WO2017060943A1 - Optical ranging device and image projection apparatus - Google Patents

Optical ranging device and image projection apparatus Download PDF

Info

Publication number
WO2017060943A1
WO2017060943A1 PCT/JP2015/078145 JP2015078145W WO2017060943A1 WO 2017060943 A1 WO2017060943 A1 WO 2017060943A1 JP 2015078145 W JP2015078145 W JP 2015078145W WO 2017060943 A1 WO2017060943 A1 WO 2017060943A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
light
measuring device
distance measuring
optical distance
Prior art date
Application number
PCT/JP2015/078145
Other languages
French (fr)
Japanese (ja)
Inventor
将史 山本
瀬尾 欣穂
政信 紫垣
浦田 浩之
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2015/078145 priority Critical patent/WO2017060943A1/en
Publication of WO2017060943A1 publication Critical patent/WO2017060943A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a technology of an optical distance measuring device which is a distance measuring device using light.
  • the present invention also relates to a technique of an image projection device provided with an optical distance measuring device.
  • the TOF method is a method of calculating the distance from the object based on the flight time of light from the light emitted from the light source reflected by the object and entering the sensor.
  • the optical distance measuring device emits a predetermined light projection signal from a light source as emitted light, and obtains reflected light from an object as a light reception signal by a sensor.
  • the optical distance measuring device calculates the flight time from the time difference between the start signal in the light projection signal and the stop signal in the light reception signal, and calculates the distance using the speed of light.
  • the position of the object can be calculated using the position of the reference point of the optical distance measuring device, the direction from the reference point, and the calculated distance.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2012-26853 is given as an example of the prior art relating to the TOF optical rangefinder.
  • Patent Document 1 describes that a distance sensor determines the stop signal by determining the length of the High signal in order to distinguish the pulse signal of the received light signal from noise in order to enable high-precision measurement. Has been.
  • the time measurement unit measures the appearance frequency of the High signal of the pulse signal from the comparator, and performs a stabilization process that is adopted as a stop signal when the appearance frequency is stabilized to obtain the flight time. The effect is described.
  • the optical distance measuring device of the TOF method there are a state when the reflected light from the object by the light emitted from the light source is received as a light reception signal by the sensor and a state when the light is not received.
  • the former is referred to as a light receiving state
  • the latter is referred to as a non-light receiving state.
  • the time of flight and the distance may be erroneously detected due to the influence of the noise level of the noise signal in the non-light-receiving state. That is, the prior art has room for improvement in terms of accuracy related to measurement.
  • the high signal frequency and duration are determined as a stop signal with a small value.
  • the High signal due to the influence of the noise level is erroneously set as the stop signal.
  • An object of the present invention is to provide a technology capable of realizing both high accuracy and high speed with respect to a TOF optical distance measuring device and the like.
  • a typical embodiment of the present invention is an optical distance measuring device or the like, and has the following configuration.
  • An optical distance measuring device is an optical distance measuring device that measures a distance using light, a control unit that generates a start signal, a light source that emits light based on the start signal, Comparison of outputting a stop signal as a result of comparison between a sensor that receives reflected light from an object by light emitted from a light source and outputs it as a light reception signal, and a first signal based on the light reception signal and a reference signal
  • a time measuring device that outputs a time difference between the start signal and the stop signal as a measurement time, and based on the measurement time, takes out the measurement time of the light receiving state in which the reflected light is received, and the light receiving state Calculating a flight time using the measured time, calculating a distance from the object based on the flight time, and calculating a position of the object based on the distance;
  • Signal superimposing unit that superimposes the superimposed signal , Wherein the superposition signal is a periodic signal having a period smaller than the period of the emitted light.
  • An image projection device includes the optical distance measurement device, and the optical distance measurement device includes a communication unit that transmits position information including the calculated position to the image projection device, and the image projection device.
  • An apparatus includes: a video projection unit that projects a video on a video screen based on video data; and a communication unit that receives the position information from the optical distance measuring device according to a position of the object in the vicinity of the video screen. And controlling the image projection of the image projection unit or an external device connected to the image projection apparatus using the position information.
  • both high accuracy and high speed can be realized with respect to a TOF optical distance measuring device and the like.
  • FIG. 1 is a diagram illustrating a configuration of a video projection device according to a first embodiment.
  • FIG. 2 is a diagram illustrating an appearance and an arrangement example of the video projection device according to the first embodiment.
  • 6 is a diagram illustrating a video screen, an operation, and the like in an arrangement example of the video projection device according to Embodiment 1.
  • FIG. 1 is a diagram illustrating a configuration of a video projection device according to a first embodiment.
  • FIG. 2 is a diagram illustrating an appearance and an arrangement example of the video projection device according to the first embodiment.
  • 6 is a diagram illustrating a video screen, an operation, and the like in an arrangement example of the video projection device according to Embodiment 1.
  • FIG. 1 is a diagram illustrating a configuration of a video projection device according to a first embodiment.
  • FIG. 2 is a diagram illustrating an appearance and an arrangement example of the video projection device according to the first embodiment.
  • 6 is a diagram illustrating a video screen, an operation, and the
  • FIG. 1 It is a figure which shows the circuit structure regarding zero cross detection in the optical distance measuring device of Embodiment 1.
  • FIG. It is a figure which shows the principle regarding the zero cross detection in the optical ranging apparatus of Embodiment 1.
  • FIG. It is a figure which shows the relationship of each signal of each period in the optical ranging apparatus of a comparative example.
  • FIG. It is a figure which shows the relationship of each signal of each period before and behind superimposition in the optical ranging apparatus of Embodiment 1.
  • FIG. It is a figure which shows the measurement time of the measurement result after superimposition in the optical distance measuring device of Embodiment 1.
  • FIG. 3 is a diagram illustrating a configuration of a modulation unit in the optical distance measuring device according to the first embodiment.
  • FIG. 10 is a diagram illustrating a configuration of a modulation unit in the optical distance measuring device according to the first modification of the first embodiment. It is a figure which shows the structure of the control part in the optical ranging apparatus of the 2nd modification of Embodiment 1.
  • FIG. It is a figure which shows the structure of the optical ranging apparatus of Embodiment 2 of this invention.
  • the optical distance measuring device and the image projection device according to the first embodiment of the present invention will be described with reference to FIGS.
  • the video projection device according to the first embodiment includes the optical distance measuring device according to the first embodiment.
  • the optical distance measuring device devises the circuit configuration including the light source and the sensor and the signal processing thereof to realize the above separation, thereby realizing high-precision and high-speed measurement.
  • FIG. 1 shows the configuration of the entire system including the optical distance measuring device and the image projection device according to the first embodiment of the present invention.
  • the system of FIG. 1 is in the vicinity of the video projection device 2 of the first embodiment incorporating the optical distance measuring device 1 of the first embodiment, the video screen 30 projected from the video projection device 2, and the video screen 30.
  • An object 3 and an external device 6 connected to the image projection device 2 are included.
  • the target object 3 is an arbitrary object whose distance is to be measured, and specific examples include a user's finger and a pointing device such as a pen.
  • the image projection device 2 emits projection light A0 for image projection based on the image data from the image projection unit 4, and configures an image screen 30 with the projection light A0.
  • the external device 6 provides video data and the like to the video projection device 2.
  • the image projection device 2 emits the emitted light A1 based on the distance measurement projection signal from the optical distance measuring device 1, and when the emitted light A1 is reflected by the object 3 near the image screen 30, The reflected light A2 is incident on the optical distance measuring device 1.
  • the optical distance measuring device 1 calculates the distance to the object 3 and the position of the object 3 from the flight time of the light by the TOF method based on the emitted light A1 and the reflected light A2.
  • the optical distance measuring device 1 outputs position information including the position to the image projection unit 4 and the external device 6.
  • the image projection device 2 determines the movement of the object 3 on the image screen 30, for example, the operation using the object 3 by the user, based on the position information.
  • the video projection device 2 determines a control operation so as to relate a predetermined control operation according to a predetermined operation, and controls the video projection unit 4 and the external device 6 according to the control operation.
  • FIG. 2 shows a configuration of the optical distance measuring device 1 according to the first embodiment.
  • the optical distance measuring device 1 includes a control unit 10, a light source 11, a sensor 12, an amplifier 13, a modulation unit 14, a comparator 15, a time measuring device 16, a light source driving unit 17, a communication unit 18, a scanning driving unit 21, and a scanning mirror 22.
  • the optical distance measuring device 1 according to Embodiment 1 includes a signal superimposing unit 100 and includes a control unit 10 and a modulation unit 14 as elements constituting the signal superimposing unit 100.
  • the signal superimposing unit 100 superimposes a predetermined superimposition signal Vc on the signal Vsig1 based on the light reception signal, so that the value of the measurement time Tx in the time measuring device 16 based on the superimposed signal Vsig2 is set as the light reception state.
  • a function to separate the light receiving state from the non-light receiving state is realized.
  • the control unit 10 controls the entire optical distance measuring device 1.
  • the control unit 10 includes a signal generation unit 10A and a calculation unit 10B.
  • the signal generator 10A generates signals such as a start signal Vstart and a superimposed signal Vc.
  • the calculation unit 10B calculates the flight time Tf based on the measurement time Tx, calculates the distance from the object 3 based on the flight time Tf, and calculates the position of the object 3 based on the distance.
  • the control unit 10 generates a start signal Vstart corresponding to the light projection signal.
  • the start signal Vstart is a predetermined pulse signal as shown in FIG.
  • the control unit 10 generates a timing signal for driving the light source driving unit 17 and the light source 11 corresponding to the start signal Vstart, and outputs the timing signal to the light source driving unit 17.
  • the light source driving unit 17 generates a driving current for driving the light source 11 according to the timing signal from the control unit 10 and supplies the driving current to the light source 11. Further, the control unit 10 gives the same start signal Vstart to the time measuring device 16.
  • control unit 10 generates a superimposed signal Vc and supplies it to the modulation unit 14.
  • the superimposed signal Vc is a predetermined pulse signal as shown in FIG.
  • the timing of the superimposed signal Vc may be independent of the timing of the start signal Vstart.
  • the light source 11 emits light at an intensity and timing according to the drive current from the light source drive unit 17, and emits the light through the scanning mirror 22 in a predetermined direction as emitted light A 1.
  • the emitted light A1 is reflected at a point of the object 3, and the reflected light A2 including scattered light is incident on the sensor 12.
  • the sensor 12 receives the reflected light A2 from the object 3, and outputs a received light signal corresponding to the intensity of the received light to the amplifier 13.
  • the received light signal includes a pulse signal corresponding to the start signal Vstart.
  • the amplifier 13 amplifies the light reception signal from the sensor 12 and outputs the amplified signal Vsig1 to the modulation unit 14.
  • the amplifier 13 includes a capacitive element connected in series as an element for realizing zero-cross detection in the comparator 15 as shown in FIG.
  • the modulation unit 14 receives the signal Vsig1 from the amplifier 13 and the superimposed signal Vc from the control unit 10.
  • the modulation unit 14 superimposes the superimposed signal Vc on the signal Vsig1 as a modulation process, and outputs a signal Vsig2 that is a signal after the superimposition to the comparator 15.
  • the superposition in the modulation unit 14 can be realized by an AC coupling capacitor or an adder.
  • the comparator 15 receives the signal Vsig2 from the modulation unit 14 and the reference signal Vref.
  • the reference signal Vref is a signal having a predetermined level set in advance.
  • the comparator 15 compares the signal Vsig2 with the signal Vref, converts the signal Vsig2 that is an analog signal into a pulse signal having two values of High and Low, and measures the time by using the converted signal as a stop signal Vstop.
  • the comparator 15 sets a high signal in the pulse when the value of the signal Vsig2 is larger than the value of the signal Vref, and sets it as a low signal in the pulse when the value of the signal Vsig2 is smaller than the value of the signal Vref.
  • the time measuring device 16 inputs the stop signal Vstop from the comparator 15 and the start signal Vstart from the control unit 10. The time measuring device 16 measures the time difference between the pulse of the start signal Vstart and the corresponding pulse of the stop signal Vstop as the measurement time Tx. The time measuring device 16 outputs data including the measurement time Tx to the control unit 10.
  • the control unit 10 calculates the flight time Tf based on the measurement time Tx from the time measuring device 16, calculates the distance to the object 3 from the flight time Tf, and calculates the distance of the object 3 from the distance. Calculate the position.
  • the control unit 10 stores information including the calculated flight time Tf, distance, position, and the like in a memory (not shown).
  • the control unit 10 outputs position information 201 including at least the calculated position to the communication unit 18.
  • the communication unit 18 transmits data 202 including the position information 201 to the video projection device 2.
  • the image projection device 2 receives the data 202 including the position information 201 from the optical distance measuring device 1, stores the data 202 in a memory (not shown), and stores the position information 201 of the data 202 in the image projection unit 4 or an external device. Transfer to device 6.
  • the optical distance measuring device 1 is a scan that scans the emitted light A1 that is light for detecting the object 3 on the image screen 30 as an implementation corresponding to the provision to the image projection device 2.
  • Means. A scanning drive unit 21 and a scanning mirror 22 are included as elements constituting the scanning unit.
  • the control unit 10 generates a signal for scanning control and outputs the signal to the scanning driving unit 21.
  • the scanning drive unit 21 generates a signal for scanning driving in accordance with a signal from the control unit 10 and supplies the signal to the scanning mirror 22.
  • the scanning mirror 22 is composed of a rotating reflection mirror or the like, and is driven so that the angle of reflection is controlled in accordance with a signal from the scanning drive unit 21. Thereby, the direction of the emitted light A1 from the light source 11 is changed.
  • FIG. 3 shows the principle of distance measurement by the TOF method in the first embodiment.
  • FIG. 3A shows an arrangement relationship among the light source 11, the sensor 12, and the target object 3.
  • FIG. 3B shows a relationship between the start signal Vstart in the light projection signal of the light source 11 and the stop signal Vstop in the light reception signal of the sensor 12.
  • FIG. 3C further shows the relationship between the measurement time Tx, the flight time Tf, and the circuit delay time Td.
  • the emitted light A1 from the light source 11 based on the light projection signal is reflected and scattered at the point P of the object 3, and the reflected light A2 is received by the sensor 12 as a light reception signal.
  • the object 3 is shown as a flat plate.
  • the distance between the reference point Q corresponding to the positions of the light source 11 and the sensor 12 of the optical distance measuring device 1 and the point P of the object 3 is L [m].
  • Let the speed of light be c 3.0 ⁇ 10 8 [m / sec].
  • the start signal Vstart in (a) is a predetermined pulse signal.
  • Each pulse has a measurement number for identification, and the measurement number is represented by n or the like.
  • the stop signal Vstop in (b) is a pulse signal corresponding to the start signal Vstop.
  • the time difference T corresponds to the flight time Tf.
  • the time is shown in units such as [nsec].
  • the time is measured by the time measuring device 16 through the comparator 15 and the like.
  • the time measuring device 16 measures the time difference between the pulse of the start signal Vstart and the corresponding pulse of the stop signal Vstop.
  • a predetermined circuit delay time Td exists.
  • the circuit delay time Td indicates the time required for the signal to flow through the circuit including the sensor 12 to the time measuring device 16.
  • the measurement time Tx measured by the time measuring device 16 is a time obtained by adding the flight time Tf from the emission time t1 to the incidence time t2 and the circuit delay time Td. That is, the relationship between each time is as shown in the following formulas 2 and 3.
  • the control unit 10 can obtain the flight time Tf by subtracting the circuit delay time Td from the measurement time Tx in the time measuring device 16 as shown in Expression 3.
  • Tx Tf + Td Equation 2
  • Tf Tx ⁇ Td Equation 3
  • FIG. 4 shows a functional block configuration including the configuration of connection between the optical distance measuring device 1 and the external device 6 as the configuration of the video projection device 2 of the first embodiment.
  • elements other than the communication unit 18 are omitted from the optical distance measuring apparatus 1.
  • the image projection apparatus 2 has a function of measuring a distance and a position by the optical distance measuring device 1, a function of executing a control operation using position information thereby, and the like.
  • the video projection device 2 includes an optical distance measuring device 1, a video projection unit 4, a control unit 51, an operation control unit 52, an operation determination unit 53, a communication unit 54, and an input / output unit 55.
  • the control unit 51 controls the entire image projection apparatus 2 including each unit.
  • the video projection unit 4 includes a video control unit 41, a video projection light source 42, a light control unit 43, a projection lens 44, a reflection mirror 45, and a video data storage unit 46.
  • the projection optical system includes a projection lens 44 and a reflection mirror 45.
  • the image projection unit 4 emits projection light A0 for projecting an image on the image screen 30 through the projection optical system.
  • the video control unit 41 outputs a drive control signal to each of the video projection light source 42 and the light control unit 43 in accordance with the video signal based on the video data to be displayed.
  • the video data is, for example, video data supplied from the external device 6 or video data generated inside the video projection device 2.
  • the video control unit 41 stores the video data to be projected and displayed in the video data storage unit 46.
  • the video control unit 41 generates a signal for controlling the video projection light source 42 and the light control unit 43 based on the video data read from the video data storage unit 46, and uses the signal as the video projection light source 42 and the light. This is given to the control unit 43.
  • the light source for image projection 42 can be a light source such as a halogen lamp, LED, or laser.
  • the image projection light source 42 adjusts the amount of emitted light in accordance with a control signal input from the image control unit 41. Light emitted from the image projection light source 42 is input to the light control unit 43.
  • the image projection light source 42 includes light sources of three colors of R (red), G (green), and B (blue), the amount of light may be controlled independently according to the image signal.
  • the light control unit 43 has optical system components such as a mirror, a lens, a prism, and an imager.
  • the imager is a display element such as a liquid crystal display element or a digital micromirror element.
  • the light control unit 43 generates an optical video based on the video signal input from the video control unit 41 using the light emitted from the video projection light source 42 and outputs the optical video toward the projection lens 44.
  • the projection lens 44 enlarges and radiates the output image of the light control unit 43.
  • the reflection mirror 45 reflects the light emitted from the projection lens 44 and emits it as projection light A0.
  • the input / output unit 55 has an input / output interface for the user, and is connected to input devices and output devices.
  • the input / output unit 55 includes, for example, an operation panel or a remote control light receiving unit for a user to input an operation.
  • the optical distance measuring device 1 communicates with the image projection device 2 through the communication unit 18.
  • the video projection device 2 communicates with the optical distance measuring device 1 and the external device 6 through the communication unit 54.
  • the communication unit 18 of the optical distance measuring device 1 and the communication unit 54 of the video projection device 2 are provided with a communication interface for communicating with each other.
  • This communication interface may be wired or wireless.
  • This communication is preferably real-time and high-speed communication.
  • this communication interface for example, USB, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be applied.
  • the communication unit 54 of the video projection device 2 includes a communication interface that communicates with the communication unit 64 of the external device 6.
  • This communication interface may be wired or wireless.
  • this communication interface for example, USB, Wi-Fi, Bluetooth, or the like can be applied.
  • the optical distance measuring device 1 transmits data 401 including position information to the video projection device 2 through the communication unit 18.
  • the video projection device 2 receives data 401 including position information from the optical distance measuring device 1 through the communication unit 54, and transfers the received data 401 to, for example, the video control unit 41 or the operation determination unit 53.
  • Communication relating to data including position information between the optical distance measuring device 1 and the image projection device 2 is performed by using UART (Universal Asynchronous Receiver Receiver), SPI (Serial Peripheral Interface), I2C (Inter-Integrated Circuit), as communication interfaces. Etc. are applicable.
  • UART Universal Asynchronous Receiver Receiver
  • SPI Serial Peripheral Interface
  • I2C Inter-Integrated Circuit
  • the data 401 including the position information output from the communication unit 18 may be output as HID (Human Interface Device) such as a USB HID class.
  • HID Human Interface Device
  • the video projection device 2 recognizes the optical distance measuring device 1 as an HID, that is, virtually a device such as a keyboard or a mouse, and processes position information as input information. Therefore, it is not necessary to provide dedicated processing software or the like in the video projection apparatus 1.
  • the external device 6 is a general information processing device such as a PC, a portable terminal device such as a smartphone or a tablet, or a variety of devices such as a DVD player, a video game device, a USB memory device, or an SD card device. Is possible.
  • the external device 6 may be an external storage medium.
  • the external device 6 may be a card-type storage medium that is inserted into a card interface unit included in the video projection device 2.
  • the external device 6 includes a control unit 61, a storage unit 62, an application 63, a communication unit 64, and the like.
  • the control unit 61 controls the external device 6 and executes software program processing of the application 63.
  • the storage unit 62 stores programs, video data, and the like. Examples of the application 63 include various programs such as presentation software.
  • External device 6 uses image projection device 2 as a display device.
  • the external device 6 generates or holds video data to be projected and displayed.
  • the external device 6 supplies video data or a video signal to the video projection device 2.
  • this video data is arbitrary, for example, video data constituting a screen by the application 63 can be mentioned.
  • the screen by the application 63 can be projected and displayed as the video screen 30 by the video projection device 2.
  • the external device 6 transmits, for example, video data from the application 63 to the video projection device 2 through the communication unit 64.
  • the video projection device 2 stores the video data or video signal received from the external device 6 in the video data storage unit 46.
  • the external device 6 receives data 401 including position information, operation information 402 and control operation information 403 from the video projection device 2.
  • the external device 6 controls the application 63 and the like according to the received position information and the like. For example, the external device 6 performs a predetermined process by the application 63 according to the position of the point in the video screen 30 indicated by the position information or the operation indicated by the operation information 402. Alternatively, the external device 6 executes a predetermined process according to the control operation indicated by the control operation information 403.
  • the image projection device 2 uses the data 401 including the position information from the optical distance measuring device 1 to determine a predetermined operation of the user from the position and movement of the object 3 on the image screen 30, and from the predetermined operation A predetermined control operation is determined, and the predetermined control operation is executed.
  • a configuration example for realizing this control operation will be described.
  • the video control unit 41 performs a control operation of the video projection unit 4 and a control operation of the external device 6 in accordance with the position information input from the optical distance measuring device 1.
  • the video control unit 41 is linked to the operation determination unit 53 and the operation control unit 52.
  • the video control unit 41 receives data 401 including position information from the optical distance measuring device 1 through the communication unit 54 and transfers the position information to the operation determination unit 53. Further, the video control unit 41 may immediately transfer the data including the acquired position information to the external device 6.
  • the operation determination unit 53 determines the movement of the object 3 on the video screen 30 and the operation by the user by performing predetermined processing on the position information. This process includes a process of determining a plurality of time-series positional information and determining one temporally continuous operation.
  • the operation includes, for example, touch, tap, flick, swipe, and pinch.
  • the operation includes the same operation as that performed on a touch panel screen of an existing smartphone or the like.
  • the operation determination unit 53 determines a predetermined operation in light of a plurality of time-series position information in accordance with preset operation definition information.
  • a relationship between position information and motion is defined.
  • the motion determination unit 53 determines, for example, a touch operation with respect to a point or a motion of a line trajectory in the two-dimensional area of the video screen 30 based on the time point and the position coordinate indicated by the position information.
  • the operation determination unit 53 provides operation information 402 representing the determined operation to the operation control unit 52.
  • the operation control unit 52 inputs the operation information 402 from the operation determination unit 53 and determines a predetermined control operation related to each predetermined operation.
  • the operation control unit 52 determines a predetermined control operation in light of the operation information 402 in accordance with preset control operation definition information.
  • the control operation definition information defines the relationship between the operation and the control operation.
  • the operation control unit 52 cooperates with a part in the video projection device 2 that is the execution subject of the control operation or the external device 6 so as to immediately execute the determined control operation.
  • the operation control unit 52 outputs control operation information 403 indicating the determined control operation to the video projection unit 4 and the external device 6.
  • the control operation includes an operation on the video projection device 2 including an operation on the video screen 30 and an operation on the application 63 of the external device 6.
  • Examples of the control operation include various operations such as page switching, enlargement or reduction, movement, and character input in the projected image.
  • Examples of the control operation related to the video projection unit 4 include power supply and display on / off switching, light amount adjustment, color adjustment, and the like.
  • the operation control unit 52 determines, for example, a control operation for switching pages as a control operation related thereto, and the control operation
  • the control operation information 403 corresponding to the instruction to execute is provided to the video projection unit 4.
  • the operation control unit 52 determines that the control operation for enlarging the image is a control operation corresponding thereto, and the control operation information 403 for causing the control operation to be executed. Is given to the image projection unit 4.
  • the operation control unit 52 transmits the corresponding control operation information 403 to the external device 6 through the communication unit 54.
  • the image projection apparatus 2 may transmit not only the position information but also the operation information 402 and the control operation information 403 to the external device 6 as necessary.
  • a predetermined control operation is executed according to the operation and position by the above function.
  • the video projection unit 4 updates the content of the projected display on the video screen 30 in accordance with the execution of the control operation.
  • FIG. 5 shows an appearance and an arrangement example of the video projection device 2 according to the first embodiment.
  • the figure which looked at the video screen 30 from the side is shown.
  • 5 and 6 (X, Y, Z) are shown as directions and axes for explanation.
  • the directions constituting the horizontal plane are X and Y, and the vertical direction is Z.
  • X and Y are directions constituting the video screen 30.
  • X corresponds to the horizontal direction in the video screen 30
  • Y corresponds to the vertical direction in the video screen
  • Z corresponds to the normal direction of the video screen 30.
  • the image projection apparatus 2 is installed so as to stand on an installation surface 302 such as a table or a desk having a horizontal surface.
  • the light source 11 and the sensor 12 of the optical distance measuring device 1 are exposed from a part of the lower part of the casing of the image projection device 2.
  • the emitted light A1 is emitted from the light source 11 in this portion in the X and Y directions that are parallel to the video screen 30, and the reflected light A2 from the object 3 is incident on the sensor 12 in the same direction.
  • the emitted light A1 from the light source 11 is emitted at a predetermined height in the Z direction with respect to the installation surface 302 and the video screen 30.
  • the emitted light A1 from the light source 11 is It is preferable that the light is emitted at a height close to the installation surface 302. Therefore, in the first embodiment, as this height, the distance between the installation surface 302 and the emitted light A1 parallel thereto is set to 20 mm or less.
  • the reflection mirror 45 is configured to be foldable with respect to the housing, and is stored such that the reflection surface faces the installation surface 302 when used, and the reflection surface faces the housing when not in use. .
  • the image projection device 2 expands the image light generated by the image projection unit 4 of FIG. Thereafter, the light is reflected by the reflection mirror 45 above the casing, is emitted as projection light A0, and is projected onto the installation surface 302 as the video screen 30.
  • Embodiment 1 an aspherical mirror is used as the reflecting mirror 45. Thereby, when projecting the image screen 30 of the same size, the projection distance can be shortened as compared with a general image projection apparatus.
  • the configuration of the image projection unit 4 is not limited to the configuration using the reflection mirror 45, and other configurations that can realize image projection are also applicable.
  • the image projection device 2 includes a focus ring 303 and the like that can be operated by the user in a part of the casing.
  • the focus of the projected image is adjusted by the focus ring 303.
  • FIG. 6 shows an image screen 30 and an operation for pointing a point in the image screen 30 in the arrangement example of the image projection apparatus 2 corresponding to FIG.
  • FIG. 6 shows a plan view in the X and Y directions when the video screen 30 is viewed from above in the Z direction.
  • the video screen 30 is a two-dimensional area and has a horizontally long rectangular shape corresponding to the video standard.
  • the upper left point of the video screen 30 is P1, the lower left point is P2, the lower right point is P3, and the upper right point is P4.
  • a scanning angle ⁇ that is an angle of emission of the emitted light A1 of the light projection signal so that the distance and position can be detected for all points in the image screen 30.
  • the optical distance measuring device 1 emits the emitted light A1 from the light source 11 at the reference point Q in a direction corresponding to the scanning angle ⁇ .
  • the optical distance measuring device 1 scans the emitted light A1 on the video screen 30 by controlling the scanning angle ⁇ using the above-described scanning means.
  • the optical distance measuring device 1 performs this scanning control continuously during normal projection display.
  • the user performs an operation of pointing a point on the video screen 30 with the object 3 such as a finger or a pen.
  • the optical distance measuring device 1 uses the received light signal to determine the flight time and the point of the object 3 as described above. The distance, the position of the point, etc. are calculated.
  • the optical distance measuring device 1 calculates the position of the point of the object 3 in the video screen 30 as coordinates (x, y) using the distance from the reference point Q and the direction indicated by the scanning angle ⁇ .
  • the optical distance measuring device 1 detects not only the position of the point of the object 3 at a certain time point but also the positions of a plurality of points at a plurality of time points on the time series. That is, the optical distance measuring device 1 detects a temporal transition of the position of the object 3. The optical distance measuring device 1 detects the movement of the object 3 relative to the video screen 30 and the movement of the user by the above-described movement determination unit 53 using a plurality of pieces of position information indicating the transition.
  • the optical distance measuring device 1 is provided at the center position in the X direction of the image projection device 2. From the reference point Q, it has a central axis indicated by a one-dot chain line in the Y direction.
  • the central axis is a straight line on which light is emitted and incident when there is no light scanning, in other words, when the scanning angle ⁇ is 0 degree.
  • the emitted light A1 from the reference point Q passes from the closest point P0 on the video screen 30 to the farthest point P5.
  • the position of the light source 11 and the sensor 12 is ideally the same position and shown as one reference point Q, there is actually a short distance between the light source 11 and the sensor 12, and this distance is corrected by calculation.
  • the scanning angle ⁇ is shown with respect to the central axis.
  • the optical distance measuring device 1 emits light from the reference point Q in the direction of the scanning angle ⁇ .
  • the aforementioned scanning means increases or decreases the scanning angle ⁇ within a predetermined range, for example, with a constant size. Thereby, the light is scanned so as to pass through all the points in the video screen 30, and the positions of all the points can be detected.
  • the predetermined range is a range from the minimum scanning angle ⁇ min to the maximum scanning angle ⁇ max.
  • the scanning angle ⁇ when emitted to the point P1 is the minimum scanning angle ⁇ min
  • the scanning angle ⁇ when emitted to the point P4 is the maximum scanning angle ⁇ max.
  • the point P0 is a point where the flight time is minimized
  • the points P2 and P3 are points where the flight time is maximized.
  • the width of the two-dimensional area of the video screen 30 in the Y direction is 40 cm, for example.
  • the distance between the reference point Q and the point P0 is, for example, 20 cm.
  • a circuit configuration that performs zero-cross detection enables highly accurate time measurement regardless of the received light intensity.
  • FIG. 7 shows a circuit configuration example of the amplifier 13 for performing zero-cross detection in the optical distance measuring device 1 of the first embodiment.
  • the amplifier 13 includes, for example, two stages of operational amplifiers 13b and 13c, and an element such as a capacitor 13a provided in series between them.
  • the amplifier 13 includes AC coupling using a capacitor 13a. Further, 0V is used as the reference voltage Vref of the comparator 15. The reason for adopting this configuration will be described based on the principle of zero cross detection described below.
  • the capacitor 13a has an effect of removing a direct current component due to external light that is constantly irradiated. It should be noted that a single amplifier may be used as the amplifier 13 as long as the sensor 12 can obtain a sufficient level of received light signal. In understanding the zero cross detection, the modulation unit 14 may be ignored.
  • FIG. 8 shows the principle of zero cross detection corresponding to FIG. FIG. 8A shows the relationship between time and the signal Vsig in the case of a circuit configuration in which zero cross detection is not performed as the optical distance measuring device of the comparative example.
  • the capacitor 13a of the amplifier 13 in FIG. 7 is not used, the modulation unit 14 is not provided, the voltage of the reference signal Vref of the comparator is higher than 0V, and the pulse of the stop signal Vstop is applied. obtain.
  • a signal Vsig is an output signal of the amplifier and indicates an input signal of the comparator.
  • FIG. 8A shows two lines of a waveform 801 when the signal Vsig is strong and a waveform 802 when the signal Vsig is weak.
  • the signal Vsig When the signal Vsig is strong, it intersects with the signal Vref at time tx1, and when the signal Vsig is weak, it intersects with the signal Vref at time tx2. That is, ⁇ t that is a difference between the time point tx1 and the time point tx2 occurs.
  • ⁇ t that is a difference between the time point tx1 and the time point tx2 occurs.
  • FIG. 8B shows the relationship between the time and the signal Vsig in the case where the optical distance measuring device 1 of the first embodiment has a circuit configuration that performs zero-cross detection as shown in FIG.
  • the capacitor 13 a is used, the modulation unit 14 is provided, the reference signal Vref of the comparator 15 is set to 0 V, and a pulse of the stop signal Vstop is obtained.
  • the signal Vsig the signal Vsig1 before the superposition and the signal Vsig2 after the superposition.
  • a signal Vsig1 is an output signal of the amplifier 13 and indicates an input signal of the modulation unit 14.
  • FIG. 8B shows two lines, a waveform 811 when the signal Vsig1 is strong and a waveform 812 when the signal Vsig1 is weak.
  • the signal Vref intersects at the same time point tx0, and no deviation like ⁇ t occurs.
  • the center point of the amplitude of the signal Vsig1 becomes 0V. Therefore, highly accurate time measurement is possible without depending on the intensity of the signal Vsig1.
  • the zero cross detection is performed at the time of distance measurement, highly accurate distance measurement is possible regardless of the intensity of the received light signal.
  • FIG. 9 shows the relationship of each signal in each period between the non-light receiving state and the light receiving state in the optical distance measuring device of the comparative example.
  • the horizontal axis represents time, and the vertical axis represents signal amplitude and voltage level.
  • Vstart from the control unit.
  • B shows an output signal Vsig of the amplifier.
  • C shows the output stop signal Vstop of the comparator.
  • the periods 901 and 903 are in a non-light receiving state, and the period 902 is in a light receiving state. There is a propagation delay time between each signal.
  • the start signal Vstart is a pulse signal having a predetermined frequency, cycle, and amplitude.
  • the start signal Vstart has a measurement number for each pulse.
  • the signal Vsig in (b) is a pulse signal corresponding to the start signal Vstart in (a) in the light receiving state.
  • the signal Vsig is a noise signal like the noise 911 in the non-light-receiving state. Although noise is added to the pulse signal in the light receiving state, the illustration is omitted.
  • the stop signal Vstop in (c) is a regular pulse signal corresponding to the signal Vsig in (b) in the light receiving state. This pulse signal has two values, High and Low.
  • the stop signal Vstop is an irregular pulse signal such as a random pulse 912 in accordance with the influence of the noise level of the noise signal (b) in the non-light-receiving state. This pulse signal has irregular timings of rising and rising timing of each pulse.
  • the comparator compares the noise level of the signal Vsig with the reference signal Vref to obtain a pulse of the stop signal Vstop. Therefore, the result is like a random pulse 912.
  • FIG. 10 corresponds to FIG. 9 and shows the measurement time of the measurement result in each period in the optical distance measuring device of the comparative example.
  • This measurement time corresponds to the above-described measurement time Tx in FIG. 3 and shows the result calculated from the stop signal Vstop by the time measuring device.
  • the horizontal axis indicates the measurement number, and the vertical axis indicates the measurement time.
  • the value TK indicates the correct measurement time corresponding to the correct distance from the object.
  • a period 1001 and a period 1003 indicate a non-light receiving state, and a period 1002 indicates a light receiving state. In the light receiving state in the period 1002, the measurement time is a correct value Tk.
  • the time measuring device measures time using an irregular pulse signal in the stop signal Vstop of FIG. 9C as an input value.
  • the value of the measurement time is a random value near the value TK.
  • the time difference between the rising time of the high signal of the pulse of the regular start signal Vstart and the rising time of the high signal of the pulse of the irregular stop signal Vstop is irregular for each pulse. Therefore, in the non-light receiving state, the measurement time values are randomly distributed.
  • the control unit calculates the flight time and distance from the measurement time of the time measuring device.
  • the measurement time range including the value TK in the light receiving state is determined according to the design of the video screen.
  • the control unit adopts it and calculates the flight time from the value.
  • the measurement time in the non-light-receiving state may include a value that matches or is close to the correct value TK, such as a value 1004.
  • the control unit erroneously measures the flight time and distance from the measurement time value 1004. That is, the result is that the position of the object is erroneously detected even though there is no reflected light from the object in the non-light-receiving state.
  • erroneous detection of distance and position may occur from the measurement time in the non-light receiving state due to the influence of noise in the non-light receiving state.
  • noise is easily determined as a stop signal, and high accuracy Cannot be realized.
  • a stabilization process related to the stop signal of the received light signal is performed. That is, the optical distance measuring device counts the time during which the High signal continues, for example, over a certain period of time with respect to the pulses of the received light signal. And when that time becomes more than a threshold value, it employ
  • the optical distance measuring device counts the time during which the High signal continues, for example, over a certain period of time with respect to the pulses of the received light signal. And when that time becomes more than a threshold value, it employ
  • an optical distance measuring device including a circuit configuration that performs zero-cross detection
  • the measurement time is correctly extracted from the signal in the light receiving state by the separation using the signal superposition, and the measurement time is prevented from being erroneously extracted from the signal in the non-light receiving state.
  • this function does not require time for stabilization processing as in the prior art.
  • the optical distance measuring device 1 includes the modulation unit 14 of the signal superimposing unit 100 as an implementation corresponding to the above function.
  • the modulation unit 14 superimposes a superimposed signal Vc having a predetermined characteristic on the signal Vsig1 output from the amplifier 13 based on the light reception signal of the sensor 12. Thereby, the value of the measurement time is separated between the light receiving state and the non-light receiving state. Thereby, erroneous detection due to the influence of noise in the non-light-receiving state is prevented, and highly accurate measurement is realized.
  • the optical distance measuring device 1 can immediately obtain a pulse from the superimposed signal Vsig2 when obtaining a pulse of the stop signal Vstop, and does not require time for stabilization processing or the like. Speed measurement is realized. That is, the optical distance measuring device according to Embodiment 1 can achieve both high accuracy and high speed.
  • FIG. 11 shows the relationship of each signal in each period between the non-light-receiving state and the light-receiving state, including before and after the superimposition signal Vc is superimposed in the optical distance measuring device 1 according to the first embodiment.
  • A shows the start signal Vstart from the control unit 10.
  • B shows the signal Vsig1 before superposition which is the output of the amplifier 13.
  • C shows the superimposed signal Vc from the control unit 10 to the modulation unit 14.
  • D) is the signal Vsig2 after superposition in the modulation section 14 and shows the input signal of the comparator 15.
  • E shows a stop signal Vstop which is an output of the comparator 15 with the superposed signal Vsig2 as an input value.
  • F enlarges the superimposed signal Vc of (c) and compares it with the noise level.
  • a period 111 and a period 113 indicate a non-light receiving state, and a period 112 indicates a light receiving state.
  • the start signal Vstart is a pulse signal having a predetermined frequency, cycle, and amplitude.
  • the frequency in the pulse signal of the start signal Vstart is f1, the period is 1 / f1, and the amplitude is H1.
  • the signal Vsig1 before superimposition in (b) is a pulse signal corresponding to the regular start signal Vstart in (a) in the light receiving state. This pulse signal also includes noise.
  • the signal Vsig1 is a noise signal like the noise 114 in the non-light-receiving state.
  • the frequency is fc
  • the period is 1 / fc
  • the amplitude is Hc.
  • the modulation unit 14 superimposes the superimposed signal Vc on the signal Vsig1, and outputs the signal Vsig2 after the superimposition.
  • the comparator 15 compares the superimposed signal Vsig2 with the reference signal Vref and converts it into a pulse of the stop signal Vstop.
  • the signal Vsig2 after the superposition of (d) is a signal obtained by superimposing the pulse of the superposition signal Vc of (c) on the signal Vsig1 of (b) in the light receiving state of the period 112.
  • the signal Vsig2 is a signal 115 obtained by superimposing a pulse of the superimposed signal Vc of (c) on a noise signal such as the noise 114 of (b).
  • the stop signal Vstop of (e) is a regular pulse signal based on the signal Vsig2 of (d) in the light receiving state.
  • the stop signal Vstop is a substantially regular pulse signal 116 based on the signal 115 of the signal Vsig2 in (d) in the non-light-receiving state such as the period 111.
  • This pulse signal 116 is controlled to be a regular pulse rather than the random pulse 912 of the stop signal Vstop of the comparative example of FIG.
  • the design and definition of the superimposed signal Vc are as follows.
  • the frequency fc of the superimposed signal Vc is higher than the frequency f1 of the start signal Vstart, and the period 1 / fc is shorter than the period 1 / f1 of the start signal Vstart.
  • the amplitude Hc of the superimposed signal Vc is set to be slightly larger than the amplitude H0 of the noise level such as the noise 114 in (b).
  • the amplitude of the noise level is shown as amplitude H0.
  • the amplitude Hc of the superimposed signal Vc is set to be smaller than the amplitude H1 of the start signal Vstart. That is, H0 ⁇ Hc ⁇ H1.
  • FIG. 11 shows an example of the measurement time Tx.
  • the measurement time Tx is a time difference between the rising edge of the pulse of the start signal Vstart and the rising edge of the corresponding pulse of the stop signal Vstop.
  • the measurement time Tx is at most a period up to the period 1 / fc of the superimposed signal Vc, that is, Tx ⁇ 1 / fc.
  • the pulse of the stop signal Vstop always rises once in the cycle 1 / fc of the superimposed signal Vc.
  • the measurement time Tx in the non-light receiving state can be controlled as shown in FIG. 12 to be separated from the measurement time Tx in the light receiving state. Since the pulse of the stop signal Vstop occurs within the period 1 / fc, the value of the measurement time Tx in the non-light receiving state is smaller than the value of the correct measurement time Tx in the light receiving state.
  • the range of the measurement time Tx is determined according to the size of the video screen 30 to be detected.
  • the period and frequency of the superimposed signal Vc are designed according to the range of the measurement time Tx.
  • FIG. 12 shows the measurement time of the measurement result in each period corresponding to FIG. This measurement time corresponds to the measurement time Tx of the time measuring device 16.
  • a period 121 and a period 123 indicate a non-light receiving state, and a period 122 indicates a light receiving state.
  • the value TK indicates a correct measurement time value corresponding to the correct distance from the object 3.
  • a range E1 indicates a range of measurement time in the light receiving state including the value TK.
  • the value TK1 indicates the lower limit value of the range E1, and the value TK2 indicates the upper limit value of the range E1.
  • the lower limit value TK1 is 60 + 0.66 [nsec] and the upper limit value based on the minimum distance point P0 and the maximum distance point P2 from the reference point Q.
  • TK2 is 60 + 4 [nsec].
  • Range E2 indicates the range of measurement time in the non-light-receiving state.
  • the value TC2 indicates the upper limit value of the range E2.
  • the optical distance measuring device 1 sufficiently separates the value of the measurement time Tx between the non-light-receiving state and the light-receiving state as shown in FIG. 12 by the process of superimposing the superimposed signal Vc.
  • the measurement time range E1 in the light receiving state is separated from the measurement time range E2 in the non-light receiving state.
  • the optical distance measuring device 1 it is possible to prevent erroneous detection from a signal in a non-light-receiving state as in the comparative example of FIG. 10, and to realize highly accurate measurement. Further, in the optical distance measuring device 1 according to the first embodiment, it is possible to determine the correct measurement time as it is at the rising timing of the pulse of the stop signal Vstop obtained from the comparator 15, so that time for stabilization processing or the like is unnecessary. High speed measurement is possible immediately.
  • the control unit 10 extracts the value of the measurement time of the light receiving state from the data of the measurement time Tx as shown in FIG. 12, calculates the flight time Tf, and calculates the distance and position.
  • the control unit 10 compares and determines the input measurement time Tx value at each time point with a predetermined threshold Th, adopts a value larger than the threshold Th as the value of the measurement time in the light receiving state, and uses the threshold Th.
  • the following values are regarded as non-light-receiving state measurement time values and ignored or not adopted.
  • the predetermined threshold Th is set to the same value as 1 / fc which is the upper limit value TC2 of the range E2, for example.
  • the period 1 / fc of the superimposed signal Vc needs to be shorter than the circuit delay time Td in order to separate the measurement time in the light receiving state and the non-light receiving state. That is, the following formula 4 is one condition. Further, Expression 5 is obtained by transforming Expression 4. The frequency fc needs to be larger than the reciprocal of the circuit delay time Td. 1 / fc ⁇ Td Formula 4 fc> 1 / Td Formula 5
  • the cycle 1 / fc of the superimposed signal Vc is more preferably a cycle sufficiently smaller than the circuit delay time Td.
  • the circuit delay time Td is 30 [nsec]
  • the minimum distance in the range of the distance that can be detected by the optical distance measuring device 1 is 0 cm
  • the maximum distance is 70 cm.
  • This minimum distance corresponds to, for example, the case where the point P0 in FIG. 6 is set as the reference point Q0.
  • the maximum distance corresponds to the distance between the point P0 and the point P2.
  • the flight time Tf is calculated to be 4.62 [nsec] at the maximum (0 ⁇ Tf ⁇ 4.62).
  • the period 1 / fc of the superimposed signal Vc is 1 / fc ⁇ 30 [nsec] as a condition from Equation 4. From Equation 5, the frequency fc of the superimposed signal Vc is fc> 1/30 [nsec] as a condition. That is, the frequency fc of the superimposed signal Vc is fc> 33 [MHz].
  • the period 1 / fc and the frequency fc of the superimposed signal Vc are defined depending on the mounting circuit configuration of the optical distance measuring device 1.
  • the superimposed signal Vc is generated from the signal generation unit 10A of the control unit 10 in FIG.
  • the signal generation unit 10A generates the superimposed signal Vc using a clock signal generated by a CPU or the like provided in the control unit 10, for example. Since the clock signal generated by the CPU or the like has the lower limit of the cycle and the upper limit of the frequency, the lower limit of the cycle and the upper limit of the frequency of the superimposed signal Vc are also defined accordingly. Further, for example, in the circuit of the time measuring device 16, there is a limit on the time resolution that can be measured, and accordingly, the cycle and frequency of the superimposed signal Vc are defined.
  • FIG. 13 shows a configuration of the modulation unit 14 in the optical distance measuring device 1 of the first embodiment.
  • the modulation unit 14 includes a capacitor 14a that is a superimposed capacitor.
  • a signal line from the control unit 10 is connected to a signal line from the amplifier 13 to the comparator 15, and a capacitor 14a is provided in the middle of the signal line.
  • the modulation unit 14 superimposes the superimposed signal Vc from the control unit 10 on the signal Vsig1 output from the amplifier 13 via the capacitor 14a.
  • the control unit 10 generates and outputs a pulse signal having the amplitude Hc larger than the noise level and the frequency fc higher than the start signal Vstart as the predetermined superimposed signal Vc by the signal generation unit 10A.
  • the signal generation unit 10A may generate the superimposed signal Vc using a frequency divider or the like based on a clock signal generated by the CPU, for example.
  • the superimposed signal Vc is not limited to a rectangular wave but may be a periodic waveform such as a sine wave, a triangular wave, or a sawtooth wave as long as the above-described conditions are satisfied.
  • the control unit 10 may have a function of variably adjusting the amplitude, frequency, etc. of the superimposed signal Vc.
  • both high accuracy and high speed can be realized with respect to the optical distance measuring device and the video projection device using the TOF method.
  • the optical distance measuring device 1 can detect the position of the object 3 on the video screen 30 with high accuracy and high speed.
  • the image projection device 2 can detect the operation of the object 3 on the image screen 30 using the position information obtained by the optical distance measuring device 1 with high accuracy and high speed, and can realize a control operation corresponding to the operation. That is, the video projection device 2 can realize a function that enables interactive control operations on the video screen 30 with high accuracy and high speed.
  • the optical distance measuring device 1 may omit the above-described scanning unit, and may emit light only from the light source 11 of the reference point Q in a fixed direction.
  • a form in which the image projection device 2 and the optical distance measuring device 1 are interconnected separately is also possible.
  • a configuration in which the optical distance measuring device 1 is connected to the outside of the image projection device 2 via a wired or wireless communication interface and the two are linked together is possible.
  • the time measuring device 16 may calculate the flight time Tf from the measurement time Tx and output the flight time Tf data to the control unit 10. In that case, the control unit 10 does not need to calculate the flight time Tf.
  • the light scanning method for the video screen 30 is not limited to the above-described method for controlling the scanning angle ⁇ within the range, and any method that can cover the detection of all points in the video screen 30 may be used. Various methods are applicable.
  • the scanning drive unit 21 and the scanning mirror 22 which are scanning means may be mounted not in the optical distance measuring device 1 but in the video projection device 2.
  • distance information may be output from the optical distance measuring device 1, and the image projection device 2 may calculate a position from the distance information and scanning angle information.
  • the optical distance measuring device 1 may be configured to be able to emit a projection signal in a desired scanning direction by adding elements such as a reflection mirror as scanning means and performing two-dimensional control instead of one-dimensional.
  • a scanning angle ⁇ that is a second angle is taken in addition to a scanning angle ⁇ that is a first angle.
  • This scanning angle ⁇ is an angle at which light is emitted from the reference point Q toward a position in the Z direction, which is the height direction with respect to the video screen 30.
  • the scanning means controls so as to change two angles of the scanning angle ⁇ and the scanning angle ⁇ .
  • the operation can be detected in more detail from a plurality of pieces of position information detected within the three-dimensional region.
  • FIG. 14 shows a configuration of the modulation unit 14 in the optical distance measuring device 1 according to the first modification of the first embodiment.
  • the modulation unit 14 in the first modification has a configuration using an adder.
  • the modulation unit 14 includes an addition amplifier 14b, variable resistors 141 and 142, and the like.
  • the modulation unit 14 can adjust the voltage level, which is the amplitude of the superimposed signal Vc, using the variable resistors 141 and 142.
  • the modulation unit 14 can weight the signal Vsig1 from the amplifier 13 and the superimposed signal Vc under the control of the variable resistors 141 and 142.
  • the resistance value of the variable resistor 141 is R1, and the resistance value of the variable resistor 142 is R2.
  • the resistance value related to the adding amplifier 14b is Rf.
  • the signal Vsig1 from the amplifier 13 is input to the positive input terminal of the adding amplifier 14b through the variable resistor 141.
  • the superimposed signal Vc from the control unit 10 is input to the positive input terminal of the adding amplifier 14b through the variable resistor 142.
  • the negative input terminal of the adding amplifier 14b is connected to the ground.
  • the output terminal of the adding amplifier 14b is fed back to the positive input terminal through a resistor having a resistance value Rf, and the signal Vsig2 is output to the comparator 15.
  • control unit 10 has a function of adjusting the amplitude of the superimposed signal Vc in accordance with user settings and calibration described later.
  • the control unit 10 gives the control values 140 related to the resistance values R1 and R2 to the variable resistors 141 and 142 in correspondence with the voltage level of the amplitude after the adjustment.
  • the resistance values R1, R2 of the variable resistors 141, 142 are adjusted.
  • the superimposed signal Vc is superimposed on the signal Vsig1 in the subsequent stage of the amplifier 13.
  • the present invention is not limited to this, and as a modification, a circuit that superimposes a predetermined signal may be provided immediately after the sensor 12 in the previous stage of the amplifier 13.
  • FIG. 15 shows a configuration of the control unit 10 in the optical distance measuring device 1 according to the second modification of the first embodiment.
  • the control unit 10 in the second modification has a function of detecting the noise level in the non-light-receiving state and adjusting the voltage level of the amplitude of the superimposed signal Vc according to the noise level.
  • the control unit 10 includes an ADC 10a, a superimposed signal controller 10b, and a superimposed signal generator 10c.
  • the ADC 10a is an analog / digital converter and functions as a noise level detector.
  • the ADC 10a receives and samples the signal Vsig1, which is an analog signal from the amplifier 13, and outputs the value 151 of the digital signal to the superimposed signal controller 10b.
  • the optical distance measuring device 1 is an environment in which reflected light including scattering from the object 3 does not return to the sensor 12 when detecting the noise level.
  • the control unit 10 inputs a value 151 indicating the noise level obtained by converting the level of the signal Vsig1 output from the amplifier 13 by the ADC 10a to the superimposed signal controller 10b.
  • the superimposed signal controller 10b determines the amplitude value 152 of the superimposed signal Vc from the noise level indicated by the value 151 from the ADC 10a. For example, the superimposed signal controller 10b compares the noise level with a threshold range and determines an amplitude value corresponding to the corresponding threshold range.
  • the superimposed signal controller 10b determines the amplitude value by substituting the noise level into a predetermined calculation formula. As described above, the superimposed signal controller 10b determines this amplitude value under the condition that the amplitude is smaller than the amplitude H1 of the start signal Vstart and slightly larger than the amplitude H0 of the noise level.
  • the superimposition signal controller 10b gives the determined amplitude value 152 to the superimposition signal generator 10c.
  • the superimposed signal generator 10 c generates the superimposed signal Vc having the amplitude value based on, for example, a clock signal as described above, and outputs the superimposed signal Vc to the modulation unit 14.
  • the superimposed signal controller 10b may provide the determined amplitude value 152 to the modulation unit 14.
  • the modulation unit 14 adjusts the amplitude of the superimposed signal Vc by an internal circuit in accordance with the amplitude value 152 given from the control unit 10.
  • the control unit 10 has a function of adjusting the amplitude of the superimposed signal Vc and the like according to user settings and calibration.
  • the control unit 10 receives a set value such as an amplitude value of the superimposed signal Vc input based on an input operation of the administrator through the input / output unit 55 of the video projection device 2 and receives the superimposed signal Vc. Adjust the amplitude.
  • the control unit 10 may switch on / off of the superimposed signal Vc, for example, according to a user setting.
  • the optical distance measuring device 1 executes a calibration sequence, for example, when activated.
  • the control unit 10 detects the noise level through the ADC 10a under the above-described environment, and determines the amplitude value 152 according to the noise level by the superimposed signal controller 10b. Thereafter, the control unit 10 executes a normal measurement sequence using the superimposed signal Vc having the determined amplitude value 152. Further, the control unit 10 thereafter automatically performs calibration at regular time intervals and similarly adjusts the superimposed signal Vc.
  • control unit 10 may detect the state of the surrounding environment at any time using various sensors such as a temperature sensor and adjust the amplitude or the like of the superimposed signal Vc according to the detected value.
  • the noise level may change due to a change in temperature due to the influence of external light or a power source.
  • the control unit 10 detects the noise level after the change from time to time, and automatically adjusts the amplitude and the like of the superimposed signal Vc according to the noise level. For example, since the temperature changes greatly in the period immediately after the power supply of the image projection apparatus 2 is activated, the calibration may be executed frequently during that period.
  • the video projection device 2 may detect a change in the installation position using a predetermined sensor, and may execute calibration according to the detection.
  • the video projection device 2 displays the fact on the video screen 30 or the like so that the user can recognize that the calibration or the noise level is being detected.
  • audio may be output.
  • a lamp provided in the optical distance measuring device 1 may be used so that the lamp is turned on during calibration so that the user can recognize it.
  • control unit 10 provides a function for switching on / off of the superimposed signal Vc, whether or not the superimposed signal Vc is superimposed, the frequency and amplitude of the superimposed signal Vc. It has a function to monitor and output the voltage level and the like so that it can be confirmed.
  • the video projection device 2 may display information on the state and settings regarding the superimposed signal Vc on the video screen 30.
  • FIG. 16 shows a configuration of the optical distance measuring device 1 according to the second embodiment.
  • the optical distance measuring device 1 according to the second embodiment includes a superimposing light source driving unit 71, a superimposing light source 72, and a light amount adjusting unit 73 as the signal superimposing unit 100.
  • a superimposing light source 72 different from the light source 11 is used as the signal superimposing unit 100 instead of the modulating unit 14.
  • a light reception signal on which a predetermined signal is superimposed is obtained by superimposing the light from the superimposing light source 72 on the reflected light A2 incident on the sensor 12 as the superimposed light A12.
  • the control unit 10 outputs a driving gate signal to the superimposing light source driving unit 71 based on a predetermined superimposing signal.
  • the superimposing light source driving unit 71 supplies a driving current to the superimposing light source 72 at a timing according to the gate signal from the control unit 10.
  • the superimposing light source 72 emits light with intensity and timing according to the driving current from the superimposing light source driving unit 71.
  • Light A ⁇ b> 11 from the superimposing light source 72 is incident on the light amount adjusting unit 73.
  • the light amount adjusting unit 73 adjusts the light amount by dimming the light A11 from the superimposing light source 72 to generate the superimposed light A12. Accordingly, in other words, the light amount adjusting unit 73 adjusts the incident light amount and the received light intensity of the sensor 12.
  • the light amount adjusting unit 73 can adjust the level of superimposed light corresponding to the superimposed signal Vc.
  • the superimposed light A12 from the light amount adjusting unit 73 is incident on the sensor 12.
  • the sensor 12 receives the reflected light A2 from the object 3 and the superimposed light A12, and combines them to output as a received light signal.
  • the superimposed light A12 is designed to have a predetermined light amount and the like, similar to the design of the superimposed signal Vc in the first embodiment.
  • the light amount adjustment unit 73 As the light amount adjustment unit 73, a neutral density filter, a diffusion film, a diffusion plate, or the like can be applied. Further, the light amount adjusting unit 73 may be realized using reflection in the housing of the optical distance measuring device 1 or another optical system.
  • the superimposing light source 72 and the light amount adjusting unit 73 are disposed near the sensor 12.
  • a light amount adjusting unit 73 is disposed on the optical path between the superimposing light source 72 and the sensor 12.
  • the predetermined signal has been superimposed up to the sensor 12, and the signal Vsig output from the amplifier 13 is a superimposed signal.
  • the comparator 15 receives the signal Vsig and obtains a stop signal Vstop.
  • the superimposing light source 72 by using the superimposing light source 72 to always output the superimposed light A12 corresponding to the superimposed signal Vc, the superimposed state of a predetermined signal with respect to the signal Vsig is changed as in the first embodiment. realizable. Therefore, regarding the measurement time Tx based on the stop signal Vstop, separation can be realized between the non-light-receiving state and the light-receiving state as in FIG. 12 of the first embodiment. That is, according to the second embodiment, the same effect as in the first embodiment can be obtained.
  • the following are examples of modifications of the second embodiment. That is, without providing the light amount adjustment unit 73, it is possible to generate predetermined superimposed light from the superimposing light source 72 and to directly enter the superimposed light on the sensor 12.
  • the light from the superimposing light source 72 is designed to have a predetermined light amount corresponding to the superimposed light A12 corresponding to a predetermined superimposed signal.
  • this modification is adopted, and the light amount adjusting unit The provision of 73 can be omitted.
  • this modification can be adopted when superimposing light can be generated by adjusting the amount of light emitted from the superimposing light source 72 under the control of the control unit 10 and the superimposing light source driving unit 71.
  • the optical distance measuring device and the image projection device according to the third embodiment of the present invention will be described with reference to FIGS.
  • the basic configuration of the third embodiment is the same as the configuration of the first embodiment, and hereinafter, the difference in the configuration of the third embodiment from the configuration of the first embodiment will be described.
  • the third embodiment shows a configuration in which the distance measuring light source 11 is also used as the superimposing light source as the signal superimposing means.
  • FIG. 17 shows a configuration of the optical distance measuring device 1 according to the third embodiment.
  • a light amount adjusting unit 81 is provided as a signal superimposing unit 100 between the light source 11 and the sensor 12.
  • the light amount adjusting unit 81 uses the light source 11 to generate superimposing light.
  • the light source 11 emits light for distance measurement as outgoing light A1.
  • the light amount adjustment unit 81 generates the superimposed light A15 by entering and dimming the light A14 accompanying the emitted light A1, and makes the superimposed light A15 incident on the sensor 12.
  • the sensor 12 receives the reflected light A2 from the object 3 and also receives the superimposed light A15 from the light amount adjusting unit 81 and outputs it as a light reception signal.
  • the light amount adjustment unit 81 has a function of adjusting the light amount, as in the second embodiment, and can be configured by a filter or the like.
  • the distance between the light source 11 and the sensor 12 is short. This distance is at least shorter than the distance from the light source 11 to the sensor 12 after being reflected by the object 3.
  • the signal Vsig output from the amplifier 13 is a superimposed signal.
  • the comparator 15 receives the signal Vsig and obtains a stop signal Vstop.
  • FIG. 18 shows the relationship of each signal in each period between the non-light-receiving state and the light-receiving state in the optical distance measuring device 1 according to the third embodiment.
  • (A) shows the start signal Vstart
  • (b) shows the signal Vsig
  • (c) shows the stop signal Vstop.
  • a period 181 indicates a non-light receiving state
  • a period 182 indicates a light receiving state.
  • the start signal Vstart in (a) is the same pulse signal as described above.
  • the signal Vsig in (b) is a pulse signal in which reflected light A2, superimposed light A15, and noise are reflected in the light receiving state.
  • the signal Vsig is a pulse signal with a small amplitude that reflects the superimposed light A15 with a small amount of light and noise, without the reflected light A2.
  • the maximum measurement time is almost the same as the circuit delay time Td. This is because the distance between the light source 11 and the sensor 12 is very short. In other words, the time for light to propagate from the light source 11 to the sensor 12 via the light amount adjustment unit 81 is very short.
  • the minimum measurement time is as follows.
  • the minimum is the case where the object 3 is at the point P0 in FIG. 6 that is closest to the reference point Q of the optical distance measuring device 1 in the video screen 30.
  • the third embodiment it is possible to create a difference between the minimum measurement time in the light receiving state and the maximum measurement time in the non-light receiving state. As in FIG. The measurement time can be separated from the light receiving state. That is, according to the third embodiment, the same effect as in the first embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

The purpose of the present invention is to provide technology capable of achieving both high accuracy and high speed regarding a TOF optical ranging device and the like. An optical ranging device is provided with: a control unit which generates a start signal; a light source which emits light on the basis of the start signal; a sensor on which reflected light from an object of the light emitted from the light source is incident and which outputs the reflected light as a received light signal; a comparator which outputs a stop signal as a result of a comparison between a first signal based on the received light signal and a reference signal; a time measuring instrument which outputs, as a measurement time, a time difference between the start signal and the stop signal; a calculation unit which on the basis of the measurement time, extracts a measurement time in a light reception state in which reflected light is being received, calculates a flight time using the measurement time in the light reception state, calculates a distance to the object on the basis of the flight time, and calculates the position of the object on the basis of the distance; and a signal superimposition unit which superimposes a superimposition signal on the received light signal. The superimposition signal is a periodic signal having a smaller period than the period of the emitted light.

Description

光測距装置及び映像投写装置Optical distance measuring device and image projection device
 本発明は、光を用いた距離測定装置である光測距装置の技術に関する。また、本発明は、光測距装置を備える映像投写装置の技術に関する。 The present invention relates to a technology of an optical distance measuring device which is a distance measuring device using light. The present invention also relates to a technique of an image projection device provided with an optical distance measuring device.
 一般的な物体位置検出手段として、光を用いた距離測定方式がある。この方式の1つとして、タイム・オブ・フライト(Time-Of-Flight:TOF)方式がある。TOF方式は、光源からの出射光が対象物で反射されてセンサに入射されるまでの光の飛行時間に基づいて対象物との距離を算出する方式である。光測距装置は、所定の投光信号を光源から出射光として出射し、対象物からの反射光をセンサで受光信号として得る。光測距装置は、投光信号における開始信号と、受光信号における停止信号との時間差から、飛行時間を算出し、光速を用いて距離を算出する。また、光測距装置の基準点の位置と、基準点からの方向と、算出された距離とを用いて、対象物の位置が算出可能である。 There is a distance measurement method using light as a general object position detection means. One of these methods is a time-of-flight (TOF) method. The TOF method is a method of calculating the distance from the object based on the flight time of light from the light emitted from the light source reflected by the object and entering the sensor. The optical distance measuring device emits a predetermined light projection signal from a light source as emitted light, and obtains reflected light from an object as a light reception signal by a sensor. The optical distance measuring device calculates the flight time from the time difference between the start signal in the light projection signal and the stop signal in the light reception signal, and calculates the distance using the speed of light. Further, the position of the object can be calculated using the position of the reference point of the optical distance measuring device, the direction from the reference point, and the calculated distance.
 TOF方式の光測距装置に関する先行技術例として、特開2012-26853号公報(特許文献1)が挙げられる。特許文献1には、距離センサにおいて、高精度の測定を可能とするため、受光信号のパルス信号に関して、ノイズと区別するため、High信号の長さを判断して停止信号を決定する旨が記載されている。特許文献1には、時間計測部が、比較器からのパルス信号のHigh信号の出現頻度を計測し、その出現頻度が安定した時点で停止信号として採用する安定化処理を行って飛行時間を求める旨が記載されている。 Japanese Unexamined Patent Publication No. 2012-26853 (Patent Document 1) is given as an example of the prior art relating to the TOF optical rangefinder. Patent Document 1 describes that a distance sensor determines the stop signal by determining the length of the High signal in order to distinguish the pulse signal of the received light signal from noise in order to enable high-precision measurement. Has been. In Patent Document 1, the time measurement unit measures the appearance frequency of the High signal of the pulse signal from the comparator, and performs a stabilization process that is adopted as a stop signal when the appearance frequency is stabilized to obtain the flight time. The effect is described.
特開2012-26853号公報JP 2012-26853 A
 TOF方式の光測距装置の従来技術において、光源からの出射光による対象物からの反射光をセンサで受光信号として受光している時の状態と、受光していない時の状態とがある。説明上、前者を受光状態と称し、後者を非受光状態と称する。TOF方式では、受光状態の信号に基づいて飛行時間及び距離を測定する必要がある。しかし、従来技術では、非受光状態のノイズ信号のノイズレベルの影響によって、誤って飛行時間及び距離を検出してしまう場合がある。即ち、従来技術は、測定に係わる精度の点で改善余地がある。 In the conventional technology of the optical distance measuring device of the TOF method, there are a state when the reflected light from the object by the light emitted from the light source is received as a light reception signal by the sensor and a state when the light is not received. For the sake of explanation, the former is referred to as a light receiving state, and the latter is referred to as a non-light receiving state. In the TOF method, it is necessary to measure the flight time and the distance based on the light reception state signal. However, in the prior art, the time of flight and the distance may be erroneously detected due to the influence of the noise level of the noise signal in the non-light-receiving state. That is, the prior art has room for improvement in terms of accuracy related to measurement.
 また、従来技術では、高精度の測定を実現するためには、受光信号からノイズ信号と区別して停止信号を決定する必要があるが、その処理に関して、ある程度の時間を要する。例えば、特許文献1の場合、安定化処理のための時間として、High信号の出現頻度を計測する時間、例えばHigh信号が継続する時間をカウントする時間、を要する。精度を優先して、ノイズレベルの影響によるHigh信号を停止信号として誤検出しないようにするためには、High信号の頻度や継続時間が、ある程度の値になるまで待つ必要がある。即ち、従来技術は、測定に係わる速度及び所要時間の点で改善余地がある。 In the conventional technique, in order to realize highly accurate measurement, it is necessary to determine the stop signal by distinguishing it from the noise signal from the received light signal. However, a certain amount of time is required for the processing. For example, in the case of Patent Document 1, a time for measuring the appearance frequency of the High signal, for example, a time for counting the time for which the High signal continues, is required as the time for the stabilization process. In order to prioritize accuracy and prevent the High signal due to the influence of the noise level from being erroneously detected as a stop signal, it is necessary to wait until the frequency and duration of the High signal reach a certain value. That is, the prior art has room for improvement in terms of speed and time required for measurement.
 速度を優先する場合、High信号の頻度や継続時間が小さい値で停止信号として決定する構成となる。その構成の場合、ノイズレベルの影響によるHigh信号を誤って停止信号としてしまう可能性が高くなる。上述のように、従来技術は、高精度と高速度との両立が難しい。 When priority is given to speed, the high signal frequency and duration are determined as a stop signal with a small value. In the case of the configuration, there is a high possibility that the High signal due to the influence of the noise level is erroneously set as the stop signal. As described above, it is difficult for the conventional technology to achieve both high accuracy and high speed.
 本発明の目的は、TOF方式の光測距装置等に関して、高精度と高速度との両方を実現できる技術を提供することである。 An object of the present invention is to provide a technology capable of realizing both high accuracy and high speed with respect to a TOF optical distance measuring device and the like.
 本発明のうち代表的な実施の形態は、光測距装置等であって、以下に示す構成を有することを特徴とする。 A typical embodiment of the present invention is an optical distance measuring device or the like, and has the following configuration.
 一実施の形態の光測距装置は、光を用いて距離を測定する光測距装置であって、開始信号を生成する制御部と、前記開始信号に基づいて光を出射する光源と、前記光源からの出射光による対象物からの反射光を入射して受光信号として出力するセンサと、前記受光信号に基づいた第1の信号と、参照信号との比較の結果、停止信号を出力する比較器と、前記開始信号と前記停止信号との時間差を計測時間として出力する時間計測器と、前記計測時間に基づいて、前記反射光を受光している受光状態の計測時間を取り出し、当該受光状態の計測時間を用いて飛行時間を算出し、当該飛行時間に基づいて前記対象物との距離を算出し、当該距離に基づいて前記対象物の位置を算出する、算出部と、前記受光信号に重畳信号を重畳する信号重畳部と、を備え、前記重畳信号は、前記出射光の周期よりも小さい周期を持つ周期的信号である。 An optical distance measuring device according to an embodiment is an optical distance measuring device that measures a distance using light, a control unit that generates a start signal, a light source that emits light based on the start signal, Comparison of outputting a stop signal as a result of comparison between a sensor that receives reflected light from an object by light emitted from a light source and outputs it as a light reception signal, and a first signal based on the light reception signal and a reference signal And a time measuring device that outputs a time difference between the start signal and the stop signal as a measurement time, and based on the measurement time, takes out the measurement time of the light receiving state in which the reflected light is received, and the light receiving state Calculating a flight time using the measured time, calculating a distance from the object based on the flight time, and calculating a position of the object based on the distance; Signal superimposing unit that superimposes the superimposed signal , Wherein the superposition signal is a periodic signal having a period smaller than the period of the emitted light.
 一実施の形態の映像投写装置は、前記光測距装置を備え、前記光測距装置は、前記算出した位置を含む位置情報を、前記映像投写装置に送信する通信部を備え、前記映像投写装置は、映像データに基づいて映像を映像画面に投写する映像投写部と、前記映像画面の付近での前記対象物の位置に応じて、前記光測距装置から前記位置情報を受信する通信部と、を備え、前記位置情報を用いて、前記映像投写部の映像投写、または当該映像投写装置に接続される外部機器を制御する。 An image projection device according to an embodiment includes the optical distance measurement device, and the optical distance measurement device includes a communication unit that transmits position information including the calculated position to the image projection device, and the image projection device. An apparatus includes: a video projection unit that projects a video on a video screen based on video data; and a communication unit that receives the position information from the optical distance measuring device according to a position of the object in the vicinity of the video screen. And controlling the image projection of the image projection unit or an external device connected to the image projection apparatus using the position information.
 本発明のうち代表的な実施の形態によれば、TOF方式の光測距装置等に関して、高精度と高速度との両方を実現できる。 According to a typical embodiment of the present invention, both high accuracy and high speed can be realized with respect to a TOF optical distance measuring device and the like.
本発明の実施の形態1の光測距装置及び映像投写装置を含むシステム全体の構成を示す図である。It is a figure which shows the structure of the whole system containing the optical ranging apparatus and image projection apparatus of Embodiment 1 of this invention. 本発明の実施の形態1の光測距装置の構成を示す図である。It is a figure which shows the structure of the optical ranging apparatus of Embodiment 1 of this invention. 実施の形態1における、TOF方式の距離測定の原理を示す図である。3 is a diagram illustrating the principle of distance measurement using the TOF method in Embodiment 1. FIG. 実施の形態1の映像投写装置の構成を示す図である。1 is a diagram illustrating a configuration of a video projection device according to a first embodiment. 実施の形態1の映像投写装置の外観及び配置例を示す図である。FIG. 2 is a diagram illustrating an appearance and an arrangement example of the video projection device according to the first embodiment. 実施の形態1の映像投写装置の配置例における、映像画面及び動作等を示す図である。6 is a diagram illustrating a video screen, an operation, and the like in an arrangement example of the video projection device according to Embodiment 1. FIG. 実施の形態1の光測距装置における、ゼロクロス検出に関する回路構成を示す図である。It is a figure which shows the circuit structure regarding zero cross detection in the optical distance measuring device of Embodiment 1. FIG. 実施の形態1の光測距装置における、ゼロクロス検出に関する原理を示す図である。It is a figure which shows the principle regarding the zero cross detection in the optical ranging apparatus of Embodiment 1. FIG. 比較例の光測距装置における、各期間の各信号の関係を示す図である。It is a figure which shows the relationship of each signal of each period in the optical ranging apparatus of a comparative example. 比較例の光測距装置における、計測結果の計測時間を示す図である。It is a figure which shows the measurement time of the measurement result in the optical ranging apparatus of a comparative example. 実施の形態1の光測距装置における、重畳前後における、各期間の各信号の関係を示す図である。It is a figure which shows the relationship of each signal of each period before and behind superimposition in the optical ranging apparatus of Embodiment 1. FIG. 実施の形態1の光測距装置における、重畳後における、計測結果の計測時間を示す図である。It is a figure which shows the measurement time of the measurement result after superimposition in the optical distance measuring device of Embodiment 1. FIG. 実施の形態1の光測距装置における、変調部の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a modulation unit in the optical distance measuring device according to the first embodiment. 実施の形態1の第1の変形例の光測距装置における、変調部の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a modulation unit in the optical distance measuring device according to the first modification of the first embodiment. 実施の形態1の第2の変形例の光測距装置における、制御部の構成を示す図である。It is a figure which shows the structure of the control part in the optical ranging apparatus of the 2nd modification of Embodiment 1. FIG. 本発明の実施の形態2の光測距装置の構成を示す図である。It is a figure which shows the structure of the optical ranging apparatus of Embodiment 2 of this invention. 本発明の実施の形態3の光測距装置の構成を示す図である。It is a figure which shows the structure of the optical ranging apparatus of Embodiment 3 of this invention. 実施の形態3の光測距装置における、各期間の各信号の関係を示す図である。It is a figure which shows the relationship of each signal of each period in the optical distance measuring device of Embodiment 3.
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において同一部には原則として同一符号を付し、その繰り返しの説明は省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiment, and the repetitive description thereof will be omitted.
 (実施の形態1)
 図1~図15を用いて、本発明の実施の形態1の光測距装置及び映像投写装置について説明する。実施の形態1の映像投写装置は、実施の形態1の光測距装置を備える。
(Embodiment 1)
The optical distance measuring device and the image projection device according to the first embodiment of the present invention will be described with reference to FIGS. The video projection device according to the first embodiment includes the optical distance measuring device according to the first embodiment.
 前述の課題に関して、本発明者の検討によれば、誤検出が無い高精度な測定を実現するためには、受光状態の計測時間と非受光状態の計測時間とを分離することが必要及び有効であると考える。実施の形態1の光測距装置では、受光信号に関する安定化処理等の時間を不要として高速度の測定を実現しつつ、受光状態と非受光状態とで計測時間を分離して、誤検出が無い高精度の測定を実現する。実施の形態1の光測距装置は、光源及びセンサを含む回路構成及びその信号処理等を工夫して、上記分離を実現し、これにより高精度かつ高速度の測定を実現する。 Regarding the above-mentioned problems, according to the study of the present inventor, it is necessary and effective to separate the measurement time in the light receiving state from the measurement time in the non-light receiving state in order to realize highly accurate measurement without erroneous detection. I believe that. In the optical distance measuring device according to the first embodiment, erroneous measurement is performed by separating the measurement time in the light receiving state and the non-light receiving state while realizing high-speed measurement without requiring time for stabilization processing or the like regarding the light reception signal. Realize high-precision measurement without any problems. The optical distance measuring device according to the first embodiment devises the circuit configuration including the light source and the sensor and the signal processing thereof to realize the above separation, thereby realizing high-precision and high-speed measurement.
 [システム全体]
 図1は、本発明の実施の形態1の光測距装置及び映像投写装置を含むシステム全体の構成を示す。図1のシステムは、実施の形態1の光測距装置1を内蔵した実施の形態1の映像投写装置2と、映像投写装置2からの投写による映像画面30と、映像画面30の付近にある対象物3と、映像投写装置2に接続された外部機器6と、を有する。対象物3は、距離測定対象の任意の物体であり、具体例としては、利用者の指や、ペン等の指示器具が挙げられる。
[Whole system]
FIG. 1 shows the configuration of the entire system including the optical distance measuring device and the image projection device according to the first embodiment of the present invention. The system of FIG. 1 is in the vicinity of the video projection device 2 of the first embodiment incorporating the optical distance measuring device 1 of the first embodiment, the video screen 30 projected from the video projection device 2, and the video screen 30. An object 3 and an external device 6 connected to the image projection device 2 are included. The target object 3 is an arbitrary object whose distance is to be measured, and specific examples include a user's finger and a pointing device such as a pen.
 映像投写装置2は、映像投写部4から、映像データに基づいた映像投写用の投写光A0を出射し、投写光A0により映像画面30を構成する。外部機器6は、映像投写装置2に映像データ等を提供する。 The image projection device 2 emits projection light A0 for image projection based on the image data from the image projection unit 4, and configures an image screen 30 with the projection light A0. The external device 6 provides video data and the like to the video projection device 2.
 映像投写装置2は、光測距装置1から、距離測定用の投光信号に基づいた出射光A1を出射し、出射光A1が映像画面30の付近の対象物3で反射された場合、その反射光A2を光測距装置1に入射する。光測距装置1は、出射光A1及び反射光A2に基づいて、TOF方式で、光の飛行時間から、対象物3との距離及び対象物3の位置を算出する。光測距装置1は、位置を含む位置情報を、映像投写部4や外部機器6へ出力する。 The image projection device 2 emits the emitted light A1 based on the distance measurement projection signal from the optical distance measuring device 1, and when the emitted light A1 is reflected by the object 3 near the image screen 30, The reflected light A2 is incident on the optical distance measuring device 1. The optical distance measuring device 1 calculates the distance to the object 3 and the position of the object 3 from the flight time of the light by the TOF method based on the emitted light A1 and the reflected light A2. The optical distance measuring device 1 outputs position information including the position to the image projection unit 4 and the external device 6.
 映像投写装置2は、位置情報に基づいて、映像画面30における対象物3の動き、例えば利用者による対象物3を用いた動作を判断する。映像投写装置2は、所定の動作に応じて所定の制御操作を関係付けるように制御操作を判断し、制御操作に応じて映像投写部4や外部機器6を制御する。 The image projection device 2 determines the movement of the object 3 on the image screen 30, for example, the operation using the object 3 by the user, based on the position information. The video projection device 2 determines a control operation so as to relate a predetermined control operation according to a predetermined operation, and controls the video projection unit 4 and the external device 6 according to the control operation.
 [光測距装置]
 図2は、実施の形態1の光測距装置1の構成を示す。光測距装置1は、制御部10、光源11、センサ12、アンプ13、変調部14、比較器15、時間計測器16、光源駆動部17、通信部18、走査駆動部21、走査ミラー22を有する。実施の形態1の光測距装置1は、信号重畳部100を有し、信号重畳部100を構成する要素として、制御部10及び変調部14を含む。
[Optical ranging device]
FIG. 2 shows a configuration of the optical distance measuring device 1 according to the first embodiment. The optical distance measuring device 1 includes a control unit 10, a light source 11, a sensor 12, an amplifier 13, a modulation unit 14, a comparator 15, a time measuring device 16, a light source driving unit 17, a communication unit 18, a scanning driving unit 21, and a scanning mirror 22. Have The optical distance measuring device 1 according to Embodiment 1 includes a signal superimposing unit 100 and includes a control unit 10 and a modulation unit 14 as elements constituting the signal superimposing unit 100.
 信号重畳部100は、受光信号に基づいた信号Vsig1に対して所定の重畳信号Vcを重畳することにより、重畳後の信号Vsig2に基づいた時間計測器16での計測時間Txの値を受光状態と非受光状態とで分離する機能を実現する。 The signal superimposing unit 100 superimposes a predetermined superimposition signal Vc on the signal Vsig1 based on the light reception signal, so that the value of the measurement time Tx in the time measuring device 16 based on the superimposed signal Vsig2 is set as the light reception state. A function to separate the light receiving state from the non-light receiving state is realized.
 制御部10は、光測距装置1の全体を制御する。制御部10は、信号生成部10A、算出部10Bを含む。信号生成部10Aは、開始信号Vstartや重畳信号Vc等の信号を生成する。算出部10Bは、計測時間Txに基づいて、飛行時間Tfを算出し、飛行時間Tfに基づいて対象物3との距離を算出し、距離に基づいて対象物3の位置を算出する。 The control unit 10 controls the entire optical distance measuring device 1. The control unit 10 includes a signal generation unit 10A and a calculation unit 10B. The signal generator 10A generates signals such as a start signal Vstart and a superimposed signal Vc. The calculation unit 10B calculates the flight time Tf based on the measurement time Tx, calculates the distance from the object 3 based on the flight time Tf, and calculates the position of the object 3 based on the distance.
 光測距装置1における距離測定の流れについて説明する。制御部10は、投光信号に対応する開始信号Vstartを生成する。開始信号Vstartは、後述の図3のような所定のパルス信号である。制御部10は、開始信号Vstartに対応した、光源駆動部17及び光源11を駆動するためのタイミング信号を生成して、光源駆動部17へ出力する。 The flow of distance measurement in the optical distance measuring device 1 will be described. The control unit 10 generates a start signal Vstart corresponding to the light projection signal. The start signal Vstart is a predetermined pulse signal as shown in FIG. The control unit 10 generates a timing signal for driving the light source driving unit 17 and the light source 11 corresponding to the start signal Vstart, and outputs the timing signal to the light source driving unit 17.
 光源駆動部17は、制御部10からのタイミング信号に応じて、光源11を駆動するための駆動電流を生成して、光源11に供給する。また、制御部10は、同じ開始信号Vstartを、時間計測器16へ与える。 The light source driving unit 17 generates a driving current for driving the light source 11 according to the timing signal from the control unit 10 and supplies the driving current to the light source 11. Further, the control unit 10 gives the same start signal Vstart to the time measuring device 16.
 また、制御部10は、重畳信号Vcを生成し、変調部14へ与える。重畳信号Vcは、後述の図11のような所定のパルス信号である。重畳信号Vcのタイミングは、開始信号Vstartのタイミングと独立でよい。 Further, the control unit 10 generates a superimposed signal Vc and supplies it to the modulation unit 14. The superimposed signal Vc is a predetermined pulse signal as shown in FIG. The timing of the superimposed signal Vc may be independent of the timing of the start signal Vstart.
 光源11は、光源駆動部17からの駆動電流に応じた強度及びタイミングで発光し、その光を、走査ミラー22を介して、出射光A1として所定の方向へ出射する。出射光A1は、対象物3が存在する場合には、その対象物3の点で反射され、散乱光を含む反射光A2がセンサ12に入射される。 The light source 11 emits light at an intensity and timing according to the drive current from the light source drive unit 17, and emits the light through the scanning mirror 22 in a predetermined direction as emitted light A 1. When the object 3 is present, the emitted light A1 is reflected at a point of the object 3, and the reflected light A2 including scattered light is incident on the sensor 12.
 センサ12は、対象物3からの反射光A2を受光し、その受光の強度に応じた受光信号を、アンプ13へ出力する。受光信号には、開始信号Vstartに対応したパルス信号が含まれている。 The sensor 12 receives the reflected light A2 from the object 3, and outputs a received light signal corresponding to the intensity of the received light to the amplifier 13. The received light signal includes a pulse signal corresponding to the start signal Vstart.
 アンプ13は、センサ12からの受光信号を増幅し、増幅された信号である信号Vsig1を、変調部14へ出力する。アンプ13は、後述の図7のように、比較器15でのゼロクロス検出を実現するための要素として直列接続された容量素子を含む。 The amplifier 13 amplifies the light reception signal from the sensor 12 and outputs the amplified signal Vsig1 to the modulation unit 14. The amplifier 13 includes a capacitive element connected in series as an element for realizing zero-cross detection in the comparator 15 as shown in FIG.
 変調部14は、アンプ13からの信号Vsig1と、制御部10からの重畳信号Vcとを入力する。変調部14は、変調処理として、信号Vsig1に重畳信号Vcを重畳し、重畳後の信号である信号Vsig2を、比較器15へ出力する。変調部14での重畳は、交流結合の容量または加算器等により実現できる。 The modulation unit 14 receives the signal Vsig1 from the amplifier 13 and the superimposed signal Vc from the control unit 10. The modulation unit 14 superimposes the superimposed signal Vc on the signal Vsig1 as a modulation process, and outputs a signal Vsig2 that is a signal after the superimposition to the comparator 15. The superposition in the modulation unit 14 can be realized by an AC coupling capacitor or an adder.
 比較器15は、変調部14からの信号Vsig2と、参照信号Vrefとを入力する。参照信号Vrefは、予め設定された所定のレベルを持つ信号である。比較器15は、信号Vsig2と信号Vrefとを比較して、アナログ信号である信号Vsig2を、High及びLowの2値を持つパルス信号に変換し、変換後の信号を停止信号Vstopとして、時間計測器16へ出力する。比較器15は、信号Vsig2の値が信号Vrefの値よりも大きい場合には、パルスにおけるHigh信号とし、信号Vsig2の値が信号Vrefの値よりも小さい場合には、パルスにおけるLow信号とする。 The comparator 15 receives the signal Vsig2 from the modulation unit 14 and the reference signal Vref. The reference signal Vref is a signal having a predetermined level set in advance. The comparator 15 compares the signal Vsig2 with the signal Vref, converts the signal Vsig2 that is an analog signal into a pulse signal having two values of High and Low, and measures the time by using the converted signal as a stop signal Vstop. To the device 16. The comparator 15 sets a high signal in the pulse when the value of the signal Vsig2 is larger than the value of the signal Vref, and sets it as a low signal in the pulse when the value of the signal Vsig2 is smaller than the value of the signal Vref.
 時間計測器16は、比較器15からの停止信号Vstopと、制御部10からの開始信号Vstartとを入力する。時間計測器16は、開始信号Vstartのパルスと、それに対応する停止信号Vstopのパルスとの時間差を、計測時間Txとして計測する。時間計測器16は、計測時間Txを含むデータを、制御部10へ出力する。 The time measuring device 16 inputs the stop signal Vstop from the comparator 15 and the start signal Vstart from the control unit 10. The time measuring device 16 measures the time difference between the pulse of the start signal Vstart and the corresponding pulse of the stop signal Vstop as the measurement time Tx. The time measuring device 16 outputs data including the measurement time Tx to the control unit 10.
 制御部10は、時間計測器16からの計測時間Txに基づいて、飛行時間Tfを算出し、飛行時間Tfから、対象物3との距離を算出し、また、その距離から、対象物3の位置を算出する。制御部10は、算出した飛行時間Tf、距離、位置等を含む情報を、図示しないメモリに格納する。制御部10は、少なくとも算出した位置を含む位置情報201を、通信部18へ出力する。 The control unit 10 calculates the flight time Tf based on the measurement time Tx from the time measuring device 16, calculates the distance to the object 3 from the flight time Tf, and calculates the distance of the object 3 from the distance. Calculate the position. The control unit 10 stores information including the calculated flight time Tf, distance, position, and the like in a memory (not shown). The control unit 10 outputs position information 201 including at least the calculated position to the communication unit 18.
 通信部18は、その位置情報201を含むデータ202を、映像投写装置2へ送信する。映像投写装置2は、光測距装置1から、位置情報201を含むデータ202を受信し、そのデータ202を図示しないメモリに格納し、そのデータ202の位置情報201を、映像投写部4や外部機器6へ転送する。 The communication unit 18 transmits data 202 including the position information 201 to the video projection device 2. The image projection device 2 receives the data 202 including the position information 201 from the optical distance measuring device 1, stores the data 202 in a memory (not shown), and stores the position information 201 of the data 202 in the image projection unit 4 or an external device. Transfer to device 6.
 また、実施の形態1の光測距装置1は、映像投写装置2への具備に対応した実装として、映像画面30に対し対象物3の検出のための光である出射光A1を走査する走査手段を備える。その走査手段を構成する要素として、走査駆動部21及び走査ミラー22を有する。制御部10は、走査制御のための信号を生成して、走査駆動部21へ出力する。走査駆動部21は、制御部10からの信号に応じて、走査駆動のための信号を生成し、走査ミラー22へ与える。走査ミラー22は、回転する反射ミラー等により構成され、走査駆動部21からの信号に応じて、反射の角度が制御されるように駆動される。これにより、光源11からの出射光A1の方向が変更される。 In addition, the optical distance measuring device 1 according to the first embodiment is a scan that scans the emitted light A1 that is light for detecting the object 3 on the image screen 30 as an implementation corresponding to the provision to the image projection device 2. Means. A scanning drive unit 21 and a scanning mirror 22 are included as elements constituting the scanning unit. The control unit 10 generates a signal for scanning control and outputs the signal to the scanning driving unit 21. The scanning drive unit 21 generates a signal for scanning driving in accordance with a signal from the control unit 10 and supplies the signal to the scanning mirror 22. The scanning mirror 22 is composed of a rotating reflection mirror or the like, and is driven so that the angle of reflection is controlled in accordance with a signal from the scanning drive unit 21. Thereby, the direction of the emitted light A1 from the light source 11 is changed.
 [TOF方式]
 図3は、実施の形態1における、TOF方式での距離測定の原理を示す。図3の(A)は、光源11とセンサ12と対象物3との配置関係を示す。図3の(B)は、光源11の投光信号における開始信号Vstartと、センサ12の受光信号における停止信号Vstopとの関係を示す。図3の(C)は、更に、計測時間Tx、飛行時間Tf、回路遅延時間Tdの関係を示す。
[TOF method]
FIG. 3 shows the principle of distance measurement by the TOF method in the first embodiment. FIG. 3A shows an arrangement relationship among the light source 11, the sensor 12, and the target object 3. FIG. 3B shows a relationship between the start signal Vstart in the light projection signal of the light source 11 and the stop signal Vstop in the light reception signal of the sensor 12. FIG. 3C further shows the relationship between the measurement time Tx, the flight time Tf, and the circuit delay time Td.
 図3の(A)で、投光信号に基づいた光源11からの出射光A1は、対象物3の点Pで反射及び散乱され、その反射光A2が、センサ12で受光信号として受光される。ここでは対象物3を平板で示している。 In FIG. 3A, the emitted light A1 from the light source 11 based on the light projection signal is reflected and scattered at the point P of the object 3, and the reflected light A2 is received by the sensor 12 as a light reception signal. . Here, the object 3 is shown as a flat plate.
 光測距装置1の光源11及びセンサ12の位置に対応した基準点Qと、対象物3の点Pとの距離を、L[m]とする。光速をc=3.0×10[m/sec]とする。距離Lは、下記の式1で表される。TOF方式では、式1を用いて、距離を算出可能である。
 L=c×T/2   ・・・式1
The distance between the reference point Q corresponding to the positions of the light source 11 and the sensor 12 of the optical distance measuring device 1 and the point P of the object 3 is L [m]. Let the speed of light be c = 3.0 × 10 8 [m / sec]. The distance L is expressed by the following formula 1. In the TOF method, the distance can be calculated using Equation 1.
L = c × T / 2 Formula 1
 図3の(B)で、(a)は投光信号における開始信号Vstartを示し、(b)は受光信号における停止信号Vstopを示す。横軸は時間、縦軸は振幅を示す。(a)の開始信号Vstartは、所定のパルス信号である。パルス毎に識別のための測定番号を有し、測定番号をn等で表す。例えば測定番号=nのパルスの出射のタイミングが時点t1である。(b)の停止信号Vstopは、開始信号Vstopに対応したパルス信号である。例えば測定番号=nのパルスの入射のタイミングが時点t2である。 3 (B), (a) shows the start signal Vstart in the light projection signal, and (b) shows the stop signal Vstop in the light reception signal. The horizontal axis represents time, and the vertical axis represents amplitude. The start signal Vstart in (a) is a predetermined pulse signal. Each pulse has a measurement number for identification, and the measurement number is represented by n or the like. For example, the emission timing of the pulse of measurement number = n is time t1. The stop signal Vstop in (b) is a pulse signal corresponding to the start signal Vstop. For example, the incident timing of the pulse of measurement number = n is time t2.
 図3の(C)で、開始信号Vstartのパルスの立ち上がりに対応する出射光A1の出射の時点t1と、それに対応する停止信号Vstopのパルスの立ち上がりに対応する受光信号の受光の時点t2との時間差Tが、飛行時間Tfに相当する。時間は、[nsec]等の単位で示す。センサ12での受光後、比較器15等を経て、時間計測器16で、時間が計測される。時間計測器16は、開始信号Vstartのパルスとそれに対応する停止信号Vstopのパルスとの時間差を計測する。その際、センサ12から時間計測器16までの間に回路が存在するので、所定の回路遅延時間Tdが存在する。回路遅延時間Tdは、センサ12から時間計測器16までを含む回路を信号が流れるのに要する時間を示す。 In FIG. 3C, the emission time t1 of the emission light A1 corresponding to the rising edge of the start signal Vstart and the reception time t2 of the light reception signal corresponding to the rising edge of the corresponding stop signal Vstop. The time difference T corresponds to the flight time Tf. The time is shown in units such as [nsec]. After receiving light by the sensor 12, the time is measured by the time measuring device 16 through the comparator 15 and the like. The time measuring device 16 measures the time difference between the pulse of the start signal Vstart and the corresponding pulse of the stop signal Vstop. At this time, since a circuit exists between the sensor 12 and the time measuring device 16, a predetermined circuit delay time Td exists. The circuit delay time Td indicates the time required for the signal to flow through the circuit including the sensor 12 to the time measuring device 16.
 よって、時間計測器16で計測される計測時間Txは、出射の時点t1から入射の時点t2までの飛行時間Tfと、回路遅延時間Tdとを加えた時間である。即ち、各時間の関係は、下記の式2、式3のようになる。制御部10は、式3のように、時間計測器16での計測時間Txから、回路遅延時間Tdを減算することにより、飛行時間Tfを得ることができる。
 Tx=Tf+Td   ・・・式2
 Tf=Tx-Td   ・・・式3
Therefore, the measurement time Tx measured by the time measuring device 16 is a time obtained by adding the flight time Tf from the emission time t1 to the incidence time t2 and the circuit delay time Td. That is, the relationship between each time is as shown in the following formulas 2 and 3. The control unit 10 can obtain the flight time Tf by subtracting the circuit delay time Td from the measurement time Tx in the time measuring device 16 as shown in Expression 3.
Tx = Tf + Td Equation 2
Tf = Tx−Td Equation 3
 [映像投写装置]
 図4は、実施の形態1の映像投写装置2の構成として、光測距装置1及び外部機器6との接続の構成を含む、機能ブロック構成を示す。図4では、主に映像投写装置2を説明するため、光測距装置1については、通信部18以外の要素の図示を省略している。映像投写装置2は、映像投写部4による映像投写機能に加え、光測距装置1による距離及び位置の測定機能、及びそれによる位置情報を用いて制御操作を実行する機能等を備えている。
[Image projection device]
FIG. 4 shows a functional block configuration including the configuration of connection between the optical distance measuring device 1 and the external device 6 as the configuration of the video projection device 2 of the first embodiment. In FIG. 4, in order to mainly describe the image projection apparatus 2, elements other than the communication unit 18 are omitted from the optical distance measuring apparatus 1. In addition to the image projection function by the image projection unit 4, the image projection apparatus 2 has a function of measuring a distance and a position by the optical distance measuring device 1, a function of executing a control operation using position information thereby, and the like.
 映像投写装置2は、光測距装置1、映像投写部4、制御部51、操作制御部52、動作判断部53、通信部54、入出力部55を有する。制御部51は、各部を含む映像投写装置2の全体を制御する。映像投写部4は、映像制御部41、映像投写用光源42、光制御部43、投写レンズ44、反射ミラー45、映像データ記憶部46を含む。投写光学系として、投写レンズ44、反射ミラー45を含む。映像投写部4は、投写光学系を通じて、映像画面30に映像を投写するための投写光A0を出射する。 The video projection device 2 includes an optical distance measuring device 1, a video projection unit 4, a control unit 51, an operation control unit 52, an operation determination unit 53, a communication unit 54, and an input / output unit 55. The control unit 51 controls the entire image projection apparatus 2 including each unit. The video projection unit 4 includes a video control unit 41, a video projection light source 42, a light control unit 43, a projection lens 44, a reflection mirror 45, and a video data storage unit 46. The projection optical system includes a projection lens 44 and a reflection mirror 45. The image projection unit 4 emits projection light A0 for projecting an image on the image screen 30 through the projection optical system.
 映像制御部41は、表示対象の映像データに基づいた映像信号に応じて、映像投写用光源42及び光制御部43のそれぞれに駆動のための制御信号を出力する。映像データは、例えば外部機器6から供給された映像データや、映像投写装置2の内部で生成した映像データである。映像制御部41は、投写表示対象の映像データを、映像データ記憶部46に格納する。映像制御部41は、映像データ記憶部46から読み出した映像データに基づいて、映像投写用光源42及び光制御部43を制御するための信号を生成し、当該信号を映像投写用光源42及び光制御部43に与える。 The video control unit 41 outputs a drive control signal to each of the video projection light source 42 and the light control unit 43 in accordance with the video signal based on the video data to be displayed. The video data is, for example, video data supplied from the external device 6 or video data generated inside the video projection device 2. The video control unit 41 stores the video data to be projected and displayed in the video data storage unit 46. The video control unit 41 generates a signal for controlling the video projection light source 42 and the light control unit 43 based on the video data read from the video data storage unit 46, and uses the signal as the video projection light source 42 and the light. This is given to the control unit 43.
 映像投写用光源42は、ハロゲンランプ、LED、レーザ等の光源が適用可能である。映像投写用光源42は、映像制御部41から入力された制御信号に応じて、発光の光量が調整される。映像投写用光源42からの出射光は光制御部43に入力される。なお、映像投写用光源42は、R(赤),G(緑),B(青)の3色の光源を含む場合、映像信号に応じて、各々独立して光量が制御されてもよい。 The light source for image projection 42 can be a light source such as a halogen lamp, LED, or laser. The image projection light source 42 adjusts the amount of emitted light in accordance with a control signal input from the image control unit 41. Light emitted from the image projection light source 42 is input to the light control unit 43. When the image projection light source 42 includes light sources of three colors of R (red), G (green), and B (blue), the amount of light may be controlled independently according to the image signal.
 光制御部43は、ミラー、レンズ、プリズム、イメージャ等の光学系構成要素を有する。イメージャは、例えば液晶表示素子やデジタルマイクロミラー素子等の表示素子である。光制御部43は、映像投写用光源42からの出射光を用いて、映像制御部41から入力された映像信号に基づいて、光学的な映像を生成し、投写レンズ44へ向けて出力する。投写レンズ44は、光制御部43の出力映像を拡大して放射する。反射ミラー45は、投写レンズ44から放射された光を反射し、投写光A0として出射する。 The light control unit 43 has optical system components such as a mirror, a lens, a prism, and an imager. The imager is a display element such as a liquid crystal display element or a digital micromirror element. The light control unit 43 generates an optical video based on the video signal input from the video control unit 41 using the light emitted from the video projection light source 42 and outputs the optical video toward the projection lens 44. The projection lens 44 enlarges and radiates the output image of the light control unit 43. The reflection mirror 45 reflects the light emitted from the projection lens 44 and emits it as projection light A0.
 入出力部55は、利用者に対する入出力インタフェースを備え、入力機器や出力機器が接続される。入出力部55は、例えば利用者が操作入力を行うための操作パネルまたはリモコン受光部等を含む。 The input / output unit 55 has an input / output interface for the user, and is connected to input devices and output devices. The input / output unit 55 includes, for example, an operation panel or a remote control light receiving unit for a user to input an operation.
 光測距装置1と映像投写装置2との通信について説明する。光測距装置1は、通信部18を通じて、映像投写装置2と通信する。映像投写装置2は、通信部54を通じて、光測距装置1や外部機器6と通信する。 Communication between the optical distance measuring device 1 and the image projection device 2 will be described. The optical distance measuring device 1 communicates with the image projection device 2 through the communication unit 18. The video projection device 2 communicates with the optical distance measuring device 1 and the external device 6 through the communication unit 54.
 光測距装置1の通信部18、及び映像投写装置2の通信部54は、相互に通信するための通信インタフェースを備えている。この通信インタフェースは、有線でも無線でもよい。この通信は、リアルタイムで高速な通信が望ましい。この通信インタフェースは、例えば、USB、Wi-Fi(登録商標)、Bluetooth(登録商標)等が適用可能である。 The communication unit 18 of the optical distance measuring device 1 and the communication unit 54 of the video projection device 2 are provided with a communication interface for communicating with each other. This communication interface may be wired or wireless. This communication is preferably real-time and high-speed communication. As this communication interface, for example, USB, Wi-Fi (registered trademark), Bluetooth (registered trademark), or the like can be applied.
 また、映像投写装置2の通信部54は、外部機器6の通信部64と通信する通信インタフェースを備える。この通信インタフェースは、有線でも無線でもよい。この通信インタフェースは、例えば、USB、Wi-Fi、Bluetooth、等が適用可能である。 In addition, the communication unit 54 of the video projection device 2 includes a communication interface that communicates with the communication unit 64 of the external device 6. This communication interface may be wired or wireless. As this communication interface, for example, USB, Wi-Fi, Bluetooth, or the like can be applied.
 光測距装置1は、位置情報を含むデータ401を、通信部18を通じて、映像投写装置2へ送信する。映像投写装置2は、通信部54を通じて、光測距装置1から位置情報を含むデータ401を受信し、受信したデータ401を例えば映像制御部41あるいは動作判断部53へ転送する。 The optical distance measuring device 1 transmits data 401 including position information to the video projection device 2 through the communication unit 18. The video projection device 2 receives data 401 including position information from the optical distance measuring device 1 through the communication unit 54, and transfers the received data 401 to, for example, the video control unit 41 or the operation determination unit 53.
 光測距装置1と映像投写装置2との間における位置情報を含むデータに関する通信は、通信インタフェースとして、UART(Universal Asynchronous Receiver Transmitter)、SPI(Serial Peripheral Interface)、I2C(Inter-Integrated Circuit)、等が適用可能である。 Communication relating to data including position information between the optical distance measuring device 1 and the image projection device 2 is performed by using UART (Universal Asynchronous Receiver Receiver), SPI (Serial Peripheral Interface), I2C (Inter-Integrated Circuit), as communication interfaces. Etc. are applicable.
 また、通信部18から出力する位置情報を含むデータ401については、例えばUSBのHIDクラス等、HID(Human Interface Device)として出力する形態でもよい。この場合、映像投写装置2は、光測距装置1をHID、即ち仮想的にキーボードやマウスのような機器として認識し、位置情報を入力情報として処理する。そのため、映像投写装置1内には専用の処理ソフト等を設ける必要が無い。 Further, the data 401 including the position information output from the communication unit 18 may be output as HID (Human Interface Device) such as a USB HID class. In this case, the video projection device 2 recognizes the optical distance measuring device 1 as an HID, that is, virtually a device such as a keyboard or a mouse, and processes position information as input information. Therefore, it is not necessary to provide dedicated processing software or the like in the video projection apparatus 1.
 外部機器6は、PC等の一般的な情報処理装置や、スマートフォン、タブレット等の等の携帯端末装置や、DVDプレーヤー、ビデオゲーム機器、USBメモリ機器、SDカード機器、等の各種の機器が適用可能である。外部機器6は、外部記憶媒体でもよい。外部機器6は、映像投写装置2に備えるカードインタフェース部に挿入されるカード型記憶媒体でもよい。 The external device 6 is a general information processing device such as a PC, a portable terminal device such as a smartphone or a tablet, or a variety of devices such as a DVD player, a video game device, a USB memory device, or an SD card device. Is possible. The external device 6 may be an external storage medium. The external device 6 may be a card-type storage medium that is inserted into a card interface unit included in the video projection device 2.
 外部機器6は、制御部61、記憶部62、アプリ63、通信部64等を備える。制御部61は、外部機器6を制御し、アプリ63のソフトウェアプログラム処理を実行する。記憶部62は、プログラムや映像データ等が格納される。アプリ63は、例えばプレゼンテーションソフトウェア等の各種のプログラムが挙げられる。 The external device 6 includes a control unit 61, a storage unit 62, an application 63, a communication unit 64, and the like. The control unit 61 controls the external device 6 and executes software program processing of the application 63. The storage unit 62 stores programs, video data, and the like. Examples of the application 63 include various programs such as presentation software.
 外部機器6は、映像投写装置2を表示装置として使用する。外部機器6は、投写表示対象となる映像データを生成または保持する。外部機器6は、映像データまたは映像信号を映像投写装置2に供給する。この映像データは、任意であるが、例えばアプリ63による画面を構成する映像データが挙げられる。図1及び図4のシステムでは、アプリ63による画面を、映像投写装置2による映像画面30として投写表示することができる。外部機器6は、例えばアプリ63による映像データを、通信部64を通じて、映像投写装置2へ送信する。映像投写装置2は、外部機器6から受信した映像データまたは映像信号を、映像データ記憶部46に格納する。 External device 6 uses image projection device 2 as a display device. The external device 6 generates or holds video data to be projected and displayed. The external device 6 supplies video data or a video signal to the video projection device 2. Although this video data is arbitrary, for example, video data constituting a screen by the application 63 can be mentioned. In the system of FIGS. 1 and 4, the screen by the application 63 can be projected and displayed as the video screen 30 by the video projection device 2. The external device 6 transmits, for example, video data from the application 63 to the video projection device 2 through the communication unit 64. The video projection device 2 stores the video data or video signal received from the external device 6 in the video data storage unit 46.
 外部機器6は、映像投写装置2から、位置情報を含むデータ401、または動作情報402や制御操作情報403を受信する。外部機器6は、受信した位置情報等に従い、アプリ63等を制御する。例えば、外部機器6は、アプリ63により、位置情報で示す映像画面30内の点の位置、または動作情報402で示す動作に応じて、所定の処理を実行する。あるいは、外部機器6は、制御操作情報403で示す制御操作に従い、所定の処理を実行する。 The external device 6 receives data 401 including position information, operation information 402 and control operation information 403 from the video projection device 2. The external device 6 controls the application 63 and the like according to the received position information and the like. For example, the external device 6 performs a predetermined process by the application 63 according to the position of the point in the video screen 30 indicated by the position information or the operation indicated by the operation information 402. Alternatively, the external device 6 executes a predetermined process according to the control operation indicated by the control operation information 403.
 映像投写装置2は、光測距装置1からの位置情報を含むデータ401を用いて、映像画面30における対象物3の位置、動きから、利用者の所定の動作を判断し、所定の動作から所定の制御操作を判断し、所定の制御操作を実行させる。以下、この制御操作を実現する構成例を説明する。 The image projection device 2 uses the data 401 including the position information from the optical distance measuring device 1 to determine a predetermined operation of the user from the position and movement of the object 3 on the image screen 30, and from the predetermined operation A predetermined control operation is determined, and the predetermined control operation is executed. Hereinafter, a configuration example for realizing this control operation will be described.
 映像制御部41は、光測距装置1から入力された位置情報に応じて、映像投写部4の制御操作や外部機器6の制御操作を行う。そのために、映像制御部41は、動作判断部53及び操作制御部52と連係する。映像制御部41は、光測距装置1から、位置情報を含むデータ401を、通信部54を通じて受信し、その位置情報を動作判断部53へ転送する。また、映像制御部41は、取得した位置情報を含むデータを、即時に外部機器6へ転送してもよい。 The video control unit 41 performs a control operation of the video projection unit 4 and a control operation of the external device 6 in accordance with the position information input from the optical distance measuring device 1. For this purpose, the video control unit 41 is linked to the operation determination unit 53 and the operation control unit 52. The video control unit 41 receives data 401 including position information from the optical distance measuring device 1 through the communication unit 54 and transfers the position information to the operation determination unit 53. Further, the video control unit 41 may immediately transfer the data including the acquired position information to the external device 6.
 動作判断部53は、位置情報に対して所定の処理を行うことにより、映像画面30における対象物3の動き、利用者による動作を判断する。この処理は、時系列上の複数の位置情報を判断して、時間的に連続する1つの動作を判断する処理を含む。 The operation determination unit 53 determines the movement of the object 3 on the video screen 30 and the operation by the user by performing predetermined processing on the position information. This process includes a process of determining a plurality of time-series positional information and determining one temporally continuous operation.
 動作は、例えば、タッチ、タップ、フリック、スワイプ、ピンチ等が挙げられる。動作は、既存のスマートフォン等のタッチパネル画面での動作と同様の動作を含む。 The operation includes, for example, touch, tap, flick, swipe, and pinch. The operation includes the same operation as that performed on a touch panel screen of an existing smartphone or the like.
 動作判断部53は、時系列の複数の位置情報を、予め設定された動作定義情報に照らして、所定の動作を判断する。動作定義情報には、位置情報と動作との関係が定義されている。動作判断部53は、例えば、位置情報で示す時点及び位置座標に基づいて、映像画面30の2次元領域内における、点に対するタッチの動作や、線の軌跡の動作を判断する。動作判断部53は、判断した動作を表す動作情報402を、操作制御部52へ与える。 The operation determination unit 53 determines a predetermined operation in light of a plurality of time-series position information in accordance with preset operation definition information. In the motion definition information, a relationship between position information and motion is defined. The motion determination unit 53 determines, for example, a touch operation with respect to a point or a motion of a line trajectory in the two-dimensional area of the video screen 30 based on the time point and the position coordinate indicated by the position information. The operation determination unit 53 provides operation information 402 representing the determined operation to the operation control unit 52.
 操作制御部52は、動作判断部53からの動作情報402を入力し、所定の動作毎に関係付けられる所定の制御操作を判断する。操作制御部52は、動作情報402を、予め設定された制御操作定義情報に照らして、所定の制御操作を判断する。制御操作定義情報には、動作と制御操作との関係が定義されている。操作制御部52は、判断した制御操作を即時に実行させるように、制御操作の実行主体となる映像投写装置2内の部位や、外部機器6へ連携する。操作制御部52は、判断した制御操作を示す制御操作情報403を、映像投写部4や外部機器6へ出力する。 The operation control unit 52 inputs the operation information 402 from the operation determination unit 53 and determines a predetermined control operation related to each predetermined operation. The operation control unit 52 determines a predetermined control operation in light of the operation information 402 in accordance with preset control operation definition information. The control operation definition information defines the relationship between the operation and the control operation. The operation control unit 52 cooperates with a part in the video projection device 2 that is the execution subject of the control operation or the external device 6 so as to immediately execute the determined control operation. The operation control unit 52 outputs control operation information 403 indicating the determined control operation to the video projection unit 4 and the external device 6.
 制御操作は、映像画面30の操作を含む映像投写装置2に対する操作、外部機器6のアプリ63等に対する操作を含む。制御操作は、例えば、投写映像におけるページ切り替え、拡大または縮小、移動、文字入力、等の各種の操作が挙げられる。映像投写部4に関する制御操作としては、電源や表示のオン/オフの切り替え、光量調整、色調整、等が挙げられる。 The control operation includes an operation on the video projection device 2 including an operation on the video screen 30 and an operation on the application 63 of the external device 6. Examples of the control operation include various operations such as page switching, enlargement or reduction, movement, and character input in the projected image. Examples of the control operation related to the video projection unit 4 include power supply and display on / off switching, light amount adjustment, color adjustment, and the like.
 操作制御部52は、例えば、動作情報402で示す動作が、所定の領域の点のタッチの動作である場合、それに関係付けられる制御操作として、例えばページを切り替える制御操作と判断し、その制御操作を実行させる指示に対応する制御操作情報403を、映像投写部4へ与える。また、操作制御部52は、例えば、動作がピンチアウトの動作である場合、それに応じた制御操作として、当該画像の拡大の制御操作と判断し、その制御操作を実行させるための制御操作情報403を、映像投写部4へ与える。 For example, when the operation indicated by the operation information 402 is a point touch operation of a predetermined area, the operation control unit 52 determines, for example, a control operation for switching pages as a control operation related thereto, and the control operation The control operation information 403 corresponding to the instruction to execute is provided to the video projection unit 4. Further, for example, when the operation is a pinch-out operation, the operation control unit 52 determines that the control operation for enlarging the image is a control operation corresponding thereto, and the control operation information 403 for causing the control operation to be executed. Is given to the image projection unit 4.
 同様に、操作制御部52は、判断した制御操作が、外部機器6で実行すべき制御操作である場合、対応する制御操作情報403を、通信部54を通じて、外部機器6へ送信する。映像投写装置2は、位置情報だけでなく、動作情報402や制御操作情報403を、必要に応じて、外部機器6へ送信してもよい。 Similarly, when the determined control operation is a control operation to be executed by the external device 6, the operation control unit 52 transmits the corresponding control operation information 403 to the external device 6 through the communication unit 54. The image projection apparatus 2 may transmit not only the position information but also the operation information 402 and the control operation information 403 to the external device 6 as necessary.
 利用者が指やペン等の対象物3により映像画面30の投写映像に対して所定の動作を行うと、上記機能により、その動作及び位置に応じて所定の制御操作が実行される。映像投写部4は、制御操作の実行に応じて、映像画面30の投写表示の内容を更新する。 When the user performs a predetermined operation on the projected image on the video screen 30 with the object 3 such as a finger or a pen, a predetermined control operation is executed according to the operation and position by the above function. The video projection unit 4 updates the content of the projected display on the video screen 30 in accordance with the execution of the control operation.
 [映像投写装置の外観及び配置例]
 図5は、実施の形態1の映像投写装置2の外観及び配置例を示す。図5では、映像画面30を横から見た図を示す。図5及び図6では、説明上の方向及び軸として(X,Y,Z)を示している。水平面を構成する方向をX,Yとし、鉛直方向をZとしている。X,Yは、映像画面30を構成する方向である。Xは映像画面30内の水平方向、Yは映像画面30内の垂直方向に対応し、Zは映像画面30の法線方向に対応する。
[Appearance and layout example of video projector]
FIG. 5 shows an appearance and an arrangement example of the video projection device 2 according to the first embodiment. In FIG. 5, the figure which looked at the video screen 30 from the side is shown. 5 and 6, (X, Y, Z) are shown as directions and axes for explanation. The directions constituting the horizontal plane are X and Y, and the vertical direction is Z. X and Y are directions constituting the video screen 30. X corresponds to the horizontal direction in the video screen 30, Y corresponds to the vertical direction in the video screen 30, and Z corresponds to the normal direction of the video screen 30.
 図5では、水平面を持つ台や机等の設置面302に、映像投写装置2が立つように設置されている。映像投写装置2の筐体の下方の一部から、光測距装置1の光源11及びセンサ12の部分が露出している。この部分の光源11から、映像画面30に平行な方向であるX,Y方向で出射光A1が出射され、同じ方向で対象物3からの反射光A2がセンサ12に入射される。 In FIG. 5, the image projection apparatus 2 is installed so as to stand on an installation surface 302 such as a table or a desk having a horizontal surface. The light source 11 and the sensor 12 of the optical distance measuring device 1 are exposed from a part of the lower part of the casing of the image projection device 2. The emitted light A1 is emitted from the light source 11 in this portion in the X and Y directions that are parallel to the video screen 30, and the reflected light A2 from the object 3 is incident on the sensor 12 in the same direction.
 光源11からの出射光A1は、設置面302及び映像画面30に対してZ方向で所定の高さで出射される。設置面302の映像画面30に対する対象物3のタッチ等の動作がされた際に、光測距装置1が精度良く反応して位置を検出できるためには、光源11からの出射光A1が、設置面302に近い高さで出射されることが好ましい。そのため、実施の形態1では、この高さとして、設置面302とそれに平行な出射光A1との距離を20mm以下とする。 The emitted light A1 from the light source 11 is emitted at a predetermined height in the Z direction with respect to the installation surface 302 and the video screen 30. In order for the optical distance measuring device 1 to react accurately and detect the position when the object 3 is touched with respect to the video screen 30 of the installation surface 302, the emitted light A1 from the light source 11 is It is preferable that the light is emitted at a height close to the installation surface 302. Therefore, in the first embodiment, as this height, the distance between the installation surface 302 and the emitted light A1 parallel thereto is set to 20 mm or less.
 映像投写装置2は、筐体の一部において、投写レンズ44や反射ミラー45等の投写光学系の部品が露出している。反射ミラー45は、筐体に対して折り畳み可能に構成されており、使用時には、反射面が設置面302に向くようにされ、不使用時には、反射面が筐体に対向するように収納される。 In the image projection device 2, parts of the projection optical system such as the projection lens 44 and the reflection mirror 45 are exposed in a part of the casing. The reflection mirror 45 is configured to be foldable with respect to the housing, and is stored such that the reflection surface faces the installation surface 302 when used, and the reflection surface faces the housing when not in use. .
 映像投写装置2は、図4の映像投写部4で生成した映像光を、投写レンズ44で拡大して出射する。その後、その光は、筐体の上方にある反射ミラー45で反射されて、投写光A0として出射され、設置面302に映像画面30として投写される。 The image projection device 2 expands the image light generated by the image projection unit 4 of FIG. Thereafter, the light is reflected by the reflection mirror 45 above the casing, is emitted as projection light A0, and is projected onto the installation surface 302 as the video screen 30.
 実施の形態1では、反射ミラー45として非球面ミラーを用いている。これにより、同サイズの映像画面30を投写する場合に、一般的な映像投写装置と比較して、投写距離を短くできる。なお、映像投写部4の構成は、反射ミラー45を用いた構成に限らず、映像投写を実現できる他の構成も適用可能である。 In Embodiment 1, an aspherical mirror is used as the reflecting mirror 45. Thereby, when projecting the image screen 30 of the same size, the projection distance can be shortened as compared with a general image projection apparatus. The configuration of the image projection unit 4 is not limited to the configuration using the reflection mirror 45, and other configurations that can realize image projection are also applicable.
 映像投写装置2は、筐体の一部に、利用者が操作可能なフォーカスリング303等を備えている。投写映像のフォーカスは、フォーカスリング303によって調整される。 The image projection device 2 includes a focus ring 303 and the like that can be operated by the user in a part of the casing. The focus of the projected image is adjusted by the focus ring 303.
 [映像画面]
 図6は、図5に対応した映像投写装置2の配置例における、映像画面30、及び映像画面30内での点を指し示す動作等を示す。図6では、映像画面30をZ方向で上から俯瞰して見たX,Y方向の平面図を示す。映像画面30は、2次元領域であり、映像の規格に対応した横長の矩形形状を有する。映像画面30の左上の点をP1、左下の点をP2、右下の点をP3、右上の点をP4としている。
[Video screen]
FIG. 6 shows an image screen 30 and an operation for pointing a point in the image screen 30 in the arrangement example of the image projection apparatus 2 corresponding to FIG. FIG. 6 shows a plan view in the X and Y directions when the video screen 30 is viewed from above in the Z direction. The video screen 30 is a two-dimensional area and has a horizontally long rectangular shape corresponding to the video standard. The upper left point of the video screen 30 is P1, the lower left point is P2, the lower right point is P3, and the upper right point is P4.
 実施の形態1の映像投写装置2では、走査方式として、映像画面30内の全ての点について距離及び位置が検出可能なように、投光信号の出射光A1の出射の角度である走査角度θを、1次元の制御の変数として制御する。光測距装置1は、基準点Qの光源11からの出射光A1を、走査角度θに応じた方向へ出射する。光測距装置1は、前述の走査手段を用いて走査角度θを制御することにより、出射光A1を映像画面30上で走査する。光測距装置1は、通常の投写表示の時、継続的にこの走査制御を行う。 In the image projection apparatus 2 according to the first embodiment, as a scanning method, a scanning angle θ that is an angle of emission of the emitted light A1 of the light projection signal so that the distance and position can be detected for all points in the image screen 30. Are controlled as one-dimensional control variables. The optical distance measuring device 1 emits the emitted light A1 from the light source 11 at the reference point Q in a direction corresponding to the scanning angle θ. The optical distance measuring device 1 scans the emitted light A1 on the video screen 30 by controlling the scanning angle θ using the above-described scanning means. The optical distance measuring device 1 performs this scanning control continuously during normal projection display.
 利用者は、指やペン等の対象物3により、映像画面30内で点を指し示す動作等を行う。光測距装置1は、対象物3からの反射光A2の受光がある場合、即ち、受光状態の場合、その受光信号を用いて、前述のように、飛行時間、対象物3の点との距離、及びその点の位置、等を算出する。光測距装置1は、基準点Qからの距離、及び走査角度θで示す方向を用いて、映像画面30内の対象物3の点の位置を、座標(x,y)として算出する。距離L、走査角度θ、座標(x,y)の関係は、例えば、x=L・sinθ,y=L・cosθ、で表せる。 The user performs an operation of pointing a point on the video screen 30 with the object 3 such as a finger or a pen. When the reflected light A2 from the object 3 is received, that is, in the light receiving state, the optical distance measuring device 1 uses the received light signal to determine the flight time and the point of the object 3 as described above. The distance, the position of the point, etc. are calculated. The optical distance measuring device 1 calculates the position of the point of the object 3 in the video screen 30 as coordinates (x, y) using the distance from the reference point Q and the direction indicated by the scanning angle θ. The relationship between the distance L, the scanning angle θ, and the coordinates (x, y) can be expressed by, for example, x = L · sin θ and y = L · cos θ.
 光測距装置1は、ある時点における対象物3の点の位置だけでなく、同様に、時系列上の複数の時点における複数の点の位置を検出する。即ち、光測距装置1は、対象物3の位置の時間的な遷移を検出する。光測距装置1は、その遷移を示す複数の位置情報を用いて、前述の動作判断部53により、映像画面30に対する対象物3の動き、利用者の動作を検出する。 The optical distance measuring device 1 detects not only the position of the point of the object 3 at a certain time point but also the positions of a plurality of points at a plurality of time points on the time series. That is, the optical distance measuring device 1 detects a temporal transition of the position of the object 3. The optical distance measuring device 1 detects the movement of the object 3 relative to the video screen 30 and the movement of the user by the above-described movement determination unit 53 using a plurality of pieces of position information indicating the transition.
 図6では、映像投写装置2のX方向の中心位置に光測距装置1が設けられている。基準点Qから、Y方向に、一点鎖線で示す中心軸を有する。この中心軸は、光の走査が無い場合、言い換えると走査角度θを0度とした場合における、光の出射及び入射が行われる直線である。この中心軸上で、対象物3が無い場合、基準点Qからの出射光A1は、映像画面30における一番近い点である点P0から、一番遠い点である点P5まで経由する。この中心軸上で、点P0と点P5の間に、対象物3が有る場合、例えば、点601の位置で、対象物3のタッチ等の動作がされた場合、光源11からの出射光A1は、点601の対象物3で反射され、反射光A2が中心軸上を逆方向に戻り、センサ12に入射される。 In FIG. 6, the optical distance measuring device 1 is provided at the center position in the X direction of the image projection device 2. From the reference point Q, it has a central axis indicated by a one-dot chain line in the Y direction. The central axis is a straight line on which light is emitted and incident when there is no light scanning, in other words, when the scanning angle θ is 0 degree. When there is no object 3 on this central axis, the emitted light A1 from the reference point Q passes from the closest point P0 on the video screen 30 to the farthest point P5. On the center axis, when the object 3 exists between the points P0 and P5, for example, when an operation such as touching the object 3 is performed at the position of the point 601, the emitted light A1 from the light source 11 Is reflected by the object 3 at the point 601, and the reflected light A2 returns in the reverse direction on the central axis and enters the sensor 12.
 なお、光源11とセンサ12の位置を理想的に同じ位置として1つの基準点Qとして示しているが、実際には光源11とセンサ12とで短い距離があり、この距離については計算で補正される。 In addition, although the position of the light source 11 and the sensor 12 is ideally the same position and shown as one reference point Q, there is actually a short distance between the light source 11 and the sensor 12, and this distance is corrected by calculation. The
 中心軸に対して走査角度θを示す。中心軸の方向をθ=0度とする。光測距装置1は、基準点Qから光を走査角度θの方向へ出射する。前述の走査手段は、例えば一定の大きさで走査角度θを所定範囲内で増減させる。これにより、映像画面30内の全ての点を通るように光を走査して、全ての点の位置を検出可能とする。所定範囲は、最小走査角度θminから最大走査角度θmaxまでの範囲である。点P1へ出射する時の走査角度θが最小走査角度θminであり、点P4へ出射する時の走査角度θが最大走査角度θmaxである。また、映像画面30において、点P0は飛行時間が最小となる点であり、点P2や点P3は飛行時間が最大となる点である。 The scanning angle θ is shown with respect to the central axis. The direction of the central axis is θ = 0 degrees. The optical distance measuring device 1 emits light from the reference point Q in the direction of the scanning angle θ. The aforementioned scanning means increases or decreases the scanning angle θ within a predetermined range, for example, with a constant size. Thereby, the light is scanned so as to pass through all the points in the video screen 30, and the positions of all the points can be detected. The predetermined range is a range from the minimum scanning angle θmin to the maximum scanning angle θmax. The scanning angle θ when emitted to the point P1 is the minimum scanning angle θmin, and the scanning angle θ when emitted to the point P4 is the maximum scanning angle θmax. In the video screen 30, the point P0 is a point where the flight time is minimized, and the points P2 and P3 are points where the flight time is maximized.
 映像画面30の2次元領域は、Y方向の幅が例えば40cmである。基準点Qと点P0との距離は例えば20cmである。 The width of the two-dimensional area of the video screen 30 in the Y direction is 40 cm, for example. The distance between the reference point Q and the point P0 is, for example, 20 cm.
 同様に、例えば点602や点603の位置で対象物3を用いた動作がされた場合にも、走査角度θの状態に応じて反射光A2により各点の位置が検出される。
 [ゼロクロス検出に関する回路構成及び原理]
Similarly, for example, when an operation using the object 3 is performed at the positions of the point 602 and the point 603, the position of each point is detected by the reflected light A2 according to the state of the scanning angle θ.
[Circuit structure and principle concerning zero cross detection]
 次に、ゼロクロス検出に関する回路構成、原理、及びその課題について説明する。ゼロクロス検出を行う回路構成は、受光強度に依らずに高精度な時間計測を可能とする。 Next, the circuit configuration, principle, and problems related to zero cross detection will be described. A circuit configuration that performs zero-cross detection enables highly accurate time measurement regardless of the received light intensity.
 図7は、実施の形態1の光測距装置1における、ゼロクロス検出を行うためのアンプ13の回路構成例を示す。このアンプ13は、例えば2段のオペアンプ13b,13cと、それらの間に直列に設けられた容量13a等の素子と、を有する。このアンプ13は、容量13aを用いた交流結合を含む。更に、比較器15の参照電圧Vrefとしては0Vを用いる。この構成を採る理由は、下記のゼロクロス検出の原理で説明する。 FIG. 7 shows a circuit configuration example of the amplifier 13 for performing zero-cross detection in the optical distance measuring device 1 of the first embodiment. The amplifier 13 includes, for example, two stages of operational amplifiers 13b and 13c, and an element such as a capacitor 13a provided in series between them. The amplifier 13 includes AC coupling using a capacitor 13a. Further, 0V is used as the reference voltage Vref of the comparator 15. The reason for adopting this configuration will be described based on the principle of zero cross detection described below.
 また、容量13aは、定常的に照射される外光による直流成分を除去する効果も有する。なお、センサ12で十分な受光信号のレベルが得られるのであれば、アンプ13としては、単体の増幅器を用いてもよい。また、ゼロクロス検出の理解にあたっては、変調部14を無視してよい。 Also, the capacitor 13a has an effect of removing a direct current component due to external light that is constantly irradiated. It should be noted that a single amplifier may be used as the amplifier 13 as long as the sensor 12 can obtain a sufficient level of received light signal. In understanding the zero cross detection, the modulation unit 14 may be ignored.
 図8は、図7に対応して、ゼロクロス検出に関する原理を示す。図8の(A)は、比較例の光測距装置として、ゼロクロス検出を行わない回路構成の場合における、時間と信号Vsigとの関係を示す。この比較例の回路構成では、図7のアンプ13の容量13aを用いず、変調部14も無く、比較器の参照信号Vrefの電圧としては0Vよりも大きい電圧を用い、停止信号Vstopのパルスを得る。信号Vsigは、アンプの出力信号であって、比較器の入力信号を示す。 FIG. 8 shows the principle of zero cross detection corresponding to FIG. FIG. 8A shows the relationship between time and the signal Vsig in the case of a circuit configuration in which zero cross detection is not performed as the optical distance measuring device of the comparative example. In the circuit configuration of this comparative example, the capacitor 13a of the amplifier 13 in FIG. 7 is not used, the modulation unit 14 is not provided, the voltage of the reference signal Vref of the comparator is higher than 0V, and the pulse of the stop signal Vstop is applied. obtain. A signal Vsig is an output signal of the amplifier and indicates an input signal of the comparator.
 図8の(A)では、信号Vsigが強い場合の波形801と、信号Vsigが弱い場合の波形802との2つの線を示す。信号Vsigが強い場合では、時点tx1で信号Vrefと交差しており、信号Vsigが弱い場合では、時点tx2で信号Vrefと交差している。即ち、時点tx1と時点tx2とのズレであるΔtが生じている。このように、ゼロクロス検出を行わない回路構成では、信号Vsigの強度が異なると、信号Vstopのパルスになるタイミングに、Δtのようなズレを生じる。つまり、対象物が同じ位置にあったとしても、反射光の強度が異なると、計測時間にズレが生じ、この結果、距離の測定に誤差が生じる。 8A shows two lines of a waveform 801 when the signal Vsig is strong and a waveform 802 when the signal Vsig is weak. When the signal Vsig is strong, it intersects with the signal Vref at time tx1, and when the signal Vsig is weak, it intersects with the signal Vref at time tx2. That is, Δt that is a difference between the time point tx1 and the time point tx2 occurs. Thus, in a circuit configuration that does not perform zero-cross detection, if the intensity of the signal Vsig is different, a deviation such as Δt occurs at the timing when the signal Vstop becomes a pulse. That is, even if the object is at the same position, if the intensity of the reflected light is different, the measurement time is shifted, resulting in an error in the distance measurement.
 図8の(B)は、実施の形態1の光測距装置1として、図7のようにゼロクロス検出を行う回路構成の場合における、時間と信号Vsigとの関係を示す。この回路構成では、図7のように、容量13aを用い、変調部14が有り、比較器15の参照信号Vrefの電圧としては0Vとして、停止信号Vstopのパルスを得る。信号Vsigとして、重畳前を信号Vsig1、重畳後を信号Vsig2としている。信号Vsig1は、アンプ13の出力信号であって、変調部14の入力信号を示す。 FIG. 8B shows the relationship between the time and the signal Vsig in the case where the optical distance measuring device 1 of the first embodiment has a circuit configuration that performs zero-cross detection as shown in FIG. In this circuit configuration, as shown in FIG. 7, the capacitor 13 a is used, the modulation unit 14 is provided, the reference signal Vref of the comparator 15 is set to 0 V, and a pulse of the stop signal Vstop is obtained. As the signal Vsig, the signal Vsig1 before the superposition and the signal Vsig2 after the superposition. A signal Vsig1 is an output signal of the amplifier 13 and indicates an input signal of the modulation unit 14.
 図8の(B)では、信号Vsig1が強い場合の波形811と、信号Vsig1が弱い場合の波形812との2つの線を示す。いずれの場合でも、同じ時点tx0で信号Vrefと交差しており、Δtのようなズレは生じない。受光信号に基づいた信号Vsig1の強弱に依らずに、信号Vsig1の振幅の中心点が0Vとなる。そのため、信号Vsig1の強度に依らずに、高精度な時間計測が可能である。実施の形態1では、距離測定の際に上記ゼロクロス検出を行う構成であるため、受光信号の強度に依らずに高精度の距離測定が可能である。
 [比較例の各信号]
FIG. 8B shows two lines, a waveform 811 when the signal Vsig1 is strong and a waveform 812 when the signal Vsig1 is weak. In any case, the signal Vref intersects at the same time point tx0, and no deviation like Δt occurs. Regardless of the strength of the signal Vsig1 based on the received light signal, the center point of the amplitude of the signal Vsig1 becomes 0V. Therefore, highly accurate time measurement is possible without depending on the intensity of the signal Vsig1. In the first embodiment, since the zero cross detection is performed at the time of distance measurement, highly accurate distance measurement is possible regardless of the intensity of the received light signal.
[Each signal of comparative example]
 次に、図9,図10を用いて、比較例の光測距装置に関する課題として、精度に関する課題について説明する。 Next, with reference to FIG. 9 and FIG. 10, a problem regarding accuracy will be described as a problem regarding the optical distance measuring device of the comparative example.
 図9は、比較例の光測距装置における、非受光状態と受光状態との各期間での各信号の関係を示す。横軸は時間、縦軸は信号の振幅、電圧レベルである。各信号として、(a)は制御部からの開始信号Vstartを示す。(b)はアンプの出力の信号Vsigを示す。(c)は比較器の出力の停止信号Vstopを示す。期間901や期間903は非受光状態、期間902は受光状態である。各信号の間には伝播遅延時間がある。 FIG. 9 shows the relationship of each signal in each period between the non-light receiving state and the light receiving state in the optical distance measuring device of the comparative example. The horizontal axis represents time, and the vertical axis represents signal amplitude and voltage level. As each signal, (a) shows a start signal Vstart from the control unit. (B) shows an output signal Vsig of the amplifier. (C) shows the output stop signal Vstop of the comparator. The periods 901 and 903 are in a non-light receiving state, and the period 902 is in a light receiving state. There is a propagation delay time between each signal.
 (a)の開始信号Vstartは、予め決められた一定の周波数、周期、振幅を持つパルス信号である。開始信号Vstartにおいて、パルス毎に測定番号を有する。 (A) The start signal Vstart is a pulse signal having a predetermined frequency, cycle, and amplitude. The start signal Vstart has a measurement number for each pulse.
 (b)の信号Vsigは、受光状態では、(a)の開始信号Vstartに応じたパルス信号となっている。信号Vsigは、非受光状態では、ノイズ911のように、ノイズ信号となっている。なお、受光状態のパルス信号にもノイズが加わっているが、図示を省略する。 The signal Vsig in (b) is a pulse signal corresponding to the start signal Vstart in (a) in the light receiving state. The signal Vsig is a noise signal like the noise 911 in the non-light-receiving state. Although noise is added to the pulse signal in the light receiving state, the illustration is omitted.
 (c)の停止信号Vstopは、受光状態では、(b)の信号Vsigに応じた規則的なパルス信号となっている。このパルス信号は、High及びLowの2値を持つ。停止信号Vstopは、非受光状態では、(b)のノイズ信号のノイズレベルの影響に応じて、ランダムパルス912のように、不規則なパルス信号となっている。このパルス信号は、各パルスのHigh信号となるタイミング、立ち上がりのタイミングが不規則である。比較器では、信号Vsigのノイズレベルと、参照信号Vrefとを比較して、停止信号Vstopのパルスを得る。そのため、結果がランダムパルス912のようになる。 The stop signal Vstop in (c) is a regular pulse signal corresponding to the signal Vsig in (b) in the light receiving state. This pulse signal has two values, High and Low. The stop signal Vstop is an irregular pulse signal such as a random pulse 912 in accordance with the influence of the noise level of the noise signal (b) in the non-light-receiving state. This pulse signal has irregular timings of rising and rising timing of each pulse. The comparator compares the noise level of the signal Vsig with the reference signal Vref to obtain a pulse of the stop signal Vstop. Therefore, the result is like a random pulse 912.
 図10は、図9に対応して、比較例の光測距装置における、各期間での計測結果の計測時間を示す。この計測時間は、前述の図3の計測時間Txに対応し、時間計測器で停止信号Vstopから算出した結果を示す。横軸が測定番号、縦軸が計測時間を示す。値TKは、対象物との正しい距離に対応した正しい計測時間を示す。期間1001や期間1003は非受光状態、期間1002は受光状態を示す。期間1002の受光状態では、計測時間が正しい値Tkになっている。 FIG. 10 corresponds to FIG. 9 and shows the measurement time of the measurement result in each period in the optical distance measuring device of the comparative example. This measurement time corresponds to the above-described measurement time Tx in FIG. 3 and shows the result calculated from the stop signal Vstop by the time measuring device. The horizontal axis indicates the measurement number, and the vertical axis indicates the measurement time. The value TK indicates the correct measurement time corresponding to the correct distance from the object. A period 1001 and a period 1003 indicate a non-light receiving state, and a period 1002 indicates a light receiving state. In the light receiving state in the period 1002, the measurement time is a correct value Tk.
 しかし、非受光状態では、時間計測器は、図9の(c)の停止信号Vstopにおける不規則なパルス信号を入力値として時間を計測する。その結果、計測時間の値が、値TKの付近でのランダムな値になっている。詳しく言えば、規則的な開始信号VstartのパルスのHigh信号の立ち上がりの時点と、不規則な停止信号VstopのパルスのHigh信号の立ち上がりの時点との時間差が、パルス毎に不規則である。そのため、非受光状態では、計測時間の値がランダムに分布する結果となっている。 However, in the non-light-receiving state, the time measuring device measures time using an irregular pulse signal in the stop signal Vstop of FIG. 9C as an input value. As a result, the value of the measurement time is a random value near the value TK. Specifically, the time difference between the rising time of the high signal of the pulse of the regular start signal Vstart and the rising time of the high signal of the pulse of the irregular stop signal Vstop is irregular for each pulse. Therefore, in the non-light receiving state, the measurement time values are randomly distributed.
 制御部は、時間計測器の計測時間から、飛行時間及び距離を算出する。映像画面の設計に応じて、受光状態における値TKを含む計測時間の範囲が定まっている。制御部は、入力された計測時間の値が、受光状態の計測時間の範囲に含まれている場合には、採用し、その値から飛行時間を算出する。 The control unit calculates the flight time and distance from the measurement time of the time measuring device. The measurement time range including the value TK in the light receiving state is determined according to the design of the video screen. When the input measurement time value is included in the measurement time range of the light receiving state, the control unit adopts it and calculates the flight time from the value.
 非受光状態の計測時間のうち、例えば値1004のように、正しい値TKに一致または近いものが含まれている場合がある。制御部は、その計測時間の値1004から、誤って飛行時間及び距離を測定してしまう。即ち、非受光状態で対象物からの反射光が無いにもかかわらず、誤って対象物の位置として検出される結果となる。 The measurement time in the non-light-receiving state may include a value that matches or is close to the correct value TK, such as a value 1004. The control unit erroneously measures the flight time and distance from the measurement time value 1004. That is, the result is that the position of the object is erroneously detected even though there is no reflected light from the object in the non-light-receiving state.
 上述のように、比較例の光測距装置では、非受光状態のノイズの影響によって、非受光状態の計測時間から、距離及び位置の誤検出が生じる場合がある。見方を変えると、従来、高速度の測定を実現するために、High信号の時間幅が短いパルスを用いて停止信号を判定する構成の場合、ノイズを誤って停止信号と判定しやすく、高精度は実現できない。 As described above, in the optical distance measuring device of the comparative example, erroneous detection of distance and position may occur from the measurement time in the non-light receiving state due to the influence of noise in the non-light receiving state. From a different perspective, in the past, in order to achieve high-speed measurement, in the case of a configuration in which a stop signal is determined using a pulse with a short time width of the High signal, noise is easily determined as a stop signal, and high accuracy Cannot be realized.
 これに対し、精度を高めるためには、例えば特許文献1の技術のように、受光信号の停止信号に関する安定化処理等を行うことが挙げられる。即ち、光測距装置は、受光信号のパルスについて、ある程度以上の時間をかけて、例えばHigh信号が継続する時間をカウントする。そして、その時間が閾値以上になった場合に停止信号として採用し、その停止信号から時間を計測する。しかし、このような従来技術では、高精度を実現できるものの、一定時間以上の時間を余分に設ける必要があるので、即時かつ高速度の測定は実現できず、高精度と高速度との両立は難しい。 On the other hand, in order to increase the accuracy, for example, as in the technique of Patent Document 1, a stabilization process related to the stop signal of the received light signal is performed. That is, the optical distance measuring device counts the time during which the High signal continues, for example, over a certain period of time with respect to the pulses of the received light signal. And when that time becomes more than a threshold value, it employ | adopts as a stop signal, and measures time from the stop signal. However, with such a conventional technology, although high accuracy can be realized, it is necessary to provide an extra time of a certain time or more, so it is impossible to realize immediate and high speed measurement, and both high accuracy and high speed are compatible. difficult.
 そこで、実施の形態1では、ゼロクロス検出を行う回路構成を含む光測距装置において、受光状態と非受光状態とで計測時間を分離して、高精度に時間、距離及び位置を測定する機能を有する。この機能では、信号重畳を用いた分離により、受光状態の信号から正しく計測時間を抽出し、非受光状態の信号からは誤って計測時間を抽出しないように防止する。また、この機能では、従来のような安定化処理等のための時間を必要としない。 Therefore, in the first embodiment, in an optical distance measuring device including a circuit configuration that performs zero-cross detection, a function of measuring time, distance, and position with high accuracy by separating measurement time between a light receiving state and a non-light receiving state. Have. In this function, the measurement time is correctly extracted from the signal in the light receiving state by the separation using the signal superposition, and the measurement time is prevented from being erroneously extracted from the signal in the non-light receiving state. In addition, this function does not require time for stabilization processing as in the prior art.
 実施の形態1の光測距装置1は、上記機能に対応した実装として、信号重畳部100の変調部14等を有する。変調部14は、センサ12の受光信号に基づいたアンプ13の出力の信号Vsig1に、所定の特性の重畳信号Vcを重畳する。これにより、受光状態と非受光状態とで計測時間の値が分離される。これにより、非受光状態のノイズの影響による誤検出が防止され、高精度の測定が実現される。 The optical distance measuring device 1 according to the first embodiment includes the modulation unit 14 of the signal superimposing unit 100 as an implementation corresponding to the above function. The modulation unit 14 superimposes a superimposed signal Vc having a predetermined characteristic on the signal Vsig1 output from the amplifier 13 based on the light reception signal of the sensor 12. Thereby, the value of the measurement time is separated between the light receiving state and the non-light receiving state. Thereby, erroneous detection due to the influence of noise in the non-light-receiving state is prevented, and highly accurate measurement is realized.
 また、実施の形態1の光測距装置1は、停止信号Vstopのパルスを得る際に、重畳後の信号Vsig2から即時にパルスを得ることができ、安定化処理等の時間が不要なので、高速度の測定が実現される。即ち、実施の形態1の光測距装置は、高精度と高速度との両立を実現できる。 Further, the optical distance measuring device 1 according to the first embodiment can immediately obtain a pulse from the superimposed signal Vsig2 when obtaining a pulse of the stop signal Vstop, and does not require time for stabilization processing or the like. Speed measurement is realized. That is, the optical distance measuring device according to Embodiment 1 can achieve both high accuracy and high speed.
 [各信号(重畳前、重畳後)]
 図11は、実施の形態1の光測距装置1における、重畳信号Vcの重畳前後を含む、非受光状態と受光状態との各期間での各信号の関係を示す。(a)は制御部10からの開始信号Vstartを示す。(b)はアンプ13の出力である重畳前の信号Vsig1を示す。(c)は制御部10から変調部14への重畳信号Vcを示す。(d)は変調部14での重畳後の信号Vsig2であって比較器15の入力信号を示す。(e)は重畳後の信号Vsig2を入力値とした、比較器15の出力である停止信号Vstopを示す。(f)は(c)の重畳信号Vcを拡大してノイズレベルと比較して示す。期間111や期間113は非受光状態、期間112は受光状態を示す。
[Each signal (before superposition, after superposition)]
FIG. 11 shows the relationship of each signal in each period between the non-light-receiving state and the light-receiving state, including before and after the superimposition signal Vc is superimposed in the optical distance measuring device 1 according to the first embodiment. (A) shows the start signal Vstart from the control unit 10. (B) shows the signal Vsig1 before superposition which is the output of the amplifier 13. (C) shows the superimposed signal Vc from the control unit 10 to the modulation unit 14. (D) is the signal Vsig2 after superposition in the modulation section 14 and shows the input signal of the comparator 15. (E) shows a stop signal Vstop which is an output of the comparator 15 with the superposed signal Vsig2 as an input value. (F) enlarges the superimposed signal Vc of (c) and compares it with the noise level. A period 111 and a period 113 indicate a non-light receiving state, and a period 112 indicates a light receiving state.
 (a)の開始信号Vstartは、予め決められた一定の周波数、周期、振幅を持つパルス信号である。開始信号Vstartのパルス信号における周波数をf1、周期を1/f1とし、振幅をH1とする。 (A) The start signal Vstart is a pulse signal having a predetermined frequency, cycle, and amplitude. The frequency in the pulse signal of the start signal Vstart is f1, the period is 1 / f1, and the amplitude is H1.
 (b)の重畳前の信号Vsig1は、受光状態では、(a)の規則的な開始信号Vstartに応じたパルス信号となっている。このパルス信号は、ノイズも加わっている。信号Vsig1は、非受光状態では、ノイズ114のように、ノイズ信号となっている。 The signal Vsig1 before superimposition in (b) is a pulse signal corresponding to the regular start signal Vstart in (a) in the light receiving state. This pulse signal also includes noise. The signal Vsig1 is a noise signal like the noise 114 in the non-light-receiving state.
 (c)及び(f)の重畳信号Vcにおいて、周波数をfc、周期を1/fcとし、振幅をHcとする。変調部14は、信号Vsig1に、重畳信号Vcを重畳し、重畳後の信号Vsig2として出力する。比較器15は、重畳後の信号Vsig2と参照信号Vrefとを比較して、停止信号Vstopのパルスに変換する。 In the superimposed signal Vc of (c) and (f), the frequency is fc, the period is 1 / fc, and the amplitude is Hc. The modulation unit 14 superimposes the superimposed signal Vc on the signal Vsig1, and outputs the signal Vsig2 after the superimposition. The comparator 15 compares the superimposed signal Vsig2 with the reference signal Vref and converts it into a pulse of the stop signal Vstop.
 (d)の重畳後の信号Vsig2は、期間112の受光状態では、(b)の信号Vsig1に(c)の重畳信号Vcのパルスが重畳された信号となっている。信号Vsig2は、期間111のような非受光状態では、(b)のノイズ114のようなノイズ信号に、(c)の重畳信号Vcのパルスが重畳された信号115となっている。 The signal Vsig2 after the superposition of (d) is a signal obtained by superimposing the pulse of the superposition signal Vc of (c) on the signal Vsig1 of (b) in the light receiving state of the period 112. In the non-light-receiving state such as the period 111, the signal Vsig2 is a signal 115 obtained by superimposing a pulse of the superimposed signal Vc of (c) on a noise signal such as the noise 114 of (b).
 (e)の停止信号Vstopは、受光状態では、(d)の信号Vsig2に基づいて、規則的なパルス信号となっている。停止信号Vstopは、期間111のような非受光状態では、(d)の信号Vsig2のうちの信号115に基づいて、ほぼ規則的なパルス信号116となっている。このパルス信号116は、図9の比較例の停止信号Vstopのランダムパルス912よりも規則的なパルスになるように制御されている。 The stop signal Vstop of (e) is a regular pulse signal based on the signal Vsig2 of (d) in the light receiving state. The stop signal Vstop is a substantially regular pulse signal 116 based on the signal 115 of the signal Vsig2 in (d) in the non-light-receiving state such as the period 111. This pulse signal 116 is controlled to be a regular pulse rather than the random pulse 912 of the stop signal Vstop of the comparative example of FIG.
 重畳信号Vcの設計及び定義については以下である。重畳信号Vcの周波数fcについては、開始信号Vstartの周波数f1よりも高い周波数とし、周期1/fcについては、開始信号Vstartの周期1/f1よりも短い周期とする。 The design and definition of the superimposed signal Vc are as follows. The frequency fc of the superimposed signal Vc is higher than the frequency f1 of the start signal Vstart, and the period 1 / fc is shorter than the period 1 / f1 of the start signal Vstart.
 重畳信号Vcの振幅Hcについては、(b)のノイズ114のようなノイズレベルの振幅H0よりも少し大きい振幅とする。(f)で、ノイズレベルの振幅を振幅H0として示している。また、重畳信号Vcの振幅Hcについては、開始信号Vstartの振幅H1よりも小さい振幅とする。即ち、H0<Hc<H1である。 The amplitude Hc of the superimposed signal Vc is set to be slightly larger than the amplitude H0 of the noise level such as the noise 114 in (b). In (f), the amplitude of the noise level is shown as amplitude H0. The amplitude Hc of the superimposed signal Vc is set to be smaller than the amplitude H1 of the start signal Vstart. That is, H0 <Hc <H1.
 図11中に、計測時間Txの例を示す。計測時間Txは、開始信号Vstartのパルスの立ち上がりの時点と、対応する停止信号Vstopのパルスの立ち上がりの時点との時間差である。非受光状態において、この計測時間Txは、最大でも重畳信号Vcの周期1/fcまでの大きさとなり、即ち、Tx≦1/fcとなる。言い換えると、非受光状態で、ノイズの影響があっても、重畳信号Vcの周期1/fcで必ず1回は停止信号Vstopのパルスが立ち上がる。 FIG. 11 shows an example of the measurement time Tx. The measurement time Tx is a time difference between the rising edge of the pulse of the start signal Vstart and the rising edge of the corresponding pulse of the stop signal Vstop. In the non-light-receiving state, the measurement time Tx is at most a period up to the period 1 / fc of the superimposed signal Vc, that is, Tx ≦ 1 / fc. In other words, even if there is an influence of noise in the non-light-receiving state, the pulse of the stop signal Vstop always rises once in the cycle 1 / fc of the superimposed signal Vc.
 これにより、実施の形態1の光測距装置1では、非受光状態の計測時間Txを、後述の図12のように制御して、受光状態の計測時間Txから分離することが可能である。周期1/fc以内で停止信号Vstopのパルスが生じるので、非受光状態の計測時間Txの値は、受光状態の正しい計測時間Txの値よりも小さくなる。 Thereby, in the optical distance measuring device 1 according to the first embodiment, the measurement time Tx in the non-light receiving state can be controlled as shown in FIG. 12 to be separated from the measurement time Tx in the light receiving state. Since the pulse of the stop signal Vstop occurs within the period 1 / fc, the value of the measurement time Tx in the non-light receiving state is smaller than the value of the correct measurement time Tx in the light receiving state.
 Tx≦1/fcから、変形して、1/fc≧Tx、fc≦1/Txである。検出対象となる映像画面30の大きさに応じて、計測時間Txの範囲が定まっている。計測時間Txの範囲に応じて、重畳信号Vcの周期や周波数が設計される。 From Tx ≦ 1 / fc, 1 / fc ≧ Tx and fc ≦ 1 / Tx. The range of the measurement time Tx is determined according to the size of the video screen 30 to be detected. The period and frequency of the superimposed signal Vc are designed according to the range of the measurement time Tx.
 図12は、図11に対応した、各期間での計測結果の計測時間を示す。この計測時間は、時間計測器16の計測時間Txに対応する。期間121や期間123は非受光状態、期間122は受光状態を示す。値TKは、対象物3との正しい距離に対応した、正しい計測時間の値を示す。範囲E1は、値TKを含む、受光状態の計測時間の範囲を示す。値TK1は範囲E1の下限値、値TK2は範囲E1の上限値を示す。例えば、図6の映像画面30の大きさの場合に、基準点Qからの最小距離の点P0、最大距離の点P2に基づいて、下限の値TK1が60+0.66[nsec]、上限の値TK2が60+4[nsec]、といったようになる。 FIG. 12 shows the measurement time of the measurement result in each period corresponding to FIG. This measurement time corresponds to the measurement time Tx of the time measuring device 16. A period 121 and a period 123 indicate a non-light receiving state, and a period 122 indicates a light receiving state. The value TK indicates a correct measurement time value corresponding to the correct distance from the object 3. A range E1 indicates a range of measurement time in the light receiving state including the value TK. The value TK1 indicates the lower limit value of the range E1, and the value TK2 indicates the upper limit value of the range E1. For example, in the case of the size of the video screen 30 in FIG. 6, the lower limit value TK1 is 60 + 0.66 [nsec] and the upper limit value based on the minimum distance point P0 and the maximum distance point P2 from the reference point Q. TK2 is 60 + 4 [nsec].
 範囲E2は、非受光状態の計測時間の範囲を示す。値TC2は範囲E2の上限値を示す。値TC2は、図11のTx≦1/fcから、TC2=1/fcである。非受光状態の計測時間Txの値は、TC2=1/fc以下になる。 Range E2 indicates the range of measurement time in the non-light-receiving state. The value TC2 indicates the upper limit value of the range E2. The value TC2 is TC2 = 1 / fc from Tx ≦ 1 / fc in FIG. The value of the measurement time Tx in the non-light-receiving state is TC2 = 1 / fc or less.
 実施の形態1の光測距装置1は、重畳信号Vcを重畳する処理によって、図12のように、非受光状態と受光状態とで計測時間Txの値を十分に分離する。受光状態の計測時間の範囲E1と、非受光状態の計測時間の範囲E2とが異なるように分離される。範囲E2の上限の値TC2が、範囲E1の下限の値TK1よりも小さい値となるように(TC2<TK1)、重畳信号Vcの周期(TC2=1/fc)が設計されている。 The optical distance measuring device 1 according to the first embodiment sufficiently separates the value of the measurement time Tx between the non-light-receiving state and the light-receiving state as shown in FIG. 12 by the process of superimposing the superimposed signal Vc. The measurement time range E1 in the light receiving state is separated from the measurement time range E2 in the non-light receiving state. The period (TC2 = 1 / fc) of the superimposed signal Vc is designed so that the upper limit value TC2 of the range E2 is smaller than the lower limit value TK1 of the range E1 (TC2 <TK1).
 これにより、実施の形態1の光測距装置1では、図10の比較例の場合のような非受光状態の信号からの誤検出を防止することができ、高精度の測定が実現できる。また、実施の形態1の光測距装置1では、比較器15から得た停止信号Vstopのパルスの立ち上がりのタイミングで、そのまま正しい計測時間と判断できるため、安定化処理等の時間は不要であり、即時に高速度の測定が可能である。 Thereby, in the optical distance measuring device 1 according to the first embodiment, it is possible to prevent erroneous detection from a signal in a non-light-receiving state as in the comparative example of FIG. 10, and to realize highly accurate measurement. Further, in the optical distance measuring device 1 according to the first embodiment, it is possible to determine the correct measurement time as it is at the rising timing of the pulse of the stop signal Vstop obtained from the comparator 15, so that time for stabilization processing or the like is unnecessary. High speed measurement is possible immediately.
 制御部10は、図12のような計測時間Txのデータから、受光状態の計測時間の値を取り出して、飛行時間Tfを算出し、距離及び位置を算出する。制御部10は、入力された各時点の計測時間Txの値を、所定の閾値Thと比較判定し、閾値Thよりも大きい値を、受光状態の計測時間の値とみなして採用し、閾値Th以下の値については、非受光状態の計測時間の値とみなして無視、不採用とする。所定の閾値Thは、例えば範囲E2の上限の値TC2である1/fcと同じ値に設定される。 The control unit 10 extracts the value of the measurement time of the light receiving state from the data of the measurement time Tx as shown in FIG. 12, calculates the flight time Tf, and calculates the distance and position. The control unit 10 compares and determines the input measurement time Tx value at each time point with a predetermined threshold Th, adopts a value larger than the threshold Th as the value of the measurement time in the light receiving state, and uses the threshold Th. The following values are regarded as non-light-receiving state measurement time values and ignored or not adopted. The predetermined threshold Th is set to the same value as 1 / fc which is the upper limit value TC2 of the range E2, for example.
 重畳信号Vcの周期1/fcについては、受光状態と非受光状態の計測時間を分離するために、回路遅延時間Tdよりも短いことが必要である。即ち、下記の式4が1つの条件である。また、式4の変形から式5である。周波数fcは、回路遅延時間Tdの逆数よりも大きいことが必要である。
 1/fc<Td   ・・・式4
 fc>1/Td   ・・・式5
The period 1 / fc of the superimposed signal Vc needs to be shorter than the circuit delay time Td in order to separate the measurement time in the light receiving state and the non-light receiving state. That is, the following formula 4 is one condition. Further, Expression 5 is obtained by transforming Expression 4. The frequency fc needs to be larger than the reciprocal of the circuit delay time Td.
1 / fc <Td Formula 4
fc> 1 / Td Formula 5
 重畳信号Vcの周期1/fcは、より好ましくは、回路遅延時間Tdよりも十分に小さい周期とする。重畳信号Vcの周期1/fcが短いほど、周波数fcが高いほど、より好ましい。これにより、受光状態と非受光状態との計測時間の分離が容易となり、より望ましい効果が得られる。即ち、受光状態の範囲E1と非受光状態の範囲E2とをより大きく分離でき、より高精度の測定が可能となる。 The cycle 1 / fc of the superimposed signal Vc is more preferably a cycle sufficiently smaller than the circuit delay time Td. The shorter the period 1 / fc of the superimposed signal Vc, the higher the frequency fc. This facilitates separation of the measurement time between the light receiving state and the non-light receiving state, and a more desirable effect can be obtained. That is, the range E1 in the light receiving state and the range E2 in the non-light receiving state can be further separated, and more accurate measurement is possible.
 例えば、回路遅延時間Tdを30[nsec]とし、光測距装置1の検出可能な距離の範囲における最小距離を0cm、最大距離を70cmとする。この最小距離は、例えば図6の点P0を基準点Q0とした場合に相当する。最大距離は、点P0と点P2との距離に相当する。すると、飛行時間Tfは、最大で4.62[nsec]と計算される(0≦Tf≦4.62)。受光状態の計測時間Txは、前述の式2(Tx=Tf+Td)から、30[nsec]から34.62[nsec]までの範囲となる(30≦Tx≦34.62)。重畳信号Vcの周期1/fcは、式4から、条件として、1/fc<30[nsec]である。重畳信号Vcの周波数fcは、式5から、条件として、fc>1/30[nsec]である。即ち、重畳信号Vcの周波数fcは、fc>33[MHz]である。 For example, the circuit delay time Td is 30 [nsec], the minimum distance in the range of the distance that can be detected by the optical distance measuring device 1 is 0 cm, and the maximum distance is 70 cm. This minimum distance corresponds to, for example, the case where the point P0 in FIG. 6 is set as the reference point Q0. The maximum distance corresponds to the distance between the point P0 and the point P2. Then, the flight time Tf is calculated to be 4.62 [nsec] at the maximum (0 ≦ Tf ≦ 4.62). The measurement time Tx in the light receiving state is in a range from 30 [nsec] to 34.62 [nsec] based on the above-described Expression 2 (Tx = Tf + Td) (30 ≦ Tx ≦ 34.62). The period 1 / fc of the superimposed signal Vc is 1 / fc <30 [nsec] as a condition from Equation 4. From Equation 5, the frequency fc of the superimposed signal Vc is fc> 1/30 [nsec] as a condition. That is, the frequency fc of the superimposed signal Vc is fc> 33 [MHz].
 また、重畳信号Vcの周期1/fc及び周波数fcは、光測距装置1の実装回路構成に依存して規定される。実施の形態1では、図2の制御部10の信号生成部10Aから重畳信号Vcを発生する。信号生成部10Aは、例えば制御部10に備えるCPU等により発生するクロック信号を用いて、重畳信号Vcを生成する。CPU等により発生するクロック信号には、周期の下限及び周波数の上限があるので、それに応じて、重畳信号Vcの周期の下限及び周波数の上限も規定される。また、例えば時間計測器16の回路において、計測可能な時間分解能の制限があるので、それに応じて、重畳信号Vcの周期及び周波数が規定される。 Further, the period 1 / fc and the frequency fc of the superimposed signal Vc are defined depending on the mounting circuit configuration of the optical distance measuring device 1. In the first embodiment, the superimposed signal Vc is generated from the signal generation unit 10A of the control unit 10 in FIG. The signal generation unit 10A generates the superimposed signal Vc using a clock signal generated by a CPU or the like provided in the control unit 10, for example. Since the clock signal generated by the CPU or the like has the lower limit of the cycle and the upper limit of the frequency, the lower limit of the cycle and the upper limit of the frequency of the superimposed signal Vc are also defined accordingly. Further, for example, in the circuit of the time measuring device 16, there is a limit on the time resolution that can be measured, and accordingly, the cycle and frequency of the superimposed signal Vc are defined.
 [変調部]
 次に、信号重畳部100の変調部14の詳しい構成について説明する。図13は、実施の形態1の光測距装置1における変調部14の構成を示す。変調部14は、重畳容量である容量14aにより構成される。アンプ13から比較器15への信号線に、制御部10からの信号線が接続されており、その信号線の途中に、容量14aが設けられている。変調部14は、制御部10からの重畳信号Vcを、容量14aを介して、アンプ13の出力の信号Vsig1に重畳する。
[Modulation section]
Next, a detailed configuration of the modulation unit 14 of the signal superimposing unit 100 will be described. FIG. 13 shows a configuration of the modulation unit 14 in the optical distance measuring device 1 of the first embodiment. The modulation unit 14 includes a capacitor 14a that is a superimposed capacitor. A signal line from the control unit 10 is connected to a signal line from the amplifier 13 to the comparator 15, and a capacitor 14a is provided in the middle of the signal line. The modulation unit 14 superimposes the superimposed signal Vc from the control unit 10 on the signal Vsig1 output from the amplifier 13 via the capacitor 14a.
 制御部10は、前述のように、信号生成部10Aにより、所定の重畳信号Vcとして、ノイズレベルよりも大きい振幅Hc、及び開始信号Vstartよりも高い周波数fc等を持つパルス信号を生成して出力する。信号生成部10Aは、例えばCPUにより発生するクロック信号に基づいて分周器等により重畳信号Vcを生成してもよい。重畳信号Vcとしては、前述の条件を満たすものであれば、矩形波に限らず、正弦波、三角波、ノコギリ波、等の周期的な波形を適用可能である。また、制御部10は、重畳信号Vcの振幅や周波数等を可変に調整する機能を有してもよい。 As described above, the control unit 10 generates and outputs a pulse signal having the amplitude Hc larger than the noise level and the frequency fc higher than the start signal Vstart as the predetermined superimposed signal Vc by the signal generation unit 10A. To do. The signal generation unit 10A may generate the superimposed signal Vc using a frequency divider or the like based on a clock signal generated by the CPU, for example. The superimposed signal Vc is not limited to a rectangular wave but may be a periodic waveform such as a sine wave, a triangular wave, or a sawtooth wave as long as the above-described conditions are satisfied. Further, the control unit 10 may have a function of variably adjusting the amplitude, frequency, etc. of the superimposed signal Vc.
 [効果等]
 以上のように、実施の形態1によれば、TOF方式を用いた光測距装置及び映像投写装置に関して、高精度と高速度との両方を実現できる。光測距装置1は、映像画面30の対象物3の位置を高精度かつ高速度で検出できる。映像投写装置2は、光測距装置1により高精度かつ高速度で得た位置情報を用いて、映像画面30での対象物3による動作を検出し、動作に応じた制御操作を実現できる。即ち、映像投写装置2は、映像画面30に対するインタラクティブな制御操作を可能とする機能を、高精度かつ高速度で実現できる。
[Effects]
As described above, according to the first embodiment, both high accuracy and high speed can be realized with respect to the optical distance measuring device and the video projection device using the TOF method. The optical distance measuring device 1 can detect the position of the object 3 on the video screen 30 with high accuracy and high speed. The image projection device 2 can detect the operation of the object 3 on the image screen 30 using the position information obtained by the optical distance measuring device 1 with high accuracy and high speed, and can realize a control operation corresponding to the operation. That is, the video projection device 2 can realize a function that enables interactive control operations on the video screen 30 with high accuracy and high speed.
 実施の形態1の光測距装置及び映像投写装置に関する変形例として、以下が挙げられる。まず、光測距装置1のみが単体で存在する形態が可能である。その場合、光測距装置1は、前述の走査手段の具備を省略でき、基準点Qの光源11から固定の方向のみに光を出射する形態でもよい。 As modifications of the optical distance measuring device and the image projection device according to the first embodiment, the following may be mentioned. First, a form in which only the optical distance measuring device 1 exists alone is possible. In that case, the optical distance measuring device 1 may omit the above-described scanning unit, and may emit light only from the light source 11 of the reference point Q in a fixed direction.
 映像投写装置2と光測距装置1とが別体で相互接続される形態も可能である。即ち、映像投写装置2の外部に光測距装置1が有線または無線の通信インタフェースで接続されて両者が連係する形態が可能である。 A form in which the image projection device 2 and the optical distance measuring device 1 are interconnected separately is also possible. In other words, a configuration in which the optical distance measuring device 1 is connected to the outside of the image projection device 2 via a wired or wireless communication interface and the two are linked together is possible.
 時間計測器16は、計測時間Txから飛行時間Tfを算出し、飛行時間Tfのデータを制御部10へ出力してもよい。その場合、制御部10は、飛行時間Tfを算出する必要が無い。 The time measuring device 16 may calculate the flight time Tf from the measurement time Tx and output the flight time Tf data to the control unit 10. In that case, the control unit 10 does not need to calculate the flight time Tf.
 映像画面30に対する光の走査方式としては、前述の走査角度θを範囲内で制御する方式に限らず、映像画面30内の全ての点の検出をカバーできる方式であればよく、TV走査方式等、各種の方式が適用可能である。 The light scanning method for the video screen 30 is not limited to the above-described method for controlling the scanning angle θ within the range, and any method that can cover the detection of all points in the video screen 30 may be used. Various methods are applicable.
 走査手段である走査駆動部21及び走査ミラー22は、光測距装置1内ではなく、映像投写装置2内に実装されていてもよい。その場合、光測距装置1からは距離情報を出力し、映像投写装置2は距離情報と走査角度情報から位置を算出してもよい。 The scanning drive unit 21 and the scanning mirror 22 which are scanning means may be mounted not in the optical distance measuring device 1 but in the video projection device 2. In this case, distance information may be output from the optical distance measuring device 1, and the image projection device 2 may calculate a position from the distance information and scanning angle information.
 光測距装置1は、走査手段として、更に反射ミラー等の要素を追加して、1次元ではなく2次元の制御を行い、所望の走査方向へ投光信号を出射可能な形態としてもよい。2次元の制御の変数として、例えば、第1の角度である走査角度θに加え、第2の角度である走査角度φをとる。この走査角度φは、基準点Qから、映像画面30に対する高さ方向であるZ方向の位置へ向けて光を出射する角度である。走査手段は、走査角度θ及び走査角度φの2つの角度を変更するように制御する。これにより、映像画面30に対応した2次元領域に所定の高さを加えて構成される3次元領域内の点を走査可能である。この形態の場合、3次元領域内で検出される複数の位置情報から、より詳しく動作を検出可能である。 The optical distance measuring device 1 may be configured to be able to emit a projection signal in a desired scanning direction by adding elements such as a reflection mirror as scanning means and performing two-dimensional control instead of one-dimensional. As a two-dimensional control variable, for example, a scanning angle φ that is a second angle is taken in addition to a scanning angle θ that is a first angle. This scanning angle φ is an angle at which light is emitted from the reference point Q toward a position in the Z direction, which is the height direction with respect to the video screen 30. The scanning means controls so as to change two angles of the scanning angle θ and the scanning angle φ. Thereby, it is possible to scan a point in the three-dimensional area formed by adding a predetermined height to the two-dimensional area corresponding to the video screen 30. In the case of this form, the operation can be detected in more detail from a plurality of pieces of position information detected within the three-dimensional region.
 [第1の変形例]
 図14は、実施の形態1の第1の変形例の光測距装置1における、変調部14の構成を示す。第1の変形例における変調部14は、加算器を用いた構成である。この変調部14は、加算用アンプ14b、可変抵抗141,142等を含む。この変調部14は、可変抵抗141,142を用いて、重畳信号Vcの振幅である電圧レベルを調整可能となっている。この変調部14は、可変抵抗141,142の制御により、アンプ13からの信号Vsig1と、重畳信号Vcとの重畳に関して、重み付けが可能となっている。
[First Modification]
FIG. 14 shows a configuration of the modulation unit 14 in the optical distance measuring device 1 according to the first modification of the first embodiment. The modulation unit 14 in the first modification has a configuration using an adder. The modulation unit 14 includes an addition amplifier 14b, variable resistors 141 and 142, and the like. The modulation unit 14 can adjust the voltage level, which is the amplitude of the superimposed signal Vc, using the variable resistors 141 and 142. The modulation unit 14 can weight the signal Vsig1 from the amplifier 13 and the superimposed signal Vc under the control of the variable resistors 141 and 142.
 可変抵抗141の抵抗値がR1、可変抵抗142の抵抗値がR2である。加算用アンプ14bに関する抵抗値がRfである。アンプ13からの信号Vsig1は、可変抵抗141を通じて加算用アンプ14bの正入力端子に入力される。制御部10からの重畳信号Vcは、可変抵抗142を通じて加算用アンプ14bの正入力端子に入力される。加算用アンプ14bの負入力端子はグランドに接続されている。加算用アンプ14bの出力端子は、抵抗値Rfの抵抗を通じて正入力端子に帰還しており、信号Vsig2が比較器15に出力される。 The resistance value of the variable resistor 141 is R1, and the resistance value of the variable resistor 142 is R2. The resistance value related to the adding amplifier 14b is Rf. The signal Vsig1 from the amplifier 13 is input to the positive input terminal of the adding amplifier 14b through the variable resistor 141. The superimposed signal Vc from the control unit 10 is input to the positive input terminal of the adding amplifier 14b through the variable resistor 142. The negative input terminal of the adding amplifier 14b is connected to the ground. The output terminal of the adding amplifier 14b is fed back to the positive input terminal through a resistor having a resistance value Rf, and the signal Vsig2 is output to the comparator 15.
 また、制御部10は、ユーザ設定や後述のキャリブレーションに応じて重畳信号Vcの振幅を調整する機能を有する。制御部10は、重畳信号Vcの振幅を調整する場合、その調整後の振幅の電圧レベルに対応させて、可変抵抗141,142へ、抵抗値R1,R2に関する制御値140を与える。これにより、可変抵抗141,142の抵抗値R1,R2が調整される。 Further, the control unit 10 has a function of adjusting the amplitude of the superimposed signal Vc in accordance with user settings and calibration described later. When adjusting the amplitude of the superimposed signal Vc, the control unit 10 gives the control values 140 related to the resistance values R1 and R2 to the variable resistors 141 and 142 in correspondence with the voltage level of the amplitude after the adjustment. As a result, the resistance values R1, R2 of the variable resistors 141, 142 are adjusted.
 また、図13や図14の変調部14の構成では、共に、アンプ13の後段で信号Vsig1に対して重畳信号Vcを重畳している。これに限らず、変形例として、アンプ13の前段でセンサ12の直後に、所定の信号を重畳する回路を設けた形態としてもよい。 Also, in the configuration of the modulation unit 14 in FIGS. 13 and 14, the superimposed signal Vc is superimposed on the signal Vsig1 in the subsequent stage of the amplifier 13. However, the present invention is not limited to this, and as a modification, a circuit that superimposes a predetermined signal may be provided immediately after the sensor 12 in the previous stage of the amplifier 13.
 [第2の変形例]
 図15は、実施の形態1の第2の変形例の光測距装置1における、制御部10の構成を示す。第2の変形例における制御部10は、非受光状態のノイズレベルを検出し、そのノイズレベルに応じて重畳信号Vcの振幅の電圧レベルを調整する機能を有する。この制御部10は、ADC10a、重畳信号制御器10b、重畳信号発生器10cを有する。
[Second Modification]
FIG. 15 shows a configuration of the control unit 10 in the optical distance measuring device 1 according to the second modification of the first embodiment. The control unit 10 in the second modification has a function of detecting the noise level in the non-light-receiving state and adjusting the voltage level of the amplitude of the superimposed signal Vc according to the noise level. The control unit 10 includes an ADC 10a, a superimposed signal controller 10b, and a superimposed signal generator 10c.
 ADC10aは、アナログ・ディジタル変換器であり、機能としてはノイズレベル検出器である。ADC10aは、アンプ13からのアナログ信号である信号Vsig1を入力してサンプリングし、そのディジタル信号の値151を重畳信号制御器10bへ出力する。 The ADC 10a is an analog / digital converter and functions as a noise level detector. The ADC 10a receives and samples the signal Vsig1, which is an analog signal from the amplifier 13, and outputs the value 151 of the digital signal to the superimposed signal controller 10b.
 光測距装置1は、ノイズレベルの検出の際、対象物3からの散乱を含む反射光がセンサ12に戻ってこない環境とする。そのような環境下で、制御部10は、アンプ13の出力の信号Vsig1のレベルをADC10aで変換して得た、ノイズレベルを示す値151を、重畳信号制御器10bに入力する。重畳信号制御器10bは、ADC10aからの値151で示すノイズレベルから、重畳信号Vcの振幅値152を決定する。例えば、重畳信号制御器10bは、ノイズレベルを、閾値範囲と比較して、該当する閾値範囲に応じた振幅値を決定する。あるいは、重畳信号制御器10bは、ノイズレベルを所定の計算式に代入して振幅値を決定する。重畳信号制御器10bは、前述のように、開始信号Vstartの振幅H1よりは小さく、ノイズレベルの振幅H0よりも少し大きい振幅となる条件で、この振幅値を決定する。 The optical distance measuring device 1 is an environment in which reflected light including scattering from the object 3 does not return to the sensor 12 when detecting the noise level. Under such an environment, the control unit 10 inputs a value 151 indicating the noise level obtained by converting the level of the signal Vsig1 output from the amplifier 13 by the ADC 10a to the superimposed signal controller 10b. The superimposed signal controller 10b determines the amplitude value 152 of the superimposed signal Vc from the noise level indicated by the value 151 from the ADC 10a. For example, the superimposed signal controller 10b compares the noise level with a threshold range and determines an amplitude value corresponding to the corresponding threshold range. Alternatively, the superimposed signal controller 10b determines the amplitude value by substituting the noise level into a predetermined calculation formula. As described above, the superimposed signal controller 10b determines this amplitude value under the condition that the amplitude is smaller than the amplitude H1 of the start signal Vstart and slightly larger than the amplitude H0 of the noise level.
 重畳信号制御器10bは、決定した振幅値152を重畳信号発生器10cへ与える。重畳信号発生器10cは、その振幅値を持つ重畳信号Vcを、前述のように例えばクロック信号に基づいて生成し、その重畳信号Vcを変調部14へ出力する。 The superimposition signal controller 10b gives the determined amplitude value 152 to the superimposition signal generator 10c. The superimposed signal generator 10 c generates the superimposed signal Vc having the amplitude value based on, for example, a clock signal as described above, and outputs the superimposed signal Vc to the modulation unit 14.
 もしくは、変形例として、重畳信号制御器10bは、決定した振幅値152を、変調部14へ与えてもよい。その場合、変調部14は、制御部10から与えられた振幅値152に従い、内部の回路で重畳信号Vcの振幅を調整する。 Alternatively, as a modification, the superimposed signal controller 10b may provide the determined amplitude value 152 to the modulation unit 14. In that case, the modulation unit 14 adjusts the amplitude of the superimposed signal Vc by an internal circuit in accordance with the amplitude value 152 given from the control unit 10.
 また、この制御部10は、ユーザ設定やキャリブレーションに応じて重畳信号Vcの振幅等を調整する機能を有する。 The control unit 10 has a function of adjusting the amplitude of the superimposed signal Vc and the like according to user settings and calibration.
 ユーザ設定の場合、制御部10は、映像投写装置2の入出力部55を通じて管理者の入力操作に基づいて入力された、重畳信号Vcの振幅値等の設定値を受けて、重畳信号Vcの振幅等を調整する。制御部10は、例えばユーザ設定に応じて、重畳信号Vcのオン/オフを切り替えてもよい。 In the case of a user setting, the control unit 10 receives a set value such as an amplitude value of the superimposed signal Vc input based on an input operation of the administrator through the input / output unit 55 of the video projection device 2 and receives the superimposed signal Vc. Adjust the amplitude. The control unit 10 may switch on / off of the superimposed signal Vc, for example, according to a user setting.
 キャリブレーションの場合には以下である。光測距装置1は、例えば起動時に、キャリブレーションのシーケンスを実行する。この際、制御部10は、上記環境下でADC10aを通じてノイズレベルを検出し、重畳信号制御器10bにより、ノイズレベルに応じて振幅値152を決定する。制御部10は、その後、決定された振幅値152を持つ重畳信号Vcを用いて、通常の測定のシーケンスを実行する。また、制御部10は、その後、一定時間毎に、自動的にキャリブレーションを実行し、同様に重畳信号Vcを調整する。 In the case of calibration, it is as follows. The optical distance measuring device 1 executes a calibration sequence, for example, when activated. At this time, the control unit 10 detects the noise level through the ADC 10a under the above-described environment, and determines the amplitude value 152 according to the noise level by the superimposed signal controller 10b. Thereafter, the control unit 10 executes a normal measurement sequence using the superimposed signal Vc having the determined amplitude value 152. Further, the control unit 10 thereafter automatically performs calibration at regular time intervals and similarly adjusts the superimposed signal Vc.
 また、制御部10は、温度センサ等の各種のセンサを用いて、随時、周囲環境の状態を検出し、その検出値に応じて、重畳信号Vcの振幅等を調整してもよい。例えば、外光や電源等の影響で温度が変化してノイズレベルが変化する場合がある。制御部10は、随時、変化後のノイズレベルを検出し、そのノイズレベルに応じて、自動的に、重畳信号Vcの振幅等を調整する。例えば、映像投写装置2の電源起動直後の期間では、温度が大きく変化するので、その期間で頻繁にキャリブレーションを実行させてもよい。 Further, the control unit 10 may detect the state of the surrounding environment at any time using various sensors such as a temperature sensor and adjust the amplitude or the like of the superimposed signal Vc according to the detected value. For example, the noise level may change due to a change in temperature due to the influence of external light or a power source. The control unit 10 detects the noise level after the change from time to time, and automatically adjusts the amplitude and the like of the superimposed signal Vc according to the noise level. For example, since the temperature changes greatly in the period immediately after the power supply of the image projection apparatus 2 is activated, the calibration may be executed frequently during that period.
 また、例えば、利用者により映像投写装置2の設置位置が変更された場合にも、周囲環境が変化して、ノイズレベルが変化する。よって、映像投写装置2は、所定のセンサを用いて、その設置位置変更を検出し、その検出に応じてキャリブレーションを実行させてもよい。 Also, for example, when the installation position of the image projection device 2 is changed by the user, the ambient environment changes and the noise level changes. Therefore, the video projection device 2 may detect a change in the installation position using a predetermined sensor, and may execute calibration according to the detection.
 映像投写装置2は、上記キャリブレーションの実行の際には、キャリブレーション中やノイズレベル検出中の状態である旨を、利用者に認識させるために、映像画面30等にその旨を表示してもよいし、音声出力してもよい。また、光測距装置1を独立で用いる場合、光測距装置1に設けられたランプを用いて、キャリブレーション中にそのランプを点灯させてユーザに認識させてもよい。 When the calibration is executed, the video projection device 2 displays the fact on the video screen 30 or the like so that the user can recognize that the calibration or the noise level is being detected. Alternatively, audio may be output. In addition, when the optical distance measuring device 1 is used independently, a lamp provided in the optical distance measuring device 1 may be used so that the lamp is turned on during calibration so that the user can recognize it.
 また、制御部10は、ユーザ設定に係わる機能として、管理者向けに、重畳信号Vcのオン/オフの切り替えの機能や、重畳信号Vcの重畳の有無の状態、重畳信号Vcの周波数や振幅の電圧レベル等の状態を、確認可能なようにモニタ、出力する機能を備える。映像投写装置2は、重畳信号Vcに関する状態及び設定の情報を、映像画面30に表示してもよい。 In addition, as a function related to the user setting, the control unit 10 provides a function for switching on / off of the superimposed signal Vc, whether or not the superimposed signal Vc is superimposed, the frequency and amplitude of the superimposed signal Vc. It has a function to monitor and output the voltage level and the like so that it can be confirmed. The video projection device 2 may display information on the state and settings regarding the superimposed signal Vc on the video screen 30.
 (実施の形態2)
 図16を用いて、本発明の実施の形態2の光測距装置及び映像投写装置について説明する。実施の形態2の基本的な構成は実施の形態1の構成と同様であり、以下、実施の形態2の構成における実施の形態1の構成とは異なる部分について説明する。
(Embodiment 2)
The optical distance measuring device and the image projection device according to the second embodiment of the present invention will be described with reference to FIG. The basic configuration of the second embodiment is the same as the configuration of the first embodiment, and the following description will be made on portions of the configuration of the second embodiment that are different from the configuration of the first embodiment.
 図16は、実施の形態2の光測距装置1の構成を示す。実施の形態2の光測距装置1は、信号重畳部100として、重畳用光源駆動部71、重畳用光源72、及び光量調整部73を備える。実施の形態2では、信号重畳部100として、変調部14の代わりに、光源11とは別の重畳用光源72を用いる。実施の形態2では、センサ12で入射する反射光A2に、重畳用光源72からの光を重畳光A12として重畳することにより、所定の信号が重畳された受光信号を得る。 FIG. 16 shows a configuration of the optical distance measuring device 1 according to the second embodiment. The optical distance measuring device 1 according to the second embodiment includes a superimposing light source driving unit 71, a superimposing light source 72, and a light amount adjusting unit 73 as the signal superimposing unit 100. In the second embodiment, a superimposing light source 72 different from the light source 11 is used as the signal superimposing unit 100 instead of the modulating unit 14. In the second embodiment, a light reception signal on which a predetermined signal is superimposed is obtained by superimposing the light from the superimposing light source 72 on the reflected light A2 incident on the sensor 12 as the superimposed light A12.
 制御部10は、所定の重畳信号に基づいて、重畳用光源駆動部71に、駆動用のゲート信号を出力する。重畳用光源駆動部71は、制御部10からのゲート信号に応じたタイミングで、重畳用光源72に、駆動電流を供給する。重畳用光源72は、重畳用光源駆動部71からの駆動電流に応じた強度及びタイミングで発光する。重畳用光源72からの光A11は、光量調整部73に入射される。 The control unit 10 outputs a driving gate signal to the superimposing light source driving unit 71 based on a predetermined superimposing signal. The superimposing light source driving unit 71 supplies a driving current to the superimposing light source 72 at a timing according to the gate signal from the control unit 10. The superimposing light source 72 emits light with intensity and timing according to the driving current from the superimposing light source driving unit 71. Light A <b> 11 from the superimposing light source 72 is incident on the light amount adjusting unit 73.
 光量調整部73は、重畳用光源72からの光A11を減光することにより、その光量を調整して、重畳光A12を生成する。これにより、言い換えれば、光量調整部73は、センサ12の入射の光量、受光の強度を調整する。光量調整部73により、重畳信号Vcに相当する重畳光のレベル等を調整できる。 The light amount adjusting unit 73 adjusts the light amount by dimming the light A11 from the superimposing light source 72 to generate the superimposed light A12. Accordingly, in other words, the light amount adjusting unit 73 adjusts the incident light amount and the received light intensity of the sensor 12. The light amount adjusting unit 73 can adjust the level of superimposed light corresponding to the superimposed signal Vc.
 そして、光量調整部73からの重畳光A12が、センサ12に入射される。センサ12は、対象物3からの反射光A2を入射する共に、重畳光A12を入射し、それらを合わせて、受光信号として出力する。重畳光A12は、実施の形態1の重畳信号Vcの設計と同様に、所定の光量等を持つように設計される。 Then, the superimposed light A12 from the light amount adjusting unit 73 is incident on the sensor 12. The sensor 12 receives the reflected light A2 from the object 3 and the superimposed light A12, and combines them to output as a received light signal. The superimposed light A12 is designed to have a predetermined light amount and the like, similar to the design of the superimposed signal Vc in the first embodiment.
 光量調整部73としては、減光フィルタや拡散フィルム、拡散板等が適用可能である。また、光量調整部73は、光測距装置1の筐体内での反射や、別の光学系を利用して実現されてもよい。 As the light amount adjustment unit 73, a neutral density filter, a diffusion film, a diffusion plate, or the like can be applied. Further, the light amount adjusting unit 73 may be realized using reflection in the housing of the optical distance measuring device 1 or another optical system.
 重畳用光源72及び光量調整部73は、センサ12の近くに配置されている。重畳用光源72とセンサ12との間の光路上に、光量調整部73が配置されている。センサ12までで所定の信号の重畳が済んでおり、アンプ13の出力の信号Vsigは、重畳済みの信号となっている。比較器15は、信号Vsigを入力として、停止信号Vstopを得る。 The superimposing light source 72 and the light amount adjusting unit 73 are disposed near the sensor 12. A light amount adjusting unit 73 is disposed on the optical path between the superimposing light source 72 and the sensor 12. The predetermined signal has been superimposed up to the sensor 12, and the signal Vsig output from the amplifier 13 is a superimposed signal. The comparator 15 receives the signal Vsig and obtains a stop signal Vstop.
 実施の形態2では、重畳用光源72を用いて、常時、重畳信号Vcに対応する重畳光A12を出力することにより、実施の形態1と同様に、信号Vsigに関して、所定の信号の重畳状態を実現できる。よって、停止信号Vstopに基づいた計測時間Txに関して、実施の形態1の図12と同様に、非受光状態と受光状態とで分離が実現できる。即ち、実施の形態2によれば、実施の形態1と同様の効果が得られる。 In the second embodiment, by using the superimposing light source 72 to always output the superimposed light A12 corresponding to the superimposed signal Vc, the superimposed state of a predetermined signal with respect to the signal Vsig is changed as in the first embodiment. realizable. Therefore, regarding the measurement time Tx based on the stop signal Vstop, separation can be realized between the non-light-receiving state and the light-receiving state as in FIG. 12 of the first embodiment. That is, according to the second embodiment, the same effect as in the first embodiment can be obtained.
 実施の形態2の変形例として、以下が挙げられる。即ち、光量調整部73を設けずに、重畳用光源72から所定の重畳光を生成し、その重畳光を直接的にセンサ12へ入射する形態としてもよい。この場合、重畳用光源72からの光は、所定の重畳信号に対応する重畳光A12に相当する所定の光量等を持つように設計される。 The following are examples of modifications of the second embodiment. That is, without providing the light amount adjustment unit 73, it is possible to generate predetermined superimposed light from the superimposing light source 72 and to directly enter the superimposed light on the sensor 12. In this case, the light from the superimposing light source 72 is designed to have a predetermined light amount corresponding to the superimposed light A12 corresponding to a predetermined superimposed signal.
 重畳用光源駆動部71及び重畳用光源72を用いて、重畳用光源72から所定の光量を発光させて重畳光を生成することが容易である場合、この変形例を採用して、光量調整部73の具備を省略できる。例えば、制御部10及び重畳用光源駆動部71からの制御により、重畳用光源72の発光の光量を調整して重畳光を生成できる場合には、この変形例を採用できる。 When it is easy to generate a superimposed light by emitting a predetermined amount of light from the superimposing light source 72 using the superimposing light source driving unit 71 and the superimposing light source 72, this modification is adopted, and the light amount adjusting unit The provision of 73 can be omitted. For example, this modification can be adopted when superimposing light can be generated by adjusting the amount of light emitted from the superimposing light source 72 under the control of the control unit 10 and the superimposing light source driving unit 71.
 重畳用光源72から所定の光量で発光させて重畳光を生成することが難しい場合には、実施の形態2のように光量調整部73を用いる構成が有効である。 When it is difficult to generate superimposed light by emitting light from the superimposing light source 72 with a predetermined light amount, a configuration using the light amount adjusting unit 73 as in the second embodiment is effective.
 (実施の形態3)
 図17及び図18を用いて、本発明の実施の形態3の光測距装置及び映像投写装置について説明する。実施の形態3の基本的な構成は実施の形態1の構成と同様であり、以下、実施の形態3の構成における実施の形態1の構成とは異なる部分について説明する。実施の形態3では、信号重畳手段として、距離測定用の光源11を、重畳用光源として兼用する構成を示す。
(Embodiment 3)
The optical distance measuring device and the image projection device according to the third embodiment of the present invention will be described with reference to FIGS. The basic configuration of the third embodiment is the same as the configuration of the first embodiment, and hereinafter, the difference in the configuration of the third embodiment from the configuration of the first embodiment will be described. The third embodiment shows a configuration in which the distance measuring light source 11 is also used as the superimposing light source as the signal superimposing means.
 図17は、実施の形態3の光測距装置1の構成を示す。実施の形態3の光測距装置1は、信号重畳部100として、光源11とセンサ12との間に、光量調整部81が設けられている。実施の形態3では、光源11を利用して、光量調整部81により、重畳用の光を生成する。 FIG. 17 shows a configuration of the optical distance measuring device 1 according to the third embodiment. In the optical distance measuring device 1 according to the third embodiment, a light amount adjusting unit 81 is provided as a signal superimposing unit 100 between the light source 11 and the sensor 12. In the third embodiment, the light amount adjusting unit 81 uses the light source 11 to generate superimposing light.
 光源11は、距離測定用の光を出射光A1として発光する。光量調整部81は、出射光A1に伴う光A14を入射して減光することにより重畳光A15を生成し、その重畳光A15をセンサ12に入射する。センサ12は、対象物3からの反射光A2を入射すると共に、光量調整部81からの重畳光A15を入射して、受光信号として出力する。 The light source 11 emits light for distance measurement as outgoing light A1. The light amount adjustment unit 81 generates the superimposed light A15 by entering and dimming the light A14 accompanying the emitted light A1, and makes the superimposed light A15 incident on the sensor 12. The sensor 12 receives the reflected light A2 from the object 3 and also receives the superimposed light A15 from the light amount adjusting unit 81 and outputs it as a light reception signal.
 光量調整部81は、実施の形態2と同様に、光量を調整する機能を有し、フィルタ等により構成可能である。 The light amount adjustment unit 81 has a function of adjusting the light amount, as in the second embodiment, and can be configured by a filter or the like.
 光源11とセンサ12との距離は短い。この距離は、少なくとも、光源11から対象物3での反射を経てセンサ12に至るまでの距離よりも短い。アンプ13の出力の信号Vsigは、重畳済みの信号となっている。比較器15は、信号Vsigを入力として、停止信号Vstopを得る。 The distance between the light source 11 and the sensor 12 is short. This distance is at least shorter than the distance from the light source 11 to the sensor 12 after being reflected by the object 3. The signal Vsig output from the amplifier 13 is a superimposed signal. The comparator 15 receives the signal Vsig and obtains a stop signal Vstop.
 図18は、実施の形態3の光測距装置1における、非受光状態と受光状態との各期間での各信号の関係を示す。(a)は開始信号Vstart、(b)は信号Vsig、(c)は停止信号Vstopを示す。期間181は非受光状態、期間182は受光状態を示す。(a)の開始信号Vstartは前述と同様のパルス信号である。(b)の信号Vsigは、受光状態では、反射光A2、重畳光A15、及びノイズが反映されたパルス信号となっている。信号Vsigは、非受光状態では、反射光A2が無く、光量が小さい重畳光A15及びノイズが反映された、振幅が小さいパルス信号となっている。 FIG. 18 shows the relationship of each signal in each period between the non-light-receiving state and the light-receiving state in the optical distance measuring device 1 according to the third embodiment. (A) shows the start signal Vstart, (b) shows the signal Vsig, and (c) shows the stop signal Vstop. A period 181 indicates a non-light receiving state, and a period 182 indicates a light receiving state. The start signal Vstart in (a) is the same pulse signal as described above. The signal Vsig in (b) is a pulse signal in which reflected light A2, superimposed light A15, and noise are reflected in the light receiving state. In the non-light-receiving state, the signal Vsig is a pulse signal with a small amplitude that reflects the superimposed light A15 with a small amount of light and noise, without the reflected light A2.
 期間181のような非受光状態では、最大となる計測時間は、回路遅延時間Tdと殆ど同じになる。これは、光源11とセンサ12との距離が非常に短いためである。言い換えると、光源11から光量調整部81を介してセンサ12まで光が伝播する時間は非常に短いためである。 In the non-light-receiving state such as the period 181, the maximum measurement time is almost the same as the circuit delay time Td. This is because the distance between the light source 11 and the sensor 12 is very short. In other words, the time for light to propagate from the light source 11 to the sensor 12 via the light amount adjustment unit 81 is very short.
 一方、期間182のような受光状態では、最小となる計測時間は、以下である。最小となる場合は、映像画面30内で光測距装置1の基準点Qに最も近い位置にある図6の点P0に対象物3がある場合である。例えば、基準点Qと点P0との距離が20cmである場合、受光状態の最小の計測時間Txは、Tx=1.32[nsec]+Td、である。 On the other hand, in the light receiving state such as the period 182, the minimum measurement time is as follows. The minimum is the case where the object 3 is at the point P0 in FIG. 6 that is closest to the reference point Q of the optical distance measuring device 1 in the video screen 30. For example, when the distance between the reference point Q and the point P0 is 20 cm, the minimum measurement time Tx in the light receiving state is Tx = 1.32 [nsec] + Td.
 上記のように、実施の形態3では、受光状態の最小計測時間と、非受光状態の最大計測時間とで差を作り出すことができ、実施の形態1の図12と同様に、受光状態と非受光状態とで計測時間の分離が可能となる。即ち、実施の形態3によれば、実施の形態1と同様の効果が得られる。 As described above, in the third embodiment, it is possible to create a difference between the minimum measurement time in the light receiving state and the maximum measurement time in the non-light receiving state. As in FIG. The measurement time can be separated from the light receiving state. That is, according to the third embodiment, the same effect as in the first embodiment can be obtained.
 以上、本発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されず、その要旨を逸脱しない範囲で種々変更可能である。 The present invention has been specifically described above based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
 1…光測距装置、2…映像投写装置、3…対象物、4…映像投写部、6…外部機器、10…制御部、10A…信号生成部、10B…算出部、11…光源、12…センサ、13…アンプ、14…変調部、15…比較器、16…時間計測器、17…光源駆動部、18…通信部、21…走査駆動部、22…走査ミラー、41…映像制御部、42…映像投写用光源、43…光制御部、44…投写レンズ、45…反射ミラー、46…映像データ記憶部、51…制御部、52…操作制御部、53…動作判断部、54…通信部、55…入出力部、61…制御部、62…記憶部、63…アプリ、64…通信部、100…信号重畳部。 DESCRIPTION OF SYMBOLS 1 ... Optical distance measuring device, 2 ... Image projection apparatus, 3 ... Object, 4 ... Image projection part, 6 ... External apparatus, 10 ... Control part, 10A ... Signal generation part, 10B ... Calculation part, 11 ... Light source, 12 DESCRIPTION OF SYMBOLS ... Sensor 13 ... Amplifier 14 ... Modulation part 15 ... Comparator 16 ... Time measuring device 17 ... Light source drive part 18 ... Communication part 21 ... Scan drive part 22 ... Scanning mirror 41 ... Video control part , 42 ... Image projection light source, 43 ... Light control unit, 44 ... Projection lens, 45 ... Reflection mirror, 46 ... Video data storage unit, 51 ... Control unit, 52 ... Operation control unit, 53 ... Operation judgment unit, 54 ... Communication unit 55 ... I / O unit 61 ... Control unit 62 ... Storage unit 63 ... Application 64 ... Communication unit 100 ... Signal superposition unit

Claims (15)

  1.  光を用いて距離を測定する光測距装置であって、
     開始信号を生成する制御部と、
     前記開始信号に基づいて光を出射する光源と、
     前記光源からの出射光による対象物からの反射光を入射して受光信号として出力するセンサと、
     前記受光信号に基づいた第1の信号と、参照信号との比較の結果、停止信号を出力する比較器と、
     前記開始信号と前記停止信号との時間差を計測時間として出力する時間計測器と、
     前記計測時間に基づいて、前記反射光を受光している受光状態の計測時間を取り出し、当該受光状態の計測時間を用いて飛行時間を算出し、当該飛行時間に基づいて前記対象物との距離を算出し、当該距離に基づいて前記対象物の位置を算出する、算出部と、
     前記受光信号に重畳信号を重畳する信号重畳部と、
     を備え、
     前記重畳信号は、前記出射光の周期よりも小さい周期を持つ周期的信号である、
     光測距装置。
    An optical distance measuring device that measures distance using light,
    A control unit for generating a start signal;
    A light source that emits light based on the start signal;
    A sensor that receives reflected light from an object by light emitted from the light source and outputs it as a light reception signal;
    A comparator that outputs a stop signal as a result of comparison between the first signal based on the received light signal and a reference signal;
    A time measuring device that outputs a time difference between the start signal and the stop signal as a measurement time;
    Based on the measurement time, the measurement time of the light receiving state in which the reflected light is received is taken out, the flight time is calculated using the measurement time of the light reception state, and the distance to the object based on the flight time And calculating a position of the object based on the distance;
    A signal superimposing unit that superimposes a superimposition signal on the light reception signal;
    With
    The superimposed signal is a periodic signal having a period smaller than the period of the emitted light.
    Optical distance measuring device.
  2.  請求項1記載の光測距装置において、
     前記重畳信号は、前記出射光の振幅よりも小さく、前記反射光を受光していない非受光状態のノイズ信号の振幅よりも大きい振幅を持つ周期的信号である、
     光測距装置。
    The optical distance measuring device according to claim 1,
    The superimposed signal is a periodic signal having an amplitude smaller than the amplitude of the emitted light and larger than the amplitude of a noise signal in a non-light-receiving state that does not receive the reflected light.
    Optical distance measuring device.
  3.  請求項1記載の光測距装置において、
     前記計測時間は、前記飛行時間と、回路遅延時間とから成り、
     前記重畳信号の周期は、前記回路遅延時間よりも短く、
     前記算出部は、前記計測時間から前記回路遅延時間を減算して前記飛行時間を算出する、
     光測距装置。
    The optical distance measuring device according to claim 1,
    The measurement time consists of the flight time and circuit delay time,
    The period of the superimposed signal is shorter than the circuit delay time,
    The calculation unit calculates the flight time by subtracting the circuit delay time from the measurement time.
    Optical distance measuring device.
  4.  請求項1記載の光測距装置において、
     前記信号重畳部は、変調部を有し、
     前記制御部は、前記重畳信号を生成して、前記重畳信号を前記変調部へ出力し、
     前記変調部は、前記重畳信号を、前記第1の信号に重畳し、重畳後の第2の信号を、前記比較器へ出力し、
     前記比較器は、前記第2の信号と、前記参照信号との比較の結果、前記停止信号を出力する、
     光測距装置。
    The optical distance measuring device according to claim 1,
    The signal superimposing unit has a modulation unit,
    The control unit generates the superimposed signal and outputs the superimposed signal to the modulation unit.
    The modulation unit superimposes the superimposed signal on the first signal, and outputs the second signal after superimposition to the comparator,
    The comparator outputs the stop signal as a result of the comparison between the second signal and the reference signal.
    Optical distance measuring device.
  5.  請求項1記載の光測距装置において、
     前記信号重畳部は、重畳用光源、及び光量調整部を有し、
     前記制御部は、前記重畳用光源を制御し、
     前記重畳用光源は、重畳用の光を出射し、
     前記光量調整部は、前記重畳用光源から出射された前記光の光量及び前記センサに入射される光量を調整して、前記重畳信号に相当する、所定の光量を持つ重畳光を生成し、
     前記センサは、前記反射光と共に前記重畳光を入射し、前記受光信号として出力する、
     光測距装置。
    The optical distance measuring device according to claim 1,
    The signal superimposing unit includes a superimposing light source and a light amount adjusting unit,
    The control unit controls the superimposing light source,
    The superimposing light source emits superimposing light,
    The light amount adjustment unit adjusts the light amount of the light emitted from the light source for superimposition and the light amount incident on the sensor, and generates superimposed light having a predetermined light amount corresponding to the superposition signal,
    The sensor enters the superimposed light together with the reflected light and outputs the received light signal.
    Optical distance measuring device.
  6.  請求項1記載の光測距装置において、
     前記信号重畳部は、重畳用光源を有し、
     前記制御部は、前記重畳用光源を制御し、
     前記重畳用光源は、前記重畳信号に相当する、所定の光量を持つ重畳光を出射し、
     前記センサは、前記反射光と共に前記重畳光を入射し、前記受光信号として出力する、
     光測距装置。
    The optical distance measuring device according to claim 1,
    The signal superimposing unit has a superimposing light source,
    The control unit controls the superimposing light source,
    The superimposing light source emits superimposing light having a predetermined light amount corresponding to the superimposing signal,
    The sensor enters the superimposed light together with the reflected light and outputs the received light signal.
    Optical distance measuring device.
  7.  請求項1記載の光測距装置において、
     前記信号重畳部は、光量調整部を有し、
     前記光量調整部は、前記光源からの前記出射光に伴って出射された光の光量を調整して、前記重畳信号に相当する、所定の光量を持つ重畳光を生成し、
     前記センサは、前記反射光と共に前記重畳光を入射し、前記受光信号として出力する、
     光測距装置。
    The optical distance measuring device according to claim 1,
    The signal superimposing unit has a light amount adjusting unit,
    The light amount adjusting unit adjusts the light amount of light emitted along with the emitted light from the light source, and generates superimposed light having a predetermined light amount corresponding to the superimposed signal,
    The sensor enters the superimposed light together with the reflected light and outputs the received light signal.
    Optical distance measuring device.
  8.  請求項4記載の光測距装置において、
     前記変調部は、交流結合の容量または加算器を用いて構成される、
     光測距装置。
    The optical distance measuring device according to claim 4.
    The modulation unit is configured using an AC coupling capacitor or an adder.
    Optical distance measuring device.
  9.  請求項4記載の光測距装置において、
     前記変調部は、加算用増幅器と可変抵抗とを用いて構成され、
     前記制御部は、前記可変抵抗の抵抗値を制御することにより、前記重畳信号の振幅の電圧レベルを調整する、
     光測距装置。
    The optical distance measuring device according to claim 4.
    The modulation unit is configured using a summing amplifier and a variable resistor,
    The controller adjusts the voltage level of the amplitude of the superimposed signal by controlling a resistance value of the variable resistor;
    Optical distance measuring device.
  10.  請求項4記載の光測距装置において、
     前記制御部は、
     前記センサの前記受光信号のノイズレベルを含む電圧レベルを検出するレベル検出器と、
     前記レベル検出器で検出した前記電圧レベルに応じて、前記重畳信号の振幅の電圧レベルを調整する重畳信号制御器と、
     を含む、
     光測距装置。
    The optical distance measuring device according to claim 4.
    The controller is
    A level detector for detecting a voltage level including a noise level of the light reception signal of the sensor;
    A superimposed signal controller that adjusts the voltage level of the amplitude of the superimposed signal according to the voltage level detected by the level detector;
    including,
    Optical distance measuring device.
  11.  請求項10記載の光測距装置において、
     前記制御部は、前記センサの前記受光信号の前記ノイズレベルを検出する第1の期間と、前記距離の測定を行う第2の期間と、を制御し、前記第1の期間で検出した前記ノイズレベルに応じて、前記重畳信号の振幅の電圧レベルを調整する、
     光測距装置。
    The optical distance measuring device according to claim 10.
    The control unit controls a first period in which the noise level of the light reception signal of the sensor is detected and a second period in which the distance is measured, and the noise detected in the first period. Adjusting the voltage level of the amplitude of the superimposed signal according to the level;
    Optical distance measuring device.
  12.  請求項1記載の光測距装置において、
     前記センサと前記比較器との間には、ゼロクロス検出を実現するための直列接続の容量が設けられている、
     光測距装置。
    The optical distance measuring device according to claim 1,
    Between the sensor and the comparator, a series-connected capacity for realizing zero-cross detection is provided,
    Optical distance measuring device.
  13.  光測距装置を備える映像投写装置であって、
     前記光測距装置は、
     開始信号を生成する制御部と、
     前記開始信号に基づいて光を出射する光源と、
     前記光源からの出射光による対象物からの反射光を入射して受光信号として出力するセンサと、
     前記受光信号に基づいた第1の信号と、参照信号との比較の結果、停止信号を出力する比較器と、
     前記開始信号と前記停止信号との時間差を計測時間として出力する時間計測器と、
     前記計測時間に基づいて、前記反射光を受光している受光状態の計測時間を取り出し、当該受光状態の計測時間を用いて飛行時間を算出し、当該飛行時間に基づいて前記対象物との距離を算出し、当該距離に基づいて前記対象物の位置を算出する、算出部と、
     前記受光信号に重畳信号を重畳する信号重畳部と、
     前記算出した位置を含む位置情報を、前記映像投写装置に送信する通信部と、
     を備え、
     前記重畳信号は、前記出射光の周期よりも小さい周期を持つ周期的信号であり、
     前記映像投写装置は、
     映像データに基づいて映像を映像画面に投写する映像投写部と、
     前記映像画面の付近での前記対象物の位置に応じて、前記光測距装置から前記位置情報を受信する通信部と、
     を備え、
     前記位置情報を用いて、前記映像投写部の映像投写、または当該映像投写装置に接続される外部機器を制御する、
     映像投写装置。
    An image projection device including an optical distance measuring device,
    The optical distance measuring device is
    A control unit for generating a start signal;
    A light source that emits light based on the start signal;
    A sensor that receives reflected light from an object by light emitted from the light source and outputs it as a light reception signal;
    A comparator that outputs a stop signal as a result of comparison between the first signal based on the received light signal and a reference signal;
    A time measuring device that outputs a time difference between the start signal and the stop signal as a measurement time;
    Based on the measurement time, the measurement time of the light receiving state in which the reflected light is received is taken out, the flight time is calculated using the measurement time of the light reception state, and the distance to the object based on the flight time And calculating a position of the object based on the distance;
    A signal superimposing unit that superimposes a superimposition signal on the light reception signal;
    A communication unit that transmits position information including the calculated position to the image projection device;
    With
    The superimposed signal is a periodic signal having a period smaller than the period of the emitted light,
    The video projector is
    An image projection unit for projecting an image on an image screen based on image data;
    A communication unit that receives the position information from the optical distance measuring device according to the position of the object in the vicinity of the video screen;
    With
    Using the position information to control the image projection of the image projection unit or an external device connected to the image projection device;
    Video projection device.
  14.  請求項13記載の映像投写装置において、
     前記光測距装置は、前記映像画面に対して前記光を走査する走査手段を備え、
     前記制御部は、前記光の走査角度を用いて、前記対象物の位置を算出する、
     映像投写装置。
    The image projection apparatus according to claim 13, wherein
    The optical distance measuring device includes scanning means for scanning the light on the video screen,
    The control unit calculates the position of the object using the scanning angle of the light,
    Video projection device.
  15.  請求項13記載の映像投写装置において、
     前記位置情報を用いて、前記映像画面での前記対象物の動きに応じた利用者の動作を判断して、動作情報を出力する動作判断部と、
     前記動作情報を用いて、所定の動作に関係付けられた所定の制御操作を判断して、制御操作情報を出力する操作制御部と、
     を備え、
     前記制御操作情報に応じて、前記映像投写または前記外部機器を制御する、
     映像投写装置。
    The image projection apparatus according to claim 13, wherein
    Using the position information, determining a user's operation according to the movement of the object on the video screen, and outputting an operation information;
    An operation control unit that determines a predetermined control operation related to a predetermined operation using the operation information and outputs the control operation information;
    With
    Controlling the image projection or the external device according to the control operation information;
    Video projection device.
PCT/JP2015/078145 2015-10-05 2015-10-05 Optical ranging device and image projection apparatus WO2017060943A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078145 WO2017060943A1 (en) 2015-10-05 2015-10-05 Optical ranging device and image projection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078145 WO2017060943A1 (en) 2015-10-05 2015-10-05 Optical ranging device and image projection apparatus

Publications (1)

Publication Number Publication Date
WO2017060943A1 true WO2017060943A1 (en) 2017-04-13

Family

ID=58488260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078145 WO2017060943A1 (en) 2015-10-05 2015-10-05 Optical ranging device and image projection apparatus

Country Status (1)

Country Link
WO (1) WO2017060943A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729723A (en) * 2017-08-28 2019-05-07 索尼半导体解决方案公司 Range unit and distance measuring method
CN110162225A (en) * 2019-05-05 2019-08-23 青岛小鸟看看科技有限公司 A kind of projection lamp and the touch control method for projection lamp
CN111033307A (en) * 2017-09-08 2020-04-17 欧姆龙株式会社 Sensor device and measurement method
JP6973821B1 (en) * 2020-06-24 2021-12-01 株式会社エヌエステイー Distance measuring device and distance measuring method using it
CN113796853A (en) * 2020-06-16 2021-12-17 广州印芯半导体技术有限公司 Optical image comparison system and comparison method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184739A (en) * 1995-08-25 1997-07-15 Aisin Seiki Co Ltd Pulse detection device and method
EP1972961A2 (en) * 2007-03-22 2008-09-24 Sick Ag Optoelectronic sensor and method for measuring distance or a change in distance
JP2014202610A (en) * 2013-04-05 2014-10-27 日立コンシューマエレクトロニクス株式会社 Optical ranging device
WO2015045125A1 (en) * 2013-09-27 2015-04-02 日立マクセル株式会社 Video projection device
JP2015125670A (en) * 2013-12-27 2015-07-06 日立マクセル株式会社 Image projector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09184739A (en) * 1995-08-25 1997-07-15 Aisin Seiki Co Ltd Pulse detection device and method
EP1972961A2 (en) * 2007-03-22 2008-09-24 Sick Ag Optoelectronic sensor and method for measuring distance or a change in distance
JP2014202610A (en) * 2013-04-05 2014-10-27 日立コンシューマエレクトロニクス株式会社 Optical ranging device
WO2015045125A1 (en) * 2013-09-27 2015-04-02 日立マクセル株式会社 Video projection device
JP2015125670A (en) * 2013-12-27 2015-07-06 日立マクセル株式会社 Image projector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109729723A (en) * 2017-08-28 2019-05-07 索尼半导体解决方案公司 Range unit and distance measuring method
CN109729723B (en) * 2017-08-28 2024-02-20 索尼半导体解决方案公司 Distance measuring device and distance measuring method
CN111033307A (en) * 2017-09-08 2020-04-17 欧姆龙株式会社 Sensor device and measurement method
CN111033307B (en) * 2017-09-08 2023-09-15 欧姆龙株式会社 Sensor device and measurement method
CN110162225A (en) * 2019-05-05 2019-08-23 青岛小鸟看看科技有限公司 A kind of projection lamp and the touch control method for projection lamp
CN113796853A (en) * 2020-06-16 2021-12-17 广州印芯半导体技术有限公司 Optical image comparison system and comparison method thereof
JP6973821B1 (en) * 2020-06-24 2021-12-01 株式会社エヌエステイー Distance measuring device and distance measuring method using it
JP2022006248A (en) * 2020-06-24 2022-01-13 株式会社エヌエステイー Distance measuring device and distance measuring method using the same

Similar Documents

Publication Publication Date Title
WO2017060943A1 (en) Optical ranging device and image projection apparatus
CA2862446C (en) Interactive input system and method
US20110242054A1 (en) Projection system with touch-sensitive projection image
JP5703644B2 (en) Optical detection system, electronic equipment
US20080291179A1 (en) Light Pen Input System and Method, Particularly for Use with Large Area Non-Crt Displays
TWI536226B (en) Optical touch device and imaging processing method for optical touch device
US20140353467A1 (en) Object location determination
US8674286B2 (en) Optical position detection device and apparatus with position detection function
KR101375056B1 (en) Touch screen system for recognizing coordinates of infrared pen
TWI479391B (en) Optical touch control device and method for determining coordinate thereof
WO2017212601A1 (en) Optical distance-measurement device and image projection device provided with same
US20150185321A1 (en) Image Display Device
TWI454653B (en) Systems and methods for determining three-dimensional absolute coordinates of objects
KR101359731B1 (en) System for recognizing touch-point using mirror
TWI521413B (en) Optical touch screen
US9652081B2 (en) Optical touch system, method of touch detection, and computer program product
JP3805316B2 (en) Optical scanning touch panel
WO2017013186A1 (en) Apparatus and method for detecting gestures on a touchpad
JP5672018B2 (en) Position detection system, display system, and information processing system
US9239635B2 (en) Method and apparatus for graphical user interface interaction on a domed display
JP2000089903A (en) Optical scanning type touch panel
Matsubara et al. Touch detection method for non-display surface using multiple shadows of finger
JPH11203035A (en) Optical scanning touch panel
US20170052642A1 (en) Information processing apparatus, information processing method, and storage medium
KR20170114443A (en) Touch position recognition system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP