WO2017061048A1 - Power conditioning system and power conditioning method - Google Patents

Power conditioning system and power conditioning method Download PDF

Info

Publication number
WO2017061048A1
WO2017061048A1 PCT/JP2015/078815 JP2015078815W WO2017061048A1 WO 2017061048 A1 WO2017061048 A1 WO 2017061048A1 JP 2015078815 W JP2015078815 W JP 2015078815W WO 2017061048 A1 WO2017061048 A1 WO 2017061048A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
value
power adjustment
power generation
Prior art date
Application number
PCT/JP2015/078815
Other languages
French (fr)
Japanese (ja)
Inventor
門田 行生
佐藤 純一
大悟 橘高
新井 裕之
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to PCT/JP2015/078815 priority Critical patent/WO2017061048A1/en
Priority to JP2017544166A priority patent/JPWO2017061048A1/en
Publication of WO2017061048A1 publication Critical patent/WO2017061048A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • Embodiments described herein relate generally to a power adjustment system and a power adjustment method.
  • An electric power adjustment system that adjusts electric power by charging / discharging electric power from a fuel cell or the like has attracted attention as an excess or deficiency of electric power supplied from a power generation unit to a load unit.
  • a power adjustment system includes, for example, a solar battery, a secondary battery, and a hydrogen storage device.
  • the solar cell supplies power to the load, and surplus power from the solar cell is used for charging the secondary battery.
  • the hydrogen storage device includes a hydrogen production unit, a hydrogen storage unit, and a fuel cell.
  • the hydrogen produced by the hydrogen production unit by decomposing water with surplus power from the solar cell is stored in the hydrogen accumulation unit.
  • the power generated by the fuel cell using the hydrogen stored in the hydrogen storage unit is discharged and supplied to the load.
  • the power adjustment system in another example includes a power generation unit, an auxiliary power supply unit, a fuel cell unit, and a control unit.
  • the short-term fluctuation amount of the power generated by the power generation unit in terms of time or day is compensated and stabilized by charging / discharging in an auxiliary power source such as a secondary battery or a capacitor.
  • the long-term fluctuation amount of the electric power generated by the power generation unit throughout the year or throughout the year is compensated by charging / discharging of the fuel cell unit and stabilized. That is, when hydrogen is produced and stored by electrolyzing water with surplus power and the power is insufficient, the fuel cell unit uses the stored hydrogen as fuel and reconverts it into electric power and is discharged.
  • the control unit controls the power generation unit, the auxiliary power source unit, and the fuel cell unit in an integrated manner, and constantly monitors the power generation amount and the power demand by the power generation system, so that the power generation amount generated by the power generation unit is short-term. Control is performed on one or both of the auxiliary power supply unit and the fuel cell unit so as to compensate for the insufficient power generation. Furthermore, this control part performs control which adjusts the storage amount of the hydrogen which a fuel cell part manufactures and stores throughout the year.
  • JP 2002-75388 A Japanese Patent Laid-Open No. 2006-164637
  • the auxiliary power system for the secondary battery and the capacitor is used to supplement the short-term power generation amount in hours or days.
  • the auxiliary power supply system for secondary batteries and capacitors requires an energy storage capacity that adjusts the power generation amount in units of hours or days.
  • the problem to be solved by the present invention is to maintain the speed of the control response in the power adjustment between the power generation unit and the load unit and to reduce the accumulated energy of the instantaneous power adjustment unit.
  • a system and power adjustment method are provided.
  • the power adjustment system includes a first power adjustment unit that performs power adjustment between the power generation unit and the load unit through a power transmission unit that transmits generated power of the power generation unit to the load unit.
  • a power adjustment unit a second power adjustment unit configured to perform the power adjustment by power charging / discharging with a control response faster than that of the first power adjustment unit, and the first power.
  • the power adjustment between the power generation unit and the load unit is performed by using the power charge / discharge of the power adjustment unit and the power charge / discharge of the instantaneous power adjustment unit whose control response is faster than the power adjustment unit.
  • the instantaneous power adjustment unit reduces the power charged / discharged, thereby maintaining the speed of the control response in the power adjustment and the instantaneous power adjustment unit. It is intended to further reduce the stored energy. More details will be described below.
  • FIG. 1 is a diagram showing a configuration of a power adjustment system 1 according to the first embodiment.
  • the power adjustment system 1 includes a power transmission unit 10, a power adjustment unit 20, an instantaneous power adjustment unit 30, and a power control device 40.
  • the power transmission unit 10 transmits the generated power of the power generation unit 2 to the load unit 4.
  • the power transmission unit 10 is formed of a conductive wire that conducts power, for example, and includes a first current measurement unit 12, a second current measurement unit 14, and a third current measurement unit 16. Has been.
  • the first current measuring unit 12 measures the generated current of the power generating unit 2 and outputs a current signal indicating the generated current value.
  • the second current measuring unit 14 measures the current consumption of the load unit 4 and outputs a current signal indicating the current consumption value.
  • the third current measuring unit 16 measures the input / output current input / output from the end e1, and outputs a current signal indicating the input / output current value.
  • the current flowing in the direction of the arrow is measured as a current value having a positive value
  • the current flowing in the reverse direction is measured as a current value having a negative value.
  • the power adjustment unit 20 is connected to the end e1 of the power transmission unit 10 and performs power adjustment between the power generation unit 2 and the load unit 4 by power charging / discharging via the power transmission unit 10.
  • the state where the power adjustment unit 20 outputs current toward the end e1 corresponds to the discharge state of the power adjustment unit 20, and the state where current is input from the end e1 is the power adjustment unit.
  • charging here means accumulation of electric power or accumulation of electric power as accumulated energy.
  • the use of surplus power to decompose water to obtain hydrogen also means charging.
  • the instantaneous power adjustment unit 30 is connected to the end e ⁇ b> 2 of the power transmission unit 10, and the power generation unit 2, the load unit 4, and the like are charged and discharged through the power transmission unit 10 with a control response faster than that of the power adjustment unit. Power adjustment between.
  • the state in which the instantaneous power adjustment unit 30 outputs current toward the end e2 corresponds to the discharge state of the instantaneous power adjustment unit 30, and the state in which current is input from the end e2 is instantaneous. This corresponds to the state of charge of the power adjustment unit 30.
  • the power control device 40 controls the power adjustment unit 20 and the instantaneous power adjustment unit 30. That is, the power control device 40 includes a first control unit 42, a second control unit 44, a main control unit 46, and a storage unit 48.
  • the first control unit 42 controls the power adjustment unit 20 to control power charging / discharging to reduce the difference between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4. That is, when the power consumption value of the load unit 4 is larger than the power generation value of the power generation unit 2, the first control unit 42 performs control to cause the power adjustment unit 20 to discharge power. On the other hand, when the power consumption value of the load unit 4 is smaller than the power generation value of the power generation unit 2, the power adjustment unit 20 performs control to charge the power.
  • the second control unit 44 reduces the difference between the generated power value of the power generation unit 2 and the power value obtained by adding the charge / discharge power value of the power adjustment unit 20 and the power consumption value of the load unit 4. Is controlled with respect to the instantaneous power adjustment unit 30. That is, the second control unit 44 performs control for the instantaneous power adjustment unit 30 to reduce the power charged / discharged by the instantaneous power adjustment unit 30 as the power charged / discharged by the power adjustment unit 20 increases. is there.
  • the main control unit 46 controls the first control unit 42 and the second control unit 44, and is composed of, for example, a CPU.
  • the storage unit 48 stores a control program executed by the main control unit 46 and provides a work area when the main control unit 46 executes the program.
  • the first control unit 42 and the second control unit 44 may be configured to operate independently. In this case, the main control unit 46 may be included in each of the first control unit 42 and the second control unit 44. Alternatively, each of the first control unit 42 and the second control unit 44 may be configured without the main control unit 46.
  • the voltage measurement unit 6 measures the voltage of the power transmission unit 10 and outputs a voltage signal indicating the voltage value of the power transmission unit 10 to each of the first control unit 42 and the second control unit 44.
  • e2 the third current measurement unit 16, the charge / discharge end e1 of the power adjustment unit 20, and the second current measurement unit 14 are provided in this order.
  • the second control unit 44 uses the generated power value of the power generation unit 2, the charge / discharge power value of the power adjustment unit 20, and the power consumption value of the load unit 4. For this reason, it is necessary to acquire the generated power value, the charge / discharge power value, and the power consumption value. In this case, system efficiency can be increased by reducing the number of times of calculating these power values as much as possible.
  • any one of the charging / discharging end e2 of the instantaneous power adjusting unit 30 and the charging / discharging end e1 of the power adjusting unit 20 is arranged on the upstream side of the first current measuring unit 12, for example.
  • the measurement value of the first current measurement unit 12 it is preferable to arrange the measurement value of the first current measurement unit 12 at the most upstream.
  • the measurement value of the second current measurement unit 14 it is preferable to arrange the measurement value of the second current measurement unit 14 on the most downstream side.
  • the third current measurement unit 16 is disposed between the charge / discharge end e1 of the power adjustment unit 20 and the power adjustment unit 20. Is preferred. As described above, the first current measurement unit 12, the third current measurement unit 16, the charge / discharge end e1 of the power adjustment unit 20, and the second current measurement unit 14 are sequentially arranged from the upstream side. Processing can be made more efficient. Further, as described above, it is preferable that the charging / discharging end portion e2 of the instantaneous power adjusting unit 30 is also disposed between the first current measuring unit 12 and the second current measuring unit 14. In the present embodiment, the power adjustment unit 20 corresponds to the first power adjustment unit, and the instantaneous power adjustment unit 30 corresponds to the second power adjustment unit.
  • FIG. 2 is a diagram illustrating a configuration example of the power adjustment unit 20.
  • the power adjustment unit 20 includes a hydrogen production unit 202, a hydrogen storage unit 204, and a hydrogen power generation unit 206.
  • the hydrogen production unit 202 charges power using surplus power according to the control signal of the first control unit 42. That is, the hydrogen production unit 202 produces hydrogen according to the control signal of the first control unit 42.
  • the hydrogen accumulation unit 204 is connected to the hydrogen production unit 202 through a pipeline and accumulates hydrogen. That is, hydrogen produced by the hydrogen production unit 202 is supplied to the hydrogen accumulation unit 204 via a pipeline.
  • the hydrogen power generation unit 206 generates power using the hydrogen stored in the hydrogen storage unit 204 in accordance with the control signal from the first control unit 42.
  • the hydrogen power generation unit 206 is a fuel cell, for example, and has a response speed of, for example, about 0.1 s.
  • the second control unit 44 may perform control for causing the power storage unit 304 to store energy based on the hydrogen energy remaining amount information of the hydrogen storage unit. Thereby, for example, when the hydrogen energy of the hydrogen storage unit 204 is satisfied, the power storage unit 304 can store energy with priority. In this way, control in which the power adjustment unit 20 and the instantaneous power adjustment unit 30 are linked is possible.
  • the power adjustment unit 20 is not limited to a hydrogen system, and a redox flow battery or the like may be used.
  • FIG. 3 is a diagram illustrating a configuration example of the instantaneous power adjustment unit 30.
  • the instantaneous power adjustment unit 30 includes a charge / discharge unit 302 and a power storage unit 304.
  • the charging / discharging unit 302 is connected to the end e ⁇ b> 2 of the power transmission unit 10, and controls charging / discharging power according to the power command output from the second control unit 44.
  • the charging / discharging unit 302 is configured by either a DC / DC converter or an AC / DC converter. Thereby, it is comprised so that it can respond to both a direct-current power supply and an alternating current power supply.
  • the power storage unit 304 stores the stored energy using surplus power in accordance with the control of the charge / discharge unit 302.
  • the power storage unit 304 is configured with either a secondary battery or a large-capacity capacitor, and stores surplus power as stored energy.
  • This large-capacity capacitor has a response speed within 10 ms, for example.
  • the power storage unit 304 discharges electric power according to the control of the charge / discharge unit 302.
  • the second control unit 44 may detect voltage information of the power storage unit 304, charge / discharge current (input / output current) information, and temperature information, and calculate the remaining energy of the power storage unit 304. In this case, the second control unit 44 controls the charge / discharge unit 302 based on the remaining energy.
  • the first control unit 42 may control the power adjustment unit 20 in accordance with the remaining energy of the power storage unit 304. Thereby, the input / output energy to / from the power storage unit 304 can be linked with the power adjustment unit 20. For example, when the energy storage of the power storage unit 304 is satisfied, the power adjustment unit 20 can preferentially use the surplus power, so that the energy stored in the power storage unit 304 can be suppressed. In this case, the remaining energy of the power storage unit 304 may be calculated by the first control unit 42 or may be acquired from the second control unit 44. In this way, control in which the power adjustment unit 20 and the instantaneous power adjustment unit 30 are linked is possible.
  • FIG. 4 is a diagram illustrating the configuration of the first control unit 42.
  • the first control unit 42 includes a first multiplier 422, a second multiplier 424, a first adder 426, a first instruction unit 428, a second adder 430,
  • the PI control circuit 432 is configured.
  • the first multiplier 422 includes a voltage signal indicating the voltage value of the power transmission unit 10 measured by the voltage measurement unit 6, and a current signal indicating the generated current value of the power generation unit 2 measured by the first current measurement unit 12. Based on the above, the voltage value of the power transmission unit 10 and the generated current value of the power generation unit 2 are multiplied. Thereby, the first multiplier 422 calculates the generated power value of the power generation unit 2 and outputs it as a generated power signal.
  • the second multiplier 424 includes a voltage signal indicating the voltage value of the power transfer unit 10 measured by the voltage measuring unit 6 and a current signal indicating the current consumption value of the load unit 4 measured by the second current measuring unit 14. Is multiplied by the voltage value of the load unit 4 and the current consumption value of the load unit 4. Thus, the second multiplier 424 calculates the power consumption value of the load unit 4 and outputs it as a power consumption signal.
  • the first adder 426 calculates a difference value between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4 based on the power generation signal of the power generation unit 2 and the power consumption signal of the load unit 4.
  • the first power difference value signal indicating the difference value is output.
  • the second adder 430 calculates a difference value between the first power command value instructed by the first instruction unit 428 and the difference value indicated by the first power difference value signal, and indicates the difference value.
  • the second power difference value signal is output.
  • the first PI control circuit 432 controls the charge / discharge power of the power adjustment unit 20 based on the second power difference value signal.
  • the first power command value is a value for biasing the charge / discharge power value of the power adjustment unit 20. For example, if the first power command value is 10, the power obtained by adding 10 to the power difference value between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4 is discharged and charged. For example, if the first power command value is 0, the power corresponding to the power difference value between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4 is discharged and charged.
  • the first multiplier 422 calculates the power generation value of the power generation unit 2, and the second multiplier 424 calculates the power consumption value of the load unit 4. Subsequently, the first adder 426 calculates a difference value between the generated power value and the consumed power value. If the difference value calculated by the first adder 426 is a negative value, the generated power value is smaller than the consumed power value, that is, the generated power is insufficient. On the other hand, if the difference value calculated by the first adder 426 is a positive value, the generated power value is a larger power consumption value, that is, the generated power is surplus. .
  • the first power command value is 0 will be described.
  • a power value obtained by subtracting this difference value from the first power command value is output from the second adder 430.
  • the first PI control circuit 432 increases more power with respect to the power adjustment unit 20 as the positive power value increases. Control to discharge power.
  • the first PI control circuit 432 supplies power to the power adjustment unit 20 so as to reduce the difference between the power consumption value and the generated power value. It is discharged.
  • the first PI control circuit 432 decreases the negative power value with respect to the power adjustment unit 20. Control to charge more power. As can be seen from this, when the generated power is surplus, the first PI control circuit 432 supplies power to the power adjustment unit 20 so as to reduce the difference between the power consumption value and the generated power value. It is charged.
  • the 1st control part 42 performs control of electric power charge / discharge which reduces the difference of the electric power generation value of the electric power generation part 2, and the electric power consumption value of the load part 4, with respect to the electric power adjustment part 20. is there.
  • the first power command value when the first power command value is set, the power specified by the first power command value is further charged / discharged.
  • the first multiplier 422 corresponds to the first arithmetic unit
  • the second multiplier 424 corresponds to the second arithmetic unit
  • the first adder 426 corresponds to the third arithmetic unit.
  • the second adder 430 corresponds to a fourth arithmetic unit.
  • FIG. 5 is a diagram illustrating the configuration of the second control unit 44.
  • the same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted.
  • the second control unit 44 includes a third multiplier 442, a fourth multiplier 444, a fifth multiplier 446, a third adder 448, a fourth adder 450,
  • the instruction unit 452, the fifth adder 454, and the second PI control circuit 456 are configured.
  • the third multiplier 442 includes a voltage signal indicating the voltage value of the power transmission unit 10 measured by the voltage measurement unit 6, and a current signal indicating the generated current value of the power generation unit 2 measured by the first current measurement unit 12. Based on the above, the voltage value of the power transmission unit 10 and the generated current value of the power generation unit 2 are multiplied. Thereby, the 3rd multiplier 442 calculates the electric power generation value of the electric power generation part 2, and outputs it as an electric power generation signal.
  • the fourth multiplier 444 includes a voltage signal indicating the voltage value of the power transmission unit 10 measured by the voltage measurement unit 6, and a current signal indicating the current consumption value of the load unit 4 measured by the second current measurement unit 14. Is multiplied by the voltage value of the load unit 4 and the current consumption value of the load unit 4. Thus, the fourth multiplier 444 calculates the power consumption value of the load unit 4 and outputs it as a power consumption signal.
  • the fifth multiplier 446 includes a voltage signal indicating the voltage value of the power transfer unit 10 measured by the voltage measurement unit 6 and a current signal indicating the current value of the power adjustment unit 20 measured by the third current measurement unit 16. Is multiplied by the voltage value of the load unit 4 and the current value of the power adjustment unit 20. As a result, the fifth multiplier 446 calculates the charge / discharge power value of the power adjustment unit 20 and outputs it as a charge / discharge power signal.
  • the third adder 448 adds the power consumption value of the load unit 4 and the charge / discharge power value of the power adjustment unit 20 based on the power consumption signal and the charge / discharge power signal. Subsequently, a third power addition value signal indicating the third power addition value obtained by this calculation is output.
  • the fourth adder 450 calculates a difference value between the generated power value of the power generation unit 2 and the third power added value based on the generated power signal and the third power added value signal. That is, a fourth power difference value signal indicating the difference between the generated power value of the power generation unit 2 and the added value of the input / output power value of the power adjustment unit 20 and the power consumption value of the load unit 4 is output.
  • the fifth adder 454 calculates a difference value between the second power command value instructed by the second instruction unit 452 and the fourth power difference value, and uses the difference value as the fifth power difference value. Output as a signal.
  • the second PI control circuit 456 controls the charge / discharge power of the instantaneous power adjustment unit 30 based on the fifth power difference value signal.
  • the second power command value is a value that biases the charge / discharge power value in the instantaneous power adjustment unit 30. For example, if the second power command value is 0, it corresponds to the difference between the generated power value of the power generation unit 2 and the added value of the input / output power value of the power adjustment unit 20 and the power consumption value of the load unit 4 Electric power is discharged. For example, if the second power command value is 10, the difference between the generated power value of the power generation unit 2 and the added value of the input / output power value of the power adjustment unit 20 and the power consumption value of the load unit 4 is calculated. The power plus 10 is discharged.
  • the third multiplier 442 calculates the generated power value of the power generation unit 2
  • the fourth multiplier 444 calculates the power consumption value of the load unit 4
  • the fifth multiplier 446 calculates the power adjustment unit. Twenty charge / discharge power values are calculated.
  • the third adder 448 adds the power consumption value of the load unit 4 and the charge / discharge power value of the power adjustment unit 20. In this case, as described above, the current flowing from the power adjustment unit 20 toward the end e1 has a negative value.
  • the charge / discharge force value of the power adjustment unit 20 is also calculated as a negative value, and therefore the third adder 448 loads the load unit 4.
  • the difference value between the power consumption value and the discharge power value of the power adjustment unit 20 is calculated.
  • the first power command value and the second power command value are 0 will be described.
  • this difference value is subtracted from the generated power value. That is, when the power adjustment unit 20 is in the state of discharging power, the generated power value of the power generation unit 2 and the discharge power value discharged from the power adjustment unit 20 from the power consumption value of the load unit 4 are subtracted. The difference between the difference value obtained in this way is calculated. That is, a value obtained by subtracting the generated power value and the discharge power value of the power adjustment unit 20 from the power consumption value is obtained.
  • the second control unit 44 performs control to cause the instantaneous power adjustment unit 30 to discharge according to this value.
  • the charge / discharge force value of the power adjustment unit 20 is calculated as a positive value.
  • the sum of the power consumption value and the discharge power value of the power adjustment unit 20 is calculated.
  • this added value is subtracted from the generated power value of the power generation unit 2. That is, when the power adjustment unit 20 is in the state of discharging power, the generated power value of the power generation unit 2, the power consumption value of the load unit 4, and the added value of the charging power value charged in the power adjustment unit 20 The difference between is calculated. That is, a value obtained by subtracting the power consumption value and the charging power value of the power adjustment unit 20 from the generated power value is obtained.
  • the second control unit 44 controls the instantaneous power adjustment unit 30 to charge according to this value. As can be seen from this, when the charging power of the power adjustment unit 20 increases with a delay from the control response of the instantaneous power adjustment unit 30, the charging power of the instantaneous power adjustment unit 30 is controlled to decrease. In addition, when the second power command value is set, the power specified by the second power command value is further charged / discharged.
  • the power adjustment unit 20 can perform charge / discharge adjustment of power that reduces the difference between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4.
  • the instantaneous power adjustment unit 30 also uses the charge / discharge power value of the power adjustment unit 20.
  • the instantaneous power adjusting unit 30 can reduce the power charged / discharged.
  • the instantaneous power adjustment unit 30 can further reduce the power to be charged and discharged, and can further reduce the accumulated power of the instantaneous power adjustment unit 30, that is, the accumulated energy.
  • the energy storage capacity of the instantaneous power adjustment unit 30 can be reduced, and the instantaneous power adjustment unit 30 can be further downsized.
  • the load unit 4 corresponds to the system frequency.
  • the instantaneous power adjustment unit 30 can follow the power command in a time within a half cycle of the system frequency, it is possible to continuously supply power without stopping the load unit 4.
  • the system frequency is 50 Hz
  • the half cycle of the system frequency is 10 ms.
  • the instantaneous power adjustment unit 30 is configured to follow the power command within 10 ms that is a half cycle of the system frequency.
  • the instantaneous power adjustment unit 30 supplements the control response of the power adjustment unit 20 to reduce the difference between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4 at a higher speed. Thereby, while maintaining the speed of the control response in the electric power adjustment between the electric power generation part 2 and the load part 4, the instantaneous electric power adjustment part 30 can be reduced more in size.
  • the power adjustment unit 20 operates to follow the power command value with a delay in the control response of the device with respect to the power command value. . Further, the instantaneous power adjustment device outputs instantaneously so as to compensate for the control response delay of the power adjustment unit 20. For this reason, the output of the instantaneous power adjustment unit 30 is reduced by the power adjustment unit 20 operating so as to follow the power command value. As a result, even if the instantaneous power adjustment unit 30 does not accumulate a large amount of energy, it can cope with a high-speed power control response.
  • the power generation unit 2 here may be a generator. Alternatively, the power generation unit 2 may have a configuration using renewable energy such as solar power generation or wind power generation.
  • the load unit 4 may be a household load or a large factory load. Furthermore, the load unit 4 may be an automobile, a train, or a portable device.
  • the power transmission unit 10 may be an AC voltage or a DC voltage.
  • the third multiplier 442 corresponds to the fifth arithmetic unit
  • the fourth multiplier 444 corresponds to the sixth arithmetic unit
  • the fifth multiplier 446 corresponds to the seventh arithmetic unit
  • the third adder 448 corresponds to the eighth arithmetic unit
  • the fourth adder 450 corresponds to the ninth arithmetic unit
  • the fifth adder 454 corresponds to the tenth arithmetic unit.
  • FIG. 6 is a diagram showing a flowchart of a power control method using the instantaneous power adjustment unit 30.
  • the second control unit 44 acquires the voltage value of the power transmission unit 10, the generated current value of the power generation unit 2, the consumption current value of the load unit 4, and the input / output current value of the power adjustment unit 20 (step S100).
  • the voltage value of the power transmission unit 10 is acquired based on the voltage signal of the voltage measurement unit 6, and the generated current value of the power generation unit 2 is acquired based on the current signal of the first ammeter.
  • the current consumption value of the load unit 4 is acquired based on the current signal of the second ammeter, and the input / output current value of the power adjustment unit 20 is acquired based on the current signal of the third ammeter.
  • the second control unit 44 calculates the generated power value of the power generation unit 2, the charge / discharge power value of the power adjustment unit 20, and the power consumption value of the load unit 4 based on the values acquired in step S100.
  • the third multiplier 442 calculates the generated power value of the power generation unit 2 based on the voltage signal indicating the voltage value and the current signal indicating the generated current value of the power generation unit 2.
  • the fourth multiplier 444 calculates the power consumption value based on the voltage signal indicating the voltage value and the current signal indicating the current consumption value of the load unit 4.
  • the fifth multiplier 446 calculates the charge / discharge power value of the power adjustment unit 20 based on the voltage signal indicating the voltage value and the current signal indicating the current value of the power adjustment unit 20.
  • the second control unit 44 reduces the difference between the generated power value of the power generation unit 2 and the added value of the charge / discharge power value of the power adjustment unit 20 and the power consumption value of the load unit 4. Adjustment control is performed on the instantaneous power adjustment unit 30 (step S104), and the process ends.
  • the second control unit 44 acquires the voltage value of the power transmission unit 10, the generated current value of the power generation unit 2, the current consumption value of the load unit 4, and the input / output current value of the power adjustment unit 20, The generated power value of the power generation unit 2, the charge / discharge power value of the power adjustment unit 20, and the power consumption value of the load unit 4 are calculated. Subsequently, the instantaneous power adjustment unit 30 controls the charge / discharge adjustment to reduce the difference between the generated power value of the power generation unit 2 and the added value of the power consumption value in the load unit 4 and the charge / discharge power value of the power adjustment unit 20. To do.
  • the power value obtained by adding the power generation value of the power generation unit 2, the charge / discharge power value of the power adjustment unit 20, and the power consumption value of the load unit 4, and The power charge / discharge control for reducing the difference between the instantaneous power adjustment unit 30 is performed. For this reason, as the charging / discharging power of the power adjusting unit 20 increases, the charging / discharging power of the instantaneous power adjusting unit 30 can be reduced, the speed of the control response in the power adjustment is maintained, and the instantaneous power adjusting unit 30 accumulates. Energy can be further reduced.
  • the power control apparatus according to the second embodiment is different from the first embodiment in that the commercial system is further connected to the power transmission unit. Parts different from the first embodiment will be described below.
  • FIG. 7 is a diagram showing a configuration of the power adjustment system 1 when power is input / output from the commercial system.
  • a commercial system is further connected to the power transmission unit 10. For this reason, the power transmission unit 10 determines that the difference between the power consumption value, the charging power value of the power adjustment unit 20 and the charging power value of the instantaneous power adjustment unit 30 is smaller than the generated power value. Output power. Further, when the added value of the generated power value, the discharge power value of the power adjustment unit 20 and the discharge power value of the instantaneous power adjustment unit 30 is smaller than the power consumption value, the difference power is input from the commercial system.
  • the power adjustment unit 20 may It operates to follow the power command value with a delay in control response. As a result, even when power is input / output to / from the commercial system, power adjustment by the power adjustment unit 20 and the instantaneous power adjustment unit 30 is performed, and power fluctuation can be suppressed. That is, the instantaneous power adjustment unit 30 outputs instantaneously so as to compensate for the control response delay of the power adjustment unit 20.
  • the charge / discharge power of the instantaneous power adjustment unit 30 compensates for the delay in the charge / discharge control response of the power adjustment unit 20, thereby suppressing the peak of instantaneous power consumption generated in the load unit 4.
  • this electric power adjustment system 1 can control the input-output electric power to a commercial system more uniformly.
  • the output of the instantaneous power adjustment unit 30 decreases as the power adjustment unit 20 operates so as to follow the power command value. Therefore, even if it does not accumulate
  • the power adjustment unit 20 and the instantaneous power adjustment unit 30 do not adjust power even when power is input / output to / from the commercial system. I decided to make it. For this reason, even when power is input / output to / from a commercial system, power fluctuation can be suppressed.
  • Other operations of the second embodiment are the same as those of the first embodiment. Therefore, 2nd Embodiment can also acquire the effect of 1st Embodiment.
  • At least a part of the power adjustment system 1 and the power control apparatus 40 described in the above-described embodiment may be configured by hardware or software.
  • a program for realizing at least a part of the functions of the power adjustment system 1 and the power control apparatus 40 is stored in a recording medium such as a flexible disk or a CD-ROM, and is read and executed by a computer. Also good.
  • the recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
  • the speed of the control response in the power adjustment between the power generation unit and the load unit can be maintained, and the accumulated energy of the instantaneous power adjustment unit can be further reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A power conditioning system according to the present embodiment is provided with: a first power conditioning unit that performs, by power charge and discharge, power conditioning between a power generation unit and a load unit via a power transmission unit for transmitting generated power of the power generation unit to the load unit; a second power conditioning unit that performs power conditioning by power charge and discharge having a faster control response time than the first power conditioning unit, via the power transmission unit; a first control unit for performing control to decrease the difference between a power generation value of the power generation unit and a power consumption value of the load unit, with respect to the first power conditioning unit; and a second control unit. The second control unit decreases the difference between the power generation value of the power generation unit and a difference value obtained by subtracting a discharge power value of the first power conditioning unit from the power consumption value of the load unit, in a state in which the power consumption value of the load unit is larger, and in a state in which the power consumption value of the load unit is smaller, performs, with respect to the second power conditioning unit, control of the power charge and discharge for decreasing the difference between the generated power value of the power generation unit, and an addition value obtained by adding the power consumption value of the load unit and a charging power value of the first power conditioning unit.

Description

電力調整システム及び電力調整方法Power adjustment system and power adjustment method
 本発明の実施形態は、電力調整システム及び電力調整方法に関する。 Embodiments described herein relate generally to a power adjustment system and a power adjustment method.
 発電部から負荷部に供給される電力の過不足を、燃料電池などの電力の充放電で電力調整する電力調整システムが注目されている。このような電力調整システムは、例えば太陽電池と、二次電池と、水素貯蔵装置とを備えて構成されている。太陽電池は、負荷へ電力を供給し、太陽電池からの余剰電力は二次電池の充電に用いられる。負荷での消費電力が太陽電池からの発電電力を上回る時には、この二次電池からの放電により不足分の電力が負荷に供給される。また、水素貯蔵装置は、水素製造部と、水素蓄積部と、燃料電池とを備えて構成されている。水素製造部が太陽電池からの余剰電力により水を分解して発生させた水素は、水素蓄積部に蓄えられている。負荷での消費電力が太陽電池からの発電電力を上回る時には、水素蓄積部に蓄えられた水素を用いて燃料電池により発電された電力が放電され、負荷に供給される。 2. Description of the Related Art An electric power adjustment system that adjusts electric power by charging / discharging electric power from a fuel cell or the like has attracted attention as an excess or deficiency of electric power supplied from a power generation unit to a load unit. Such a power adjustment system includes, for example, a solar battery, a secondary battery, and a hydrogen storage device. The solar cell supplies power to the load, and surplus power from the solar cell is used for charging the secondary battery. When the power consumption at the load exceeds the generated power from the solar battery, the insufficient power is supplied to the load by the discharge from the secondary battery. The hydrogen storage device includes a hydrogen production unit, a hydrogen storage unit, and a fuel cell. The hydrogen produced by the hydrogen production unit by decomposing water with surplus power from the solar cell is stored in the hydrogen accumulation unit. When the power consumption at the load exceeds the power generated from the solar cell, the power generated by the fuel cell using the hydrogen stored in the hydrogen storage unit is discharged and supplied to the load.
 また、別の一例における電力調整システムは、発電部と、補助電源部と、燃料電池部と、制御部とを備えて、構成されている。この発電部が発電する電力の時間単位あるいは日単位の短期の変動量は、二次電池やコンデンサ等の補助電源部での充放電で補われ、安定化されている。また、この発電部が発電する電力の季節単位あるいは年間を通しての長期の変動量は、燃料電池部の充放電で補われ、安定化されている。すなわち、余剰電力により水を電気分解して水素が製造貯蔵され、電力が不足する場合に、燃料電池部がこの貯蔵した水素を燃料として使用して電力に再変換し放電される。制御部は、これらの発電部、補助電源部、および燃料電池部を統合的に制御するとともに、この発電システムによる発電量と電力需要とを常時監視し、この発電部が発電する電力量の短期の発電不足を補うように、この補助電源部とこの燃料電池部とのいずれか一方または双方に対して制御を行う。さらにまた、この制御部は、燃料電池部が製造貯蔵する水素の貯蔵量を、年間を通して調節する制御を行う。 In addition, the power adjustment system in another example includes a power generation unit, an auxiliary power supply unit, a fuel cell unit, and a control unit. The short-term fluctuation amount of the power generated by the power generation unit in terms of time or day is compensated and stabilized by charging / discharging in an auxiliary power source such as a secondary battery or a capacitor. In addition, the long-term fluctuation amount of the electric power generated by the power generation unit throughout the year or throughout the year is compensated by charging / discharging of the fuel cell unit and stabilized. That is, when hydrogen is produced and stored by electrolyzing water with surplus power and the power is insufficient, the fuel cell unit uses the stored hydrogen as fuel and reconverts it into electric power and is discharged. The control unit controls the power generation unit, the auxiliary power source unit, and the fuel cell unit in an integrated manner, and constantly monitors the power generation amount and the power demand by the power generation system, so that the power generation amount generated by the power generation unit is short-term. Control is performed on one or both of the auxiliary power supply unit and the fuel cell unit so as to compensate for the insufficient power generation. Furthermore, this control part performs control which adjusts the storage amount of the hydrogen which a fuel cell part manufactures and stores throughout the year.
特開2002-75388号公報JP 2002-75388 A 特開2006-164637号公報Japanese Patent Laid-Open No. 2006-164637
 しかしながら、上述の二次電池と燃料電池を用いた電力調整システムでは、二次電池と燃料電池の機能分担がなく、二次電池は燃料電池と同等に使用されている。このため、二次電池と燃料電池の設備容量は同等であり、二次電池のエネルギー蓄積容量は燃料電池に相当する大きさが必要とされる。 However, in the above-described power adjustment system using the secondary battery and the fuel cell, there is no division of functions between the secondary battery and the fuel cell, and the secondary battery is used in the same manner as the fuel cell. For this reason, the installation capacity of a secondary battery and a fuel cell is equivalent, and the magnitude | size equivalent to a fuel cell is required for the energy storage capacity of a secondary battery.
 また、上述の補助電源部と燃料電池部とを用いた電力調整システムでは、二次電池やコンデンサの補助電源システムは、時間単位あるいは日単位の短期の発電量を補いために用いられている。このため、二次電池やコンデンサの補助電源システムは、時間単位あるいは日単位の発電量を調整するエネルギー蓄積容量が必要とされる。 In the power adjustment system using the auxiliary power unit and the fuel cell unit described above, the auxiliary power system for the secondary battery and the capacitor is used to supplement the short-term power generation amount in hours or days. For this reason, the auxiliary power supply system for secondary batteries and capacitors requires an energy storage capacity that adjusts the power generation amount in units of hours or days.
 そこで、本発明が解決しようとする課題は、発電部と負荷部との間の電力調整における制御応答の速度を維持するとともに、瞬時電力調整部の蓄積エネルギーをより低減させることが可能な電力調整システム及び電力調整方法を提供することである。 Therefore, the problem to be solved by the present invention is to maintain the speed of the control response in the power adjustment between the power generation unit and the load unit and to reduce the accumulated energy of the instantaneous power adjustment unit. A system and power adjustment method are provided.
 本実施形態に係る電力調整システムは、発電部の発電電力を負荷部に伝達する電力伝達部を介して、前記発電部と前記負荷部との間の電力調整を、電力充放電により行う第1の電力調整部と、前記電力伝達部を介して、前記電力調整を、前記第1の電力調整部よりも制御応答の早い電力充放電により行う第2の電力調整部と、前記第1の電力調整部に対して、前記発電部の発電電力値と、前記負荷部の消費電力値と、の差を減少させる前記電力充放電の制御を行う第1の制御部と、前記第2の電力調整部に対して、電力充放電の制御を行う第2の制御部とを備え、前記第2の制御部は、前記発電部の発電電力値よりも前記負荷部の消費電力値の方が大きい状態では、前記発電部の発電電力値と、前記負荷部の消費電力値から前記第1の電力調整部の放電電力値を減じた差分値と、の差を減少させ、前記発電部の発電電力値よりも前記負荷部の消費電力値の方が小さい状態では、前記発電部の発電電力値と、前記負荷部の消費電力値及び前記第1の電力調整部の充電電力値を加算した加算値と、の差を減少させる電力充放電の制御を前記第2の電力調整部に対して行う。 The power adjustment system according to the present embodiment includes a first power adjustment unit that performs power adjustment between the power generation unit and the load unit through a power transmission unit that transmits generated power of the power generation unit to the load unit. A power adjustment unit, a second power adjustment unit configured to perform the power adjustment by power charging / discharging with a control response faster than that of the first power adjustment unit, and the first power. A first control unit that controls the power charging / discharging to reduce a difference between a power generation value of the power generation unit and a power consumption value of the load unit with respect to the adjustment unit, and the second power adjustment And a second control unit that controls power charging / discharging, wherein the second control unit has a larger power consumption value of the load unit than a power generation value of the power generation unit Then, from the power generation value of the power generation unit and the power consumption value of the load unit, the first power In the state where the difference between the difference value obtained by subtracting the discharge power value of the adjustment unit is reduced and the power consumption value of the load unit is smaller than the power generation value of the power generation unit, the power generation value of the power generation unit and The second power adjustment unit performs power charge / discharge control to reduce the difference between the power consumption value of the load unit and the added value obtained by adding the charging power value of the first power adjustment unit.
第1実施形態に係る電力調整システムの構成を示す図。The figure which shows the structure of the electric power adjustment system which concerns on 1st Embodiment. 電力調整部の構成例を説明する図。The figure explaining the structural example of an electric power adjustment part. 瞬時電力調整部の構成例を説明する図。The figure explaining the structural example of an instantaneous electric power adjustment part. 第1の制御部の構成を説明する図。The figure explaining the structure of a 1st control part. 第2の制御部の構成を説明する図。The figure explaining the structure of a 2nd control part. 瞬時電力調整部を用いた電力制御方法のフローチャートを示す図。The figure which shows the flowchart of the electric power control method using an instantaneous electric power adjustment part. 商用系統から電力が入出力場合の電力調整システムの構成を示す図。The figure which shows the structure of the electric power adjustment system in case electric power is input / output from a commercial system.
 以下、本発明の実施形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第1実施形態)
 第1実施形態に係る電力制御装置は、発電部と負荷部との間の電力調整を、電力調整部の電力充放電、及び電力調整部よりも制御応答の早い瞬時電力調整部の電力充放電により行なわせる場合に、電力調整部が充放電する電力が増加するにしたがい瞬時電力調整部が充放電する電力を減少せることにより、電力調整における制御応答の速度を維持するとともに、瞬時電力調整部の蓄積エネルギーをより低減させようとしたものである。より詳細を、以下に説明する。
(First embodiment)
In the power control device according to the first embodiment, the power adjustment between the power generation unit and the load unit is performed by using the power charge / discharge of the power adjustment unit and the power charge / discharge of the instantaneous power adjustment unit whose control response is faster than the power adjustment unit. When the power is adjusted by the power adjustment unit, as the power charged / discharged by the power adjustment unit increases, the instantaneous power adjustment unit reduces the power charged / discharged, thereby maintaining the speed of the control response in the power adjustment and the instantaneous power adjustment unit. It is intended to further reduce the stored energy. More details will be described below.
 図1は、第1実施形態に係る電力調整システム1の構成を示す図である。 FIG. 1 is a diagram showing a configuration of a power adjustment system 1 according to the first embodiment.
 第1実施形態に係る電力調整システム1は、電力伝達部10と、電力調整部20と、瞬時電力調整部30と、電力制御装置40とを備えて構成されている。電力伝達部10は、発電部2の発電電力を負荷部4に伝達する。この電力伝達部10は、例えば電力を伝導する伝導線で構成されており、第1の電流測定部12と、第2の電流測定部14と、第3の電流測定部16とを備えて構成されている。 The power adjustment system 1 according to the first embodiment includes a power transmission unit 10, a power adjustment unit 20, an instantaneous power adjustment unit 30, and a power control device 40. The power transmission unit 10 transmits the generated power of the power generation unit 2 to the load unit 4. The power transmission unit 10 is formed of a conductive wire that conducts power, for example, and includes a first current measurement unit 12, a second current measurement unit 14, and a third current measurement unit 16. Has been.
 第1の電流測定部12は、発電部2の発電電流を測定し、発電電流値を示す電流信号を出力する。また、第2の電流測定部14は負荷部4の消費電流を測定し、消費電流値を示す電流信号を出力する。第3の電流測定部16は、端部e1から入出力される入出力電流を測定し、入出力電流値を示す電流信号を出力する。ここで、矢印の向きの方向に流れる電流が正の値を有する電流値として測定され、逆向きの方向に流れる電流が負の値を有する電流値として測定される。 The first current measuring unit 12 measures the generated current of the power generating unit 2 and outputs a current signal indicating the generated current value. The second current measuring unit 14 measures the current consumption of the load unit 4 and outputs a current signal indicating the current consumption value. The third current measuring unit 16 measures the input / output current input / output from the end e1, and outputs a current signal indicating the input / output current value. Here, the current flowing in the direction of the arrow is measured as a current value having a positive value, and the current flowing in the reverse direction is measured as a current value having a negative value.
 電力調整部20は、電力伝達部10の端部e1と接続され、電力伝達部10を介して、電力充放電により、発電部2と負荷部4との間の電力調整を行う。ここで、電力調整部20が端部e1に向けて電流を出力している状態が、電力調整部20の放電状態に対応し、端部e1から電流が入力されている状態が、電力調整部20の充電状態に対応する。なお、ここでの充電は、電力の蓄積、或いは、電力を蓄積エネルギーとして蓄積することなどを意味する。例えば、余剰電力を用いて水を分解して水素を得ることなども、充電を意味する。 The power adjustment unit 20 is connected to the end e1 of the power transmission unit 10 and performs power adjustment between the power generation unit 2 and the load unit 4 by power charging / discharging via the power transmission unit 10. Here, the state where the power adjustment unit 20 outputs current toward the end e1 corresponds to the discharge state of the power adjustment unit 20, and the state where current is input from the end e1 is the power adjustment unit. Corresponds to 20 charging states. Note that charging here means accumulation of electric power or accumulation of electric power as accumulated energy. For example, the use of surplus power to decompose water to obtain hydrogen also means charging.
 瞬時電力調整部30は、電力伝達部10の端部e2と接続され、電力伝達部10を介して、電力調整部よりも制御応答の早い電力の充放電により、発電部2と負荷部4との間の電力調整を行う。ここで、瞬時電力調整部30が端部e2に向けて電流を出力している状態が、瞬時電力調整部30の放電状態に対応し、端部e2から電流が入力されている状態が、瞬時電力調整部30の充電状態に対応する。 The instantaneous power adjustment unit 30 is connected to the end e <b> 2 of the power transmission unit 10, and the power generation unit 2, the load unit 4, and the like are charged and discharged through the power transmission unit 10 with a control response faster than that of the power adjustment unit. Power adjustment between. Here, the state in which the instantaneous power adjustment unit 30 outputs current toward the end e2 corresponds to the discharge state of the instantaneous power adjustment unit 30, and the state in which current is input from the end e2 is instantaneous. This corresponds to the state of charge of the power adjustment unit 30.
 電力制御装置40は、電力調整部20と、瞬時電力調整部30とを、制御する。すなわち、この電力制御装置40は、第1の制御部42と、第2の制御部44と、主制御部46と、記憶部48と、を備えて構成されている。 The power control device 40 controls the power adjustment unit 20 and the instantaneous power adjustment unit 30. That is, the power control device 40 includes a first control unit 42, a second control unit 44, a main control unit 46, and a storage unit 48.
 第1の制御部42は、発電部2の発電電力値と、負荷部4の消費電力値と、の差を減少させる電力充放電の制御を電力調整部20に対して行うのである。すなわち、この第1の制御部42は、負荷部4の消費電力値が発電部2の発電電力値より大きい場合、電力調整部20に電力の放電を行わせる制御を行う。一方で、負荷部4の消費電力値が発電部2の発電電力値より小さい場合、電力調整部20に電力の充電を行わせる制御を行うのである。 The first control unit 42 controls the power adjustment unit 20 to control power charging / discharging to reduce the difference between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4. That is, when the power consumption value of the load unit 4 is larger than the power generation value of the power generation unit 2, the first control unit 42 performs control to cause the power adjustment unit 20 to discharge power. On the other hand, when the power consumption value of the load unit 4 is smaller than the power generation value of the power generation unit 2, the power adjustment unit 20 performs control to charge the power.
 第2の制御部44は、発電部2の発電電力値と、電力調整部20の充放電電力値と負荷部4の消費電力値とを加えた電力値と、の差を減少させる電力充放電の制御を瞬時電力調整部30に対して行う。すなわち、第2の制御部44は、電力調整部20が充放電する電力が増加するにしたがい、瞬時電力調整部30が充放電する電力を減少せる制御を瞬時電力調整部30に対して行うのである。 The second control unit 44 reduces the difference between the generated power value of the power generation unit 2 and the power value obtained by adding the charge / discharge power value of the power adjustment unit 20 and the power consumption value of the load unit 4. Is controlled with respect to the instantaneous power adjustment unit 30. That is, the second control unit 44 performs control for the instantaneous power adjustment unit 30 to reduce the power charged / discharged by the instantaneous power adjustment unit 30 as the power charged / discharged by the power adjustment unit 20 increases. is there.
 主制御部46は、第1の制御部42と、第2の制御部44との制御を行い、例えばCPUで構成されている。記憶部48は、主制御部46が実行する制御プログラムを格納したり、主制御部46によるプログラム実行時の作業領域を提供したりする。なお、第1の制御部42と、第2の制御部44とは、独立に動作するように構成してもよい。この場合、主制御部46を第1の制御部42及び第2の制御部44のそれぞれが有する構成にしてもよい。或いは、第1の制御部42及び第2の制御部44のそれぞれは、主制御部46を有さない構成にしてもよい。 The main control unit 46 controls the first control unit 42 and the second control unit 44, and is composed of, for example, a CPU. The storage unit 48 stores a control program executed by the main control unit 46 and provides a work area when the main control unit 46 executes the program. Note that the first control unit 42 and the second control unit 44 may be configured to operate independently. In this case, the main control unit 46 may be included in each of the first control unit 42 and the second control unit 44. Alternatively, each of the first control unit 42 and the second control unit 44 may be configured without the main control unit 46.
 電圧測定部6は電力伝達部10の電圧を測定し、電力伝達部10の電圧値を示す電圧信号を、第1の制御部42及び第2の制御部44それぞれへ出力する。 The voltage measurement unit 6 measures the voltage of the power transmission unit 10 and outputs a voltage signal indicating the voltage value of the power transmission unit 10 to each of the first control unit 42 and the second control unit 44.
 図1に示すように、発電部2が電力を供給する上流側から負荷部4が電力を消費する下流側に向けて、第1の電流測定部12、瞬時電力調整部30の充放電端部e2、第3の電流測定部16、電力調整部20の充放電端部e1、及び第2の電流測定部14が順に設けられている。第2の制御部44は、発電部2の発電電力値、電力調整部20の充放電電力値、及び負荷部4の消費電力値を用いている。このため、発電電力値、充放電電力値、及び消費電力値を取得する必要がある。この場合、これらの電力値を演算する演算回数をできるだけ減らすことにより、システム効率をあげることが可能である。 As shown in FIG. 1, the charging / discharging end of the first current measuring unit 12 and the instantaneous power adjusting unit 30 from the upstream side where the power generation unit 2 supplies power toward the downstream side where the load unit 4 consumes power. e2, the third current measurement unit 16, the charge / discharge end e1 of the power adjustment unit 20, and the second current measurement unit 14 are provided in this order. The second control unit 44 uses the generated power value of the power generation unit 2, the charge / discharge power value of the power adjustment unit 20, and the power consumption value of the load unit 4. For this reason, it is necessary to acquire the generated power value, the charge / discharge power value, and the power consumption value. In this case, system efficiency can be increased by reducing the number of times of calculating these power values as much as possible.
 例えば、仮に瞬時電力調整部30の充放電端部e2、及び電力調整部20の充放電端部e1のいずれかを、第1の電流測定部12の上流側に配置する場合、発電部2の発生電流を得るためには、第1の電流測定部12の測定値と、瞬時電力調整部30の電流値、及び電力調整部20の電流値いずれかとの減算が必要になる。このため、発電部2の発電電流を演算なしで得るためには、第1の電流測定部12の測定値を最上流に配置するのが好ましい。同様に、負荷部4の消費電力を演算なしで得るためには、第2の電流測定部14の測定値を最下流に配置するのが好ましい。 For example, if any one of the charging / discharging end e2 of the instantaneous power adjusting unit 30 and the charging / discharging end e1 of the power adjusting unit 20 is arranged on the upstream side of the first current measuring unit 12, for example, In order to obtain the generated current, it is necessary to subtract between the measured value of the first current measuring unit 12, the current value of the instantaneous power adjusting unit 30, and the current value of the power adjusting unit 20. For this reason, in order to obtain the generated current of the power generation unit 2 without calculation, it is preferable to arrange the measurement value of the first current measurement unit 12 at the most upstream. Similarly, in order to obtain the power consumption of the load unit 4 without calculation, it is preferable to arrange the measurement value of the second current measurement unit 14 on the most downstream side.
 また、電力調整部20の入出力電流を演算なしで取得するためには、第3の電流測定部16は、電力調整部20の充放電端部e1と電力調整部20との間に配置するのが好ましい。このように、上流側から第1の電流測定部12、第3の電流測定部16、及び電力調整部20の充放電端部e1、及び第2の電流測定部14を、順に並べることで演算処理を効率化できる。また、瞬時電力調整部30の充放電端部e2も第1の電流測定部12と第2の電流測定部14との間に配置することが、上述のとおり、好ましい。なお、本実施形態では、電力調整部20が第1の電力調整部に対応し、瞬時電力調整部30が第2の電力調整部に対応する。 In order to obtain the input / output current of the power adjustment unit 20 without calculation, the third current measurement unit 16 is disposed between the charge / discharge end e1 of the power adjustment unit 20 and the power adjustment unit 20. Is preferred. As described above, the first current measurement unit 12, the third current measurement unit 16, the charge / discharge end e1 of the power adjustment unit 20, and the second current measurement unit 14 are sequentially arranged from the upstream side. Processing can be made more efficient. Further, as described above, it is preferable that the charging / discharging end portion e2 of the instantaneous power adjusting unit 30 is also disposed between the first current measuring unit 12 and the second current measuring unit 14. In the present embodiment, the power adjustment unit 20 corresponds to the first power adjustment unit, and the instantaneous power adjustment unit 30 corresponds to the second power adjustment unit.
 図2は、電力調整部20の構成例を説明する図である。電力調整部20は、水素製造部202と、水素蓄積部204と、水素発電部206と、を備えて構成されている。 FIG. 2 is a diagram illustrating a configuration example of the power adjustment unit 20. The power adjustment unit 20 includes a hydrogen production unit 202, a hydrogen storage unit 204, and a hydrogen power generation unit 206.
 水素製造部202は、第1の制御部42の制御信号に従い、余剰電力を用いて電力を充電する。すなわち、水素製造部202は、第1の制御部42の制御信号に従い水素を製造する。 The hydrogen production unit 202 charges power using surplus power according to the control signal of the first control unit 42. That is, the hydrogen production unit 202 produces hydrogen according to the control signal of the first control unit 42.
 水素蓄積部204は、水素製造部202とパイプラインで接続され、水素を蓄積する。すなわち、水素蓄積部204には、水素製造部202が製造した水素がパイプラインを介して供給される。 The hydrogen accumulation unit 204 is connected to the hydrogen production unit 202 through a pipeline and accumulates hydrogen. That is, hydrogen produced by the hydrogen production unit 202 is supplied to the hydrogen accumulation unit 204 via a pipeline.
 水素発電部206は、第1の制御部42の制御信号に従い水素蓄積部204の水素を用いて発電する。この水素発電部206は、例えば、燃料電池であり、例えば0.1s程度の応答速度を有するのである。 水素蓄積部204の水素を用いて発電する場合、第2の制御部44は、水素貯蔵部の水素エネルギー残量情報に基づいて、蓄電部304にエネルギーを蓄積させる制御を行ってもよい。これにより、例えば水素蓄積部204の水素エネルギーが充足された場合には、蓄電部304にエネルギーを優先して蓄積させるといった連携が可能である。このように、電力調整部20と瞬時電力調整部30とを連携させた制御が可能である。なお、電力調整部20は水素システムに限らずレドックスフロー電池などを用いてもよい。 The hydrogen power generation unit 206 generates power using the hydrogen stored in the hydrogen storage unit 204 in accordance with the control signal from the first control unit 42. The hydrogen power generation unit 206 is a fuel cell, for example, and has a response speed of, for example, about 0.1 s. When generating electric power using hydrogen of the hydrogen storage unit 204, the second control unit 44 may perform control for causing the power storage unit 304 to store energy based on the hydrogen energy remaining amount information of the hydrogen storage unit. Thereby, for example, when the hydrogen energy of the hydrogen storage unit 204 is satisfied, the power storage unit 304 can store energy with priority. In this way, control in which the power adjustment unit 20 and the instantaneous power adjustment unit 30 are linked is possible. The power adjustment unit 20 is not limited to a hydrogen system, and a redox flow battery or the like may be used.
 図3は、瞬時電力調整部30の構成例を説明する図である。瞬時電力調整部30は、充放電部302と、蓄電部304とを、備えて構成されている。 FIG. 3 is a diagram illustrating a configuration example of the instantaneous power adjustment unit 30. The instantaneous power adjustment unit 30 includes a charge / discharge unit 302 and a power storage unit 304.
 充放電部302は、電力伝達部10の端部e2に接続され、第2の制御部44からの電力指令出力に従って充放電電力を制御する。この充放電部302は、DC/DCコンバータ、AC/DCコンバータのいずれかで構成されている。これにより、直流電源、及び交流電源のいずれにも対応可能に構成される。 The charging / discharging unit 302 is connected to the end e <b> 2 of the power transmission unit 10, and controls charging / discharging power according to the power command output from the second control unit 44. The charging / discharging unit 302 is configured by either a DC / DC converter or an AC / DC converter. Thereby, it is comprised so that it can respond to both a direct-current power supply and an alternating current power supply.
 蓄電部304は、充放電部302の制御にしたがい、余剰電力を用いて蓄積エネルギーを蓄積する。すなわち、蓄電部304は、二次電池、及び大容量キャパシタのいずれかで構成され、余剰電力を蓄積エネルギーとして蓄積する。この大容量キャパシタは、例えば10ms以内の応答速度を有するのである。また、この蓄電部304は、充放電部302の制御にしたがい、電力を放電する。 The power storage unit 304 stores the stored energy using surplus power in accordance with the control of the charge / discharge unit 302. In other words, the power storage unit 304 is configured with either a secondary battery or a large-capacity capacitor, and stores surplus power as stored energy. This large-capacity capacitor has a response speed within 10 ms, for example. The power storage unit 304 discharges electric power according to the control of the charge / discharge unit 302.
 また、第2の制御部44は、蓄電部304の電圧情報、充放電電流(入出力電流)情報、及び温度情報を検出し、蓄電部304のエネルギー残量を演算してもよい。この場合、第2の制御部44は、このエネルギー残量に基づいて充放電部302を制御する。また、第1の制御部42は、蓄電部304のエネルギー残量に応じて電力調整部20に対して制御を行ってもよい。これにより、蓄電部304への入出力エネルギーを電力調整部20と連携させることが可能である。例えば、蓄電部304のエネルギー蓄積が充足された場合、電力調整部20が余剰電力を優先して用いることで、蓄電部304へ蓄積されるエネルギーを抑制することが可能である。この場合、蓄電部304のエネルギー残量を第1の制御部42も演算してもよく、第2の制御部44から取得してもよい。このように、電力調整部20と瞬時電力調整部30とを連携させた制御が可能である。 In addition, the second control unit 44 may detect voltage information of the power storage unit 304, charge / discharge current (input / output current) information, and temperature information, and calculate the remaining energy of the power storage unit 304. In this case, the second control unit 44 controls the charge / discharge unit 302 based on the remaining energy. Further, the first control unit 42 may control the power adjustment unit 20 in accordance with the remaining energy of the power storage unit 304. Thereby, the input / output energy to / from the power storage unit 304 can be linked with the power adjustment unit 20. For example, when the energy storage of the power storage unit 304 is satisfied, the power adjustment unit 20 can preferentially use the surplus power, so that the energy stored in the power storage unit 304 can be suppressed. In this case, the remaining energy of the power storage unit 304 may be calculated by the first control unit 42 or may be acquired from the second control unit 44. In this way, control in which the power adjustment unit 20 and the instantaneous power adjustment unit 30 are linked is possible.
 図4は、第1の制御部42の構成を説明する図である。第1の制御部42は、第1の乗算器422と、第2の乗算器424と、第1の加算器426と、第1の指示部428と、第2の加算器430と、第1のPI制御回路432とを備えて構成されている。 FIG. 4 is a diagram illustrating the configuration of the first control unit 42. The first control unit 42 includes a first multiplier 422, a second multiplier 424, a first adder 426, a first instruction unit 428, a second adder 430, The PI control circuit 432 is configured.
 第1の乗算器422は、電圧測定部6が測定した電力伝達部10の電圧値を示す電圧信号と、第1の電流測定部12が測定した発電部2の発電電流値を示す電流信号とに基づき、電力伝達部10の電圧値と発電部2の発電電流値の乗算を行う。これにより、第1の乗算器422は、発電部2の発電電力値を演算し、発電電力信号として出力する。 The first multiplier 422 includes a voltage signal indicating the voltage value of the power transmission unit 10 measured by the voltage measurement unit 6, and a current signal indicating the generated current value of the power generation unit 2 measured by the first current measurement unit 12. Based on the above, the voltage value of the power transmission unit 10 and the generated current value of the power generation unit 2 are multiplied. Thereby, the first multiplier 422 calculates the generated power value of the power generation unit 2 and outputs it as a generated power signal.
 第2の乗算器424は、電圧測定部6が測定した電力伝達部10の電圧値を示す電圧信号と、第2の電流測定部14が測定した負荷部4の消費電流値を示す電流信号とに基づき、負荷部4の電圧値と負荷部4の消費電流値の乗算を行う。これにより、第2の乗算器424は、負荷部4の消費電力値を演算し、消費電力信号として出力する。 The second multiplier 424 includes a voltage signal indicating the voltage value of the power transfer unit 10 measured by the voltage measuring unit 6 and a current signal indicating the current consumption value of the load unit 4 measured by the second current measuring unit 14. Is multiplied by the voltage value of the load unit 4 and the current consumption value of the load unit 4. Thus, the second multiplier 424 calculates the power consumption value of the load unit 4 and outputs it as a power consumption signal.
 第1の加算器426は、発電部2の発電電力信号と、負荷部4の消費電力信号とに基づき、発電部2の発電電力値と負荷部4の消費電力値との差分値を演算し、差分値を示す第1の電力差分値信号を出力する。 The first adder 426 calculates a difference value between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4 based on the power generation signal of the power generation unit 2 and the power consumption signal of the load unit 4. The first power difference value signal indicating the difference value is output.
 第2の加算器430は、第1の指示部428で指示された第1の電力指令値と、第1の電力差分値信号が示す差分値との差分値を演算し、この差分値を示す第2の電力差分値信号を出力する。 The second adder 430 calculates a difference value between the first power command value instructed by the first instruction unit 428 and the difference value indicated by the first power difference value signal, and indicates the difference value. The second power difference value signal is output.
 第1のPI制御回路432は、第2の電力差分値信号に基づき、電力調整部20の充放電電力を制御する。ここでの、第1の電力指令値は、電力調整部20の充放電電力値にバイアスをかける値である。例えば第1の電力指令値が10であれば、発電部2の発電電力値と負荷部4の消費電力値の電力差分値に10を加算した電力が放充電される。また、例えば第1の電力指令値が0であれば、発電部2の発電電力値と負荷部4の消費電力値との電力差分値に応じた電力が放充電される。 The first PI control circuit 432 controls the charge / discharge power of the power adjustment unit 20 based on the second power difference value signal. Here, the first power command value is a value for biasing the charge / discharge power value of the power adjustment unit 20. For example, if the first power command value is 10, the power obtained by adding 10 to the power difference value between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4 is discharged and charged. For example, if the first power command value is 0, the power corresponding to the power difference value between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4 is discharged and charged.
 このように、第1の乗算器422で発電部2の発電電力値が演算され、第2の乗算器424で負荷部4の消費電力値が演算される。続いて、第1の加算器426で発電電力値と消費電力値との差分値が演算される。第1の加算器426で演算された差分値が負の値であれば、発電電力値の方が消費電力値よりも小さい場合であり、つまり発電電力が不足している場合である。一方で、第1の加算器426で演算された差分値が正の値であれば、発電電力値の方が、消費電力値が大きい場合であり、つまり発電電力が余剰している場合である。なお、ここでは、第1の電力指令値が0の場合を説明する。 Thus, the first multiplier 422 calculates the power generation value of the power generation unit 2, and the second multiplier 424 calculates the power consumption value of the load unit 4. Subsequently, the first adder 426 calculates a difference value between the generated power value and the consumed power value. If the difference value calculated by the first adder 426 is a negative value, the generated power value is smaller than the consumed power value, that is, the generated power is insufficient. On the other hand, if the difference value calculated by the first adder 426 is a positive value, the generated power value is a larger power consumption value, that is, the generated power is surplus. . Here, a case where the first power command value is 0 will be described.
 次に、第1の電力指令値からこの差分値を減じた電力値が第2の加算器430から出力される。この第2の加算器430から出力される電力値が正の値の場合、第1のPI制御回路432は、この正の電力値が大きくなるにしたがい、電力調整部20に対してより多くの電力を放電させる制御を行う。このことから分かるように、発電電力が不足している場合、第1のPI制御回路432は、消費電力値と発電電力値との差を減少させるように、電力調整部20に対して電力を放電させるのである。 Next, a power value obtained by subtracting this difference value from the first power command value is output from the second adder 430. When the power value output from the second adder 430 is a positive value, the first PI control circuit 432 increases more power with respect to the power adjustment unit 20 as the positive power value increases. Control to discharge power. As can be seen from this, when the generated power is insufficient, the first PI control circuit 432 supplies power to the power adjustment unit 20 so as to reduce the difference between the power consumption value and the generated power value. It is discharged.
 一方で、この第2の加算器430から出力される電力値が負の値の場合、第1のPI制御回路432は、この負の電力値が小さくなるにしたがい、電力調整部20に対してより多くの電力を充電させる制御を行う。このことから分かるように、発電電力が余剰している場合、第1のPI制御回路432は、消費電力値と発電電力値との差を減少させるように、電力調整部20に対して電力を充電させるのである。 On the other hand, when the power value output from the second adder 430 is a negative value, the first PI control circuit 432 decreases the negative power value with respect to the power adjustment unit 20. Control to charge more power. As can be seen from this, when the generated power is surplus, the first PI control circuit 432 supplies power to the power adjustment unit 20 so as to reduce the difference between the power consumption value and the generated power value. It is charged.
 このように、第1の制御部42は、発電部2の発電電力値と、負荷部4の消費電力値と、の差を減少させる電力充放電の制御を電力調整部20に対して行うのである。また、第1の電力指令値を設定した場合には、第1の電力指令値で指定された電力が、更に充放電されるのである。なお、本実施形態では、第1の乗算器422が第1の演算器に対応し、第2の乗算器424が第2の演算器に対応し、第1の加算器426が第3の演算器に対応し、第2の加算器430が第4の演算器に対応する。 Thus, since the 1st control part 42 performs control of electric power charge / discharge which reduces the difference of the electric power generation value of the electric power generation part 2, and the electric power consumption value of the load part 4, with respect to the electric power adjustment part 20. is there. In addition, when the first power command value is set, the power specified by the first power command value is further charged / discharged. In the present embodiment, the first multiplier 422 corresponds to the first arithmetic unit, the second multiplier 424 corresponds to the second arithmetic unit, and the first adder 426 corresponds to the third arithmetic unit. The second adder 430 corresponds to a fourth arithmetic unit.
 図5は、第2の制御部44の構成を説明する図である。図1と同等の構成には、同じ番号を付して説明を省略する。第2の制御部44は、第3の乗算器442と、第4の乗算器444と、第5の乗算器446と、第3の加算器448と、第4の加算器450と、第2の指示部452と、第5の加算器454と、第2のPI制御回路456とを備えて構成されている。 FIG. 5 is a diagram illustrating the configuration of the second control unit 44. The same components as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. The second control unit 44 includes a third multiplier 442, a fourth multiplier 444, a fifth multiplier 446, a third adder 448, a fourth adder 450, The instruction unit 452, the fifth adder 454, and the second PI control circuit 456 are configured.
 第3の乗算器442は、電圧測定部6が測定した電力伝達部10の電圧値を示す電圧信号と、第1の電流測定部12が測定した発電部2の発電電流値を示す電流信号とに基づき、電力伝達部10の電圧値と発電部2の発電電流値の乗算を行う。これにより、第3の乗算器442は、発電部2の発電電力値を演算し、発電電力信号として出力する。 The third multiplier 442 includes a voltage signal indicating the voltage value of the power transmission unit 10 measured by the voltage measurement unit 6, and a current signal indicating the generated current value of the power generation unit 2 measured by the first current measurement unit 12. Based on the above, the voltage value of the power transmission unit 10 and the generated current value of the power generation unit 2 are multiplied. Thereby, the 3rd multiplier 442 calculates the electric power generation value of the electric power generation part 2, and outputs it as an electric power generation signal.
 第4の乗算器444は、電圧測定部6が測定した電力伝達部10の電圧値を示す電圧信号と、第2の電流測定部14が測定した負荷部4の消費電流値を示す電流信号とに基づき、負荷部4の電圧値と負荷部4の消費電流値の乗算を行う。これにより、第4の乗算器444は、負荷部4の消費電力値を演算し、消費電力信号として出力する。 The fourth multiplier 444 includes a voltage signal indicating the voltage value of the power transmission unit 10 measured by the voltage measurement unit 6, and a current signal indicating the current consumption value of the load unit 4 measured by the second current measurement unit 14. Is multiplied by the voltage value of the load unit 4 and the current consumption value of the load unit 4. Thus, the fourth multiplier 444 calculates the power consumption value of the load unit 4 and outputs it as a power consumption signal.
 第5の乗算器446は、電圧測定部6が測定した電力伝達部10の電圧値を示す電圧信号と、第3の電流測定部16が測定した電力調整部20の電流値を示す電流信号とに基づき、負荷部4の電圧値と電力調整部20の電流値の乗算を行う。これにより、第5の乗算器446は、電力調整部20の充放電電力値を演算し、充放電電力信号として出力する。 The fifth multiplier 446 includes a voltage signal indicating the voltage value of the power transfer unit 10 measured by the voltage measurement unit 6 and a current signal indicating the current value of the power adjustment unit 20 measured by the third current measurement unit 16. Is multiplied by the voltage value of the load unit 4 and the current value of the power adjustment unit 20. As a result, the fifth multiplier 446 calculates the charge / discharge power value of the power adjustment unit 20 and outputs it as a charge / discharge power signal.
 第3の加算器448は、消費電力信号と、充放電電力信号とに基づき、負荷部4の消費電力値と電力調整部20の充放電電力値とを加算する。続いて、この演算で得られた第3の電力加算値を示す第3の電力加算値信号を出力する。 The third adder 448 adds the power consumption value of the load unit 4 and the charge / discharge power value of the power adjustment unit 20 based on the power consumption signal and the charge / discharge power signal. Subsequently, a third power addition value signal indicating the third power addition value obtained by this calculation is output.
 第4の加算器450は、発電電力信号と、第3の電力加算値信号と、に基づき、発電部2の発電電力値と第3の電力加算値との差分値を演算する。すなわち、発電部2の発電電力値と、電力調整部20の入出力電力値及び負荷部4の消費電力値の加算値と、の差を示す第4の電力差分値信号を出力する。 The fourth adder 450 calculates a difference value between the generated power value of the power generation unit 2 and the third power added value based on the generated power signal and the third power added value signal. That is, a fourth power difference value signal indicating the difference between the generated power value of the power generation unit 2 and the added value of the input / output power value of the power adjustment unit 20 and the power consumption value of the load unit 4 is output.
 第5の加算器454は、第2の指示部452で指示された第2の電力指令値と、第4の電力差分値との差分値を演算し、この差分値を第5の電力差分値信号として出力する。 The fifth adder 454 calculates a difference value between the second power command value instructed by the second instruction unit 452 and the fourth power difference value, and uses the difference value as the fifth power difference value. Output as a signal.
 第2のPI制御回路456は、第5の電力差分値信号に基づき、瞬時電力調整部30の充放電電力を制御する。ここでの、第2の電力指令値は、瞬時電力調整部30での充放電電力値にバイアスをかける値である。例えば第2の電力指令値が0であれば、発電部2の発電電力値と、電力調整部20の入出力電力値と負荷部4の消費電力値との加算値と、の差に応じた電力が放充電される。また、例えば第2の電力指令値が10であれば、発電部2の発電電力値と、電力調整部20の入出力電力値と負荷部4の消費電力値との加算値と、の差に10を加えた電力が放充電される。 The second PI control circuit 456 controls the charge / discharge power of the instantaneous power adjustment unit 30 based on the fifth power difference value signal. Here, the second power command value is a value that biases the charge / discharge power value in the instantaneous power adjustment unit 30. For example, if the second power command value is 0, it corresponds to the difference between the generated power value of the power generation unit 2 and the added value of the input / output power value of the power adjustment unit 20 and the power consumption value of the load unit 4 Electric power is discharged. For example, if the second power command value is 10, the difference between the generated power value of the power generation unit 2 and the added value of the input / output power value of the power adjustment unit 20 and the power consumption value of the load unit 4 is calculated. The power plus 10 is discharged.
 このように、第3の乗算器442で発電部2の発電電力値が演算され、第4の乗算器444で負荷部4の消費電力値が演算され、第5の乗算器446で電力調整部20の充放電電力値が演算される。続いて、第3の加算器448で負荷部4の消費電力値と電力調整部20の充放電電力値が加算される。この場合、上述したように、電力調整部20から端部e1に向かって流れる電流は、負の値を有している。 Thus, the third multiplier 442 calculates the generated power value of the power generation unit 2, the fourth multiplier 444 calculates the power consumption value of the load unit 4, and the fifth multiplier 446 calculates the power adjustment unit. Twenty charge / discharge power values are calculated. Subsequently, the third adder 448 adds the power consumption value of the load unit 4 and the charge / discharge power value of the power adjustment unit 20. In this case, as described above, the current flowing from the power adjustment unit 20 toward the end e1 has a negative value.
 このため、電力調整部20が電力を放電している状態にある場合には、電力調整部20の充放電力値も負の値として演算されるので、第3の加算器448では負荷部4の消費電力値と電力調整部20の放電電力値との差分値が演算されるのである。なお、ここでは、第1の電力指令値、及び第2の電力指令値が0の場合について説明する。 For this reason, when the power adjustment unit 20 is in a state of discharging power, the charge / discharge force value of the power adjustment unit 20 is also calculated as a negative value, and therefore the third adder 448 loads the load unit 4. The difference value between the power consumption value and the discharge power value of the power adjustment unit 20 is calculated. Here, a case where the first power command value and the second power command value are 0 will be described.
 続いて、第4の加算器450では、この差分値が発電電力値から減算される。つまり、電力調整部20が電力を放電している状態にある場合には、発電部2の発電電力値と、負荷部4の消費電力値から電力調整部20から放電される放電電力値を減算して得られる差分値と、の差が演算される。すなわち、消費電力値から、発電電力値及び電力調整部20の放電電力値を減じた値が得られるのである。第2の制御部44では、この値に応じて、瞬時電力調整部30に放電させる制御を行うのである。 Subsequently, in the fourth adder 450, this difference value is subtracted from the generated power value. That is, when the power adjustment unit 20 is in the state of discharging power, the generated power value of the power generation unit 2 and the discharge power value discharged from the power adjustment unit 20 from the power consumption value of the load unit 4 are subtracted. The difference between the difference value obtained in this way is calculated. That is, a value obtained by subtracting the generated power value and the discharge power value of the power adjustment unit 20 from the power consumption value is obtained. The second control unit 44 performs control to cause the instantaneous power adjustment unit 30 to discharge according to this value.
 このことから分かるよう、電力調整部20からの放電電力が瞬時電力調整部30の制御応答に遅れて増加してくると、瞬時電力調整部30の放電電力は減少するように制御されるのである。 As can be seen from this, when the discharge power from the power adjustment unit 20 increases behind the control response of the instantaneous power adjustment unit 30, the discharge power of the instantaneous power adjustment unit 30 is controlled to decrease. .
 一方で、電力調整部20が電力を充電している状態にある場合には、電力調整部20の充放電力値は正の値として演算されるので、第3の加算器448では負荷部4の消費電力値と電力調整部20の放電電力値との加算値が演算されるのである。続いて、第3の加算器448では、発電部2の発電電力値からこの加算値が減算される。つまり、電力調整部20が電力を放電している状態にある場合、発電部2の発電電力値と、負荷部4の消費電力値及び電力調整部20に充電される充電電力値の加算値と、の差が演算される。すなわち、発電電力値から消費電力値及び電力調整部20の充電電力値を減じた値が得られるのである。 On the other hand, when the power adjustment unit 20 is in a state of charging power, the charge / discharge force value of the power adjustment unit 20 is calculated as a positive value. The sum of the power consumption value and the discharge power value of the power adjustment unit 20 is calculated. Subsequently, in the third adder 448, this added value is subtracted from the generated power value of the power generation unit 2. That is, when the power adjustment unit 20 is in the state of discharging power, the generated power value of the power generation unit 2, the power consumption value of the load unit 4, and the added value of the charging power value charged in the power adjustment unit 20 The difference between is calculated. That is, a value obtained by subtracting the power consumption value and the charging power value of the power adjustment unit 20 from the generated power value is obtained.
 第2の制御部44では、この値に応じて、瞬時電力調整部30に充電させる制御を行うのである。このことから分かるよう、電力調整部20の充電電力が瞬時電力調整部30の制御応答に遅れて増加してくると、瞬時電力調整部30の充電電力は減少するように制御されるのである。また、第2の電力指令値を設定した場合には、第2の電力指令値で指定された電力が、更に充放電されるのである。 The second control unit 44 controls the instantaneous power adjustment unit 30 to charge according to this value. As can be seen from this, when the charging power of the power adjustment unit 20 increases with a delay from the control response of the instantaneous power adjustment unit 30, the charging power of the instantaneous power adjustment unit 30 is controlled to decrease. In addition, when the second power command value is set, the power specified by the second power command value is further charged / discharged.
 これらのことから分かるように、電力調整部20は、発電部2の発電電力値と負荷部4の消費電力値との差を減少する電力の充放電調整を行うことができる。一方で、瞬時電力調整部30は、電力調整部20の充放電電力値も用いている。これにより、電力調整部20が充放電する電力が瞬時電力調整部30の制御応答に遅れて増加するにしたがい、瞬時電力調整部30は、充放電する電力を減少せることができる。このため、瞬時電力調整部30は、充放電する電力をより減少することができ、瞬時電力調整部30の蓄積電力、すなわち蓄積エネルギーをより低減することができる。これにより、瞬時電力調整部30のエネルギー蓄積容量を低減でき、瞬時電力調整部30をより小型化させることができるのである。 As can be seen from these, the power adjustment unit 20 can perform charge / discharge adjustment of power that reduces the difference between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4. On the other hand, the instantaneous power adjustment unit 30 also uses the charge / discharge power value of the power adjustment unit 20. Thereby, as the power charged / discharged by the power adjusting unit 20 increases with a delay in the control response of the instantaneous power adjusting unit 30, the instantaneous power adjusting unit 30 can reduce the power charged / discharged. For this reason, the instantaneous power adjustment unit 30 can further reduce the power to be charged and discharged, and can further reduce the accumulated power of the instantaneous power adjustment unit 30, that is, the accumulated energy. Thereby, the energy storage capacity of the instantaneous power adjustment unit 30 can be reduced, and the instantaneous power adjustment unit 30 can be further downsized.
 一般に負荷部4は、系統周波数に対応している。このため、瞬時電力調整部30が、系統周波数の半周期以内の時間で電力指令に追従できると、負荷部4を停止することなく電力を継続して供給することが可能となる。例えば、系統周波数が50Hzである場合、系統周波数の半周期は、10msである。このため、系統周波数が50Hzである場合、瞬時電力調整部30は、系統周波数の半周期である10ms以内で電力指令に追従できるように構成されている。 Generally, the load unit 4 corresponds to the system frequency. For this reason, if the instantaneous power adjustment unit 30 can follow the power command in a time within a half cycle of the system frequency, it is possible to continuously supply power without stopping the load unit 4. For example, when the system frequency is 50 Hz, the half cycle of the system frequency is 10 ms. For this reason, when the system frequency is 50 Hz, the instantaneous power adjustment unit 30 is configured to follow the power command within 10 ms that is a half cycle of the system frequency.
 このように、瞬時電力調整部30は、電力調整部20の制御応答を補って、発電部2の発電電力値と負荷部4の消費電力値との差をより高速に減少させている。これにより、発電部2と負荷部4との間の電力調整における制御応答の速度を維持するとともに、瞬時電力調整部30をより小型化さることができる。 Thus, the instantaneous power adjustment unit 30 supplements the control response of the power adjustment unit 20 to reduce the difference between the power generation value of the power generation unit 2 and the power consumption value of the load unit 4 at a higher speed. Thereby, while maintaining the speed of the control response in the electric power adjustment between the electric power generation part 2 and the load part 4, the instantaneous electric power adjustment part 30 can be reduced more in size.
 また、第1の電力指令値と第2の電力指令値を同じにすると、電力指令値に対して電力調整部20は機器の制御応答遅れを持って出力を電力指令値に追従するよう動作する。また瞬時電力調整装置は電力調整部20の制御応答遅れを補うように瞬時に出力を行う。このため、電力調整部20が電力指令値に追従するよう動作することで、瞬時電力調整部30の出力は減少する。これにより、瞬時電力調整部30が大きなエネルギーを蓄積しなくても、高速な電力制御応答に対応できるようになる。 If the first power command value and the second power command value are the same, the power adjustment unit 20 operates to follow the power command value with a delay in the control response of the device with respect to the power command value. . Further, the instantaneous power adjustment device outputs instantaneously so as to compensate for the control response delay of the power adjustment unit 20. For this reason, the output of the instantaneous power adjustment unit 30 is reduced by the power adjustment unit 20 operating so as to follow the power command value. As a result, even if the instantaneous power adjustment unit 30 does not accumulate a large amount of energy, it can cope with a high-speed power control response.
 なお、ここでの発電部2は発電機であってもよい。或いは、発電部2は、太陽光発電、風力発電等の再生可能エネルギーを用いた構成でもよい。負荷部4については家庭用負荷でもよく、規模の大きな工場負荷であってもよい。さらにまた、負荷部4は、自動車や電車やポータブル機器であってもよい。電力伝達部10は交流電圧であっても良いし、直流電圧であってもよい。また、第3の乗算器442が第5の演算器に対応し、第4の乗算器444が第6の演算器に対応し、第5の乗算器446が第7の演算器に対応し、第3の加算器448が第8の演算器に対応し、第4の加算器450が第9の演算器に対応し、第5の加算器454が第10の演算器に対応する。 The power generation unit 2 here may be a generator. Alternatively, the power generation unit 2 may have a configuration using renewable energy such as solar power generation or wind power generation. The load unit 4 may be a household load or a large factory load. Furthermore, the load unit 4 may be an automobile, a train, or a portable device. The power transmission unit 10 may be an AC voltage or a DC voltage. In addition, the third multiplier 442 corresponds to the fifth arithmetic unit, the fourth multiplier 444 corresponds to the sixth arithmetic unit, the fifth multiplier 446 corresponds to the seventh arithmetic unit, The third adder 448 corresponds to the eighth arithmetic unit, the fourth adder 450 corresponds to the ninth arithmetic unit, and the fifth adder 454 corresponds to the tenth arithmetic unit.
 以上が本実施形態に係る電力調整システム1の全体構成の説明である。 The above is the description of the overall configuration of the power adjustment system 1 according to the present embodiment.
 図6は、瞬時電力調整部30を用いた電力制御方法のフローチャートを示す図である。第2の制御部44は、電力伝達部10の電圧値、発電部2の発電電流値、負荷部4の消費電流値、及び電力調整部20の入出力電流値を取得する(ステップS100)。電力伝達部10の電圧値は、電圧測定部6の電圧信号に基づき取得され、発電部2の発電電流値は、第1の電流計の電流信号に基づき取得される。また、負荷部4の消費電流値は、第2の電流計の電流信号に基づき取得され、電力調整部20の入出力電流値は、第3の電流計の電流信号に基づき取得される。 FIG. 6 is a diagram showing a flowchart of a power control method using the instantaneous power adjustment unit 30. The second control unit 44 acquires the voltage value of the power transmission unit 10, the generated current value of the power generation unit 2, the consumption current value of the load unit 4, and the input / output current value of the power adjustment unit 20 (step S100). The voltage value of the power transmission unit 10 is acquired based on the voltage signal of the voltage measurement unit 6, and the generated current value of the power generation unit 2 is acquired based on the current signal of the first ammeter. Further, the current consumption value of the load unit 4 is acquired based on the current signal of the second ammeter, and the input / output current value of the power adjustment unit 20 is acquired based on the current signal of the third ammeter.
 次に、第2の制御部44は、ステップS100で取得した値に基づき、発電部2の発電電力値と電力調整部20の充放電電力値と負荷部4の消費電力値とを、演算する(ステップS102)。第3の乗算器442が、電圧値を示す電圧信号と、発電部2の発電電流値を示す電流信号とに基づき、発電部2の発電電力値を演算する。第4の乗算器444が、電圧値を示す電圧信号と、負荷部4の消費電流値を示す電流信号とに基づき、消費電力値を演算する。そして、第5の乗算器446が、電圧値を示す電圧信号と、電力調整部20の電流値を示す電流信号とに基づき、電力調整部20の充放電電力値を演算する。 Next, the second control unit 44 calculates the generated power value of the power generation unit 2, the charge / discharge power value of the power adjustment unit 20, and the power consumption value of the load unit 4 based on the values acquired in step S100. (Step S102). The third multiplier 442 calculates the generated power value of the power generation unit 2 based on the voltage signal indicating the voltage value and the current signal indicating the generated current value of the power generation unit 2. The fourth multiplier 444 calculates the power consumption value based on the voltage signal indicating the voltage value and the current signal indicating the current consumption value of the load unit 4. Then, the fifth multiplier 446 calculates the charge / discharge power value of the power adjustment unit 20 based on the voltage signal indicating the voltage value and the current signal indicating the current value of the power adjustment unit 20.
 次に、第2の制御部44は、発電部2の発電電力値と、電力調整部20の充放電電力値と負荷部4の消費電力値との加算値と、の差を減少させる充放電調整の制御を瞬時電力調整部30に対して行い(ステップS104)、処理を終了する。 Next, the second control unit 44 reduces the difference between the generated power value of the power generation unit 2 and the added value of the charge / discharge power value of the power adjustment unit 20 and the power consumption value of the load unit 4. Adjustment control is performed on the instantaneous power adjustment unit 30 (step S104), and the process ends.
 このように、第2の制御部44は、電力伝達部10の電圧値、発電部2の発電電流値、負荷部4の消費電流値、及び電力調整部20の入出力電流値を取得し、発電部2の発電電力値、電力調整部20の充放電電力値、負荷部4の消費電力値を演算する。続いて、発電部2の発電電力値と、電力調整部20の充放電電力値及び負荷部4における消費電力値の加算値と、の差を減少させる充放電調整の制御を瞬時電力調整部30に対して行う。 In this way, the second control unit 44 acquires the voltage value of the power transmission unit 10, the generated current value of the power generation unit 2, the current consumption value of the load unit 4, and the input / output current value of the power adjustment unit 20, The generated power value of the power generation unit 2, the charge / discharge power value of the power adjustment unit 20, and the power consumption value of the load unit 4 are calculated. Subsequently, the instantaneous power adjustment unit 30 controls the charge / discharge adjustment to reduce the difference between the generated power value of the power generation unit 2 and the added value of the power consumption value in the load unit 4 and the charge / discharge power value of the power adjustment unit 20. To do.
 以上のように、本実施形態に係る電力制御装置40によれば、発電部2の発電電力値と、電力調整部20の充放電電力値及び負荷部4の消費電力値を加算した電力値と、の差を減少させる電力充放電の制御を瞬時電力調整部30に対して行うこととした。このため、電力調整部20の充放電電力が増加するにしたがい、瞬時電力調整部30の充放電電力を減少させられ、電力調整における制御応答の速度を維持するとともに、瞬時電力調整部30の蓄積エネルギーをより低減させることができる。 As described above, according to the power control device 40 according to the present embodiment, the power value obtained by adding the power generation value of the power generation unit 2, the charge / discharge power value of the power adjustment unit 20, and the power consumption value of the load unit 4, and The power charge / discharge control for reducing the difference between the instantaneous power adjustment unit 30 is performed. For this reason, as the charging / discharging power of the power adjusting unit 20 increases, the charging / discharging power of the instantaneous power adjusting unit 30 can be reduced, the speed of the control response in the power adjustment is maintained, and the instantaneous power adjusting unit 30 accumulates. Energy can be further reduced.
(第2実施形態)
 第2実施形態に係る電力制御装置は、商用系統が電力伝達部に更に接続されていることが第1実施形態と相違する。第1実施形態と相違する部分を以下に説明する。
(Second Embodiment)
The power control apparatus according to the second embodiment is different from the first embodiment in that the commercial system is further connected to the power transmission unit. Parts different from the first embodiment will be described below.
 図7は、商用系統から電力が入出力場合の電力調整システム1の構成を示す図である。 FIG. 7 is a diagram showing a configuration of the power adjustment system 1 when power is input / output from the commercial system.
 商用系統が電力伝達部10に更に接続されている。このため、電力伝達部10は、消費電力値と電力調整部20の充電電力値と瞬時電力調整部30の充電電力値との加算値が、発電電力値よりも小さい場合に、商用系統へ差分の電力を出力する。また、発電電力値と電力調整部20の放電電力値と瞬時電力調整部30の放電電力値との加算値が、消費電力値よりも小さい場合に、商用系統から差分の電力を入力する。 A commercial system is further connected to the power transmission unit 10. For this reason, the power transmission unit 10 determines that the difference between the power consumption value, the charging power value of the power adjustment unit 20 and the charging power value of the instantaneous power adjustment unit 30 is smaller than the generated power value. Output power. Further, when the added value of the generated power value, the discharge power value of the power adjustment unit 20 and the discharge power value of the instantaneous power adjustment unit 30 is smaller than the power consumption value, the difference power is input from the commercial system.
 この場合、第1の指示部428における第1の電力指令値と、第2の指示部452における第2の電力指令値を同じにすると、電力指令値に対して電力調整部20は、機器の制御応答遅れを持って出力を電力指令値に追従するよう動作する。これにより、商用系統へ電力の入出力をする場合にも、電力調整部20、及び瞬時電力調整部30による電力調整が行われ、電力変動を抑制することが可能である。すなわち、瞬時電力調整部30は、電力調整部20の制御応答遅れを補うように瞬時に出力を行う。このように、電力調整部20の充放電の制御応答の遅れを、瞬時電力調整部30の充放電電力が補うことで、負荷部4で発生する瞬時消費電力のピークも抑制される。これにより、この電力調整システム1は、商用系統への入出力電力をより平準的に制御可能である。 In this case, if the first power command value in the first instruction unit 428 and the second power command value in the second instruction unit 452 are the same, the power adjustment unit 20 may It operates to follow the power command value with a delay in control response. As a result, even when power is input / output to / from the commercial system, power adjustment by the power adjustment unit 20 and the instantaneous power adjustment unit 30 is performed, and power fluctuation can be suppressed. That is, the instantaneous power adjustment unit 30 outputs instantaneously so as to compensate for the control response delay of the power adjustment unit 20. Thus, the charge / discharge power of the instantaneous power adjustment unit 30 compensates for the delay in the charge / discharge control response of the power adjustment unit 20, thereby suppressing the peak of instantaneous power consumption generated in the load unit 4. Thereby, this electric power adjustment system 1 can control the input-output electric power to a commercial system more uniformly.
 さらにまた、電力調整部20が電力指令値に追従するよう動作することで瞬時電力調整部30の出力は減少する。これにより、大きなエネルギーを蓄積しなくても、瞬時電力調整部30は、高速な電力制御応答に対応可能である。 Furthermore, the output of the instantaneous power adjustment unit 30 decreases as the power adjustment unit 20 operates so as to follow the power command value. Thereby, even if it does not accumulate | store big energy, the instantaneous electric power adjustment part 30 can respond to a high-speed electric power control response.
 以上のように、本実施形態に係る電力制御装置40によれば、商用系統へ電力の入出力をする場合にも、電力調整部20、及び瞬時電力調整部30に電力の調整を行ことなわせることとした。このため、商用系統へ電力の入出力を行う場合にも、電力変動を抑制することができる。第2実施形態のその他の動作は、第1実施形態と同様である。したがって、第2実施形態は、第1の実施形態の効果をも得ることができる。 As described above, according to the power control device 40 according to the present embodiment, the power adjustment unit 20 and the instantaneous power adjustment unit 30 do not adjust power even when power is input / output to / from the commercial system. I decided to make it. For this reason, even when power is input / output to / from a commercial system, power fluctuation can be suppressed. Other operations of the second embodiment are the same as those of the first embodiment. Therefore, 2nd Embodiment can also acquire the effect of 1st Embodiment.
 上述した実施形態で説明した電力調整システム1および電力制御装置40の少なくとも一部は、ハードウェアで構成してもよいし、ソフトウェアで構成してもよい。ソフトウェアで構成する場合には、電力調整システム1および電力制御装置40の少なくとも一部の機能を実現するプログラムをフレキシブルディスクやCD-ROM等の記録媒体に収納し、コンピュータに読み込ませて実行させてもよい。記録媒体は、磁気ディスクや光ディスク等の着脱可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でもよい。 At least a part of the power adjustment system 1 and the power control apparatus 40 described in the above-described embodiment may be configured by hardware or software. When configured by software, a program for realizing at least a part of the functions of the power adjustment system 1 and the power control apparatus 40 is stored in a recording medium such as a flexible disk or a CD-ROM, and is read and executed by a computer. Also good. The recording medium is not limited to a removable medium such as a magnetic disk or an optical disk, but may be a fixed recording medium such as a hard disk device or a memory.
 以上説明した少なくともひとつの実施形態によれば、発電部と負荷部との間の電力調整における制御応答の速度を維持するとともに、瞬時電力調整部の蓄積エネルギーをより低減させることができる。 According to at least one embodiment described above, the speed of the control response in the power adjustment between the power generation unit and the load unit can be maintained, and the accumulated energy of the instantaneous power adjustment unit can be further reduced.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (6)

  1.  発電部の発電電力を負荷部に伝達する電力伝達部を介して、前記発電部と前記負荷部との間の電力調整を、電力充放電により行う第1の電力調整部と、
     前記電力伝達部を介して、前記電力調整を、前記第1の電力調整部よりも制御応答の早い電力充放電により行う第2の電力調整部と、
     前記第1の電力調整部に対して、前記発電部の発電電力値と、前記負荷部の消費電力値と、の差を減少させる電力充放電の制御を行う第1の制御部と、
     前記第2の電力調整部に対して、電力充放電の制御を行う第2の制御部と、
     を備え、
     前記第2の制御部は、
     前記発電部の発電電力値よりも前記負荷部の消費電力値の方が大きい状態では、
     前記発電部の発電電力値と、前記負荷部の消費電力値から前記第1の電力調整部の放電電力値を減じた差分値と、の差を減少させ、
     前記発電部の発電電力値よりも前記負荷部の消費電力値の方が小さい状態では、
     前記発電部の発電電力値と、前記負荷部の消費電力値及び前記第1の電力調整部の充電電力値を加算した加算値と、の差を減少させる電力充放電の制御を前記第2の電力調整部に対して行う電力調整システム。
    A first power adjustment unit that performs power adjustment between the power generation unit and the load unit by power charging and discharging via a power transmission unit that transmits generated power of the power generation unit to the load unit;
    A second power adjustment unit that performs the power adjustment by power charging / discharging with a control response faster than the first power adjustment unit via the power transmission unit;
    A first control unit that controls power charging and discharging to reduce a difference between a power generation value of the power generation unit and a power consumption value of the load unit with respect to the first power adjustment unit;
    A second control unit that controls power charging and discharging with respect to the second power adjustment unit;
    With
    The second controller is
    In a state where the power consumption value of the load unit is larger than the power generation value of the power generation unit,
    Reducing the difference between the generated power value of the power generation unit and the difference value obtained by subtracting the discharge power value of the first power adjustment unit from the power consumption value of the load unit;
    In a state where the power consumption value of the load unit is smaller than the power generation value of the power generation unit,
    The power charging / discharging control for reducing the difference between the generated power value of the power generation unit and the added value obtained by adding the power consumption value of the load unit and the charging power value of the first power adjustment unit is the second control. A power adjustment system for the power adjustment unit.
  2.  前記第1の制御部は、
     前記電力伝達部の電圧値と前記発電部の発電電流値との乗算値を演算する第1の演算器と、
     前記電力伝達部の電圧値と前記負荷部の消費電流値との乗算値を演算する第2の演算器と、
     前記第1の演算器で得られる第1乗算値と、前記第2の演算器で得られる第2乗算値との差分値を演算する第3の演算器と、
     第1の電力指令値と第3の演算器で得られる第3差分値との差分値を演算する第4の演算器と、
     前記第4の演算器で得られる第4差分値に応じて前記第1の電力調整部を制御する第1の制御回路と、
     を有する請求項1に記載の電力調整システム。
    The first controller is
    A first calculator that calculates a multiplication value of the voltage value of the power transmission unit and the generated current value of the power generation unit;
    A second calculator that calculates a product of a voltage value of the power transmission unit and a current consumption value of the load unit;
    A third arithmetic unit that calculates a difference value between a first multiplication value obtained by the first arithmetic unit and a second multiplication value obtained by the second arithmetic unit;
    A fourth computing unit that computes a difference value between the first power command value and the third difference value obtained by the third computing unit;
    A first control circuit for controlling the first power adjustment unit according to a fourth difference value obtained by the fourth computing unit;
    The power adjustment system according to claim 1.
  3.  前記第2の制御部は、
     前記電力伝達部の電圧値と前記発電部の発電電流値との乗算値を演算する第5の演算器と、
     前記電力伝達部の電圧値と前記負荷部の消費電流値との乗算値を演算する第6の演算器と、
     前記電力伝達部の電圧値と前記第1電力調整部の入出力電流値との乗算値を演算する第7の演算器と、
     前記第6の演算器で得られる第6乗算値と、第7の演算器で得られる第7乗算値との加算値を演算する第8の演算器と、
     前記第5の演算器で得られる第5乗算値と前記第8の演算器で得られる第8加算値との差分値を演算する第9の演算器と、
     第2の電力指令値と第9の演算器で得られる第9差分値との差分値を演算する第10の演算器と、
     前記第10の演算器で得られる第10差分値に応じて前記第2の電力調整部を制御する第2の制御回路と、
     を有する請求項1又は2に記載の電力調整システム。
    The second controller is
    A fifth calculator for calculating a multiplication value of the voltage value of the power transmission unit and the generated current value of the power generation unit;
    A sixth calculator for calculating a product of a voltage value of the power transmission unit and a current consumption value of the load unit;
    A seventh calculator for calculating a multiplication value of the voltage value of the power transmission unit and the input / output current value of the first power adjustment unit;
    An eighth arithmetic unit for calculating an addition value of the sixth multiplication value obtained by the sixth arithmetic unit and the seventh multiplication value obtained by the seventh arithmetic unit;
    A ninth arithmetic unit for calculating a difference value between the fifth multiplication value obtained by the fifth arithmetic unit and the eighth addition value obtained by the eighth arithmetic unit;
    A tenth calculator that calculates a difference value between the second power command value and the ninth difference value obtained by the ninth calculator;
    A second control circuit that controls the second power adjustment unit according to a tenth difference value obtained by the tenth computing unit;
    The power adjustment system according to claim 1, comprising:
  4.  前記第1の電力指令値と前記第2の電力指令値とは同等の値であることを特徴とする請求項3に記載の電力調整システム。 The power adjustment system according to claim 3, wherein the first power command value and the second power command value are equivalent values.
  5.  前記電力伝達部において、
     前記発電部が電力を供給する上流側から前記負荷部が電力を消費する下流側に向けて、
     前記発電部の発電電流を測定する第1の電流測定部、前記第1の電力調整部の充放電端部、及び前記負荷部の前記消費電流を測定する第2の電流測定部が順に設けられ、
     且つ前記第2の電力調整部の充放電端部が第1の電流測定部と第2の電流測定部との間に設けられている請求項1乃至4のいずれか一項に記載の電力調整システム。
    In the power transmission unit,
    From the upstream side where the power generation unit supplies power toward the downstream side where the load unit consumes power,
    A first current measurement unit that measures the generated current of the power generation unit, a charge / discharge end of the first power adjustment unit, and a second current measurement unit that measures the consumption current of the load unit are provided in order. ,
    5. The power adjustment according to claim 1, wherein a charge / discharge end portion of the second power adjustment unit is provided between the first current measurement unit and the second current measurement unit. system.
  6.  第1の電力調整部よりも制御応答の早い電力の充放電により電力調整を行う第2の電力調整部を用いた電力調整方法であって
     発電部の発電電力を負荷部に伝達する電力伝達部の電圧値、前記発電部の発電電流値、前記負荷部の消費電流値、及び前記電力伝達部を介して電力の充放電を行う前記第1の電力調整部の入出力電流値を取得する取得工程と、
     前記取得工程で取得した値に基づき、前記発電部の発電電力値、前記負荷部の消費電力値、及び前記第1電力調整部の充放電電力値を演算する演算工程と、
     前記発電電力値よりも前記0消費電力値の方が大きい状態では、前記発電電力値と、前記消費電力値から前記第1の電力調整部の放電電力値を減じた差分値と、の差を減少させ、前記発電電力値よりも前記消費電力値の方が小さい状態では、前記0発電電力値と、前記消費電力値及び前記第1の電力調整部の充電電力値を加算した加算値と、の差を減少させる電力充放電の制御を前記第2の電力調整部に対して行う制御工程と、
     を備える電力調整方法。
    An electric power adjustment method using a second electric power adjustment unit that performs electric power adjustment by charging and discharging electric power having a control response earlier than that of the first electric power adjustment unit, wherein the electric power transmission unit transmits electric power generated by the electric power generation unit to a load unit Acquisition of the voltage value of the power generation unit, the generated current value of the power generation unit, the current consumption value of the load unit, and the input / output current value of the first power adjustment unit that charges and discharges power through the power transmission unit Process,
    Based on the value acquired in the acquisition step, a calculation step of calculating a power generation value of the power generation unit, a power consumption value of the load unit, and a charge / discharge power value of the first power adjustment unit,
    In the state where the zero power consumption value is larger than the generated power value, the difference between the generated power value and the difference value obtained by subtracting the discharge power value of the first power adjustment unit from the power consumption value is In a state where the power consumption value is smaller than the power generation power value, the 0 power generation power value, an addition value obtained by adding the power consumption value and the charging power value of the first power adjustment unit, A control step of performing power charge / discharge control for reducing the difference between the second power adjustment unit, and
    A power adjustment method comprising:
PCT/JP2015/078815 2015-10-09 2015-10-09 Power conditioning system and power conditioning method WO2017061048A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/078815 WO2017061048A1 (en) 2015-10-09 2015-10-09 Power conditioning system and power conditioning method
JP2017544166A JPWO2017061048A1 (en) 2015-10-09 2015-10-09 Power adjustment system and power adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078815 WO2017061048A1 (en) 2015-10-09 2015-10-09 Power conditioning system and power conditioning method

Publications (1)

Publication Number Publication Date
WO2017061048A1 true WO2017061048A1 (en) 2017-04-13

Family

ID=58488304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078815 WO2017061048A1 (en) 2015-10-09 2015-10-09 Power conditioning system and power conditioning method

Country Status (2)

Country Link
JP (1) JPWO2017061048A1 (en)
WO (1) WO2017061048A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054626A (en) * 2017-09-14 2019-04-04 株式会社東芝 Monitoring control system, method for controlling the same, and control program
US10983565B2 (en) 2014-10-06 2021-04-20 Fasetto, Inc. Portable storage device with modular power and housing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078205A (en) * 2000-08-22 2002-03-15 Ntt Power & Building Facilities Inc Power leveling device for generating device utilizing natural energy
JP2003235162A (en) * 2002-02-04 2003-08-22 Nippon Telegr & Teleph Corp <Ntt> Power supply system and control method therefor
JP2008228422A (en) * 2007-03-12 2008-09-25 Shimizu Corp Method for controlling dispersed power supplies
JP2009027861A (en) * 2007-07-20 2009-02-05 Shimizu Corp Control method of distributed power supply

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002078205A (en) * 2000-08-22 2002-03-15 Ntt Power & Building Facilities Inc Power leveling device for generating device utilizing natural energy
JP2003235162A (en) * 2002-02-04 2003-08-22 Nippon Telegr & Teleph Corp <Ntt> Power supply system and control method therefor
JP2008228422A (en) * 2007-03-12 2008-09-25 Shimizu Corp Method for controlling dispersed power supplies
JP2009027861A (en) * 2007-07-20 2009-02-05 Shimizu Corp Control method of distributed power supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10983565B2 (en) 2014-10-06 2021-04-20 Fasetto, Inc. Portable storage device with modular power and housing system
JP2019054626A (en) * 2017-09-14 2019-04-04 株式会社東芝 Monitoring control system, method for controlling the same, and control program

Also Published As

Publication number Publication date
JPWO2017061048A1 (en) 2018-07-26

Similar Documents

Publication Publication Date Title
JP5633871B1 (en) Battery control device, battery control support device, battery control system, battery control method, battery control support method, and recording medium
KR101119460B1 (en) Power accumulator and hybrid distributed power supply system
EP3018787B1 (en) Microgrid control device and control method therefor
JP2018509134A (en) Dynamic hybrid control
WO2016185660A1 (en) Distributed power supply system, and control method of distributed power supply system
JP2013162623A (en) Power supply system
CN102792545A (en) Solar power generation system and feeding system
JP2010233287A (en) Charge and discharge control device, and method of controlling charge and discharge
JP2013126260A (en) Operation apparatus and method of natural variation power supply
JP2014230455A (en) Power generator
JP2016082610A (en) Storage battery device
WO2017068911A1 (en) Power supply system of distributed power sources
JP2004362787A (en) Fuel cell system with power storing means
WO2015111144A1 (en) Power supply system and energy management system used in same
WO2017061048A1 (en) Power conditioning system and power conditioning method
JP5676847B2 (en) Fuel cell power supply
JP5767895B2 (en) Output fluctuation suppressing device for distributed power supply and output fluctuation suppressing method for distributed power supply
JP6783581B2 (en) Power supply system
JP6422682B2 (en) Power control apparatus and power control method
JP2014230366A (en) Power generation device
KR101299269B1 (en) Battery Energy Storage System
JP2006067672A (en) Power supply apparatus
WO2015145818A1 (en) Power adjustment control device and power adjustment control method
WO2021095645A1 (en) Calculation device and calculation method
WO2023228264A1 (en) Electric power control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017544166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905867

Country of ref document: EP

Kind code of ref document: A1