WO2017065196A1 - Electrode for brain wave measurement - Google Patents

Electrode for brain wave measurement Download PDF

Info

Publication number
WO2017065196A1
WO2017065196A1 PCT/JP2016/080312 JP2016080312W WO2017065196A1 WO 2017065196 A1 WO2017065196 A1 WO 2017065196A1 JP 2016080312 W JP2016080312 W JP 2016080312W WO 2017065196 A1 WO2017065196 A1 WO 2017065196A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
tilting
electroencephalogram measurement
electrode
measurement electrode
Prior art date
Application number
PCT/JP2016/080312
Other languages
French (fr)
Japanese (ja)
Inventor
梓 森本
敬造 奥井
Original Assignee
ニッタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016201053A external-priority patent/JP2017074370A/en
Application filed by ニッタ株式会社 filed Critical ニッタ株式会社
Priority to CN201680058066.3A priority Critical patent/CN108135524A/en
Publication of WO2017065196A1 publication Critical patent/WO2017065196A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/263Bioelectric electrodes therefor characterised by the electrode materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/251Means for maintaining electrode contact with the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]

Definitions

  • the present invention relates to an electroencephalogram measurement electrode.
  • the conventional electroencephalogram measurement electrode a type in which a conductive paste is interposed between the subject's scalp and the electrode is often used.
  • the conductive paste has the effect of fixing the position of the measurement site, but it requires work removal because it requires removal after measurement. .
  • an electrode that can secure a low contact impedance without using a conductive paste.
  • a dry electrode for example, a multi-pin type dry electrode (for example, Non-Patent Document 1) used by attaching to a hair band or a multi-pin type dry electrode (for example, Non-Patent Document 2) used by attaching to a head cap has been proposed. ing.
  • the multi-pin is made of a hard metal.
  • an electroencephalogram measurement electrode for example, Patent Document 1
  • Patent Document 2 an electroencephalogram measurement electrode in which a spherical tip can be expanded, contracted and swiveled
  • Non-Patent Documents 1 and 2 have a problem that the test subject feels uncomfortable and the burden on the scalp is large because the multi-pin is made of a hard metal.
  • the resistance value rises due to the hair becoming an obstacle, so the accurate result cannot be obtained at the hair portion. If the influence of hair can be reduced as much as possible, the accuracy of electroencephalogram measurement can be improved even in the hair portion.
  • the present invention provides an electrode for measuring an electroencephalogram that can contact the scalp without using an electrically conductive paste to sufficiently ensure electrical conduction, reduce the burden on the subject, and measure the electroencephalogram with high accuracy even in the hair portion. For the purpose.
  • An electroencephalogram measurement electrode is an electroencephalogram measurement electrode comprising a base material made of an elastic body and a structure formed on the base material, wherein the base material includes a support portion and the support portion.
  • a tilting part that protrudes from one surface and is elastically deformable, and the structure is formed on a surface of the tilting part, the structure includes a plurality of nanocarbon materials, and the plurality of nanocarbon materials includes And a network structure connected to each other and fixed to the base material.
  • the electroencephalogram measurement electrode includes a base material made of an elastic body, and the surface of the tip of the tilting portion of the base material contacts the scalp of the subject.
  • the tilting part is elastically deformed by pressing the support part and pressing the tilting part against the scalp.
  • the tilting part scrapes the hair by elastically tilting while contacting the scalp on the side. In this manner, the side surface of the tilting portion can contact the scalp while avoiding the hair.
  • a structure having a network structure in which a plurality of nanocarbon materials are connected is formed on the surface of the tilting portion.
  • the electrode for electroencephalogram measurement contacts the scalp without using a conductive paste and ensures sufficient conduction in the hair part with high accuracy. EEG can be measured. Since the elastic body has flexibility and cushioning properties, even when pressure is applied, it does not give the subject discomfort such as pain, and the burden can be reduced.
  • the tilting part is elastically deformed along the scalp and the side surface of the elastically deformed tilting part comes into contact with the scalp, the burden on the subject can be further reduced and the contact area with the scalp increases. Since a sufficient contact area can be ensured, an electroencephalogram can be measured with higher sensitivity.
  • FIG. 3 is an X arrow view of the electroencephalogram measurement electrode shown in FIG. 2.
  • Drawing 4A is a state before pressing
  • Drawing 4B is a figure showing the state after pressing.
  • FIG. 5A is a state before a press
  • FIG. 5B is a figure which shows the state after a press.
  • the electroencephalogram measurement electrode 10 includes a base material 12 made of an elastic body including a support portion 14 and a tilting portion 16 formed to protrude from one surface of the support portion 14.
  • a structure (not shown) is formed on the surface of the tilting portion 16.
  • the structure is formed not on the inside of the tilting portion 16 in the base material 12 but on the surface. Since the structure has conductivity, the surface of the tilting portion 16 is conductive.
  • a conductive path is formed in the base material 12 by the structure.
  • a connection projection 18 for attaching the electroencephalogram measurement electrode 10 to a head cap or the like in use is formed on the other surface of the support portion 14 on the side opposite to the tilting portion 16.
  • the structure is formed at least on the surface of the tilting portion 16 in the base material 12. In the case where structures are also formed on the remaining surface of the base material 12 such as the surface of the support portion 14 and the surface of the connection protrusion 18, this can ensure electrical continuity with the tilting portion 16.
  • the base material 12 is formed of an elastic body having flexibility and cushioning properties, and is formed of, for example, a thermoplastic elastomer. More specifically, examples of the thermoplastic elastomer include urethane-based thermoplastic elastomer (TPU).
  • TPU thermoplastic elastomer
  • the support portion 14 is circular, and the connection protrusion 18 provided on the support portion 14 is also circular.
  • the base material 12 can have any size suitable for electroencephalogram measurement. Referring to the top view of FIG. 2, for example, the total length L0 of the base material 12 is about 15 to 35 mm, and the length L1 from the other surface of the support portion 14 to the tip 17 of the tilting portion 16 is about 10 to 30 mm. Can do.
  • the diameter D0 of the support portion 14 can be about 8 to 20 mm, and the diameter D1 of the connection projection 18 can be about 3 to 10 mm.
  • the tilting part 16 protrudingly formed on one surface of the support part 14 is configured to tilt in a specific direction. Since the tilting portion 16 is provided so as to be inclined in a certain direction, it can be tilted in a specific direction by being pressed. In the case of this embodiment, as shown in FIG. 2, the tilting portion 16 is inclined radially from the middle in the length direction toward the outside of the support portion 14.
  • the tilting part 16 Since the tilting part 16 is formed of an elastic body, it tilts elastically. Before the tilting portion 16 is elastically deformed, only the surface (end surface) of the tip 17 of the tilting portion 16 becomes a scalp contact surface that contacts the scalp. By tilting the tilting portion 16 elastically along the scalp, the side surface of the tilting portion 16 can also contact the scalp.
  • the tilting portion 16 has a cylindrical shape and is integrally formed of the same material as the support portion 14. As shown in FIG. 2, it is preferable that the diameter of the inclined portion 16 is inclined toward the tip 17, and the tip 17 of the tilted portion 16 is rounded. preferable.
  • the number of tilting portions 16 formed to protrude on one surface of the support portion 14 is not particularly limited, but the scalp contact surface can be increased as the number of tilting portions 16 increases.
  • the plurality of tilting portions 16 are preferably provided on the circumference so that they do not interfere with each other when tilted elastically.
  • the length and diameter of the tilting part 16 are not particularly limited. When the tilting part 16 is pressed in contact with the scalp, the length and diameter of the tilting part 16 can be appropriately set so that a scalp contact surface necessary for electroencephalogram measurement can be secured by elastic deformation along the scalp. Good.
  • the angle of inclination in the tilting portion 16 and the degree of decrease in diameter toward the tip 17 can be appropriately set in consideration of the material of the base material 12, the length of the tilting portion 16, and the like.
  • each tilting portion 16 is formed to protrude from one surface of the support portion 14. As described with reference to FIG. 2, since the tilting portions 16 are inclined radially outward from the middle in the length direction, the tip 17 of each tilting portion 16 is a support portion as shown in FIG. 3. It is located outside the outer edge of 14.
  • the structure not shown is made of a nanocarbon material.
  • a carbon nanotube hereinafter referred to as CNT.
  • the plurality of CNTs are connected to each other to form a structure having a network structure, and are fixed to the base material 12.
  • the connection here includes physical connection (simple contact). Since CNTs themselves have high conductivity, high conductivity can be maintained even after becoming a structure having a network structure of a plurality of CNTs.
  • Such a structure having high conductivity is suitable as a conductive path in the electroencephalogram measurement electrode 10.
  • the structure in the present embodiment is formed so as to be exposed on the surface of the base material 12, the conductive path is also formed on the surface instead of the inside of the base material 12.
  • a structure having a CNT network structure can be formed by using van der Waals force of CNT without using an adhesive or the like, and can be fixed to the surface of the tilting portion 16 in the base material 12.
  • the structure having a network structure of CNT is formed by mixing a general adhesive or the like with CNT within a range that does not impair the conductivity of CNT, and is fixed to the surface of tilting portion 16 in base material 12. Also good. In either case, the CNT adheres directly to the surface of the tilting portion 16 in the base material 12.
  • the surface of the CNT fiber itself is not covered with the adhesive. Therefore, a structure having a network structure is formed by connecting CNTs with no inclusions. Since the CNT inherent high conductivity is not impaired at all, in the electroencephalogram measurement electrode 10 in which such a structure is formed on the base material 12, the CNT inherent high conductivity is sufficiently exhibited.
  • CNT is manufactured by a general arc discharge method, a vapor phase growth method, a laser evaporation method, or the like.
  • a CNT produced by a vapor phase growth method using a catalyst containing a metal such as Co and Mg and using a gas containing CO (carbon monoxide) and H 2 as a raw material can be used.
  • CNTs can be used not only in a tube shape but also those whose shape has been changed by heating or the like.
  • the electroencephalogram measurement electrode 10 is composed of the base material 12 having the tilting portion 16 and the structure formed at least on the surface of the tilting portion 16.
  • the base material 12 is made of an elastic body, and the structure is made of a plurality of nanocarbon materials. Since the base material 12 and the structure are both non-metallic, the electroencephalogram measurement electrode 10 of this embodiment does not include a metal member.
  • the electroencephalogram measurement electrode 10 can be manufactured by preparing a dispersion containing CNTs and forming a structure on at least the surface of the tilting portion 16 in the base material 12 using the dispersion.
  • CNTs Prior to preparation of the dispersion, CNTs are pretreated with a mixed acid.
  • a mixed acid for example, a 1: 1 mixed solvent of nitric acid and sulfuric acid can be used.
  • the CNTs After adding CNTs to the mixed solvent, the CNTs are isolated and dispersed by stirring and then irradiating with ultrasonic waves. Thereafter, the CNT is taken out by filtration under reduced pressure, and the CNT surface is neutralized using ammonia water or the like. And after washing
  • the powdered CNTs that have been pretreated as described above are added to a solvent so as to have a concentration of, for example, 0.01 wt%, and ultrasonic waves are applied to disperse the CNTs to obtain a dispersion.
  • a solvent N, N-dimethylformamide (DMF), various alcohols, and the like can be used.
  • Appropriate additives such as a dispersant, a surfactant, and an adhesive may be added to this dispersion.
  • the additive coats the fiber surface of the CNT to obtain stronger adhesion, but may impair the original conductivity of the CNT.
  • the base material 12 made of an elastic body is immersed in the dispersion.
  • an additive such as an adhesive is not contained in the dispersion liquid in which the base material 12 is immersed
  • the CNT is formed on the surface of the tilting portion 16 by van der Waals force acting between the base material 12 and the CNT.
  • a structure having a network structure is formed and further directly attached to the surface of the tilting portion 16.
  • a force such as an adhesive is added in addition to the above van der Waals force. In this case, CNT adheres to the surface of the tilting portion 16 more strongly.
  • CNTs Prior to immersion in the dispersion, when a predetermined region of the surface of the base material 12 is pretreated, CNTs can be preferentially attached to the surface of the tilting portion 16 of the base material 12.
  • the surface of the tilting portion 16 in the base material 12 can be subjected to a surface treatment to promote CNT adhesion.
  • the base material 12 is pulled up from the dispersion and dried, whereby the CNTs are attached and fixed to the surface of the tilting portion 16 in the base material 12. In this way, a structure having a network structure in which CNTs are connected to each other is formed on the surface of the tilting portion 16 in the base material 12. By repeating the steps of dipping and drying, a structure having a desired thickness can be obtained.
  • the CNTs directly adhere to at least the surface of the tilting portion 16 of the base material 12 to form a structure. Therefore, the electroencephalogram measurement electrode 10 having a structure formed on the surface of the tilting portion 16 of the base material 12 can be easily formed.
  • the electroencephalogram measurement electrode 10 of this embodiment can be used as a headset by attaching a plurality of headbands or head caps, for example, so that the tip 17 of the tilting portion 16 contacts the scalp.
  • the plurality of electroencephalogram measurement electrodes 10 included in the headset do not necessarily have a uniform shape and size, and the shape and size can be arbitrarily changed as necessary.
  • the tilting portion 16 protrudes from one surface of the support portion 14.
  • the tilting portion 16 can be elastically deformed, and the surface of the tilting portion 16 becomes a scalp contact surface.
  • the tip 17 of the tilting portion 16 is brought into contact with the scalp 20 as shown in FIG. 4A.
  • the surface (end surface) of the tip 17 of the tilting portion 16 becomes the scalp contact surface 24.
  • the tilt part 16 when a force in the direction of arrow A is applied to the support part 14 of the electroencephalogram measurement electrode 10, the tilt part 16 is pressed by the support part 14 and tilts elastically. Since the tilting portion 16 is inclined outward from the middle in the length direction, the tip 17 spreads in the arrow B direction when pressed. When the tip 17 spreads, the tilting portion 16 is elastically deformed along the scalp and can scrape off unillustrated hair. In the present embodiment, the tilting portion 16 tilts radially outward from the middle of the length, so that the inner portion of the side surface of the tilting portion 16 becomes the scalp contact surface 24. Thereby, it is possible to contact the scalp with a larger area than before the tilting portion 16 is pressed (FIG. 4A).
  • the side surface of the tilting portion 16 in addition to the end surface of the tilting portion 16, the side surface also becomes the scalp contact surface. Since the surface of the tilting portion 16 is formed with a conductive path made of a structure including a plurality of CNTs, the scalp is in contact with the conductive path when the electroencephalogram measurement electrode 10 of this embodiment is used. Thereby, even if it does not use an electrically conductive paste, since conduction
  • the base material 12 including the tilting portion 16 is made of an elastic body and has flexibility and cushioning properties. Since the tilting part 16 is tilted elastically by pressing, even if the tilting part 16 contacts the subject's head and pressure is applied, the subject does not feel uncomfortable.
  • the electroencephalogram measurement electrode 10 of the present embodiment can reduce the burden on the subject.
  • the conventional multi-pin type dry electrode 110 as shown in FIG. 5A is provided with a hard metal multi-pin 116 on the support portion 114.
  • the end surface of the multi-pin 116 is a scalp contact surface 124 that contacts the scalp 20. Since the multi-pin 116 is made of a hard metal, as shown in FIG. 5B, even if a force in the direction of arrow A is applied to the support portion 114 and pressed, it does not elastically deform.
  • the scalp contact surface 124 remains the end surface of the multi-pin 116.
  • the hard metal multi-pin 116 is pressed against the scalp 20, the subject feels pain.
  • the electroencephalogram measurement electrode 10 of the present embodiment includes the base material 12 made of an elastic body having the tilting portion 16, thereby making it possible to avoid the disadvantages of the conventional multi-pin type dry electrode 110.
  • the structure is exposed on the surface of the base material 12 to form a network structure in which a plurality of CNTs are connected to each other.
  • the structure in the electroencephalogram measurement electrode 10 can exhibit conductivity that is a function derived from CNT.
  • the electrode 10 for electroencephalogram measurement it becomes more preferable as the electrode 10 for electroencephalogram measurement.
  • the structure is formed at least on the surface of the tilting portion 16 in the base material 12.
  • the conductive path is exposed and formed on the surface of the base material 12. Compared with the case where a conductive path exists inside the base material 12, the measured electroencephalogram can be transmitted efficiently.
  • the structure is fixed to the base material 12 by directly connecting the CNTs without using an adhesive or the like to form a network.
  • Adhesives are not used to form the structure with CNT and to fix the structure to the base material 12, so that the flexibility and cushioning of the base material 12 are maintained in addition to good conductivity. Can do. Therefore, the electroencephalogram measurement electrode 10 can reduce the burden on the subject by having flexibility and cushioning properties as a whole. Since the structure exists on the surface of the base material 12, the amount of CNT used can be minimized, leading to a reduction in manufacturing cost.
  • the electroencephalogram measurement electrode 10 includes a base material 12 made of an elastic body and a structure made of a nanocarbon material on the surface of the tilting portion 16 of the base material 12. Since no metal member is included, X-ray computed tomography (CT) or nuclear magnetic resonance imaging (MRI) with the electroencephalogram measurement electrode 10 according to this embodiment attached to the head Thus, even if image information is acquired, the occurrence of artifacts can be prevented. Therefore, the electroencephalogram measurement electrode 10 can simultaneously acquire image information obtained by X-ray CT, MRI, or the like and an electroencephalogram by the electroencephalogram electrode.
  • CT computed tomography
  • MRI nuclear magnetic resonance imaging
  • the electroencephalogram measurement electrode 10 can be used for a subject having metal allergy.
  • the electroencephalogram measurement electrode 10 according to the present embodiment can be disposable, and is excellent in terms of hygiene.
  • the base material 12 made of an elastic body can integrally form the support portion 14 and the tilting portion 16. Such an electroencephalogram measurement electrode 10 is excellent in mass productivity and can reduce the manufacturing cost.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
  • the base material 12 is used using arbitrary elastic bodies. Can be formed.
  • the base material 12 may be formed of other thermoplastic elastomer, resin, rubber or the like.
  • thermoplastic elastomers include, for example, olefin-based thermoplastic elastomers (TPO), styrene-based thermoplastic elastomers, ester-based thermoplastic elastomers (TPC), polyamide-based thermoplastic elastomers (TPAE), and polyvinyl chloride-based thermoplastics.
  • TPO olefin-based thermoplastic elastomers
  • STYPE styrene-based thermoplastic elastomers
  • TPC ester-based thermoplastic elastomers
  • TPAE polyamide-based thermoplastic elastomers
  • TPVC polyvinyl chloride-based thermoplastics
  • the resin examples include acrylonitrile styrene (AS) resin, acrylonitrile butadiene (ABS) resin, epoxy resin, tetrafluoroethylene / ethylene copolymer (ETFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), hexafluoro Propylene / ethylene copolymer (EFEP), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), polycaproamide (nylon 6), polyhexa Methylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), polyhexamethylene sebacamide (nylon 610), polyhexamylene dodecamide (nylon 612), poly Decanamide (nylon 12), polyundecanamide (nylon 11), polyhexamethylene terephthalamide
  • Examples of rubber include natural rubber (NR), ethylene / propylene rubber (EPM, EPDM), chloroprene rubber (CR), butyl rubber (IIR), polyurethane rubber (U), silicone rubber (VMQ, FVMQ), and acrylic rubber (ACM). ), Epichlorohydrin rubber (ECO), fluorinated rubber (FKM, FEPM, FFKM), nitrile rubber (NBR), hydrogenated nitrile rubber (H-NBR), chlorinated polyethylene (CPE), chlorosulfonated polyethylene (CSM), Examples thereof include butadiene rubber (BR) and styrene-butadiene rubber (SBR).
  • the support part 14 and the tilting part 16 in the base material 12 may use different materials by multicolor molding, insert molding, or the like, as long as flexibility and cushioning properties are not impaired.
  • the base material 12 is formed by solidifying a foam material having cushioning properties such as urethane foam, a porous material such as wood or cork, a material made into a thread shape based on various fibers, or a material in which fibers are woven or knitted. You may form with a material and a nonwoven material. In short, any material that can project and form the tilting portion 16 on one surface of the support portion 14 and exhibits elasticity and can form a structure on the surface of the tilting portion 16 is suitable for the base material 12 without being limited to the above materials. Can be used.
  • the CNT fibers are easily entangled with the unevenness of the surface.
  • a structure having a network structure of CNTs can be formed on the surface of the tilting portion 16 of the base material 12 without using an adhesive, and a plurality of CNT fibers are entangled with each other. it can.
  • the electroencephalogram measurement electrode 10 having improved conductivity as described above can be obtained.
  • a spherical portion 28 can be provided at the tip of the tilting portion 16A (modified example (1)).
  • the spherical portion 28 at the tip can promote the elastic tilting of the tilting portion 16A in addition to relieving the pain of the subject.
  • the base material 12A of the electroencephalogram measurement electrode 10A has a large surface area at the tip of the tilting portion 16A.
  • a conductive structure is also formed on the surface of the spherical portion 28 at the tip.
  • the electroencephalogram measurement electrode 10A has a conductive structure formed in a wider area as compared with the case where the tip portion does not have the spherical portion 28, so that the scalp contact surface when the tilting portion 16A is tilted elastically. It is advantageous in that the area that can be used as the expansion is expanded.
  • the tilting part may be inclined toward the inside of the support part 14 from the middle in the length direction.
  • the tilting portion 16B may be tilted from the middle in the length direction toward the central axis of the support portion 14 (modified example (2)).
  • the tilting portion 16B is elastically deformed by being pressed by the support portion 14 and tilted inward. In this case, the outer part of the side surface of the tilting part 16B comes into contact with the scalp.
  • the electroencephalogram measurement electrode 10B is the same as the modification (1) except that the outer portion of the side surface of the tilting portion 16B becomes the scalp contact surface, and the same effect as the modification (1) is obtained. Furthermore, the configuration may be such that the spherical portion 28 at the tip of the tilting portion 16B is omitted from the electroencephalogram measurement electrode 10B.
  • the plurality of tilting portions 16 can be elastically tilted without interfering with each other, and can be provided on one surface of the support portion 14 in any arrangement as long as the side surfaces of the respective tilting portions 16 can contact the scalp. You may comprise so that some tilting parts 16 arrange
  • the plurality of tilting portions 16 can be formed on one surface of the support portion 14 so that the tilting directions of the plurality of tilting portions 16 arranged on the circumference are alternately outside and inside.
  • the plurality of tilting portions 16 arranged on the circumference may be tilted from the middle in the length direction so as to tilt toward the tilting portion 16 adjacent in a certain direction (for example, clockwise).
  • the tilting part 16 may be provided on one surface of the support part 14 on the circumference of two concentric circles. Thereby, a scalp contact surface can be increased. Also in this case, the tilting portion 16 on the inner circumference and the tilting portion 16 on the outer circumference are tilted elastically without interfering with each other, and the side surfaces of the respective tilting portions 16 contact the scalp. If possible, it can be set as an arbitrary configuration.
  • the tilting portion 16 on the inner circumference and the tilting portion 16 on the outer circumference can be configured to tilt in the same direction (inner side or outer side).
  • the tilting portion 16 on the inner circumference may be configured to tilt in a different direction from the tilting portion 16 on the outer circumference.
  • the tilting portion 16 on the inner circumference can be configured to tilt toward the inside, and the tilting portion 16 on the outer circumference can be configured to tilt toward the outside.
  • the tilting portion 16 on the inner circumference may be configured to tilt toward the outside, and the tilting portion 16 on the outer circumference may be configured to tilt toward the inside.
  • the support part 14 in the base material 12 does not need to be circular, and may be a polygon such as a quadrangle.
  • a polygon such as a quadrangle.
  • four tilting portions can be provided at the four corners of one surface.
  • the four tilting portions may be configured to tilt in a certain direction (for example, clockwise) toward the adjacent tilting portions.
  • the support part and the tilting part can have any shape. .
  • a metal member such as a metal plate may be included in a part of the electroencephalogram measurement electrode 10 as long as the flexibility and cushioning properties of the base material 12 are not impaired.
  • a metal plate may be disposed on the surface of the support portion 14 while ensuring conduction with the surface of the tilting portion 16 by a conducting wire.
  • a conductive path is formed in the base material 12 by a structure including a plurality of CNTs.
  • the conductive path formed by such a structure is not limited to the surface of the base material 12 and may be formed inside the base material 12. Even in this case, the structure is formed on the surface of the tilting portion 16.
  • the electroencephalogram measurement electrode having a conductive path inside the base material 12 can be produced by molding a conductive elastic body into a predetermined shape.
  • the conductive elastic body can be prepared, for example, by blending CNT as a nanocarbon material with an elastic body serving as a base material.
  • the base material any elastic body as described above can be used. If the blending amount (concentration) of CNT is about 1 to 15 wt% of the elastic body, a conductive path required for the electroencephalogram measurement electrode can be formed without impairing the elasticity of the elastic body.
  • the concentration of CNT is preferably 3 wt% or more of the elastic body, more preferably 7 wt% or more, and most preferably 10 wt% or more.
  • a mixed raw material is prepared by melt-kneading an elastic body and CNT with a twin screw extruder or the like.
  • the conditions for melt kneading can be appropriately selected according to the type of elastic body.
  • the mixed raw material after melt-kneading is made to pass through a pelletizer to produce pellets.
  • the pellets can be made in a general size. For example, the diameter of the pellet is about 2 to 3 mm, and the length is about 2 to 3 mm.
  • the obtained pellets are molded into a predetermined shape by an injection molding machine to obtain an electroencephalogram measurement electrode.
  • the thus produced electroencephalogram measurement electrode can be said to be a base material made of a conductive elastic body.
  • the conditions for injection molding can be appropriately selected according to the type of the elastic body, the size of the target base material, and the like.
  • the electroencephalogram measurement electrode composed of a base material made of a conductive elastic body, a conductive path by the structure is also formed inside. Thereby, the surface of the tilting part can be made into a conductive scalp contact surface. Since the electroencephalogram measurement electrode also has the elasticity inherent in the elastic body, the same effect as described above can be obtained.
  • CNT is used as the nanocarbon material forming the structure, but is not limited to CNT, and graphene can also be used.
  • Graphene is a nanocarbon material having high conductivity like CNT. Except for changing CNT to graphene, a structure is formed by fixing graphene to the surface or inside of the base material 12 by the same method as described above, and a conductive scalp contact surface is provided on the surface of the tilting portion 16. be able to.
  • an electroencephalogram measurement electrode made of a conductive base material is produced, and its electrical characteristics are examined.
  • the conductive base material is a CNT kneaded product, and is obtained by molding a mixed raw material obtained by kneading CNT into an elastic body serving as a base material into a predetermined shape. Therefore, the electroencephalogram measurement electrode of this example has a structure having a network structure in which a plurality of CNTs are connected to each other in addition to the surface of the base material.
  • CNT and base material were melt-kneaded with a twin-screw extruder to produce a CNT kneaded strand having a diameter of 0.3 cm.
  • base material a polyamide-based thermoplastic elastomer (Pebax 2533, manufactured by Arkema Co., Ltd.) was used.
  • the CNT concentration was 1.9 wt%, 3.3 wt%, 3.9 wt%, and 11.6 wt%.
  • the obtained CNT kneaded strand was cut into a length of 10 cm to prepare a sample. Both ends of the sample were sandwiched between four terminal probes, and the electrical resistance Rs was measured using an LCR meter (IM3590, manufactured by Hioki Electric Co., Ltd.). For each sample, using the measured electrical resistance Rs ( ⁇ ), cross-sectional area A (0.15 2 ⁇ cm 2 ), and length L (10 cm), the volume resistance ⁇ ( ⁇ Cm) was calculated.
  • (Rs ⁇ A) / L Formula (1)
  • the average value of the volume resistance ⁇ of three samples was determined, and the result is shown in the graph of FIG.
  • the volume resistance ⁇ of the sample of the CNT kneaded product decreases as the CNT concentration increases. If the volume resistance ⁇ is about 100 ⁇ ⁇ cm or less, it can be suitably used as an electrode for electroencephalogram measurement.
  • the CNT concentration is preferably 7 wt% or more, more preferably 10 wt% or more. It was confirmed.
  • the appropriate CNT concentration range can vary depending on the type of CNT or base material.
  • a CNT kneaded strand was produced by the same method as described above.
  • the concentration of CNT was 12 wt%.
  • the diameter of the CNT kneaded strand was 0.3 cm.
  • the obtained CNT kneaded strand was made into a CNT kneaded resin pellet having a length of about 2 mm by passing through a pelletizer.
  • CNT kneaded resin pellets were injection-molded into a shape having a support portion and a tilting portion as shown in FIGS. In this way, three electroencephalogram measurement electrodes of this example made of a conductive base material were produced.
  • the electroencephalogram measurement electrode of this example has flexibility and cushioning properties by using a nylon resin as a base material.
  • the electroencephalogram measurement electrode according to the present embodiment is a base material 12 in which a tilting portion 16 protrudes from one surface of a support portion 14.
  • the total length L0 of the base material 12 is 23.5 mm
  • the length L1 from the other surface of the support portion 14 to the tip of the tilting portion 16 is 20 mm
  • the diameter D0 of the support portion 14 and the diameter D1 of the connecting projection 18 are 10 mm and It was 5 mm.
  • the impedance of the electroencephalogram measurement electrode of the example was measured. Specifically, both ends of the electroencephalogram measurement electrode were sandwiched between four terminal probes, and the impedance at 10 Hz was measured. The distance between the probes is 20 mm. The average value of the measured values for the three samples was 468 ⁇ .
  • the electroencephalogram measurement electrode preferably has an impedance of about 10 K ⁇ or less, more preferably about 1 K ⁇ or less.
  • the electroencephalogram measurement electrode of the example has an impedance suitable as an electroencephalogram measurement electrode.
  • a molded body using conductive nylon (Comparative Example 1) and a molded body using conductive urethane (Comparative Example 2) were produced, and impedance was measured by the same method.
  • the conductive nylon Pebax 5533 SN 70 (manufactured by Arkema Co., Ltd.), which is a polyamide-based thermoplastic elastomer, was used, and as the conductive urethane, a conductive urethane-based thermoplastic elastomer (manufactured by Tosoh Corp.) was used.
  • three molded bodies having the same size and shape as the electroencephalogram measurement electrodes of Examples were produced by injection molding.
  • the conductive nylon molded body of Comparative Example 1 had an average impedance value of 253 k ⁇
  • the conductive urethane molded body of Comparative Example 2 had an average impedance value of 34 k ⁇ .
  • the electroencephalogram measurement electrode of the embodiment is made of a conductive base material in which CNTs are kneaded with an elastic body as a base material, a structure having a network structure in which a plurality of CNTs are connected to each other has In addition, it is also formed inside. Since the base material in which such a structure is formed not only on the surface but also on the inside has a conductive path throughout, the conductivity is excellent.
  • the scalp is in contact with the conductive path. Since the electroencephalogram measurement electrode of the embodiment ensures electrical continuity between the electroencephalogram measurement electrode and the subject without using a conductive paste, the contact impedance can be lowered to a very low level. As a result, the electroencephalogram measurement electrode of the embodiment can accurately detect a weak electric signal from the head.
  • Electrode parts for measurement were produced using the electroencephalogram measurement electrodes of the example, and electrode contact resistance was measured for the forehead and the hair.
  • a wireless bioelectric signal measuring device Polymate Mini
  • Miyuki Giken an active electrode (dish electrode) were used.
  • the active electrode 26 to which the conducting wire 32 is connected is attached to the connection projection 18 of the electroencephalogram measurement electrode 10 using a clip 28, thereby producing a measurement electrode component 30.
  • the tip 17 and the side surface of the tilting part 16 protruding from the support part 14 were brought into contact with the forehead part or the hair part, and the electrode contact resistance was measured.
  • the forehead was measured by applying a polishing gel before measurement to lower the contact resistance. As a result, the electrode contact resistance at the forehead portion was 20 k ⁇ , and the electrode contact resistance at the hair portion was 100 to 200 k ⁇ .
  • the electrode contact resistance was measured for the forehead portion and the hair portion in the same manner using only the active electrode 26 (Comparative Example 3).
  • the forehead part 20 k ⁇
  • the same result as in the example was obtained.
  • the hair portion was a large value of 300 k ⁇ or more. Since the comparative example 3 is only the active electrode 26, hair cannot be avoided. It has been found that the active electrode 26 has a problem that the hair becomes an obstacle and the electrode contact resistance becomes high, and the electroencephalogram cannot be accurately measured for the hair portion.
  • Comparative Example 4 an electrode part in which the same conductive nylon molded body as that in Comparative Example 1 described above is combined with an active electrode, and a molded body in which the same conductive urethane molded body as in the above Comparative Example 2 is combined with an active electrode ( Comparative Example 5) was prepared.
  • Comparative Example 5 When the electrode contact resistance of Comparative Examples 4 and 5 was measured for the forehead portion and the hair portion in the same manner as described above, the electrode contact resistances of the forehead portion and the hair portion were almost the same as those of Comparative Example 3 with only the active electrode. there were.
  • the impedance of the conductive nylon molded body and the conductive urethane molded body is significantly larger than that of the electroencephalogram measurement electrode of the example made of the CNT kneaded product (Comparative Examples 1 and 2).
  • Neither the conductive nylon molded body nor the conductive urethane molded body can ensure sufficient electrical conductivity, so it is extremely difficult to accurately measure the brain waves when combined with the active electrode, as with the active electrode alone. It is.
  • the electroencephalogram measurement electrode of the example since CNTs are kneaded with an elastic body as a base material, sufficient conductivity can be ensured not only on the surface but also inside.
  • the electrode component using the electroencephalogram measurement electrode of such an example can obtain a lower resistance value than that in the past even in the hair portion, and can measure the electroencephalogram with higher accuracy.
  • the electroencephalogram measurement electrode of the example since the electroencephalogram measurement electrode of the example has flexibility and cushioning properties, an effect of reducing the burden on the subject can be obtained.
  • Electroencephalogram measurement electrode 12 Base material 14
  • Support part 16 Tilt part

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

An electrode (10) for brain wave measurement is provided with a base member (12), which comprises an elastic body, and a structure formed on the base member (12). The electrode (10) for brain wave measurement is characterized in that the base member (12) comprises a support part (14) and an elastically-deformable tilting part (16) formed so as to project from one surface of the support part (14). The electrode (10) for brain wave measurement is further characterized in that the structure is formed on a surface of the tilting part (16) and contains multiple nanocarbon members that form an interconnected network structure and are fixed to the base member (12).

Description

脳波測定用電極Electroencephalogram measurement electrode
 本発明は、脳波測定用電極に関するものである。 The present invention relates to an electroencephalogram measurement electrode.
 従来の脳波測定用電極としては、被験者の頭皮と電極との間に導電性ペーストを介在させるタイプのものが多く用いられている。導電性ペーストは、頭皮と電極との間の接触インピーダンスを低減するのに加えて、測定部位の位置を固定するという作用を有するものの、測定後の除去が必要になるので作業の煩雑さが伴う。 As the conventional electroencephalogram measurement electrode, a type in which a conductive paste is interposed between the subject's scalp and the electrode is often used. In addition to reducing the contact impedance between the scalp and the electrode, the conductive paste has the effect of fixing the position of the measurement site, but it requires work removal because it requires removal after measurement. .
 そこで、近年、導電性ペーストを使用せずに低い接触インピーダンスを確保できる電極(ドライ電極)が開発されている。ドライ電極としては、例えば、ヘアバンドに取り付けて使用するマルチピン型ドライ電極(例えば、非特許文献1)や、ヘッドキャップに取り付けて使用するマルチピン型ドライ電極(例えば、非特許文献2)が提案されている。これらのドライ電極においては、マルチピンは硬質な金属により構成されている。 Therefore, in recent years, an electrode (dry electrode) that can secure a low contact impedance without using a conductive paste has been developed. As the dry electrode, for example, a multi-pin type dry electrode (for example, Non-Patent Document 1) used by attaching to a hair band or a multi-pin type dry electrode (for example, Non-Patent Document 2) used by attaching to a head cap has been proposed. ing. In these dry electrodes, the multi-pin is made of a hard metal.
 また、被験者の負担を軽減するために、ゴムからなる突出部の先端に金属からなる接触部を設けた脳波測定用電極(例えば、特許文献1)や、金属ばねを用いることによって、金属製の球状先端部を伸縮、揺動、旋回可能とした脳波測定用電極が提案されている(例えば、特許文献2)。 In addition, in order to reduce the burden on the subject, an electroencephalogram measurement electrode (for example, Patent Document 1) provided with a metal contact portion at the tip of a protruding portion made of rubber, or a metal spring is used. There has been proposed an electroencephalogram measurement electrode in which a spherical tip can be expanded, contracted and swiveled (for example, Patent Document 2).
特開2013-111361号公報JP 2013-111361 A 特開2013-240485号公報JP 2013-240485 A
 しかしながら、上記非特許文献1,2の電極は、マルチピンが硬質な金属で構成されていることから、被験者が不快に感じ頭皮への負担が大きいという問題がある。 However, the electrodes of Non-Patent Documents 1 and 2 have a problem that the test subject feels uncomfortable and the burden on the scalp is large because the multi-pin is made of a hard metal.
 特許文献1の電極では、ゴムからなる突出部に所望の導電性を付与するために、多量の導電性材料が配合されるので、ゴム本来の柔軟性やクッション性が低下して硬質となる。硬質な突出部は、頭皮に接触させた際に被験者の痛みに繋がり、しかも、頭皮との密着性が悪く、脳波を正確に測定することが困難になる。また、高価な導電性材料が用いられる場合には、製造コストを抑えることができない。 In the electrode of Patent Document 1, since a large amount of conductive material is blended in order to impart desired conductivity to the protruding portion made of rubber, the inherent flexibility and cushioning properties of the rubber are lowered and become hard. The hard protrusion leads to the pain of the subject when it is brought into contact with the scalp, and the adhesion with the scalp is poor, making it difficult to accurately measure the electroencephalogram. Further, when an expensive conductive material is used, the manufacturing cost cannot be suppressed.
 特許文献2の電極においては、構造の複雑さ故に接触点で導通不良が発生して、脳波測定が良好に行われないことも起こり得る。また、構造が複雑であることから製造コストが高く、量産には不向きである。 In the electrode of Patent Document 2, it is possible that the electroencephalogram measurement may not be performed satisfactorily due to the complexity of the structure due to poor conduction at the contact point. In addition, since the structure is complicated, the manufacturing cost is high and it is not suitable for mass production.
 脳波測定においては、頭髪が障害となって抵抗値が上昇することから、頭髪部では正確な結果を得ることができない。頭髪の影響を極力低減することができれば、頭髪部においても脳波測定の精度を高めることができる。 In the electroencephalogram measurement, the resistance value rises due to the hair becoming an obstacle, so the accurate result cannot be obtained at the hair portion. If the influence of hair can be reduced as much as possible, the accuracy of electroencephalogram measurement can be improved even in the hair portion.
 そこで本発明は、導電性ペーストを用いずに頭皮と接触して導通を十分に確保できるとともに、被験者の負担を軽減し、頭髪部においても高い精度で脳波を測定できる脳波測定用電極を提供することを目的とする。 Accordingly, the present invention provides an electrode for measuring an electroencephalogram that can contact the scalp without using an electrically conductive paste to sufficiently ensure electrical conduction, reduce the burden on the subject, and measure the electroencephalogram with high accuracy even in the hair portion. For the purpose.
 本発明に係る脳波測定用電極は、弾性体からなる母材と、前記母材に形成された構造体とを備える脳波測定用電極であって、前記母材は、支持部と、前記支持部の一表面に突出形成され弾性変形可能な傾動部とを含み、前記傾動部の表面に前記構造体が形成され、前記構造体は、複数のナノ炭素材料を含み、前記複数のナノ炭素材料が、互いに接続されたネットワーク構造を形成しているとともに前記母材に固定されていることを特徴とする。 An electroencephalogram measurement electrode according to the present invention is an electroencephalogram measurement electrode comprising a base material made of an elastic body and a structure formed on the base material, wherein the base material includes a support portion and the support portion. A tilting part that protrudes from one surface and is elastically deformable, and the structure is formed on a surface of the tilting part, the structure includes a plurality of nanocarbon materials, and the plurality of nanocarbon materials includes And a network structure connected to each other and fixed to the base material.
 本発明によれば、脳波測定用電極は、弾性体からなる母材を含み、この母材における傾動部の先端の表面が被験者の頭皮に接触する。支持部を押圧して傾動部を頭皮に押し付けることによって、傾動部は弾性変形する。傾動部は、側面で頭皮と接触しつつ弾性的に傾動することで頭髪を掻き分ける。このように、傾動部の側面は頭髪を避けて頭皮に接触することができる。 According to the present invention, the electroencephalogram measurement electrode includes a base material made of an elastic body, and the surface of the tip of the tilting portion of the base material contacts the scalp of the subject. The tilting part is elastically deformed by pressing the support part and pressing the tilting part against the scalp. The tilting part scrapes the hair by elastically tilting while contacting the scalp on the side. In this manner, the side surface of the tilting portion can contact the scalp while avoiding the hair.
 母材においては、複数のナノ炭素材料が接続されたネットワーク構造を有する構造体が、傾動部の表面に形成されている。構造体が形成された傾動部の表面が頭皮に接触することによって、脳波測定用電極は、導電性ペーストを用いずに頭皮と接触して頭髪部においても導通を十分に確保し、高い精度で脳波を測定することができる。弾性体は、柔軟性、クッション性を有しているので、圧力が加えられた際にも被験者に痛みなどの不快感を与えることはなく、負担を軽減することができる。 In the base material, a structure having a network structure in which a plurality of nanocarbon materials are connected is formed on the surface of the tilting portion. When the surface of the tilted part where the structure is formed contacts the scalp, the electrode for electroencephalogram measurement contacts the scalp without using a conductive paste and ensures sufficient conduction in the hair part with high accuracy. EEG can be measured. Since the elastic body has flexibility and cushioning properties, even when pressure is applied, it does not give the subject discomfort such as pain, and the burden can be reduced.
 しかも、傾動部は頭皮に沿って弾性変形し、弾性変形した傾動部の側面が頭皮に接触することから、被験者の負担をより軽減できるのに加えて頭皮との接触面積が増大する。十分な接触面積を確保することが可能となるので、よりいっそう高い感度で脳波を測定することができる。 Moreover, since the tilting part is elastically deformed along the scalp and the side surface of the elastically deformed tilting part comes into contact with the scalp, the burden on the subject can be further reduced and the contact area with the scalp increases. Since a sufficient contact area can be ensured, an electroencephalogram can be measured with higher sensitivity.
本実施形態に係る脳波測定用電極の構成を示す斜視図である。It is a perspective view which shows the structure of the electrode for electroencephalogram measurement which concerns on this embodiment. 図1に示した脳波測定用電極の上面図である。It is a top view of the electrode for electroencephalogram measurement shown in FIG. 図2に示した脳波測定用電極のX矢視図である。FIG. 3 is an X arrow view of the electroencephalogram measurement electrode shown in FIG. 2. 本実施形態に係る脳波測定用電極の使用時の状態を説明する図であり、図4Aは押圧前の状態、図4Bは押圧後の状態を示す図である。It is a figure explaining the state at the time of use of the electrode for electroencephalogram measurement concerning this embodiment, Drawing 4A is a state before pressing, and Drawing 4B is a figure showing the state after pressing. 従来のマルチピン型ドライ電極の使用時の状態を説明する図であり、図5Aは押圧前の状態、図5Bは押圧後の状態を示す図である。It is a figure explaining the state at the time of use of the conventional multipin type dry electrode, FIG. 5A is a state before a press, FIG. 5B is a figure which shows the state after a press. 変形例(1)の脳波測定用電極の構成を示す斜視図である。It is a perspective view which shows the structure of the electrode for electroencephalogram measurement of a modification (1). 変形例(2)の脳波測定用電極の構成を示す斜視図である。It is a perspective view which shows the structure of the electrode for electroencephalogram measurement of a modification (2). CNT濃度と体積抵抗との関係を示すグラフ図である。It is a graph which shows the relationship between CNT density | concentration and volume resistance. 電極接触抵抗測定用の電極部品の構成を示す概略図である。It is the schematic which shows the structure of the electrode component for electrode contact resistance measurement.
 以下、図面を参照して本発明の実施形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1.全体構成
 図1に示すように、脳波測定用電極10は、支持部14と、この支持部14の一表面に突出形成された傾動部16とを含む弾性体からなる母材12を備える。傾動部16の表面には、図示しない構造体が形成されている。本実施形態においては、構造体は、母材12における傾動部16の内部ではなく、表面に露出して形成されている。構造体は導電性を有しているので、傾動部16の表面は導電性である。構造体によって、母材12に導電パスが形成される。なお、傾動部16とは反対側になる支持部14の他表面には、使用時に脳波測定用電極10をヘッドキャップ等に取り付けるための接続用突起18が形成されている。
1. Overall Configuration As shown in FIG. 1, the electroencephalogram measurement electrode 10 includes a base material 12 made of an elastic body including a support portion 14 and a tilting portion 16 formed to protrude from one surface of the support portion 14. A structure (not shown) is formed on the surface of the tilting portion 16. In the present embodiment, the structure is formed not on the inside of the tilting portion 16 in the base material 12 but on the surface. Since the structure has conductivity, the surface of the tilting portion 16 is conductive. A conductive path is formed in the base material 12 by the structure. A connection projection 18 for attaching the electroencephalogram measurement electrode 10 to a head cap or the like in use is formed on the other surface of the support portion 14 on the side opposite to the tilting portion 16.
 構造体は、少なくとも、母材12における傾動部16の表面に形成されている。支持部14の表面、接続用突起18の表面といった母材12の残りの表面にも構造体が形成されている場合には、これによって傾動部16との導通を確保することができる。 The structure is formed at least on the surface of the tilting portion 16 in the base material 12. In the case where structures are also formed on the remaining surface of the base material 12 such as the surface of the support portion 14 and the surface of the connection protrusion 18, this can ensure electrical continuity with the tilting portion 16.
 本実施形態の場合、母材12は、柔軟性、クッション性を有する弾性体で形成されており、例えば熱可塑性エラストマーで形成される。より具体的には、熱可塑性エラストマーとしては、ウレタン系熱可塑性エラストマー(TPU)等が挙げられる。母材12においては、支持部14は円形であり、支持部14に設けられた接続用突起18も円形である。 In the case of this embodiment, the base material 12 is formed of an elastic body having flexibility and cushioning properties, and is formed of, for example, a thermoplastic elastomer. More specifically, examples of the thermoplastic elastomer include urethane-based thermoplastic elastomer (TPU). In the base material 12, the support portion 14 is circular, and the connection protrusion 18 provided on the support portion 14 is also circular.
 母材12は、脳波測定のために適切な任意の大きさとすることができる。図2の上面図を参照すると、例えば、母材12の全長L0は15~35mm程度、支持部14の他表面から傾動部16の先端17までの長さL1は、10~30mm程度とすることができる。支持部14の直径D0は8~20mm程度、接続用突起18の直径D1は3~10mm程度とすることができる。 The base material 12 can have any size suitable for electroencephalogram measurement. Referring to the top view of FIG. 2, for example, the total length L0 of the base material 12 is about 15 to 35 mm, and the length L1 from the other surface of the support portion 14 to the tip 17 of the tilting portion 16 is about 10 to 30 mm. Can do. The diameter D0 of the support portion 14 can be about 8 to 20 mm, and the diameter D1 of the connection projection 18 can be about 3 to 10 mm.
 支持部14の一表面に突出形成された傾動部16は、特定の方向に傾動するように構成されている。傾動部16は、一定の方向に傾斜して設けられているので、押圧されることにより特定方向に傾動することができる。本実施形態の場合には、図2に示すように、傾動部16は、長さ方向の途中から支持部14の外側に向けて放射状に傾斜している。 The tilting part 16 protrudingly formed on one surface of the support part 14 is configured to tilt in a specific direction. Since the tilting portion 16 is provided so as to be inclined in a certain direction, it can be tilted in a specific direction by being pressed. In the case of this embodiment, as shown in FIG. 2, the tilting portion 16 is inclined radially from the middle in the length direction toward the outside of the support portion 14.
 傾動部16は、弾性体で形成されているので、弾性的に傾動する。傾動部16が弾性変形する前には、傾動部16の先端17の表面(端面)のみが頭皮に接触する頭皮接触面となる。傾動部16は、頭皮に沿って弾性的に傾動することにより、傾動部16の側面も頭皮に接触することができる。本実施形態では、傾動部16は円柱形状であり、支持部14と同じ材料によって一体に形成されている。図2に示すように、傾動部16は、外側に傾斜している部分の直径が先端17に向けて減少していることが好ましく、傾動部16の先端17は、丸みを帯びていることが好ましい。 Since the tilting part 16 is formed of an elastic body, it tilts elastically. Before the tilting portion 16 is elastically deformed, only the surface (end surface) of the tip 17 of the tilting portion 16 becomes a scalp contact surface that contacts the scalp. By tilting the tilting portion 16 elastically along the scalp, the side surface of the tilting portion 16 can also contact the scalp. In the present embodiment, the tilting portion 16 has a cylindrical shape and is integrally formed of the same material as the support portion 14. As shown in FIG. 2, it is preferable that the diameter of the inclined portion 16 is inclined toward the tip 17, and the tip 17 of the tilted portion 16 is rounded. preferable.
 支持部14の一表面に突出形成される傾動部16の本数は、特に限定されないが、傾動部16の本数が多いほど、頭皮接触面を大きくすることができる。複数本の傾動部16は、弾性的に傾動した際に互いに干渉しないように、円周上に設けられていることが好ましい。傾動部16の長さや直径は特に限定されない。傾動部16が頭皮に接触して押圧された際、頭皮に沿って弾性変形することによって脳波測定に必要な頭皮接触面が確保できるように、傾動部16の長さや直径は、適宜設定すればよい。傾動部16における傾斜の角度、先端17に向けた直径の減少の程度などは、母材12の材質や傾動部16の長さ等を考慮して、適宜設定することができる。 The number of tilting portions 16 formed to protrude on one surface of the support portion 14 is not particularly limited, but the scalp contact surface can be increased as the number of tilting portions 16 increases. The plurality of tilting portions 16 are preferably provided on the circumference so that they do not interfere with each other when tilted elastically. The length and diameter of the tilting part 16 are not particularly limited. When the tilting part 16 is pressed in contact with the scalp, the length and diameter of the tilting part 16 can be appropriately set so that a scalp contact surface necessary for electroencephalogram measurement can be secured by elastic deformation along the scalp. Good. The angle of inclination in the tilting portion 16 and the degree of decrease in diameter toward the tip 17 can be appropriately set in consideration of the material of the base material 12, the length of the tilting portion 16, and the like.
 本実施形態においては、4本の傾動部16が支持部14の一表面に突出形成されている。図2を参照して説明したとおり、傾動部16は長さ方向の途中から外側に向けて放射状に傾斜しているので、図3に示すように、それぞれの傾動部16の先端17は支持部14の外縁よりも外側に位置している。 In the present embodiment, four tilting portions 16 are formed to protrude from one surface of the support portion 14. As described with reference to FIG. 2, since the tilting portions 16 are inclined radially outward from the middle in the length direction, the tip 17 of each tilting portion 16 is a support portion as shown in FIG. 3. It is located outside the outer edge of 14.
 本実施形態においては、図示しない構造体はナノ炭素材料からなる。ナノ炭素材料としては、カーボンナノチューブ(以下、CNTという)が用いられる。複数のCNTは、互いに接続されてネットワーク構造を有する構造体を形成して、母材12に固定されている。ここでいう接続とは、物理的な接続(単なる接触)を含む。CNTは、それ自体導電性が高いことから、複数のCNTによるネットワーク構造を有する構造体となった後も、高い導電性を維持することができる。このように高い導電性を有する構造体は、脳波測定用電極10における導電パスとして好適である。上述したとおり、本実施形態における構造体は、母材12の表面に露出して形成されているので、導電パスも、母材12の内部ではなく表面に形成されることになる。 In the present embodiment, the structure not shown is made of a nanocarbon material. As the nanocarbon material, a carbon nanotube (hereinafter referred to as CNT) is used. The plurality of CNTs are connected to each other to form a structure having a network structure, and are fixed to the base material 12. The connection here includes physical connection (simple contact). Since CNTs themselves have high conductivity, high conductivity can be maintained even after becoming a structure having a network structure of a plurality of CNTs. Such a structure having high conductivity is suitable as a conductive path in the electroencephalogram measurement electrode 10. As described above, since the structure in the present embodiment is formed so as to be exposed on the surface of the base material 12, the conductive path is also formed on the surface instead of the inside of the base material 12.
 CNTのネットワーク構造を有する構造体は、接着剤等を使わずにCNTの持つファンデルワールス力を使って形成し、母材12における傾動部16の表面へ固定することができる。あるいは、CNTのネットワーク構造を有する構造体は、一般的な接着剤等を、CNTの導電性を損なわない範囲でCNTに混合して形成し、母材12における傾動部16の表面へ固定してもよい。いずれの場合も、CNTは、母材12における傾動部16の表面へ直接付着することとなる。 A structure having a CNT network structure can be formed by using van der Waals force of CNT without using an adhesive or the like, and can be fixed to the surface of the tilting portion 16 in the base material 12. Alternatively, the structure having a network structure of CNT is formed by mixing a general adhesive or the like with CNT within a range that does not impair the conductivity of CNT, and is fixed to the surface of tilting portion 16 in base material 12. Also good. In either case, the CNT adheres directly to the surface of the tilting portion 16 in the base material 12.
 特に、接着剤等を使わない場合は、CNTの繊維自体の表面が接着剤等で覆われることがない。したがって、ネットワーク構造を有する構造体は、介在物がない状態でCNT同士が接続することによって形成される。CNT本来の高い導電性は何ら損なわれないので、こうした構造体が母材12に形成された脳波測定用電極10においては、CNT本来の高い導電性が十分に発揮される。 Especially, when the adhesive is not used, the surface of the CNT fiber itself is not covered with the adhesive. Therefore, a structure having a network structure is formed by connecting CNTs with no inclusions. Since the CNT inherent high conductivity is not impaired at all, in the electroencephalogram measurement electrode 10 in which such a structure is formed on the base material 12, the CNT inherent high conductivity is sufficiently exhibited.
 CNTは、一般的なアーク放電法、気相成長法、レーザ蒸発法などによって製造される。例えば、Co、Mgなどの金属を含む触媒を用い、CO(一酸化炭素)、Hを含むガスを原料とする気相成長法により製造されたCNTを用いることができる。また、CNTは、チューブ状のものだけでなく、加熱等により、形状が変化したものも用いることができる。 CNT is manufactured by a general arc discharge method, a vapor phase growth method, a laser evaporation method, or the like. For example, a CNT produced by a vapor phase growth method using a catalyst containing a metal such as Co and Mg and using a gas containing CO (carbon monoxide) and H 2 as a raw material can be used. Further, CNTs can be used not only in a tube shape but also those whose shape has been changed by heating or the like.
 上述したとおり、本実施形態においては、脳波測定用電極10は、傾動部16を有する母材12と、少なくとも傾動部16の表面に形成された構造体とから構成されている。母材12は弾性体からなり、構造体は複数のナノ炭素材料からなる。母材12および構造体は、いずれも非金属であるので、本実施形態の脳波測定用電極10に金属部材は含まれていない。 As described above, in this embodiment, the electroencephalogram measurement electrode 10 is composed of the base material 12 having the tilting portion 16 and the structure formed at least on the surface of the tilting portion 16. The base material 12 is made of an elastic body, and the structure is made of a plurality of nanocarbon materials. Since the base material 12 and the structure are both non-metallic, the electroencephalogram measurement electrode 10 of this embodiment does not include a metal member.
2.製造方法
 次に、脳波測定用電極10の製造方法を説明する。脳波測定用電極10は、CNTを含む分散液を作製し、当該分散液を用いて母材12における、少なくとも傾動部16の表面に構造体を形成することにより製造することができる。
2. Manufacturing Method Next, a manufacturing method of the electroencephalogram measurement electrode 10 will be described. The electroencephalogram measurement electrode 10 can be manufactured by preparing a dispersion containing CNTs and forming a structure on at least the surface of the tilting portion 16 in the base material 12 using the dispersion.
 分散液の作製に先立ち、混酸を用いてCNTに対し前処理を行う。混酸は、例えば、硝酸と硫酸との1:1混合溶媒を用いることができる。混合溶媒にCNTを加えた後、攪拌し、次いで、超音波を照射することにより、CNTを単離分散させる。その後、減圧濾過してCNTを取り出し、アンモニア水等を用いてCNT表面を中和する。そして純水で表面を洗浄した後、乾燥させて粉状のCNTを得る。 Prior to preparation of the dispersion, CNTs are pretreated with a mixed acid. As the mixed acid, for example, a 1: 1 mixed solvent of nitric acid and sulfuric acid can be used. After adding CNTs to the mixed solvent, the CNTs are isolated and dispersed by stirring and then irradiating with ultrasonic waves. Thereafter, the CNT is taken out by filtration under reduced pressure, and the CNT surface is neutralized using ammonia water or the like. And after washing | cleaning the surface with a pure water, it is made to dry and powdery CNT is obtained.
 上記のようにして前処理が終わった粉状のCNTを、例えば0.01wt%の濃度となるように溶媒に加え、超音波を照射してCNTを分散させ、分散液を得る。溶媒としては、N,N-ジメチルホルムアミド(DMF)や各種のアルコール等を用いることができる。この分散液に、分散剤、界面活性剤、接着剤などの適当な添加剤等を添加して使用してもよい。このような添加剤を分散液に加えると、これらの添加剤がCNTの繊維表面をコーティングして、より強固な接着が得られる一方で、CNT本来の導電性を阻害するおそれがある。より高い導電性を確保するためには、上記のような添加剤を加えない分散液でCNTのネットワーク構造を有する構造体を形成し、母材12へ固定させた方が好ましいといえる。 The powdered CNTs that have been pretreated as described above are added to a solvent so as to have a concentration of, for example, 0.01 wt%, and ultrasonic waves are applied to disperse the CNTs to obtain a dispersion. As the solvent, N, N-dimethylformamide (DMF), various alcohols, and the like can be used. Appropriate additives such as a dispersant, a surfactant, and an adhesive may be added to this dispersion. When such an additive is added to the dispersion, the additive coats the fiber surface of the CNT to obtain stronger adhesion, but may impair the original conductivity of the CNT. In order to ensure higher conductivity, it can be said that it is preferable to form a structure having a CNT network structure with a dispersion without adding the above additives and fix the structure to the base material 12.
 次いで、弾性体からなる母材12を上記分散液に浸漬する。母材12を浸漬する分散液に接着剤等の添加剤が含有されていない場合には、CNTは、母材12との間に作用するファンデルワールス力により、傾動部16の表面にCNTのネットワーク構造を有する構造体を形成し、さらに傾動部16の表面に直接付着する。母材12が浸漬される分散液に接着剤等の添加剤が含有されている場合は、上記のファンデルワールス力に加えて、接着剤等の力も加味される。この場合には、CNTは、より強力に傾動部16の表面へ付着することになる。 Next, the base material 12 made of an elastic body is immersed in the dispersion. When an additive such as an adhesive is not contained in the dispersion liquid in which the base material 12 is immersed, the CNT is formed on the surface of the tilting portion 16 by van der Waals force acting between the base material 12 and the CNT. A structure having a network structure is formed and further directly attached to the surface of the tilting portion 16. When an additive such as an adhesive is contained in the dispersion liquid in which the base material 12 is immersed, a force such as an adhesive is added in addition to the above van der Waals force. In this case, CNT adheres to the surface of the tilting portion 16 more strongly.
 分散液への浸漬に先立って、母材12の表面の所定の領域に前処理を施した場合には、母材12における傾動部16の表面に優先的に、CNTを付着させることができる。例えば、母材12における傾動部16の表面に表面処理を施して、CNTの付着を促進させることができる。 Prior to immersion in the dispersion, when a predetermined region of the surface of the base material 12 is pretreated, CNTs can be preferentially attached to the surface of the tilting portion 16 of the base material 12. For example, the surface of the tilting portion 16 in the base material 12 can be subjected to a surface treatment to promote CNT adhesion.
 CNTを表面に付着させた後、母材12を分散液から引き上げて、乾燥させることにより、母材12における傾動部16の表面にCNTが付着、固定される。このようにして、CNTが互いに接続されたネットワーク構造を有する構造体が、母材12における傾動部16の表面に形成される。浸漬および乾燥の工程を繰り返すことによって、所望の厚さの構造体を得ることができる。 After the CNTs are attached to the surface, the base material 12 is pulled up from the dispersion and dried, whereby the CNTs are attached and fixed to the surface of the tilting portion 16 in the base material 12. In this way, a structure having a network structure in which CNTs are connected to each other is formed on the surface of the tilting portion 16 in the base material 12. By repeating the steps of dipping and drying, a structure having a desired thickness can be obtained.
 上記のように母材12を分散液に浸漬すると、CNTは、母材12における少なくとも傾動部16の表面に直接付着して、構造体を形成する。したがって、母材12における傾動部16の表面に構造体が形成された脳波測定用電極10を、容易に形成することができる。 When the base material 12 is immersed in the dispersion as described above, the CNTs directly adhere to at least the surface of the tilting portion 16 of the base material 12 to form a structure. Therefore, the electroencephalogram measurement electrode 10 having a structure formed on the surface of the tilting portion 16 of the base material 12 can be easily formed.
 本実施形態の脳波測定用電極10は、傾動部16の先端17が頭皮に接触するように、例えばヘッドバンドまたはヘッドキャップに複数個を取り付けて、ヘッドセットとして用いることができる。ヘッドセットに含まれる複数の脳波測定用電極10は、必ずしも全てが均一な形状、大きさである必要はなく、必要に応じて形状や大きさを任意に変更することも可能である。 The electroencephalogram measurement electrode 10 of this embodiment can be used as a headset by attaching a plurality of headbands or head caps, for example, so that the tip 17 of the tilting portion 16 contacts the scalp. The plurality of electroencephalogram measurement electrodes 10 included in the headset do not necessarily have a uniform shape and size, and the shape and size can be arbitrarily changed as necessary.
3.作用および効果
 上記のように構成された脳波測定用電極10は、支持部14の一表面に傾動部16が突出形成されている。傾動部16は弾性変形可能であり、この傾動部16の表面が頭皮接触面となる。脳波測定用電極10を使用する際には、図4Aに示すように、傾動部16の先端17を頭皮20に接触させる。傾動部16が支持部14に押圧されていない場合には、傾動部16の先端17の表面(端面)が頭皮接触面24となる。
3. Action and Effect In the electroencephalogram measurement electrode 10 configured as described above, the tilting portion 16 protrudes from one surface of the support portion 14. The tilting portion 16 can be elastically deformed, and the surface of the tilting portion 16 becomes a scalp contact surface. When the electroencephalogram measurement electrode 10 is used, the tip 17 of the tilting portion 16 is brought into contact with the scalp 20 as shown in FIG. 4A. When the tilting portion 16 is not pressed against the support portion 14, the surface (end surface) of the tip 17 of the tilting portion 16 becomes the scalp contact surface 24.
 図4Bに示すように、脳波測定用電極10の支持部14に矢印A方向の力を加えると、傾動部16は支持部14に押圧されて弾性的に傾動する。傾動部16は、長さ方向の途中から外側に向けて傾斜しているので、押圧されると先端17が矢印B方向に広がる。先端17が広がることによって、傾動部16は頭皮に沿って弾性変形して、図示しない頭髪を掻き分けることができる。本実施形態においては、傾動部16は、長さの途中から外側に向けて放射状に傾動することで、傾動部16の側面の内側の部分が頭皮接触面24となる。これによって、傾動部16が押圧される前(図4A)よりも広い面積で頭皮に接触することができる。 As shown in FIG. 4B, when a force in the direction of arrow A is applied to the support part 14 of the electroencephalogram measurement electrode 10, the tilt part 16 is pressed by the support part 14 and tilts elastically. Since the tilting portion 16 is inclined outward from the middle in the length direction, the tip 17 spreads in the arrow B direction when pressed. When the tip 17 spreads, the tilting portion 16 is elastically deformed along the scalp and can scrape off unillustrated hair. In the present embodiment, the tilting portion 16 tilts radially outward from the middle of the length, so that the inner portion of the side surface of the tilting portion 16 becomes the scalp contact surface 24. Thereby, it is possible to contact the scalp with a larger area than before the tilting portion 16 is pressed (FIG. 4A).
 このように本実施形態の脳波測定用電極10は、傾動部16の端面に加えて側面も頭皮接触面となる。傾動部16の表面は、複数のCNTを含む構造体からなる導電パスが形成されていることから、本実施形態の脳波測定用電極10を使用する際、頭皮は導電パスに接することとなる。これによって、導電性ペーストを用いなくても、脳波測定用電極10と被験者の頭部との間の導通が確保されるので、接触インピーダンスを極めて低いレベルまで下げることが可能となる。その結果、脳波測定用電極10は頭部からの微弱な電気信号を正確に検出することができる。 Thus, in the electroencephalogram measurement electrode 10 of the present embodiment, in addition to the end surface of the tilting portion 16, the side surface also becomes the scalp contact surface. Since the surface of the tilting portion 16 is formed with a conductive path made of a structure including a plurality of CNTs, the scalp is in contact with the conductive path when the electroencephalogram measurement electrode 10 of this embodiment is used. Thereby, even if it does not use an electrically conductive paste, since conduction | electrical_connection between the electrode 10 for electroencephalogram measurement and a test subject's head is ensured, it becomes possible to reduce a contact impedance to a very low level. As a result, the electroencephalogram measurement electrode 10 can accurately detect a weak electric signal from the head.
 しかも、傾動部16を含む母材12は弾性体からなり、柔軟性、クッション性を有している。傾動部16は、押圧により弾性的に傾動するので、傾動部16が被験者の頭部に接触して圧力が加えられても、被験者が不快に感じることはない。本実施形態の脳波測定用電極10は、被験者の負担を軽減することができる。 In addition, the base material 12 including the tilting portion 16 is made of an elastic body and has flexibility and cushioning properties. Since the tilting part 16 is tilted elastically by pressing, even if the tilting part 16 contacts the subject's head and pressure is applied, the subject does not feel uncomfortable. The electroencephalogram measurement electrode 10 of the present embodiment can reduce the burden on the subject.
 これに対して、図5Aに示すような従来のマルチピン型ドライ電極110は、支持部114に硬質な金属製のマルチピン116が設けられている。マルチピン型ドライ電極110においては、マルチピン116の端面が、頭皮20に接触する頭皮接触面124となる。マルチピン116は硬質な金属製であるので、図5Bに示すように、支持部114に矢印A方向の力を加えて押圧しても弾性変形することはない。マルチピン型ドライ電極110は、押圧されたところで、頭皮接触面124はマルチピン116の端面のままである。しかも、硬質な金属製のマルチピン116が頭皮20に押し付けられることによって、被験者は痛みを感じてしまう。 On the other hand, the conventional multi-pin type dry electrode 110 as shown in FIG. 5A is provided with a hard metal multi-pin 116 on the support portion 114. In the multi-pin type dry electrode 110, the end surface of the multi-pin 116 is a scalp contact surface 124 that contacts the scalp 20. Since the multi-pin 116 is made of a hard metal, as shown in FIG. 5B, even if a force in the direction of arrow A is applied to the support portion 114 and pressed, it does not elastically deform. When the multi-pin dry electrode 110 is pressed, the scalp contact surface 124 remains the end surface of the multi-pin 116. Moreover, when the hard metal multi-pin 116 is pressed against the scalp 20, the subject feels pain.
 本実施形態の脳波測定用電極10は、傾動部16を有する弾性体からなる母材12を備えたことにより、従来のマルチピン型ドライ電極110の不都合を回避することが可能となった。 The electroencephalogram measurement electrode 10 of the present embodiment includes the base material 12 made of an elastic body having the tilting portion 16, thereby making it possible to avoid the disadvantages of the conventional multi-pin type dry electrode 110.
 さらに、構造体は、母材12の表面に露出して、複数のCNTが互いに接続されたネットワーク構造を形成している。これによって、脳波測定用電極10における構造体は、CNT由来の機能である導電性を発揮することができる。複数のCNTが、接着剤等が介在しない状態で、互いに直接接続されて、ネットワーク構造を有する構造体を形成している場合は、CNT本来の導電性が損なわれることがない。このため、脳波測定用電極10としては、より好ましいものとなる。 Furthermore, the structure is exposed on the surface of the base material 12 to form a network structure in which a plurality of CNTs are connected to each other. Thereby, the structure in the electroencephalogram measurement electrode 10 can exhibit conductivity that is a function derived from CNT. When a plurality of CNTs are directly connected to each other without an adhesive or the like to form a structure having a network structure, the original conductivity of the CNTs is not impaired. For this reason, it becomes more preferable as the electrode 10 for electroencephalogram measurement.
 構造体は、母材12における少なくとも傾動部16の表面に形成される。このように構造体が形成されることによって、導電パスは母材12の表面に露出して形成されることとなる。母材12の内部に導電パスが存在する場合と比較して、測定された脳波を効率的に伝達することができる。 The structure is formed at least on the surface of the tilting portion 16 in the base material 12. By forming the structure in this way, the conductive path is exposed and formed on the surface of the base material 12. Compared with the case where a conductive path exists inside the base material 12, the measured electroencephalogram can be transmitted efficiently.
 構造体は、接着剤等を用いずに、CNT同士を直接接続してネットワークを形成し、母材12に固定されている。CNTによる構造体の形成、および母材12への構造体の固定には、接着剤等が用いられていないので、導電性の良さに加えて母材12の柔軟性、クッション性を保持することができる。したがって脳波測定用電極10は、全体として柔軟性、クッション性を有することにより、被験者の負担を軽減することができる。構造体が母材12の表面に存在しているので、CNTの使用量は最小限とすることができ、製造コストの削減にも繋がる。 The structure is fixed to the base material 12 by directly connecting the CNTs without using an adhesive or the like to form a network. Adhesives are not used to form the structure with CNT and to fix the structure to the base material 12, so that the flexibility and cushioning of the base material 12 are maintained in addition to good conductivity. Can do. Therefore, the electroencephalogram measurement electrode 10 can reduce the burden on the subject by having flexibility and cushioning properties as a whole. Since the structure exists on the surface of the base material 12, the amount of CNT used can be minimized, leading to a reduction in manufacturing cost.
 なお、本実施形態に係る脳波測定用電極10は、弾性体からなる母材12と、母材12における傾動部16の表面のナノ炭素材料からなる構造体とから構成されている。金属部材が含まれていないため、本実施形態に係る脳波測定用電極10を頭部に装着したままX線コンピュータ断層撮影(CT:Computed Tomography)や核磁気共鳴画像法(MRI:Magnetic Resonance Imaging)により画像情報を取得しても、アーチファクトの発生を防止することができる。したがって、脳波測定用電極10は、X線CTやMRI等による画像情報と、脳波電極による脳波を同時に取得することが可能となる。 The electroencephalogram measurement electrode 10 according to the present embodiment includes a base material 12 made of an elastic body and a structure made of a nanocarbon material on the surface of the tilting portion 16 of the base material 12. Since no metal member is included, X-ray computed tomography (CT) or nuclear magnetic resonance imaging (MRI) with the electroencephalogram measurement electrode 10 according to this embodiment attached to the head Thus, even if image information is acquired, the occurrence of artifacts can be prevented. Therefore, the electroencephalogram measurement electrode 10 can simultaneously acquire image information obtained by X-ray CT, MRI, or the like and an electroencephalogram by the electroencephalogram electrode.
 また、金属部材が含まれていないことから、脳波測定用電極10は、金属アレルギーをもつ被験者に使用することもできる。本実施形態に係る脳波測定用電極10は、使い捨ても可能であり、衛生面でも優れている。弾性体からなる母材12は、支持部14と傾動部16とを一体成形することができる。こうした脳波測定用電極10は、量産性に優れ、製造コストを削減することも可能となる。 In addition, since the metal member is not included, the electroencephalogram measurement electrode 10 can be used for a subject having metal allergy. The electroencephalogram measurement electrode 10 according to the present embodiment can be disposable, and is excellent in terms of hygiene. The base material 12 made of an elastic body can integrally form the support portion 14 and the tilting portion 16. Such an electroencephalogram measurement electrode 10 is excellent in mass productivity and can reduce the manufacturing cost.
4.変形例
 本発明は上記実施形態に限定されるものではなく、本発明の趣旨の範囲内で適宜変更することが可能である。
4). The present invention is not limited to the above-described embodiment, and can be appropriately changed within the scope of the gist of the present invention.
 上記実施形態では、母材12を熱可塑性エラストマーとしてのウレタン系熱可塑性エラストマー(TPU)で形成する場合について説明したが、本発明はこれに限らず、任意の弾性体を用いて母材12を形成することができる。例えば、他の熱可塑性エラストマー、樹脂、ゴム等で母材12を形成することとしてもよい。 In the said embodiment, although the case where the base material 12 was formed with the urethane type thermoplastic elastomer (TPU) as a thermoplastic elastomer was demonstrated, this invention is not limited to this, The base material 12 is used using arbitrary elastic bodies. Can be formed. For example, the base material 12 may be formed of other thermoplastic elastomer, resin, rubber or the like.
 他の熱可塑性エラストマーとしては、例えば、オレフィン系熱可塑性エラストマー(TPO)、スチレン系熱可塑性エラストマー、エステル系熱可塑性エラストマー(TPC)、ポリアミド系熱可塑性エラストマー(TPAE)、およびポリ塩化ビニル系熱可塑性エラストマー(TPVC)等が挙げられる。 Other thermoplastic elastomers include, for example, olefin-based thermoplastic elastomers (TPO), styrene-based thermoplastic elastomers, ester-based thermoplastic elastomers (TPC), polyamide-based thermoplastic elastomers (TPAE), and polyvinyl chloride-based thermoplastics. An elastomer (TPVC) etc. are mentioned.
 樹脂としては、例えばアクリロニトリルスチレン(AS)樹脂、アクリロニトリルブタジエン(ABS)樹脂、エポキシ樹脂、テトラフルオロエチレン・エチレン共重合体(ETFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、ヘキサフルオロプロピレン・エチレン共重合体(EFEP)、ポリビニリデンフルオロライド(PVDF)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン・エチレン共重合体(ECTFE)、ポリカプロアミド(ナイロン6)、ポリヘキサメチレンアジパミド(ナイロン66)、ポリテトラメチレンアジパミド(ナイロン46)、ポリヘキサメリレンセバカミド(ナイロン610)、ポリヘキサメリレンドデカミド(ナイロン612)、ポリドデカンアミド(ナイロン12)、ポリウンデカンアミド(ナイロン11)、ポリヘキサメチレンテレフタルアミド(ナイロン6T)、ポリキシリレンアジパミド(ナイロンXD6)、ポリノナメチレンテレフタルアミド(ナイロン9T)、ポリウンデカンメチレンテレフタルアミド(ナイロン11T)、ポリデカメチレンデカンアミド(ナイロン1010)、ポリデカメチレンドデカンアミド(ナイロン1012)アミド系エラストマー(TPA)、ポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)、ポリエチレンナフタレート(PEN)ポリカーボネート(PC)、直鎖状低密度ポリエチレン(LLDPE)、超低密度ポリエチレン、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、架橋ポリエチレン、エチレン・酢酸ビニル共重合体(EVA)、エチレン・ビニルアルコール共重合体(EVOH)、ブテンジオール・ビニルアルコール共重合体(BVOH)、ポリビニルアルコール(PVA)、ポリブテン(PB)、ウレタン系エラストマー(TPU)、エステル系エラストマー(TPC)、オレフィン系エラストマー(TPO)、スチレン系エラストマー(TPS)、変性ポリフェニレンエーテル(変性PPE)、液晶ポリマー(LCP)、シクロオレフィンコポリマ(COC)、ポリエーテルケトン(PEK)、ポリグリコール酸(PGA)、ポリアリレート(PAR)、ポリメチルペンテン(PMP)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルサルホン(PES)、ポリエチレンテレフタレート(PET)、フェノール樹脂(PF)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリイミド(PI)、ポリエーテルイミド(PEI)、アクリル樹脂(PMMA)、ポリアセタール(POM)、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、ポリスチレン(PS)、ポリサルホン(PSU)、ポリテトラフルオロエチレン(PTFE)、およびポリ塩化ビニル(PVC)等が挙げられる。 Examples of the resin include acrylonitrile styrene (AS) resin, acrylonitrile butadiene (ABS) resin, epoxy resin, tetrafluoroethylene / ethylene copolymer (ETFE), tetrafluoroethylene / hexafluoropropylene copolymer (FEP), hexafluoro Propylene / ethylene copolymer (EFEP), polyvinylidene fluoride (PVDF), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene / ethylene copolymer (ECTFE), polycaproamide (nylon 6), polyhexa Methylene adipamide (nylon 66), polytetramethylene adipamide (nylon 46), polyhexamethylene sebacamide (nylon 610), polyhexamylene dodecamide (nylon 612), poly Decanamide (nylon 12), polyundecanamide (nylon 11), polyhexamethylene terephthalamide (nylon 6T), polyxylylene adipamide (nylon XD6), polynonamethylene terephthalamide (nylon 9T), polyundecane methylene terephthalamide (Nylon 11T), polydecane methylene decanamide (nylon 1010), polydecamethylene dodecanamide (nylon 1012) amide elastomer (TPA), polybutylene terephthalate (PBT), polybutylene naphthalate (PBN), polyethylene naphthalate ( PEN) polycarbonate (PC), linear low density polyethylene (LLDPE), very low density polyethylene, low density polyethylene (LDPE), medium density polyethylene (MDPE), Density polyethylene (HDPE), crosslinked polyethylene, ethylene / vinyl acetate copolymer (EVA), ethylene / vinyl alcohol copolymer (EVOH), butenediol / vinyl alcohol copolymer (BVOH), polyvinyl alcohol (PVA), polybutene (PB), urethane elastomer (TPU), ester elastomer (TPC), olefin elastomer (TPO), styrene elastomer (TPS), modified polyphenylene ether (modified PPE), liquid crystal polymer (LCP), cycloolefin copolymer ( COC), polyether ketone (PEK), polyglycolic acid (PGA), polyarylate (PAR), polymethylpentene (PMP), polyether ether ketone (PEEK), polyether sulfone (PES), Reethylene terephthalate (PET), phenol resin (PF), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), polyimide (PI), polyetherimide (PEI), acrylic resin (PMMA), polyacetal (POM), Examples include polypropylene (PP), polyphenylene sulfide (PPS), polystyrene (PS), polysulfone (PSU), polytetrafluoroethylene (PTFE), and polyvinyl chloride (PVC).
 ゴムとしては、例えば天然ゴム(NR)、エチレン・プロピレンゴム(EPM、EPDM)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ポリウレタンゴム(U)、シリコーンゴム(VMQ、FVMQ)、アクリルゴム(ACM)、エピクロルヒドリンゴム(ECO)、フッ素系ゴム(FKM、FEPM,FFKM)、ニトリルゴム(NBR)、水素化ニトリルゴム(H-NBR)、塩素化ポリエチレン(CPE)、クロロスルホン化ポリエチレン(CSM)、ブタジエンゴム(BR)、およびスチレン・ブタジエンゴム(SBR)等が挙げられる。 Examples of rubber include natural rubber (NR), ethylene / propylene rubber (EPM, EPDM), chloroprene rubber (CR), butyl rubber (IIR), polyurethane rubber (U), silicone rubber (VMQ, FVMQ), and acrylic rubber (ACM). ), Epichlorohydrin rubber (ECO), fluorinated rubber (FKM, FEPM, FFKM), nitrile rubber (NBR), hydrogenated nitrile rubber (H-NBR), chlorinated polyethylene (CPE), chlorosulfonated polyethylene (CSM), Examples thereof include butadiene rubber (BR) and styrene-butadiene rubber (SBR).
 母材12における支持部14および傾動部16は、柔軟性、クッション性が損なわれない範囲で、必要に応じて、多色成形やインサート成形などにより、異なる材料を用いてもよい。 The support part 14 and the tilting part 16 in the base material 12 may use different materials by multicolor molding, insert molding, or the like, as long as flexibility and cushioning properties are not impaired.
 さらに母材12は、発泡ウレタンなどのクッション性のある発泡材料や木材、コルクなどの多孔質材料、各種繊維を拠って糸状にした材料や、繊維を織ったり編んだりしたものを固めて形成した材料、不織材料で形成してもよい。要は支持部14の一表面に傾動部16を突出形成できるとともに弾性を示し、傾動部16の表面に構造体を形成できる材料であれば、上記材料に限定することなく、母材12に好適に使用可能である。 Further, the base material 12 is formed by solidifying a foam material having cushioning properties such as urethane foam, a porous material such as wood or cork, a material made into a thread shape based on various fibers, or a material in which fibers are woven or knitted. You may form with a material and a nonwoven material. In short, any material that can project and form the tilting portion 16 on one surface of the support portion 14 and exhibits elasticity and can form a structure on the surface of the tilting portion 16 is suitable for the base material 12 without being limited to the above materials. Can be used.
 特に母材12として繊維材料や多孔質材料、発泡材料などを使った場合は、その表面の凹凸にCNTの繊維が絡みつきやすくなる。この場合、接着剤を使わなくても母材12における傾動部16の表面に、各CNTの繊維が複数絡みあいながらCNTのネットワーク構造を有する構造体を形成でき、同時に母材12へも直接固定できる。これにより、上述したようにより導電性が向上した脳波測定用電極10を得ることができる。 In particular, when a fiber material, a porous material, a foam material, or the like is used as the base material 12, the CNT fibers are easily entangled with the unevenness of the surface. In this case, a structure having a network structure of CNTs can be formed on the surface of the tilting portion 16 of the base material 12 without using an adhesive, and a plurality of CNT fibers are entangled with each other. it can. Thereby, the electroencephalogram measurement electrode 10 having improved conductivity as described above can be obtained.
 母材12の一表面に突出形成された傾動部16についても、種々変更することができる。例えば、図6における脳波測定用電極10Aに示すように、傾動部16Aの先端に球状部28を設けることができる(変形例(1))。先端の球状部28は、被験者の痛みを和らげるのに加えて、傾動部16Aの弾性的な傾動を促進することができる。 Various changes can also be made to the tilting portion 16 formed to protrude from one surface of the base material 12. For example, as shown in the electroencephalogram measurement electrode 10A in FIG. 6, a spherical portion 28 can be provided at the tip of the tilting portion 16A (modified example (1)). The spherical portion 28 at the tip can promote the elastic tilting of the tilting portion 16A in addition to relieving the pain of the subject.
 球状部28を有することによって、脳波測定用電極10Aの母材12Aは、傾動部16Aの先端の表面積が大きくなる。脳波測定用電極10Aにおいては、傾動部16Aの側面に加えて、先端の球状部28の表面にも導電性の構造体が形成される。脳波測定用電極10Aは、先端に球状部28を有しない場合と比較して、より広い領域に導電性の構造体が形成されるので、傾動部16Aが弾性的に傾動した際に頭皮接触面として利用できる領域が拡大する点で有利である。 By providing the spherical portion 28, the base material 12A of the electroencephalogram measurement electrode 10A has a large surface area at the tip of the tilting portion 16A. In the electroencephalogram measurement electrode 10A, in addition to the side surface of the tilting portion 16A, a conductive structure is also formed on the surface of the spherical portion 28 at the tip. The electroencephalogram measurement electrode 10A has a conductive structure formed in a wider area as compared with the case where the tip portion does not have the spherical portion 28, so that the scalp contact surface when the tilting portion 16A is tilted elastically. It is advantageous in that the area that can be used as the expansion is expanded.
 また、傾動部は、長さ方向の途中から、支持部14の内側に向けて傾斜していてもよい。例えば、図7における脳波測定用電極10Bに示すように、傾動部16Bは、長さ方向の途中から、支持部14の中心軸に向けて傾斜していてもよい(変形例(2))。脳波測定用電極10Bが使用される際には、傾動部16Bは、支持部14に押圧されることにより弾性変形して内側に向けて傾動する。この場合には、傾動部16Bの側面の外側の部分が頭皮に接触することになる。脳波測定用電極10Bは、傾動部16Bの側面の外側の部分が頭皮接触面となる以外は変形例(1)と同様であり、変形例(1)と同様の効果が得られる。さらに、脳波測定用電極10Bにおいて傾動部16Bの先端の球状部28を省いた構成としてもよい。 Further, the tilting part may be inclined toward the inside of the support part 14 from the middle in the length direction. For example, as shown in the electroencephalogram measurement electrode 10B in FIG. 7, the tilting portion 16B may be tilted from the middle in the length direction toward the central axis of the support portion 14 (modified example (2)). When the electroencephalogram measurement electrode 10B is used, the tilting portion 16B is elastically deformed by being pressed by the support portion 14 and tilted inward. In this case, the outer part of the side surface of the tilting part 16B comes into contact with the scalp. The electroencephalogram measurement electrode 10B is the same as the modification (1) except that the outer portion of the side surface of the tilting portion 16B becomes the scalp contact surface, and the same effect as the modification (1) is obtained. Furthermore, the configuration may be such that the spherical portion 28 at the tip of the tilting portion 16B is omitted from the electroencephalogram measurement electrode 10B.
 複数の傾動部16は、互いに干渉せずに弾性的に傾動し、それぞれの傾動部16の側面が頭皮に接触することができれば、任意の配置で支持部14の一表面に設けることができる。円周上に配置された複数の傾動部16の一部が、異なる方向に傾動するように構成してもよい。例えば、円周上に配置された複数の傾動部16の傾動の方向が、交互に外側および内側になるように、複数の傾動部16を支持部14の一表面に突出形成することができる。 The plurality of tilting portions 16 can be elastically tilted without interfering with each other, and can be provided on one surface of the support portion 14 in any arrangement as long as the side surfaces of the respective tilting portions 16 can contact the scalp. You may comprise so that some tilting parts 16 arrange | positioned on the circumference may tilt in a different direction. For example, the plurality of tilting portions 16 can be formed on one surface of the support portion 14 so that the tilting directions of the plurality of tilting portions 16 arranged on the circumference are alternately outside and inside.
 円周上に配置された複数の傾動部16は、一定方向(例えば時計回り)に隣接する傾動部16に向けて傾動するように、長さ方向の途中から傾斜させてもよい。 The plurality of tilting portions 16 arranged on the circumference may be tilted from the middle in the length direction so as to tilt toward the tilting portion 16 adjacent in a certain direction (for example, clockwise).
 さらに、傾動部16は、支持部14の一表面に2つの同心円の円周上に設けてもよい。これによって、頭皮接触面を増やすことができる。この場合においても、内側の円周上の傾動部16と外側の円周上の傾動部16とが、互いに干渉せずに弾性的に傾動し、それぞれの傾動部16の側面が頭皮に接触することができれば、任意の構成とすることができる。内側の円周上の傾動部16と、外側の円周上の傾動部16とは、いずれも同じ方向(内側または外側)に傾動するように構成することができる。 Furthermore, the tilting part 16 may be provided on one surface of the support part 14 on the circumference of two concentric circles. Thereby, a scalp contact surface can be increased. Also in this case, the tilting portion 16 on the inner circumference and the tilting portion 16 on the outer circumference are tilted elastically without interfering with each other, and the side surfaces of the respective tilting portions 16 contact the scalp. If possible, it can be set as an arbitrary configuration. The tilting portion 16 on the inner circumference and the tilting portion 16 on the outer circumference can be configured to tilt in the same direction (inner side or outer side).
 あるいは、内側の円周上の傾動部16は、外側の円周上の傾動部16とは、異なる方向に傾動するように構成してもよい。例えば、内側の円周上の傾動部16は、内側に向けて傾動するように構成し、外側の円周上の傾動部16は外側に向けて傾動するように構成することができる。これとは逆に、内側の円周上の傾動部16は外側に向けて傾動するように構成し、外側の円周上の傾動部16は内側に向けて傾動するように構成してもよい。 Alternatively, the tilting portion 16 on the inner circumference may be configured to tilt in a different direction from the tilting portion 16 on the outer circumference. For example, the tilting portion 16 on the inner circumference can be configured to tilt toward the inside, and the tilting portion 16 on the outer circumference can be configured to tilt toward the outside. On the contrary, the tilting portion 16 on the inner circumference may be configured to tilt toward the outside, and the tilting portion 16 on the outer circumference may be configured to tilt toward the inside. .
 母材12における支持部14は、円形である必要はなく、四角形のような多角形としてもよい。例えば四角形の支持部を用いる場合には、4本の傾動部を、一表面の四隅に設けることができる。4本の傾動部は、それぞれ隣接する傾動部に向けて一定方向(例えば時計回り)に傾動するように構成してもよい。傾動部を押圧でき、それによって傾動部が、互いに干渉せずに弾性的に傾動し、傾動部の側面が頭皮に接触できる限り、支持部および傾動部は任意の形状とすることが可能である。 The support part 14 in the base material 12 does not need to be circular, and may be a polygon such as a quadrangle. For example, when a rectangular support portion is used, four tilting portions can be provided at the four corners of one surface. The four tilting portions may be configured to tilt in a certain direction (for example, clockwise) toward the adjacent tilting portions. As long as the tilting part can be pressed and thereby the tilting part can tilt elastically without interfering with each other, and the side surface of the tilting part can contact the scalp, the support part and the tilting part can have any shape. .
 アーチファクトについての配慮が要求されない場合には、母材12の柔軟性、クッション性が損なわれない範囲で、脳波測定用電極10の一部に金属板等の金属部材が含まれていてもよい。例えば、支持部14の表面に構造体が形成されていない場合には、導線によって傾動部16の表面との導通を確保しつつ、この支持部14の表面に金属板を配置してもよい。金属板を設けることによって電気信号が伝達し易くなり、測定の精度をより高めることができる。 When consideration about the artifact is not required, a metal member such as a metal plate may be included in a part of the electroencephalogram measurement electrode 10 as long as the flexibility and cushioning properties of the base material 12 are not impaired. For example, when a structure is not formed on the surface of the support portion 14, a metal plate may be disposed on the surface of the support portion 14 while ensuring conduction with the surface of the tilting portion 16 by a conducting wire. By providing a metal plate, it is easy to transmit an electric signal, and the accuracy of measurement can be further increased.
 上述したとおり、脳波測定用電極10においては、複数のCNTを含む構造体によって母材12に導電パスが形成される。こうした構造体による導電パスは、母材12の表面に限らず、母材12の内部に形成されていてもよい。この場合においても、構造体は、傾動部16の表面に形成されることになる。 As described above, in the electroencephalogram measurement electrode 10, a conductive path is formed in the base material 12 by a structure including a plurality of CNTs. The conductive path formed by such a structure is not limited to the surface of the base material 12 and may be formed inside the base material 12. Even in this case, the structure is formed on the surface of the tilting portion 16.
 母材12の内部に導電パスを有する脳波測定用電極は、導電性の弾性体を所定の形状に成形して作製することができる。導電性の弾性体は、例えば、ベース材となる弾性体に、ナノ炭素材料としてのCNTを配合して調製することができる。ベース材としては、すでに説明したような任意の弾性体を用いることができる。CNTの配合量(濃度)が弾性体の1~15wt%程度であれば、弾性体の弾性を損なうことなく脳波測定用電極に要求される導電パスを形成することができる。 The electroencephalogram measurement electrode having a conductive path inside the base material 12 can be produced by molding a conductive elastic body into a predetermined shape. The conductive elastic body can be prepared, for example, by blending CNT as a nanocarbon material with an elastic body serving as a base material. As the base material, any elastic body as described above can be used. If the blending amount (concentration) of CNT is about 1 to 15 wt% of the elastic body, a conductive path required for the electroencephalogram measurement electrode can be formed without impairing the elasticity of the elastic body.
 15wt%を超える濃度でCNTが配合された場合には、ベース材としての弾性体本来の特性が損なわれるおそれがある。CNTの濃度は、弾性体の3wt%以上が好ましく、7wt%以上がより好ましく、10wt%以上が最も好ましい。 When CNT is blended at a concentration exceeding 15 wt%, the original characteristics of the elastic body as the base material may be impaired. The concentration of CNT is preferably 3 wt% or more of the elastic body, more preferably 7 wt% or more, and most preferably 10 wt% or more.
 例えば、弾性体とCNTとを二軸押出機等で溶融混練して、混合原料が調製される。溶融混練の条件は、弾性体の種類等に応じて適宜選択することができる。溶融混練後の混合原料を、ペレタイザーを通過させることによってペレットを作製する。ペレットは、一般的な大きさで作製することができる。例えば、ペレットの直径は約2~3mm程度であり、長さは約2~3mm程度である。 For example, a mixed raw material is prepared by melt-kneading an elastic body and CNT with a twin screw extruder or the like. The conditions for melt kneading can be appropriately selected according to the type of elastic body. The mixed raw material after melt-kneading is made to pass through a pelletizer to produce pellets. The pellets can be made in a general size. For example, the diameter of the pellet is about 2 to 3 mm, and the length is about 2 to 3 mm.
 得られたペレットを、射出成形機により所定の形状に成形して、脳波測定用電極が得られる。こうして作製された脳波測定用電極は、導電性の弾性体からなる母材ということができる。射出成形の条件は、弾性体の種類、目的とする母材の大きさ等に応じて適宜選択することができる。 The obtained pellets are molded into a predetermined shape by an injection molding machine to obtain an electroencephalogram measurement electrode. The thus produced electroencephalogram measurement electrode can be said to be a base material made of a conductive elastic body. The conditions for injection molding can be appropriately selected according to the type of the elastic body, the size of the target base material, and the like.
 導電性の弾性体からなる母材により構成された脳波測定用電極においては、構造体による導電パスが内部にも形成される。これによって、傾動部の表面を、導電性の頭皮接触面とすることができる。こうした脳波測定用電極もまた弾性体本来の弾性も備えていることから、上述と同様の効果が得られる。 In the electroencephalogram measurement electrode composed of a base material made of a conductive elastic body, a conductive path by the structure is also formed inside. Thereby, the surface of the tilting part can be made into a conductive scalp contact surface. Since the electroencephalogram measurement electrode also has the elasticity inherent in the elastic body, the same effect as described above can be obtained.
 上記実施形態においては、構造体を形成するナノ炭素材料としてCNTを用いたが、CNTに限定されずグラフェンを用いることもできる。グラフェンは、CNTと同様に高い導電性を有するナノ炭素材料である。CNTをグラフェンに変更する以外は上述と同様の手法により、母材12の表面または内部にグラフェンを固定して構造体を形成して、導電性の頭皮接触面を、傾動部16の表面に設けることができる。 In the above embodiment, CNT is used as the nanocarbon material forming the structure, but is not limited to CNT, and graphene can also be used. Graphene is a nanocarbon material having high conductivity like CNT. Except for changing CNT to graphene, a structure is formed by fixing graphene to the surface or inside of the base material 12 by the same method as described above, and a conductive scalp contact surface is provided on the surface of the tilting portion 16. be able to.
5.実施例
 以下、脳波測定用電極の実施例を説明するが、本発明は以下の実施例のみに限定されるものではない。
5). EXAMPLES Examples of the electroencephalogram measurement electrode will be described below, but the present invention is not limited to the following examples.
 本実施例においては、導電性の母材からなる脳波測定用電極を作製し、その電気特性を調べる。導電性の母材は、CNT混練品であり、ベース材となる弾性体にCNTを混練した混合原料を所定の形状に成形して得られる。したがって、本実施例の脳波測定用電極は、母材の表面に加えて内部にも、複数のCNTが互いに接続されたネットワーク構造からなる構造体を有する。 In this embodiment, an electroencephalogram measurement electrode made of a conductive base material is produced, and its electrical characteristics are examined. The conductive base material is a CNT kneaded product, and is obtained by molding a mixed raw material obtained by kneading CNT into an elastic body serving as a base material into a predetermined shape. Therefore, the electroencephalogram measurement electrode of this example has a structure having a network structure in which a plurality of CNTs are connected to each other in addition to the surface of the base material.
<CNT濃度と体積抵抗との関係>
 異なる濃度でCNTを含有するCNT混練品の試料を作製し、CNT濃度と体積抵抗との関係を調べた。まず、触媒として鉄を用いた一般的な熱CVD法により、CNTを作製した。
<Relationship between CNT concentration and volume resistance>
Samples of CNT kneaded products containing CNTs at different concentrations were prepared, and the relationship between CNT concentration and volume resistance was examined. First, CNTs were produced by a general thermal CVD method using iron as a catalyst.
 CNTとベース材とを二軸押出機で溶融混練して、直径0.3cmのCNT混練ストランドを作製した。ベース材としては、ポリアミド系熱可塑性エラストマー(ペバックス2533、アルケマ(株)製)を用いた。CNTの濃度は、1.9wt%、3.3wt%、3.9wt%、および11.6wt%の4種類とした。 CNT and base material were melt-kneaded with a twin-screw extruder to produce a CNT kneaded strand having a diameter of 0.3 cm. As the base material, a polyamide-based thermoplastic elastomer (Pebax 2533, manufactured by Arkema Co., Ltd.) was used. The CNT concentration was 1.9 wt%, 3.3 wt%, 3.9 wt%, and 11.6 wt%.
 得られたCNT混練ストランドは、長さ10cmに切断して試料とした。試料の両端を4端子プローブで挟み、LCRメータ(IM3590、日置電機(株)製)を用いて電気抵抗Rsを測定した。各試料について、測定された電気抵抗Rs(Ω)、断面積A(0.152πcm2)、および長さL(10cm)を用いて、下記数式(1)に基づいて体積抵抗ρ(Ω・cm)を算出した。
     ρ=(Rs・A)/L     数式(1)
The obtained CNT kneaded strand was cut into a length of 10 cm to prepare a sample. Both ends of the sample were sandwiched between four terminal probes, and the electrical resistance Rs was measured using an LCR meter (IM3590, manufactured by Hioki Electric Co., Ltd.). For each sample, using the measured electrical resistance Rs (Ω), cross-sectional area A (0.15 2 πcm 2 ), and length L (10 cm), the volume resistance ρ (Ω Cm) was calculated.
ρ = (Rs · A) / L Formula (1)
 各CNT濃度について、3個の試料の体積抵抗ρの平均値を求め、その結果を図8のグラフに示す。CNT混練品の試料の体積抵抗ρは、CNT濃度が増加すると減少している。体積抵抗ρが100Ω・cm以下程度であれば、脳波測定用電極として好適に用いることができる。上述のCNTとベース材としてのポリアミド系熱可塑性エラストマーとを用いて脳波測定用電極を作製する場合には、CNT濃度は、7wt%以上であることが好ましく、10wt%以上であることがより好ましいことが確認された。なお、適切なCNT濃度の範囲は、CNTやベース材の種類に応じて変わり得る。 For each CNT concentration, the average value of the volume resistance ρ of three samples was determined, and the result is shown in the graph of FIG. The volume resistance ρ of the sample of the CNT kneaded product decreases as the CNT concentration increases. If the volume resistance ρ is about 100 Ω · cm or less, it can be suitably used as an electrode for electroencephalogram measurement. In the case of producing an electroencephalogram measurement electrode using the above-mentioned CNT and a polyamide-based thermoplastic elastomer as a base material, the CNT concentration is preferably 7 wt% or more, more preferably 10 wt% or more. It was confirmed. The appropriate CNT concentration range can vary depending on the type of CNT or base material.
<脳波測定用電極の作製>
 上述と同様のCNTとベース材とを用いて、上述と同様の手法によりCNT混練ストランドを作製した。CNTの濃度は、12wt%とした。CNT混練ストランドの直径は0.3cmであった。得られたCNT混練ストランドは、ペレタイザーを通過させることによって、長さ約2mmのCNT混練樹脂ペレットとした。CNT混練樹脂ペレットを射出成形して、図1~3に示したような支持部と傾動部とを有する形状に成形した。こうして、導電性の母材からなる本実施例の脳波測定用電極を3個作製した。
<Preparation of electroencephalogram measurement electrode>
Using the same CNT and base material as described above, a CNT kneaded strand was produced by the same method as described above. The concentration of CNT was 12 wt%. The diameter of the CNT kneaded strand was 0.3 cm. The obtained CNT kneaded strand was made into a CNT kneaded resin pellet having a length of about 2 mm by passing through a pelletizer. CNT kneaded resin pellets were injection-molded into a shape having a support portion and a tilting portion as shown in FIGS. In this way, three electroencephalogram measurement electrodes of this example made of a conductive base material were produced.
 本実施例の脳波測定用電極は、ナイロン系樹脂をベース材としていることにより、柔軟性およびクッション性を有している。本実施例の脳波測定用電極は、支持部14の一表面に傾動部16が突出形成された母材12である。母材12の全長L0が23.5mm、支持部14の他表面から傾動部16の先端までの長さL1が20mm、支持部14の直径D0および接続用突起18の直径D1が、それぞれ10mmおよび5mmであった。 The electroencephalogram measurement electrode of this example has flexibility and cushioning properties by using a nylon resin as a base material. The electroencephalogram measurement electrode according to the present embodiment is a base material 12 in which a tilting portion 16 protrudes from one surface of a support portion 14. The total length L0 of the base material 12 is 23.5 mm, the length L1 from the other surface of the support portion 14 to the tip of the tilting portion 16 is 20 mm, the diameter D0 of the support portion 14 and the diameter D1 of the connecting projection 18 are 10 mm and It was 5 mm.
<インピーダンスの測定>
 LCRメータを用いて、実施例の脳波測定用電極のインピーダンスを測定した。具体的には、脳波測定用電極の両端を4端子プローブで挟み、10Hzにおけるインピーダンスを測定した。プローブ間の距離は20mmである。3個の試料についての測定値の平均値は、468Ωであった。脳波測定用電極は、インピーダンスが10KΩ以下程度であることが好ましく、1KΩ以下程度であることがより好ましい。実施例の脳波測定用電極は、脳波測定用電極として好適なインピーダンスを有している。
<Measurement of impedance>
Using an LCR meter, the impedance of the electroencephalogram measurement electrode of the example was measured. Specifically, both ends of the electroencephalogram measurement electrode were sandwiched between four terminal probes, and the impedance at 10 Hz was measured. The distance between the probes is 20 mm. The average value of the measured values for the three samples was 468Ω. The electroencephalogram measurement electrode preferably has an impedance of about 10 KΩ or less, more preferably about 1 KΩ or less. The electroencephalogram measurement electrode of the example has an impedance suitable as an electroencephalogram measurement electrode.
 比較例として、導電ナイロンを用いた成形体(比較例1)、および導電ウレタンを用いた成形体(比較例2)を作製し、同様の手法でインピーダンスを測定した。導電ナイロンとしては、ポリアミド系熱可塑性エラストマーであるペバックス5533 SN 70(アルケマ(株)製)を用い、導電ウレタンとしては、導電性ウレタン系熱可塑性エラストマー(東ソー(株)製)を用いた。こうした導電性樹脂を用い、射出成形により、実施例の脳波測定用電極と同様の大きさおよび形状の成形体を3個作製した。比較例1の導電ナイロンの成形体は、インピーダンスの平均値が253kΩであり、比較例2の導電ウレタンの成形体は、インピーダンスの平均値が34kΩであった。 As a comparative example, a molded body using conductive nylon (Comparative Example 1) and a molded body using conductive urethane (Comparative Example 2) were produced, and impedance was measured by the same method. As the conductive nylon, Pebax 5533 SN 70 (manufactured by Arkema Co., Ltd.), which is a polyamide-based thermoplastic elastomer, was used, and as the conductive urethane, a conductive urethane-based thermoplastic elastomer (manufactured by Tosoh Corp.) was used. Using these conductive resins, three molded bodies having the same size and shape as the electroencephalogram measurement electrodes of Examples were produced by injection molding. The conductive nylon molded body of Comparative Example 1 had an average impedance value of 253 kΩ, and the conductive urethane molded body of Comparative Example 2 had an average impedance value of 34 kΩ.
 実施例の脳波測定用電極は、ベース材としての弾性体にCNTが混練された導電性の母材からなるので、複数のCNTが互いに接続されたネットワーク構造からなる構造体が、母材の表面に加えて内部にも形成されている。このような構造体が表面のみならず内部にも形成されている母材は、全体にわたって導電パスを有することから、導電性が優れている。 Since the electroencephalogram measurement electrode of the embodiment is made of a conductive base material in which CNTs are kneaded with an elastic body as a base material, a structure having a network structure in which a plurality of CNTs are connected to each other has In addition, it is also formed inside. Since the base material in which such a structure is formed not only on the surface but also on the inside has a conductive path throughout, the conductivity is excellent.
 こうした導電性の母材からなる実施例の脳波測定用電極を使用する際には、頭皮は導電パスに接する。実施例の脳波測定電極は、導電性ペーストを用いなくても、脳波測定用電極と被験者との間の導通が確保されるので、接触インピーダンスを極めて低いレベルまで下げることが可能となる。その結果、実施例の脳波測定用電極は、頭部からの微弱な電気信号を正確に検出することができる。 When using the electroencephalogram measurement electrode of the embodiment made of such a conductive base material, the scalp is in contact with the conductive path. Since the electroencephalogram measurement electrode of the embodiment ensures electrical continuity between the electroencephalogram measurement electrode and the subject without using a conductive paste, the contact impedance can be lowered to a very low level. As a result, the electroencephalogram measurement electrode of the embodiment can accurately detect a weak electric signal from the head.
<電極接触抵抗の測定>
 実施例の脳波測定用電極を用いて測定用の電極部品を作製し、額部および頭髪部について電極接触抵抗を測定した。測定に当たっては、ミユキ技研製のワイヤレス生体電気信号測定装置(ポリメイトミニ)、およびアクティブ電極(皿電極)を用いた。
<Measurement of electrode contact resistance>
Electrode parts for measurement were produced using the electroencephalogram measurement electrodes of the example, and electrode contact resistance was measured for the forehead and the hair. For measurement, a wireless bioelectric signal measuring device (Polymate Mini) manufactured by Miyuki Giken and an active electrode (dish electrode) were used.
 具体的には、図9に示すように、導線32が接続されたアクティブ電極26を、クリップ28を用いて脳波測定用電極10の接続用突起18に取り付けて、測定用の電極部品30を作製した。支持部14から突出している傾動部16の先端17および側面を額部または頭髪部に接触させて、電極接触抵抗を測定した。額部については、測定前に研磨ジェルを塗布することで接触抵抗を下げて測定した。その結果、額部の電極接触抵抗は20kΩ、頭髪部での電極接触抵抗は、100~200kΩであった。 Specifically, as shown in FIG. 9, the active electrode 26 to which the conducting wire 32 is connected is attached to the connection projection 18 of the electroencephalogram measurement electrode 10 using a clip 28, thereby producing a measurement electrode component 30. did. The tip 17 and the side surface of the tilting part 16 protruding from the support part 14 were brought into contact with the forehead part or the hair part, and the electrode contact resistance was measured. The forehead was measured by applying a polishing gel before measurement to lower the contact resistance. As a result, the electrode contact resistance at the forehead portion was 20 kΩ, and the electrode contact resistance at the hair portion was 100 to 200 kΩ.
 比較のために、アクティブ電極26のみを用いて同様にして、額部および頭髪部について電極接触抵抗を測定した(比較例3)。額部については、20kΩと実施例の場合と同程度の結果が得られた。しかしながら、頭髪部については、300kΩ以上と大きな値であった。比較例3はアクティブ電極26のみであるので、頭髪を避けることができない。アクティブ電極26は、頭髪が障害となって電極接触抵抗が高くなってしまい、頭髪部については脳波を正確に測定することができないことがわかった。 For comparison, the electrode contact resistance was measured for the forehead portion and the hair portion in the same manner using only the active electrode 26 (Comparative Example 3). As for the forehead part, 20 kΩ, the same result as in the example was obtained. However, the hair portion was a large value of 300 kΩ or more. Since the comparative example 3 is only the active electrode 26, hair cannot be avoided. It has been found that the active electrode 26 has a problem that the hair becomes an obstacle and the electrode contact resistance becomes high, and the electroencephalogram cannot be accurately measured for the hair portion.
 さらに、前述の比較例1と同様の導電ナイロン成形体をアクティブ電極に組み合わせた電極部品(比較例4)、および前述の比較例2と同様の導電ウレタン成形体をアクティブ電極に組み合わせた成形体(比較例5)を作製した。前述と同様にして額部および頭髪部について、比較例4,5の電極接触抵抗を測定したところ、額部および頭髪部のいずれの電極接触抵抗も、アクティブ電極のみの比較例3と同程度であった。 Furthermore, an electrode part (Comparative Example 4) in which the same conductive nylon molded body as that in Comparative Example 1 described above is combined with an active electrode, and a molded body in which the same conductive urethane molded body as in the above Comparative Example 2 is combined with an active electrode ( Comparative Example 5) was prepared. When the electrode contact resistance of Comparative Examples 4 and 5 was measured for the forehead portion and the hair portion in the same manner as described above, the electrode contact resistances of the forehead portion and the hair portion were almost the same as those of Comparative Example 3 with only the active electrode. there were.
 導電ナイロン成形体および導電ウレタン成形体のインピーダンスは、CNT混練品からなる実施例の脳波測定用電極より著しく大きいことが確認されている(比較例1,2)。導電ナイロン成形体および導電ウレタン成形体は、いずれも十分な導電性を確保することができないため、アクティブ電極と組み合わせたところで、アクティブ電極のみの場合と同様、脳波を正確に測定することは極めて困難である。 It has been confirmed that the impedance of the conductive nylon molded body and the conductive urethane molded body is significantly larger than that of the electroencephalogram measurement electrode of the example made of the CNT kneaded product (Comparative Examples 1 and 2). Neither the conductive nylon molded body nor the conductive urethane molded body can ensure sufficient electrical conductivity, so it is extremely difficult to accurately measure the brain waves when combined with the active electrode, as with the active electrode alone. It is.
 実施例の脳波測定用電極は、ベース材としての弾性体にCNTが混練されているので、表面に加えて内部においても、十分な導電性を確保することができる。こうした実施例の脳波測定用電極を用いた電極部品は、頭髪部においても従来より低い抵抗値を得ることができ、より高い精度で脳波を測定することが可能となった。しかも、実施例の脳波測定用電極は、柔軟性およびクッション性を備えているので、被験者の負担を軽減するという効果も得られる。 In the electroencephalogram measurement electrode of the example, since CNTs are kneaded with an elastic body as a base material, sufficient conductivity can be ensured not only on the surface but also inside. The electrode component using the electroencephalogram measurement electrode of such an example can obtain a lower resistance value than that in the past even in the hair portion, and can measure the electroencephalogram with higher accuracy. In addition, since the electroencephalogram measurement electrode of the example has flexibility and cushioning properties, an effect of reducing the burden on the subject can be obtained.
 10  脳波測定用電極
 12  母材
 14  支持部
 16  傾動部
 
DESCRIPTION OF SYMBOLS 10 Electroencephalogram measurement electrode 12 Base material 14 Support part 16 Tilt part

Claims (9)

  1.  弾性体からなる母材と、前記母材に形成された構造体とを備える脳波測定用電極であって、
     前記母材は、支持部と、前記支持部の一表面に突出形成され弾性変形可能な傾動部とを含み、前記傾動部の表面に前記構造体が形成され、
     前記構造体は、複数のナノ炭素材料を含み、前記複数のナノ炭素材料が、互いに接続されたネットワーク構造を形成しているとともに前記母材に固定されている
    ことを特徴とする脳波測定用電極。
    An electroencephalogram measurement electrode comprising a base material made of an elastic body and a structure formed on the base material,
    The base material includes a support part, and a tilting part that protrudes and elastically deforms on one surface of the support part, and the structure is formed on a surface of the tilting part,
    The structure includes a plurality of nanocarbon materials, and the plurality of nanocarbon materials form a network structure connected to each other and are fixed to the base material. .
  2.  前記傾動部は、複数本が円周上に設けられていることを特徴とする請求項1記載の脳波測定用電極。 2. The electroencephalogram measurement electrode according to claim 1, wherein a plurality of the tilting portions are provided on the circumference.
  3.  前記傾動部は、前記先端に球状部を有することを特徴とする請求項1または2記載の脳波測定用電極。 3. The electroencephalogram measurement electrode according to claim 1, wherein the tilting portion has a spherical portion at the tip.
  4.  前記複数のナノ炭素材料は、前記傾動部の前記表面に固定されることによって、前記母材に固定されていることを特徴とする請求項1~3のいずれか1項記載の脳波測定用電極。 The electroencephalogram measurement electrode according to any one of claims 1 to 3, wherein the plurality of nanocarbon materials are fixed to the base material by being fixed to the surface of the tilting portion. .
  5.  前記母材は、前記複数のナノ炭素材料を含む導電性の母材であり、前記構造体は、前記母材の内部に形成されていることを特徴とする請求項1~3のいずれか1項記載の脳波測定用電極。 4. The method according to claim 1, wherein the base material is a conductive base material including the plurality of nanocarbon materials, and the structure is formed inside the base material. The electrode for electroencephalogram measurement according to Item.
  6.  前記導電性の母材は、体積抵抗が100Ω・cm以下であることを特徴とする請求項5記載の脳波測定用電極。 6. The electroencephalogram measurement electrode according to claim 5, wherein the conductive base material has a volume resistance of 100 Ω · cm or less.
  7.  前記複数のナノ炭素材料は、カーボンナノチューブおよびグラフェンから選択されることを特徴とする請求項1~6のいずれか1項記載の脳波測定用電極。 7. The electroencephalogram measurement electrode according to claim 1, wherein the plurality of nanocarbon materials are selected from carbon nanotubes and graphene.
  8.  前記弾性体は、樹脂、熱可塑性エラストマー、およびゴムから選択されることを特徴とする請求項1~7のいずれか1項記載の脳波測定用電極。 The electroencephalogram measurement electrode according to any one of claims 1 to 7, wherein the elastic body is selected from a resin, a thermoplastic elastomer, and rubber.
  9.  金属部材を含まないことを特徴とする請求項1~8のいずれか1項記載の脳波測定用電極。
     
    The electrode for electroencephalogram measurement according to any one of claims 1 to 8, wherein the electrode does not contain a metal member.
PCT/JP2016/080312 2015-10-13 2016-10-13 Electrode for brain wave measurement WO2017065196A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680058066.3A CN108135524A (en) 2015-10-13 2016-10-13 E.E.G measurement electrode

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-202205 2015-10-13
JP2015202205 2015-10-13
JP2016201053A JP2017074370A (en) 2015-10-13 2016-10-12 Electrode for brain wave measurement
JP2016-201053 2016-10-12

Publications (1)

Publication Number Publication Date
WO2017065196A1 true WO2017065196A1 (en) 2017-04-20

Family

ID=58518127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/080312 WO2017065196A1 (en) 2015-10-13 2016-10-13 Electrode for brain wave measurement

Country Status (1)

Country Link
WO (1) WO2017065196A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109009104A (en) * 2017-06-12 2018-12-18 里思姆公司 Electrode, wearable component and system
WO2020246358A1 (en) * 2019-06-06 2020-12-10 Nok株式会社 Bioelectrode
CN112244840A (en) * 2019-07-02 2021-01-22 复旦大学附属中山医院 Graphite carbon disk electrode and preparation method and use method thereof
CN113274027A (en) * 2021-06-17 2021-08-20 复旦大学 In-vivo multichannel electroencephalogram signal recording device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019962A (en) * 2010-07-15 2012-02-02 Nippon Telegr & Teleph Corp <Ntt> Pinholder-type dry electrode and method for manufacturing the same
JP2013240485A (en) * 2012-05-21 2013-12-05 National Institute Of Information & Communication Technology Brain wave measuring electrode and cap with brain wave measuring electrode
JP2015510823A (en) * 2012-03-19 2015-04-13 コグニオニクス インコーポレイテッドCognionics,Inc. Transducer assembly for dry applications of transducers
WO2015058186A2 (en) * 2013-10-18 2015-04-23 Nodstop, Llc Systems and methods for providing a waking mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019962A (en) * 2010-07-15 2012-02-02 Nippon Telegr & Teleph Corp <Ntt> Pinholder-type dry electrode and method for manufacturing the same
JP2015510823A (en) * 2012-03-19 2015-04-13 コグニオニクス インコーポレイテッドCognionics,Inc. Transducer assembly for dry applications of transducers
JP2013240485A (en) * 2012-05-21 2013-12-05 National Institute Of Information & Communication Technology Brain wave measuring electrode and cap with brain wave measuring electrode
WO2015058186A2 (en) * 2013-10-18 2015-04-23 Nodstop, Llc Systems and methods for providing a waking mechanism

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEIJI MAENO: "The structure and characteristics of conductive carbon black ''KETJENBLACK EC", TANSO, vol. 2006, no. 222, 31 March 2006 (2006-03-31), pages 140 - 146, XP055376170 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109009104A (en) * 2017-06-12 2018-12-18 里思姆公司 Electrode, wearable component and system
EP3415081A1 (en) * 2017-06-12 2018-12-19 Rythm Electrode, wearable assembly and system
US10842404B2 (en) 2017-06-12 2020-11-24 Dreem Electrode, wearable assembly and system
WO2020246358A1 (en) * 2019-06-06 2020-12-10 Nok株式会社 Bioelectrode
CN112244840A (en) * 2019-07-02 2021-01-22 复旦大学附属中山医院 Graphite carbon disk electrode and preparation method and use method thereof
CN112244840B (en) * 2019-07-02 2023-08-04 复旦大学附属中山医院 Graphite carbon disk electrode and preparation method and application method thereof
CN113274027A (en) * 2021-06-17 2021-08-20 复旦大学 In-vivo multichannel electroencephalogram signal recording device
CN113274027B (en) * 2021-06-17 2022-07-05 复旦大学 In-vivo multichannel electroencephalogram signal recording device

Similar Documents

Publication Publication Date Title
JP2017074370A (en) Electrode for brain wave measurement
WO2016136629A1 (en) Brain wave measurement electrode
JP2016163688A (en) Brain wave measuring electrode
JP2017074369A (en) Electrode for brain wave measurement
WO2017065196A1 (en) Electrode for brain wave measurement
JP6927632B2 (en) Electrodes for EEG measurement
US9980659B2 (en) Bio-potential sensing materials as dry electrodes and devices
US10330621B1 (en) Electrolyte sensor and method and producing thereof
JP6112534B2 (en) EEG measurement electrode, EEG measurement electrode cap with EEG measurement electrode
EP3033994A1 (en) Electrode for biopotential sensing
JP2022504414A (en) Sensor for measuring biological potential
JP6855045B2 (en) Electrodes for measuring brain activity, head-mounted devices and brain activity measuring systems using the electrodes
JP2020195775A (en) Brain activity measurement electrode, head-mounted device comprising the electrode, and brain activity measurement system
JP6927631B2 (en) Electrodes for EEG measurement and their manufacturing method
JP2019097733A (en) Brain activity measuring electrode, and head-mounted device and brain activity measuring system that use the electrode
JP2016154570A (en) Brain wave electrode
WO2021029100A1 (en) Electrode for measuring biological information
WO2017065195A1 (en) Electrode for brain wave measurement
CN108026313A (en) The electrode of polymer composition and device for bioelectrical signals non-invasive measurement
JP2022012318A (en) Biomedical electrode
US20230263447A1 (en) Soft and dry electrode
JP2021094157A (en) Electrode for biological information measurement
JP7350257B2 (en) Headgear for brain wave measurement
WO2019181389A1 (en) Biological information measurement electrode
WO2019130832A1 (en) Biological information measurement electrode and method for manufacturing biological information measurement electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16855449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16855449

Country of ref document: EP

Kind code of ref document: A1