximum value within a cycle of scanning an uncertain area.
  • the electronic device 101 may add non-coherent accumulation systems. For example, a correlation value obtained from the output of an inverse fast Fourier transformer (eg, inverse Fourier transformer 250) may be passed to a non-coherent accumulator.
  • an inverse fast Fourier transformer eg, inverse Fourier transformer 250
  • Abs (z) of FIG. 3A may mean an absolute value for a real z or a complex z.
  • Incoherent accumulation systems can be combined and delivered to memory (e.g., random access memory (RAM)).
  • memory e.g., random access memory (RAM)
  • the RAM may calculate an accumulated correlation value (eg, R (t)) based on the received feedback coefficient and a value calculated by the incoherent accumulation system.
  • R (t) an accumulated correlation value
  • the accumulation of signal energy in a range of multiple paths can be confirmed.
  • a correlation value obtained from the output of an inverse fast Fourier transformer eg, inverse Fourier transformer 250
  • a non-coherent accumulator This can be summed by any coefficient to reduce the acquisition of the wrong signal.
  • 3B and 3 are coefficients, and Al1 and Al2 are outputs of the non-coherent accumulators.
  • a subtraction of a value of each output disclosed in FIGS. 3B and 3C may be calculated, and an absolute value abs (z) of the calculated difference may be checked.
  • 3D shows Dln, an absolute value for the difference between Al1 and Al2.
  • Rl through the non-interference blocking unit.
  • Rl may be a value obtained by adding Rl ⁇ coefficient (for example, c ⁇ 1) to a Dln value.
  • R (t) may be an accumulated correlation function value.
  • the electronic device 101 may perform a binarization of a value through the non-interference blocking unit and obtain a desired signal through the least square calculation unit.
  • FIG. 4 is a block diagram of detecting an error signal of an electronic device 101 according to various embodiments of the present disclosure.
  • the electronic device 101 may include a maximum signal checking unit 300, a minimum square calculating unit 400, a selecting unit 700, and an error signal detecting unit 800.
  • the maximum signal confirming unit 300 may receive a correlation value calculated from the signal correlator 200.
  • the maximum signal confirming unit 300 may determine whether the received correlation value exceeds a preset reference value, and check a time value corresponding to the determined value.
  • the maximum signal confirming unit 300 may transmit the signal value confirmed by the least square calculation unit 400.
  • the least square calculator 400 may calculate a magnitude, a phase, and the like of frequency through a least square calculation method based on a signal value received from the maximum signal checker 300.
  • the selector 700 may determine the channel selection.
  • the selector 700 according to an exemplary embodiment may perform channel selection before the position repetition of the uncertainty region is detected.
  • the error signal detector 800 may detect an error signal by receiving a signal from the maximum signal checker 300 and the selector 700.
  • FIG. 5 is a block diagram of an electronic device 101 according to various embodiments of the present disclosure.
  • the electronic device 101 may include an analog digital converter (ADC) 10, a fast fourier transform (FFT) 20, a multiplier 240, and an inverse fast Fourier transformer.
  • ADC analog digital converter
  • FFT fast fourier transform
  • IFFT Inverse Fast Fourier Transform, 30
  • non-interference blocker 900 non-interference blocker 900
  • maximum signal checker 300 maximum signal checker 300
  • least square calculator 400 maximum signal checker 300
  • reference signal generator 500 and second fast Fourier transform (FFT) Fast Fourier Transform, 40).
  • the electronic device 101 may convert a signal into a digital signal through the analog-to-digital converter 10.
  • the fast Fourier transformer 20 may convert a signal received from the analog-digital converter 10 into a frequency domain.
  • Wiener-Khinchin theory states that the Fourier frequency conversion of the autocorrelation function for all signals can be the same as the power and energy spectral functions. Wiener-Khinchin theory may be the theory that the Fourier transform of power, random signal autocorrelation function and the same power spectral density.
  • the multiplier 240 may multiply the signals received from the fast Fourier transformer 20 and the second fast Fourier transformer 40 by a conjugate conjugate spectrum.
  • the inverse fast Fourier transformer 30 may convert the signal calculated from the multiplier 240 into the time domain.
  • the inverse fast Fourier transformer 30 may convert the signal received from the multiplier 240 into a time domain signal.
  • the inverse fast Fourier transformer 30 may determine whether the signal is orthogonal.
  • inverse fast Fourier transformer 30 may convert the number of composite data points representing a signal in the frequency domain into a time domain signal of the same point.
  • the non-interference blocking unit 900 may prevent noise of multiple paths. This can increase the signal-to-noise ratio (SNR) of the accumulated correlation value.
  • SNR signal-to-noise ratio
  • the maximum signal checking unit 300 may check a time value corresponding to a value in which a correlation value calculated from the non-interference blocking unit 900 exceeds a preset reference value.
  • the least-squares calculator 400 may calculate and transmit at least one of a magnitude value and a phase value of the frequency to the reference signal generator based on the identified time value.
  • the least square calculator 400 may calculate the least square method based on a least square method (LSM) when calculating at least one of a magnitude value and a phase value of a frequency.
  • LSM least square method
  • the least-squares calculation unit 400 may calculate the frequency F and the phase ⁇ through Equations 1 and 2 below.
  • the frequency may be a repetition frequency, and may be a repetition frequency that is repeatedly indicated by obtaining an accumulated correlation value. For example, when a signal is repeatedly transmitted from the outside, the maximum value of the correlation value is also repeatedly displayed. In this case, the time value when the correlation value is maximum can be repeated with a certain period. This period may mean the frequency F, and may be calculated by the least square calculation unit 400.
  • Equation 1 and Equation 2 ti is a time value received from the maximum signal checking unit 300, i is a sequence value, k is a reference time value (e.g., frequency and phase are calculated by a least-squares calculation unit) The total number of times being).
  • the least-squares calculator 400 may calculate and transmit a frequency and a phase value to the reference signal generator 500 through Equations 1 and 2 below.
  • the reference signal generator 500 may generate a reference signal based on the signal received from the least square calculator 400.
  • the reference signal generator 500 may generate a reference signal based on frequency-related values.
  • the second fast Fourier transformer 40 may receive a reference signal from the reference signal generator 500 and perform a Fourier transform in the frequency domain.
  • the second fast Fourier transformer 40 may transfer the Fourier transform performed in the frequency domain to the multiplier 240.
  • FIG. 6 illustrates a result screen by the non-interference blocking unit 900 according to various embodiments of the present disclosure.
  • a signal in the case of passing the inverse fast Fourier transformer 30 according to an embodiment of the present invention may be represented.
  • the signal-to-noise ratio (SNR) of the accumulated correlation value may be increased.
  • FIG. 7 illustrates a result screen by the maximum signal checking unit 300 according to various embodiments of the present disclosure.
  • the signal output by the non-interference blocking unit 900 may be confirmed.
  • the maximum signal checking unit 300 may analyze a signal received from the non-interference blocking unit 900.
  • the maximum signal checking unit 300 may perform binarization based on a reference threshold value whose correlation value is preset. For example, the maximum signal checking unit 300 may output a “1” signal exceeding a reference threshold value and may output a “0” signal when the maximum signal confirmation value is not exceeded.
  • 8A to 8D illustrate utilization of the electronic device 101 according to various embodiments of the present disclosure.
  • FIGS. 8A and 8B illustrate an electronic device 101 according to an embodiment of a smart phone, a tablet personal computer (PC), a mobile phone, a video phone, and an e-book reader.
  • Desktop personal computer laptop personal computer, netbook computer, workstation, server, personal digital assistant, portable multimedia player, MP3 player, mobile It may include at least one of a medical device, a camera, or a wearable device.
  • wearable devices may be accessory (eg, watches, rings, bracelets, anklets, necklaces, glasses, contact lenses, or head-mounted-devices (HMDs)), textiles, or clothing one-pieces (eg, it may include at least one of an electronic garment, a body attachment type (eg, a skin pad or a tattoo), or a living implantable type (eg, an implantable circuit).
  • HMDs head-mounted-devices
  • the electronic device 101 may be a home appliance.
  • Home appliances are, for example, televisions, digital video disk (DVD) players, audio, refrigerators, air conditioners, vacuum cleaners, ovens, microwaves, washing machines, air purifiers, set-top boxes, home automation controls Panel (home automation control panel), security control panel, TV box (e.g. Samsung HomeSyncTM, Apple TVTM, or Google TVTM), game console (e.g. XboxTM, PlayStationTM), electronic dictionary, electronic key, camcorder It may include at least one of a (camcorder), or an electronic picture frame.
  • DVD digital video disk
  • the electronic device 101 may include various medical devices (eg, various portable medical measuring devices (such as blood glucose meters, heart rate monitors, blood pressure meters, or body temperature meters), magnetic resonance angiography (MRA), and magnetic resonance (MRI)). imaging, computed tomography (CT), imaging, or ultrasound), navigation devices, global navigation satellite system (GNSS), event data recorder (EDR), flight data recorder (FDR), automotive Infotainment devices, marine electronic equipment (e.g. marine navigation devices, gyro compasses, etc.), avionics, security devices, vehicle head units, industrial or domestic robots, ATMs in financial institutions teller's machine, store point of sales, or internet of things (e.g. light bulbs, sensors, electrical or gas meters, sprinkler devices, fire alarms, thermostats, street lights, It may include at least one of a toaster, a sports equipment, a hot water tank, a heater, a boiler, and the like.
  • CT computed tomography
  • GNSS global navigation satellite system
  • EDR
  • the electronic device 101 may include a furniture or a part of a building / structure, an electronic board, an electronic signature receiving device, a projector, or various measuring instruments (for example, water, electricity, gas, or a radio wave measuring device) may be included.
  • the electronic device 101 may be a combination of one or more of the aforementioned various devices.
  • the electronic device 101 according to an embodiment may be a flexible electronic device.
  • the electronic device 101 according to an embodiment of the present disclosure is not limited to the above-described devices, and may include a new electronic device according to technology development.
  • the electronic device 101 may use various communications.
  • a cellular communication protocol for example, long-term evolution (LTE), LTE Advance (LTE-A), code division multiple access (CDMA), wideband CDMA (WCDMA), universal mobile telecommunications system (UMTS) , WiBro (Wireless Broadband), or Global System for Mobile Communications (GSM) may be used.
  • LTE long-term evolution
  • LTE-A LTE Advance
  • CDMA code division multiple access
  • WCDMA wideband CDMA
  • UMTS universal mobile telecommunications system
  • GSM Global System for Mobile Communications
  • wireless communication may include, for example, near field communication 164.
  • the short range communication 164 may include, for example, at least one of wireless fidelity (WiFi), Bluetooth, near field communication (NFC), global navigation satellite system (GNSS), and the like.
  • WiFi wireless fidelity
  • NFC near field communication
  • GNSS global navigation satellite system
  • GNSS is based on the location or bandwidth used, for example, among the Global Positioning System (GPS), Global Navigation Satellite System (Glonass), Beidou Navigation Satellite System (“Beidou”), or Galileo, the European global satellite-based navigation system. It may include at least one.
  • GPS Global Positioning System
  • Glonass Global Navigation Satellite System
  • Beidou Beidou Navigation Satellite System
  • Galileo the European global satellite-based navigation system. It may include at least one.
  • GPS Global Positioning System
  • the wired communication may include, for example, at least one of a universal serial bus (USB), a high definition multimedia interface (HDMI), a reduced standard232 (RS-232), a plain old telephone service (POTS), and the like.
  • the network 162 may include a telecommunications network, for example, at least one of a computer network (for example, a LAN or WAN), the Internet, and a telephone network.
  • FIG. 8C is a diagram illustrating a signal acquisition of the electronic device 101 according to an embodiment of the present disclosure, and illustrates when the electronic device 101 is a portable terminal according to various embodiments.
  • a first device eg, a mobile terminal
  • a second device eg, a mobile terminal, etc.
  • HI HI
  • the fourth device may receive the "GO" signal through the apparatus of the present invention.
  • the electronic device 101 may be utilized for sensing devices, GPS applications, and wireless measurement devices.
  • the sun, the Kinect sensor, and the TV remote control signal may be received using a device according to an embodiment of the present invention to process the signal. Based on the processed signal, a desired signal can be obtained through a clock generator or a line driver.
  • FIG. 9 is a flowchart illustrating signal acquisition of the electronic device 101 according to various embodiments of the present disclosure.
  • the electronic device 101 receives from at least one channel through an external device.
  • the antenna 100 may receive a signal through at least one channel from an external device.
  • the electronic device 101 In operation 920, the electronic device 101 generates a reference signal based on the frequency related values.
  • the reference signal generator 500 may receive at least one of a magnitude value and a phase value of the frequency calculated from the least square calculator 400.
  • the electronic device 101 calculates a correlation value between the signal and the reference signal.
  • the signal correlator 200 may include a multi-channel correlator and a filter for removing narrow band interference.
  • a filter may remove the narrowband interference based on a threshold of narrowband harmonic noise or a bandwidth of noise.
  • the signal correlator 200 detects the repeatability of a time position at which signal energy is accumulated in a plurality of channels and a correlation value is maximized by the maximum signal confirming unit 300 and the least square calculation unit 400.
  • the correlation value can be calculated based on the above.
  • the electronic device 101 checks a time value corresponding to a value in which the correlation value calculated from the signal correlation unit 200 exceeds a preset reference value.
  • the electronic device 101 calculates at least one of a magnitude value and a phase value of the frequency based on the identified time value.
  • the least square calculator 400 may calculate at least one of a magnitude value and a phase value using a least square method (LSM). For example, the least square method may be calculated based on the identified time value, the value corresponding to the reference time, and the time sequence value.
  • LSM least square method
  • the electronic device 101 may prevent the propagation effect of the correlation value calculated from the signal correlator 200 by the non-interference blocking unit 900.
  • the electronic device 101 may obtain a signal based on the calculated correlation value.
  • 10A to 10C illustrate result values for signal acquisition of the electronic device 101 according to various embodiments of the present disclosure.
  • 10A illustrates a table related to signal confirmation by the electronic device 101 of the present invention.
  • the electronic device 101 according to an embodiment has a higher probability of finding a desired signal (eg, a true signal) compared to a comparison technology.
  • the comparison technique here is based on the "threshold-based” algorithm, the “m-fold consecutive repetitions” algorithm, and the "k of n” algorithm. For the sake of clarity, the description of algorithms related to comparison techniques is omitted.
  • 10B is a table showing signal to noise ratio (SNR) and probability for signal acquisition.
  • SNR signal to noise ratio
  • various embodiments of the present disclosure can confirm that a signal acquisition detection probability is higher than that of a comparison technology.
  • the comparison technique compares at least one of the technique by the threshold-based algorithm, the "m-fold consecutive repetitions” algorithm, and the "k of n” algorithm.
  • 1009 illustrates an SNR graph of the electronic device 101, and 1011, where a comparison technique is described by a threshold-based algorithm, an “m-fold consecutive repetitions” algorithm, and a “k of n” algorithm.
  • the identified SNR was recorded by applying at least one technique.
  • module may refer to a unit that includes one or a combination of two or more of hardware, software, or firmware.
  • a “module” may be interchangeably used with terms such as, for example, unit, logic, logical block, component, or circuit.
  • the module may be a minimum unit or part of an integrally constructed part.
  • the module may be a minimum unit or part of performing one or more functions.
  • the “module” can be implemented mechanically or electronically.
  • a “module” is one of application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), or programmable-logic devices that perform certain operations, known or developed in the future. It may include at least one.
  • ASIC application-specific integrated circuit
  • FPGAs field-programmable gate arrays
  • At least a portion of an apparatus (e.g., modules or functions thereof) or method (e.g., operations) may be, for example, computer-readable storage media in the form of a program module. It can be implemented as a command stored in. When the instruction is executed by a processor, the one or more processors may perform a function corresponding to the instruction.
  • the computer-readable storage medium may be, for example, a memory.
  • Computer-readable recording media include hard disks, floppy disks, magnetic media (e.g. magnetic tape), optical media (e.g. compact disc read only memory), DVD ( digital versatile discs, magneto-optical media (e.g. floptical disks), hardware devices (e.g. read only memory, random access memory (RAM), or flash memory)
  • the program instructions may include not only machine code generated by a compiler, but also high-level language code executable by a computer using an interpreter, etc.
  • the hardware device described above may be various. It can be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
  • Modules or program modules according to various embodiments may include at least one or more of the above components, some may be omitted, or further include other components. Operations performed by modules, program modules, or other components in accordance with various embodiments may be executed in a sequential, parallel, repetitive, or heuristic manner. In addition, some operations may be executed in a different order, may be omitted, or other operations may be added. And the embodiments disclosed herein are presented for the purpose of explanation and understanding of the disclosed, technical content, and do not limit the scope of the technology described in this document. Accordingly, the scope of this document should be construed as including all changes or various other embodiments based on the technical spirit of this document.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Noise Elimination (AREA)

Abstract

The present invention relates to an apparatus for obtaining a signal, which may comprise an electronic apparatus comprising: an antenna for receiving a signal via at least one channel from an external apparatus; a reference signal generation unit for generating a reference signal on the basis of frequency-related values and transmitting the reference signal to a signal correlation unit; a signal correlation unit for calculating a correlation value between the signal and the reference signal; a correlation maximum signal identifying unit for identifying a time value corresponding to a correlation value exceeding a preset reference value from among correlation values calculated from the signal correlation unit and delivering the identified time value to a least square calculation unit; and a least square calculation unit for calculating at least any one of a magnitude value and a phase value of a frequency on the basis of the identified time value and delivering the calculated value to the reference signal generation unit. However, the present invention is not limited to the above-described embodiment, but may include other embodiments.

Description

신호를 획득하는 방법 및 이를 수행하는 전자 장치A method of acquiring a signal and an electronic device performing the same
본 발명은 신호를 획득하는 방법 및 이를 제공하는 전자 장치에 관한 것으로, 보다 구체적으로는 특정 알고리즘을 통해 원하는 신호를 획득하는 전자 장치에 관한 것이다.The present invention relates to a method for acquiring a signal and an electronic device providing the same, and more particularly, to an electronic device for acquiring a desired signal through a specific algorithm.
광대역 무선 통신 시스템의 경우 한정된 무선 자원의 효율성을 극대화하기 위하여 효과적인 송수신 기법 및 활용 방안들이 제안되어 왔다. 차세대 무선통신 시스템에서 고려되고 있는 시스템 중 하나가 낮은 복잡도로 심벌간 간섭(ISI: Inter-Symbol Interference) 효과를 감쇄시킬 수 있는 직교 주파수 분할 다중 (OFDM: Orthogonal Frequency Division Multiplexing) 시스템이다. OFDM은 직렬로 입력되는 데이터 심벌을 N개의 병렬 데이터 심벌로 변환하여 각각 N개의 부반송파(subcarrier)에 실어 전송한다. In the case of broadband wireless communication systems, effective transmission and reception techniques and utilization methods have been proposed to maximize the efficiency of limited radio resources. One of the systems considered in the next generation wireless communication system is an Orthogonal Frequency Division Multiplexing (OFDM) system that can attenuate inter-symbol interference (ISI) effects with low complexity. OFDM converts serially input data symbols into N parallel data symbols and carries them on N subcarriers, respectively.
이러한, 광대역 무선 통신 시스템에서 라디오 수신기는 교차 신호 상관부(cross-correlator)를 갖을 수 있다. 예를 들어, 교차 신호 상관부는 모노사이클 펄스의 전자기 펄스열을 단일단내의 기저대역 신호로 변환한다. 각각의 데이터 비트는 주기적인 타이밍 신호의 다수의 펄스를 시간 위치(time position)를 기반으로 변조한다. 이를 통해 각각의 단일 데이터 비트에 대해 동일한 펄스의 열을 포함하는 피변조 부호화된 타이밍 신호가 산출된다. 라디오 수신기의 교차 신호 상관부는 송신된 정보를 복구하기 위해 다중 펄스를 집적(integrate)한다.In such a broadband wireless communication system, a radio receiver may have a cross-correlator. For example, the cross signal correlator converts an electromagnetic pulse train of monocycle pulses into a baseband signal in a single stage. Each data bit modulates a number of pulses of a periodic timing signal based on a time position. This yields a modulated coded timing signal that includes the same string of pulses for each single data bit. The cross signal correlator of the radio receiver integrates multiple pulses to recover the transmitted information.
라디오 수신기를 통해 원하는 신호를 획득하기 위한 방법으로는 다양한 알고리즘이 이용된다. 하지만, 현존하는 알고리즘은 수신된 신호의 위상의 추적 및 동기화를 필요로 하거나, 입력 신호와 설정된 신호 사이의 상관값에 비례하는 임계 결정값을 필요로 하거나, 잡음 요소를 감소시키기 위해 많은 변수값들을 필요로 한다. 이러한 알고리즘은 신호 대 잡음비(SNR: Signal to Noise Ratio)가 낮고, 원하는 신호를 수신할 확률이 떨어진다.Various algorithms are used to obtain a desired signal through a radio receiver. However, existing algorithms require tracking and synchronization of the phase of the received signal, require threshold determinations that are proportional to the correlation between the input signal and the set signal, or reduce many noise values to reduce the noise component. in need. Such an algorithm has a low signal-to-noise ratio (SNR) and a low probability of receiving a desired signal.
이에 후술할 다양한 실시예들에 따른 방법 및 장치는 상기와 같은 문제점들을 줄일 수 있다.Accordingly, the method and the apparatus according to various embodiments to be described later can reduce the above problems.
본 발명의 일 실시예에 따른 전자 장치의 신호를 획득하는 방법에 있어서, 외부 장치로부터 적어도 하나의 채널을 통해 신호를 수신하는 동작, 주파수 관련 값들을 기반으로 참조 신호를 생성하는 동작, 상기 신호와 상기 참조 신호의 상관(correlate)값을 산출하는 동작, 상기 산출된 상관값이 미리 설정된 기준값을 초과하는 값에 대응하는 시간값을 확인하는 동작, 및 상기 확인된 시간값을 기반으로 주파수의 크기값 및 위상값 중 적어도 어느 하나의 값을 산출하는 동작을 포함할 수 있다. In a method of acquiring a signal of an electronic device according to an embodiment of the present invention, an operation of receiving a signal through at least one channel from an external device, generating a reference signal based on frequency-related values, and Calculating a correlation value of the reference signal, identifying a time value corresponding to a value in which the calculated correlation value exceeds a preset reference value, and a magnitude value of frequency based on the identified time value And calculating a value of at least one of the phase values.
본 발명의 일 실시예에 따른 전자 장치는 외부 장치로부터 적어도 하나의 채널을 통해 신호를 수신하는 안테나, 주파수 관련 값들을 기반으로 참조 신호를 생성하여 신호 상관부에 전달하는 참조 신호 생성부, 상기 신호와 상기 참조 신호의 상관(correlation)값을 산출하는 상기 신호 상관부, 상기 신호 상관부로부터 산출된 상관값 중 미리 설정된 기준값을 초과하는 상관값에 대응하는 시간값을 확인하고, 상기 확인된 시간값을 최소 자승 산출부에 전달하는 상관 최대 신호 확인부, 및 상기 확인된 시간값을 기반으로 주파수의 크기값 및 위상값 중 적어도 어느 하나의 값을 산출하여 상기 참조 신호 생성부에 전달하는 상기 최소 자승 산출부를 포함할 수 있다.An electronic device according to an embodiment of the present invention, an antenna for receiving a signal through at least one channel from an external device, a reference signal generator for generating a reference signal based on frequency-related values and transmitting it to a signal correlation unit, the signal And a time value corresponding to a correlation value exceeding a preset reference value among the signal correlator calculating the correlation value of the reference signal and the correlation value calculated from the signal correlator, and checking the identified time value. A correlation maximum signal checking unit for transmitting the minimum square calculation unit to the minimum square calculating unit, and calculating the least square value of a frequency value and a phase value based on the identified time value and transmitting the calculated value to the reference signal generating unit. It may include a calculation unit.
본 발명의 일 실시예에 따르면, 협대역 간섭 요소들을 필터링함으로써, 축적된 상관값의 신호대 잡음비(SNR)을 증가시킬 수 있다.According to an embodiment of the present invention, by filtering narrowband interference elements, it is possible to increase the signal-to-noise ratio (SNR) of the accumulated correlation value.
본 발명의 일 실시예에 따르면, 최소 자승 방법을 이용함으로써, 원하는 신호를 획득하는 확률을 증가시킬 수 있다.According to an embodiment of the present invention, by using the least square method, the probability of obtaining a desired signal may be increased.
도 1은 본 발명의 다양한 실시예에 따른 장치를 도시하는 블럭도이다.1 is a block diagram illustrating an apparatus according to various embodiments of the present disclosure.
도 2는 본 발명의 다양한 실시예에 따른 장치의 신호 상관부를 도시하는 블록도이다.2 is a block diagram illustrating a signal correlation unit of an apparatus according to various embodiments of the present disclosure.
도 3a 내지 도 3e는 본 발명의 다양한 실시예에 따른 장치의 다중 경로를 의미하는 블록도를 도시한다. 3A-3E illustrate block diagrams representing multiple paths of an apparatus in accordance with various embodiments of the present invention.
도 4는 본 발명의 다양한 실시예에 따른 장치의 오류 신호를 감지하는 블록도를 도시한다.4 is a block diagram of detecting an error signal of an apparatus according to various embodiments of the present disclosure.
도 5는 본 발명의 다양한 실시예에 따른 장치의 블록도를 도시한다.5 is a block diagram of an apparatus according to various embodiments of the present disclosure.
도 6은 본 발명의 다양한 실시예에 따른 비간섭 차단부에 의한 결과 화면을 도시한다.6 illustrates a result screen by a non-interference blocking unit according to various embodiments of the present disclosure.
도 7은 본 발명의 다양한 실시예에 따른 최대 신호 확인부에 의한 결과 화면을 도시한다.7 is a view illustrating a result screen by a maximum signal checking unit according to various embodiments of the present disclosure.
도 8a 내지 8d는 본 발명의 다양한 실시예에 따른 장치의 활용을 도시한다.8A-8D illustrate the use of an apparatus in accordance with various embodiments of the present invention.
도 9는 본 발명의 다양한 실시예에 따른 장치의 신호 획득에 대한 순서도를 도시한다.9 is a flowchart illustrating signal acquisition of an apparatus according to various embodiments of the present disclosure.
도 10a 내지 도10c는 본 발명의 다양한 실시예에 따른 장치의 신호 획득에 대한 결과 값을 도시한다.10A to 10C illustrate result values for signal acquisition of an apparatus according to various embodiments of the present disclosure.
이하, 본 문서의 다양한 실시예가 첨부된 도면을 참조하여 기재된다. 그러나, 이는 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 문서의 실시예의 다양한 변경(modifications), 균등물(equivalents), 및/또는 대체물(alternatives)을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.Hereinafter, various embodiments of the present disclosure will be described with reference to the accompanying drawings. However, this is not intended to limit the techniques described in this document to specific embodiments, but should be understood to cover various modifications, equivalents, and / or alternatives to the embodiments of this document. . In connection with the description of the drawings, similar reference numerals may be used for similar components.
본 문서에서, "가진다," "가질 수 있다," "포함한다," 또는 "포함할 수 있다" 등의 표현은 해당 특징(예: 수치, 기능, 동작, 또는 부품 등의 구성요소)의 존재를 가리키며, 추가적인 특징의 존재를 배제하지 않는다.In this document, expressions such as "have," "may have," "include," or "may include" include the presence of a corresponding feature (e.g., numerical, functional, operational, or component such as component). Does not exclude the presence of additional features.
본 문서에서, "A 또는 B," "A 또는/및 B 중 적어도 하나," 또는 "A 또는/및 B 중 하나 또는 그 이상"등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다. 예를 들면, "A 또는 B," "A 및 B 중 적어도 하나," 또는 "A 또는 B 중 적어도 하나"는, (1) 적어도 하나의 A를 포함, (2) 적어도 하나의 B를 포함, 또는 (3) 적어도 하나의 A 및 적어도 하나의 B 모두를 포함하는 경우를 모두 지칭할 수 있다.In this document, expressions such as "A or B," "at least one of A or / and B," or "one or more of A or / and B" may include all possible combinations of items listed together. . For example, "A or B," "at least one of A and B," or "at least one of A or B," includes (1) at least one A, (2) at least one B, Or (3) both of cases including at least one A and at least one B.
본 문서에서 사용된 "제 1," "제 2," "첫째," 또는 "둘째,"등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다. 예를 들면, 제 1 사용자 기기와 제 2 사용자 기기는, 순서 또는 중요도와 무관하게, 서로 다른 사용자 기기를 나타낼 수 있다. 예를 들면, 본 문서에 기재된 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 바꾸어 명명될 수 있다.Expressions such as "first," "second," "first," or "second," as used herein, may modify various components, regardless of order and / or importance, and may form a component. It is used to distinguish it from other components and does not limit the components. For example, the first user device and the second user device may represent different user devices regardless of the order or importance. For example, without departing from the scope of rights described in this document, the first component may be called a second component, and similarly, the second component may be renamed to the first component.
어떤 구성요소(예: 제 1 구성요소)가 다른 구성요소(예: 제 2 구성요소)에 "(기능적으로 또는 통신적으로) 연결되어((operatively or communicatively) coupled with/to)" 있다거나 "접속되어(connected to)" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제 3 구성요소)를 통하여 연결될 수 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소(예: 제 1 구성요소)가 다른 구성요소(예: 제 2 구성요소)에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 다른 구성요소(예: 제 3 구성요소)가 존재하지 않는 것으로 이해될 수 있다.One component (such as a first component) is "(functionally or communicatively) coupled with / to" to another component (such as a second component) or " When referred to as "connected to", it should be understood that any component may be directly connected to the other component or may be connected through another component (eg, a third component). On the other hand, when a component (e.g., a first component) is said to be "directly connected" or "directly connected" to another component (e.g., a second component), the component and the It can be understood that no other component (eg, a third component) exists between the other components.
본 문서에서 사용된 표현 "~하도록 구성된(또는 설정된)(configured to)"은 상황에 따라, 예를 들면, "~에 적합한(suitable for)," "~하는 능력을 가지는(having the capacity to)," "~하도록 설계된(designed to)," "~하도록 변경된(adapted to)," "~하도록 만들어진(made to)," 또는 "~를 할 수 있는(capable of)"과 바꾸어 사용될 수 있다. 용어 "~하도록 구성된(또는 설정된)"은 하드웨어적으로 "특별히 설계된(specifically designed to)" 것만을 반드시 의미하지 않을 수 있다. 대신, 어떤 상황에서는, "~하도록 구성된 장치"라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 "~할 수 있는" 것을 의미할 수 있다. 예를 들면, 문구 "A, B, 및 C를 수행하도록 구성된(또는 설정된) 프로세서"는 해당 동작을 수행하기 위한 전용 프로세서(예: 임베디드 프로세서), 또는 메모리 장치에 저장된 하나 이상의 소프트웨어 프로그램들을 실행함으로써, 해당 동작들을 수행할 수 있는 범용 프로세서(generic-purpose processor)(예: CPU 또는 application processor)를 의미할 수 있다. The expression "configured to" as used in this document is, for example, "having the capacity to" depending on the context, for example, "suitable for," ". It may be used interchangeably with "designed to," "adapted to," "made to," or "capable of." The term "configured to" may not necessarily mean only "specifically designed to" in hardware. Instead, in some situations, the expression "device configured to" may mean that the device "can" along with other devices or components. For example, the phrase “processor configured (or configured to) perform A, B, and C” may be implemented by executing a dedicated processor (eg, an embedded processor) to perform its operation, or one or more software programs stored in a memory device. It may mean a general-purpose processor (eg, a CPU or an application processor) capable of performing corresponding operations.
본 문서에서 사용된 용어들은 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 다른 실시예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 용어들은 본 문서에 기재된 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 본 문서에 사용된 용어들 중 일반적인 사전에 정의된 용어들은, 관련 기술의 문맥상 가지는 의미와 동일 또는 유사한 의미로 해석될 수 있으며, 본 문서에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 문서에서 정의된 용어일지라도 본 문서의 실시예들을 배제하도록 해석될 수 없다.The terminology used herein is for the purpose of describing particular embodiments only and may not be intended to limit the scope of other embodiments. Singular expressions may include plural expressions unless the context clearly indicates otherwise. The terms used herein, including technical or scientific terms, may have the same meaning as commonly understood by one of ordinary skill in the art. Among the terms used in this document, terms defined in the general dictionary may be interpreted as having the same or similar meaning as the meaning in the context of the related art, and ideally or excessively formal meanings are not clearly defined in this document. Not interpreted as In some cases, even if terms are defined in the specification, they may not be interpreted to exclude embodiments of the present disclosure.
도 1은 본 발명의 다양한 실시예에 따른 전자 장치(101)를 도시하는 블럭도이다.1 is a block diagram illustrating an electronic device 101 according to various embodiments of the present disclosure.
본 발명의 다양한 실시예에 따른 전자 장치(101)는 안테나(100), 신호 상관부(200), 최대 신호 확인부(300), 최소 자승 산출부(400), 참조 신호 생성부(500) 및 신호 처리부(600)를 포함할 수 있다.The electronic device 101 according to various embodiments of the present disclosure may include an antenna 100, a signal correlator 200, a maximum signal checker 300, a least square calculator 400, a reference signal generator 500, and the like. The signal processing unit 600 may be included.
본 발명의 일 실시예에 따른 안테나(100)는 외부 장치로부터 적어도 하나의 채널을 통해 신호를 수신할 수 있다. 일 실시예에 따른 안테나(100)는 수신된 신호를 전송 라인을 통해 신호 상관부(200)에 전달할 수 있다.The antenna 100 according to an embodiment of the present invention may receive a signal through at least one channel from an external device. The antenna 100 according to an embodiment may transmit the received signal to the signal correlation unit 200 through a transmission line.
본 발명의 일 실시예에 따른 신호 상관부(200)는 안테나(100)로부터 수신된 신호와 참조 신호 처리부(500)로부터 수신된 참조 신호의 상관(correlation)값을 산출할 수 있다. 여기서 상관값의 산출이란 두 신호의 교차 상관(cross-correlation)을 통해 유사성을 측정하는 것일 수 있다. 예를 들면, 상관값이란 두 신호의 교차 상관의 시간에 대한 적분으로 기저대역 신호로 변환된 값일 수 있다. The signal correlator 200 according to an exemplary embodiment may calculate a correlation value between the signal received from the antenna 100 and the reference signal received from the reference signal processor 500. Here, the calculation of the correlation value may be a measure of similarity through cross-correlation of two signals. For example, the correlation value may be a value converted into a baseband signal by integration over time of cross correlation of two signals.
일 실시예에 따른 신호 상관부(200)는 교차 상관값을 축적하여 원하는 신호에 대한 잡음을 제거할 수 있다. 예를 들면, 교차 상관을 통해 신호의 간섭을 야기하는 규칙성을 갖는 재밍 신호(jamming signal)를 샘플링하여, 재밍 신호의 영향을 제거할 수 있다.The signal correlator 200 according to an embodiment may accumulate cross-correlation values to remove noise for a desired signal. For example, a jamming signal having regularity causing interference of the signal through cross correlation may be sampled to remove the influence of the jamming signal.
본 발명의 일 실시예에 따른 신호 상관부(200)는 협대역 간섭을 제거(notching) 하는 필터를 포함할 수 있다. 일 실시예에 따른 필터는, 협대역 고조파 잡음의 임계값 또는 잡음의 대역폭을 기반으로 협대역 간섭을 제거할 수 있다. 예를 들면, 잡음 스펙트럼의 값이 임계값보다 높거나, 잡음 스펙트럼의 대역폭이 임계값보다 크지 않은 경우 미리 정해진 값과 일치하도록 상기 필터에 의해 조정될 수 있다.The signal correlator 200 according to an embodiment of the present invention may include a filter for notching narrowband interference. A filter according to an embodiment may remove narrowband interference based on a threshold of narrowband harmonic noise or a bandwidth of noise. For example, if the value of the noise spectrum is higher than the threshold, or if the bandwidth of the noise spectrum is not greater than the threshold, it can be adjusted by the filter to match a predetermined value.
본 발명의 일 실시예에 따른 신호 상관부(200)는 복수의 채널을 갖는 상관기로 구성될 수 있다. 여기서 복수의 채널을 갖는 상관기는 두 신호의 입력 프로세스와 참조 형태 사이의 교차 상관을 계산하고, 협대역(narrowband) 간섭을 제거할 수 있다.The signal correlator 200 according to an embodiment of the present invention may be configured as a correlator having a plurality of channels. Here, the correlator having a plurality of channels can calculate a cross correlation between the input process of the two signals and the reference type, and can eliminate narrowband interference.
본 발명의 일 실시예에 따른 신호 상관부(200)는 상관 최대 신호 확인부(300) 및 최소 자승 산출부(400)에 의해 복수의 채널에서 신호 에너지가 축적되고 상관값이 최대인 시간 위치의 반복성의 감지를 기반으로, 상관값을 산출할 수 있다.The signal correlator 200 according to an exemplary embodiment of the present invention stores a signal energy in a plurality of channels by the correlation maximum signal confirming unit 300 and the least square calculation unit 400, and has a maximum correlation value. Based on the detection of repeatability, a correlation value can be calculated.
본 발명의 다양한 실시예에 따른 최대 신호 확인부(300)는 신호 상관부로부터 산출된 상관값이 미리 설정된 기준값을 초과하는 값에 대응하는 시간값을 확인할 수 있다. 일 실시예에 따른 최대 신호 확인부(300)는 확인된 시간값을 최소 자승 산출부(400)에 전달할 수 있다. 예를 들어, 최대 신호 확인부(300)는 신호 상관부(200)에 의해 산출된 상관값이 최대값(예: 0.5이상, 0.7 이상 등)인 경우 해당 최대값에 대응하는 시간 값을 결정할 수 있다.The maximum signal checking unit 300 according to various embodiments of the present disclosure may check a time value corresponding to a value in which a correlation value calculated from the signal correlation unit exceeds a preset reference value. The maximum signal confirming unit 300 according to an embodiment may transmit the identified time value to the least square calculation unit 400. For example, when the correlation value calculated by the signal correlation unit 200 is the maximum value (eg, 0.5 or more, 0.7 or more), the maximum signal checker 300 may determine a time value corresponding to the maximum value. have.
본 발명의 다양한 실시예에 따른 최소 자승 산출부(400)는 확인된 시간값을 기반으로 주파수의 크기값 및 위상값 중 적어도 어느 하나의 값을 산출하여 상기 참조 신호 생성부에 전달할 수 있다. 일 실시예에 따른 최소 자승 산출부(400)는 주파수의 크기값 및 위상값 중 적어도 하나의 값을 산출 시, 최소 자승법(LSM: least square method)을 기반으로 산출할 수 있다. 여기서, 최소 자승법은, 확인된 시간값, 참호 시간에 대응하는 값 및 시간 시퀀스 값을 기반으로 산출될 수 있다.The least-squares calculator 400 according to various embodiments of the present disclosure may calculate and transmit at least one of a magnitude value and a phase value of the frequency to the reference signal generator based on the identified time value. The least square calculator 400 according to an embodiment may calculate the least square method based on a least square method (LSM) when calculating at least one of a magnitude value and a phase value of a frequency. Here, the least square method may be calculated based on the identified time value, the value corresponding to the trench time, and the time sequence value.
본 발명의 다양한 실시예에 따른 참조 신호 생성부(500)는 주파수 관련 값들을 기반으로 참조 신호를 생성하여 신호 상관부(200)에 전달할 수 있다.The reference signal generator 500 according to various embodiments of the present disclosure may generate a reference signal based on frequency-related values and transmit the reference signal to the signal correlator 200.
본 발명의 일 실시예에 따른 참조 신호 생성부(500)는 위상 변조기, 직교 복조기, 아날로그 디지털 컨버터(ADC: Analog-Digital Converter) 중 적어도 하나를 포함할 수 있다. 일 실시예에 따른 위상 변조기는 입력 신호(예: 조화 진동(harmonic oscillation))에 대한 위상을 변조할 수 있다. 예를 들어, 위상 변조는 임의 시퀀스(pseudorandom sequence) 등을 통해 이루어질 수 있다. 변조된 위상은 직교 복조기의 입력으로 전달될 수 있다. 직교 복조기는 제로 주파수(zero-frequency) 방식을 통해 신호를 산출할 수 있다. 산출된 신호는 ADC를 통해 이진화 신호로 변환될 수 있다. 본 참조 신호 생성부(500)는 참조 신호 생성 시 신호를 이진화하는 구조의 형태로 설명하였으나 이에 한정되는 것은 아니며 다른 구조가 추가되거나 상기 구조 중 일부가 생략될 수 있다.The reference signal generator 500 according to an embodiment of the present invention may include at least one of a phase modulator, an orthogonal demodulator, and an analog-digital converter (ADC). According to an embodiment, the phase modulator may modulate a phase with respect to an input signal (eg, harmonic oscillation). For example, the phase modulation may be performed through a pseudorandom sequence or the like. The modulated phase can be passed to the input of the quadrature demodulator. The quadrature demodulator can calculate a signal through a zero-frequency scheme. The calculated signal can be converted into a binarization signal through an ADC. Although the reference signal generator 500 has been described in the form of a structure for binarizing a signal when generating the reference signal, the reference signal generator 500 is not limited thereto and other structures may be added or some of the structures may be omitted.
신호는 다양한 스펙트럼의 방식으로 송수신 될 수 있다. 예를 들면, 신호는 주파수 도약 확산 스펙트럼(FHSS: Frequency Hopping Spread Spectrum) 방식, 직접 시퀀스 확산 스펙트럼(DSSS: Direct Sequence Spread Spectrum) 방식 등을 통해 송수신 될 수 있다. 상기 주파수 도약 확산 스펙트럼 방식은 송신측과 수신측에서 주파수 위치를 변화시켜 통신하는 방식이고, 상기 직접 시퀀스 확산 스펙트럼은 송신측과 수신측이 약속된 값(예: 비트값)을 통해 신호를 송수신하는 방식이다. Signals can be transmitted and received in a variety of spectrum ways. For example, the signal may be transmitted and received through a frequency hopping spread spectrum (FHSS) scheme, a direct sequence spread spectrum (DSSS) scheme, or the like. The frequency hopping spread spectrum method is a method of communicating by changing a frequency position at a transmitting side and a receiving side, and the direct sequence spread spectrum transmits and receives a signal through a promised value (eg, a bit value). That's the way.
일 실시예에 따른 참조 신호 생성부(500)는 미리 저장된 값을 기반으로 참조 신호를 생성할 수 있다. 예를 들어, 상기 미리 저장된 값은 전자 장치(101)의 일 측에 실장된 아날로그 디지털 컨버터(ADC)로부터 직접적으로 획득하거나, 수학적 소프트웨어를 통해 시뮬레이션된 값일 수 있다. 일 실시예에 따른 참조 신호 생성부(500)는 신호가 수신되는 경우 실시간으로 참조 신호를 생성할 수 있다. 예를 들어, 참조 신호 생성부(500)는 잡음, 간섭 등을 포함하는 신호를 수신하고 있는 동안, 특정 신호가 인식되는 때 또는 인식되는 시간으로부터 조금 이전에 참조 신호를 생성할 수 있다. 예를 들어, 상기 특정 신호란 DSSS 방식의 경우 역확산(dispreading) 과정을 통해 산출된 에러값을 기반으로 판단된 신호일 수 있다 The reference signal generator 500 according to an embodiment may generate a reference signal based on a pre-stored value. For example, the pre-stored value may be obtained directly from an analog-to-digital converter (ADC) mounted on one side of the electronic device 101, or may be a value simulated through mathematical software. The reference signal generator 500 according to an embodiment may generate a reference signal in real time when a signal is received. For example, while receiving a signal including noise, interference, and the like, the reference signal generator 500 may generate the reference signal when the specific signal is recognized or just before the recognized time. For example, the specific signal may be a signal determined based on an error value calculated through a dispreading process in the case of the DSSS method.
본 발명의 다양한 실시예에 따른 신호 처리부(600)는 신호 상관부(200), 최대 신호 확인부(300) 및 최소 자승 산출부(400)로부터 산출된 상관값을 기반으로 신호를 처리할 수 있다. 여기서 신호를 처리하는 것은 전자 장치(101)가 원하는 신호(예: true signal)일 수 있다. The signal processor 600 according to various embodiments of the present disclosure may process a signal based on a correlation value calculated from the signal correlator 200, the maximum signal checker 300, and the least square calculator 400. . Herein, processing the signal may be a signal (eg, a true signal) desired by the electronic device 101.
예를 들면, 셀룰러 시스템에서 기지국이 단말 장치에 어떠한 신호를 송신하고자 하는 경우, 단말(예: 전자 장치(101))의 고유 식별자인 PLMN(Public Land Mobile Network) 코드를 이용할 수 있다. 추가적인 예를 들면 단말 장치들 간에 정보를 전송하고자 하는 경우, 각각의 단말 장치는 단말의 매체 접근 제어 주소(MAC: Media Access Control Address)를 확인하여 원하는 상대방인지 여부를 확인할 수 있다. 추가적인 예를 들면, 단말 장치들은 단말 장치들 간에 상호간 탐색 신호(예: 비컨(beacon) 신호 등)를 주기적으로 송수신하여 상대 단말 장치의 식별자를 미리 저장할 수 있다. 일 실시예에 따른 전자 장치(101)는 미리 저장된 외부 전자 장치의 식별자를 기반으로, 외부 전자 장치로부터 수신한 신호를 원하는 신호로 결정할 수 있다. For example, when a base station wants to transmit a signal to a terminal device in a cellular system, a PLMN code, which is a unique identifier of the terminal (for example, the electronic device 101), may be used. As an additional example, when information is to be transmitted between terminal devices, each terminal device may check whether the terminal is a desired counterpart by checking a media access control address (MAC) of the terminal. For example, the terminal devices may periodically transmit and receive mutual discovery signals (eg, beacon signals, etc.) between the terminal devices, and store the identifier of the counterpart terminal device in advance. The electronic device 101 according to an embodiment may determine a signal received from the external electronic device as a desired signal based on the identifier of the previously stored external electronic device.
도 2는 본 발명의 다양한 실시예에 따른 전자 장치(101)의 신호 상관부(200)를 도시하는 블록도이다.2 is a block diagram illustrating a signal correlation unit 200 of an electronic device 101 according to various embodiments of the present disclosure.
본 발명의 일 실시예에 따른 신호 상관부(200)는 아날로그 디지털 변환기(ADC: Analog Digital Converter, 210), 고속 푸리에 변환기(FFT: Fast Fourier Transformer), 필터 (TR: Threshold Rejector, 230), 곱셈기 (Multiplier, 240), 역고속 푸리에 변환기(IFFT: Inverse, Fast Fourier Transformer, 250), 인터페이스(260) 및 제2 고속 푸리에 변환기(FFT, 270) 중 적어도 어느 하나를 포함할 수 있다.The signal correlator 200 according to an exemplary embodiment of the present invention may include an analog digital converter (ADC) 210, a fast fourier transformer (FFT), a filter (TR: Threshold Rejector, 230), and a multiplier. The multiplier 240 may include at least one of an inverse fast fast Fourier transformer (IFFT) 250, an interface 260, and a second fast Fourier transformer 270.
일 실시예에 따른 아날로그 디지털 변환기(210)는 안테나(100)로부터 수신한 아날로그 신호를 디지털 신호로 변환할 수 있다. 일 실시예에 따른 아날로그 디지털 변환기(210)는 고속 푸리에 변환기(220)으로 변환된 디지털 신호를 전달할 수 있다. 일 실시예에 따른 아날로그 디지털 변환기(210)는 샘플링, 양자화 및 코딩을 수행할 수 있다.The analog to digital converter 210 according to an embodiment may convert the analog signal received from the antenna 100 into a digital signal. The analog-to-digital converter 210 according to an embodiment may transmit the converted digital signal to the fast Fourier transformer 220. Analog-to-digital converter 210 according to an embodiment may perform sampling, quantization and coding.
일 실시예에 따른 고속 푸리에 변환기(220)은 수신한 신호를 고속 푸리에 변환을 통해 주파수 영역으로 변환할 수 있다. 예를 들어, 고속 푸리에 변환이란 일 파동을 진동수, 진폭, 패턴 등 복수의 단순한 파동들의 합으로 나타내는 변환일 수 있다. 일 실시예에 따른 고속 푸리에 변환기(200)는 변환된 신호를 필터(230) 및 인터페이스(260)로 전달할 수 있다.The fast Fourier transformer 220 according to an embodiment may convert the received signal into the frequency domain through the fast Fourier transform. For example, the fast Fourier transform may be a transform that represents one wave as a sum of a plurality of simple waves such as a frequency, an amplitude, and a pattern. The fast Fourier transformer 200 according to an embodiment may transmit the converted signal to the filter 230 and the interface 260.
일 실시예에 따른 필터(230)는 고속 푸리에 변환기(220) 및 인터페이스(260)로부터 신호를 수신할 수 있다. 일 실시예에 따른 필터(230)는 협대역 간섭을 제거할 수 있다. 예를 들면, 필터(230)는 협대역 고조파 간섭 신호를 제거할 수 있다. 일 실시예에 따른 필터(230)는 협대역 잡음의 대역폭 및 차단 임계값을 조정할 수 있다. 추가적인 예를 들면, 신호 상관부(200)는 협대역 이 차단되기 전에, 잡음의 대역폭이 분석되고 잡음 여부인지 여부가 결정할 수 있다.The filter 230 according to an embodiment may receive a signal from the fast Fourier transformer 220 and the interface 260. The filter 230 according to an embodiment may remove narrowband interference. For example, filter 230 may remove narrowband harmonic interference signals. The filter 230 according to an embodiment may adjust the bandwidth and cutoff threshold of narrowband noise. As an additional example, the signal correlator 200 may determine whether the bandwidth of the noise is analyzed and whether the noise is before the narrowband is blocked.
본 발명의 일 실시예에 따른 곱셈기(240) 및 역 고속 푸리에 변환기(250)는 필터(230) 및 제2 고속 푸리에 변환기(270)로부터 신호를 수신하여 곱셈을 수행할 수 있다. 일 실시예에 따른 역 고속 푸리에 변환기(250)는 곱셈기(240)로부터 수신한 신호를 시간 영역으로 변환할 수 있다. The multiplier 240 and the inverse fast Fourier transformer 250 according to an embodiment of the present invention may receive a signal from the filter 230 and the second fast Fourier transformer 270 to perform multiplication. The inverse fast Fourier transformer 250 according to an embodiment may convert the signal received from the multiplier 240 into the time domain.
일 실시예에 따른 곱셈기(240)는 안테나(100)로부터 수신한 신호와 참조 신호를 곱할 수 있다. 또 다른 일 실시예에 따른 곱셈기(240)의 구성은 신호 상관부(200)에 포함될 수도 있고, 별도의 구성을 갖는 일 장치로 구성될 수 있다.The multiplier 240 according to an embodiment may multiply the signal received from the antenna 100 by the reference signal. The multiplier 240 according to another embodiment may be included in the signal correlation unit 200 or may be configured as a device having a separate configuration.
본 발명의 일 실시예에 따른 인터페이스(260)는 고속 푸리에 변환기(220)으로부터 신호를 수신할 수 있다. 수신한 신호를 기반으로 제거할 임계 간섭 값, 잡음의 대역폭 관련값을 설정하고 필터(230)에 전달할 수 있다. The interface 260 according to an embodiment of the present invention may receive a signal from the fast Fourier transformer 220. Based on the received signal, a threshold interference value to be removed and a bandwidth related value of noise may be set and transmitted to the filter 230.
본 발명의 일 실시예에 따른 제2 고속 푸리에 변환기(270)는 인터페이스(260)로부터 수신한 신호를 주파수 영역으로 푸리에 변환한 후 곱셈기(240)로 전달할 수 있다.The second fast Fourier transformer 270 according to an embodiment of the present invention may perform Fourier transform on a signal received from the interface 260 into a frequency domain and then transfer the signal to the multiplier 240.
도 3a 내지 도 3e는 본 발명의 다양한 실시예에 따른 전자 장치(101)의 다중 경로를 의미하는 블록도를 도시한다. 3A to 3E are block diagrams illustrating multiple paths of an electronic device 101 according to various embodiments of the present disclosure.
본 발명의 일 실시예에 따른 전자 장치(101)는 복수 경로 범위의 신호 에너지의 축적을 통해 신호를 획득할 수 있다. 일 실시예에 따른 전자 장치(101)는 불확실 영역의 스캐닝의 사이클 내에서 상관 최대값의 시간 위치의 반복성을 감지함에 따라 신호를 획득할 수 있다.The electronic device 101 according to an embodiment of the present invention may acquire a signal by accumulating signal energy in a plurality of path ranges. According to an embodiment, the electronic device 101 may acquire a signal by detecting a repeatability of a time position of a correlation maximum value within a cycle of scanning an uncertain area.
일 실시예에 따른 전자 장치(101)는 비간섭성 축적 시스템들이 합해질 수 있다. 예를 들어, 역 고속 푸리에 변환기(예: 역 푸리에 변환기(250))의 출력으로부터 획득된 상관값이 비 코히어런트 축적기(non-coherent accumulator)에 전달될 수 있다. The electronic device 101 according to an embodiment may add non-coherent accumulation systems. For example, a correlation value obtained from the output of an inverse fast Fourier transformer (eg, inverse Fourier transformer 250) may be passed to a non-coherent accumulator.
도 3a의 abs(z)는 실수 z 또는 복소수 z에 대한 절대값을 의미할 수 있다. 비간섭성 축적 시스템들이 합해져 메모리(예: RAM(Random Access Memory) 등)에 전달될 수 있다. Abs (z) of FIG. 3A may mean an absolute value for a real z or a complex z. Incoherent accumulation systems can be combined and delivered to memory (e.g., random access memory (RAM)).
본 발명의 일 실시예에 따른 RAM은 수신한 피드백 계수와 비간섭성 축적 시스템에 의해 산출된 값을 기반으로 축적된 상관값(예: R(t))을 산출할 수 있다.The RAM according to an embodiment of the present invention may calculate an accumulated correlation value (eg, R (t)) based on the received feedback coefficient and a value calculated by the incoherent accumulation system.
도 3b 및 도 3c를 참조하면, 다수 경로의 범위에서 신호 에너지의 축적을 확인할 수 있다. 예를 들어, 역 고속 푸리에 변환기(예: 역 푸리에 변환기(250))의 출력으로부터 획득된 상관값이 비 코히어런트 축적기(non-coherent accumulator)에 전달될 수 있다. 이는 잘못된 신호의 획득을 감소시키기 위해 임의의 계수만큼 합해질 수 있다. 참고로, 도 3b 및 도 3의 l은 계수이고, Al1, Al2은 비 코히어런트 축적기의 출력이다.3B and 3C, the accumulation of signal energy in a range of multiple paths can be confirmed. For example, a correlation value obtained from the output of an inverse fast Fourier transformer (eg, inverse Fourier transformer 250) may be passed to a non-coherent accumulator. This can be summed by any coefficient to reduce the acquisition of the wrong signal. 3B and 3 are coefficients, and Al1 and Al2 are outputs of the non-coherent accumulators.
도 3d를 참조하면, 도 3b와 도 3c에 개시된 각 출력의 값에 대한 차이(subtraction)를 산출하고, 산출된 차이에 대한 절대값(abs(z))을 확인할 수 있다. 도 3d는 Al1의 값과 Al2의 차이에 대한 절대값 값인 Dln을 나타낸다.Referring to FIG. 3D, a subtraction of a value of each output disclosed in FIGS. 3B and 3C may be calculated, and an absolute value abs (z) of the calculated difference may be checked. 3D shows Dln, an absolute value for the difference between Al1 and Al2.
도 3e를 참조하면, 비간섭 차단부를 통한 Rl을 확인할 수 있다. Rl은 Dln값에 Rl×계수(coefficient, 예: c<1)를 더한 값일 수 있다. 여기서 R(t)는 축력된 상관 기능값일 수 있다.Referring to Figure 3e, it can be confirmed Rl through the non-interference blocking unit. Rl may be a value obtained by adding Rl × coefficient (for example, c <1) to a Dln value. Here, R (t) may be an accumulated correlation function value.
일 실시예에 따른 전자 장치(101)는 비간섭 차단부를 통한 값을 이진화의 수행 및 최소 자승 산출부를 통해 원하는 신호를 획득할 수 있다.The electronic device 101 according to an embodiment may perform a binarization of a value through the non-interference blocking unit and obtain a desired signal through the least square calculation unit.
도 4는 본 발명의 다양한 실시예에 따른 전자 장치(101)의 오류 신호를 감지하는 블록도를 도시한다.4 is a block diagram of detecting an error signal of an electronic device 101 according to various embodiments of the present disclosure.
본 발명의 일 실시예에 따른 전자 장치(101)는 최대 신호 확인부(300), 최소 자승 산출부(400), 선택부(700) 및 오류 신호 감지부(800)를 포함할 수 있다.The electronic device 101 according to an embodiment of the present invention may include a maximum signal checking unit 300, a minimum square calculating unit 400, a selecting unit 700, and an error signal detecting unit 800.
본 발명의 일 실시예에 따른 최대 신호 확인부(300)는 신호 상관부(200)로부터 산출된 상관값을 수신할 수 있다. 일 실시예에 따른 최대 신호 확인부(300)는 수신한 상관값이 미리 설정된 기준값을 초과하는 값인지를 확인하고, 확인된 값에 대응하는 시간값을 확인할 수 있다.The maximum signal confirming unit 300 according to an embodiment of the present invention may receive a correlation value calculated from the signal correlator 200. The maximum signal confirming unit 300 according to an embodiment may determine whether the received correlation value exceeds a preset reference value, and check a time value corresponding to the determined value.
본 발명의 일 실시예에 따른 최대 신호 확인부(300)는 최소 자승 산출부(400)로 확인된 신호값을 전달할 수 있다. 일 실시예에 따른 최소 자승 산출부(400)는 최대 신호 확인부(300)로부터 수신한 신호값을 기반으로, 최소 자승 산출법을 통해 주파수의 크기, 위상 등을 산출할 수 있다.The maximum signal confirming unit 300 according to an embodiment of the present invention may transmit the signal value confirmed by the least square calculation unit 400. The least square calculator 400 according to an embodiment may calculate a magnitude, a phase, and the like of frequency through a least square calculation method based on a signal value received from the maximum signal checker 300.
본 발명의 일 실시예에 따른 선택부(700)는 채널 선택을 결정할 수 있다. 일 실시예에 따른 선택부(700)는 불확실 영역의 위치 반복이 감지되기 전에 채널 선택을 수행할 수 있다.The selector 700 according to an embodiment of the present invention may determine the channel selection. The selector 700 according to an exemplary embodiment may perform channel selection before the position repetition of the uncertainty region is detected.
본 발명의 일 실시예에 따른 오류 신호 감지부(800)는 최대 신호 확인부(300) 및 선택부(700)로부터 신호를 수신하여 오류 신호를 감지할 수 있다. The error signal detector 800 according to an embodiment of the present invention may detect an error signal by receiving a signal from the maximum signal checker 300 and the selector 700.
도 5는 본 발명의 다양한 실시예에 따른 전자 장치(101)의 블록도를 도시한다.5 is a block diagram of an electronic device 101 according to various embodiments of the present disclosure.
본 발명의 일 실시예에 따른 전자 장치(101)는, 아날로그 디지털 컨버터(ADC: Analog Digital Converter, 10), 고속 푸리에 변환기(FFT: Fast Fourier Transform, 20), 곱셈기(240), 역 고속 푸리에 변환기(IFFT: Inverse Fast Fourier Transform, 30), 비간섭 차단부(900), 최대 신호 확인부(300), 최소 자승 산출부(400), 참조 신호 생성부(500) 및 제2 고속 푸리에 변환기(FFT: Fast Fourier Transform, 40)를 포함할 수 있다.The electronic device 101 according to an embodiment of the present invention may include an analog digital converter (ADC) 10, a fast fourier transform (FFT) 20, a multiplier 240, and an inverse fast Fourier transformer. (IFFT: Inverse Fast Fourier Transform, 30), non-interference blocker 900, maximum signal checker 300, least square calculator 400, reference signal generator 500, and second fast Fourier transform (FFT) Fast Fourier Transform, 40).
*일 실시예에 따른 전자 장치(101)는 신호를 아날로그 디지털 컨버터(10)를 통해 디지털 신호로 변환할 수 있다. 일 실시예에 따른 고속 푸리에 변환기(20)는 아날로그 디지털 컨버터(10)로부터 수신한 신호를 주파수 영역으로 변환할 수 있다. 일 실시예에 따른 고속 푸리에 변환기(20)의 알고리즘은 Winer-Khinchin 이론, 쿨리-튜키 알고리즘(Cooley-Tukey algorithm), PFA 알고리즘(Prime Factor Algorithm), Bruun’s FFT 알고리즘 등을 이용하여 변환할 수 있다. 예를 들면, 분할 정복 알고리즘을 사용하여, 재귀적으로 n 크기의 DFT(discrete fourier transform)를 n=n1, n2가 성립하는 n1, n2 크기의 두 DFT로 나눈 뒤 그 결과를 O(n) 시간에 합치는 알고리즘일 수 있다.The electronic device 101 according to an embodiment may convert a signal into a digital signal through the analog-to-digital converter 10. The fast Fourier transformer 20 according to an embodiment may convert a signal received from the analog-digital converter 10 into a frequency domain. The algorithm of the fast Fourier transformer 20 according to an embodiment may be converted using Winer-Khinchin theory, Cooley-Tukey algorithm, Prime Factor Algorithm, Bruun's FFT algorithm, and the like. For example, using a partitioning convolutional algorithm, we recursively divide a discrete fourier transform of size n into two DFTs of size n1 and n2 where n = n1 and n2, and then divide the result into O (n) time. May be an algorithm.
추가적인 예를 들면, Wiener-Khinchin 이론은 모든 신호에 대한 자기 상관함수의 푸리에 주파수 변환은 전력, 에너지 스펙트럼 함수와 동일할 수 있다. Wiener-Khinchin 이론은 전력, 랜덤 신호의 자기 상관함수의 푸리에 변환과 전력 스펙트럼 밀도가 동일한 내용을 나타내는 이론일 수 있다.As an additional example, the Wiener-Khinchin theory states that the Fourier frequency conversion of the autocorrelation function for all signals can be the same as the power and energy spectral functions. Wiener-Khinchin theory may be the theory that the Fourier transform of power, random signal autocorrelation function and the same power spectral density.
본 발명의 일 실시예에 따른 곱셈기(240)는 고속 푸리에 변환기(20)과 제2 고속 푸리에 변환기(40)로부터 수신한 신호를 공액 복소수(complex conjugate) 스펙트럼에 의해 곱할 수 있다. The multiplier 240 according to an embodiment of the present invention may multiply the signals received from the fast Fourier transformer 20 and the second fast Fourier transformer 40 by a conjugate conjugate spectrum.
본 발명의 일 실시예에 따른 역 고속 푸리에 변환기(30)는 곱셈기(240)로부터 산출된 신호를 시간 영역으로 변환할 수 있다. The inverse fast Fourier transformer 30 according to an embodiment of the present invention may convert the signal calculated from the multiplier 240 into the time domain.
일 실시예에 따른 역 고속 푸리에 변환기(30)는 곱셈기(240)로부터 수신한 신호를 시간 영역 신호로 변환할 수 있다. 여기서 역 고속 푸리에 변환기(30)를 통해 신호가 직교(orthogonal)인지 여부를 확인할 수 있다. 예를 들면, 역 고속 푸리에 변환기(30)는 주파수 영역에서 신호를 나타내는 복합 데이터 포인트의 수를 동일한 포인트의 시간 영역 신호로 변환할 수 있다.The inverse fast Fourier transformer 30 according to an embodiment may convert the signal received from the multiplier 240 into a time domain signal. Here, the inverse fast Fourier transformer 30 may determine whether the signal is orthogonal. For example, inverse fast Fourier transformer 30 may convert the number of composite data points representing a signal in the frequency domain into a time domain signal of the same point.
본 발명의 일 실시예에 따른 비간섭 차단부(900)는 복수 경로의 잡음을 막을 수 있다. 이를 통해 축적된 상관값의 신호 대 잡음비(SNR)를 증가시킬 수 있다. The non-interference blocking unit 900 according to an embodiment of the present invention may prevent noise of multiple paths. This can increase the signal-to-noise ratio (SNR) of the accumulated correlation value.
본 발명의 일 실시예에 따른 최대 신호 확인부(300)는 비간섭 차단부(900)로부터 산출된 상관값이 미리 설정된 기준값을 초과하는 값에 대응하는 시간값을 확인할 수 있다.The maximum signal checking unit 300 according to an exemplary embodiment of the present invention may check a time value corresponding to a value in which a correlation value calculated from the non-interference blocking unit 900 exceeds a preset reference value.
본 발명의 다양한 실시예에 따른 최소 자승 산출부(400)는 확인된 시간값을 기반으로 주파수의 크기값 및 위상값 중 적어도 어느 하나의 값을 산출하여 상기 참조 신호 생성부에 전달할 수 있다. 일 실시예에 따른 최소 자승 산출부(400)는 주파수의 크기값 및 위상값 중 적어도 하나의 값을 산출 시, 최소 자승법(LSM: least square method)을 기반으로 산출할 수 있다.The least-squares calculator 400 according to various embodiments of the present disclosure may calculate and transmit at least one of a magnitude value and a phase value of the frequency to the reference signal generator based on the identified time value. The least square calculator 400 according to an embodiment may calculate the least square method based on a least square method (LSM) when calculating at least one of a magnitude value and a phase value of a frequency.
본 발명의 일 실시예에 따른 최소 자승 산출부(400)는 하기의 수학식 1 및 수학식 2를 통해 주파수(F) 및 위상(Φ)을 산출할 수 있다. 상기 주파수는 반복 주파수로, 축적된 상관값을 구함에 따라 반복적으로 나타내는 반복 주파수일 수 있다. 예를 들어, 외부로부터 신호가 반복적으로 전송되는 경우, 상관값의 최대값 또한 반복적으로 나타내게 된다. 이런 경우 상관값이 최대일 때의 시간값은 일정한 주기를 갖고 반복될 수 있다. 이러한 주기가 상기 주파수(F)를 의미할 수 있으며, 최소 자승 산출부(400)에 의해 산출될 수 있다.The least-squares calculation unit 400 according to an embodiment of the present invention may calculate the frequency F and the phase Φ through Equations 1 and 2 below. The frequency may be a repetition frequency, and may be a repetition frequency that is repeatedly indicated by obtaining an accumulated correlation value. For example, when a signal is repeatedly transmitted from the outside, the maximum value of the correlation value is also repeatedly displayed. In this case, the time value when the correlation value is maximum can be repeated with a certain period. This period may mean the frequency F, and may be calculated by the least square calculation unit 400.
하기의 수학식 1 및 수학식 2에서 ti는 최대 신호 확인부(300)로부터 수신한 시간 값이고, i는 시퀀스 값, k는 참조 시간 값(예: 최소 자승 산출부에 의해 주파수와 위상이 산출되는 시간의 전체 숫자 개수)일 수 있다.In Equation 1 and Equation 2, ti is a time value received from the maximum signal checking unit 300, i is a sequence value, k is a reference time value (e.g., frequency and phase are calculated by a least-squares calculation unit) The total number of times being).
수학식 1
Figure PCTKR2016011614-appb-M000001
Equation 1
Figure PCTKR2016011614-appb-M000001
수학식 2
Figure PCTKR2016011614-appb-M000002
Equation 2
Figure PCTKR2016011614-appb-M000002
본 발명의 일 실시예에 따른 최소 자승 산출부(400)는 수학식 1 및 수학식 2를 통해 주파수 및 위상값을 산출하여 참조 신호 생성부(500)에 전달할 수 있다.The least-squares calculator 400 according to an embodiment of the present invention may calculate and transmit a frequency and a phase value to the reference signal generator 500 through Equations 1 and 2 below.
본 발명의 일 실시예에 따른 참조 신호 생성부(500)는 최소 자승 산출부(400)로부터 수신한 신호를 기반으로 참조 신호를 생성할 수 있다. The reference signal generator 500 according to an embodiment of the present invention may generate a reference signal based on the signal received from the least square calculator 400.
본 발명의 다양한 실시예에 따른 참조 신호 생성부(500)는 주파수 관련 값들을 기반으로 참조 신호를 생성할 수 있다. The reference signal generator 500 according to various embodiments of the present disclosure may generate a reference signal based on frequency-related values.
본 발명의 일 실시예에 따른 제2 고속 푸리에 변환기(40)는 참조 신호 생성부(500)로부터 참조 신호를 수신하고 주파수 영역으로 푸리에 변환을 수행할 수 있다. 일 실시예에 따른 제2 고속 푸리에 변환기(40)는 주파수 영역으로 수행한 푸리에 변환을 곱셈기(240)로 전달할 수 있다.The second fast Fourier transformer 40 according to an embodiment of the present invention may receive a reference signal from the reference signal generator 500 and perform a Fourier transform in the frequency domain. The second fast Fourier transformer 40 according to an embodiment may transfer the Fourier transform performed in the frequency domain to the multiplier 240.
도 6은 본 발명의 다양한 실시예에 따른 비간섭 차단부(900)에 의한 결과 화면을 도시한다.6 illustrates a result screen by the non-interference blocking unit 900 according to various embodiments of the present disclosure.
601을 참조하면 본 발명의 일 실시예에 따른 역 고속 푸리에 변환기(30)를 통과한 경우의 신호를 나타낼 수 있다.Referring to 601, a signal in the case of passing the inverse fast Fourier transformer 30 according to an embodiment of the present invention may be represented.
603을 참조하면 역 고속 푸리에 변환기(30)로부터 수신한 신호를 비간섭 차단부(900)에 의해 필터링 되는 경우 축적된 상관값의 신호 대 잡음비(SNR)가 증가될 수 있다.Referring to 603, when the signal received from the inverse fast Fourier transformer 30 is filtered by the non-interference blocking unit 900, the signal-to-noise ratio (SNR) of the accumulated correlation value may be increased.
도 7은 본 발명의 다양한 실시예에 따른 최대 신호 확인부(300)에 의한 결과 화면을 도시한다.7 illustrates a result screen by the maximum signal checking unit 300 according to various embodiments of the present disclosure.
701을 참조하면 비간섭 차단부(900)에 의해 출력된 신호를 확인할 수 있다.Referring to 701, the signal output by the non-interference blocking unit 900 may be confirmed.
703을 참조하면 본 발명의 일 실시예에 따른 최대 신호 확인부(300)는 비간섭 차단부(900)로부터 수신한 신호를 분석할 수 있다. 일 실시예에 따른 최대 신호 확인부(300)는 상관값이 미리 설정된 기준 임계값을 기반으로 이진화(binary)를 수행할 수 있다. 예를 들면, 최대 신호 확인부(300)는 기준 임계값을 초과하는 “1”신호를 출력하고, 임계값을 초과하지 않는 경우 “0” 신호를 출력할 수 있다.Referring to 703, the maximum signal checking unit 300 according to an embodiment of the present invention may analyze a signal received from the non-interference blocking unit 900. The maximum signal checking unit 300 according to an embodiment may perform binarization based on a reference threshold value whose correlation value is preset. For example, the maximum signal checking unit 300 may output a “1” signal exceeding a reference threshold value and may output a “0” signal when the maximum signal confirmation value is not exceeded.
도 8a 내지 8d는 본 발명의 다양한 실시예에 따른 전자 장치(101)의 활용을 도시한다.8A to 8D illustrate utilization of the electronic device 101 according to various embodiments of the present disclosure.
도 8a 및 도 8b는 일 실시예에 따른 전자 장치(101)는 스마트폰(smartphone), 태블릿 PC(tablet personal computer), 이동 전화기(mobile phone), 영상 전화기, 전자책 리더기(e-book reader), 데스크탑 PC(desktop personal computer), 랩탑 PC(laptop personal computer), 넷북 컴퓨터(netbook computer), 워크스테이션(workstation), 서버, PDA(personal digital assistant), PMP(portable multimedia player), MP3 플레이어, 모바일 의료기기, 카메라(camera), 또는 웨어러블 장치(wearable device) 중 적어도 하나를 포함할 수 있다. 다양한 실시예에 따르면, 웨어러블 장치는 액세서리형(예: 시계, 반지, 팔찌, 발찌, 목걸이, 안경, 콘택트 렌즈, 또는 머리 착용형 장치(head-mounted-device(HMD)), 직물 또는 의류 일체형(예: 전자 의복), 신체 부착형(예: 스킨 패드(skin pad) 또는 문신), 또는 생체 이식형(예: implantable circuit) 중 적어도 하나를 포함할 수 있다. 8A and 8B illustrate an electronic device 101 according to an embodiment of a smart phone, a tablet personal computer (PC), a mobile phone, a video phone, and an e-book reader. , Desktop personal computer, laptop personal computer, netbook computer, workstation, server, personal digital assistant, portable multimedia player, MP3 player, mobile It may include at least one of a medical device, a camera, or a wearable device. According to various embodiments, wearable devices may be accessory (eg, watches, rings, bracelets, anklets, necklaces, glasses, contact lenses, or head-mounted-devices (HMDs)), textiles, or clothing one-pieces ( For example, it may include at least one of an electronic garment, a body attachment type (eg, a skin pad or a tattoo), or a living implantable type (eg, an implantable circuit).
일 실시예에 따른 전자 장치(101)는 가전 제품(home appliance)일 수 있다. 가전 제품은, 예를 들면, 텔레비전, DVD(digital video disk) 플레이어, 오디오, 냉장고, 에어컨, 청소기, 오븐, 전자레인지, 세탁기, 공기 청정기, 셋톱 박스(set-top box), 홈 오토매이션 컨트롤 패널(home automation control panel), 보안 컨트롤 패널(security control panel), TV 박스(예: 삼성 HomeSyncTM, 애플TVTM, 또는 구글 TVTM), 게임 콘솔(예: XboxTM, PlayStationTM), 전자 사전, 전자 키, 캠코더(camcorder), 또는 전자 액자 중 적어도 하나를 포함할 수 있다.The electronic device 101 according to an embodiment may be a home appliance. Home appliances are, for example, televisions, digital video disk (DVD) players, audio, refrigerators, air conditioners, vacuum cleaners, ovens, microwaves, washing machines, air purifiers, set-top boxes, home automation controls Panel (home automation control panel), security control panel, TV box (e.g. Samsung HomeSyncTM, Apple TVTM, or Google TVTM), game console (e.g. XboxTM, PlayStationTM), electronic dictionary, electronic key, camcorder It may include at least one of a (camcorder), or an electronic picture frame.
다른 실시예에서, 전자 장치(101)는, 각종 의료기기(예: 각종 휴대용 의료측정기기(혈당 측정기, 심박 측정기, 혈압 측정기, 또는 체온 측정기 등), MRA(magnetic resonance angiography), MRI(magnetic resonance imaging), CT(computed tomography), 촬영기, 또는 초음파기 등), 네비게이션(navigation) 장치, 위성 항법 시스템(GNSS(global navigation satellite system)), EDR(event data recorder), FDR(flight data recorder), 자동차 인포테인먼트(infotainment) 장치, 선박용 전자 장비(예: 선박용 항법 장치, 자이로 콤파스 등), 항공 전자기기(avionics), 보안 기기, 차량용 헤드 유닛(head unit), 산업용 또는 가정용 로봇, 금융 기관의 ATM(automatic teller's machine), 상점의 POS(point of sales), 또는 사물 인터넷 장치(internet of things)(예: 전구, 각종 센서, 전기 또는 가스 미터기, 스프링클러 장치, 화재경보기, 온도조절기(thermostat), 가로등, 토스터(toaster), 운동기구, 온수탱크, 히터, 보일러 등) 중 적어도 하나를 포함할 수 있다.In another embodiment, the electronic device 101 may include various medical devices (eg, various portable medical measuring devices (such as blood glucose meters, heart rate monitors, blood pressure meters, or body temperature meters), magnetic resonance angiography (MRA), and magnetic resonance (MRI)). imaging, computed tomography (CT), imaging, or ultrasound), navigation devices, global navigation satellite system (GNSS), event data recorder (EDR), flight data recorder (FDR), automotive Infotainment devices, marine electronic equipment (e.g. marine navigation devices, gyro compasses, etc.), avionics, security devices, vehicle head units, industrial or domestic robots, ATMs in financial institutions teller's machine, store point of sales, or internet of things (e.g. light bulbs, sensors, electrical or gas meters, sprinkler devices, fire alarms, thermostats, street lights, It may include at least one of a toaster, a sports equipment, a hot water tank, a heater, a boiler, and the like.
일 실시예에 따른 전자 장치(101)는 가구(furniture) 또는 건물/구조물의 일부, 전자 보드(electronic board), 전자 사인 수신 장치(electronic signature receiving device), 프로젝터(projector), 또는 각종 계측 기기(예: 수도, 전기, 가스, 또는 전파 계측 기기 등) 중 적어도 하나를 포함할 수 있다. 다양한 실시예에서, 전자 장치(101)는 전술한 다양한 장치들 중 하나 또는 그 이상의 조합일 수 있다. 어떤 실시예에 따른 전자 장치(101)는 플렉서블 전자 장치일 수 있다. 또한, 본 문서의 실시예에 따른 전자 장치(101)는 전술한 기기들에 한정되지 않으며, 기술 발전에 따른 새로운 전자 장치를 포함할 수 있다.According to an embodiment, the electronic device 101 may include a furniture or a part of a building / structure, an electronic board, an electronic signature receiving device, a projector, or various measuring instruments ( For example, water, electricity, gas, or a radio wave measuring device) may be included. In various embodiments, the electronic device 101 may be a combination of one or more of the aforementioned various devices. The electronic device 101 according to an embodiment may be a flexible electronic device. In addition, the electronic device 101 according to an embodiment of the present disclosure is not limited to the above-described devices, and may include a new electronic device according to technology development.
본 발명의 일 실시예에 따른 전자 장치(101)는 다양한 통신을 이용할 수 있다. 예를 들면, 셀룰러 통신 프로토콜로서, 예를 들면, LTE(long-term evolution), LTE-A(LTE Advance), CDMA(code division multiple access), WCDMA(wideband CDMA), UMTS(universal mobile telecommunications system), WiBro(Wireless Broadband), 또는 GSM(Global System for Mobile Communications) 등 중 적어도 하나를 사용할 수 있다. 또한, 무선 통신은, 예를 들면, 근거리 통신(164)을 포함할 수 있다. 근거리 통신(164)은, 예를 들면, WiFi(wireless fidelity), 블루투스(Bluetooth), NFC(near field communication), 또는 GNSS(global navigation satellite system) 등 중 적어도 하나를 포함할 수 있다. GNSS는 사용 지역 또는 대역폭 등에 따라, 예를 들면, GPS(Global Positioning System), Glonass(Global Navigation Satellite System), Beidou Navigation Satellite System(이하 “Beidou”) 또는 Galileo, the European global satellite-based navigation system 중 적어도 하나를 포함할 수 있다. 이하, 본 문서에서는, “GPS”는 “GNSS”와 혼용되어 사용(interchangeably used)될 수 있다. 유선 통신은, 예를 들면, USB(universal serial bus), HDMI(high definition multimedia interface), RS-232(recommended standard232), 또는 POTS(plain old telephone service) 등 중 적어도 하나를 포함할 수 있다. 네트워크(162)는 통신 네트워크(telecommunications network), 예를 들면, 컴퓨터 네트워크(computer network)(예: LAN 또는 WAN), 인터넷, 또는 전화 망(telephone network) 중 적어도 하나를 포함할 수 있다.The electronic device 101 according to an embodiment of the present invention may use various communications. For example, as a cellular communication protocol, for example, long-term evolution (LTE), LTE Advance (LTE-A), code division multiple access (CDMA), wideband CDMA (WCDMA), universal mobile telecommunications system (UMTS) , WiBro (Wireless Broadband), or Global System for Mobile Communications (GSM) may be used. In addition, wireless communication may include, for example, near field communication 164. The short range communication 164 may include, for example, at least one of wireless fidelity (WiFi), Bluetooth, near field communication (NFC), global navigation satellite system (GNSS), and the like. GNSS is based on the location or bandwidth used, for example, among the Global Positioning System (GPS), Global Navigation Satellite System (Glonass), Beidou Navigation Satellite System (“Beidou”), or Galileo, the European global satellite-based navigation system. It may include at least one. Hereinafter, in this document, "GPS" may be interchangeably used with "GNSS". The wired communication may include, for example, at least one of a universal serial bus (USB), a high definition multimedia interface (HDMI), a reduced standard232 (RS-232), a plain old telephone service (POTS), and the like. The network 162 may include a telecommunications network, for example, at least one of a computer network (for example, a LAN or WAN), the Internet, and a telephone network.
도 8c는 일 실시예에 따른 전자 장치(101)의 신호 획득에 관한 도면으로, 다양한 실시예에 따라 전자 장치(101)가 휴대 단말기일 때를 나타낸다. 예를 들어, 제1 장치(예: 휴대 단말기 등)가 “HI”신호를 송신하는 경우 제1 장치에 대응하는 제2 장치(예: 휴대 단말기 등)는 본 발명의 장치를 통하여 “HI” 신호를 수신할 수 있다. 8C is a diagram illustrating a signal acquisition of the electronic device 101 according to an embodiment of the present disclosure, and illustrates when the electronic device 101 is a portable terminal according to various embodiments. For example, when a first device (eg, a mobile terminal) transmits an “HI” signal, a second device (eg, a mobile terminal, etc.) corresponding to the first device transmits an “HI” signal through the device of the present invention. Can be received.
추가적인 예를 들면 제3 장치(예: 휴대 단말기 등)가 “GO”신호를 송신하는 경우 본 발명의 장치를 통하여 제4 장치(예: 휴대 단말기 등)가 “GO”신호를 수신할 수 있다.For example, when the third device (eg, the mobile terminal) transmits the "GO" signal, the fourth device (eg, the mobile terminal, etc.) may receive the "GO" signal through the apparatus of the present invention.
도 8d는 본 발명의 일 실시예에 따른 전자 장치(101)의 활용예를 도시한다. 일 실시예에 따른 전자 장치(101)는 센싱 장치들, GPS 어플리케이션, 무선 측정 장치들에 활용될 수 있다. 예를 들면, 태양, 키넥트 센서, TV 원거리 제어 신호를 본 발명의 일 실시예에 따른 장치를 활용하여 수신하여 신호를 처리할 수 있다. 처리한 신호를 기반으로 클럭 발생기, 라인 드라이버 등을 통해 원하는 신호를 획득할 수 있다. 8D illustrates an example of using the electronic device 101 according to an embodiment of the present invention. The electronic device 101 according to an embodiment may be utilized for sensing devices, GPS applications, and wireless measurement devices. For example, the sun, the Kinect sensor, and the TV remote control signal may be received using a device according to an embodiment of the present invention to process the signal. Based on the processed signal, a desired signal can be obtained through a clock generator or a line driver.
도 9는 본 발명의 다양한 실시예에 따른 전자 장치(101)의 신호 획득에 대한 순서도를 도시한다.9 is a flowchart illustrating signal acquisition of the electronic device 101 according to various embodiments of the present disclosure.
910 동작에서 전자 장치(101)는 외부 장치로부터 적어도 하나의 채널을 통해 수신한다. 일 실시예에 따른 안테나(100)는 외부 장치로부터 적어도 하나의 채널을 통해 신호를 수신할 수 있다. In operation 910, the electronic device 101 receives from at least one channel through an external device. The antenna 100 according to an embodiment may receive a signal through at least one channel from an external device.
920 동작에서 전자 장치(101)는 주파수 관련 값들을 기반으로 참조 신호를 생성한다. 일 실시예에 따른 참조 신호 생성부(500)는 최소 자승 산출부(400)로부터 산출된 주파수의 크기값 및 위상값 중 적어도 하나의 값을 수신할 수 있다.In operation 920, the electronic device 101 generates a reference signal based on the frequency related values. The reference signal generator 500 may receive at least one of a magnitude value and a phase value of the frequency calculated from the least square calculator 400.
930 동작에서 전자 장치(101)는 신호와 참조 신호의 상관값을 산출한다. 일 실시예에 따른 신호 상관부(200)는 신호와 참조 신호를 상호 상관하는 복수 채널 상관부와 협대역(narrow band) 간섭을 제거하는 필터를 포함할 수 있다. 일 실시예에 따른 필터는 협대역 고조파 잡음의 임계값 또는 잡음의 대역폭을 기반으로 상기 협대역 간섭을 제거할 수 있다.In operation 930, the electronic device 101 calculates a correlation value between the signal and the reference signal. The signal correlator 200 according to an exemplary embodiment may include a multi-channel correlator and a filter for removing narrow band interference. A filter according to an embodiment may remove the narrowband interference based on a threshold of narrowband harmonic noise or a bandwidth of noise.
일 실시예에 따른 신호 상관부(200)는 최대 신호 확인부(300) 및 최소 자승 산출부(400)에 의해 복수의 채널에서 신호 에너지가 축적되고 상관값이 최대인 시간 위치의 반복성의 감지를 기반으로 상관값을 산출할 수 있다.The signal correlator 200 according to an exemplary embodiment detects the repeatability of a time position at which signal energy is accumulated in a plurality of channels and a correlation value is maximized by the maximum signal confirming unit 300 and the least square calculation unit 400. The correlation value can be calculated based on the above.
940 동작에서 전자 장치(101)는 신호 상관부(200)로부터 산출된 상관값이 미리 설정된 기준값을 초과하는 값에 대응하는 시간값을 확인한다.In operation 940, the electronic device 101 checks a time value corresponding to a value in which the correlation value calculated from the signal correlation unit 200 exceeds a preset reference value.
950 동작에서 전자 장치(101)는 확인된 시간값을 기반으로 주파수의 크기값 및 위상값 중 적어도 어느 하나의 값을 산출한다. 일 실시예에 따른 최소 자승 산출부(400)는 최소 자승법(LSM: least square method)을 이용하여 주파수의 크기값 및 위상값 중 적어도 어느 하나의 값을 산출할 수 있다. 예를 들어, 최소 자승법은 확인된 시간값, 참조 시간에 대응하는 값 및 시간 시퀀스 값을 기반으로 산출될 수 있다.In operation 950, the electronic device 101 calculates at least one of a magnitude value and a phase value of the frequency based on the identified time value. The least square calculator 400 may calculate at least one of a magnitude value and a phase value using a least square method (LSM). For example, the least square method may be calculated based on the identified time value, the value corresponding to the reference time, and the time sequence value.
일 실시예에 따른 전자 장치(101)는 비간섭 차단부(900)에 의해 신호 상관부(200)로부터 산출된 상관값의 전파 효과를 막을 수 있다.The electronic device 101 according to an embodiment may prevent the propagation effect of the correlation value calculated from the signal correlator 200 by the non-interference blocking unit 900.
일 실시예에 따른 전자 장치(101)는 산출된 상관값을 기반으로 신호를 획득할 수 있다.According to an embodiment, the electronic device 101 may obtain a signal based on the calculated correlation value.
도 10a 내지 도 10c는 본 발명의 다양한 실시예에 따른 전자 장치(101)의 신호 획득에 대한 결과 값을 도시한다.10A to 10C illustrate result values for signal acquisition of the electronic device 101 according to various embodiments of the present disclosure.
도 10a는 본 발명의 전자 장치(101)에 의해 신호 확인과 관련한 테이블을 도시한다. 1001을 참조하면, 일 실시예에 따른 전자 장치(101)는 원하는 신호(예: true signal)를 찾을 가능성이 비교 기술 대비 높았다. 여기서 비교 기술은 “threshold-based”알고리즘, “m-fold consecutive repetitions”알고리즘, “k of n”알고리즘에 의한 기술이다. 본원발명의 명확한 설명을 위하여 비교 기술과 관련된 알고리즘의 설명은 생략한다.10A illustrates a table related to signal confirmation by the electronic device 101 of the present invention. Referring to 1001, the electronic device 101 according to an embodiment has a higher probability of finding a desired signal (eg, a true signal) compared to a comparison technology. The comparison technique here is based on the "threshold-based" algorithm, the "m-fold consecutive repetitions" algorithm, and the "k of n" algorithm. For the sake of clarity, the description of algorithms related to comparison techniques is omitted.
도 10b는 신호 대 잡음비(SNR)와 신호 획득에 대한 확률을 나타낸 테이블이다. 1005를 참조하면 본 개시에 따른 다양한 실시예들이 비교 기술 대비 신호 획득 감지 확률이 높음을 확인할 수 있다. 여기서 비교 기술은 “threshold-based”알고리즘, “m-fold consecutive repetitions”알고리즘, “k of n”알고리즘에 의한 기술 중 적어도 어느 하나의 기술을 비교하였다.10B is a table showing signal to noise ratio (SNR) and probability for signal acquisition. Referring to 1005, various embodiments of the present disclosure can confirm that a signal acquisition detection probability is higher than that of a comparison technology. Here, the comparison technique compares at least one of the technique by the threshold-based algorithm, the "m-fold consecutive repetitions" algorithm, and the "k of n" algorithm.
도 10c를 참조하면, 1009는 본 전자 장치(101)의 SNR 그래프를 나타내고 1011은 여기서 비교 기술은 threshold-based”알고리즘, “m-fold consecutive repetitions”알고리즘, “k of n”알고리즘에 의한 기술 중 적어도 어느 하나의 기술을 적용하여 확인된 SNR을 기록하였다.Referring to FIG. 10C, 1009 illustrates an SNR graph of the electronic device 101, and 1011, where a comparison technique is described by a threshold-based algorithm, an “m-fold consecutive repetitions” algorithm, and a “k of n” algorithm. The identified SNR was recorded by applying at least one technique.
본 문서에서 사용된 용어 "모듈"은, 예를 들면, 하드웨어, 소프트웨어 또는 펌웨어(firmware) 중 하나 또는 둘 이상의 조합을 포함하는 단위(unit)를 의미할 수 있다. "모듈"은, 예를 들면, 유닛(unit), 로직(logic), 논리 블록(logical block), 부품(component), 또는 회로(circuit) 등의 용어와 바꾸어 사용(interchangeably use)될 수 있다. "모듈"은, 일체로 구성된 부품의 최소 단위 또는 그 일부가 될 수 있다. "모듈"은 하나 또는 그 이상의 기능을 수행하는 최소 단위 또는 그 일부가 될 수도 있다. "모듈"은 기계적으로 또는 전자적으로 구현될 수 있다. 예를 들면,"모듈"은, 알려졌거나 앞으로 개발될, 어떤 동작들을 수행하는 ASIC(application-specific integrated circuit) 칩, FPGAs(field-programmable gate arrays) 또는 프로그램 가능 논리 장치(programmable-logic device) 중 적어도 하나를 포함할 수 있다. As used herein, the term “module” may refer to a unit that includes one or a combination of two or more of hardware, software, or firmware. A "module" may be interchangeably used with terms such as, for example, unit, logic, logical block, component, or circuit. The module may be a minimum unit or part of an integrally constructed part. The module may be a minimum unit or part of performing one or more functions. The "module" can be implemented mechanically or electronically. For example, a “module” is one of application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), or programmable-logic devices that perform certain operations, known or developed in the future. It may include at least one.
다양한 실시예에 따른 장치(예: 모듈들 또는 그 기능들) 또는 방법(예: 동작들)의 적어도 일부는, 예컨대, 프로그램 모듈의 형태로 컴퓨터로 읽을 수 있는 저장매체(computer-readable storage media)에 저장된 명령어로 구현될 수 있다. 상기 명령어가 프로세서에 의해 실행될 경우, 상기 하나 이상의 프로세서가 상기 명령어에 해당하는 기능을 수행할 수 있다. 컴퓨터로 읽을 수 있는 저장매체는, 예를 들면, 메모리가 될 수 있다. At least a portion of an apparatus (e.g., modules or functions thereof) or method (e.g., operations) according to various embodiments may be, for example, computer-readable storage media in the form of a program module. It can be implemented as a command stored in. When the instruction is executed by a processor, the one or more processors may perform a function corresponding to the instruction. The computer-readable storage medium may be, for example, a memory.
컴퓨터로 판독 가능한 기록 매체는, 하드디스크, 플로피디스크, 마그네틱 매체(magnetic media)(예: 자기테이프), 광기록 매체(optical media)(예: CD-ROM(compact disc read only memory), DVD(digital versatile disc), 자기-광 매체(magneto-optical media)(예: 플롭티컬 디스크(floptical disk)), 하드웨어 장치(예: ROM(read only memory), RAM(random access memory), 또는 플래시 메모리 등) 등을 포함할 수 있다. 또한, 프로그램 명령에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함할 수 있다. 상술한 하드웨어 장치는 다양한 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지다.Computer-readable recording media include hard disks, floppy disks, magnetic media (e.g. magnetic tape), optical media (e.g. compact disc read only memory), DVD ( digital versatile discs, magneto-optical media (e.g. floptical disks), hardware devices (e.g. read only memory, random access memory (RAM), or flash memory) In addition, the program instructions may include not only machine code generated by a compiler, but also high-level language code executable by a computer using an interpreter, etc. The hardware device described above may be various. It can be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
다양한 실시예에 따른 모듈 또는 프로그램 모듈은 전술한 구성요소들 중 적어도 하나 이상을 포함하거나, 일부가 생략되거나, 또는 추가적인 다른 구성요소를 더 포함할 수 있다. 다양한 실시예에 따른 모듈, 프로그램 모듈 또는 다른 구성요소에 의해 수행되는 동작들은 순차적, 병렬적, 반복적 또는 휴리스틱(heuristic)한 방법으로 실행될 수 있다. 또한, 일부 동작은 다른 순서로 실행되거나, 생략되거나, 또는 다른 동작이 추가될 수 있다. 그리고 본 문서에 개시된 실시예는 개시된, 기술 내용의 설명 및 이해를 위해 제시된 것이며, 본 문서에서 기재된 기술의 범위를 한정하는 것은 아니다. 따라서, 본 문서의 범위는, 본 문서의 기술적 사상에 근거한 모든 변경 또는 다양한 다른 실시예를 포함하는 것으로 해석되어야 한다.Modules or program modules according to various embodiments may include at least one or more of the above components, some may be omitted, or further include other components. Operations performed by modules, program modules, or other components in accordance with various embodiments may be executed in a sequential, parallel, repetitive, or heuristic manner. In addition, some operations may be executed in a different order, may be omitted, or other operations may be added. And the embodiments disclosed herein are presented for the purpose of explanation and understanding of the disclosed, technical content, and do not limit the scope of the technology described in this document. Accordingly, the scope of this document should be construed as including all changes or various other embodiments based on the technical spirit of this document.

Claims (16)

  1. 외부 장치로부터 적어도 하나의 채널을 통해 신호를 수신하는 안테나;An antenna for receiving a signal through at least one channel from an external device;
    주파수 관련 값들을 기반으로 참조 신호를 생성하여 신호 상관부에 전달하는 참조 신호 생성부;A reference signal generator which generates a reference signal based on frequency-related values and transmits the reference signal to a signal correlation unit;
    상기 신호와 상기 참조 신호의 상관(correlation)값을 산출하는 상기 신호 상관부; The signal correlation unit calculating a correlation value between the signal and the reference signal;
    상기 신호 상관부로부터 산출된 상관값 중 미리 설정된 기준값을 초과하는 상관값에 대응하는 시간값을 확인하고, 상기 확인된 시간값을 최소 자승 산출부에 전달하는 상관 최대 신호 확인부; 및A correlation maximum signal checking unit which checks a time value corresponding to a correlation value exceeding a preset reference value among the correlation values calculated from the signal correlation unit, and transmits the determined time value to the least square calculation unit; And
    상기 확인된 시간값을 기반으로 주파수의 크기값 및 위상값 중 적어도 어느 하나의 값을 산출하여 상기 참조 신호 생성부에 전달하는 상기 최소 자승 산출부를 포함하는 전자 장치.And the least-squares calculator calculating at least one of a magnitude value and a phase value of a frequency based on the identified time value and transmitting the calculated value to the reference signal generator.
  2. 제1항에 있어서,The method of claim 1,
    상기 신호 상관부로부터 산출된 상관값을 기반으로 상기 신호를 처리하는 신호 처리부를 더 포함하는 전자 장치.And a signal processor that processes the signal based on a correlation value calculated from the signal correlation unit.
  3. 제2항에 있어서,The method of claim 2,
    상기 신호 상관부는,The signal correlation unit,
    상기 신호와 상기 참조 신호를 상호 상관(cross-correlation)하는 곱셈기; 및A multiplier for cross-correlation of the signal and the reference signal; And
    협대역 간섭을 필터링하는 필터를 포함하는 전자 장치.An electronic device comprising a filter for filtering narrowband interference.
  4. 제3항에 있어서,The method of claim 3,
    상기 필터는,The filter,
    협대역 고조파 잡음의 임계값 또는 잡음의 대역폭을 기반으로 상기 협대역 간섭을 제거하는 것을 특징으로 하는 전자 장치. And removing the narrowband interference based on a threshold of narrowband harmonic noise or a bandwidth of noise.
  5. 제1항에 있어서,The method of claim 1,
    상기 신호 상관부는,The signal correlation unit,
    상기 상관 최대 신호 확인부 및 상기 최소 자승 산출부에 의해 복수의 채널에서 축적된 신호 에너지 및 상기 상관값이 최대인 시간 위치 반복성의 감지를 기반으로 상기 상관값을 산출하는 것을 특징으로 하는 전자 장치.And calculating the correlation value based on signal energy accumulated in a plurality of channels by the correlation maximum signal checking unit and the least square calculation unit and the detection of time position repeatability at which the correlation value is maximum.
  6. 제1항에 있어서,The method of claim 1,
    상기 신호 상관부로부터 산출된 상관값의 전파 효과(propagation effect)를 막는 비간섭 차단부를 더 포함하는 전자 장치.And a non-interference blocking unit that prevents a propagation effect of the correlation value calculated from the signal correlation unit.
  7. 제1항에 있어서,The method of claim 1,
    상기 최소 자승 산출부는,The least squares calculation unit,
    상기 주파수의 크기값 및 위상값 중 적어도 하나의 값을 산출 시, 최소자승법(LSM: least square method)을 기반으로 산출하는 것을 특징으로 하는 전자 장치.And calculating at least one of the magnitude value and the phase value of the frequency based on a least square method (LSM).
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 최소 자승법은, 상기 확인된 시간값, 참조 시간에 대응하는 값 및 시간 시퀀스 값을 기반으로 산출되는 것을 특징으로 하는 전자 장치.The least square method is calculated based on the identified time value, a value corresponding to a reference time, and a time sequence value.
  9. 전자 장치의 신호를 획득하는 방법에 있어서,In the method of obtaining a signal of an electronic device,
    외부 장치로부터 적어도 하나의 채널을 통해 신호를 수신하는 동작;Receiving a signal through at least one channel from an external device;
    주파수 관련 값들을 기반으로 참조 신호를 생성하는 동작;Generating a reference signal based on the frequency related values;
    상기 신호와 상기 참조 신호의 상관(correlate)값을 산출하는 동작;Calculating a correlation value between the signal and the reference signal;
    상기 산출된 상관값 중 미리 설정된 기준값을 초과하는 상관값에 대응하는 시간값을 확인하는 동작; 및Checking a time value corresponding to a correlation value exceeding a preset reference value among the calculated correlation values; And
    상기 확인된 시간값을 기반으로 주파수의 크기값 및 위상값 중 적어도 어느 하나의 값을 산출하는 동작을 포함하는 신호를 획득하는 방법.Calculating at least one of a magnitude value and a phase value of a frequency based on the identified time value.
  10. 제9항에 있어서,The method of claim 9,
    상기 산출된 상관값을 기반으로 상기 신호를 처리하는 동작을 더 포함하는 방법.And processing the signal based on the calculated correlation value.
  11. 제10항에 있어서,The method of claim 10,
    상기 신호와 상기 참조 신호의 상관(correlate)값을 산출하는 동작은,The operation of calculating a correlation value between the signal and the reference signal may include:
    상기 신호와 상기 참조 신호를 상호 상관(cross-correlation)하는 동작; 및Cross-correlation of the signal and the reference signal; And
    협대역 간섭을 필터링하는 동작을 포함하는 방법.Filtering narrowband interference.
  12. 제11항에 있어서,The method of claim 11,
    협대역 간섭을 필터링하는 동작은,Filtering narrowband interference,
    협대역 고조파 잡음의 임계값 또는 잡음의 대역폭을 기반으로 상기 협대역 간섭을 제거하는 동작으로 포함하는 방법.Removing said narrowband interference based on a threshold of narrowband harmonic noise or a bandwidth of noise.
  13. 제9항에 있어서,The method of claim 9,
    상기 신호와 상기 참조 신호의 상관(correlate)값을 산출하는 동작은,The operation of calculating a correlation value between the signal and the reference signal may include:
    최대 신호 확인부 및 최소 자승 산출부에 의해 복수의 채널에서 축적된 신호 에너지 및 상기 상관값이 최대인 시간 위치의 반복성의 감지를 기반으로, 상기 상관값을 산출하는 동작을 포함하는 방법.And calculating the correlation value based on detection of signal energy accumulated in a plurality of channels by a maximum signal checking unit and a least square calculation unit and repeatability of a time position at which the correlation value is maximum.
  14. 제9항에 있어서,The method of claim 9,
    비간섭 차단부에 의해 상기 신호 상관부로부터 산출된 상관값의 전파 효과(propagation effect)를 막는 동작을 더 포함하는 방법.Preventing a propagation effect of a correlation value calculated from the signal correlation unit by a non-interference blocker.
  15. 제9항에 있어서,The method of claim 9,
    상기 확인된 시간값을 기반으로 주파수의 크기값 및 위상값 중 적어도 어느 하나의 값을 산출하는 동작은,The operation of calculating at least one of a magnitude value and a phase value of frequency based on the identified time value may include:
    상기 주파수의 크기값 및 위상값 중 적어도 하나의 값을 산출 시, 최소 자승법(LSM: least square method)을 기반으로 산출하는 동작을 포함하는 방법.And calculating at least one of the magnitude value and the phase value of the frequency based on a least square method (LSM).
  16. 제15항에 있어서,The method of claim 15,
    상기 최소 자승법은, 상기 확인된 시간값, 참조 시간에 대응하는 값 및 시간 시퀀스 값을 기반으로 산출되는 것을 특징으로 하는 방법.The least square method is calculated based on the identified time value, a value corresponding to a reference time, and a time sequence value.
PCT/KR2016/011614 2015-11-03 2016-10-17 Method for obtaining signal and apparatus performing same WO2017078289A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16862307.2A EP3346657B1 (en) 2015-11-03 2016-10-17 Method for obtaining signal and apparatus performing same
US15/766,986 US20180302259A1 (en) 2015-11-03 2016-10-17 Method for obtaining signal and apparatus performing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150153558A KR20170051895A (en) 2015-11-03 2015-11-03 Method for acquiring signal and an electronic device implementing the same
KR10-2015-0153558 2015-11-03

Publications (1)

Publication Number Publication Date
WO2017078289A1 true WO2017078289A1 (en) 2017-05-11

Family

ID=58662818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011614 WO2017078289A1 (en) 2015-11-03 2016-10-17 Method for obtaining signal and apparatus performing same

Country Status (4)

Country Link
US (1) US20180302259A1 (en)
EP (1) EP3346657B1 (en)
KR (1) KR20170051895A (en)
WO (1) WO2017078289A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102608633B1 (en) * 2018-02-08 2023-12-04 삼성전자주식회사 Electronic device and control method thereof
KR20220028901A (en) 2020-08-31 2022-03-08 삼성전자주식회사 Method for providing three dimensional input and electronic device for supporting the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021902A1 (en) * 2001-08-24 2003-03-13 Ericsson Inc. Method and apparatus for downlink channel estimation in the base station employing loop-back signals
US20070057718A1 (en) * 2003-03-25 2007-03-15 Coulson Alan J Method and apparatus for improving the performance of pilot symbol assisted receivers in the presence of narrowband interference
US20100118921A1 (en) * 2008-11-11 2010-05-13 Isco International, Inc. Self-Adaptive Digital RF Bandpass and Bandstop Filter Architecture
US20110305306A1 (en) * 2010-06-12 2011-12-15 Montage Technology (Shanghai) Co. Ltd. Blind adaptive filter for narrowband interference cancellation
US20130102254A1 (en) * 2010-05-27 2013-04-25 Ubiquam Ltd. Method and system of interference cancelation in collocated transceivers configurations

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999561A (en) * 1997-05-20 1999-12-07 Sanconix, Inc. Direct sequence spread spectrum method, computer-based product, apparatus and system tolerant to frequency reference offset
US6407699B1 (en) * 2000-04-14 2002-06-18 Chun Yang Method and device for rapidly extracting time and frequency parameters from high dynamic direct sequence spread spectrum radio signals under interference
US7471241B1 (en) * 2005-07-25 2008-12-30 Chun Yang Global navigation satellite system (GNSS) receivers based on satellite signal channel impulse response
ATE552515T1 (en) * 2007-08-21 2012-04-15 Telecom Italia Spa METHOD FOR ACQUIRING SIGNALS VIA A GLOBAL NAVIGATION SATELLITE SYSTEM
WO2013126875A1 (en) * 2012-02-23 2013-08-29 Cornell University Low power asynchronous gps baseband processor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003021902A1 (en) * 2001-08-24 2003-03-13 Ericsson Inc. Method and apparatus for downlink channel estimation in the base station employing loop-back signals
US20070057718A1 (en) * 2003-03-25 2007-03-15 Coulson Alan J Method and apparatus for improving the performance of pilot symbol assisted receivers in the presence of narrowband interference
US20100118921A1 (en) * 2008-11-11 2010-05-13 Isco International, Inc. Self-Adaptive Digital RF Bandpass and Bandstop Filter Architecture
US20130102254A1 (en) * 2010-05-27 2013-04-25 Ubiquam Ltd. Method and system of interference cancelation in collocated transceivers configurations
US20110305306A1 (en) * 2010-06-12 2011-12-15 Montage Technology (Shanghai) Co. Ltd. Blind adaptive filter for narrowband interference cancellation

Also Published As

Publication number Publication date
KR20170051895A (en) 2017-05-12
EP3346657A4 (en) 2018-10-24
EP3346657A1 (en) 2018-07-11
EP3346657B1 (en) 2020-12-30
US20180302259A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
US8477750B2 (en) Classification of wireless LAN signals
US10833725B2 (en) Methods, systems, and articles of manufacture for joint decoding of packets in wireless networks using chirp spread-spectrum modulation
KR101376556B1 (en) Detection of presence of television signals embedded in noise using cyclostationary toolbox
RU2008150492A (en) SIGNAL DETECTION IN A WIRELESS COMMUNICATION SYSTEM
KR20180080681A (en) System and method for blind detection of numerology
Borio M-sequence and secondary code constraints for GNSS signal acquisition
WO2017078289A1 (en) Method for obtaining signal and apparatus performing same
Boitan et al. Compromising electromagnetic emanations of wired USB keyboards
Yizhou et al. Timing advanced estimation algorithm of low complexity based on DFT spectrum analysis for satellite system
JP2006345128A (en) Detecting device
CN110174684A (en) Global navigation satellite system receiver and its operating method
Mariani et al. On Oversampling-Based Signal Detection: A Pragmatic Approach
US20140071845A1 (en) Method, system and program product for detecting, quantifying and localizing of wireless interferers
CN105306097B (en) A kind of detection method of accidental access signal, device and system
Gualda et al. Ultrasonic LPS adaptation for smartphones
Dikmese et al. Novel frequency domain cyclic prefix autocorrelation based compressive spectrum sensing for cognitive radio
Schmidt et al. Indoor positioning system using WLAN channel estimates as fingerprints for mobile devices
CN101572564A (en) Locally optimal detector based method for capturing pseudocode under weakly dependent non-Gaussian environment
Ershov et al. Time delay estimation of ultra-wideband signals by calculation of the cross-ambiguity function
CN103702335B (en) Frequency spectrum sensing method in a kind of cognitive radio system and system
Bărtușică et al. Security Risk: Detection of Compromising Emanations Radiated or Conducted by Display Units
Huang Distance Estimation Using OFDM Signals for Ultrasonic Positioning
Amedolare Transactional array reconciliation tomography for precision indoor location
Zhao et al. A parallel differential correlation acquisition algorithm in time domain
Zhang et al. A Novel Acquisition Structure for Deep Spread Spectrum System Combined with Coherent Fast Frequency Hopping

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16862307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016862307

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15766986

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE