WO2017056830A1 - Fluorescence detection device - Google Patents

Fluorescence detection device Download PDF

Info

Publication number
WO2017056830A1
WO2017056830A1 PCT/JP2016/075416 JP2016075416W WO2017056830A1 WO 2017056830 A1 WO2017056830 A1 WO 2017056830A1 JP 2016075416 W JP2016075416 W JP 2016075416W WO 2017056830 A1 WO2017056830 A1 WO 2017056830A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescence detection
fluorescence
unit
control unit
image
Prior art date
Application number
PCT/JP2016/075416
Other languages
French (fr)
Japanese (ja)
Inventor
数也 石原
潤哉 大西
満 名倉
信義 粟屋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2017056830A1 publication Critical patent/WO2017056830A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the present invention relates to a fluorescence detection device that detects fluorescence emitted from a substance.
  • the fluorescence detection device can detect the fluorescence emitted by the substance by irradiating the substance with excitation light such as ultraviolet light, so that the detection result can be confirmed as a sanitary state that was not visible under visible light.
  • fluorescent detection devices can be brought into various places and environments inside and outside of environmental control equipment such as air conditioners and air purifiers, and inside and outside watering places such as toilets, kitchens, and bathrooms. The emitted fluorescence can be detected.
  • security, etc. can be obtained by detecting the fluorescent substance contained in a foodstuff with a fluorescence detection apparatus.
  • a method for detecting a fluorescent material there is known a method of irradiating ultraviolet light emitted from an ultraviolet lamp such as black light or a light emitting diode (hereinafter referred to as ultraviolet LED) that emits ultraviolet light, and thereby searching for the fluorescent material emitting fluorescence by the naked eye.
  • an ultraviolet lamp such as black light or a light emitting diode (hereinafter referred to as ultraviolet LED) that emits ultraviolet light
  • ultraviolet LED a light emitting diode
  • the intensity of the fluorescence emitted from the fluorescent material is weak, it is difficult to find the fluorescence with the naked eye under strong visible light, and it is necessary to suppress the ambient light to determine the presence or absence of fluorescence. For this reason, visible light was shielded or fluorescence was confirmed in a dark room.
  • Fluorescence refers to a phenomenon that absorbs light of a specific wavelength and emits light longer than that wavelength, and the light.
  • the molecule has a plurality of electron configurations and energy states, and the molecule is normally in the ground state S0.
  • the fluorescent molecules when the fluorescent molecules are irradiated with excitation light such as ultraviolet rays, the fluorescent molecules receive the energy of the excitation light and enter, for example, the first electronic excited state S1 (excited singlet state). Since this high energy state is unstable, the energy is released as vibration energy in the non-radiation process IC and reaches the lowest order of the excited singlet state. Furthermore, fluorescence is emitted in the process of transition from the lowest order to the ground state S0.
  • the fluorescence intensity F is a product of the excitation light intensity I 0 , the fluorescent substance quantum yield ⁇ , the fluorescent substance's molecular absorption efficiency ⁇ , and the fluorescent substance's molar concentration C, as represented by the following equation: Is proportional to
  • the fluorescence becomes small.
  • the excitation energy may be converted into its own vibration energy.
  • a flexible functional group such as long-chain alkyl
  • the excitation energy changes to the kinetic energy of the molecule, and the fluorescence intensity decreases.
  • the fluorescence of the fluorescent material becomes weaker at a high concentration. This is due to the interaction between fluorescent molecules, and is thought to be caused by the interaction between excited states or ground state species.
  • the fluorescence emitted as light with respect to the energy to be excited becomes small, the observation of fluorescence under visible light must be performed in an environment that does not include the fluorescence wavelength.
  • the fluorescent material needs to absorb a lot of excitation light.
  • an ultraviolet LED generally used as a portable excitation light source has a weaker fluorescence intensity than a high-power ultraviolet lamp.
  • the naked eye when observing fluorescence with the naked eye, not only the sensitivity decreases due to the bright adaptation of the naked eye in the bright place, but also there is a number of overlapping light such as reflection of ambient light, making it difficult to identify only the fluorescence. .
  • Patent Document 1 discloses a freshness identification method that can easily identify freshness of food with the naked eye by irradiating food with ultraviolet rays.
  • UV light is irradiated to food from an LED
  • the color developed by the autofluorescence of the food is photographed by the camera
  • the reference data obtained by digitizing the color developed by the autofluorescence of the food which is a pre-photographed reference, and the camera photographed.
  • the freshness of the food is identified by comparing it with the measurement data obtained by digitizing the color image generated by the autofluorescence of the food.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2006-300180 (published on November 2, 2006)”
  • the camera directly receives not only food autofluorescence but also ultraviolet rays emitted from LEDs, and indirectly receives the ultraviolet rays as reflected light. For this reason, the image which image
  • the present invention has been made in view of the above-mentioned problems, and an object thereof is to increase the detection accuracy of fluorescence.
  • a fluorescence detection device includes at least one light source that emits single-wavelength excitation light, and a fluorescent site that emits fluorescence when irradiated with the excitation light. And an excitation light blocking unit that blocks the excitation light from entering the imaging unit.
  • FIG. 1 It is a block diagram which shows the fundamental structure of the fluorescence detection apparatus common to each embodiment which concerns on this invention. It is a block diagram which shows the system configuration
  • (A)-(d) are the images which imaged the fluorescence site
  • FIG. It is a block diagram which shows the system configuration
  • FIG. 10 is a flowchart illustrating a procedure of a fluorescent image coloring process performed by the fluorescence detection device according to the third embodiment. It is a block diagram which shows the system configuration
  • A) is a rear view which shows the external structure of the fluorescence detection apparatus which concerns on Embodiment 4 of this invention,
  • (b) is a front view which shows the external structure of the said fluorescence detection apparatus.
  • FIG. 1 is a block diagram showing a basic configuration of the fluorescence detection apparatus 101.
  • the fluorescence detection apparatus 101 includes an MPU (Micro Processing Unit) 11, a memory unit 12, a communication unit 13, an antenna 14, a position information acquisition unit 15, a display unit 16, and an imaging unit. 17, an optical filter 18, an LED driving unit 19, an LED 20, and a battery 21.
  • the fluorescence detection device 101 irradiates the fluorescence detection target object 100 with the excitation light emitted from the LED 20, and images the fluorescence detection target object 100 with the imaging unit 17, thereby generating the fluorescence emitted from the fluorescent site in the fluorescence detection target object 100. It is a device to detect.
  • MPU Micro Processing Unit
  • the fluorescence detection device 101 irradiates the fluorescence detection target object 100 with the excitation light emitted from the LED 20, and images the fluorescence detection target object 100 with the imaging unit 17, thereby generating the fluorescence emitted from the fluorescent site in the fluorescence detection target object 100. It is a device to detect.
  • the MPU 11 analyzes the imaging data of the fluorescent part obtained by imaging by the imaging unit 17 by executing a control program for fluorescence detection, and detects the presence of a fluorescent substance, the hue of fluorescence, the intensity of fluorescence, and the like. .
  • the fluorescence detection apparatus 101 is integrated with a DSP (Digital Signal Processor) capable of configuring a dedicated processor, an FPGA (Field Programmable Gate Array) capable of configuring a dedicated processing circuit, instead of the MPU 11. May be provided. Thereby, the fluorescence detection apparatus 101 can be provided with a function specialized in the analysis of the imaging data of the fluorescent part for detecting the fluorescence, and the efficiency of the process of detecting the fluorescence can be improved.
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the fluorescence detection apparatus 101 includes the MPU 11 and the memory unit 12 so as to comprehensively control each unit of the fluorescence detection apparatus 101.
  • the memory unit 12 includes various types of memories such as a system memory (main memory), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the memory unit 12 includes a control program for controlling each unit of the fluorescence detection apparatus 101, imaging data obtained by the imaging unit 17 imaging the fluorescence detection target 100, and analysis data obtained by the MPU 11 analyzing the imaging data. Memorize etc.
  • the communication unit 13 modulates an input signal (baseband signal or the like) into an RF signal and outputs the RF signal to the antenna 14 and receives to demodulate the RF signal input from the antenna 14 into an output signal (baseband signal or the like). Circuit. Since the fluorescence detection apparatus 101 includes the communication unit 13 and the antenna 14, it can wirelessly transmit information about the detected fluorescence (fluorescence detection information).
  • the position information acquisition unit 15 acquires position information of the fluorescence detection apparatus 101 using a positioning system such as GPS (Global Positioning System), GNSS (Global Navigation Satellite System), WLAN (Wireless Local Area Network), or the like. Since the fluorescence detection apparatus 101 includes the position information acquisition unit 15, the acquired position information can be added to the fluorescence detection information to be transmitted.
  • a positioning system such as GPS (Global Positioning System), GNSS (Global Navigation Satellite System), WLAN (Wireless Local Area Network), or the like. Since the fluorescence detection apparatus 101 includes the position information acquisition unit 15, the acquired position information can be added to the fluorescence detection information to be transmitted.
  • the display unit 16 is a device that displays an image based on the image data processed by the MPU 11.
  • a flat panel display such as a liquid crystal panel or an organic EL (electro-luminescence) panel is used.
  • the fluorescence detection apparatus 101 can display an image of the fluorescence detection target 100 captured by the imaging unit 17 by including the display unit 16.
  • the display unit 16 may include a touch screen so that an input operation on the display surface of the display unit 16 can be performed.
  • the image of the fluorescence detection target object 100 can be output as a printed matter in addition to being displayed on the display unit 16.
  • the fluorescence detection apparatus 101 may have a printing function, or may be configured to transmit a printing signal to an external printing apparatus.
  • the imaging unit 17 is a digital camera including a lens module, an imaging device, an image processing circuit, and the like, and outputs imaging data obtained by imaging the fluorescence detection target 100.
  • the optical filter 18 (excitation light blocking unit) is a filter that blocks ultraviolet rays, and is attached to the lens of the imaging unit 17.
  • the LED drive unit 19 is a drive circuit that supplies a drive current to the LED 20 based on a control command of the MPU 11, and controls the light output.
  • the LED 20 is a light source that generates excitation light (in particular, ultraviolet light) having a single wavelength that excites the fluorescence detection target 100 so as to generate fluorescence.
  • a light source other than an LED may be employed as the excitation light source, but it is preferable to configure the excitation light source with an LED in consideration of downsizing the fluorescence detection apparatus 101.
  • one LED 20 is provided, a plurality of LEDs 20 may be provided.
  • LEDs 20 When a plurality of LEDs 20 are provided, for example, the same type of LEDs are provided, such as a plurality of white LEDs, a plurality of different single-wavelength visible light LEDs, and a plurality of different single-wavelength ultraviolet LEDs.
  • the battery 21 supplies power to a power-supplied unit in the fluorescence detection apparatus 101, that is, the MPU 11, the memory unit 12, the communication unit 13, the position information acquisition unit 15, the display unit 16, the imaging unit 17, and the LED driving unit 19.
  • Embodiment 1 of the present invention will be described below with reference to FIG.
  • symbol is attached
  • FIG. 2 is a block diagram illustrating a system configuration of the fluorescence detection apparatus 101A according to the first embodiment.
  • the fluorescence detection device 101A is configured based on the fluorescence detection device 101 having the configuration shown in FIG. 1, and includes a fluorescence detection control unit 3A shown in FIG.
  • the fluorescence detection control unit 3A is a part that realizes the control function of the MPU 11 described above.
  • the fluorescence detection control unit 3A includes a light source control unit 31, an imaging control unit 32, a data holding control unit 33, and a display control unit 34.
  • the light source control unit 31 outputs a lighting control signal for controlling the lighting of the LED 20 to the LED driving unit 19. Specifically, the light source control unit 31 outputs a lighting control signal so that the LED 20 is lit while the imaging unit 17 is imaging based on an imaging control signal described later from the imaging control unit 32. For this reason, the light source control part 31 outputs a lighting control signal in the period when the imaging control signal mentioned later is active. Further, the light source control unit 31 (flashing control unit) may output a lighting control signal so that the LED 20 flashes while the imaging unit 17 is imaging.
  • the imaging control unit 32 controls the imaging operation of the imaging unit 17. Specifically, the imaging control unit 32 receives an imaging instruction from the user and gives an imaging control signal for performing an imaging operation to the imaging unit 17.
  • the imaging control unit 32 causes the imaging unit 17 to switch between a normal imaging mode for simply imaging, a still image imaging mode for storing still images, and a moving image imaging mode for storing moving images.
  • the imaging control signal includes a normal imaging signal output in the normal imaging mode, a still image imaging signal output in the still image imaging mode, and a moving image imaging signal output in the moving image imaging mode.
  • the imaging control unit 32 gives the imaging data output from the imaging unit 17 in the normal imaging mode to the display control unit 34, and holds the imaging data output from the imaging unit 17 in the still image imaging mode and the moving image imaging mode. It passes to the control unit 33.
  • the data holding control unit 33 stores the imaging data received from the imaging control unit 32 in the data holding unit 22 and reads the stored imaging data from the data holding unit 22.
  • the data holding unit 22 is configured in the memory unit 12 in order to store imaging data.
  • the display control unit 34 controls the display operation of the display unit 16. Specifically, the display control unit 34 obtains image data (imaging data) of an image to be displayed from the imaging control unit 32 or the data holding control unit 33 and provides the display unit 16 with various image data for display. A control signal is given to the display unit 16.
  • image data imaging data
  • a control signal is given to the display unit 16.
  • Fluorescence detection by the fluorescence detection apparatus 101A An operation of detecting the fluorescence of the fluorescence detection target 100 by the fluorescence detection apparatus 101A configured as described above will be described.
  • an imaging control signal is given from the imaging control unit 32 to the imaging unit 17.
  • a lighting control signal is given from the light source control unit 31 to the LED drive unit 19
  • the LED 20 is driven by the LED drive unit 19 to emit ultraviolet rays as excitation light.
  • the imaging unit 17 captures an image of the fluorescence detection target 100 based on the imaging control signal, and outputs imaging data of the captured image to the imaging control unit 32.
  • the display control unit 34 causes the display unit 16 to display an image of the fluorescence detection target object 100 by providing the display unit 16 with imaging data acquired via the imaging control unit 32.
  • the fluorescent substance present in the fluorescence detection target object 100 absorbs the light energy emitted by the LED 20 to generate specific light. Releases energy as fluorescence.
  • the observation range is displayed on the display part 16 by imaging with the fluorescence detection apparatus 101A by making the fluorescence site
  • the imaging control unit 32 gives imaging data to the display control unit 34.
  • the display unit 16 displays an image of the fluorescence detection target object 100 based on the imaging data given from the display control unit 34. Thereby, the fluorescence site
  • the image capturing control unit 32 provides the image capturing data to the data holding control unit 33.
  • the data holding unit 22 stores the imaging data given from the data holding control unit 33.
  • the data holding control unit 33 reads the imaging data from the data holding unit 22 and gives it to the display control unit 34.
  • the display unit 16 displays an image of the fluorescence detection target 100 based on the imaging data from the display control unit 34. Thereby, based on the imaging data imaged in the past, the fluorescence site
  • the fluorescence detection object 100 is moving such as being conveyed by a belt conveyor or the like, in order to follow the movement of the fluorescence detection object 100, the fluorescence detection object 100 is imaged in the moving image capturing mode. Is required.
  • the fluorescence detection apparatus 101A includes the optical filter 18 so that ultraviolet rays can be prevented from entering the imaging unit 17. Therefore, the photographed image is not affected by the ultraviolet rays, and appropriately represents the autofluorescence coloring state of the fluorescence detection object 100. Therefore, the fluorescence detection accuracy can be improved.
  • the fluorescence emitted from the fluorescence detection object 100 is also flashed by intermittently turning on (flashing) the LED 20.
  • the blinking image by the autofluorescence of the fluorescence detection object 100 is displayed on the display unit 16.
  • the blinking image increases the stimulus to the viewer's vision and makes it easy to recognize the fluorescent state of the fluorescent site.
  • the LED 20 as an ultraviolet excitation light source, an LED having a peak wavelength of 365 nm, a half width of 10 nm, and an optical output of 0.5 W was used.
  • the peak wavelength and light output of the LED 20 are not limited to this, and a short wavelength or long wavelength LED 20 may be used depending on the target fluorescent substance.
  • a high output of about 2 W is preferable.
  • the high-power LED 20 is mounted, the light in the visible light wavelength region is increased. Therefore, if the visible light wavelength region overlaps with the fluorescent wavelength region to be observed, it is difficult to distinguish the fluorescent material. For this reason, when using the light of a high output ultraviolet excitation light source, the visible light of the light source was suppressed through a band pass filter, and the fluorescence detection object 100 was irradiated.
  • CMOS Complementary ⁇ Metal ⁇ Oxide Semiconductor
  • the image pickup device is not limited to this, and a CCD image pickup device that is more sensitive to weak light may be used.
  • the display unit 16 is a 5-inch liquid crystal display having a touch screen function.
  • the display unit 16 is not limited to this, and may be a display panel having a size of about 4 inches to 10 inches.
  • the blue color filter mounted on the imaging element transmits near ultraviolet rays, an image obtained by imaging the observation range of the fluorescence detection object 100 is tinged with a strong blue color when receiving light from the LED 20.
  • an ultraviolet cut filter or an ultraviolet cut acrylic made by Fuji Film, or an ultraviolet cut filter made by Asahi Optical was used as an optical filter 18 that shields the excitation light emitted from the LED 20.
  • Embodiment 2 of the present invention will be described below with reference to FIGS. 3 and 4.
  • components having the same functions as those described in the above-mentioned “Overview of the fluorescence detection apparatus 101” and the components described in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
  • Display gamma correction In a normal display, the displayed image brightness is not directly proportional to the signal intensity, and a pixel with a small signal intensity is displayed darker than expected brightness.
  • Luminance (Signal strength) ⁇ ⁇ in the above formula is called a display gamma value ( ⁇ value), and the brightness of the halftone of the display image is determined by the magnitude of this value.
  • 1, in which the signal intensity and the luminance are directly proportional to each other, human vision has a characteristic that it is sensitive to dark colors, so that an image is displayed darkly. For this reason, the ⁇ value differs depending on the display, but is generally set to 1.82 to 2.2.
  • the intensity of light that actually enters the eye is not directly proportional to the perceived brightness, and is expressed as the following equation.
  • the index a is approximately 1/3 to 0.45 and is sensitive to dark colors.
  • FIG. 3 is a block diagram illustrating a system configuration of the fluorescence detection apparatus 101B according to the second embodiment.
  • 4A to 4D are images obtained by imaging the fluorescent site of the fluorescence detection target 100 when the gradation signal supplied to the display unit 16 is changed in the fluorescence detection apparatus 101B.
  • the lower side of each image in FIG. 4 shows the spectral distribution of each gradation of 256 in the image.
  • the fluorescence detection device 101B is configured based on the fluorescence detection device 101 having the configuration shown in FIG. 1, and includes a fluorescence detection control unit 3B shown in FIG.
  • the fluorescence detection control unit 3B is a part that realizes the control function of the MPU 11 described above.
  • the fluorescence detection control unit 3B includes a light source control unit 31, an imaging control unit 32, and a data holding control unit 33, similarly to the fluorescence detection control unit 3A of the first embodiment. Further, the fluorescence detection control unit 3B includes a display control unit 34B instead of the display control unit 34 of the fluorescence detection control unit 3A, and further includes a lookup table 35 (indicated by “LUT” in the figure). .
  • the display control unit 34B (luminance reduction unit) converts the image data to be given to the display unit 16, that is, the gradation signal (luminance value Y) so that the halftone luminance of the image displayed on the display unit 16 is reduced. Convert using an expression.
  • the above conversion expression is an expression when the gradation of the pixel is 8 bits, that is, 256 gradations (lightness of 0 to 255 levels). When the gradation of the pixel is 12 bits, it becomes 4096, so “255” in the above conversion formula becomes “4096”.
  • a plurality of ⁇ values prepared in advance are stored in the lookup table 35.
  • different ⁇ values are prepared according to the type of fluorescence detection object 100 (difference in fluorescence brightness), and each ⁇ value and the type of fluorescent material are set in the lookup table 35. Yes.
  • a value smaller than 1 is set in the range of 0.2 to 0.8, preferably 0.4 to 0.6.
  • the gamma value of the display unit 16 (luminance reduction unit) is set so that the halftone luminance of the displayed image is reduced instead of converting the gradation signal using the conversion formula as described above. May be.
  • the fluorescence emitted from the fluorescent site of the fluorescence detection object 100 is weak, the presence of the fluorescent substance can be easily confirmed. Therefore, the presence / absence of a fluorescent site in the fluorescence detection object 100 can be easily determined.
  • FIG. 5 is a block diagram showing a system configuration of the fluorescence detection apparatus 101C according to the third embodiment of the present invention.
  • the fluorescence detection device 101C is configured based on the fluorescence detection device 101 having the configuration shown in FIG. 1, and includes a fluorescence detection control unit 3C shown in FIG.
  • the fluorescence detection control unit 3C is a part that realizes the control function of the MPU 11 described above.
  • the fluorescence detection control unit 3C includes a light source control unit 31, an imaging control unit 32, and a data holding control unit 33, similarly to the fluorescence detection control unit 3A of the first embodiment.
  • the fluorescence detection control unit 3C includes a display control unit 34C instead of the display control unit 34 of the fluorescence detection control unit 3A, and further includes a hue / lightness / saturation calculation unit (hereinafter referred to as “HSV calculation unit”) 36. And a coloring portion 37.
  • HSV calculation unit hue / lightness / saturation calculation unit
  • the HSV calculation unit 36 (color element calculation unit) has an R value, a G value, and a B value (hereinafter, “RGB value”) for all pixels of the image of the fluorescence detection target 100 represented by the captured data stored in the data holding unit 22.
  • the hue value (H value) and the saturation of the three elements of color, hue (H: Hue), saturation (S: Saturation), and lightness (V: Value), respectively, A degree value (S value) and a lightness value (V value) are calculated. If the HSV calculation unit 36 only needs to be able to detect the fluorescence of the specific fluorescence detection target 100, the H value, the S value, and the V value may not be all necessary. It is only necessary to calculate at least one necessary one (hereinafter, collectively referred to as “HSV value” as appropriate).
  • the coloring unit 37 includes the H value, S value, and V value stored in the database 23 for all the pixels calculated by the HSV calculation unit 36, respectively. It is determined whether or not the value is within a specified range. In addition, if the calculated H value, S value, and V value are values within specified ranges, the coloring unit 37 (coloring display control unit) displays the pixel having the value replaced with a specific color. As such, the display controller 34 is provided with replacement color data representing the color. Further, if the calculated H value, S value, and V value are values outside the specified ranges, the coloring unit 37 displays the RGB value so that the pixel having the value is displayed as the original RGB value. Color data is given to the display control unit 34.
  • the database 23 stores predetermined ranges of the above-described H value, S value, and V value that indicate fluorescent sites, and is configured in the memory unit 12.
  • FIG. 6 is a flowchart showing the procedure of the fluorescent image coloring process by the fluorescence detection apparatus 101C.
  • the LED 20 irradiates the fluorescence detection object 100 with ultraviolet rays, and the imaging unit 17 images the fluorescence detection object 100 (step S1).
  • the HSV calculation unit 36 acquires imaging data from the imaging control unit 32 via the data holding control unit 33 (or directly from the imaging control unit 32), and based on the imaging data, acquires an image of the fluorescence detection target 100. RGB values are extracted for all the constituent pixels (step S2). Further, the HSV calculation unit 36 calculates the HSV value in units of pixels based on the extracted RGB values (step S3).
  • the HSV calculation unit 36 calculates the HSV value using the following formula.
  • MAX that is, max (R, G, B) indicates the maximum value among R value, G value, and B value
  • MIN that is, min (R, G, B)
  • the HSV calculation unit 36 calculates the H1 value as the H value when the B value is the maximum value, calculates the H2 value as the H value when the R value is the maximum value, and when the B value is the maximum value H3 value is calculated as H value, and when MIN and MAX are equal, H value is set as an undefined H0 value.
  • the HSV calculation unit 36 sets the V value to MAX and the S value to a value obtained by subtracting MIN from MAX.
  • the coloring unit 37 determines whether or not the HSV value calculated as described above is within a prescribed range of the HSV value stored in the database 23 (step S4). In this determination, the coloring unit 37 compares each of the calculated HSV values with the upper limit value and the lower limit value of each specified range of the HSV values. In the database 23, numerical ranges of the H value, the S value, and the V value based on a predetermined fluorescence wavelength of a fluorescent substance to be detected are stored as a prescribed range.
  • step S4 when the coloring unit 37 determines that the calculated HSV value is within the specified range (YES), the display control unit 34C causes the display unit 16 to display pixels in a specific single color (step) S5).
  • step S4 the coloring unit 37 identifies the fluorescent material based on the result of determining which of the H value, the S value, and the V value is within the specified range, and the color assigned to the identified fluorescent material. Is provided to the display control unit 34C.
  • step S4 determines in step S4 that the calculated HSV value is outside the specified range (NO)
  • the display control unit 34C causes the display unit 16 to display the pixels with the original RGB values.
  • Step S6 the coloring unit 37 gives the original RGB value data to the display control unit 34C based on the determination result that all of the H value, the S value, and the V value are outside the specified range.
  • step S7 the coloring unit 37 determines whether or not the display has been completed for all the pixels of the captured image. If it is determined in step S7 that the display has been completed for all pixels (YES), the process is completed, and if it is determined that the display has not been completed for all pixels (NO), the process proceeds to step S4. Transition.
  • the fluorescence detection apparatus 101C determines that the pixel whose HSV value is determined to be within the specified range is determined as a fluorescent site (fluorescent substance) and displays the pixel in a specific single color, while the HSV value is within the specified range.
  • a pixel determined to be an outside value is determined to be a non-fluorescent substance and is displayed as an RGB value at the time of imaging.
  • the RGB saturation of an image taken with a camera image sensor decreases with the brightness of the environment. This is because the S / N of the RGB gradation signal obtained from the fluorescence is lowered by overlapping with the RGB gradation signal of the ambient light.
  • the fluorescence detection apparatus 101C calculates the HSV value from the RGB gradation signals of the image captured by the imaging unit 17, and the HSV value is a specified range of the HSV value specific to the fluorescent substance to be detected. It is determined whether the value is within the range. In this way, by using the HSV value that well represents the fluorescence characteristics of the fluorescent material for the determination, it is possible to determine the presence or absence of the fluorescent material by eliminating the influence of the environmental light.
  • the coloring unit 37 displays the image of the image when the RGB value of the picked-up image is 8 bits (256 gradations). It is determined whether the H value and the V value of each pixel satisfy 150 ⁇ H value ⁇ 190 and 230 ⁇ V value ⁇ 256, which are dust specified ranges, respectively. When the coloring unit 37 determines that the H value and the V value of the pixel are values within the above-described specified range, the coloring unit 37 identifies the pixel as a pixel corresponding to dust.
  • the coloring unit 37 determines that the H value and the V value of the pixel are outside the specified range, the coloring unit 37 identifies the pixel as an invalid pixel that is not dust. Pixels determined to correspond to dust are displayed on the display unit 16 in a color corresponding to the dust. Thereby, even if the fluorescence intensity is weak, the presence of dust can be easily recognized.
  • the database 23 stores the HSV values defined ranges of various fluorescent substances such as oil, urine, vitamins, and pollen. Therefore, it is easy to select a fluorescent substance as a detection target. The fluorescent substance can be specified and displayed as an image.
  • fluorescence detection apparatus 101C can be applied to the fluorescence detection apparatus 101B of the second embodiment.
  • Embodiment 4 The following description will discuss Embodiment 4 of the present invention with reference to FIG. 7 and FIG.
  • components having the same functions as the components described in the above-described “Overview of the fluorescence detection apparatus 101” and Embodiments 1 and 3 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 7 is a block diagram showing a system configuration of the fluorescence detection apparatus 101D according to Embodiment 3 of the present invention.
  • FIG. 8A is a rear view showing the external configuration of the fluorescence detection device 101D
  • FIG. 8B is a front view showing the external configuration of the fluorescence detection device 101D.
  • the fluorescence detection device 101D is configured based on the fluorescence detection device 101 having the configuration shown in FIG. 1, and includes a fluorescence detection control unit 3D shown in FIG.
  • the fluorescence detection control unit 3D is a part that realizes the control function of the MPU 11 described above.
  • the fluorescence detection device 101D includes five LEDs 20a to 20e as the plurality of LEDs 20.
  • the LEDs 20a to 20e have different peak wavelengths in the range of 280 nm to 405 nm. Therefore, the LED driving unit 19 is configured to drive these LEDs 20a to 20e.
  • the number of LEDs 20 is not limited to five.
  • LED 20 when the LEDs 20a to 20e are not particularly limited, they are referred to as “LED 20”.
  • the fluorescence detection control unit 3D includes an imaging control unit 32 and a data holding control unit 33, similarly to the fluorescence detection control unit 3A of the first embodiment. Further, the fluorescence detection control unit 3D has a light source control unit 31D instead of the light source control unit 31 of the fluorescence detection control unit 3A. Furthermore, similarly to the fluorescence detection control unit 3C of the third embodiment, the fluorescence detection control unit 3D includes a display control unit 34C, an HSV calculation unit 36, and a coloring unit 37.
  • the light source control unit 31D may light one of the LEDs 20a to 20e (single lamp lighting mode), or may light the LEDs 20a to 20e simultaneously (simultaneous lighting mode). Further, the light source control unit 31D (switching lighting control unit) may switch the LEDs 20a to 20e so as to synchronize with the imaging timing of the imaging unit 17 (switching lighting mode). The light source control unit 31D performs such lighting control during a period in which the above-described imaging control signal from the imaging control unit 32 is active in at least one selected from the above three lighting modes.
  • the fluorescence detection apparatus 101D incorporates the configuration shown in FIGS.
  • the lens 17a of the imaging unit 17 is disposed on one surface of the housing 24, and the LEDs 20a to 20e are disposed so as to surround the lens 17a.
  • the display surface 16a of the display unit 16 is disposed on the other surface of the housing 24 (the surface opposite to the surface on which the lens 17a is provided).
  • the fluorescence detection object 100 is imaged in each of the single lamp lighting mode, the simultaneous lighting mode, and the switching lighting mode by including the plurality of LEDs 20a to 20e. Can do.
  • a specific single LED 20 that can excite the fluorescent substance in the single lamp lighting mode is used.
  • the fluorescence detection object 100 is irradiated with a plurality of excitation lights having different wavelengths in the simultaneous lighting mode. Thereby, the fluorescent substance excited by the excitation light of any wavelength can be fluorescent.
  • the fluorescence detection object 100 includes a plurality of fluorescent sites that emit fluorescence by excitation light having different wavelengths, these fluorescent sites can be detected simultaneously. Furthermore, if the imaging data of the fluorescence detection object 100 corresponding to the emission wavelengths of the LEDs 20a to 20e is acquired and stored in the data holding unit 22 in the switching lighting mode, the fluorescence state of each emission wavelength can be verified. .
  • the fluorescent material is used by using the display unit 16, the database 23, the display control unit 34C, the hue / lightness / saturation calculation unit 36, and the coloring unit 37. Can be displayed in a specific color. Since the detailed operation is the same as that described in the third embodiment, the description thereof is omitted here.
  • the fluorescence detection apparatus 101D can also highlight and display an image of a fluorescent site from a difference between a plurality of imaging data.
  • the light source control unit 31D switches and turns on the LEDs 20a to 20e, and the imaging unit 17 images the fluorescence detection target 100 for each of the lit LEDs 20a to 20e, and the HSV calculation unit 36 (difference calculation unit).
  • the HSV calculation unit 36 difference calculation unit
  • for each imaging data at least one HSV value is calculated, and a difference (numerical fluctuation) in the HSV value between each imaging data (between two imaging data) is calculated.
  • the fluorescent material can be estimated based on the difference in fluorescence (fluorescence color or the like) based on the difference in wavelength of the excitation light.
  • Fats, proteins, amino acids, etc. are important items for examining the quality of meat, fish, dairy products and the like.
  • oleic acid a kind of unsaturated fatty acid
  • Aged meat and fish are said to produce umami when glutamic acid, a kind of amino acid whose protein is degraded, is combined with inosinic acid produced by the degradation of ATP (Adenosine Triphosphate).
  • ATP Adosine Triphosphate
  • zinc protoporphyrin is produced in pork that has been dried and salted, such as aged Parma ham and Jinhua ham, and is said to have a flavor brewing and oxidation inhibiting effect.
  • spectral information is obtained with a hyperspectral camera having a high wavelength resolution in order to extract a weak absorption spectrum, it is limited to applications in an organization having specialized knowledge. It is not easy for individual workers to use a hyperspectral camera in this way at a storage site or a distribution site in the livestock industry.
  • the distribution of oleic acid is derived from the spectrum intensity in a time-division method using a near-infrared camera including a Si light receiving element and LED light sources of 760 nm, 930 nm, and 1040 nm. Yes.
  • FIG. 9 is a block diagram showing a system configuration of the fluorescence detection apparatus 101E according to the fifth embodiment of the present invention.
  • FIG. 10 is a diagram showing a basic configuration for detecting a fluorescent part of beef by the fluorescence detection apparatus 101E.
  • FIG. 11 is a diagram showing the frequency characteristics of the ultraviolet bandpass filter in the basic configuration.
  • FIG. 12 is a diagram showing the frequency characteristics of the ultraviolet cut filter in the above basic configuration.
  • the fluorescence detection device 101E is configured based on the fluorescence detection device 101 having the configuration shown in FIG. 1, and includes a fluorescence detection control unit 3E shown in FIG.
  • the fluorescence detection control unit 3E is a part that realizes the control function of the MPU 11 described above.
  • the fluorescence detection device 101E includes a plurality of LEDs 20a to 20e (here, five). The LEDs 20a to 20e have different peak wavelengths.
  • the fluorescence detection control unit 3E includes an imaging control unit 32, a data holding control unit 33, and a display control unit 34, similarly to the fluorescence detection control unit 3A of the first embodiment. Further, the fluorescence detection control unit 3E includes a light source control unit 31E instead of the light source control unit 31 of the fluorescence detection control unit 3A. Therefore, the LED driving unit 19 is configured to drive these LEDs 20a to 20e.
  • the light source control unit 31E may select and light one of the LEDs 20a to 20e (single lamp lighting mode), or switch on and turn on the LEDs 20a to 20e so as to be synchronized with the imaging timing of the imaging unit 17. (Switching lighting mode).
  • the light source control unit 31E performs such lighting control during a period in which the above-described imaging control signal from the imaging control unit 32 is active in at least one of the two lighting modes described above.
  • the fluorescence detection apparatus 101E adopts the configuration shown in FIG. 10 as the basic configuration of fluorescence detection.
  • the LEDs 20a to 20e as excitation light sources have five types of wavelengths of 365 nm (ultraviolet light), 375 nm (ultraviolet light), 385 nm (ultraviolet light), 395 nm (ultraviolet light), and 405 nm (visible light), respectively.
  • LED of wavelength 365 nm (ultraviolet light), 375 nm (ultraviolet light), 385 nm (ultraviolet light), 395 nm (ultraviolet light), and 405 nm (visible light), respectively.
  • LED of wavelength 365 nm (ultraviolet light), 375 nm (ultraviolet light), 385 nm (ultraviolet light), 395 nm (ultraviolet light), and 405 nm (visible light), respectively.
  • the imaging unit 17 is configured by a single-plate color camera (RGB three colors) or a multispectral camera using filters of a plurality of wavelength bands of three or more colors.
  • the optical filter 18 is composed of an ultraviolet cut filter having a characteristic of blocking a wavelength of 420 nm or less as shown in FIG.
  • the display unit 16 includes a color display.
  • FIG. 13A is an image of beef imaged with ultraviolet rays having different wavelengths by the fluorescence detection device 101E
  • FIG. 13B is an image of beef imaged with white light.
  • A) of FIG. 14 is an image showing a state in which domestic Japanese beef (domestic beef) and imported beef (imported beef) are arranged.
  • FIG. 14 (b) is an image showing a state in which the fat portion of the domestic Japanese beef and imported beef (foreign beef) in FIG.
  • FIG. 14 (a) is fluorescent in blue-green when irradiated with excitation light of 365 nm.
  • C) of FIG. 14 is an image showing a state in which the fat portion is fluorescent in blue-green when the domestic Japanese beef and imported beef of FIG. 14 (a) are irradiated with excitation light of 405 nm.
  • the fluorescence detection device 101E selects light from any one of the LEDs 20a to 20e and turns it on to beef as the fluorescence detection object 100 (Japanese beef shown in FIG. 14 (a)). And the imported beef), and the beef is imaged by the imaging unit 17.
  • the imaging data obtained as a result can be used for later detailed analysis by being stored in the data holding unit 22 as necessary.
  • FIG. 13 (a) it can be seen from the images of beef imaged with light of wavelengths of 365 nm, 375 nm, 385 nm, 395 nm, and 405 nm that the colored state of the fat portion is different.
  • the fat portion emits blue-green fluorescence when irradiated with excitation light of 365 nm.
  • the fat portion of domestic Japanese beef with a high content of unsaturated fatty acids is strongly fluorescent, whereas the imported beef said to have a low content of unsaturated fatty acids.
  • the fat part is weakly fluorescent.
  • the fluorescent color is slightly different between Japanese beef and imported beef. This is because it depends on the oxidation of unsaturated fatty acids or the content of different fatty acids such as oleic acid and linolenic acid in unsaturated fatty acids.
  • the whole red portion is fluorescent in red with an excitation light having a longer wavelength of 405 nm.
  • This fluorescence is attributed to components other than fat, such as proteins and amino acids.
  • a light source including a plurality of single color LEDs 20a to 20e and a color camera a light source having a wide wavelength width such as a black light and a type of fluorescence that cannot be distinguished using a monochrome camera are classified. can do. Therefore, the fluorescence detection object 100 such as meat can be easily specified.
  • the fluorescence detection device 101E utilizes the property that a substance having a double bond such as an unsaturated fatty acid emits fluorescence in the visible light region when irradiated with ultraviolet rays. Further, since the fluorescence emitted from the LEDs 20a to 20e has a wavelength in the Si sensitivity range, an imager having a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) with low cost and high spatial resolution is used. It can be used as a light receiving element.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor
  • control blocks (particularly the fluorescence detection control units 3A to 3E) of the fluorescence detection devices 101A to 101E described above may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like as described above. Alternatively, it may be realized by software using a dedicated processor.
  • the fluorescence detection devices 101A to 101E include a processor that executes instructions of a control program that is software for realizing each function, a ROM in which the control program and various data are recorded so as to be readable by a computer (or CPU), or A storage device (these are referred to as “recording media”), a RAM for developing the program, and the like are provided.
  • the computer or processor
  • the recording medium a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • the fluorescence detection apparatus 101 includes at least one light source (LED 20, 20a to 20e) that emits excitation light having a single wavelength, and a fluorescent site that emits fluorescence when irradiated with the excitation light.
  • An imaging unit 17 that captures an image of the fluorescent detection target 100 including the excitation light and an excitation light blocking unit that blocks the excitation light from entering the imaging unit 17 are provided.
  • the fluorescence detection object 100 emits fluorescence when excited by irradiation of excitation light from the light source, while the imaging unit 17 captures the fluorescence detection object 100 to capture fluorescence.
  • the object 100 is captured as an image. From this image, it is possible to confirm the fluorescence emitting part (fluorescence part) in the fluorescence detection object 100. Further, since the excitation light is blocked by the excitation light blocking unit, the excitation light does not enter the imaging unit 17. Thereby, since the image is not affected by the excitation light, the fluorescent site can be clearly displayed in the captured image even if the fluorescence emitted from the fluorescent site is weak.
  • the fluorescence detection device is the display unit 16 that displays the captured image of the fluorescence detection object 100 and the halftone in the image displayed on the display unit 16 in the above aspect 1. You may further provide the brightness
  • the luminance reduction unit reduces the halftone luminance in the image. Specifically, the luminance reduction unit realizes the reduction of the halftone luminance by the display unit 16 in which the display characteristic (gamma characteristic) is set, or the display unit displays the image. This is realized by correcting the applied gradation signal. Thereby, in the image, the brightness of the halftone is lowered, but the brightness of the fluorescent part having a relatively high brightness is not lowered. Therefore, since the contrast difference between the fluorescent site and the other site in the image becomes large, weak fluorescence can be easily confirmed.
  • the display characteristic gamma characteristic
  • the fluorescence detection device may further include a blinking control unit that controls lighting of the light source so that the light source blinks in the above aspect 1 or 2.
  • the fluorescence detection device is the fluorescence detection device according to any one of the above aspects 1 to 2, wherein at least one of a hue, brightness, and saturation of a pixel constituting the image captured by the imaging unit 17 is determined for each pixel.
  • a color element calculation unit (hue / lightness / saturation calculation unit 36) that is calculated based on a gradation signal, and at least one of the calculated hue, brightness, and saturation is the excitation light to the fluorescence detection target 100.
  • a color element determination unit coloring unit that determines whether or not the fluorescent part that emits fluorescence by the irradiation is within the prescribed ranges of hue, lightness, and saturation calculated in advance.
  • the fluorescent region when it is determined that at least one of the calculated hue, lightness, and saturation is within the prescribed ranges of the hue, lightness, and saturation calculated in advance for the fluorescent region, the fluorescent region is indicated. It is recognized as a thing. Further, if at least one of the calculated hue, brightness, and saturation is not determined to be within the specified range (outside the specified range), it is recognized that it does not indicate the fluorescent site. In this way, by determining the presence or absence of a fluorescent site based on hue, lightness, and saturation, it is more susceptible to environmental light, compared to determining the presence or absence of a fluorescent site based on a gradation signal. Even if the intensity of the light is weak, the presence or absence of a fluorescent site can be easily determined.
  • the fluorescence detection device provides the fluorescence detection device according to aspect 4, wherein the color element determination unit determines that at least one of the calculated hue, brightness, and saturation is within the specified range. You may further provide the coloring display control part (coloring part 37) displayed with a specific color.
  • pixels that are determined to have at least one of hue, lightness, and saturation within the specified range are displayed in a specific color, so that even if the intensity of fluorescence is weak, the pixels corresponding to the fluorescent region are emphasized. Can be displayed. Thereby, a fluorescent site can be easily recognized.
  • a plurality of the light sources may be provided, each of which emits the excitation light having a different single wavelength.
  • the fluorescence detection device may further include a simultaneous lighting control unit (light source control unit 31D) that simultaneously lights a plurality of the light sources in the above aspect 6.
  • a simultaneous lighting control unit (light source control unit 31D) that simultaneously lights a plurality of the light sources in the above aspect 6.
  • the fluorescence detection object 100 when the fluorescence detection object 100 includes a plurality of fluorescent sites that emit fluorescence with excitation light having different wavelengths, the plurality of light sources can be turned on simultaneously so that these fluorescent sites can be detected simultaneously. .
  • a plurality of the light sources are provided, each emitting the excitation light having a different single wavelength, and switching the plurality of light sources.
  • the image of the fluorescence detection object 100 captured by the switching lighting control unit to be lit and the imaging unit 17 imaged with respect to the light source that has been lit at least one of the hue, brightness, and saturation of the pixels constituting the image is set.
  • a color element calculation unit that calculates based on a gradation signal of a pixel and a difference calculation unit that calculates at least one difference between hue, brightness, and saturation calculated for the two images may be further provided.
  • the hue, lightness, and saturation of the pixels constituting the plurality of images of the fluorescence detection target object 100 irradiated with the excitation light having different single wavelengths is calculated, and the two values are calculated.
  • the difference between images is calculated.
  • the light source may emit excitation light that excites the unsaturated fatty acid contained in the fluorescence detection object 100.
  • the fluorescence detection target object 100 contains an unsaturated fatty acid
  • the unsaturated fatty acid which is a fluorescent substance emits fluorescence by irradiation of excitation light, it is food by the fluorescence state, such as the fluorescence color.
  • the presence of unsaturated fatty acid in the fluorescence detection target can be confirmed.
  • Imaging unit 16 Display unit 17 Imaging unit 18 Optical filter (excitation light blocking unit) 20 LED (light source) 20a-20e LED (light source) 31 Light source control unit (flashing control unit) 31D Light source control unit (simultaneous lighting control unit, switching lighting control unit) 34B Display control unit (luminance reduction unit) 36 Hue / lightness / saturation calculator (color element calculator, difference calculator) 37 Coloring section (color element determination section, coloring display control section) DESCRIPTION OF SYMBOLS 100 Fluorescence detection target object 101 Fluorescence detection apparatus 101A-101E Fluorescence detection apparatus

Abstract

To improve fluorescence detection accuracy. A fluorescence detection device (101A) is provided with: an LED (20) that emits single-wavelength excitation light; an image pickup unit (17) that picks up an image of a subject (100) to be subjected to fluorescence detection, said subject including a fluorescent area that emits fluorescence when irradiated with the excitation light; and an optical filter (18) that blocks input of the excitation light to the image pickup unit (17).

Description

蛍光検出装置Fluorescence detection device
 本発明は、物質が発する蛍光を検出する蛍光検出装置に関する。 The present invention relates to a fluorescence detection device that detects fluorescence emitted from a substance.
 蛍光検出装置は、紫外光などの励起光を物質に照射することで物質が発する蛍光を検出することにより、その検出結果を、可視光下では見えなかった衛生状態として確認することができる。例えば、エアコン、空気清浄機などの環境調整機器の内部や、トイレ、台所、浴室などの水廻り箇所の内外における様々な場所や環境に蛍光検出装置を持ち込み、誰でも簡単に、検出対象物質が発する蛍光を検出することができる。また、食品に含まれる蛍光物質を蛍光検出装置によって検出することで、食品の品質、安全性などに関する情報を得ることができる。 The fluorescence detection device can detect the fluorescence emitted by the substance by irradiating the substance with excitation light such as ultraviolet light, so that the detection result can be confirmed as a sanitary state that was not visible under visible light. For example, fluorescent detection devices can be brought into various places and environments inside and outside of environmental control equipment such as air conditioners and air purifiers, and inside and outside watering places such as toilets, kitchens, and bathrooms. The emitted fluorescence can be detected. Moreover, the information regarding the quality of food, safety | security, etc. can be obtained by detecting the fluorescent substance contained in a foodstuff with a fluorescence detection apparatus.
 蛍光物質を検出する方法として、ブラックライトなどの紫外線ランプや紫外線を発する発光ダイオード(以下紫外線LED)が発する紫外線を照射し、それにより蛍光を発した蛍光物質を肉眼で探す方法が知られている。しかしながら、蛍光物質が発する蛍光の強さは弱いので、強い可視光下では肉眼で蛍光を見出すことが困難であり、蛍光の有無を判断するには環境光を抑える必要がある。このため、可視光線を遮蔽したり、暗室下で蛍光を確認したりしていた。 As a method for detecting a fluorescent material, there is known a method of irradiating ultraviolet light emitted from an ultraviolet lamp such as black light or a light emitting diode (hereinafter referred to as ultraviolet LED) that emits ultraviolet light, and thereby searching for the fluorescent material emitting fluorescence by the naked eye. . However, since the intensity of the fluorescence emitted from the fluorescent material is weak, it is difficult to find the fluorescence with the naked eye under strong visible light, and it is necessary to suppress the ambient light to determine the presence or absence of fluorescence. For this reason, visible light was shielded or fluorescence was confirmed in a dark room.
 蛍光は、特定の波長の光を吸収し、その波長より長い光を放出する現象およびその光のことをいう。図15に示すように、分子には、複数の電子配置と、エネルギー状態とが存在し、分子は通常では基底状態S0にある。分子の中でも、蛍光分子は、紫外線等の励起光が照射されると、励起光のエネルギーを受け取り、例えば、第一電子励起状態S1(励起一重項状態)になる。このエネルギーの高い状態は不安定であるため、当該エネルギーが無輻射過程ICで振動エネルギーとして放出され、励起一重項状態の最も低い順位に達する。更に、この最も低い順位から基底状態S0に遷移する過程で蛍光が放出される。この蛍光の強度Fは、下記の式で表されるように、励起光の強さI、蛍光物質の量子収率φ、蛍光物質の分子吸光効率ε、および蛍光物質のモル濃度Cの積に比例する。 Fluorescence refers to a phenomenon that absorbs light of a specific wavelength and emits light longer than that wavelength, and the light. As shown in FIG. 15, the molecule has a plurality of electron configurations and energy states, and the molecule is normally in the ground state S0. Among the molecules, when the fluorescent molecules are irradiated with excitation light such as ultraviolet rays, the fluorescent molecules receive the energy of the excitation light and enter, for example, the first electronic excited state S1 (excited singlet state). Since this high energy state is unstable, the energy is released as vibration energy in the non-radiation process IC and reaches the lowest order of the excited singlet state. Furthermore, fluorescence is emitted in the process of transition from the lowest order to the ground state S0. The fluorescence intensity F is a product of the excitation light intensity I 0 , the fluorescent substance quantum yield φ, the fluorescent substance's molecular absorption efficiency ε, and the fluorescent substance's molar concentration C, as represented by the following equation: Is proportional to
   F ∝I0 ・φ・ε・C
 励起状態にある分子のエネルギーが無輻射過程ICで散逸すれば、蛍光は小さくなる。また、励起エネルギーは、自身の振動エネルギーにも変換されることがある。例えば、蛍光分子にフレキシブルな官能基(長鎖アルキル等)が結合していると、励起エネルギーは分子の運動エネルギーに変化してしまい、蛍光強度は小さくなる。また、蛍光物質は、高濃度になると逆に蛍光が弱くなっていく。これは、蛍光分子同士の相互作用によるものであり、励起状態同士あるいは基底状態種との相互作用が原因であると考えられている。このように、励起するエネルギーに対して光として放出される蛍光は小さくなるため、可視光下での蛍光の観察は、蛍光波長を含まない環境下で行わなければならない。
F ∝I 0・ φ ・ ε ・ C
If the energy of the molecule in the excited state is dissipated in the non-radiation process IC, the fluorescence becomes small. In addition, the excitation energy may be converted into its own vibration energy. For example, when a flexible functional group (such as long-chain alkyl) is bonded to the fluorescent molecule, the excitation energy changes to the kinetic energy of the molecule, and the fluorescence intensity decreases. On the other hand, the fluorescence of the fluorescent material becomes weaker at a high concentration. This is due to the interaction between fluorescent molecules, and is thought to be caused by the interaction between excited states or ground state species. Thus, since the fluorescence emitted as light with respect to the energy to be excited becomes small, the observation of fluorescence under visible light must be performed in an environment that does not include the fluorescence wavelength.
 また、蛍光強度を強くする手段として、蛍光物質が励起光を多く吸収する必要がある。しかしながら、持ち運び可能な励起光源として一般に用いられる紫外線LEDでは、高出力な紫外線ランプに比べて、得られる蛍光強度も弱くなってしまう。また、肉眼で蛍光を観察する際、明所では肉眼の明順応により感度が低下するだけでなく、環境光の反射など幾つもの光が重なって存在するため、蛍光のみを識別するのは難しくなる。 Also, as a means for increasing the fluorescence intensity, the fluorescent material needs to absorb a lot of excitation light. However, an ultraviolet LED generally used as a portable excitation light source has a weaker fluorescence intensity than a high-power ultraviolet lamp. In addition, when observing fluorescence with the naked eye, not only the sensitivity decreases due to the bright adaptation of the naked eye in the bright place, but also there is a number of overlapping light such as reflection of ambient light, making it difficult to identify only the fluorescence. .
 このような問題に対して、特許文献1には、紫外線を食品に照射して肉眼で容易に食品の鮮度識別ができる鮮度識別の手法が開示されている。この手法では、紫外線をLEDから食品に照射し、食品の自家蛍光による発色をカメラで撮影し、予め撮影した基準となる食品の自家蛍光による発色画像を数値化した基準データと、カメラが撮影した食品の自家蛍光による発色画像を数値化した測定データとを比較して食品の鮮度を識別する。 In response to such a problem, Patent Document 1 discloses a freshness identification method that can easily identify freshness of food with the naked eye by irradiating food with ultraviolet rays. In this method, UV light is irradiated to food from an LED, the color developed by the autofluorescence of the food is photographed by the camera, and the reference data obtained by digitizing the color developed by the autofluorescence of the food, which is a pre-photographed reference, and the camera photographed. The freshness of the food is identified by comparing it with the measurement data obtained by digitizing the color image generated by the autofluorescence of the food.
日本国公開特許公報「特開2006-300810号(2006年11月2日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-300180 (published on November 2, 2006)”
 特許文献1に開示された手法では、カメラが、食品の自家蛍光だけでなく、LEDから発された紫外線を直接受光し、また、当該紫外線を反射光としても間接的に受光する。このため、食品を撮影した画像は、紫外線の影響を受けて、食品の本来の自家蛍光の波長スペクトルが適正に現れておらず、蛍光の検出精度が低下するという問題があった。 In the method disclosed in Patent Document 1, the camera directly receives not only food autofluorescence but also ultraviolet rays emitted from LEDs, and indirectly receives the ultraviolet rays as reflected light. For this reason, the image which image | photographed food received the influence of an ultraviolet-ray, and there existed a problem that the wavelength spectrum of the original autofluorescence of food did not appear appropriately, and the detection accuracy of fluorescence fell.
 本発明は、前記の問題点に鑑みてなされたものであり、その目的は、蛍光の検出精度を高めることにある。 The present invention has been made in view of the above-mentioned problems, and an object thereof is to increase the detection accuracy of fluorescence.
 上記の課題を解決するために、本発明の一態様に係る蛍光検出装置は、単一波長の励起光をそれぞれ発する少なくとも1つの光源と、前記励起光が照射されることにより蛍光を発する蛍光部位を含む蛍光検出対象物を撮像する撮像部と、前記撮像部への前記励起光の入射を遮断する励起光遮断部とを備えている。 In order to solve the above-described problem, a fluorescence detection device according to one embodiment of the present invention includes at least one light source that emits single-wavelength excitation light, and a fluorescent site that emits fluorescence when irradiated with the excitation light. And an excitation light blocking unit that blocks the excitation light from entering the imaging unit.
 本発明の一態様によれば、励起光の影響を排除して、蛍光の検出精度を高めることができるという効果を奏する。 According to one aspect of the present invention, there is an effect that the influence of excitation light can be eliminated and the fluorescence detection accuracy can be increased.
本発明に係る各実施形態に共通する蛍光検出装置の基本的な構成を示すブロック図である。It is a block diagram which shows the fundamental structure of the fluorescence detection apparatus common to each embodiment which concerns on this invention. 本発明の実施形態1に係る蛍光検出装置のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the fluorescence detection apparatus which concerns on Embodiment 1 of this invention. 本発明の実施形態2に係る蛍光検出装置のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the fluorescence detection apparatus which concerns on Embodiment 2 of this invention. (a)~(d)は実施形態2に係る蛍光検出装置において表示部に与えられる画像信号の輝度値を変更した場合の蛍光検出対象物の蛍光部位を撮像した画像である。(A)-(d) are the images which imaged the fluorescence site | part of the fluorescence detection target object when the luminance value of the image signal given to a display part is changed in the fluorescence detection apparatus which concerns on Embodiment 2. FIG. 本発明の実施形態3に係る蛍光検出装置のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the fluorescence detection apparatus which concerns on Embodiment 3 of this invention. 実施形態3に係る蛍光検出装置による蛍光画像の着色処理の手順を示すフローチャートである。10 is a flowchart illustrating a procedure of a fluorescent image coloring process performed by the fluorescence detection device according to the third embodiment. 本発明の実施形態4に係る蛍光検出装置のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the fluorescence detection apparatus which concerns on Embodiment 4 of this invention. (a)は本発明の実施形態4に係る蛍光検出装置の外観の構成を示す背面図であり、(b)は当該蛍光検出装置の外観の構成を示す正面図である。(A) is a rear view which shows the external structure of the fluorescence detection apparatus which concerns on Embodiment 4 of this invention, (b) is a front view which shows the external structure of the said fluorescence detection apparatus. 本発明の実施形態5に係る蛍光検出装置のシステム構成を示すブロック図である。It is a block diagram which shows the system configuration | structure of the fluorescence detection apparatus which concerns on Embodiment 5 of this invention. 実施形態5に係る蛍光検出装置による牛肉の蛍光部位を検出する基本構成を示す図である。It is a figure which shows the basic composition which detects the fluorescence site | part of the beef by the fluorescence detection apparatus which concerns on Embodiment 5. FIG. 図10の基本構成における紫外線バンドパスフィルタの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the ultraviolet band pass filter in the basic composition of FIG. 図10の基本構成における紫外線カットフィルタの周波数特性を示す図である。It is a figure which shows the frequency characteristic of the ultraviolet-ray cut filter in the basic composition of FIG. (a)は実施形態5に係る蛍光検出装置によって異なる波長の紫外線で撮像された牛肉の画像であり、(b)は白色光で撮像された牛肉の画像である。(A) is an image of beef imaged with ultraviolet rays having different wavelengths by the fluorescence detection apparatus according to the fifth embodiment, and (b) is an image of beef imaged with white light. (a)は国産和牛肉と輸入牛肉とを並べた状態の画像であり、(b)は実施形態5に係る蛍光検出装置によって撮像された国産和牛肉と輸入牛肉との画像であり、(c)は実施形態5に係る蛍光検出装置によって撮像された国産和牛肉と輸入牛肉との他の画像である。(A) is an image in a state where domestic Japanese beef and imported beef are arranged, (b) is an image of domestic Japanese beef and imported beef imaged by the fluorescence detection apparatus according to Embodiment 5, (c) ) Is another image of domestic Japanese beef and imported beef imaged by the fluorescence detection apparatus according to the fifth embodiment. 蛍光が発生するメカニズムを示す図である。It is a figure which shows the mechanism in which fluorescence generate | occur | produces.
 〔蛍光検出装置101の概要〕
 本発明の各実施形態に共通する蛍光検出装置101の基本的な構成について図1を用いて説明する。図1は、蛍光検出装置101の基本的な構成を示すブロック図である。
[Outline of Fluorescence Detection Device 101]
A basic configuration of the fluorescence detection apparatus 101 common to each embodiment of the present invention will be described with reference to FIG. FIG. 1 is a block diagram showing a basic configuration of the fluorescence detection apparatus 101.
 図1に示すように、蛍光検出装置101は、MPU(Micro Processing Unit)11と、メモリ部12と、通信部13と、アンテナ14と、位置情報取得部15と、表示部16と、撮像部17と、光学フィルタ18と、LED駆動部19と、LED20と、バッテリ21とを備えている。蛍光検出装置101は、LED20が発した励起光を蛍光検出対象物100に照射するとともに、蛍光検出対象物100を撮像部17で撮像することにより、蛍光検出対象物100における蛍光部位が発する蛍光を検出する装置である。MPU11は、蛍光検出のための制御プログラムを実行することにより、撮像部17による撮像で得られた蛍光部位の撮像データを解析して、蛍光物質存在、蛍光の色相、蛍光の強度などを検出する。 As shown in FIG. 1, the fluorescence detection apparatus 101 includes an MPU (Micro Processing Unit) 11, a memory unit 12, a communication unit 13, an antenna 14, a position information acquisition unit 15, a display unit 16, and an imaging unit. 17, an optical filter 18, an LED driving unit 19, an LED 20, and a battery 21. The fluorescence detection device 101 irradiates the fluorescence detection target object 100 with the excitation light emitted from the LED 20, and images the fluorescence detection target object 100 with the imaging unit 17, thereby generating the fluorescence emitted from the fluorescent site in the fluorescence detection target object 100. It is a device to detect. The MPU 11 analyzes the imaging data of the fluorescent part obtained by imaging by the imaging unit 17 by executing a control program for fluorescence detection, and detects the presence of a fluorescent substance, the hue of fluorescence, the intensity of fluorescence, and the like. .
 なお、蛍光検出装置101は、MPU11の代わりに、専用のプロセッサを構成することができるDSP(Digital Signal Processor)、専用の処理回路を構成することができるFPGA(Field Programmable Gate Array)などの集積化された論理回路を備えてもよい。これにより、蛍光検出装置101は、蛍光を検出するための、蛍光部位の撮像データの解析に特化した機能を備えることができ、蛍光を検出する処理の効率を向上させることが可能となる。 The fluorescence detection apparatus 101 is integrated with a DSP (Digital Signal Processor) capable of configuring a dedicated processor, an FPGA (Field Programmable Gate Array) capable of configuring a dedicated processing circuit, instead of the MPU 11. May be provided. Thereby, the fluorescence detection apparatus 101 can be provided with a function specialized in the analysis of the imaging data of the fluorescent part for detecting the fluorescence, and the efficiency of the process of detecting the fluorescence can be improved.
 蛍光検出装置101は、MPU11と、メモリ部12とを備えることにより、蛍光検出装置101の各部を統括的に制御する。メモリ部12は、システムメモリ(メインメモリ)、RAM(Random Access Memory)、ROM(Read Only Memory)などの用途に応じた各種のメモリを含んでいる。メモリ部12には、蛍光検出装置101の各部を制御する制御プログラム、撮像部17が蛍光検出対象物100を撮像して得られた撮像データ、MPU11が撮像データを解析して得られた解析データなどを記憶する。 The fluorescence detection apparatus 101 includes the MPU 11 and the memory unit 12 so as to comprehensively control each unit of the fluorescence detection apparatus 101. The memory unit 12 includes various types of memories such as a system memory (main memory), a RAM (Random Access Memory), and a ROM (Read Only Memory). The memory unit 12 includes a control program for controlling each unit of the fluorescence detection apparatus 101, imaging data obtained by the imaging unit 17 imaging the fluorescence detection target 100, and analysis data obtained by the MPU 11 analyzing the imaging data. Memorize etc.
 通信部13は、入力信号(ベースバンド信号など)をRF信号に変調してアンテナ14に出力する送信回路と、アンテナ14から入力されたRF信号を出力信号(ベースバンド信号など)に復調する受信回路とを含んでいる。蛍光検出装置101は、通信部13およびアンテナ14を備えることにより、検出した蛍光についての情報(蛍光検出情報)を無線送信することができる。 The communication unit 13 modulates an input signal (baseband signal or the like) into an RF signal and outputs the RF signal to the antenna 14 and receives to demodulate the RF signal input from the antenna 14 into an output signal (baseband signal or the like). Circuit. Since the fluorescence detection apparatus 101 includes the communication unit 13 and the antenna 14, it can wirelessly transmit information about the detected fluorescence (fluorescence detection information).
 位置情報取得部15は、GPS(Global Positioning System)、GNSS(Global Navigation Satellite System)、WLAN(Wireless Local Area Network)などの測位システムを用いて、蛍光検出装置101の位置情報を取得する。蛍光検出装置101は、位置情報取得部15を備えることにより、送信する蛍光検出情報に取得した位置情報を添えることができる。 The position information acquisition unit 15 acquires position information of the fluorescence detection apparatus 101 using a positioning system such as GPS (Global Positioning System), GNSS (Global Navigation Satellite System), WLAN (Wireless Local Area Network), or the like. Since the fluorescence detection apparatus 101 includes the position information acquisition unit 15, the acquired position information can be added to the fluorescence detection information to be transmitted.
 表示部16は、MPU11によって処理された画像データに基づく画像を表示する装置である。表示部16としては、液晶パネル、有機EL(electro-luminescence)パネルなどの平板型のディスプレイが用いられる。蛍光検出装置101は、表示部16を備えることにより、撮像部17によって撮像された蛍光検出対象物100の画像などを表示することができる。表示部16は、表示部16の表示面上での入力操作が可能となるようにタッチスクリーンを含んでいてもよい。 The display unit 16 is a device that displays an image based on the image data processed by the MPU 11. As the display unit 16, a flat panel display such as a liquid crystal panel or an organic EL (electro-luminescence) panel is used. The fluorescence detection apparatus 101 can display an image of the fluorescence detection target 100 captured by the imaging unit 17 by including the display unit 16. The display unit 16 may include a touch screen so that an input operation on the display surface of the display unit 16 can be performed.
 なお、蛍光検出対象物100の画像などは、表示部16に表示させる以外に、印刷物として出力することも可能である。このために、蛍光検出装置101は、印刷機能を備えていてもよいし、外部の印刷装置に印刷信号を送信するように構成されていてもよい。 In addition, the image of the fluorescence detection target object 100 can be output as a printed matter in addition to being displayed on the display unit 16. For this purpose, the fluorescence detection apparatus 101 may have a printing function, or may be configured to transmit a printing signal to an external printing apparatus.
 撮像部17は、レンズモジュール、撮像素子、画像処理回路などを含むデジタルカメラであり、蛍光検出対象物100を撮像した撮像データを出力する。光学フィルタ18(励起光遮断部)は、紫外線を遮断するフィルタであり、撮像部17のレンズに装着される。 The imaging unit 17 is a digital camera including a lens module, an imaging device, an image processing circuit, and the like, and outputs imaging data obtained by imaging the fluorescence detection target 100. The optical filter 18 (excitation light blocking unit) is a filter that blocks ultraviolet rays, and is attached to the lens of the imaging unit 17.
 LED駆動部19は、MPU11の制御指令に基づいて、LED20に駆動電流を供給する駆動回路であり、光出力を制御する。LED20は、蛍光を発生するように蛍光検出対象物100を励起させる単一波長の励起光(特に紫外線)を発生する光源である。励起光源としてはLED以外の光源を採用してもよいが、蛍光検出装置101を小型化することを考慮すれば、励起光源をLEDで構成することが好ましい。LED20は、1つ設けられるが、複数設けられていてもよい。LED20を複数設ける場合、例えば、複数の白色LED、複数の異なる単一波長の可視光LED、複数の複数の異なる単一波長の紫外線LEDなどのように同種のLEDを設ける。 The LED drive unit 19 is a drive circuit that supplies a drive current to the LED 20 based on a control command of the MPU 11, and controls the light output. The LED 20 is a light source that generates excitation light (in particular, ultraviolet light) having a single wavelength that excites the fluorescence detection target 100 so as to generate fluorescence. A light source other than an LED may be employed as the excitation light source, but it is preferable to configure the excitation light source with an LED in consideration of downsizing the fluorescence detection apparatus 101. Although one LED 20 is provided, a plurality of LEDs 20 may be provided. When a plurality of LEDs 20 are provided, for example, the same type of LEDs are provided, such as a plurality of white LEDs, a plurality of different single-wavelength visible light LEDs, and a plurality of different single-wavelength ultraviolet LEDs.
 バッテリ21は、蛍光検出装置101における被給電部、すなわち、MPU11、メモリ部12、通信部13、位置情報取得部15、表示部16、撮像部17、およびLED駆動部19に電力を供給する。 The battery 21 supplies power to a power-supplied unit in the fluorescence detection apparatus 101, that is, the MPU 11, the memory unit 12, the communication unit 13, the position information acquisition unit 15, the display unit 16, the imaging unit 17, and the LED driving unit 19.
 〔実施形態1〕
 本発明の実施形態1について図2を用いて説明すれば、以下の通りである。なお、前述の蛍光検出装置101における構成要素と同等の機能を有する構成要素については、同一の符号を付記して、その説明を省略する。
Embodiment 1
Embodiment 1 of the present invention will be described below with reference to FIG. In addition, about the component which has a function equivalent to the component in the above-mentioned fluorescence detection apparatus 101, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
 (蛍光検出装置101Aの構成)
 図2は、実施形態1に係る蛍光検出装置101Aのシステム構成を示すブロック図である。蛍光検出装置101Aは、図1に示す構成を備える蛍光検出装置101を基本として構成されており、図2に示す蛍光検出制御部3Aを備えている。蛍光検出制御部3Aは、前述のMPU11が有する制御機能を実現する部分である。
(Configuration of fluorescence detection apparatus 101A)
FIG. 2 is a block diagram illustrating a system configuration of the fluorescence detection apparatus 101A according to the first embodiment. The fluorescence detection device 101A is configured based on the fluorescence detection device 101 having the configuration shown in FIG. 1, and includes a fluorescence detection control unit 3A shown in FIG. The fluorescence detection control unit 3A is a part that realizes the control function of the MPU 11 described above.
 蛍光検出制御部3Aは、光源制御部31と、撮像制御部32と、データ保持制御部33と、表示制御部34とを有している。 The fluorescence detection control unit 3A includes a light source control unit 31, an imaging control unit 32, a data holding control unit 33, and a display control unit 34.
 光源制御部31は、LED20の点灯を制御するための点灯制御信号をLED駆動部19に出力する。具体的には、光源制御部31は、撮像制御部32からの後述する撮像制御信号に基づいて撮像部17が撮像をしている間にLED20が点灯するように点灯制御信号を出力する。このため、光源制御部31は、後述する撮像制御信号がアクティブである期間に点灯制御信号を出力する。また、光源制御部31(点滅制御部)は、撮像部17が撮像をしている間にLED20が点滅するように点灯制御信号を出力してもよい。 The light source control unit 31 outputs a lighting control signal for controlling the lighting of the LED 20 to the LED driving unit 19. Specifically, the light source control unit 31 outputs a lighting control signal so that the LED 20 is lit while the imaging unit 17 is imaging based on an imaging control signal described later from the imaging control unit 32. For this reason, the light source control part 31 outputs a lighting control signal in the period when the imaging control signal mentioned later is active. Further, the light source control unit 31 (flashing control unit) may output a lighting control signal so that the LED 20 flashes while the imaging unit 17 is imaging.
 撮像制御部32は、撮像部17の撮像動作を制御する。具体的には、撮像制御部32は、ユーザによる撮像指示を受けて、撮像動作をさせるための撮像制御信号を撮像部17に与える。撮像制御部32は、単に撮像するだけの通常撮像モードと、静止画像を保存するための静止画撮像モードと、動画像を保存するための動画撮像モードとを切り替えて撮像部17に撮像させる。撮像制御信号は、通常撮像モードにおいて出力される通常撮像信号と、静止画撮像モードにおいて出力される静止画撮像信号と、動画撮像モードにおいて出力される動画撮像信号とがある。また、撮像制御部32は、通常撮像モードにおいて撮像部17から出力された撮像データを表示制御部34に与え、静止画撮像モードおよび動画撮像モードにおいて撮像部17から出力された撮像データをデータ保持制御部33に渡す。 The imaging control unit 32 controls the imaging operation of the imaging unit 17. Specifically, the imaging control unit 32 receives an imaging instruction from the user and gives an imaging control signal for performing an imaging operation to the imaging unit 17. The imaging control unit 32 causes the imaging unit 17 to switch between a normal imaging mode for simply imaging, a still image imaging mode for storing still images, and a moving image imaging mode for storing moving images. The imaging control signal includes a normal imaging signal output in the normal imaging mode, a still image imaging signal output in the still image imaging mode, and a moving image imaging signal output in the moving image imaging mode. Further, the imaging control unit 32 gives the imaging data output from the imaging unit 17 in the normal imaging mode to the display control unit 34, and holds the imaging data output from the imaging unit 17 in the still image imaging mode and the moving image imaging mode. It passes to the control unit 33.
 データ保持制御部33は、撮像制御部32から受けた撮像データをデータ保持部22に保存したり、保存されている撮像データをデータ保持部22から読み出したりする。データ保持部22は、撮像データを記憶するために、メモリ部12において構成される。 The data holding control unit 33 stores the imaging data received from the imaging control unit 32 in the data holding unit 22 and reads the stored imaging data from the data holding unit 22. The data holding unit 22 is configured in the memory unit 12 in order to store imaging data.
 表示制御部34は、表示部16の表示動作を制御する。具体的には、表示制御部34は、表示される画像の画像データ(撮像データ)を撮像制御部32またはデータ保持制御部33から取得して表示部16に与えるとともに、表示のための各種の制御信号とを表示部16に与える。 The display control unit 34 controls the display operation of the display unit 16. Specifically, the display control unit 34 obtains image data (imaging data) of an image to be displayed from the imaging control unit 32 or the data holding control unit 33 and provides the display unit 16 with various image data for display. A control signal is given to the display unit 16.
 (蛍光検出装置101Aによる蛍光検出)
 上記のように構成される蛍光検出装置101Aによる蛍光検出対象物100の蛍光を検出する動作について説明する。
(Fluorescence detection by the fluorescence detection apparatus 101A)
An operation of detecting the fluorescence of the fluorescence detection target 100 by the fluorescence detection apparatus 101A configured as described above will be described.
 撮像部17のレンズを蛍光検出対象物100に向けた状態で、ユーザにより撮像の操作が行われると、撮像制御部32から撮像部17に撮像制御信号が与えられる。これにより、光源制御部31からLED駆動部19に点灯制御信号が与えられると、LED20は、LED駆動部19によって駆動されて励起光として紫外線を発する。また、撮像部17は、撮像制御信号に基づいて蛍光検出対象物100の画像を撮像し、撮像した画像の撮像データを撮像制御部32に出力する。表示制御部34は、撮像制御部32を介して取得した撮像データを表示部16に与えることにより、蛍光検出対象物100の画像を表示部16に表示させる。 When the user performs an imaging operation with the lens of the imaging unit 17 facing the fluorescence detection target 100, an imaging control signal is given from the imaging control unit 32 to the imaging unit 17. Thereby, when a lighting control signal is given from the light source control unit 31 to the LED drive unit 19, the LED 20 is driven by the LED drive unit 19 to emit ultraviolet rays as excitation light. The imaging unit 17 captures an image of the fluorescence detection target 100 based on the imaging control signal, and outputs imaging data of the captured image to the imaging control unit 32. The display control unit 34 causes the display unit 16 to display an image of the fluorescence detection target object 100 by providing the display unit 16 with imaging data acquired via the imaging control unit 32.
 上記のように、蛍光検出装置101AのLED20が発する紫外線を蛍光検出対象物100に照射することで、蛍光検出対象物100に存在する蛍光物質が、LED20が発する光エネルギーを吸収し、特定の光エネルギーを蛍光として放出する。そして、蛍光検出対象物100における蛍光を発する蛍光部位を観察範囲として蛍光検出装置101Aで撮像することによって、表示部16に観察範囲が表示されるので、観察範囲を肉眼で容易に確認することができる。 As described above, by irradiating the fluorescence detection target object 100 with the ultraviolet rays emitted from the LED 20 of the fluorescence detection apparatus 101A, the fluorescent substance present in the fluorescence detection target object 100 absorbs the light energy emitted by the LED 20 to generate specific light. Releases energy as fluorescence. And since the observation range is displayed on the display part 16 by imaging with the fluorescence detection apparatus 101A by making the fluorescence site | part which emits fluorescence in the fluorescence detection target object 100 into an observation range, it is easy to confirm an observation range with the naked eye. it can.
 通常撮像モードの場合、撮像制御部32は、撮像データを表示制御部34に与える。表示部16は、表示制御部34から与えられた撮像データに基づいて、蛍光検出対象物100の画像を表示する。これにより、表示部16に表示された蛍光検出対象物100における蛍光部位を即時的に確認することができる。 In the normal imaging mode, the imaging control unit 32 gives imaging data to the display control unit 34. The display unit 16 displays an image of the fluorescence detection target object 100 based on the imaging data given from the display control unit 34. Thereby, the fluorescence site | part in the fluorescence detection target object 100 displayed on the display part 16 can be confirmed immediately.
 静止画撮像モードおよび動画撮像モードの場合、撮像制御部32は、撮像データをデータ保持制御部33に与える。これにより、データ保持部22は、データ保持制御部33から与えられた撮像データを保存する。当該撮像データを表示するとき、データ保持制御部33は、データ保持部22から撮像データを読み出して表示制御部34に与える。表示部16は、表示制御部34からの撮像データに基づいて、蛍光検出対象物100の画像を表示する。これにより、過去に撮像した撮像データに基づいて、蛍光検出対象物100における蛍光部位を確認することができる。また、撮像データを保存することにより、撮像データについての各種の解析や撮像データの加工を行うことができる。特に、蛍光検出対象物100が、ベルトコンベヤー等によって搬送されるなどの動いている場合は、蛍光検出対象物100の動きに追従するために、動画撮像モードで蛍光検出対象物100を撮像することが必要となる。 In the still image capturing mode and the moving image capturing mode, the image capturing control unit 32 provides the image capturing data to the data holding control unit 33. As a result, the data holding unit 22 stores the imaging data given from the data holding control unit 33. When displaying the imaging data, the data holding control unit 33 reads the imaging data from the data holding unit 22 and gives it to the display control unit 34. The display unit 16 displays an image of the fluorescence detection target 100 based on the imaging data from the display control unit 34. Thereby, based on the imaging data imaged in the past, the fluorescence site | part in the fluorescence detection target object 100 can be confirmed. Also, by storing the imaging data, various types of analysis and processing of the imaging data can be performed. In particular, when the fluorescence detection object 100 is moving such as being conveyed by a belt conveyor or the like, in order to follow the movement of the fluorescence detection object 100, the fluorescence detection object 100 is imaged in the moving image capturing mode. Is required.
 また、蛍光検出装置101Aは、光学フィルタ18を備えることにより、撮像部17への紫外線の入射を阻止することができる。それゆえ、撮影された画像は、紫外線の影響を受けることがなく、蛍光検出対象物100の自家蛍光の発色状態を適正に表す。したがって、蛍光の検出精度を向上させることができる。 Further, the fluorescence detection apparatus 101A includes the optical filter 18 so that ultraviolet rays can be prevented from entering the imaging unit 17. Therefore, the photographed image is not affected by the ultraviolet rays, and appropriately represents the autofluorescence coloring state of the fluorescence detection object 100. Therefore, the fluorescence detection accuracy can be improved.
 ところで、通常撮像モードおよび動画撮像モードにおいて、LED20を間欠的に点灯させる(点滅させる)ことにより、蛍光検出対象物100から発される蛍光も点滅する。これにより、表示部16には、蛍光検出対象物100の自家蛍光による点滅画像が表示される。点滅画像により、観察者の視覚に対する刺激が大きくなり、容易に蛍光部位の蛍光状態を認識できるようになる。 By the way, in the normal imaging mode and the moving image imaging mode, the fluorescence emitted from the fluorescence detection object 100 is also flashed by intermittently turning on (flashing) the LED 20. Thereby, the blinking image by the autofluorescence of the fluorescence detection object 100 is displayed on the display unit 16. The blinking image increases the stimulus to the viewer's vision and makes it easy to recognize the fluorescent state of the fluorescent site.
 (実施例)
 ここで、上記の蛍光検出装置101Aによる蛍光検出における具体的な実施例について説明する。
(Example)
Here, a specific example in the fluorescence detection by the fluorescence detection apparatus 101A will be described.
 紫外線励起光源としてのLED20には、ピーク波長365nm、半値幅10nm、光出力0.5WのLEDを用いた。LED20のピーク波長および光出力は、これに限定されるものではなく、対象の蛍光物質に応じて、短波長あるいは長波長のLED20を用いてもよい。また、光出力についても、撮影環境が明るい場合は、2W程度の高い出力が好ましい。高出力のLED20を搭載した際には、可視光波長領域の光が増加されるため、可視光波長領域が観察する蛍光の波長領域と重なると、蛍光物質の判別が困難となる。このため、高出力の紫外線励起光源の光を用いる場合は、バンドパスフィルタを通して光源の可視光を抑え、蛍光検出対象物100に照射した。 As the LED 20 as an ultraviolet excitation light source, an LED having a peak wavelength of 365 nm, a half width of 10 nm, and an optical output of 0.5 W was used. The peak wavelength and light output of the LED 20 are not limited to this, and a short wavelength or long wavelength LED 20 may be used depending on the target fluorescent substance. As for the light output, when the shooting environment is bright, a high output of about 2 W is preferable. When the high-power LED 20 is mounted, the light in the visible light wavelength region is increased. Therefore, if the visible light wavelength region overlaps with the fluorescent wavelength region to be observed, it is difficult to distinguish the fluorescent material. For this reason, when using the light of a high output ultraviolet excitation light source, the visible light of the light source was suppressed through a band pass filter, and the fluorescence detection object 100 was irradiated.
 撮像部17の撮像素子としては青色カラーフィルタが装着されたCMOS(Complementary Metal Oxide Semiconductor)撮像素子を用いた。撮像素子は、これに限定されるものではなく、微弱光に対してより高感度なCCD撮像素子を用いてもよい。表示部16にはタッチスクリーン機能を持った5インチ液晶ディスプレイを用いた。表示部16は、これに限定されるものではなく、4インチ~10インチ程度のサイズの表示パネルであればよい。 As the image pickup device of the image pickup unit 17, a CMOS (Complementary 青色 Metal 装着 Oxide Semiconductor) image pickup device equipped with a blue color filter was used. The image pickup device is not limited to this, and a CCD image pickup device that is more sensitive to weak light may be used. The display unit 16 is a 5-inch liquid crystal display having a touch screen function. The display unit 16 is not limited to this, and may be a display panel having a size of about 4 inches to 10 inches.
 また、撮像素子に装着された青色カラーフィルタは近紫外線を透過させるため、蛍光検出対象物100の観察範囲を撮像した画像は、LED20の光を受けると、強い青色を帯びる。このため、LED20が発する励起光を遮光する光学フィルタ18として、フジフィルム製の紫外線カットフィルタあるいは紫外線カットアクリルや、朝日光学製の紫外線カットフィルタを用いた。 In addition, since the blue color filter mounted on the imaging element transmits near ultraviolet rays, an image obtained by imaging the observation range of the fluorescence detection object 100 is tinged with a strong blue color when receiving light from the LED 20. For this reason, as an optical filter 18 that shields the excitation light emitted from the LED 20, an ultraviolet cut filter or an ultraviolet cut acrylic made by Fuji Film, or an ultraviolet cut filter made by Asahi Optical was used.
 〔実施形態2〕
 本発明の実施形態2について、図3および図4に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前述の「蛍光検出装置101の概要」および実施形態1にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Embodiment 2 of the present invention will be described below with reference to FIGS. 3 and 4. For convenience of explanation, components having the same functions as those described in the above-mentioned “Overview of the fluorescence detection apparatus 101” and the components described in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
 (ディスプレイのガンマ補正)
 通常のディスプレイでは、表示される画像輝度が信号強度には正比例せず、信号強度の小さい画素では期待される明るさよりも暗めに表示される。 
(Display gamma correction)
In a normal display, the displayed image brightness is not directly proportional to the signal intensity, and a pixel with a small signal intensity is displayed darker than expected brightness.
   (輝度)=(信号強度)γ
 上式のγはディスプレイのガンマ値(γ値)と呼ばれ、この値の大小によって表示画像の中間調の明るさが決まる。シグナル強度と輝度とが正比例するγ=1の場合、人間の視覚には暗い色に敏感であるという特性があるので、画像が暗く表示される。このため、γ値は、ディスプレイによって異なるが、概ね1.82~2.2に設定される。
(Luminance) = (Signal strength) γ
Γ in the above formula is called a display gamma value (γ value), and the brightness of the halftone of the display image is determined by the magnitude of this value. When γ = 1, in which the signal intensity and the luminance are directly proportional to each other, human vision has a characteristic that it is sensitive to dark colors, so that an image is displayed darkly. For this reason, the γ value differs depending on the display, but is generally set to 1.82 to 2.2.
 しかしながら、ディスプレイのガンマ特性が人間の視覚の特性と近いものであることから、上記のようなガンマ補正を行っても、弱い蛍光はディスプレイ上でも同じく弱い蛍光として表示されてしまう。 However, since the gamma characteristic of the display is close to that of human vision, even if the gamma correction is performed as described above, weak fluorescence is also displayed as weak fluorescence on the display.
 人間の視覚は、実際に目に入る光の強さと、感じる明るさとが正比例しておらず、次の式のように表される。人間の視覚の場合、指数aはおよそ1/3~0.45であり、暗い色に敏感である。 In human vision, the intensity of light that actually enters the eye is not directly proportional to the perceived brightness, and is expressed as the following equation. In the case of human vision, the index a is approximately 1/3 to 0.45 and is sensitive to dark colors.
   (感じる明るさ)=(実際に目に入る光の強さ)
 以上のことから、γ値を1より小さくすることによって、人間の視覚で感じるよりも暗い画像が表示されるが、輝度の高い蛍光部位の画素は、信号強度が低下しても、中間調に比べてはるかに高い信号強度を保っている。蛍光を検出する目的で蛍光検出対象物100を撮像する場合は、蛍光部位以外の情報は有用ではなく、蛍光検出対象物100における蛍光部位の存在有無を判断できることが重要である。
(Feeling brightness) = (Intensity of light that actually enters the eyes) a
From the above, by making the γ value smaller than 1, an image darker than that felt by human vision is displayed. The signal strength is much higher than that. When imaging the fluorescence detection object 100 for the purpose of detecting fluorescence, information other than the fluorescence site is not useful, and it is important that the presence or absence of the fluorescence site in the fluorescence detection object 100 can be determined.
 (蛍光検出装置101Bの構成)
 図3は、実施形態2に係る蛍光検出装置101Bのシステム構成を示すブロック図である。図4の(a)~(d)は蛍光検出装置101Bにおいて表示部16に与えられる階調信号を変更した場合の蛍光検出対象物100の蛍光部位を撮像した画像である。図4の各画像の下側は、画像における256の各階調のスペクトル分布を示している。
(Configuration of fluorescence detection apparatus 101B)
FIG. 3 is a block diagram illustrating a system configuration of the fluorescence detection apparatus 101B according to the second embodiment. 4A to 4D are images obtained by imaging the fluorescent site of the fluorescence detection target 100 when the gradation signal supplied to the display unit 16 is changed in the fluorescence detection apparatus 101B. The lower side of each image in FIG. 4 shows the spectral distribution of each gradation of 256 in the image.
 蛍光検出装置101Bは、図1に示す構成を備える蛍光検出装置101を基本として構成されており、図3に示す蛍光検出制御部3Bを備えている。蛍光検出制御部3Bは、前述のMPU11が有する制御機能を実現する部分である。 The fluorescence detection device 101B is configured based on the fluorescence detection device 101 having the configuration shown in FIG. 1, and includes a fluorescence detection control unit 3B shown in FIG. The fluorescence detection control unit 3B is a part that realizes the control function of the MPU 11 described above.
 蛍光検出制御部3Bは、実施形態1の蛍光検出制御部3Aと同様、光源制御部31と、撮像制御部32と、データ保持制御部33とを有している。また、蛍光検出制御部3Bは、蛍光検出制御部3Aの表示制御部34に代えて表示制御部34Bを有し、さらにルックアップテーブル35(図中「LUT」にて示す)を有している。 The fluorescence detection control unit 3B includes a light source control unit 31, an imaging control unit 32, and a data holding control unit 33, similarly to the fluorescence detection control unit 3A of the first embodiment. Further, the fluorescence detection control unit 3B includes a display control unit 34B instead of the display control unit 34 of the fluorescence detection control unit 3A, and further includes a lookup table 35 (indicated by “LUT” in the figure). .
 表示制御部34B(輝度低下部)は、表示部16に表示される画像の中間調の輝度が低下するように、表示部16に与える画像データすなわち階調信号(輝度値Y)を下記の変換式を用いて変換する。 The display control unit 34B (luminance reduction unit) converts the image data to be given to the display unit 16, that is, the gradation signal (luminance value Y) so that the halftone luminance of the image displayed on the display unit 16 is reduced. Convert using an expression.
   Y=255×(Y/255)(1/γ)
 上記の変換式は、画素の階調が8ビットすなわち256階調(0~255段階の濃淡)である場合の式である。画素の階調が12ビットである場合は4096となるので、上記の変換式における「255」は「4096」となる。
Y = 255 × (Y / 255) (1 / γ)
The above conversion expression is an expression when the gradation of the pixel is 8 bits, that is, 256 gradations (lightness of 0 to 255 levels). When the gradation of the pixel is 12 bits, it becomes 4096, so “255” in the above conversion formula becomes “4096”.
 この変換において、γの値が1であるとき輝度値Yが変わらず、γの値が1より大きいときは輝度値Yが高くなって、画像が明るく表示される一方、γの値が1より小さいときは輝度値Yが低くなって、画像が暗く表示される。図4の(a)に示すように、γ値が1である場合、表示画像が全体に明るいので、蛍光部位と他の部位との輝度差が小さい。図4の(b)に示すように、γ値が0.8である場合、表示画像は、γ値が1である場合と比べて全体に暗くなって、蛍光部位と他の部位との輝度差が大きくなる。図4の(c)に示す、γ値が0.6である場合、その傾向がさらに顕著になる。そして、図4の(d)に示す、γ値が0.4である場合、蛍光部位が明るさを維持しているのに対して、他の部位は黒く表示される。 In this conversion, when the value of γ is 1, the luminance value Y does not change. When the value of γ is greater than 1, the luminance value Y is increased and the image is displayed brightly, whereas the value of γ is greater than 1. When it is small, the luminance value Y is low and the image is displayed darkly. As shown in FIG. 4A, when the γ value is 1, the display image is bright overall, so that the luminance difference between the fluorescent part and other parts is small. As shown in FIG. 4B, when the γ value is 0.8, the display image becomes darker as compared with the case where the γ value is 1, and the luminance between the fluorescent part and other parts is increased. The difference increases. When the γ value shown in FIG. 4C is 0.6, the tendency becomes more remarkable. When the γ value shown in (d) of FIG. 4 is 0.4, the fluorescent part maintains the brightness while the other part is displayed in black.
 γ値はあらかじめ複数用意されたものが、ルックアップテーブル35に格納されている。例えば、γ値は、蛍光検出対象物100の種類(蛍光の輝度の相違)に応じて、異なる値が用意されており、各γ値と蛍光物質の種類とがルックアップテーブル35に設定されている。γ値としては、1より小さい値として、0.2~0.8の範囲に設定され、好ましくは0.4~0.6に設定される。 A plurality of γ values prepared in advance are stored in the lookup table 35. For example, different γ values are prepared according to the type of fluorescence detection object 100 (difference in fluorescence brightness), and each γ value and the type of fluorescent material are set in the lookup table 35. Yes. As the γ value, a value smaller than 1 is set in the range of 0.2 to 0.8, preferably 0.4 to 0.6.
 なお、上記のように変換式を用いて階調信号を変換する代わりに、表示される画像の中間調の輝度が低下するように、表示部16(輝度低下部)のガンマ値が設定されていてもよい。 Note that the gamma value of the display unit 16 (luminance reduction unit) is set so that the halftone luminance of the displayed image is reduced instead of converting the gradation signal using the conversion formula as described above. May be.
 (蛍光検出装置101Bによる蛍光検出)
 上記のように構成される蛍光検出装置101Bによれば、上記の変換式において、γ値が1より小さく設定されているので、表示部16には、蛍光検出対象物100を撮像した画像が全体的に暗く表示される。しかしながら、蛍光検出対象物100における蛍光部位の輝度は、それ以外の輝度より高いため、蛍光部位とそれ以外の部位とのコントラスト差が大きくなり、蛍光部位のみを際立たせて表示することができる。
(Fluorescence detection by the fluorescence detection apparatus 101B)
According to the fluorescence detection apparatus 101B configured as described above, since the γ value is set to be smaller than 1 in the above conversion formula, the entire image obtained by capturing the fluorescence detection object 100 is displayed on the display unit 16. Appears dark. However, since the luminance of the fluorescent part in the fluorescence detection object 100 is higher than the other luminances, the contrast difference between the fluorescent part and the other part becomes large, and only the fluorescent part can be displayed in a conspicuous manner.
 これにより、蛍光検出対象物100の蛍光部位が発する蛍光が弱くても、蛍光物質の存在を容易に確認することができる。したがって、蛍光検出対象物100における蛍光部位の有無を容易に判断することができる。 Thereby, even if the fluorescence emitted from the fluorescent site of the fluorescence detection object 100 is weak, the presence of the fluorescent substance can be easily confirmed. Therefore, the presence / absence of a fluorescent site in the fluorescence detection object 100 can be easily determined.
 〔実施形態3〕
 本発明の実施形態3について、図5および図6に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前述の「蛍光検出装置101の概要」および実施形態1にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
The third embodiment of the present invention will be described below with reference to FIGS. For convenience of explanation, components having the same functions as those described in the above-mentioned “Overview of the fluorescence detection apparatus 101” and the components described in Embodiment 1 are denoted by the same reference numerals, and description thereof is omitted.
 (蛍光検出装置101Cの構成)
 図5は、本発明の実施形態3に係る蛍光検出装置101Cのシステム構成を示すブロック図である。
(Configuration of fluorescence detection apparatus 101C)
FIG. 5 is a block diagram showing a system configuration of the fluorescence detection apparatus 101C according to the third embodiment of the present invention.
 蛍光検出装置101Cは、図1に示す構成を備える蛍光検出装置101を基本として構成されており、図5に示す蛍光検出制御部3Cを備えている。蛍光検出制御部3Cは、前述のMPU11が有する制御機能を実現する部分である。 The fluorescence detection device 101C is configured based on the fluorescence detection device 101 having the configuration shown in FIG. 1, and includes a fluorescence detection control unit 3C shown in FIG. The fluorescence detection control unit 3C is a part that realizes the control function of the MPU 11 described above.
 蛍光検出制御部3Cは、実施形態1の蛍光検出制御部3Aと同様、光源制御部31と、撮像制御部32と、データ保持制御部33とを有している。また、蛍光検出制御部3Cは、蛍光検出制御部3Aの表示制御部34に代えて表示制御部34Cを有し、さらに色相・明度・彩度算出部(以降「HSV算出部」と称する)36と、着色部37とを有している。 The fluorescence detection control unit 3C includes a light source control unit 31, an imaging control unit 32, and a data holding control unit 33, similarly to the fluorescence detection control unit 3A of the first embodiment. The fluorescence detection control unit 3C includes a display control unit 34C instead of the display control unit 34 of the fluorescence detection control unit 3A, and further includes a hue / lightness / saturation calculation unit (hereinafter referred to as “HSV calculation unit”) 36. And a coloring portion 37.
 HSV算出部36(色要素算出部)は、データ保持部22に保存された撮影データが表す蛍光検出対象物100の画像の全画素について、R値、G値、B値(以降「RGB値」と包括して称する)に基づいて、色の三要素である色相(H:Hue)、彩度(S:Saturation)、明度(V:Value)について、それぞれ、色相値(H値)と、彩度値(S値)と、明度値(V値)とを算出する。なお、HSV算出部36は、特定の蛍光検出対象物100の蛍光を検出できればよい場合は、H値、S値およびV値の全てが必要でないこともあるので、H値、S値およびV値(以降、適宜「HSV値」と包括して称する)の内、必要なものを少なくとも1つを算出できればよい。 The HSV calculation unit 36 (color element calculation unit) has an R value, a G value, and a B value (hereinafter, “RGB value”) for all pixels of the image of the fluorescence detection target 100 represented by the captured data stored in the data holding unit 22. The hue value (H value) and the saturation of the three elements of color, hue (H: Hue), saturation (S: Saturation), and lightness (V: Value), respectively, A degree value (S value) and a lightness value (V value) are calculated. If the HSV calculation unit 36 only needs to be able to detect the fluorescence of the specific fluorescence detection target 100, the H value, the S value, and the V value may not be all necessary. It is only necessary to calculate at least one necessary one (hereinafter, collectively referred to as “HSV value” as appropriate).
 着色部37(色要素判定部)は、HSV算出部36によって算出された上記の全画素についてのH値、S値およびV値が、それぞれデータベース23に保存されているH値、S値およびV値の規定範囲内の値であるか否かを判定する。また、着色部37(着色表示制御部)は、算出されたH値、S値およびV値が、それぞれ規定範囲内の値であれば、当該値を有する画素を特定の色に置き替えて表示するように、当該色を表す置換色データを表示制御部34に与える。さらに、着色部37は、算出されたH値、S値およびV値が、それぞれ規定範囲外の値であれば、当該値を有する画素を元のRGB値で表示するように、当該RGB値の色データを表示制御部34に与える。データベース23は、蛍光部位を示す、予め算出された上記のH値、S値およびV値の規定範囲を保存しており、メモリ部12において構成される。 The coloring unit 37 (color element determination unit) includes the H value, S value, and V value stored in the database 23 for all the pixels calculated by the HSV calculation unit 36, respectively. It is determined whether or not the value is within a specified range. In addition, if the calculated H value, S value, and V value are values within specified ranges, the coloring unit 37 (coloring display control unit) displays the pixel having the value replaced with a specific color. As such, the display controller 34 is provided with replacement color data representing the color. Further, if the calculated H value, S value, and V value are values outside the specified ranges, the coloring unit 37 displays the RGB value so that the pixel having the value is displayed as the original RGB value. Color data is given to the display control unit 34. The database 23 stores predetermined ranges of the above-described H value, S value, and V value that indicate fluorescent sites, and is configured in the memory unit 12.
 (蛍光検出装置101Cによる蛍光検出)
 上記のように構成される蛍光検出装置101Cによる蛍光部位の着色表示の動作について、図6のフローチャートを用いて説明する。図6は、蛍光検出装置101Cによる蛍光画像の着色処理の手順を示すフローチャートである。
(Fluorescence detection by the fluorescence detection apparatus 101C)
The operation of colored display of fluorescent sites by the fluorescence detection apparatus 101C configured as described above will be described with reference to the flowchart of FIG. FIG. 6 is a flowchart showing the procedure of the fluorescent image coloring process by the fluorescence detection apparatus 101C.
 図6に示すように、まず、LED20が蛍光検出対象物100に紫外線を照射し、撮像部17が蛍光検出対象物100を撮像する(ステップS1)。次いで、HSV算出部36は、撮像制御部32からデータ保持制御部33を介して(または撮像制御部32から直接)撮像データを取得し、撮像データに基づいて、蛍光検出対象物100の画像を構成する全画素について、RGB値を抽出する(ステップS2)。さらに、HSV算出部36は、抽出したRGB値に基づいてHSV値を画素単位で算出する(ステップS3)。 As shown in FIG. 6, first, the LED 20 irradiates the fluorescence detection object 100 with ultraviolet rays, and the imaging unit 17 images the fluorescence detection object 100 (step S1). Next, the HSV calculation unit 36 acquires imaging data from the imaging control unit 32 via the data holding control unit 33 (or directly from the imaging control unit 32), and based on the imaging data, acquires an image of the fluorescence detection target 100. RGB values are extracted for all the constituent pixels (step S2). Further, the HSV calculation unit 36 calculates the HSV value in units of pixels based on the extracted RGB values (step S3).
 HSV算出部36は、ステップS3において、下記の式を用いてHSV値を算出する。ここで、MAXすなわちmax(R,G,B)は、R値、G値、B値の内の最大値を示し、MINすなわちmin(R,G,B)は、R値、G値、B値の内の最小値を示す。HSV算出部36は、B値が最大値であるときにH値としてH1値を算出し、R値が最大値であるときにH値としてH2値を算出し、B値が最大値であるときにH値としてH3値を算出し、MINとMAXとが等しいときにH値を未定義のH0値とする。また、HSV算出部36は、V値をMAXとし、S値をMAXからMINを減じた値とする。 In step S3, the HSV calculation unit 36 calculates the HSV value using the following formula. Here, MAX, that is, max (R, G, B) indicates the maximum value among R value, G value, and B value, and MIN, that is, min (R, G, B), indicates R value, G value, B Indicates the minimum value. The HSV calculation unit 36 calculates the H1 value as the H value when the B value is the maximum value, calculates the H2 value as the H value when the R value is the maximum value, and when the B value is the maximum value H3 value is calculated as H value, and when MIN and MAX are equal, H value is set as an undefined H0 value. The HSV calculation unit 36 sets the V value to MAX and the S value to a value obtained by subtracting MIN from MAX.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 着色部37は、上記のようにして算出されたHSV値が、データベース23に保存されているHSV値の規定範囲内にあるか否かを画素単位で判定する(ステップS4)。着色部37は、この判定において、算出されたHSV値のそれぞれと、HSV値の各規定範囲の上限値および下限値とを比較する。データベース23には、予め定められた検出対象となる蛍光物質の蛍光波長に基づいたH値、S値およびV値の数値範囲が規定範囲として保存されている。 The coloring unit 37 determines whether or not the HSV value calculated as described above is within a prescribed range of the HSV value stored in the database 23 (step S4). In this determination, the coloring unit 37 compares each of the calculated HSV values with the upper limit value and the lower limit value of each specified range of the HSV values. In the database 23, numerical ranges of the H value, the S value, and the V value based on a predetermined fluorescence wavelength of a fluorescent substance to be detected are stored as a prescribed range.
 ステップS4において、着色部37が、算出されたHSV値が規定範囲内の値であると判定すると(YES)、表示制御部34Cは、表示部16に、特定の単色で画素を表示させる(ステップS5)。着色部37は、ステップS4において、H値、S値およびV値のいずれが規定範囲内の値であるかを判定した結果に基づいて蛍光物質を特定し、特定した蛍光物質に割り当てられた色のデータを表示制御部34Cに与える。 In step S4, when the coloring unit 37 determines that the calculated HSV value is within the specified range (YES), the display control unit 34C causes the display unit 16 to display pixels in a specific single color (step) S5). In step S4, the coloring unit 37 identifies the fluorescent material based on the result of determining which of the H value, the S value, and the V value is within the specified range, and the color assigned to the identified fluorescent material. Is provided to the display control unit 34C.
 一方、ステップS4において、着色部37が、算出されたHSV値が規定範囲外の値であると判定すると(NO)、表示制御部34Cは、表示部16に元のRGB値で画素を表示させる(ステップS6)。着色部37は、ステップS4において、H値、S値およびV値のいずれも規定範囲外の値であると判定した結果に基づいて、元のRGB値のデータを表示制御部34Cに与える。 On the other hand, if the coloring unit 37 determines in step S4 that the calculated HSV value is outside the specified range (NO), the display control unit 34C causes the display unit 16 to display the pixels with the original RGB values. (Step S6). In step S4, the coloring unit 37 gives the original RGB value data to the display control unit 34C based on the determination result that all of the H value, the S value, and the V value are outside the specified range.
 そして、着色部37は、ステップS5およびS6に続いて、撮像された画像の全ての画素について表示が終了したか否かを判定する(ステップS7)。ステップS7において、全ての画素について表示が終了したと判定された場合(YES)、処理が終了し、全ての画素について表示が終了していないと判定された場合(NO)、処理がステップS4に移行する。 Then, following step S5 and S6, the coloring unit 37 determines whether or not the display has been completed for all the pixels of the captured image (step S7). If it is determined in step S7 that the display has been completed for all pixels (YES), the process is completed, and if it is determined that the display has not been completed for all pixels (NO), the process proceeds to step S4. Transition.
 このように、蛍光検出装置101Cは、HSV値が規定範囲内の値であると判定された画素を蛍光部位(蛍光物質)と判定して、特定の単色で表示する一方、HSV値が規定範囲外の値であると判定された画素を非蛍光物質と判定して撮像時のRGB値で表示する。これにより、弱い蛍光であっても、撮像部17から得られた階調信号に基づき、蛍光検出対象物100の画像において、蛍光部位に相当する画素を強調して表示することができる。したがって、観察(撮像)範囲内の蛍光物質の存在を容易に認識することができる。 As described above, the fluorescence detection apparatus 101C determines that the pixel whose HSV value is determined to be within the specified range is determined as a fluorescent site (fluorescent substance) and displays the pixel in a specific single color, while the HSV value is within the specified range. A pixel determined to be an outside value is determined to be a non-fluorescent substance and is displayed as an RGB value at the time of imaging. Thereby, even if it is weak fluorescence, based on the gradation signal obtained from the imaging part 17, the pixel corresponding to a fluorescence site | part can be emphasized and displayed in the image of the fluorescence detection target object 100. FIG. Therefore, the presence of the fluorescent substance within the observation (imaging) range can be easily recognized.
 一般に、カメラの撮像素子で撮影した画像のRGBの彩度は、環境の明るさによって低下する。これは、蛍光から得られるRGBの階調信号のS/Nが、環境光のRGBの階調信号と重なることで低下するからである。 Generally, the RGB saturation of an image taken with a camera image sensor decreases with the brightness of the environment. This is because the S / N of the RGB gradation signal obtained from the fluorescence is lowered by overlapping with the RGB gradation signal of the ambient light.
 しかしながら、本実施形態の蛍光検出装置101Cは、撮像部17で撮像した画像のRGBの階調信号からHSV値を算出し、HSV値が、検出対象となる蛍光物質に特有のHSV値の規定範囲内の値であるか否かを判定する。このように、蛍光物質の蛍光の特徴をよく表すHSV値を判定に用いることにより、環境光の影響を排除して蛍光物質の有無を判定することができる。 However, the fluorescence detection apparatus 101C according to the present embodiment calculates the HSV value from the RGB gradation signals of the image captured by the imaging unit 17, and the HSV value is a specified range of the HSV value specific to the fluorescent substance to be detected. It is determined whether the value is within the range. In this way, by using the HSV value that well represents the fluorescence characteristics of the fluorescent material for the determination, it is possible to determine the presence or absence of the fluorescent material by eliminating the influence of the environmental light.
 例えば、蛍光物質としての埃に対して、365nmにピーク波長を持つ紫外線を照射して撮像すると、着色部37は、撮像した画像のRGB値が8ビット(256階調)である場合、画像の各画素のH値およびV値が、それぞれ埃の規定範囲である150<H値<190および230<V値<256を満たすか否かが判定される。着色部37は、画素のH値およびV値が上記の規定範囲内の値であると判定すると、当該画素を埃に相当する画素と特定する。一方、着色部37は、画素のH値およびV値が上記の規定範囲外の値であると判定すると、当該画素を埃ではない無効画素と特定する。埃に相当すると判定された画素については、埃に応じた色で表示部16に表示される。これにより、蛍光の強度が弱くても、容易に埃の存在を認識することができる。データベース23には、埃以外にも、油、尿、ビタミン、花粉などの各種の蛍光物質の示すHSV値の規定範囲が保存されているので、検出対象としての蛍光物質を選択することにより、容易に蛍光物質を特定して画像として表示することができる。 For example, when dust as a fluorescent material is irradiated with ultraviolet rays having a peak wavelength at 365 nm and picked up, the coloring unit 37 displays the image of the image when the RGB value of the picked-up image is 8 bits (256 gradations). It is determined whether the H value and the V value of each pixel satisfy 150 <H value <190 and 230 <V value <256, which are dust specified ranges, respectively. When the coloring unit 37 determines that the H value and the V value of the pixel are values within the above-described specified range, the coloring unit 37 identifies the pixel as a pixel corresponding to dust. On the other hand, if the coloring unit 37 determines that the H value and the V value of the pixel are outside the specified range, the coloring unit 37 identifies the pixel as an invalid pixel that is not dust. Pixels determined to correspond to dust are displayed on the display unit 16 in a color corresponding to the dust. Thereby, even if the fluorescence intensity is weak, the presence of dust can be easily recognized. In addition to dust, the database 23 stores the HSV values defined ranges of various fluorescent substances such as oil, urine, vitamins, and pollen. Therefore, it is easy to select a fluorescent substance as a detection target. The fluorescent substance can be specified and displayed as an image.
 なお、蛍光検出装置101Cは、実施形態2の蛍光検出装置101Bに適用することが可能である。 Note that the fluorescence detection apparatus 101C can be applied to the fluorescence detection apparatus 101B of the second embodiment.
 〔実施形態4〕
 本発明の実施形態4について、図7および図8に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前述の「蛍光検出装置101の概要」および実施形態1,3にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
The following description will discuss Embodiment 4 of the present invention with reference to FIG. 7 and FIG. For convenience of explanation, components having the same functions as the components described in the above-described “Overview of the fluorescence detection apparatus 101” and Embodiments 1 and 3 are denoted by the same reference numerals, and description thereof is omitted.
 (蛍光検出装置101Dの構成)
 図7は、本発明の実施形態3に係る蛍光検出装置101Dのシステム構成を示すブロック図である。図8の(a)は蛍光検出装置101Dの外観の構成を示す背面図であり、図8の(b)は蛍光検出装置101Dの外観の構成を示す正面図である。
(Configuration of fluorescence detection apparatus 101D)
FIG. 7 is a block diagram showing a system configuration of the fluorescence detection apparatus 101D according to Embodiment 3 of the present invention. FIG. 8A is a rear view showing the external configuration of the fluorescence detection device 101D, and FIG. 8B is a front view showing the external configuration of the fluorescence detection device 101D.
 蛍光検出装置101Dは、図1に示す構成を備える蛍光検出装置101を基本として構成されており、図7に示す蛍光検出制御部3Dを備えている。蛍光検出制御部3Dは、前述のMPU11が有する制御機能を実現する部分である。また、蛍光検出装置101Dは、複数のLED20として5個のLED20a~20eを備えている。LED20a~20eは、280nm~405nmの範囲でそれぞれ異なるピーク波長を有する。このため、LED駆動部19は、これらのLED20a~20eを駆動するように構成されている。ただし、LED20の個数は5個に限定されない。 The fluorescence detection device 101D is configured based on the fluorescence detection device 101 having the configuration shown in FIG. 1, and includes a fluorescence detection control unit 3D shown in FIG. The fluorescence detection control unit 3D is a part that realizes the control function of the MPU 11 described above. In addition, the fluorescence detection device 101D includes five LEDs 20a to 20e as the plurality of LEDs 20. The LEDs 20a to 20e have different peak wavelengths in the range of 280 nm to 405 nm. Therefore, the LED driving unit 19 is configured to drive these LEDs 20a to 20e. However, the number of LEDs 20 is not limited to five.
 なお、本実施形態では、LED20a~20eを特に限定しない場合は、「LED20」と称する。 In the present embodiment, when the LEDs 20a to 20e are not particularly limited, they are referred to as “LED 20”.
 蛍光検出制御部3Dは、実施形態1の蛍光検出制御部3Aと同様、撮像制御部32と、データ保持制御部33とを有している。また、蛍光検出制御部3Dは、蛍光検出制御部3Aの光源制御部31に代えて光源制御部31Dを有している。さらに、蛍光検出制御部3Dは、実施形態3の蛍光検出制御部3Cと同様に、表示制御部34Cと、HSV算出部36と、着色部37とを有している。 The fluorescence detection control unit 3D includes an imaging control unit 32 and a data holding control unit 33, similarly to the fluorescence detection control unit 3A of the first embodiment. Further, the fluorescence detection control unit 3D has a light source control unit 31D instead of the light source control unit 31 of the fluorescence detection control unit 3A. Furthermore, similarly to the fluorescence detection control unit 3C of the third embodiment, the fluorescence detection control unit 3D includes a display control unit 34C, an HSV calculation unit 36, and a coloring unit 37.
 光源制御部31D(同時点灯制御部)は、LED20a~20eの内の1つを点灯させてもよいし(単灯点灯モード)、LED20a~20eを同時に点灯させてもよい(同時点灯モード)。また、光源制御部31D(切替点灯制御部)は、撮像部17の撮像のタイミングと同期するようにLED20a~20eを切り替えて点灯させてもよい(切替点灯モード)。光源制御部31Dは、このような点灯制御を、上記の3つの点灯モードから選択されたいずか1つにおいて、撮像制御部32からの前述の撮像制御信号がアクティブである期間に行う。 The light source control unit 31D (simultaneous lighting control unit) may light one of the LEDs 20a to 20e (single lamp lighting mode), or may light the LEDs 20a to 20e simultaneously (simultaneous lighting mode). Further, the light source control unit 31D (switching lighting control unit) may switch the LEDs 20a to 20e so as to synchronize with the imaging timing of the imaging unit 17 (switching lighting mode). The light source control unit 31D performs such lighting control during a period in which the above-described imaging control signal from the imaging control unit 32 is active in at least one selected from the above three lighting modes.
 図8の(a)および(b)に示すように、蛍光検出装置101Dは、筐体24に図1および図7に示す構成を内蔵している。図8の(a)に示すように、筐体24の一方の面には、撮像部17のレンズ17aが配置され、レンズ17aの周囲を取り囲むように、LED20a~20eが配置されている。また、図8の(b)に示すように、筐体24の他方の面(レンズ17aが設けられた面と反対側の面)には、表示部16の表示面16aが配置されている。 As shown in FIGS. 8A and 8B, the fluorescence detection apparatus 101D incorporates the configuration shown in FIGS. As shown in FIG. 8A, the lens 17a of the imaging unit 17 is disposed on one surface of the housing 24, and the LEDs 20a to 20e are disposed so as to surround the lens 17a. Further, as shown in FIG. 8B, the display surface 16a of the display unit 16 is disposed on the other surface of the housing 24 (the surface opposite to the surface on which the lens 17a is provided).
 (蛍光検出装置101Dによる蛍光検出)
 上記のように構成される蛍光検出装置101Dによれば、複数のLED20a~20eを備えることにより、単灯点灯モード、同時点灯モード、切替点灯モードのそれぞれで、蛍光検出対象物100を撮像することができる。これにより、蛍光検出対象物100の蛍光物質が既知である場合には、単灯点灯モードにおいて当該蛍光物質を励起することができる特定の単一のLED20を用いる。また、蛍光検出対象物100の蛍光物質が既知でない場合には、同時点灯モードにより、複数の異なる波長の励起光を蛍光検出対象物100に照射する。これにより、いずれかの波長の励起光により励起された蛍光物質を蛍光させることができる。それゆえ、蛍光検出対象物100が、異なる波長の励起光によって蛍光を発する複数の蛍光部位を含む場合、これらの蛍光部位を同時に検出することができる。さらに、切替点灯モードにより、LED20a~20eの発光各波長に応じた蛍光検出対象物100の撮像データを取得してデータ保持部22に保存すれば、各発光波長の蛍光状態を検証することができる。
(Fluorescence detection by the fluorescence detection device 101D)
According to the fluorescence detection apparatus 101D configured as described above, the fluorescence detection object 100 is imaged in each of the single lamp lighting mode, the simultaneous lighting mode, and the switching lighting mode by including the plurality of LEDs 20a to 20e. Can do. Thereby, when the fluorescent substance of the fluorescence detection target 100 is known, a specific single LED 20 that can excite the fluorescent substance in the single lamp lighting mode is used. When the fluorescent substance of the fluorescence detection object 100 is not known, the fluorescence detection object 100 is irradiated with a plurality of excitation lights having different wavelengths in the simultaneous lighting mode. Thereby, the fluorescent substance excited by the excitation light of any wavelength can be fluorescent. Therefore, when the fluorescence detection object 100 includes a plurality of fluorescent sites that emit fluorescence by excitation light having different wavelengths, these fluorescent sites can be detected simultaneously. Furthermore, if the imaging data of the fluorescence detection object 100 corresponding to the emission wavelengths of the LEDs 20a to 20e is acquired and stored in the data holding unit 22 in the switching lighting mode, the fluorescence state of each emission wavelength can be verified. .
 また、本実施形態でも、実施形態3の蛍光検出装置101Cと同様、表示部16、データベース23、表示制御部34C、色相・明度・彩度算出部36および着色部37を用いて、蛍光物質を特定の色で表示することができる。その詳細な動作は、実施形態3で説明した通りであるので、ここでは、その説明を省略する。 Also in the present embodiment, similarly to the fluorescence detection apparatus 101C of the third embodiment, the fluorescent material is used by using the display unit 16, the database 23, the display control unit 34C, the hue / lightness / saturation calculation unit 36, and the coloring unit 37. Can be displayed in a specific color. Since the detailed operation is the same as that described in the third embodiment, the description thereof is omitted here.
 また、蛍光検出装置101Dは、複数の撮像データの差分から蛍光部位の画像を強調して表示することも可能である。具体的には、光源制御部31Dが、LED20a~20eを切り替えて点灯させ、撮像部17が、点灯したLED20a~20eごとに蛍光検出対象物100を撮像し、HSV算出部36(差分算出部)が、各撮像データについて、それぞれHSV値の少なくとも1つを算出するとともに、各撮像データ間(2つの撮像データ間)のHSV値の差分(数値変動)を算出する。この差分が予め算出された差分の規定範囲内にあるか否か判定することにより、励起光の波長の相違に基づく蛍光の相違(蛍光色など)に基づいて蛍光物質を推定することができる。 Further, the fluorescence detection apparatus 101D can also highlight and display an image of a fluorescent site from a difference between a plurality of imaging data. Specifically, the light source control unit 31D switches and turns on the LEDs 20a to 20e, and the imaging unit 17 images the fluorescence detection target 100 for each of the lit LEDs 20a to 20e, and the HSV calculation unit 36 (difference calculation unit). However, for each imaging data, at least one HSV value is calculated, and a difference (numerical fluctuation) in the HSV value between each imaging data (between two imaging data) is calculated. By determining whether or not this difference is within the prescribed range of the difference calculated in advance, the fluorescent material can be estimated based on the difference in fluorescence (fluorescence color or the like) based on the difference in wavelength of the excitation light.
 〔実施形態5〕
 本発明の実施形態5について、図9~図14に基づいて説明すれば、以下の通りである。なお、説明の便宜上、前述の「蛍光検出装置101の概要」および実施形態1,3,4にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を省略する。
[Embodiment 5]
The fifth embodiment of the present invention will be described below with reference to FIGS. For convenience of explanation, components having the same functions as those described in the above-mentioned “Overview of the fluorescence detection apparatus 101” and the first, third, and fourth embodiments are denoted by the same reference numerals and description thereof is omitted. To do.
 (蛍光検出の肉類等への適用)
 本実施形態は、本発明を肉、魚、乳製品などの蛍光検出に応用した例である。以下に、肉、魚、乳製品などにおける検出対象物の検出について説明する。
(Application of fluorescence detection to meat)
This embodiment is an example in which the present invention is applied to fluorescence detection of meat, fish, dairy products, and the like. Hereinafter, detection of detection objects in meat, fish, dairy products, and the like will be described.
 〈事例1〉
 肉、魚、乳製品などの品質を調べる上で重要な項目として、脂肪、たんぱく質、アミノ酸などが挙げられる。例えば、和牛の味には、不飽和脂肪酸の一種であるオレイン酸が口どけ感や和牛独特の香りに寄与していることが知られている。また、熟成した肉や魚は、たんぱく質が分解したアミノ酸の一種であるグルタミン酸が、ATP(Adenosine Triphosphate)の分解によって生成されたイノシン酸との組み合わされると、うま味が生じると言われている。また、熟成したパルマハム、金華ハムなどの乾燥塩漬けにした豚肉では、亜鉛プロトポルフィリンが生成され、フレーバーの醸成や酸化抑制効果があると言われている。
<Case 1>
Fats, proteins, amino acids, etc. are important items for examining the quality of meat, fish, dairy products and the like. For example, it is known that oleic acid, a kind of unsaturated fatty acid, contributes to a mouthfeel and a unique scent of Japanese beef in the taste of Wagyu beef. Aged meat and fish are said to produce umami when glutamic acid, a kind of amino acid whose protein is degraded, is combined with inosinic acid produced by the degradation of ATP (Adenosine Triphosphate). In addition, it is said that zinc protoporphyrin is produced in pork that has been dried and salted, such as aged Parma ham and Jinhua ham, and is said to have a flavor brewing and oxidation inhibiting effect.
 これらの物質を光学的分光手段によって非侵襲に測定できることは非常に重要であり、さらに肉や魚の場合、脂身部分や赤身部分によって組成が大きく異なることから、スペクトルの画像化によって、より正確かつ広範な情報を得ることができるようになる。一方、これらのたんぱく質や脂肪の光の特有の吸収スペクトルは、その多くが1500nm~2500nmの中赤外領域にある。この波長域では、Siの発光波長の感度域がないためにSiを受光デバイスとして使用することができないので、上記の波長域に感度域があるInGaAsを受光デバイスとして使う必要がある。しかしながら、InGaAsの受光デバイスは、価格が非常に高価であり、しかもSiの素子のような微細加工ができないため、当該受光デバイスのイメージ分解能が著しく制限される。 It is very important that these substances can be measured non-invasively by optical spectroscopic means.Furthermore, in the case of meat and fish, the composition varies greatly depending on the fat and lean parts. Will be able to obtain information. On the other hand, most of the specific absorption spectra of light of these proteins and fats are in the mid-infrared region of 1500 nm to 2500 nm. In this wavelength range, since Si cannot be used as a light receiving device because there is no sensitivity range of the emission wavelength of Si, it is necessary to use InGaAs having a sensitivity range in the above wavelength range as a light receiving device. However, an InGaAs light receiving device is very expensive and cannot be finely processed like a Si element, so that the image resolution of the light receiving device is significantly limited.
 〈事例2〉
 牛肉中のオレイン酸を含む不飽和脂肪酸の肉内における分布の可視化については、中赤外の吸収スペクトルを用いたものが次の文献に報告されている。
<Case 2>
The visualization of the distribution of unsaturated fatty acids including oleic acid in beef within the meat has been reported in the following literature using a mid-infrared absorption spectrum.
 「K.Kobayashi eta al., J. Near Infrared Spectrosc. 18,301-315, 2010、” Near infrared spectroscopy and hyper spectral imaging for prediction and visualizationof fat and fatty acid content in intact raw beef cuts」
 この文献に記載された不飽和脂肪酸の肉内における分布の可視化方法では、脂肪中のオレイン酸やリノレイン酸の吸収スペクトルから定量分析によって測定した量と整合性のある比較的精度の高い含有量を導出している。しかしながら、受光素子に前述のInGaAsの受光デバイス素子を用いている。しかも、弱い吸収スペクトルを取りだすために高い波長分解能のハイパースペクトルカメラで分光情報を得ているので、専門的知識を持つ機関での用途に限られる。畜産業界の保存現場や流通現場において、個々の作業者がこのようにハイパースペクトルカメラを利用することは容易ではない。
"K. Kobayashi eta al., J. Near Infrared Spectrosc. 18,301-315, 2010," Near infrared spectroscopy and hyper spectral imaging for prediction and visualization of fat and fatty acid content in intact raw beef cuts "
In the method for visualizing the distribution of unsaturated fatty acids in meat described in this document, a relatively accurate content consistent with the amount measured by quantitative analysis from the absorption spectrum of oleic acid and linolenic acid in fat is used. Derived. However, the above-described InGaAs light receiving device element is used as the light receiving element. Moreover, since spectral information is obtained with a hyperspectral camera having a high wavelength resolution in order to extract a weak absorption spectrum, it is limited to applications in an organization having specialized knowledge. It is not easy for individual workers to use a hyperspectral camera in this way at a storage site or a distribution site in the livestock industry.
 〈事例3〉
 Siの感度域の波長で同じく吸収スペクトルからオレイン酸を可視化したことが次の文献に報告されている。
<Case 3>
It has been reported in the following literature that oleic acid was visualized from the absorption spectrum at a wavelength in the Si sensitivity range.
 「田中等幸 他、岐阜県情報技術研究所研究報告第13号、18-23、2011、県産ブランド牛肉付加価値向上のための携帯型牛肉おいしさ測定端末の研究開発(第2報)」
 この文献に記載された技術では、Si受光素子を含む近赤外カメラと、760nm,930nm,1040nmの各LED光源とを用いて、時分割方式でのスペクトル強度からオレイン酸の分布を導出している。この技術では、安価でシンプルな装置が実現できるが、中赤外分光のように特定できる成分の吸収スペクトルから導出したものでなく、検量線の精度も中赤外のものに比べて劣っている。
“Takayuki Tanaka et al., Research Report No. 13, Gifu Prefectural Institute of Information Technology, 18-23, 2011, Research and Development of Portable Beef Taste Measurement Terminal for Increasing the Value of Prefectural Brand Beef (Part 2)”
In the technique described in this document, the distribution of oleic acid is derived from the spectrum intensity in a time-division method using a near-infrared camera including a Si light receiving element and LED light sources of 760 nm, 930 nm, and 1040 nm. Yes. With this technology, an inexpensive and simple device can be realized, but it is not derived from an absorption spectrum of a component that can be specified like mid-infrared spectroscopy, and the accuracy of the calibration curve is inferior to that of the mid-infrared. .
 〈事例4〉
 蛍光を用いたものの一例として、塩付け乾燥豚肉に含まれる亜鉛プロトポルフィリンの蛍光を励起光420nmのLEDを用いて観察したことが次の文献に報告されている。
<Case 4>
As an example of using fluorescence, the following literature reports that the fluorescence of zinc protoporphyrin contained in salted and dried pork was observed using an LED having an excitation light of 420 nm.
 「若松純一、平成18年度助成研究報告集II、助成番号656、発色剤無添加乾塩漬ハムの亜鉛プロトポリフィリンIX(ZPP)形成における海塩の役割について」
 これは、励起光として単色光を用いていることから、多くの自家蛍光する物質を同定することはできない。
“Junichi Wakamatsu, 2006 Grant-in-Aid for Scientific Research II, Grant No. 656, Role of Sea Salt in Formation of Zinc Protopoliphyrin IX (ZPP) in Dry-cured Ham without Coloring Agent”
Since monochromatic light is used as the excitation light, many autofluorescent substances cannot be identified.
 (蛍光検出装置101Eの構成)
 図9は、本発明の実施形態5に係る蛍光検出装置101Eのシステム構成を示すブロック図である。図10は、蛍光検出装置101Eによる牛肉の蛍光部位を検出する基本構成を示す図である。図11は、当該基本構成における紫外線バンドパスフィルタの周波数特性を示す図である。図12は、上記の基本構成における紫外線カットフィルタの周波数特性を示す図である。
(Configuration of fluorescence detection apparatus 101E)
FIG. 9 is a block diagram showing a system configuration of the fluorescence detection apparatus 101E according to the fifth embodiment of the present invention. FIG. 10 is a diagram showing a basic configuration for detecting a fluorescent part of beef by the fluorescence detection apparatus 101E. FIG. 11 is a diagram showing the frequency characteristics of the ultraviolet bandpass filter in the basic configuration. FIG. 12 is a diagram showing the frequency characteristics of the ultraviolet cut filter in the above basic configuration.
 蛍光検出装置101Eは、図1に示す構成を備える蛍光検出装置101を基本として構成されており、図9に示す蛍光検出制御部3Eを備えている。蛍光検出制御部3Eは、前述のMPU11が有する制御機能を実現する部分である。また、蛍光検出装置101Eは、実施形態4の蛍光検出装置101Dと同様、複数のLED20a~20e(ここでは5個)を備えている。LED20a~20eは、それぞれ異なるピーク波長を有する。 The fluorescence detection device 101E is configured based on the fluorescence detection device 101 having the configuration shown in FIG. 1, and includes a fluorescence detection control unit 3E shown in FIG. The fluorescence detection control unit 3E is a part that realizes the control function of the MPU 11 described above. Similarly to the fluorescence detection device 101D of the fourth embodiment, the fluorescence detection device 101E includes a plurality of LEDs 20a to 20e (here, five). The LEDs 20a to 20e have different peak wavelengths.
 蛍光検出制御部3Eは、実施形態1の蛍光検出制御部3Aと同様、撮像制御部32と、データ保持制御部33と、表示制御部34とを有している。また、蛍光検出制御部3Eは、蛍光検出制御部3Aの光源制御部31に代えて光源制御部31Eを有している。このため、LED駆動部19は、これらのLED20a~20eを駆動するように構成されている。 The fluorescence detection control unit 3E includes an imaging control unit 32, a data holding control unit 33, and a display control unit 34, similarly to the fluorescence detection control unit 3A of the first embodiment. Further, the fluorescence detection control unit 3E includes a light source control unit 31E instead of the light source control unit 31 of the fluorescence detection control unit 3A. Therefore, the LED driving unit 19 is configured to drive these LEDs 20a to 20e.
 光源制御部31Eは、LED20a~20eの内の1つを選択して点灯させてもよいし(単灯点灯モード)、撮像部17の撮像のタイミングと同期するようにLED20a~20eを切り替えて点灯させてもよい(切替点灯モード)。光源制御部31Eは、このような点灯制御を、上記の2つの点灯モードから選択されたいずか1つにおいて、撮像制御部32からの前述の撮像制御信号がアクティブである期間に行う。 The light source control unit 31E may select and light one of the LEDs 20a to 20e (single lamp lighting mode), or switch on and turn on the LEDs 20a to 20e so as to be synchronized with the imaging timing of the imaging unit 17. (Switching lighting mode). The light source control unit 31E performs such lighting control during a period in which the above-described imaging control signal from the imaging control unit 32 is active in at least one of the two lighting modes described above.
 また、蛍光検出装置101Eは、蛍光検出の基本構成として図10に示す構成を採用している。図10に示すように、本構成において、励起光源としてのLED20a~20eは、それぞれ365nm(紫外線),375nm(紫外線),385nm(紫外線),395nm(紫外線),405nm(可視光)の5種類の波長のLEDである。また、LED20a~20eの光出射側には、図11に示す350nm~400nmの濾波特性を有する紫外線バンドパスフィルタ25が配置されている。撮像部17は、3色以上の複数の波長バンドのフィルタを用いた単板方式のカラーカメラ(RGBの3色)もしくはマルチスペクトルカメラによって構成されている。光学フィルタ18は、図12示す420nm以下の波長を遮断する特性を有する紫外線カットフィルタからなる。表示部16は、カラーディスプレイからなる。 Further, the fluorescence detection apparatus 101E adopts the configuration shown in FIG. 10 as the basic configuration of fluorescence detection. As shown in FIG. 10, in this configuration, the LEDs 20a to 20e as excitation light sources have five types of wavelengths of 365 nm (ultraviolet light), 375 nm (ultraviolet light), 385 nm (ultraviolet light), 395 nm (ultraviolet light), and 405 nm (visible light), respectively. LED of wavelength. Further, an ultraviolet bandpass filter 25 having a filtering characteristic of 350 nm to 400 nm shown in FIG. 11 is arranged on the light emitting side of the LEDs 20a to 20e. The imaging unit 17 is configured by a single-plate color camera (RGB three colors) or a multispectral camera using filters of a plurality of wavelength bands of three or more colors. The optical filter 18 is composed of an ultraviolet cut filter having a characteristic of blocking a wavelength of 420 nm or less as shown in FIG. The display unit 16 includes a color display.
 (蛍光検出装置101Eによる蛍光検出)
 上記のように構成される蛍光検出装置101Eによる肉(蛍光検出対象物100)の蛍光を検出する動作について説明する。図13の(a)は蛍光検出装置101Eによって異なる波長の紫外線で撮像された牛肉の画像であり、図13の(b)は白色光で撮像された牛肉の画像である。図14の(a)は、国産和牛肉(国産牛)および輸入牛肉(輸入牛)を並べた状態を示す画像である。図14の(b)は、図14の(a)の国産和牛肉および輸入牛肉(外国産牛肉)が365nmの励起光を照射することで脂身部分が青緑色に蛍光した状態を示す画像である。図14の(c)は、図14の(a)の国産和牛肉および輸入牛肉が405nmの励起光を照射することで脂身部分が青緑色に蛍光した状態を示す画像である。
(Fluorescence detection by the fluorescence detection device 101E)
An operation of detecting the fluorescence of the meat (fluorescence detection object 100) by the fluorescence detection apparatus 101E configured as described above will be described. FIG. 13A is an image of beef imaged with ultraviolet rays having different wavelengths by the fluorescence detection device 101E, and FIG. 13B is an image of beef imaged with white light. (A) of FIG. 14 is an image showing a state in which domestic Japanese beef (domestic beef) and imported beef (imported beef) are arranged. FIG. 14 (b) is an image showing a state in which the fat portion of the domestic Japanese beef and imported beef (foreign beef) in FIG. 14 (a) is fluorescent in blue-green when irradiated with excitation light of 365 nm. . (C) of FIG. 14 is an image showing a state in which the fat portion is fluorescent in blue-green when the domestic Japanese beef and imported beef of FIG. 14 (a) are irradiated with excitation light of 405 nm.
 蛍光検出装置101Eは、LED20a~20eの内の任意の1つを選択して点灯することで発された光を、蛍光検出対象物100としての牛肉(図14の(a)に示す国産和牛肉および輸入牛肉)に照射し、牛肉を撮像部17で撮像する。この結果得られた撮像データは、必要に応じてデータ保持部22に保存されることで、後の詳細な解析に利用できる。 The fluorescence detection device 101E selects light from any one of the LEDs 20a to 20e and turns it on to beef as the fluorescence detection object 100 (Japanese beef shown in FIG. 14 (a)). And the imported beef), and the beef is imaged by the imaging unit 17. The imaging data obtained as a result can be used for later detailed analysis by being stored in the data holding unit 22 as necessary.
 図13の(a)に示すように、365nm,375nm,385nm,395nm,405nmの波長の光でそれぞれ撮像された牛肉の画像から、脂身部分の発色状態が異なることがわかる。 As shown in FIG. 13 (a), it can be seen from the images of beef imaged with light of wavelengths of 365 nm, 375 nm, 385 nm, 395 nm, and 405 nm that the colored state of the fat portion is different.
 具体的には、365nmの励起光を照射することによって、脂身部分が青緑色の蛍光を発する。また、図14の(b)に示すように、不飽和脂肪酸の含有量が多い国産和牛肉の脂肪部分が強く蛍光しているのに対し、不飽和脂肪酸の含有量が低いといわれる輸入牛肉の脂肪部分の蛍光は弱い。また、国産和牛肉と輸入牛肉とで蛍光色がわずかながら異なっていることが観測される。これは、不飽和脂肪酸の酸化または不飽和脂肪酸中のオレイン酸、リノレイン酸などの異なる脂肪酸の含有量に左右されるからである。 Specifically, the fat portion emits blue-green fluorescence when irradiated with excitation light of 365 nm. In addition, as shown in FIG. 14 (b), the fat portion of domestic Japanese beef with a high content of unsaturated fatty acids is strongly fluorescent, whereas the imported beef said to have a low content of unsaturated fatty acids. The fat part is weakly fluorescent. In addition, it is observed that the fluorescent color is slightly different between Japanese beef and imported beef. This is because it depends on the oxidation of unsaturated fatty acids or the content of different fatty acids such as oleic acid and linolenic acid in unsaturated fatty acids.
 なお、ここでの輸入牛肉は、外国産の和牛種以外の牛肉のことである。また、比較参考のために、図13の(b)に白色光を照射して撮像された牛肉の画像を示す。 Note that imported beef here refers to beef other than Japanese beef. For comparison, a beef image captured by irradiating white light is shown in FIG.
 また、図14の(c)に示すように、より波長の長い405nmの励起光では、赤身部分の全体が赤く蛍光していることが観測される。この蛍光は、たんぱく質、アミノ酸などの脂肪以外の成分に起因している。 Further, as shown in FIG. 14 (c), it is observed that the whole red portion is fluorescent in red with an excitation light having a longer wavelength of 405 nm. This fluorescence is attributed to components other than fat, such as proteins and amino acids.
 このように、複数の単色のLED20a~20eによる光源と、カラーカメラとを用いることにより、ブラックライトのような波長幅の広い光源と、モノクロカメラとを用いて区別できなかった蛍光の種類を分類することができる。それゆえ、肉のような蛍光検出対象物100を容易に特定できることになる。 As described above, by using a light source including a plurality of single color LEDs 20a to 20e and a color camera, a light source having a wide wavelength width such as a black light and a type of fluorescence that cannot be distinguished using a monochrome camera are classified. can do. Therefore, the fluorescence detection object 100 such as meat can be easily specified.
 また、蛍光検出装置101Eは、前述の事例1とは異なり、不飽和脂肪酸などの二重結合を持った物質が紫外線の照射により可視光領域で蛍光を発する性質を利用している。また、LED20a~20eが発する蛍光は、Siの感度域の波長であるので、安価かつ空間分解能が高いSiのCCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)を有するイメージャを撮像部17の受光素子として使用することができる。 Further, unlike the case 1 described above, the fluorescence detection device 101E utilizes the property that a substance having a double bond such as an unsaturated fatty acid emits fluorescence in the visible light region when irradiated with ultraviolet rays. Further, since the fluorescence emitted from the LEDs 20a to 20e has a wavelength in the Si sensitivity range, an imager having a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) with low cost and high spatial resolution is used. It can be used as a light receiving element.
 なお、本実施形態は、前述の実施形態1~4のいずれにも適用が可能である。 Note that the present embodiment can be applied to any of the first to fourth embodiments described above.
 〔ソフトウェアによる実現例〕
 前述の蛍光検出装置101A~101Eの制御ブロック(特に蛍光検出制御部3A~3E)は、前述のように、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、専用のプロセッサを用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks (particularly the fluorescence detection control units 3A to 3E) of the fluorescence detection devices 101A to 101E described above may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like as described above. Alternatively, it may be realized by software using a dedicated processor.
 後者の場合、蛍光検出装置101A~101Eは、各機能を実現するソフトウェアである制御プログラムの命令を実行するプロセッサ、上記制御プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROMまたは記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAMなどを備えている。そして、コンピュータ(またはプロセッサ)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the fluorescence detection devices 101A to 101E include a processor that executes instructions of a control program that is software for realizing each function, a ROM in which the control program and various data are recorded so as to be readable by a computer (or CPU), or A storage device (these are referred to as “recording media”), a RAM for developing the program, and the like are provided. The computer (or processor) reads the program from the recording medium and executes the program, thereby achieving the object of the present invention. As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の態様1に係る蛍光検出装置101は、単一波長の励起光をそれぞれ発する少なくとも1つの光源(LED20,20a~20e)と、前記励起光が照射されることにより蛍光を発する蛍光部位を含む蛍光検出対象物100を撮像する撮像部17と、前記撮像部17への前記励起光の入射を遮断する励起光遮断部とを備えている。
[Summary]
The fluorescence detection apparatus 101 according to the first aspect of the present invention includes at least one light source ( LED 20, 20a to 20e) that emits excitation light having a single wavelength, and a fluorescent site that emits fluorescence when irradiated with the excitation light. An imaging unit 17 that captures an image of the fluorescent detection target 100 including the excitation light and an excitation light blocking unit that blocks the excitation light from entering the imaging unit 17 are provided.
 上記の構成では、蛍光検出対象物100が、光源からの励起光の照射により励起されると蛍光を発する一方、撮像部17が、蛍光検出対象物100を撮像することにより、蛍光を発する蛍光検出対象物100を画像として捉える。この画像から蛍光検出対象物100における蛍光を発する部位(蛍光部位)を確認することができる。また、励起光遮断部によって励起光の入射が遮断されるので、撮像部17には励起光が入射しなくなる。これにより、画像が励起光の影響を受けなくなるので、蛍光部位が発する蛍光が弱くても、撮像された画像には蛍光部位を鮮明に表すことができる。 In the configuration described above, the fluorescence detection object 100 emits fluorescence when excited by irradiation of excitation light from the light source, while the imaging unit 17 captures the fluorescence detection object 100 to capture fluorescence. The object 100 is captured as an image. From this image, it is possible to confirm the fluorescence emitting part (fluorescence part) in the fluorescence detection object 100. Further, since the excitation light is blocked by the excitation light blocking unit, the excitation light does not enter the imaging unit 17. Thereby, since the image is not affected by the excitation light, the fluorescent site can be clearly displayed in the captured image even if the fluorescence emitted from the fluorescent site is weak.
 本発明の態様2に係る蛍光検出装置は、上記態様1において、撮像された前記蛍光検出対象物100の画像を表示する表示部16と、前記表示部16に表示される前記画像における中間調の輝度を低下させる輝度低下部(表示部16,表示制御部34B)とをさらに備えていてもよい。 The fluorescence detection device according to aspect 2 of the present invention is the display unit 16 that displays the captured image of the fluorescence detection object 100 and the halftone in the image displayed on the display unit 16 in the above aspect 1. You may further provide the brightness | luminance reduction part (the display part 16, the display control part 34B) which reduces a brightness | luminance.
 上記の構成では、輝度低下部が画像における中間調の輝度を低下させる。具体的には、輝度低下部は、中間調の輝度を低下させることを、表示特性(ガンマ特性)が設定されている表示部16により実現するか、あるいは、画像を表示するために表示部に与える階調信号を補正することで実現される。これにより、画像において、中間調の輝度は低下するが、比較的輝度の高い蛍光部位の輝度は低下しない。したがって、画像における蛍光部位とそれ以外の部位とのコントラスト差が大きくなるので、弱い蛍光を容易に確認することができる。 In the above configuration, the luminance reduction unit reduces the halftone luminance in the image. Specifically, the luminance reduction unit realizes the reduction of the halftone luminance by the display unit 16 in which the display characteristic (gamma characteristic) is set, or the display unit displays the image. This is realized by correcting the applied gradation signal. Thereby, in the image, the brightness of the halftone is lowered, but the brightness of the fluorescent part having a relatively high brightness is not lowered. Therefore, since the contrast difference between the fluorescent site and the other site in the image becomes large, weak fluorescence can be easily confirmed.
 本発明の態様3に係る蛍光検出装置は、上記態様1または2において、前記光源が点滅するように前記光源の点灯を制御する点滅制御部をさらに備えていてもよい。 The fluorescence detection device according to aspect 3 of the present invention may further include a blinking control unit that controls lighting of the light source so that the light source blinks in the above aspect 1 or 2.
 上記の構成では、光源が点滅することにより、表示部16に表示される画像も点滅するので、視覚に対する刺激が大きくなり、容易に蛍光部位の蛍光状態を認識することができる。 In the above configuration, when the light source blinks, the image displayed on the display unit 16 also blinks. Therefore, the stimulus for vision is increased, and the fluorescence state of the fluorescent site can be easily recognized.
 本発明の態様4に係る蛍光検出装置は、上記態様1から2のいずれかにおいて、前記撮像部17によって撮像された画像を構成する画素の色相、明度および彩度の少なくとも1つを各画素の階調信号に基づいて算出する色要素算出部(色相・明度・彩度算出部36)と、算出された色相、明度および彩度の少なくとも1つが、前記蛍光検出対象物100への前記励起光の照射によって蛍光を発する蛍光部位について予め算出された色相、明度および彩度の規定範囲内にあるか否かを判定する色要素判定部(着色部)とをさらに備えていてもよい。 The fluorescence detection device according to aspect 4 of the present invention is the fluorescence detection device according to any one of the above aspects 1 to 2, wherein at least one of a hue, brightness, and saturation of a pixel constituting the image captured by the imaging unit 17 is determined for each pixel. A color element calculation unit (hue / lightness / saturation calculation unit 36) that is calculated based on a gradation signal, and at least one of the calculated hue, brightness, and saturation is the excitation light to the fluorescence detection target 100. And a color element determination unit (coloring unit) that determines whether or not the fluorescent part that emits fluorescence by the irradiation is within the prescribed ranges of hue, lightness, and saturation calculated in advance.
 上記の構成では、算出された色相、明度および彩度の少なくとも1つは、蛍光部位について予め算出された色相、明度および彩度の規定範囲内にあると判定されると、当該蛍光部位を示すものであると認められる。また、算出された色相、明度および彩度の少なくとも1つは、上記の規定範囲内にあると判定されない(規定範囲外にある)と、当該蛍光部位を示すものでないと認められる。このように、色相、明度および彩度に基づいて蛍光部位の有無を判定することにより、環境光の影響を受けやすい、階調信号に基づいて蛍光部位の有無を判定することに比べて、蛍光の強度が弱くても、蛍光部位の有無を容易に判定することができる。 In the above configuration, when it is determined that at least one of the calculated hue, lightness, and saturation is within the prescribed ranges of the hue, lightness, and saturation calculated in advance for the fluorescent region, the fluorescent region is indicated. It is recognized as a thing. Further, if at least one of the calculated hue, brightness, and saturation is not determined to be within the specified range (outside the specified range), it is recognized that it does not indicate the fluorescent site. In this way, by determining the presence or absence of a fluorescent site based on hue, lightness, and saturation, it is more susceptible to environmental light, compared to determining the presence or absence of a fluorescent site based on a gradation signal. Even if the intensity of the light is weak, the presence or absence of a fluorescent site can be easily determined.
 本発明の態様5に係る蛍光検出装置は、上記態様4において、算出された色相、明度および彩度の少なくとも1つが、前記規定範囲内にあると前記色要素判定部によって判定された前記画素を特定の色で表示させる着色表示制御部(着色部37)をさらに備えていてもよい。 The fluorescence detection device according to aspect 5 of the present invention provides the fluorescence detection device according to aspect 4, wherein the color element determination unit determines that at least one of the calculated hue, brightness, and saturation is within the specified range. You may further provide the coloring display control part (coloring part 37) displayed with a specific color.
 上記の構成では、色相、明度および彩度の少なくとも1つが規定範囲内にあると判定された画素が特定の色で表示されるので、蛍光の強度が弱くても蛍光部位に相当する画素を強調して表示することができる。これにより、容易に蛍光部位を認識することができる。 In the above configuration, pixels that are determined to have at least one of hue, lightness, and saturation within the specified range are displayed in a specific color, so that even if the intensity of fluorescence is weak, the pixels corresponding to the fluorescent region are emphasized. Can be displayed. Thereby, a fluorescent site can be easily recognized.
 本発明の態様6に係る蛍光検出装置は、上記態様1から5のいずれかにおいて、前記光源は、複数設けられ、それぞれが異なる単一波長の前記励起光を発してもよい。 In the fluorescence detection device according to aspect 6 of the present invention, in any of the above aspects 1 to 5, a plurality of the light sources may be provided, each of which emits the excitation light having a different single wavelength.
 上記の構成では、複数設けられた光源がそれぞれ異なる波長の励起光を発するので、蛍光を発する励起光の波長が異なる複数の蛍光検出対象物の蛍光を検出することができる。 In the above configuration, since a plurality of light sources each emit excitation light having different wavelengths, it is possible to detect fluorescence of a plurality of fluorescence detection objects having different wavelengths of excitation light emitting fluorescence.
 本発明の態様7に係る蛍光検出装置は、上記態様6において、複数の前記光源を同時に点灯させる同時点灯制御部(光源制御部31D)をさらに備えていてもよい。 The fluorescence detection device according to aspect 7 of the present invention may further include a simultaneous lighting control unit (light source control unit 31D) that simultaneously lights a plurality of the light sources in the above aspect 6.
 上記の構成では、蛍光検出対象物100が、異なる波長の励起光によって蛍光を発する複数の蛍光部位を含む場合、複数の光源が同時に点灯することにより、これらの蛍光部位を同時に検出することができる。 In the above configuration, when the fluorescence detection object 100 includes a plurality of fluorescent sites that emit fluorescence with excitation light having different wavelengths, the plurality of light sources can be turned on simultaneously so that these fluorescent sites can be detected simultaneously. .
 本発明の態様8に係る蛍光検出装置は、上記態様1から3のいずれかにおいて、前記光源は、複数設けられ、それぞれが異なる単一波長の前記励起光を発し、複数の前記光源を切り替えて点灯させる切替点灯制御部と、前記撮像部17が、点灯した前記光源について撮像した前記蛍光検出対象物100の画像について、当該画像を構成する画素の色相、明度および彩度の少なくとも1つを各画素の階調信号に基づいて算出する色要素算出部と、2つの前記画像について算出された色相、明度および彩度の少なくとも1つの差分を算出する差分算出部とをさらに備えていてもよい。 In the fluorescence detection device according to aspect 8 of the present invention, in any one of the above aspects 1 to 3, a plurality of the light sources are provided, each emitting the excitation light having a different single wavelength, and switching the plurality of light sources. For the image of the fluorescence detection object 100 captured by the switching lighting control unit to be lit and the imaging unit 17 imaged with respect to the light source that has been lit, at least one of the hue, brightness, and saturation of the pixels constituting the image is set. A color element calculation unit that calculates based on a gradation signal of a pixel and a difference calculation unit that calculates at least one difference between hue, brightness, and saturation calculated for the two images may be further provided.
 上記の構成では、異なる単一波長の励起光が照射された蛍光検出対象物100の複数の画像を構成する画素の色相、明度および彩度の少なくとも1つを算出して、その値を2つの画像間の差分を算出している。これにより、異なる単一波長の励起光によって蛍光検出対象物100における蛍光部位の蛍光状態(蛍光色など)が異なる場合、その差分に基づいて蛍光部位を構成する蛍光物質を推定することができる。 In the above configuration, at least one of the hue, lightness, and saturation of the pixels constituting the plurality of images of the fluorescence detection target object 100 irradiated with the excitation light having different single wavelengths is calculated, and the two values are calculated. The difference between images is calculated. Thereby, when the fluorescence state (fluorescence color etc.) of the fluorescence site | part in the fluorescence detection target object 100 differs by the excitation light of a different single wavelength, the fluorescent substance which comprises a fluorescence site | part can be estimated based on the difference.
 本発明の態様9に係る蛍光検出装置は、上記態様1から8のいずれかにおいて、前記光源は、前記蛍光検出対象物100に含まれる不飽和脂肪酸を励起する励起光を発してもよい。 In the fluorescence detection device according to aspect 9 of the present invention, in any of the above aspects 1 to 8, the light source may emit excitation light that excites the unsaturated fatty acid contained in the fluorescence detection object 100.
 上記の構成によれば、蛍光検出対象物100が不飽和脂肪酸を含む場合、蛍光物質である不飽和脂肪酸が励起光の照射によって蛍光を発するので、その蛍光色などの蛍光状態により、食品である蛍光検出対象物における不飽和脂肪酸の存在を確認することができる。 According to said structure, when the fluorescence detection target object 100 contains an unsaturated fatty acid, since the unsaturated fatty acid which is a fluorescent substance emits fluorescence by irradiation of excitation light, it is food by the fluorescence state, such as the fluorescence color. The presence of unsaturated fatty acid in the fluorescence detection target can be confirmed.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 (関連出願の相互参照)
 本出願は、2015年10月2日に出願された日本国特許出願:特願2015-197096に対して優先権の利益を主張するものであり、それを参照することにより、その内容の全てが本書に含まれる。
(Cross-reference of related applications)
This application claims the benefit of priority to the Japanese patent application filed on Oct. 2, 2015: Japanese Patent Application No. 2015-197096. Included in this document.
 16 表示部
 17 撮像部
 18 光学フィルタ(励起光遮断部)
 20 LED(光源)
 20a~20e LED(光源)
 31 光源制御部(点滅制御部)
 31D 光源制御部(同時点灯制御部,切替点灯制御部)
 34B 表示制御部(輝度低下部)
 36 色相・明度・彩度算出部(色要素算出部,差分算出部)
 37 着色部(色要素判定部,着色表示制御部)
100 蛍光検出対象物
101 蛍光検出装置
101A~101E 蛍光検出装置
16 Display unit 17 Imaging unit 18 Optical filter (excitation light blocking unit)
20 LED (light source)
20a-20e LED (light source)
31 Light source control unit (flashing control unit)
31D Light source control unit (simultaneous lighting control unit, switching lighting control unit)
34B Display control unit (luminance reduction unit)
36 Hue / lightness / saturation calculator (color element calculator, difference calculator)
37 Coloring section (color element determination section, coloring display control section)
DESCRIPTION OF SYMBOLS 100 Fluorescence detection target object 101 Fluorescence detection apparatus 101A-101E Fluorescence detection apparatus

Claims (9)

  1.  単一波長の励起光をそれぞれ発する少なくとも1つの光源と、
     前記励起光が照射されることにより蛍光を発する蛍光部位を含む蛍光検出対象物を撮像する撮像部と、
     前記撮像部への前記励起光の入射を遮断する励起光遮断部とを備えていることを特徴とする蛍光検出装置。
    At least one light source each emitting single wavelength excitation light;
    An imaging unit that images a fluorescence detection target including a fluorescent site that emits fluorescence when irradiated with the excitation light;
    A fluorescence detection apparatus comprising: an excitation light blocking unit that blocks the excitation light from entering the imaging unit.
  2.  撮像された前記蛍光検出対象物の画像を表示する表示部と、
     前記表示部に表示される前記画像における中間調の輝度を低下させる輝度低下部とをさらに備えていることを特徴とする請求項1に記載の蛍光検出装置。
    A display unit for displaying an image of the captured fluorescence detection target;
    The fluorescence detection apparatus according to claim 1, further comprising a luminance reduction unit that reduces a halftone luminance in the image displayed on the display unit.
  3.  前記光源が点滅するように前記光源の点灯を制御する点滅制御部をさらに備えていることを特徴とする請求項1または2に記載の蛍光検出装置。 The fluorescence detection apparatus according to claim 1 or 2, further comprising a blinking control unit that controls lighting of the light source so that the light source blinks.
  4.  前記撮像部によって撮像された画像を構成する画素の色相、明度および彩度の少なくとも1つを各画素の階調信号に基づいて算出する色要素算出部と、
     算出された色相、明度および彩度の少なくとも1つが、前記蛍光検出対象物への前記励起光の照射によって蛍光を発する蛍光部位について予め算出された色相、明度および彩度の規定範囲内にあるか否かを判定する色要素判定部とをさらに備えていることを特徴とする請求項1から3のいずれか1項に記載の蛍光検出装置。
    A color element calculation unit that calculates at least one of the hue, brightness, and saturation of the pixels constituting the image captured by the imaging unit based on the gradation signal of each pixel;
    Whether at least one of the calculated hue, brightness, and saturation is within a predetermined range of hue, brightness, and saturation calculated in advance for a fluorescent site that emits fluorescence when the fluorescence detection target is irradiated with the excitation light. The fluorescence detection device according to claim 1, further comprising a color element determination unit that determines whether or not.
  5.  算出された色相、明度および彩度の少なくとも1つが、前記規定範囲内にあると前記色要素判定部によって判定された前記画素を特定の色で表示させる着色表示制御部をさらに備えていることを特徴とする請求項4に記載の蛍光検出装置。 A color display control unit configured to display the pixel determined by the color element determination unit with a specific color when at least one of the calculated hue, brightness, and saturation is within the specified range; The fluorescence detection apparatus according to claim 4, wherein
  6.  前記光源は、複数設けられ、それぞれが異なる単一波長の前記励起光を発することを特徴とする請求項1から5のいずれか1項に記載の蛍光検出装置。 6. The fluorescence detection apparatus according to claim 1, wherein a plurality of the light sources are provided and each emits the excitation light having a different single wavelength.
  7.  複数の前記光源を同時に点灯させる同時点灯制御部をさらに備えていることを特徴とする請求項6に記載の蛍光検出装置。 The fluorescence detection apparatus according to claim 6, further comprising a simultaneous lighting control unit that lights a plurality of the light sources simultaneously.
  8.  前記光源は、複数設けられ、それぞれが異なる単一波長の前記励起光を発し、
     複数の前記光源を切り替えて点灯させる切替点灯制御部と、
     前記撮像部が、点灯した前記光源について撮像した前記蛍光検出対象物の画像について、当該画像を構成する画素の色相、明度および彩度の少なくとも1つを各画素の階調信号に基づいて算出する色要素算出部と、
     2つの前記画像について算出された色相、明度および彩度の少なくとも1つの差分を算出する差分算出部とをさらに備えていることを特徴とする請求項1から3のいずれか1項に記載の蛍光検出装置。
    A plurality of the light sources are provided, each emitting the excitation light having a different single wavelength,
    A switching lighting control unit that switches on and turns on the plurality of light sources;
    The imaging unit calculates at least one of the hue, brightness, and saturation of the pixels that constitute the image of the image of the fluorescence detection target imaged with respect to the lit light source based on the gradation signal of each pixel. A color element calculation unit;
    The fluorescence according to any one of claims 1 to 3, further comprising a difference calculation unit that calculates at least one difference of hue, brightness, and saturation calculated for the two images. Detection device.
  9.  前記光源は、前記蛍光検出対象物に含まれる不飽和脂肪酸を励起する励起光を発することを特徴とする請求項1から8のいずれか1項に記載の蛍光検出装置。 The fluorescence detection apparatus according to any one of claims 1 to 8, wherein the light source emits excitation light that excites an unsaturated fatty acid contained in the fluorescence detection object.
PCT/JP2016/075416 2015-10-02 2016-08-31 Fluorescence detection device WO2017056830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015197096 2015-10-02
JP2015-197096 2015-10-02

Publications (1)

Publication Number Publication Date
WO2017056830A1 true WO2017056830A1 (en) 2017-04-06

Family

ID=58423199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075416 WO2017056830A1 (en) 2015-10-02 2016-08-31 Fluorescence detection device

Country Status (1)

Country Link
WO (1) WO2017056830A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478626A (en) * 2017-08-24 2017-12-15 北京为肯科技有限公司 Open fluorescence detection method and equipment
EP3431942A1 (en) 2017-07-21 2019-01-23 Hitachi High-Tech Science Corporation Fluorescence spectrophotometer and fluorescence spectrometry and imaging method
EP3431966A1 (en) 2017-07-21 2019-01-23 Hitachi High-Tech Science Corporation Display device for photometric analyzer
WO2022214660A1 (en) * 2021-04-09 2022-10-13 Teknologisk Institut System and method for determining surface cleaning in a food manufacturing facility

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326060A (en) * 1991-04-25 1992-11-16 Norin Suisanshiyou Kachiku Eisei Shikenjo Method for discriminating freshness of egg
JP2001208745A (en) * 2000-01-27 2001-08-03 Yamagata Public Corp For The Development Of Industry Food condition evaluating method and device therefor
JP2007232520A (en) * 2006-02-28 2007-09-13 National Agriculture & Food Research Organization Rice quality measuring method, and rice quality measuring device
JP2008500810A (en) * 2004-03-12 2008-01-17 ウィンターラブ リミテッド Freshness assessment method for fish products
JP2012090726A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Electronic endoscope system, processor device of electronic endoscope system, and method for controlling illumination light
JP2013231668A (en) * 2012-04-27 2013-11-14 Shibuya Seiki Co Ltd Agricultural product checking apparatus and agricultural product checking method
JP2015108549A (en) * 2013-12-04 2015-06-11 横河電機株式会社 Cell inspection equipment and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04326060A (en) * 1991-04-25 1992-11-16 Norin Suisanshiyou Kachiku Eisei Shikenjo Method for discriminating freshness of egg
JP2001208745A (en) * 2000-01-27 2001-08-03 Yamagata Public Corp For The Development Of Industry Food condition evaluating method and device therefor
JP2008500810A (en) * 2004-03-12 2008-01-17 ウィンターラブ リミテッド Freshness assessment method for fish products
JP2007232520A (en) * 2006-02-28 2007-09-13 National Agriculture & Food Research Organization Rice quality measuring method, and rice quality measuring device
JP2012090726A (en) * 2010-10-26 2012-05-17 Fujifilm Corp Electronic endoscope system, processor device of electronic endoscope system, and method for controlling illumination light
JP2013231668A (en) * 2012-04-27 2013-11-14 Shibuya Seiki Co Ltd Agricultural product checking apparatus and agricultural product checking method
JP2015108549A (en) * 2013-12-04 2015-06-11 横河電機株式会社 Cell inspection equipment and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431942A1 (en) 2017-07-21 2019-01-23 Hitachi High-Tech Science Corporation Fluorescence spectrophotometer and fluorescence spectrometry and imaging method
EP3431966A1 (en) 2017-07-21 2019-01-23 Hitachi High-Tech Science Corporation Display device for photometric analyzer
US10551315B2 (en) 2017-07-21 2020-02-04 Hitachi High-Tech Science Corporation Fluorescence spectrophotometer and fluorescence spectrometry and imaging method
US10876967B2 (en) 2017-07-21 2020-12-29 Hitachi High-Tech Science Corporation Display device for photometric analyzer
CN107478626A (en) * 2017-08-24 2017-12-15 北京为肯科技有限公司 Open fluorescence detection method and equipment
WO2022214660A1 (en) * 2021-04-09 2022-10-13 Teknologisk Institut System and method for determining surface cleaning in a food manufacturing facility

Similar Documents

Publication Publication Date Title
US20180116520A1 (en) Imaging apparatus
WO2017056830A1 (en) Fluorescence detection device
US9635730B2 (en) Color emphasis and preservation of objects using reflection spectra
US20060239526A1 (en) Method and apparatus for acquiring and processing images of an article such as a tooth
US20180180534A1 (en) Appearance inspection apparatus and appearance inspection method
US9155456B2 (en) In vivo examination apparatus and capsule endoscope
JP2015196004A5 (en)
JP2021145185A (en) Multispectral image pickup apparatus, inspection device and multispectral image pickup method
JP2012130504A5 (en)
US20190041333A1 (en) Imaging method using fluoresence and associated image recording apparatus
US10806335B2 (en) Endoscope system
US10827914B2 (en) Endoscope system and characteristic amount calculation method
US20160157762A1 (en) Optical measurement device
US20180158180A1 (en) Image processing apparatus
US20160198132A1 (en) Method and apparatus for wide-band imaging based on narrow-band image data
US20210088772A1 (en) Endoscope apparatus, operation method of endoscope apparatus, and information storage media
JP2012125402A5 (en) Endoscope system, processor device for endoscope system, and method for operating endoscope system
JP6754114B2 (en) Image analyzer
CN111936031A (en) Medical image processing apparatus
JP6072417B2 (en) Imaging system and imaging method
US8380278B2 (en) Image capturing apparatus, image capturing method, and computer readable medium
JP7282307B2 (en) Mechanoluminescent data processing device, mechanoluminescent data processing method, mechanoluminescent measuring device, and mechanoluminescent test system
CN109923398A (en) Pass through the colour imaging of discrete narrow band synchronous lighting
JP2018004515A (en) Fluorescence detection device
US20220151474A1 (en) Medical image processing device and medical observation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851006

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP