WO2017069126A1 - Operation device - Google Patents

Operation device Download PDF

Info

Publication number
WO2017069126A1
WO2017069126A1 PCT/JP2016/080874 JP2016080874W WO2017069126A1 WO 2017069126 A1 WO2017069126 A1 WO 2017069126A1 JP 2016080874 W JP2016080874 W JP 2016080874W WO 2017069126 A1 WO2017069126 A1 WO 2017069126A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
unit
vibrator
operation surface
operating device
Prior art date
Application number
PCT/JP2016/080874
Other languages
French (fr)
Japanese (ja)
Inventor
竹内 修一
Original Assignee
株式会社東海理化電機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所 filed Critical 株式会社東海理化電機製作所
Publication of WO2017069126A1 publication Critical patent/WO2017069126A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0338Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of limited linear or angular displacement of an operating part of the device from a neutral position, e.g. isotonic or isometric joysticks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding

Definitions

  • the present invention relates to an operating device.
  • the operating device of Patent Document 1 is supported so that an operating body having a hemispherical operating surface can be tilted by a slight angle.
  • a continuous vibration whose amplitude is directed up and down is given to the operating body by the vibration device.
  • an amplitude component directed to the tangent line is generated at the contact portion of the finger due to continuous vibration, so that when the finger is moved, the operation surface rotates as if following the movement of the finger. It is said that the vibration surface of the surface of the input device can be changed.
  • an input device that can form a region that gives a tactile sensation different from other regions at an arbitrary position on the detection surface (see, for example, Patent Document 2).
  • the input device includes a detection unit that detects contact with the detection surface, and a vibration generation unit that generates a region having a friction coefficient different from that of another region on the detection surface by vibrating the detection unit in a normal direction of the detection surface.
  • This input device forms a squeeze film area and a squeeze film-free area on the detection surface by ultrasonically vibrating the detection unit, so the home position can be formed at an arbitrary position on the detection surface. It is supposed to be possible.
  • the operation device of Patent Document 1 does not give a distinction method based on the feeling of a specific operation surface of a three-dimensional object, and in particular, does not use a change in surface friction force due to generation of a squeeze film.
  • the operating device of patent document 2 utilizes the change of the surface frictional force by the production
  • An object of the present invention is to provide an operating device that enables a method for distinguishing an arbitrary region of a three-dimensional object (polyhedron) with a simple configuration.
  • An operation device includes an operation unit having a plurality of operation surfaces formed of a polyhedron, and a vertical axis (Z axis) and two horizontal axes (X axis, Y axis) on the operation unit.
  • a three-axis drive unit that ultrasonically vibrates in each direction, and a control unit that drives and controls each drive unit of the three-axis drive unit with a predetermined amplitude and phase, and the control unit controls each drive unit By performing drive control with a predetermined amplitude and phase, a squeeze film is generated on the surface of a specific operation surface of the operation unit.
  • the operation unit includes a first surface orthogonal to the Z axis, a second surface that is an inclined surface intersecting the X axis at a predetermined angle, and a third surface. It may be a pentahedron having a fourth surface and a fifth surface which are inclined surfaces intersecting the Y axis at a predetermined angle.
  • the three-axis driving unit may be stacked and disposed below the operating unit.
  • the triaxial drive unit may include a multilayer piezoelectric element.
  • the multilayer piezoelectric element can be vibrated in a sinusoidal shape in an ultrasonic frequency band.
  • the operation surface includes an operation surface inclined with respect to the Z axis, and the squeeze film is formed on the inclined operation surface on the inclined operation surface. It can be generated by a waveform that oscillates in an orthogonal direction.
  • an operating device that enables a method for distinguishing an arbitrary region of a three-dimensional object (polyhedron) with a simple configuration.
  • FIG. 1 is an explanatory diagram illustrating an appearance and an overall configuration of an operating device (an operating knob as a three-dimensional object) according to the first embodiment of the present invention.
  • 2 shows the operating device according to the first embodiment of the present invention, where (a) is a cross-sectional view taken along the line AA in FIG. 1, and (b) is a view taken along arrow B in FIG.
  • FIG. 3 shows the operating device according to the first embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction.
  • FIG. 4 is a side view schematically showing a vibration direction on a specific operation surface of the operation knob and a squeeze film generated on the surface.
  • FIG. 5 shows an operating device according to the second embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction.
  • FIG. 6 shows an operating device according to a third embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction.
  • FIG. 4C is a waveform diagram of an excitation signal for applying vibration in the X direction
  • FIG. 4D is a waveform diagram for applying vibration in the Y direction.
  • FIG. 7 is an explanatory diagram showing the overall configuration of the operating device according to the fourth embodiment of the present invention.
  • FIG. 8 is a flowchart showing the operation of the controller device according to the fourth embodiment.
  • FIG. 1 is an explanatory diagram illustrating an appearance and an overall configuration of an operating device (an operating knob as a three-dimensional object) according to the first embodiment of the present invention.
  • the operation device 1 includes an operation knob 10 as an operation unit having a plurality of operation surfaces formed of a polyhedron, and a vertical axis (Z axis) and two horizontal axes ( A three-axis drive unit 20 that ultrasonically vibrates in the X-axis and Y-axis directions, and a control unit 30 that drives and controls each drive unit of the three-axis drive unit 20 with a predetermined amplitude and phase.
  • Reference numeral 30 is configured to generate a squeeze film on the surface of a specific operation surface of the operation knob 10 by controlling the driving of each drive unit with a predetermined amplitude and phase.
  • (Operation knob 10) 2 shows the operating device according to the first embodiment of the present invention, where (a) is a cross-sectional view taken along the line AA in FIG. 1, and (b) is a view taken along arrow B in FIG. FIG.
  • the operation knob 10 is a three-dimensional object having a plurality of operation surfaces S1, S2, S3, and S4 made of a polyhedron, and is a quadrangular frustum.
  • the operation knob 10 is made of, for example, a material such as resin or metal, and a triaxial drive unit 20 described later is attached to the lower portion 10a.
  • X, Y, and Z coordinates are defined on the operation knob 10.
  • a surface perpendicular to the normal line in the Z direction is set as S0
  • operation surfaces inclined in the X direction are set as S1 and S2
  • operation surfaces inclined in the Y direction are set as S3 and S4.
  • the operation knob 10 is touched and pressed by the operator with a fingertip or the like. As shown in FIG. 2A, for example, it is mounted on the substrate 40 via a triaxial drive unit 20 and a pressing switch unit 25 attached to the lower part 10 a of the operation knob 10. A bezel 60 and the like are disposed around the operation knob 10. The operator can touch or press the operation surfaces S0, S1, S2, S3, and S4 of the operation knob 10.
  • the triaxial drive unit 20 is disposed in the lower portion 10a of the operation knob 10 as shown in FIGS.
  • the triaxial drive unit 20 includes a Z vibrator 21 for applying vibration in the Z direction, an X vibrator 22 for applying vibration in the X direction, and a Y vibrator 23 for applying vibration in the Y direction. Are laminated.
  • Each vibrator (Z vibrator 21, X vibrator 22, Y vibrator 23) is, for example, a multilayer piezoelectric element.
  • the piezoelectric element expands and contracts by a supplied voltage. This expansion / contraction causes vibration.
  • Examples of the material of the piezoelectric element include lithium niobate, barium titanate, lead titanate, lead zirconate titanate (PZT), lead metaniobate, polyvinylidene fluoride (PVDF), polylactic acid, and the like.
  • the piezoelectric element for example, a single-layer bimorph type in which a film formed using the above material is formed on both surfaces of the metal plate, and formed using the above material on one surface of the metal plate.
  • Single layer unimorph type on which the formed film is formed, laminated unimorph type formed by laminating the film formed using the above material on one side of the metal plate, the above material on both sides of the metal plate A laminated bimorph type piezoelectric element or the like formed by laminating films formed using the above can be used.
  • Each of the vibrators (Z vibrator 21, X vibrator 22, Y vibrator 23) is applied with a voltage from the control unit 30 via a driver circuit and is driven at a predetermined frequency fn, and each direction (Z Direction, X direction, Y direction).
  • the predetermined frequency fn is set to the frequency of the ultrasonic band.
  • the ultrasonic wave is an elastic vibration wave (sound wave) having a high frequency that cannot be heard by the human ear and higher than the audible range, and has a frequency band of about 20 kHz to 40 kHz, for example.
  • the control unit 30 controls driving of each vibrator (Z vibrator 21, X vibrator 22, Y vibrator 23) as a drive unit with a predetermined amplitude and phase.
  • the control unit 30 includes, for example, a CPU (Central Processing Unit) that performs predetermined calculation, processing execution, and the like according to a stored program, a RAM (Random Access Memory) that is a semiconductor memory, a ROM (Read Only Memory), and the like. This is a microcomputer. In this ROM, for example, a program for operating the control unit 30 and various parameters are stored.
  • the control unit 30 has a means for generating a clock signal therein, and operates based on this clock signal.
  • the control unit 30 includes a reference signal generation unit that generates ultrasonic vibration of about 20 kHz to 40 kHz, for example.
  • the control unit 30 applies a predetermined voltage at a predetermined phase to a predetermined vibrator (Z vibrator 21, X vibrator 22, Y vibrator 23) by a predetermined program, an external command, or the like. be able to. Thereby, it is possible to drive and control predetermined vibrators (Z vibrator 21, X vibrator 22, Y vibrator 23) with a predetermined amplitude and phase. As a result, the specific operation surfaces S0, S1, S2, S3, and S4 can be ultrasonically vibrated in the vertical direction of each operation surface.
  • FIG. 3 shows the operating device according to the first embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction.
  • FIG. 4C is a waveform diagram of an excitation signal for applying vibration in the X direction.
  • the operation surfaces S1 and S2 are each formed as a surface inclined by 45 ° with respect to the X axis, and the operation surface S1 or S2 is a normal line of each surface. It vibrates in the direction H1 or H2. That is, the Z vibrator 21 and the X vibrator 22 shown in FIG. 3A are vibrated in a direction as described above by vibrating with a predetermined amplitude in a predetermined phase relationship.
  • the Z vibrator 21 is vibrated sinusoidally with an amplitude of 1, for example.
  • the X vibrator 22 is vibrated in a sinusoidal shape with an amplitude of 1 in the same phase as the Z vibrator 21, for example, as a vibration waveform during S1 squeeze driving.
  • the Y vibrator 23 is not driven.
  • the control unit 30 drives the triaxial drive unit 20 in this way, as shown in FIG. 3 (d), it is inclined by 45 ° with respect to the X axis by combining the amplitude in the Z direction and the amplitude in the X direction. Will vibrate in the H1 direction orthogonal to the operated operation surface S1.
  • the vibration waveform at the time of S2 squeeze drive has a phase opposite to that of the Z vibrator 21, Vibrates in a sinusoidal shape with an amplitude of 1.
  • the vibration in the H2 direction orthogonal to the operation surface S2 inclined by 45 ° with respect to the X axis is obtained by combining the amplitude in the Z direction and the amplitude in the X direction.
  • the Y vibrator 23 is driven instead of driving the X vibrator 22 described above. Similar vibrations can be generated.
  • FIG. 4 is a side view schematically showing a vibration direction on a specific operation surface of the operation knob and a squeeze film generated on the surface.
  • a squeeze film 100 that is an air film is formed between the operation surface S1 and the fingertip, and a squeeze effect is generated.
  • the squeeze effect is based on the ultrasonic vibration of the operation surface S1, and the operation surface S1 applies a force to the air layer in the direction of the normal H1 so that the law on the operation surface S1.
  • This is an effect of increasing the pressure in the direction of the line H1 and forming the squeeze film 100 as an air film between the finger 200 and the operation surface S1.
  • the finger 200 and the operation surface S1 are substantially in non-contact, the apparent friction is reduced, and finger sliding is improved.
  • the touch feeling with a finger is different from other operation surfaces, so that it is possible to distinguish a specific operation surface of the three-dimensional object from the other operation surfaces.
  • the second embodiment is a case where the operation surfaces S1 and S2 are each formed as a surface inclined by 60 ° with respect to the Z axis, and the other configurations are the same as those of the first embodiment.
  • FIG. 5 shows an operating device according to the second embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction. (C) is a waveform diagram of an excitation signal for applying vibration in the X direction, and (d) is a waveform diagram of the Z direction on the operation surface S1. It is a figure which shows the synthesis
  • the operation surfaces S1 and S2 are each formed as a surface inclined by 60 ° with respect to the Z axis, and the operation surface S1 or S2 is a normal line of each surface. It vibrates in the direction H1 or H2. That is, the Z vibrator 21 and the X vibrator 22 shown in FIG. 5A are vibrated in a direction as described above by vibrating with a predetermined amplitude in a predetermined phase relationship.
  • the Z vibrator 21 is vibrated sinusoidally with an amplitude of 1, for example.
  • the X vibrator 22 is vibrated in a sinusoidal shape with an amplitude of 1 / ⁇ 3 in the same phase as the Z vibrator 21 as a vibration waveform at the time of S1 squeeze driving, for example.
  • the control unit 30 drives the triaxial drive unit 20 in this way, as shown in FIG. 5 (d), it is tilted by 60 ° with respect to the Z axis by combining the amplitude in the Z direction and the amplitude in the X direction. Will vibrate in the H1 direction orthogonal to the operated operation surface S1.
  • the vibration waveform at the time of S2 squeeze drive has a phase opposite to that of the Z vibrator 21, Vibrates sinusoidally with an amplitude of 1 / ⁇ 3.
  • the vibration in the H2 direction orthogonal to the operation surface S2 inclined by 60 ° with respect to the Z axis is obtained by combining the amplitude in the Z direction and the amplitude in the X direction.
  • the Y vibrator 23 is driven instead of driving the X vibrator 22 described above. Similar vibrations can be generated.
  • the third embodiment shows a case where the operation knob is an octagonal pyramid.
  • FIG. 6 shows an operating device according to a third embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction.
  • FIG. 4C is a waveform diagram of an excitation signal for applying vibration in the X direction
  • FIG. 4D is a waveform diagram for applying vibration in the Y direction.
  • (e) is a diagram showing the synthesis of the amplitude of the amplitude and phi 45 direction of the Z direction on the operation surface S3.
  • the operation knob 11 is made into the shape of an octagonal frustum.
  • a case where the operation surfaces S5 and S6 shown in FIG. 6A are vibrated in such a shape will be described.
  • FIG. 6 (a) a case where the operation surface S5, S6, respectively, is formed as a 45 ° inclined surface against phi 45 axes, other configurations are first and second embodiment of the It is the same as the form.
  • the Z vibrator 21 is vibrated in a sinusoidal shape with an amplitude of 1, for example.
  • the X vibrator 22 is vibrated in a sinusoidal shape with an amplitude of 1 / ⁇ 2 in the same phase as the Z vibrator 21 as a vibration waveform at the time of S5 squeeze driving, for example.
  • the Y vibrator 23 vibrates in a sinusoidal shape with an amplitude of 1 / ⁇ 2 in the same phase as the X vibrator 22 as a vibration waveform at the time of S5 squeeze driving, for example. Is done.
  • the control unit 30 is 3-axis drive unit 20, in this way be driven, as shown in FIG.
  • the operation surface S6 shown in FIG. 6A is driven by S6 squeeze
  • the X vibrator 22 is a Z vibrator. Excited in a sinusoidal shape with an amplitude of 1 / ⁇ 2 in the opposite phase to 21.
  • the Y vibrator 23 has a phase opposite to that of the Z vibrator 21 and is excited in a sinusoidal shape with an amplitude of 1 / ⁇ 2.
  • the operating surface S6 inclined by 45 ° with respect to phi 45 axis can vibrate in H6 direction perpendicular thereto.
  • FIG. 7 is an explanatory diagram showing the overall configuration of the operating device according to the fourth embodiment of the present invention.
  • FIG. 8 is a flowchart showing the operation of the operating device according to the fourth embodiment.
  • the operation knob 12 having a quadrangular pyramid is used, and the operation knob 12 is displayed on the display unit 50.
  • each operation surface of the operation knob 12 is displayed, and a specific operation surface for distinguishing from the other operation surfaces is displayed in a different color, for example, gray color, hatching, or the like.
  • the contents of a specific operation surface can be displayed on the operation surface S0.
  • capacitive touch sensors are provided on the operation surfaces Sa, Sb, Sc, and Sd, respectively. Since the touch switch signal Ts by the touch sensor is output to the control unit 30, it is possible to detect which operation surface Sa, Sb, Sc, Sd is touched.
  • each vibrator is driven by the vibrator drive signal Vs to control the triaxial drive unit 20. Further, the push switch unit 25 outputs an enter signal Es when the operation knob 12 is pushed and pushed. Thereby, it is possible to detect that the touch-operated operation surface has been pressed and pressed.
  • the operation surface Sd shown in FIG. 7 is a specific operation surface.
  • the operation surface Sd is displayed in gray (hatched) on the display unit 50, and a squeeze film is generated on the surface of the operation surface Sd to distinguish it from other operation surfaces.
  • the control unit 30 displays the operation surface Sd of the operation knob 12 as a specific operation surface for distinguishing. As shown in FIG. 7, for example, the operation surface Sd is displayed on the display unit 50 in a gray color (hatching) (Step 1). In addition, it is possible to display on the display unit 50 the contents of processing executed when the operation surface Sd is touched and entered.
  • the control unit 30 drives a predetermined transducer of the triaxial drive unit 20 with a predetermined amplitude and phase using the transducer drive signal Vs (Step 2).
  • the operation surface Sd can be ultrasonically vibrated by driving the Z vibrator and the Y vibrator. Thereby, a squeeze film is formed on the surface of the operation surface Sd.
  • the control unit 30 determines whether or not the operation surface Sd is touched (Step 3).
  • the control unit 30 can determine which operation surface Sa, Sb, Sc, Sd is touched by the input touch switch signal Ts. If the operation surface Sd is touched, the process proceeds to Step 4. If the operation surface Sd is not touched, Step 3 is repeatedly executed.
  • the control unit 30 determines whether or not the push switch unit 25 is turned on (Step 4).
  • the control unit 30 can determine whether or not the pressing switch unit 25 is turned on based on an enter signal Es output when the operation knob 12 is pressed and pressed.
  • the process proceeds to Step 5, and when the pressing switch unit 25 is not turned on, the process returns to Step 3 and is repeatedly executed.
  • the control unit 30 determines that the operation surface Sd has been pressed, and can execute the menu assigned to the operation surface Sd (Step 5).
  • the present embodiment has the following effects.
  • the operation unit of the operation device according to the present embodiment has a plurality of operation surfaces composed of polyhedrons, and with respect to a predetermined vibrator (Z vibrator, X vibrator, Y vibrator), By applying a predetermined voltage at a predetermined phase, a specific operation surface can be ultrasonically vibrated in a direction perpendicular to the operation surface.
  • a squeeze film which is a film of air, can be formed between the operation surface and the fingertip, the finger and the operation surface become substantially non-contact, the apparent friction is reduced, and finger sliding is improved. It has the effect. It becomes possible to distinguish from other surfaces from the difference in frictional force on the surface.
  • each vibrator (Z vibrator 21, X vibrator 22, Y vibrator 23) that is a drive unit is driven and controlled with a predetermined amplitude and phase.
  • Z vibrator 21, X vibrator 22, Y vibrator 23 is driven and controlled with a predetermined amplitude and phase.
  • the operation surface in any direction of the X direction, the Y direction, and the Z direction can be vibrated by a combination of the amplitude and phase of the vibrators driven by the Z vibrator 21, the X vibrator 22 and the Y vibrator 23.
  • each operation surface of the operation knob is displayed on the display unit, and a specific operation surface for distinguishing from the other operation surface is different from other colors, for example, Displayed in gray or hatched. Further, the contents of a specific operation surface can be displayed. As a result, the contents of the operation can be confirmed while looking at the display unit. However, the operator can know that a specific operation surface is selected simply by touching the operation knob without looking at the display unit.
  • each operation surface of the operation knob can be driven by three piezoelectric elements, and it is not necessary to incorporate a vibrator on each surface to be distinguished, which is advantageous in terms of cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

Provided is an operation device with which a method for distinguishing an arbitrarily defined region of a three-dimensional object (polyhedron) can be implemented using a simple configuration. The operation device has: an operation knob 10 serving as an operation unit having multiple operation surfaces defined by the polyhedron; a triaxial driving unit 20 for causing the operation knob 10 to ultrasonically vibrate in the directions of a vertical axis (Z-axis) and two horizontal axes (X-axis, Y-axis), respectively; and a control unit 30 for controlling each driving unit of the triaxial driving unit 20 to vibrate with a predetermined amplitude and phase. The control unit 30 is configured so as to control each of the driving units to vibrate with the predetermined amplitude and phase, thereby causing a squeeze film to be formed on the surface of a specific operation surface of the operation knob 10.

Description

操作装置Operating device
本発明は、操作装置に関する。 The present invention relates to an operating device.
固定された操作体または移動範囲が限られた操作体の操作面に指を触れて、指を操作面に沿って移動させたときに、操作面が指の移動に追従して移動しているように感じさせることができる入力装置が知られている(例えば、特許文献1参照)。 When a finger is touched on the operation surface of a fixed operation object or an operation object with a limited moving range, and the finger is moved along the operation surface, the operation surface moves following the movement of the finger. An input device that can make the user feel like this is known (for example, see Patent Document 1).
特許文献1の操作装置は、半球面の操作面を有する操作体が、わずかな角度だけ傾くことができるように支持されている。加振装置により操作体に対して振幅が上下に向く連続振動が与えられる。操作面に指が触れると、連続振動によって、指の接触部に、接線に向く振幅成分が発生するため、指を移動させるときに、操作面が指の移動に追従してあたかも回転しているかのような感触を得ることができ、入力装置の表面の振動面を変化させることができるとされている。 The operating device of Patent Document 1 is supported so that an operating body having a hemispherical operating surface can be tilted by a slight angle. A continuous vibration whose amplitude is directed up and down is given to the operating body by the vibration device. When a finger touches the operation surface, an amplitude component directed to the tangent line is generated at the contact portion of the finger due to continuous vibration, so that when the finger is moved, the operation surface rotates as if following the movement of the finger. It is said that the vibration surface of the surface of the input device can be changed.
また、検出面上において、他の領域と異なる触感を与える領域を任意の位置に形成することができる入力装置が知られている(例えば、特許文献2参照)。この入力装置は、検出面に対する接触を検出する検出部と、検出面の法線方向に検出部を振動させることにより、他の領域と摩擦係数の異なる領域を検出面に発生させる振動発生部と、を備える。この入力装置は、検出部を超音波振動させることで、検出面上にスクイーズ膜の領域と、スクイーズ膜のない領域と、を形成するので、検出面上において、ホームポジションを任意の位置に形成することができるとされている。 In addition, an input device is known that can form a region that gives a tactile sensation different from other regions at an arbitrary position on the detection surface (see, for example, Patent Document 2). The input device includes a detection unit that detects contact with the detection surface, and a vibration generation unit that generates a region having a friction coefficient different from that of another region on the detection surface by vibrating the detection unit in a normal direction of the detection surface. . This input device forms a squeeze film area and a squeeze film-free area on the detection surface by ultrasonically vibrating the detection unit, so the home position can be formed at an arbitrary position on the detection surface. It is supposed to be possible.
特開2013-89117号公報JP 2013-89117 A 特開2012-243189号公報JP 2012-243189 A
特許文献1の操作装置は、立体物の特定の操作面の感触による区別方法を与えるものではなく、特に、スクイーズ膜の生成による表面摩擦力の変化を利用するものではない。また、特許文献2の操作装置は、検出面上においてスクイーズ膜の生成による表面摩擦力の変化を利用するものであるが、立体物の特定の操作面の感触による区別法を与えるものではない。 The operation device of Patent Document 1 does not give a distinction method based on the feeling of a specific operation surface of a three-dimensional object, and in particular, does not use a change in surface friction force due to generation of a squeeze film. Moreover, although the operating device of patent document 2 utilizes the change of the surface frictional force by the production | generation of a squeeze film | membrane on a detection surface, it does not give the distinction method by the touch of the specific operation surface of a solid object.
本発明の目的は、簡単な構成により、立体物(多面体)の任意領域の区別方法を可能とする操作装置を提供することにある。 An object of the present invention is to provide an operating device that enables a method for distinguishing an arbitrary region of a three-dimensional object (polyhedron) with a simple configuration.
[1]本発明の一実施形態による操作装置は、多面体で構成される複数の操作面を有する操作部と、前記操作部に垂直軸(Z軸)及び水平2軸(X軸、Y軸)方向にそれぞれ超音波振動させる3軸駆動部と、前記3軸駆動部の各駆動部を所定の振幅及び位相で駆動制御する制御部と、を有し、前記制御部は、前記各駆動部を所定の振幅及び位相で駆動制御することにより、前記操作部の特定の操作面の表面にスクイーズ膜を生成させる。 [1] An operation device according to an embodiment of the present invention includes an operation unit having a plurality of operation surfaces formed of a polyhedron, and a vertical axis (Z axis) and two horizontal axes (X axis, Y axis) on the operation unit. A three-axis drive unit that ultrasonically vibrates in each direction, and a control unit that drives and controls each drive unit of the three-axis drive unit with a predetermined amplitude and phase, and the control unit controls each drive unit By performing drive control with a predetermined amplitude and phase, a squeeze film is generated on the surface of a specific operation surface of the operation unit.
[2][1]に記載の操作装置において、前記操作部は、前記Z軸と直交する第1面、前記X軸と所定角度で交差する傾斜面である第2面、第3面と、前記Y軸と所定角度で交差する傾斜面である第4面、第5面とを有する5面体であり得る。 [2] In the operation device according to [1], the operation unit includes a first surface orthogonal to the Z axis, a second surface that is an inclined surface intersecting the X axis at a predetermined angle, and a third surface. It may be a pentahedron having a fourth surface and a fifth surface which are inclined surfaces intersecting the Y axis at a predetermined angle.
[3][1]又は[2]に記載の操作装置において、前記3軸駆動部は、前記操作部の下部に積層されて配置され得る。
[4][3]に記載の操作装置において、前記3軸駆動部は、積層型圧電素子を含み得る。
[5][4]に記載の操作装置において、前記積層型圧電素子は、超音波周波数帯域において正弦波状に加振され得る。
[6][1]に記載の操作装置において、前記操作面は、前記Z軸に対して傾斜した操作面を含み、前記スクイーズ膜は、前記傾斜した操作面上では、前記傾斜した操作面に直交する方向に振動する波形により生成され得る。
[3] In the operating device according to [1] or [2], the three-axis driving unit may be stacked and disposed below the operating unit.
[4] In the operating device according to [3], the triaxial drive unit may include a multilayer piezoelectric element.
[5] In the operating device according to [4], the multilayer piezoelectric element can be vibrated in a sinusoidal shape in an ultrasonic frequency band.
[6] In the operating device according to [1], the operation surface includes an operation surface inclined with respect to the Z axis, and the squeeze film is formed on the inclined operation surface on the inclined operation surface. It can be generated by a waveform that oscillates in an orthogonal direction.
本発明の一実施形態によれば、簡単な構成により、立体物(多面体)の任意領域の区別方法を可能とする操作装置を提供することができる。 According to an embodiment of the present invention, it is possible to provide an operating device that enables a method for distinguishing an arbitrary region of a three-dimensional object (polyhedron) with a simple configuration.
図1は、本発明の第1の実施形態に係る操作装置(立体物としての操作ノブ)の外観および全体構成を示す説明図である。FIG. 1 is an explanatory diagram illustrating an appearance and an overall configuration of an operating device (an operating knob as a three-dimensional object) according to the first embodiment of the present invention. 図2は本発明の第1の実施形態に係る操作装置を示し、(a)は、図1におけるA-A線に沿う断面図であり、(b)は、図1におけるB矢視を示す上平面図である。2 shows the operating device according to the first embodiment of the present invention, where (a) is a cross-sectional view taken along the line AA in FIG. 1, and (b) is a view taken along arrow B in FIG. FIG. 図3は本発明の第1の実施形態に係る操作装置を示し、(a)は、操作ノブの特定の操作面とその振動方向を示す断面図であり、(b)は、Z方向の振動を付与するための加振信号の波形図であり、(c)は、X方向の振動を付与するための加振信号の波形図であり、(d)は、操作面S1上におけるZ方向の振幅とX方向の振幅の合成を示す図である。FIG. 3 shows the operating device according to the first embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction. (C) is a waveform diagram of an excitation signal for applying vibration in the X direction, and (d) is a waveform diagram of the Z direction on the operation surface S1. It is a figure which shows the synthesis | combination of an amplitude and the amplitude of a X direction. 図4は、操作ノブの特定の操作面における振動方向とその表面に生成するスクイーズ膜を模式的に示す側面図である。FIG. 4 is a side view schematically showing a vibration direction on a specific operation surface of the operation knob and a squeeze film generated on the surface. 図5は本発明の第2の実施形態に係る操作装置を示し、(a)は、操作ノブの特定の操作面とその振動方向を示す断面図であり、(b)は、Z方向の振動を付与するための加振信号の波形図であり、(c)は、X方向の振動を付与するための加振信号の波形図であり、(d)は、操作面S1上におけるZ方向の振幅とX方向の振幅の合成を示す図である。FIG. 5 shows an operating device according to the second embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction. (C) is a waveform diagram of an excitation signal for applying vibration in the X direction, and (d) is a waveform diagram of the Z direction on the operation surface S1. It is a figure which shows the synthesis | combination of an amplitude and the amplitude of a X direction. 図6は本発明の第3の実施形態に係る操作装置を示し、(a)は、操作ノブの特定の操作面とその振動方向を示す断面図であり、(b)は、Z方向の振動を付与するための加振信号の波形図であり、(c)は、X方向の振動を付与するための加振信号の波形図であり、(d)は、Y方向の振動を付与するための加振信号の波形図であり、(e)は、操作面S3上におけるZ方向の振幅とφ45方向の振幅の合成を示す図である。FIG. 6 shows an operating device according to a third embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction. FIG. 4C is a waveform diagram of an excitation signal for applying vibration in the X direction, and FIG. 4D is a waveform diagram for applying vibration in the Y direction. is a waveform diagram of the excitation signal, (e) is a diagram showing the synthesis of the amplitude of the amplitude and phi 45 direction of the Z direction on the operation surface S3. 図7は、本発明の第4の実施形態に係る操作装置の全体構成を示す説明図である。FIG. 7 is an explanatory diagram showing the overall configuration of the operating device according to the fourth embodiment of the present invention. 図8は、第4の実施形態に係る操作装置の動作を示すフローチャートである。FIG. 8 is a flowchart showing the operation of the controller device according to the fourth embodiment.
(第1の実施形態)
図1は、本発明の第1の実施形態に係る操作装置(立体物としての操作ノブ)の外観および全体構成を示す説明図である。本発明の第1の実施形態に係る操作装置1は、多面体で構成される複数の操作面を有する操作部としての操作ノブ10と、操作ノブ10に垂直軸(Z軸)及び水平2軸(X軸、Y軸)方向にそれぞれ超音波振動させる3軸駆動部20と、3軸駆動部20の各駆動部を所定の振幅及び位相で駆動制御する制御部30と、を有し、制御部30は、各駆動部を所定の振幅及び位相で駆動制御することにより、操作ノブ10の特定の操作面の表面にスクイーズ膜を生成させるように構成されている。
(First embodiment)
FIG. 1 is an explanatory diagram illustrating an appearance and an overall configuration of an operating device (an operating knob as a three-dimensional object) according to the first embodiment of the present invention. The operation device 1 according to the first embodiment of the present invention includes an operation knob 10 as an operation unit having a plurality of operation surfaces formed of a polyhedron, and a vertical axis (Z axis) and two horizontal axes ( A three-axis drive unit 20 that ultrasonically vibrates in the X-axis and Y-axis directions, and a control unit 30 that drives and controls each drive unit of the three-axis drive unit 20 with a predetermined amplitude and phase. Reference numeral 30 is configured to generate a squeeze film on the surface of a specific operation surface of the operation knob 10 by controlling the driving of each drive unit with a predetermined amplitude and phase.
(操作ノブ10)
図2は本発明の第1の実施形態に係る操作装置を示し、(a)は、図1におけるA-A線に沿う断面図であり、(b)は、図1におけるB矢視を示す上平面図である。操作ノブ10は、図1、図2(b)に示すように、多面体で構成される複数の操作面S1、S2、S3、S4を有した立体物であり、四角錐台である。この操作ノブ10は、例えば、樹脂、金属等の材料により形成され、下部10aには後述する3軸駆動部20が取り付けられている。
(Operation knob 10)
2 shows the operating device according to the first embodiment of the present invention, where (a) is a cross-sectional view taken along the line AA in FIG. 1, and (b) is a view taken along arrow B in FIG. FIG. As shown in FIGS. 1 and 2B, the operation knob 10 is a three-dimensional object having a plurality of operation surfaces S1, S2, S3, and S4 made of a polyhedron, and is a quadrangular frustum. The operation knob 10 is made of, for example, a material such as resin or metal, and a triaxial drive unit 20 described later is attached to the lower portion 10a.
図1、図2(a)、(b)に示すように、操作ノブ10上にX、Y、Z座標を規定する。Z方向の法線に垂直な面をS0として、X方向に傾斜した操作面をS1、S2、Y方向に傾斜した操作面をS3、S4とする。これらの操作面は、後述する3軸駆動部20により、それぞれ駆動されて振動が付与される。 As shown in FIGS. 1, 2 (a), and 2 (b), X, Y, and Z coordinates are defined on the operation knob 10. A surface perpendicular to the normal line in the Z direction is set as S0, operation surfaces inclined in the X direction are set as S1 and S2, and operation surfaces inclined in the Y direction are set as S3 and S4. These operation surfaces are respectively driven and vibrated by a triaxial drive unit 20 described later.
操作ノブ10は、操作者が指先等によりタッチ、押圧するものである。図2(a)に示すように、例えば、操作ノブ10の下部10aに取り付けられた3軸駆動部20及び押圧スイッチ部25を介して基板40に実装される。また、操作ノブ10の周囲には、ベゼル60等が配置されている。操作者は、操作ノブ10の各操作面S0、S1、S2、S3、S4をタッチ又は押圧操作することができる。 The operation knob 10 is touched and pressed by the operator with a fingertip or the like. As shown in FIG. 2A, for example, it is mounted on the substrate 40 via a triaxial drive unit 20 and a pressing switch unit 25 attached to the lower part 10 a of the operation knob 10. A bezel 60 and the like are disposed around the operation knob 10. The operator can touch or press the operation surfaces S0, S1, S2, S3, and S4 of the operation knob 10.
(3軸駆動部20)
3軸駆動部20は、図1、図2(a)、(b)に示すように、操作ノブ10の下部10aに配置されている。3軸駆動部20は、Z方向に振動を付与するためのZ振動子21、X方向に振動を付与するためのX振動子22、及び、Y方向に振動を付与するためのY振動子23が積層されて構成されている。
(3-axis drive unit 20)
The triaxial drive unit 20 is disposed in the lower portion 10a of the operation knob 10 as shown in FIGS. The triaxial drive unit 20 includes a Z vibrator 21 for applying vibration in the Z direction, an X vibrator 22 for applying vibration in the X direction, and a Y vibrator 23 for applying vibration in the Y direction. Are laminated.
各振動子(Z振動子21、X振動子22、Y振動子23)は、例えば、積層型圧電素子である。圧電素子は、例えば、供給される電圧により、伸縮を行う。この伸縮により振動が発生する構造となっている。 Each vibrator (Z vibrator 21, X vibrator 22, Y vibrator 23) is, for example, a multilayer piezoelectric element. For example, the piezoelectric element expands and contracts by a supplied voltage. This expansion / contraction causes vibration.
圧電素子の材料としては、例えば、ニオブ酸リチウム、チタン酸バリウム、チタン酸鉛、チタン酸ジルコン酸鉛(PZT)、メタニオブ酸鉛、ポリフッ化ビニリデン(PVDF)、ポリ乳酸等が用いられる。 Examples of the material of the piezoelectric element include lithium niobate, barium titanate, lead titanate, lead zirconate titanate (PZT), lead metaniobate, polyvinylidene fluoride (PVDF), polylactic acid, and the like.
なお、圧電素子の構造としては、例えば、金属板の両面に、上記の材料を用いて形成された膜が形成される単層バイモルフ型、金属板の一方面に、上記の材料を用いて形成された膜が形成される単層ユニモルフ型、金属板の一方面に、上記の材料を用いて形成された膜を積層して形成された積層ユニモルフ型、金属板の両面に、上記の材料を用いて形成された膜を積層して形成された積層バイモルフ型の圧電素子等が使用可能である。 In addition, as a structure of the piezoelectric element, for example, a single-layer bimorph type in which a film formed using the above material is formed on both surfaces of the metal plate, and formed using the above material on one surface of the metal plate. Single layer unimorph type on which the formed film is formed, laminated unimorph type formed by laminating the film formed using the above material on one side of the metal plate, the above material on both sides of the metal plate A laminated bimorph type piezoelectric element or the like formed by laminating films formed using the above can be used.
各振動子(Z振動子21、X振動子22、Y振動子23)は、制御部30からドライバ回路を介して電圧を印加されて、所定の周波数fnで駆動されて、それぞれの方向(Z方向、X方向、Y方向)に振動を発生する。なお、所定の周波数fnは、超音波帯の周波数に設定されている。超音波とは、人間の耳には聞こえない高い振動数をもつ可聴域以上の弾性振動波(音波)であり、例えば、20kHzから40kHz程度の周波数帯域である。 Each of the vibrators (Z vibrator 21, X vibrator 22, Y vibrator 23) is applied with a voltage from the control unit 30 via a driver circuit and is driven at a predetermined frequency fn, and each direction (Z Direction, X direction, Y direction). The predetermined frequency fn is set to the frequency of the ultrasonic band. The ultrasonic wave is an elastic vibration wave (sound wave) having a high frequency that cannot be heard by the human ear and higher than the audible range, and has a frequency band of about 20 kHz to 40 kHz, for example.
(制御部30)
制御部30は、駆動部である各振動子(Z振動子21、X振動子22、Y振動子23)を所定の振幅及び位相で駆動制御するものである。制御部30は、例えば、記憶されたプログラムに従って、所定の演算、処理実行等を行うCPU(Central Processing Unit)、半導体メモリであるRAM(Random Access Memory)及びROM(Read Only Memory)等から構成されるマイクロコンピュータである。このROMには、例えば、制御部30が動作するためのプログラムと、各種のパラメータ等が格納されている。また制御部30は、その内部にクロック信号を生成する手段を有し、このクロック信号に基づいて動作を行う。また、制御部30は、例えば、20kHzから40kHz程度の超音波振動を発生させる基準信号発生部を備えている。
(Control unit 30)
The control unit 30 controls driving of each vibrator (Z vibrator 21, X vibrator 22, Y vibrator 23) as a drive unit with a predetermined amplitude and phase. The control unit 30 includes, for example, a CPU (Central Processing Unit) that performs predetermined calculation, processing execution, and the like according to a stored program, a RAM (Random Access Memory) that is a semiconductor memory, a ROM (Read Only Memory), and the like. This is a microcomputer. In this ROM, for example, a program for operating the control unit 30 and various parameters are stored. The control unit 30 has a means for generating a clock signal therein, and operates based on this clock signal. In addition, the control unit 30 includes a reference signal generation unit that generates ultrasonic vibration of about 20 kHz to 40 kHz, for example.
制御部30は、所定のプログラム、外部からの命令等により、所定の振動子(Z振動子21、X振動子22、Y振動子23)に対して、所定の位相で所定の電圧を印加することができる。これにより、所定の振動子(Z振動子21、X振動子22、Y振動子23)を所定の振幅及び位相で駆動制御することができる。これにより、特定の操作面S0、S1、S2、S3、S4を各操作面の垂直方向に超音波振動させることができる。 The control unit 30 applies a predetermined voltage at a predetermined phase to a predetermined vibrator (Z vibrator 21, X vibrator 22, Y vibrator 23) by a predetermined program, an external command, or the like. be able to. Thereby, it is possible to drive and control predetermined vibrators (Z vibrator 21, X vibrator 22, Y vibrator 23) with a predetermined amplitude and phase. As a result, the specific operation surfaces S0, S1, S2, S3, and S4 can be ultrasonically vibrated in the vertical direction of each operation surface.
図3は本発明の第1の実施形態に係る操作装置を示し、(a)は、操作ノブの特定の操作面とその振動方向を示す断面図であり、(b)は、Z方向の振動を付与するための加振信号の波形図であり、(c)は、X方向の振動を付与するための加振信号の波形図である。 FIG. 3 shows the operating device according to the first embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction. FIG. 4C is a waveform diagram of an excitation signal for applying vibration in the X direction.
第1の実施形態は、図3(a)に示すように、操作面S1、S2がそれぞれ、X軸に対して45°傾斜した面として形成され、操作面S1又はS2を各面の法線方向H1又はH2に振動させるものである。すなわち、図3(a)で示すZ振動子21とX振動子22を、それぞれ所定の位相関係で所定の振幅で振動させることにより、上記説明したような方向に振動させる。 In the first embodiment, as shown in FIG. 3A, the operation surfaces S1 and S2 are each formed as a surface inclined by 45 ° with respect to the X axis, and the operation surface S1 or S2 is a normal line of each surface. It vibrates in the direction H1 or H2. That is, the Z vibrator 21 and the X vibrator 22 shown in FIG. 3A are vibrated in a direction as described above by vibrating with a predetermined amplitude in a predetermined phase relationship.
Z振動子21は、図3(b)に示すように、例えば、振幅1で正弦波状に加振される。また、X振動子22は、図3(c)に示すように、例えば、S1スクイーズ駆動時の振動波形として、Z振動子21と同位相で、振幅1で正弦波状に加振される。なお、Y振動子23は駆動されない。制御部30が3軸駆動部20に対して、このように駆動すると、図3(d)に示すように、Z方向の振幅とX方向の振幅の合成により、X軸に対して45°傾斜した操作面S1と直交するH1方向に振動することになる。 As shown in FIG. 3B, the Z vibrator 21 is vibrated sinusoidally with an amplitude of 1, for example. Further, as shown in FIG. 3C, the X vibrator 22 is vibrated in a sinusoidal shape with an amplitude of 1 in the same phase as the Z vibrator 21, for example, as a vibration waveform during S1 squeeze driving. Note that the Y vibrator 23 is not driven. When the control unit 30 drives the triaxial drive unit 20 in this way, as shown in FIG. 3 (d), it is inclined by 45 ° with respect to the X axis by combining the amplitude in the Z direction and the amplitude in the X direction. Will vibrate in the H1 direction orthogonal to the operated operation surface S1.
また、図3(a)で示す操作面S2をS2スクイーズ駆動する場合は、図3(c)に示すように、例えば、S2スクイーズ駆動時の振動波形として、Z振動子21と逆位相で、振幅1で正弦波状に加振する。このような駆動により、Z方向の振幅とX方向の振幅の合成により、X軸に対して45°傾斜した操作面S2と直交するH2方向に振動することになる。 Further, when the operation surface S2 shown in FIG. 3A is S2 squeezed, for example, as shown in FIG. 3C, the vibration waveform at the time of S2 squeeze drive has a phase opposite to that of the Z vibrator 21, Vibrates in a sinusoidal shape with an amplitude of 1. By such driving, the vibration in the H2 direction orthogonal to the operation surface S2 inclined by 45 ° with respect to the X axis is obtained by combining the amplitude in the Z direction and the amplitude in the X direction.
なお、図2(b)で示した操作面S3又はS4を各面の法線方向に振動させる場合は、上記説明したX振動子22の駆動の代わりにY振動子23を駆動することにより、同様の振動を発生させることができる。 In the case where the operation surface S3 or S4 shown in FIG. 2B is vibrated in the normal direction of each surface, the Y vibrator 23 is driven instead of driving the X vibrator 22 described above. Similar vibrations can be generated.
図4は、操作ノブの特定の操作面における振動方向とその表面に生成するスクイーズ膜を模式的に示す側面図である。上記説明した図3(a)、図3(b)のS1スクイーズ駆動時の振動波形で駆動した場合には、図4で示す操作面S1と直交するH1方向に超音波振動する。 FIG. 4 is a side view schematically showing a vibration direction on a specific operation surface of the operation knob and a squeeze film generated on the surface. When driving with the vibration waveform at the time of the S1 squeeze driving in FIGS. 3A and 3B described above, the ultrasonic vibration is generated in the H1 direction orthogonal to the operation surface S1 shown in FIG.
操作面S1がH1方向に高周波で振動すると、操作面S1と指先との間に空気の膜であるスクイーズ膜100が形成され、スクイーズ効果が発生する。このスクイーズ効果とは、例えば、図4に示すように、操作面S1の超音波振動に基づいて、操作面S1が空気層に法線H1方向に力を付加することで操作面S1上の法線H1方向の圧力が増加し、指200と操作面S1の間に空気の膜としてスクイーズ膜100が形成される効果である。このスクイーズ膜100によって、指200と操作面S1とが実質的に非接触となり、見かけの摩擦が低下して指滑りが良くなる。 When the operation surface S1 vibrates at a high frequency in the H1 direction, a squeeze film 100 that is an air film is formed between the operation surface S1 and the fingertip, and a squeeze effect is generated. For example, as shown in FIG. 4, the squeeze effect is based on the ultrasonic vibration of the operation surface S1, and the operation surface S1 applies a force to the air layer in the direction of the normal H1 so that the law on the operation surface S1. This is an effect of increasing the pressure in the direction of the line H1 and forming the squeeze film 100 as an air film between the finger 200 and the operation surface S1. By this squeeze film 100, the finger 200 and the operation surface S1 are substantially in non-contact, the apparent friction is reduced, and finger sliding is improved.
上記の摩擦力の低下により、指でタッチするときの感触が他の操作面と異なることから、立体物の特定の操作面を他の操作面から区別することが可能になる。 Due to the decrease in the frictional force, the touch feeling with a finger is different from other operation surfaces, so that it is possible to distinguish a specific operation surface of the three-dimensional object from the other operation surfaces.
(第2の実施形態)
第2の実施形態は、操作面S1、S2がそれぞれ、Z軸に対して60°傾斜した面として形成された場合であり、その他の構成は、第1の実施形態と同様である。
(Second Embodiment)
The second embodiment is a case where the operation surfaces S1 and S2 are each formed as a surface inclined by 60 ° with respect to the Z axis, and the other configurations are the same as those of the first embodiment.
図5は本発明の第2の実施形態に係る操作装置を示し、(a)は、操作ノブの特定の操作面とその振動方向を示す断面図であり、(b)は、Z方向の振動を付与するための加振信号の波形図であり、(c)は、X方向の振動を付与するための加振信号の波形図であり、(d)は、操作面S1上におけるZ方向の振幅とX方向の振幅の合成を示す図である。 FIG. 5 shows an operating device according to the second embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction. (C) is a waveform diagram of an excitation signal for applying vibration in the X direction, and (d) is a waveform diagram of the Z direction on the operation surface S1. It is a figure which shows the synthesis | combination of an amplitude and the amplitude of a X direction.
第2の実施形態は、図5(a)に示すように、操作面S1、S2がそれぞれ、Z軸に対して60°傾斜した面として形成され、操作面S1又はS2を各面の法線方向H1又はH2に振動させるものである。すなわち、図5(a)で示すZ振動子21とX振動子22を、それぞれ所定の位相関係で所定の振幅で振動させることにより、上記説明したような方向に振動させる。 In the second embodiment, as shown in FIG. 5A, the operation surfaces S1 and S2 are each formed as a surface inclined by 60 ° with respect to the Z axis, and the operation surface S1 or S2 is a normal line of each surface. It vibrates in the direction H1 or H2. That is, the Z vibrator 21 and the X vibrator 22 shown in FIG. 5A are vibrated in a direction as described above by vibrating with a predetermined amplitude in a predetermined phase relationship.
Z振動子21は、図5(b)に示すように、例えば、振幅1で正弦波状に加振される。また、X振動子22は、図5(c)に示すように、例えば、S1スクイーズ駆動時の振動波形として、Z振動子21と同位相で、振幅1/√3で正弦波状に加振される。なお、Y振動子23は駆動されない。制御部30が3軸駆動部20に対して、このように駆動すると、図5(d)に示すように、Z方向の振幅とX方向の振幅の合成により、Z軸に対して60°傾斜した操作面S1と直交するH1方向に振動することになる。 As shown in FIG. 5B, the Z vibrator 21 is vibrated sinusoidally with an amplitude of 1, for example. Further, as shown in FIG. 5C, the X vibrator 22 is vibrated in a sinusoidal shape with an amplitude of 1 / √3 in the same phase as the Z vibrator 21 as a vibration waveform at the time of S1 squeeze driving, for example. The Note that the Y vibrator 23 is not driven. When the control unit 30 drives the triaxial drive unit 20 in this way, as shown in FIG. 5 (d), it is tilted by 60 ° with respect to the Z axis by combining the amplitude in the Z direction and the amplitude in the X direction. Will vibrate in the H1 direction orthogonal to the operated operation surface S1.
また、図5(a)で示す操作面S2をS2スクイーズ駆動する場合は、図5(c)に示すように、例えば、S2スクイーズ駆動時の振動波形として、Z振動子21と逆位相で、振幅1/√3で正弦波状に加振する。このような駆動により、Z方向の振幅とX方向の振幅の合成により、Z軸に対して60°傾斜した操作面S2と直交するH2方向に振動することになる。 Further, when the operation surface S2 shown in FIG. 5A is S2 squeezed, for example, as shown in FIG. 5C, the vibration waveform at the time of S2 squeeze drive has a phase opposite to that of the Z vibrator 21, Vibrates sinusoidally with an amplitude of 1 / √3. By such driving, the vibration in the H2 direction orthogonal to the operation surface S2 inclined by 60 ° with respect to the Z axis is obtained by combining the amplitude in the Z direction and the amplitude in the X direction.
なお、図2(b)で示した操作面S3又はS4を各面の法線方向に振動させる場合は、上記説明したX振動子22の駆動の代わりにY振動子23を駆動することにより、同様の振動を発生させることができる。 In the case where the operation surface S3 or S4 shown in FIG. 2B is vibrated in the normal direction of each surface, the Y vibrator 23 is driven instead of driving the X vibrator 22 described above. Similar vibrations can be generated.
(第3の実施形態)
第3の実施形態は、操作ノブが八角錐台の場合を示す。
(Third embodiment)
The third embodiment shows a case where the operation knob is an octagonal pyramid.
図6は本発明の第3の実施形態に係る操作装置を示し、(a)は、操作ノブの特定の操作面とその振動方向を示す断面図であり、(b)は、Z方向の振動を付与するための加振信号の波形図であり、(c)は、X方向の振動を付与するための加振信号の波形図であり、(d)は、Y方向の振動を付与するための加振信号の波形図であり、(e)は、操作面S3上におけるZ方向の振幅とφ45方向の振幅の合成を示す図である。 FIG. 6 shows an operating device according to a third embodiment of the present invention, in which (a) is a cross-sectional view showing a specific operating surface of the operating knob and its vibration direction, and (b) is a vibration in the Z direction. FIG. 4C is a waveform diagram of an excitation signal for applying vibration in the X direction, and FIG. 4D is a waveform diagram for applying vibration in the Y direction. is a waveform diagram of the excitation signal, (e) is a diagram showing the synthesis of the amplitude of the amplitude and phi 45 direction of the Z direction on the operation surface S3.
図6(a)に示すように、操作ノブ11は、八角錐台の形状とされている。このような形状において、図6(a)に示す操作面S5、S6を振動させる場合について説明する。
また、図6(a)に示すように、操作面S5、S6がそれぞれ、φ45軸に対して45°傾斜した面として形成された場合であり、その他の構成は、第1、2の実施形態と同様である。
As shown to Fig.6 (a), the operation knob 11 is made into the shape of an octagonal frustum. A case where the operation surfaces S5 and S6 shown in FIG. 6A are vibrated in such a shape will be described.
Further, as shown in FIG. 6 (a), a case where the operation surface S5, S6, respectively, is formed as a 45 ° inclined surface against phi 45 axes, other configurations are first and second embodiment of the It is the same as the form.
Z振動子21は、図6(b)に示すように、例えば、振幅1で正弦波状に加振される。また、X振動子22は、図6(c)に示すように、例えば、S5スクイーズ駆動時の振動波形として、Z振動子21と同位相で、振幅1/√2で正弦波状に加振される。同様に、Y振動子23は、図6(d)に示すように、例えば、S5スクイーズ駆動時の振動波形として、X振動子22と同位相で、振幅1/√2で正弦波状に加振される。制御部30が3軸駆動部20に対して、このように駆動すると、図6(e)に示すように、Z方向の振幅とφ45方向の振幅の合成により、φ45軸に対して45°傾斜した操作面S5と直交するH5方向に振動することになる。なお、図6(e)におけるφ45軸方向の振幅は、X方向の振幅1/√2とY方向の振幅1/√2の合成である。 As shown in FIG. 6B, the Z vibrator 21 is vibrated in a sinusoidal shape with an amplitude of 1, for example. Further, as shown in FIG. 6C, the X vibrator 22 is vibrated in a sinusoidal shape with an amplitude of 1 / √2 in the same phase as the Z vibrator 21 as a vibration waveform at the time of S5 squeeze driving, for example. The Similarly, as shown in FIG. 6D, the Y vibrator 23 vibrates in a sinusoidal shape with an amplitude of 1 / √2 in the same phase as the X vibrator 22 as a vibration waveform at the time of S5 squeeze driving, for example. Is done. The control unit 30 is 3-axis drive unit 20, in this way be driven, as shown in FIG. 6 (e), the synthesis of the amplitudes of the phi 45 direction of the Z-direction, relative to the phi 45 Axis 45 The vibration occurs in the H5 direction orthogonal to the inclined operation surface S5. The amplitude of phi 45 axially in FIG. 6 (e) is the synthesis of the amplitude of the X direction 1 / √2 and Y-direction amplitude 1 / √2.
また、図6(a)で示す操作面S6をS6スクイーズ駆動する場合は、図6(c)に示すように、例えば、S6スクイーズ駆動時の振動波形として、X振動子22は、Z振動子21と逆位相で、振幅1/√2で正弦波状に加振する。同様に、図6(d)に示すように、例えば、S6スクイーズ駆動時の振動波形として、Y振動子23は、Z振動子21と逆位相で、振幅1/√2で正弦波状に加振する。これにより、φ45軸に対して45°傾斜した操作面S6をそれと直交するH6方向に振動することができる。 Further, when the operation surface S6 shown in FIG. 6A is driven by S6 squeeze, as shown in FIG. 6C, for example, as the vibration waveform at the time of S6 squeeze drive, the X vibrator 22 is a Z vibrator. Excited in a sinusoidal shape with an amplitude of 1 / √2 in the opposite phase to 21. Similarly, as shown in FIG. 6D, for example, as a vibration waveform at the time of S6 squeeze driving, the Y vibrator 23 has a phase opposite to that of the Z vibrator 21 and is excited in a sinusoidal shape with an amplitude of 1 / √2. To do. Thus, the operating surface S6 inclined by 45 ° with respect to phi 45 axis can vibrate in H6 direction perpendicular thereto.
(第4の実施形態)
図7は、本発明の第4の実施形態に係る操作装置の全体構成を示す説明図である。また、図8は、第4の実施形態に係る操作装置の動作を示すフローチャートである。
(Fourth embodiment)
FIG. 7 is an explanatory diagram showing the overall configuration of the operating device according to the fourth embodiment of the present invention. FIG. 8 is a flowchart showing the operation of the operating device according to the fourth embodiment.
第4の実施形態は、四角錐台の操作ノブ12を使用し、表示部50に操作ノブ12を表示する構成とされている。表示部50には、操作ノブ12の各操作面が表示されると共に、他の操作面と区別するための特定の操作面が他と異なる色、例えば、グレー色、ハッチング等で表示される。また、操作面S0には、特定の操作面の内容を表示することができる。 In the fourth embodiment, the operation knob 12 having a quadrangular pyramid is used, and the operation knob 12 is displayed on the display unit 50. On the display unit 50, each operation surface of the operation knob 12 is displayed, and a specific operation surface for distinguishing from the other operation surfaces is displayed in a different color, for example, gray color, hatching, or the like. In addition, the contents of a specific operation surface can be displayed on the operation surface S0.
第4の実施形態に係る操作ノブ12は、各操作面Sa、Sb、Sc、Sdにそれぞれ静電容量式のタッチセンサが設けられている。このタッチセンサによるタッチスイッチ信号Tsは、制御部30に出力されるので、どの操作面Sa、Sb、Sc、Sdがタッチされたかを検出することができる。 In the operation knob 12 according to the fourth embodiment, capacitive touch sensors are provided on the operation surfaces Sa, Sb, Sc, and Sd, respectively. Since the touch switch signal Ts by the touch sensor is output to the control unit 30, it is possible to detect which operation surface Sa, Sb, Sc, Sd is touched.
操作ノブ12は、タッチセンサ以外の構成は、第1の実施形態で説明したものと同様である。図7に示すように、振動子駆動信号Vsにより、各振動子が駆動されて3軸駆動部20が制御される。また、押圧スイッチ部25は、操作ノブ12が押圧操作されて押込まれることにより、エンター信号Esを出力する。これにより、タッチ操作された操作面が押圧操作されて押込まれたことを検出することができる。 The configuration of the operation knob 12 other than the touch sensor is the same as that described in the first embodiment. As shown in FIG. 7, each vibrator is driven by the vibrator drive signal Vs to control the triaxial drive unit 20. Further, the push switch unit 25 outputs an enter signal Es when the operation knob 12 is pushed and pushed. Thereby, it is possible to detect that the touch-operated operation surface has been pressed and pressed.
(第4の実施形態の動作)
図8で示すフローチャートにしたがって説明する。なお、この第4の実施形態では、図7に示す操作面Sdを区別する特定の操作面とする。この操作面Sdを表示部50にグレー色(ハッチング)で表示すると共に、この操作面Sdの表面にスクイーズ膜を生成して、他の操作面と区別する。
(Operation of Fourth Embodiment)
This will be described with reference to the flowchart shown in FIG. In the fourth embodiment, the operation surface Sd shown in FIG. 7 is a specific operation surface. The operation surface Sd is displayed in gray (hatched) on the display unit 50, and a squeeze film is generated on the surface of the operation surface Sd to distinguish it from other operation surfaces.
制御部30は、操作ノブ12の操作面Sdを区別する特定の操作面として表示する。図7に示すように、例えば、グレー色(ハッチング)で操作面Sdを表示部50に表示する(Step1)。また、操作面Sdをタッチしてエンターした場合の処理実行される内容を表示部50に表示することができる。 The control unit 30 displays the operation surface Sd of the operation knob 12 as a specific operation surface for distinguishing. As shown in FIG. 7, for example, the operation surface Sd is displayed on the display unit 50 in a gray color (hatching) (Step 1). In addition, it is possible to display on the display unit 50 the contents of processing executed when the operation surface Sd is touched and entered.
次に、制御部30は、図7に示すように、振動子駆動信号Vsにより、3軸駆動部20の所定の振動子を所定の振幅及び位相で駆動する(Step2)。第1又は第2の実施形態で示したように、Z振動子とY振動子を駆動することにより、操作面Sdを超音波振動させることができる。これにより、操作面Sdの表面にスクイーズ膜を形成する。 Next, as shown in FIG. 7, the control unit 30 drives a predetermined transducer of the triaxial drive unit 20 with a predetermined amplitude and phase using the transducer drive signal Vs (Step 2). As shown in the first or second embodiment, the operation surface Sd can be ultrasonically vibrated by driving the Z vibrator and the Y vibrator. Thereby, a squeeze film is formed on the surface of the operation surface Sd.
制御部30は、操作面Sdがタッチされたかどうかを判断する(Step3)。制御部30は、入力されるタッチスイッチ信号Tsにより、どの操作面Sa、Sb、Sc、Sdがタッチされたか判断できる。操作面Sdがタッチされた場合は、Step4へ進み、操作面Sdがタッチされない場合は、Step3を繰り返して実行する。 The control unit 30 determines whether or not the operation surface Sd is touched (Step 3). The control unit 30 can determine which operation surface Sa, Sb, Sc, Sd is touched by the input touch switch signal Ts. If the operation surface Sd is touched, the process proceeds to Step 4. If the operation surface Sd is not touched, Step 3 is repeatedly executed.
制御部30は、押圧スイッチ部25はオンされたかどうかを判断する(Step4)。制御部30は、操作ノブ12が押圧操作されて押込まれることにより出力されるエンター信号Esにより、押圧スイッチ部25がオンされたかどうかを判断できる。押圧スイッチ部25がオンされた場合は、Step5へ進み、押圧スイッチ部25がオンされない場合は、Step3へ戻って繰り返して実行する。 The control unit 30 determines whether or not the push switch unit 25 is turned on (Step 4). The control unit 30 can determine whether or not the pressing switch unit 25 is turned on based on an enter signal Es output when the operation knob 12 is pressed and pressed. When the pressing switch unit 25 is turned on, the process proceeds to Step 5, and when the pressing switch unit 25 is not turned on, the process returns to Step 3 and is repeatedly executed.
制御部30は、操作面Sdが押圧操作されたと判断して、操作面Sdに割り当てられたメニューを処理実行することができる(Step5)。 The control unit 30 determines that the operation surface Sd has been pressed, and can execute the menu assigned to the operation surface Sd (Step 5).
上記示したフローにより、一連の処理実行動作を終了する。 A series of processing execution operations is terminated by the flow shown above.
(実施形態の効果)
本実施形態においては、以下のような効果を有する。
(1)本実施形態に係る操作装置の操作部は、多面体で構成される複数の操作面を有するもので、所定の振動子(Z振動子、X振動子、Y振動子)に対して、所定の位相で所定の電圧を印加することで、特定の操作面を操作面の垂直方向に超音波振動させることができる。これにより、操作面と指先との間に空気の膜であるスクイーズ膜を形成することができ、指と操作面とが実質的に非接触となり、見かけの摩擦が低下して指滑りが良くなるという効果を有する。その表面の摩擦力の違いから他の面と区別することが可能になる。
よって、簡単な構成により、立体物(多面体)の任意領域の区別方法を可能とする操作装置を提供することが可能になる。
(2)第1~3の実施形態で示したように、駆動部である各振動子(Z振動子21、X振動子22、Y振動子23)を所定の振幅及び位相で駆動制御することにより、X方向、Y方向、Z方向の任意の方向の操作面を振動させることが可能である。すなわち、Z振動子21、X振動子22、Y振動子23の駆動する振動子の振幅及び位相の組み合わせにより特定の方向の操作面を振動させることが可能である。これにより、第1~3の実施形態で示した多面体以外の構成であっても、同様の制御方法により、任意の操作面を振動させることが可能である。
(3)第4の実施形態によれば、表示部には、操作ノブの各操作面が表示されると共に、他の操作面と区別するための特定の操作面が他と異なる色、例えば、グレー色、ハッチング等で表示される。また、特定の操作面の内容を表示することができる。これにより表示部を見ながら操作の内容を確認することができる。ただし、表示部を見ずに操作ノブに触れるだけでも、特定の操作面が選択されていることを操作者は知ることができる。
(4)また、選択中の操作面については、表面の摩擦力が低下し滑って操作しにくくなる所為で操作を比較的慎重に行う必要があるので、誤操作防止に繋がる。
(5)さらに、操作ノブの各操作面の駆動は圧電素子3個で可能で、区別したい面それぞれに振動子を組み込む必要がないため、コスト的にも有利となる。
(Effect of embodiment)
The present embodiment has the following effects.
(1) The operation unit of the operation device according to the present embodiment has a plurality of operation surfaces composed of polyhedrons, and with respect to a predetermined vibrator (Z vibrator, X vibrator, Y vibrator), By applying a predetermined voltage at a predetermined phase, a specific operation surface can be ultrasonically vibrated in a direction perpendicular to the operation surface. As a result, a squeeze film, which is a film of air, can be formed between the operation surface and the fingertip, the finger and the operation surface become substantially non-contact, the apparent friction is reduced, and finger sliding is improved. It has the effect. It becomes possible to distinguish from other surfaces from the difference in frictional force on the surface.
Therefore, it is possible to provide an operating device that enables a method for distinguishing an arbitrary region of a three-dimensional object (polyhedron) with a simple configuration.
(2) As shown in the first to third embodiments, each vibrator (Z vibrator 21, X vibrator 22, Y vibrator 23) that is a drive unit is driven and controlled with a predetermined amplitude and phase. Thus, it is possible to vibrate the operation surface in any direction of the X direction, the Y direction, and the Z direction. That is, the operation surface in a specific direction can be vibrated by a combination of the amplitude and phase of the vibrators driven by the Z vibrator 21, the X vibrator 22 and the Y vibrator 23. As a result, even with a configuration other than the polyhedron shown in the first to third embodiments, any operation surface can be vibrated by the same control method.
(3) According to the fourth embodiment, each operation surface of the operation knob is displayed on the display unit, and a specific operation surface for distinguishing from the other operation surface is different from other colors, for example, Displayed in gray or hatched. Further, the contents of a specific operation surface can be displayed. As a result, the contents of the operation can be confirmed while looking at the display unit. However, the operator can know that a specific operation surface is selected simply by touching the operation knob without looking at the display unit.
(4) Further, since the operation surface being selected needs to be operated relatively carefully because the frictional force of the surface decreases and it becomes difficult to operate, it leads to prevention of erroneous operation.
(5) Further, each operation surface of the operation knob can be driven by three piezoelectric elements, and it is not necessary to incorporate a vibrator on each surface to be distinguished, which is advantageous in terms of cost.
以上、本発明のいくつかの実施形態及び変形例を説明したが、これらの実施形態及び変形例は、一例に過ぎず、特許請求の範囲に係る発明を限定するものではない。また、これら新規な実施形態及び変形例は、その他の様々な形態で実施されることが可能であり、本発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更等を行うことができる。また、これら実施形態及び変形例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない。さらに、これら実施形態及び変形例は、発明の範囲及び要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As mentioned above, although some embodiment and modification of this invention were demonstrated, these embodiment and modification are only examples, and do not limit the invention which concerns on a claim. These novel embodiments and modifications can be implemented in various other forms, and various omissions, replacements, changes, and the like can be made without departing from the scope of the present invention. . In addition, not all the combinations of features described in these embodiments and modifications are essential to the means for solving the problems of the invention. Furthermore, these embodiments and modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
1 操作装置、
10,11,12 操作ノブ
20 3軸駆動部
21 Z振動子
22 X振動子
23 Y振動子
30 制御部
100 スクイーズ膜
1 operating device,
10, 11, 12 Operation knob 20 Triaxial drive unit 21 Z vibrator 22 X vibrator 23 Y vibrator 30 Control unit 100 Squeeze film

Claims (6)

  1. 多面体で構成される複数の操作面を有する操作部と、
    前記操作部に垂直軸(Z軸)及び水平2軸(X軸、Y軸)方向にそれぞれ超音波振動させる3軸駆動部と、
    前記3軸駆動部の各駆動部を所定の振幅及び位相で駆動制御する制御部と、を有し、
    前記制御部は、前記各駆動部を所定の振幅及び位相で駆動制御することにより、前記操作部の特定の操作面の表面にスクイーズ膜を生成させる操作装置。
    An operation unit having a plurality of operation surfaces formed of a polyhedron;
    A three-axis drive unit that causes the operation unit to vibrate ultrasonically in the directions of the vertical axis (Z axis) and the horizontal two axes (X axis, Y axis),
    A control unit that drives and controls each driving unit of the three-axis driving unit with a predetermined amplitude and phase;
    The control unit is an operation device that generates a squeeze film on a surface of a specific operation surface of the operation unit by controlling the drive of each of the drive units with a predetermined amplitude and phase.
  2. 前記操作部は、前記Z軸と直交する第1面、前記X軸と所定角度で交差する傾斜面である第2面、第3面と、前記Y軸と所定角度で交差する傾斜面である第4面、第5面とを有する5面体である、請求項1に記載の操作装置。 The operation unit is a first surface orthogonal to the Z axis, a second surface that is an inclined surface that intersects the X axis at a predetermined angle, a third surface, and an inclined surface that intersects the Y axis at a predetermined angle. The operating device according to claim 1, wherein the operating device is a pentahedron having a fourth surface and a fifth surface.
  3. 前記3軸駆動部は、前記操作部の下部に積層されて配置されている、請求項1又は2に記載の操作装置。 The operating device according to claim 1, wherein the three-axis driving unit is disposed to be stacked below the operating unit.
  4. 前記3軸駆動部は、積層型圧電素子を含む、請求項3に記載の操作装置。 The operating device according to claim 3, wherein the triaxial driving unit includes a stacked piezoelectric element.
  5. 前記積層型圧電素子は、超音波周波数帯域において正弦波状に加振される、請求項4に記載の操作装置。 The operating device according to claim 4, wherein the laminated piezoelectric element is vibrated in a sinusoidal shape in an ultrasonic frequency band.
  6. 前記操作面は、前記Z軸に対して傾斜した操作面を含み、
    前記スクイーズ膜は、前記傾斜した操作面上では、前記傾斜した操作面に直交する方向に振動する波形により生成される、請求項1に記載の操作装置。
    The operation surface includes an operation surface inclined with respect to the Z axis,
    2. The operating device according to claim 1, wherein the squeeze film is generated by a waveform that vibrates in a direction orthogonal to the inclined operation surface on the inclined operation surface.
PCT/JP2016/080874 2015-10-23 2016-10-18 Operation device WO2017069126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-209380 2015-10-23
JP2015209380A JP2017083971A (en) 2015-10-23 2015-10-23 Operating device

Publications (1)

Publication Number Publication Date
WO2017069126A1 true WO2017069126A1 (en) 2017-04-27

Family

ID=58557011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080874 WO2017069126A1 (en) 2015-10-23 2016-10-18 Operation device

Country Status (2)

Country Link
JP (1) JP2017083971A (en)
WO (1) WO2017069126A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024022332A (en) * 2022-08-05 2024-02-16 株式会社東海理化電機製作所 Switching equipment, vehicular switching equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018696A1 (en) * 2009-01-21 2011-01-27 Korea Institute Of Science And Technology Vibrotactile Device and Method Using the Same
JP2012243189A (en) * 2011-05-23 2012-12-10 Tokai Rika Co Ltd Input device
JP2013092513A (en) * 2011-10-24 2013-05-16 Chief Land Electronic Co Ltd Method of generating 3d haptic feedback and handheld electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018696A1 (en) * 2009-01-21 2011-01-27 Korea Institute Of Science And Technology Vibrotactile Device and Method Using the Same
JP2012243189A (en) * 2011-05-23 2012-12-10 Tokai Rika Co Ltd Input device
JP2013092513A (en) * 2011-10-24 2013-05-16 Chief Land Electronic Co Ltd Method of generating 3d haptic feedback and handheld electronic device

Also Published As

Publication number Publication date
JP2017083971A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
KR101514870B1 (en) Haptic device with controlled traction forces
WO2005015375A1 (en) Tactile and force feedback device
US20110260988A1 (en) Method and apparatus for increasing magnitude and frequency of forces applied to a bare finger on a haptic surface
JP5689362B2 (en) Input device
WO2016075935A1 (en) Tactile-sense-presenting device
JP5797456B2 (en) Input device
WO2017069126A1 (en) Operation device
M’boungui et al. Development of a novel plane piezoelectric actuator using Hamilton's principle based model and Hertz contact theory
JP2017004262A (en) Manipulation device
JP6490400B2 (en) Tactile presentation device
JP6613153B2 (en) Tactile presentation device
JP6382409B2 (en) Tactile presentation device
JP2016057764A (en) Tactile sense presentation device
US20170351353A1 (en) Operation device
KR20110072211A (en) Touch screen apparatus
WO2015121963A1 (en) Game controller
WO2018151039A1 (en) Tactile sensation presenting device
JP6199847B2 (en) Tactile presentation device
JP6282575B2 (en) Tactile presentation device
WO2017061394A1 (en) Tactile sense presentation device
JP6337685B2 (en) Tactile presentation device
JP6875970B2 (en) Drive control device
JP6572144B2 (en) Tactile presentation device
WO2020110737A1 (en) Electronic device
JP2017054284A (en) Haptic feedback device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16857440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16857440

Country of ref document: EP

Kind code of ref document: A1