WO2017047821A1 - Method and device for visualizing tissue blood vessel characteristics - Google Patents

Method and device for visualizing tissue blood vessel characteristics Download PDF

Info

Publication number
WO2017047821A1
WO2017047821A1 PCT/JP2016/077756 JP2016077756W WO2017047821A1 WO 2017047821 A1 WO2017047821 A1 WO 2017047821A1 JP 2016077756 W JP2016077756 W JP 2016077756W WO 2017047821 A1 WO2017047821 A1 WO 2017047821A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
tissue
blood
blood flow
unit
Prior art date
Application number
PCT/JP2016/077756
Other languages
French (fr)
Japanese (ja)
Inventor
高伸 八木
Original Assignee
イービーエム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イービーエム株式会社 filed Critical イービーエム株式会社
Priority to JP2017540053A priority Critical patent/JPWO2017047821A1/en
Publication of WO2017047821A1 publication Critical patent/WO2017047821A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • the present invention relates to a technique for calculating and displaying tissue blood vessel characteristics such as tissue blood volume and blood vessel peripheral resistance from blood vessel morphology imaging data without using functional imaging such as PET / SPECT.
  • non-invasive imaging used in the medical field can be classified into two types: (1) morphological imaging and (2) functional imaging.
  • morphological imaging those that image the shape of blood vessels by MRA, CTA, DSA, etc. are typical. Morphological imaging is limited to visualization of blood vessels on the order of 0.5 mm at most because of limited spatial resolution.
  • blood supply in the deep part of the heart and brain relies on capillaries. Capillary scales are on the order of 0.001 to 0.01 mm, and morphological imaging is not possible. Therefore, functional imaging such as PET or SPECT is used.
  • PET and SPECT a substance that permeates capillaries is injected into blood and its distribution is measured. In this case, the substance becomes a radioactive substance, and the tissue blood volume supplied to the tissue and the tissue blood volume held by the tissue can be measured using the property of permeating through the walls of the capillaries.
  • erasure resistance has been at a conceptual level so far.
  • the pressure and flow rate in the distal blood vessel are required, and the measurement of these values requires invasive measurement using a catheter, and there is a problem that it cannot be performed non-invasively. It was.
  • the capillaries that supply the blood flow in the tissue cannot be imaged, but the blood vessels in the capillaries cannot be imaged. If the responsible blood vessels that supply the flow can be identified, it can be expected to create a new treatment.
  • the inventors have come to the conclusion that the above-mentioned problems can be fundamentally solved if the data obtained by functional imaging can be mathematically calculated from the data obtained from morphological imaging such as medical images.
  • the inventors have hereby developed a method for performing functional imaging based on morphological imaging, and based on vascular morphological imaging such as MRA, CTA, DSA, and the like as tissue imaging such as PET / SPECT.
  • a method for mathematically calculating tissue vascular characteristics such as
  • a computer that processes a medical image including the analysis target region, identifies a responsible blood vessel that supplies blood to the analysis target region, and outputs the blood flow; and the computer calculates a tissue blood vessel in the analysis target region from the blood flow.
  • a method for visualizing tissue vascular characteristics comprising calculating characteristics and superimposing or individually displaying on the medical image.
  • the step of identifying the responsible blood vessel includes a step in which a computer extracts a nearest blood vessel with respect to the analysis target region, and a flow stream of a blood flow that flows through the nearest blood vessel.
  • a calculating step, and a computer determining the responsible blood vessel based on the calculated streamline.
  • the tissue blood vessel characteristic is a tissue blood flow rate supplied to the analysis target area
  • the step of calculating the tissue blood vessel characteristic includes a tissue blood flow rate stored in a memory by a computer.
  • the tissue vascular characteristic is an erasure resistance in a capillary blood vessel of the analysis target region
  • the step of calculating the tissue vascular characteristic further includes: A step of calculating a pressure loss value of the responsible blood vessel based on a blood flow rate; and a step of calculating and outputting a peripheral resistance of the analysis target region based on the pressure loss value.
  • a blood vessel tomographic image by MRA, CTA, or DSA as the medical image.
  • the blood flow rate is calculated from an equation modeled by a computer from Hagen Poiseuille theory and a constant shear stress adjustment function of endothelial cells.
  • the tissue blood flow rate calculation coefficient is obtained by statistically processing the relationship between the vascular blood flow rate obtained from morphological imaging and the tissue blood volume obtained from functional imaging, and is stored in the memory. It has been done.
  • the step of calculating the pressure loss value is calculated by applying the flow rate to an equation modeled by a computer based on the Hagen Poiseuille theory.
  • the method further includes a step of calculating a blood vessel shape of each blood vessel from the medical image.
  • the method further includes a step of physically calculating a blood flow in each blood vessel based on the calculated blood vessel shape.
  • the step of identifying the responsible blood vessel further includes a step of superimposing and displaying the medical image on a calculation result of blood flow analysis, and the superimposed medical image
  • the user has a step of designating a target point of the analysis target region and a step of extracting a nearby blood vessel from a medical image designating the target point.
  • the step of calculating the streamline comprises calculating a streamline by placing a seed point on the extracted nearest blood vessel at a position closest to the target point. is there.
  • a computer processes a medical image including an analysis target region, identifies a responsible blood vessel that supplies blood to the analysis target region, and outputs the blood flow rate.
  • a tissue blood vessel characteristic calculating unit that calculates a tissue blood vessel characteristic of the analysis target region from the blood flow volume, and superimposes or individually displays the tissue blood vessel characteristic on the medical image.
  • a computer processes a medical image including an analysis target area, identifies a responsible blood vessel that supplies blood to the analysis target area, and outputs the blood flow volume;
  • a computer software program for visualizing tissue blood vessel characteristics including a command for calculating a tissue blood vessel characteristic of the analysis target region from the blood flow volume and superimposing or individually displaying the tissue blood vessel characteristics on the medical image; Provided.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.
  • FIG. 2 is a functional configuration diagram in the present embodiment.
  • 3A to 3E are diagrams for explaining the steps S1 to S4 in FIG. 4 (a) and 4 (b) are diagrams showing examples of blood vessel adhesion artifacts.
  • FIGS. 5A to 5C are diagrams for explaining the graphing and blood vessel adhesion detection steps of the present embodiment.
  • FIGS. 6A and 6B are views for explaining the blood vessel adhesion separation process of the present embodiment.
  • FIG. 7 is a diagram illustrating processing of the shape measurement unit of the present embodiment.
  • FIG. 8 is a table of parameters measured by the shape measuring unit of the present embodiment.
  • FIG. 9 is an explanatory diagram when the blood vessel characteristic calculation unit according to the embodiment of the present invention calculates the tissue blood volume.
  • FIG. 10 is an example in which the calculation result of the blood vessel characteristic calculation unit of the present embodiment is output by being superimposed on a medical image.
  • FIG. 11 is a graph of blood vessels related to the pressure calculation unit according to the embodiment of the present invention.
  • FIG. 12 is an example of a pressure loss value calculated by the pressure calculation unit.
  • FIG. 13 is a schematic diagram for explaining the erasure resistance calculated by the erasure resistance calculation unit of the present embodiment.
  • FIG. 14 is a functional configuration diagram in one embodiment of the present invention.
  • FIG. 15 is an explanatory diagram of the superimposing unit.
  • FIG. 16 is an example of a screen display of the target designation unit of the present embodiment.
  • FIG. 17 is a diagram for explaining the nearest blood vessel extraction processing by the neighboring blood vessel extraction unit of the present embodiment.
  • FIG. 18 is a diagram for explaining processing of the streamline calculation unit of the
  • FIG. 1 is a schematic configuration diagram showing a blood vessel characteristic display device according to this embodiment.
  • FIG. 1 shows a system configuration diagram of a blood vessel characteristic display device 100 according to an embodiment of the present invention.
  • the blood vessel characteristic display device 100 includes a control unit 1, an operation unit 2, a recording unit 3, a display unit 4, and the like.
  • the control unit 1 includes a CPU and a memory (both not shown), medical image data recorded in the recording unit 3, computer software, and various variables and coefficients (a shear stress value, tissue blood, which will be described later). 2) are appropriately read out and developed on the memory, thereby functioning as each component as shown in FIG.
  • a medical image input unit 21 functions as a medical image input unit 21, a thinning unit 22, a graphing unit 23, a shape measuring unit 24, a vascular blood flow rate calculating unit 25, a responsible blood vessel identifying unit 26 (not shown), and a blood vessel specific calculating unit 27.
  • the medical image input unit 21 functions as an input interface for inputting medical images and the like.
  • the input medical image is preferably a tomographic image captured by an imaging device such as MRA (magnetic resonance angiography), CTA (computer tomographic angiography), DSA (digital differential angiography), and the medical image is a network (not shown).
  • MRA magnetic resonance angiography
  • CTA computer tomographic angiography
  • DSA digital differential angiography
  • the data is once recorded in the recording unit 3 by other transfer means and then input to the control unit 1 (FIG. 1).
  • the medical image input unit 21 can also input parameters necessary for fluid analysis such as fluid physical properties, boundary conditions, and calculation conditions.
  • the thinning unit 22 binarizes the medical image input by the medical image input unit 21 (step S2-1) and thins the line (step S2-2), and acquires the center line of the blood vessel.
  • the processing in the thinning unit 22 will be described with reference to FIG.
  • Step S2-1 the thinning unit 22 binarizes the medical image ((FIG. 3A)) input in step S1, and extracts the three-dimensional shape of the blood vessel (FIG. 3B: step S2-1).
  • the thinning unit 22 automatically sets the binarization threshold so as to extract a characteristic specific to the blood vessel wall based on a histogram of luminance values of the entire image.
  • the threshold value may be selected and set.
  • the thinning unit 22 performs thinning processing on the binarized three-dimensional blood vessel shape data to obtain a blood vessel center line (FIG. 3C: step S2-2).
  • a plurality of algorithms are known for thinning and are not limited to a specific algorithm, but in this embodiment, the thinning unit centers the extracted voxel of the blood vessel region on the outer peripheral side (that is, the surface) of the blood vessel region.
  • the core of the blood vessel is extracted by shaving and the center line is obtained by fitting a spline curve or the like in the blood vessel running direction.
  • the graphing unit 23 performs graphing using the blood vessel center line obtained by the thinning unit 22 (FIG. 3D: step S3-1).
  • the graphing is to label each blood vessel portion of the center line data, and the graphed data is referred to as graph data.
  • the graphing unit first divides the blood vessel center line into elements for each region. In this element division, as shown in FIG. 3 (d), the end / branch point (A, B, C,%) Is specified in the center line acquired by the thinning process, and the end / branch. This is done by dividing the center line by points.
  • each blood vessel portion corresponding to the center line between the divided end points and branch points is referred to as a blood vessel element.
  • the graphing unit performs labeling (# 1, 2, 3,%) On the center line data of each blood vessel element to generate graph data (step S3-1).
  • a loop shape as an artifact may occur in the blood vessel due to the adhesion of the blood vessel.
  • the graphing unit may include a process of determining the presence or absence of a blood vessel loop and separating the adhesion between blood vessels when a blood vessel loop is detected.
  • the term “adhesion” used here appears to be adhered due to lack of image accuracy even though blood vessels are not originally adhered to each other. This is a phenomenon that occurs. This phenomenon is hereinafter referred to as “adhesion” or “adhesion artifact”.
  • a blood vessel is a loop circuit of a closed circuit at the whole body level, but a loop is not formed in a relatively microscopic region handled by blood flow analysis. Therefore, in this embodiment, the presence or absence of adhesion is detected according to the presence or absence of a loop.
  • the adhesion site is detected by graphing the blood vessel shape and depth-first search of the graph (step S3-2). That is, end points and branch points are detected and their connection relations are examined.
  • the branch structure of the blood vessel is expressed.
  • a node which indicates an end point or a branch point.
  • this graph appears as a closed circuit (loop), and this closed circuit is detected by searching the depth of the graph (FIG. 5C).
  • This is an operation that follows the edges from the initial node through all nodes.
  • the rules for tracing are as follows. (1) When a branch point is reached, an edge that has not passed is selected and the process proceeds to the next node. (2) When the end point is reached, return to the previous branch point. (3) If there is no side that has not passed when returning to the branch point, the process returns to the previous branch point.
  • the number of each node represents the visiting order of branch depth priority search.
  • a solid arrow indicates a forward path
  • a dotted arrow indicates a return path.
  • a closed circuit is generated between the fifth and sixth.
  • the depth-first search proceeds from the 5th node to 6th, 7th, 8th and returns to 6th.
  • the upper side has not yet passed. However, if you select the upper side, you will arrive at the number 5 that you have already visited. If there is no closed path, only the return path will return to the visited node, but if there is a closed path, the visited node will be reached in the forward path. Therefore, it is possible to detect a closed path by recording the passing situation of the nodes and sides, and the node at the time point determined to be closed (No. 6 in the example shown in FIG. 5C) is regarded as an adhesion site. Can do.
  • step S3-3 When the graphing unit 23 detects the adhesion site, it next separates the adhesion site. This adhesion separation is performed by setting a certain threshold value and evaluating the degree of adhesion. If the degree of adhesion is equal to or greater than the threshold, the process returns to the starting point of the region division, and the degree of adhesion is positively reduced by binarization based on a stricter standard. If the degree of adhesion is less than or equal to the threshold, the adhesion site is separated based on the running direction and shape of the blood vessel connected to the adhesion site. The separation process is performed based on the blood vessel region, the center line, the traveling direction of the blood vessel, and the cross-sectional area. The blood vessel region, the center line, and the running direction of the blood vessel are obtained by region division and structural analysis, and the cross section of the blood vessel is obtained by measuring a cross section perpendicular to the blood vessel running direction of the blood vessel region.
  • the flow of separation processing is as follows. (1) The adhesion section is obtained from the change in the cross-sectional area of the blood vessel. (2) Estimate the center line of the adhesion section using the center line of the blood vessels before and after the adhesion section. (3) The shape of each blood vessel is estimated by fitting two tangent ellipses in the blood vessel cross section of the adhesion section to the contour of the blood vessel surface. (4) Divide the cross section of the adhesion section into two.
  • the two center lines originally shifted to the inside, and finally touched to become a branch point.
  • the original center line of the adhesion section is estimated by interpolating from the front and back center lines.
  • the outline of each blood vessel is estimated on the cross section of the adhesion section using the estimated center line.
  • FIG. 6B shows a cross section perpendicular to the blood vessel running direction in the adhesion section.
  • Two black dots 71 indicate the estimated center line.
  • the two ellipses 72 are fitted to the blood vessel contour 73 of the adhesion section under the condition that the centers of the two ellipses 72 are known and are in contact. Two ellipses fitted by dotted lines in FIG. 6B are shown. Finally, the inside of the adhesion section is divided into two regions according to the ratio of the diameters of the two blood vessels, and the separation process is completed.
  • the shape measuring unit 24 measures the shape of each blood vessel element obtained by the graphing process. Specifically, in this embodiment, the following parameters are measured (FIG. 8). (1) Diameter (2) Concavity and convexity (3) Bending (4) Twisting (5) Branching angle (1) The diameter is an equivalent diameter of the blood vessel cross-sectional area in the blood vessel centerline running direction. (2) As shown in FIG. 7, the unevenness is quantified by three-dimensional information obtained by mapping each point of the line segment of the blood vessel surface running coordinate system and the height of the blood vessel that can be defined by a center line orthogonal section including the point. . (3) Bending and (4) Twist are quantified by approximating the blood vessel center line with a spline function. (5) The branching angle is an angle formed by the parent blood vessel and the daughter blood vessel at the blood vessel branching portion.
  • the vascular blood flow rate calculation unit 25 calculates the blood flow rate in each vascular element using the following equation 1 based on the average blood vessel diameter output from the shape measurement unit 24.
  • is wall shear stress and ⁇ is blood viscosity.
  • ⁇ and ⁇ are given as constants, but values actually measured in the target patient may be used.
  • the shear stress may be determined from an optimum shear stress diagram prepared separately according to aging or disease.
  • is a coefficient for correcting the influence of the bending or meandering of the blood vessel.
  • the responsible blood vessel identification unit 26 not shown in FIG. 2 identifies the responsible blood vessel that supplies blood to the analysis target region of the blood vessel characteristics.
  • the three-dimensional shape data of the blood vessel acquired by the shape measuring unit 24 is displayed on the screen so that the responsible blood vessel is extracted after the user designates the target.
  • it may be performed in step S7B-1 instead of after step S5.
  • the responsible blood vessel is identified after inputting the medical image in step S1.
  • a medical image is displayed on the screen to allow the user to specify a target, and the extraction of the nearby blood vessel, the identification of the nearest blood vessel, and the streamline calculation of the blood flow flowing in the nearest blood vessel are performed.
  • the blood transport route for supplying blood to the target is visualized, and the responsible blood vessel is identified.
  • This responsible blood vessel identification step will be described in detail with reference to FIGS. 14 to 18 in the description of another embodiment to be described later.
  • the blood vessel characteristic calculation unit 27 calculates the blood vessel characteristic for each tissue or for each designated region using the responsible blood vessel identified by the responsible blood vessel identification unit 26. Details will be described for each tissue blood vessel characteristic calculated below.
  • Tissue vascular characteristic A visualization of tissue blood volume
  • Tissue blood volume calculation unit 41 (step S7A-1) Based on the vascular blood flow calculated by the vascular blood flow calculation unit 25, the tissue blood volume calculation unit 41 calculates the tissue blood flow using the following formula 2.
  • Q tissue is the tissue blood volume per unit weight [ml / min / gram]
  • is a proportionality coefficient
  • Q i 150 is shown.
  • the proportionality coefficient ⁇ is a value obtained by statistically processing the relationship between the vascular blood flow and the tissue blood flow. More specifically, in this embodiment, for example, when targeting the brain, the blood flow supplied to the entire brain, that is, the integrated value of the vascular blood flow, and the blood flow supplied to the brain tissue are the same. When Q tissue , which is a tissue blood flow per brain tissue unit weight, is integrated over the entire brain, the integrated value of the vascular blood flow is the same.
  • is a value calculated using such a law of conservation of blood flow mass. More specifically, ⁇ is acquired using mass conservation as a constraint condition so that Q tissue can be acquired in association with the blood flow volume of the nearest blood vessel.
  • is a value obtained by statistically processing the relationship between vascular blood flow and tissue blood flow.
  • vascular blood flow was obtained from morphological imaging such as phase contrast MRI, and tissue blood volume was obtained from functional imaging such as PET / SPECT.
  • the blood vessel characteristic visualization device 100 displays the tissue blood flow on the screen.
  • a cross-sectional display of a medical image obtained by CT imaging with the result of the tissue blood flow rate calculation unit superimposed thereon is displayed.
  • the result of the tissue blood flow rate calculation unit is the result of calculating the tissue blood volume in the brain three-dimensionally, that is, for each unit tissue.
  • the superimposed result is shown in a two-dimensional cross section, but the apparatus of the present invention may display the result in three dimensions.
  • the value of the tissue blood volume is displayed in four stages.
  • the magnitude of tissue blood flow is represented by red, yellow, green, and blue as shown in FIG. Assume that the red region has the highest tissue blood volume, and the tissue blood flow decreases in the order of yellow, green, and blue.
  • tissue blood vessel characteristic that is finally calculated and visualized is the tissue blood volume
  • tissue blood vessel characteristic that is calculated next is the erasure resistance
  • the blood vessel characteristic calculation unit 27 further includes a pressure calculation unit 45 (step S7B-1) and an erasure resistance calculation unit 46 (step S7B-2).
  • Pressure calculation unit 45 calculates the pressure loss value ⁇ p in each vascular element using the following Equation 3 based on the data calculated by the shape calculation unit 24 and the blood flow rate calculation unit 25.
  • blood viscosity
  • l blood vessel length
  • D blood vessel diameter
  • Q blood flow.
  • is a coefficient that corrects bending and meandering of blood vessels.
  • the pressure calculation unit 45 extracts a basal blood vessel serving as a route of a main artery that supplies blood to each organ.
  • the basal blood vessel corresponds to # 1.
  • the algorithm for extracting the basal blood vessel is shape information or anatomical information, and there is no special designation.
  • the pressure calculation unit 45 calculates the pressure loss value of each blood vessel element (# 1, # 2, # 3,%) Using the above equation 3 based on the basal blood vessel as shown in FIG. Output.
  • the erasure resistance calculation unit 46 calculates and outputs the erasure resistance value R_i using the following equation 4 based on the pressure loss value calculated by the pressure calculation unit 45.
  • the arterial pressure P_i is calculated from the basal artery pressure Pref_artery and the aforementioned pressure loss value ⁇ p.
  • an actual measurement value may be used for the venous pressure P_ (ref_vein).
  • the erasure resistance value may be calculated by the following equation 5 ignoring this.
  • the present embodiment relates to a method and an apparatus for visualizing a blood transport route using a main artery that can be imaged as a form.
  • the method is by computer simulation. Perform blood simulation from morphology. After that, a streamline is created with a seeding point near the target (for example, a reservoir or a tumor in the brain). In this case, the streamline should be created upstream of the flow method.
  • the responsible blood vessel is identified by following the trajectory of this streamline.
  • FIG. 15 is a diagram showing a functional configuration of the blood flow transport path visualization device in the present embodiment.
  • This apparatus receives medical image data and velocity field / pressure field data acquired by performing blood flow analysis by computational fluid dynamics (CFD) using the image data (step SC1). ).
  • the medical image data is a group of tomographic images captured by an imaging apparatus such as MRA, CTA, and DSA, similarly to the medical image input in the above-described embodiment.
  • the superimposing unit 32 receives the data of the coordinate system (Ximage, Yimage, Zimage) of the input medical image data and the coordinate system of the velocity field / pressure field (XCFD, YCFD, ZCFD), and is the same.
  • the coordinate system of the medical image data is transformed into the coordinate system of the velocity field / pressure field.
  • Target designation unit 33 displays the medical image data coordinate-converted by the superimposing unit 32 on the display unit, and allows the user to select a target vascular lesion site in the image data via the user interface.
  • targets are cerebral aneurysms and brain tumors.
  • FIG. 16 shows an example of a medical image displayed on the display unit. In FIG. 16, what is indicated by a double circle corresponds to a portion designated as a target.
  • Step SC4 Neighboring blood vessel extraction unit 34
  • the nearby blood vessel extraction unit 34 first performs the binarization / thinning processing of steps S2-1 to S2-2 on the medical image specified by the target specification unit 33, and then steps S3-1 to S3. -3 Perform graphing / adhesion detection / separation processing.
  • Step SC4-2) Next, the nearby blood vessel extraction unit 34 extracts a nearby blood vessel for the target designated by the target designation unit 33.
  • the neighboring blood vessel extraction unit classifies the neighboring blood vessels according to the distance from the target, but considers a continuous blood vessel as one.
  • FIG. 17 shows a stage where the distance from the target to each blood vessel is measured and the nearest blood vessel is identified.
  • a target indicated by a double circle is the target, and a section indicated by a dotted line is the nearest blood vessel identified.
  • the streamline calculation unit 35 calculates and visualizes the blood transport route to the target. Specifically, a seed point is placed in a nearby blood vessel extracted by the nearby blood vessel extraction unit 34, and a blood flow path to the target is calculated by calculating a streamline from the seed point in the nearby blood vessel toward the upstream in the flow direction. Is visualized.
  • FIG. 18 shows an example of a result of calculating a blood flow transport route by arranging a seed point at a position closest to the target in a nearby blood vessel.
  • the present invention can be variously modified, and is not limited to the above-described embodiment, and can be variously modified without changing the gist of the invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

[Solution] This method is for visualizing tissue blood vessel characteristics and comprises: a step in which a computer processes a medical image containing an area to be analyzed, identifies a blood vessel responsible for supplying blood to the area to be analyzed, and outputs the blood flow rate thereof; and a step in which a computer calculates the tissue blood vessel characteristics of an area being analyzed, from the blood flow rate, and displays these characteristics superimposed upon or separately from the medical image.

Description

組織血管特性を可視化するための方法及びその装置Method and apparatus for visualizing tissue vascular properties
 本発明は、PET/SPECT等の機能イメージングを使用せずに、血管の形態イメージングデータから組織血液量や血管の抹消抵抗等の組織血管特性を算出及び表示する技術に関するものである。 The present invention relates to a technique for calculating and displaying tissue blood vessel characteristics such as tissue blood volume and blood vessel peripheral resistance from blood vessel morphology imaging data without using functional imaging such as PET / SPECT.
 従来より医療現場で利用されている非侵襲イメージングは、(1)形態イメージング、(2)機能イメージングの二つに分類することができる。形態イメージングのなかでは、MRA、CTA、DSAなどで血管の形状をイメージングするものが代表的である。形態イメージングでは、空間解像度の限定から高々0.5mmオーダーの血管を可視化することにとどまっている。一方、心臓や脳の深部の血液供給は毛細血管に頼っている。毛細血管のスケールは0.001~0.01mmオーダーであり、形態イメージングすることはできない。そこで、PETやSPECTといった機能イメージングが用いられる。PETやSPECTでは、血中に毛細血管を透過する物質を注入してその分布を計測する。この場合、物質は放射性物質となり、毛細血管の壁を透過する性質を利用して組織に供給される組織血流量や組織が保有する組織血液量を計測することができる。 Conventionally, non-invasive imaging used in the medical field can be classified into two types: (1) morphological imaging and (2) functional imaging. Among morphological imaging, those that image the shape of blood vessels by MRA, CTA, DSA, etc. are typical. Morphological imaging is limited to visualization of blood vessels on the order of 0.5 mm at most because of limited spatial resolution. On the other hand, blood supply in the deep part of the heart and brain relies on capillaries. Capillary scales are on the order of 0.001 to 0.01 mm, and morphological imaging is not possible. Therefore, functional imaging such as PET or SPECT is used. In PET and SPECT, a substance that permeates capillaries is injected into blood and its distribution is measured. In this case, the substance becomes a radioactive substance, and the tissue blood volume supplied to the tissue and the tissue blood volume held by the tissue can be measured using the property of permeating through the walls of the capillaries.
 しかしながら、非侵襲イメージングを使って毛細血管を含めた組織の血管特性を可視化しようとする場合に、形態イメージングと機能イメージングに分かれてしまっているので、医療現場に多大な負荷とコストを要求してしまうという課題があった。 However, when trying to visualize the blood vessel characteristics of tissues including capillaries using non-invasive imaging, it is divided into morphological imaging and functional imaging. There was a problem of ending up.
 さらに、形態画像と機能画像を結びつけるためには抹消抵抗という概念を導入する必要がある。しかし、抹消抵抗はこれまで概念レベルであった。すなわち、抹消抵抗を図るためには遠位血管での圧力と流量が必要となり、その値の計測には、カテーテルを用いた侵襲的計測が必要となり、非侵襲的には行えないという課題があった。 Furthermore, it is necessary to introduce the concept of erasure resistance in order to connect morphological images and functional images. However, erasure resistance has been at a conceptual level so far. In other words, in order to achieve erasure resistance, the pressure and flow rate in the distal blood vessel are required, and the measurement of these values requires invasive measurement using a catheter, and there is a problem that it cannot be performed non-invasively. It was.
 一方、癌や腫瘍の成長は毛細血管が局所的に増大することが必要であることを鑑みると、組織内血流を供給する毛細血管そのものをイメージングすることはできないにしても、毛細血管に血流を供給する責任血管の同定を行うことができれば新たなる治療法を生み出すきっかけとなることが期待できる。 On the other hand, considering that the growth of cancer and tumors requires that the capillaries increase locally, the capillaries that supply the blood flow in the tissue cannot be imaged, but the blood vessels in the capillaries cannot be imaged. If the responsible blood vessels that supply the flow can be identified, it can be expected to create a new treatment.
 以上の背景から、発明者らは、医用画像等の形態イメージングから得られるデータから機能イメージングで得られるデータを数学的に算出できれば上述の課題を抜本的に解決できるという結論に至った。このために発明者らは、形態イメージングをベースに機能イメージングを行う方法を誠意開発し、MRA、CTA、DSAなどの血管形態イメージングをベースにPET/SPECTのようなイメージングとして組織血液量や抹消抵抗等の組織血管特性を数学的に算出する方法を見いだした。 From the above background, the inventors have come to the conclusion that the above-mentioned problems can be fundamentally solved if the data obtained by functional imaging can be mathematically calculated from the data obtained from morphological imaging such as medical images. For this purpose, the inventors have sincerely developed a method for performing functional imaging based on morphological imaging, and based on vascular morphological imaging such as MRA, CTA, DSA, and the like as tissue imaging such as PET / SPECT. A method for mathematically calculating tissue vascular characteristics such as
 上記課題を解決するために、本発明の第1の主要な観点によれば、
 コンピュータが解析対象領域を含む医用画像を処理し、当該解析対象領域に血液を供給する責任血管を同定し、その血流量を出力する工程と、コンピュータが前記血流量から当該解析対象領域の組織血管特性を算出し、上記医用画像に重畳若しくは個別に表示する工程と、を有する組織血管特性を可視化するための方法が提供される。
In order to solve the above problems, according to a first main aspect of the present invention,
A computer that processes a medical image including the analysis target region, identifies a responsible blood vessel that supplies blood to the analysis target region, and outputs the blood flow; and the computer calculates a tissue blood vessel in the analysis target region from the blood flow. There is provided a method for visualizing tissue vascular characteristics comprising calculating characteristics and superimposing or individually displaying on the medical image.
 この発明の一の実施態様によれば、前記責任血管を同定する工程は、コンピュータが当該解析対象領域に対する最近傍血管を抽出する工程と、コンピュータが前記最近傍血管を流れる血流の流線を計算する工程と、コンピュータが前記計算された流線に基づいて前記責任血管を決定する工程と、をさらに有するものである。 According to one embodiment of the present invention, the step of identifying the responsible blood vessel includes a step in which a computer extracts a nearest blood vessel with respect to the analysis target region, and a flow stream of a blood flow that flows through the nearest blood vessel. A calculating step, and a computer determining the responsible blood vessel based on the calculated streamline.
 別の一の実施態様によれば、前記組織血管特性は、前記解析対象領域に供給される組織血流量であり、前記組織血管特性を算出する工程は、コンピュータがメモリに格納された組織血流量算出係数を読み出す工程と、コンピュータが前記読みだした組織血流量算出係数を前記責任血管の血流量に乗することで前記解析対象領域の単位重量当たりの組織血流量を出力する工程と、を有するものである。 According to another embodiment, the tissue blood vessel characteristic is a tissue blood flow rate supplied to the analysis target area, and the step of calculating the tissue blood vessel characteristic includes a tissue blood flow rate stored in a memory by a computer. A step of reading a calculation coefficient, and a step of outputting a tissue blood flow rate per unit weight of the analysis target region by multiplying the blood flow rate of the responsible blood vessel by the computer blood flow calculation coefficient read out by the computer. Is.
 この発明のさらに別の一の実施態様によれば、前記組織血管特性は、前記解析対象領域の毛細血管における抹消抵抗であり、前記組織血管特性を算出する工程はさらに、コンピュータが前記責任血管の血流量に基づいて前記責任血管の圧力損失値を算出する工程と、コンピュータが前記圧力損失値に基づいて前記解析対象領域の抹消抵抗を算出して出力する工程を有する。 According to still another embodiment of the present invention, the tissue vascular characteristic is an erasure resistance in a capillary blood vessel of the analysis target region, and the step of calculating the tissue vascular characteristic further includes: A step of calculating a pressure loss value of the responsible blood vessel based on a blood flow rate; and a step of calculating and outputting a peripheral resistance of the analysis target region based on the pressure loss value.
 また、前記医用画像は、MRA、CTA、DSAによる血管断層画像を用いるのが好ましい。 Further, it is preferable to use a blood vessel tomographic image by MRA, CTA, or DSA as the medical image.
 この発明のさらに別の一の実施態様によれば、前記血流量は、コンピュータがハーゲンポアズイユ理論と内皮細胞の一定せん断応力調節機能からモデル化した式から算出するものである。 According to yet another embodiment of the present invention, the blood flow rate is calculated from an equation modeled by a computer from Hagen Poiseuille theory and a constant shear stress adjustment function of endothelial cells.
 別の一の実施態様によれば、前記組織血流量算出係数は、形態イメージングから求めた血管血流量と機能イメージングから求めた組織血液量の関連性を統計処理して得られ、前記メモリに格納されたものである。 According to another embodiment, the tissue blood flow rate calculation coefficient is obtained by statistically processing the relationship between the vascular blood flow rate obtained from morphological imaging and the tissue blood volume obtained from functional imaging, and is stored in the memory. It has been done.
 この発明のさらに別の一の実施態様によれば、圧力損失値を算出する工程は、コンピュータがハーゲンポアズイユ理論をもとにモデル化した式に前記流量を適用することで算出するものである。 According to yet another embodiment of the present invention, the step of calculating the pressure loss value is calculated by applying the flow rate to an equation modeled by a computer based on the Hagen Poiseuille theory.
 さらに別の一の実施態様によれば、前記医用画像から各血管の血管形状を算出する工程をさらに有するものである。 According to still another embodiment, the method further includes a step of calculating a blood vessel shape of each blood vessel from the medical image.
 さらに別の一の実施態様によれば、前記算出された血管形状に基づいて、各血管における血流量を物理的に算出する工程をさらに有するものである。 According to yet another embodiment, the method further includes a step of physically calculating a blood flow in each blood vessel based on the calculated blood vessel shape.
 この発明のさらに別の一の実施態様によれば、前記責任血管を同定する工程はさらに、前記医用画像を血流解析の計算結果に対して重畳表示する工程と、前記重畳表示された医用画像上でユーザーが前記解析対象領域のターゲット点を指定する工程と、前記ターゲット点を指定した医用画像から近傍血管を抽出する工程と、を有するものである。 According to still another embodiment of the present invention, the step of identifying the responsible blood vessel further includes a step of superimposing and displaying the medical image on a calculation result of blood flow analysis, and the superimposed medical image The user has a step of designating a target point of the analysis target region and a step of extracting a nearby blood vessel from a medical image designating the target point.
 別の一の実施態様によれば、前記流線を計算する工程は、前記抽出された最近傍血管上で前記ターゲット点から最も近い位置にシード点を配置することで流線を計算するものである。 According to another embodiment, the step of calculating the streamline comprises calculating a streamline by placing a seed point on the extracted nearest blood vessel at a position closest to the target point. is there.
 この発明の第2の主要な観点によれば、コンピュータが解析対象領域を含む医用画像を処理し、当該解析対象領域に血液を供給する責任血管を同定し、その血流量を出力する責任血管同定部と、コンピュータが前記血流量から当該解析対象領域の組織血管特性を算出し、上記医用画像に重畳若しくは個別に表示する組織血管特性算出部と、を有する組織血管特性を可視化するための装置が提供される。 According to a second main aspect of the present invention, a computer processes a medical image including an analysis target region, identifies a responsible blood vessel that supplies blood to the analysis target region, and outputs the blood flow rate. And a tissue blood vessel characteristic calculating unit that calculates a tissue blood vessel characteristic of the analysis target region from the blood flow volume, and superimposes or individually displays the tissue blood vessel characteristic on the medical image. Provided.
 この発明の第3の主要な観点によれば、コンピュータが解析対象領域を含む医用画像を処理し、当該解析対象領域に血液を供給する責任血管を同定し、その血流量を出力する工程と、コンピュータが前記血流量から当該解析対象領域の組織血管特性を算出し、上記医用画像に重畳若しくは個別に表示する工程と、を実行する命令を含む組織血管特性を可視化するためのコンピュータソフトウエアプログラムが提供される。 According to a third main aspect of the present invention, a computer processes a medical image including an analysis target area, identifies a responsible blood vessel that supplies blood to the analysis target area, and outputs the blood flow volume; A computer software program for visualizing tissue blood vessel characteristics including a command for calculating a tissue blood vessel characteristic of the analysis target region from the blood flow volume and superimposing or individually displaying the tissue blood vessel characteristics on the medical image; Provided.
 なお、上記で挙げていない本発明の特徴は、この後に説明する発明の実施形態及び図面中に当業者が実施可能に提供される。 It should be noted that the features of the present invention not listed above are provided so as to be practiced by those skilled in the art in the embodiments and drawings described below.
図1は、本発明の一実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention. 図2は、本実施形態における機能構成図である。FIG. 2 is a functional configuration diagram in the present embodiment. 図3(a)~(e)は、図2のステップS1からS4の工程を説明する図である。3A to 3E are diagrams for explaining the steps S1 to S4 in FIG. 図4(a)及び(b)は、血管の癒着アーチファクトの例を示す図である。4 (a) and 4 (b) are diagrams showing examples of blood vessel adhesion artifacts. 図5(a)~(c)は、本実施形態のグラフ化及び血管の癒着検出の工程を説明する図である。FIGS. 5A to 5C are diagrams for explaining the graphing and blood vessel adhesion detection steps of the present embodiment. 図6(a)及び(b)は、本実施形態の血管の癒着分離の工程を説明する図である。FIGS. 6A and 6B are views for explaining the blood vessel adhesion separation process of the present embodiment. 図7は、本実施形態の形状測定部の処理を示す図である。FIG. 7 is a diagram illustrating processing of the shape measurement unit of the present embodiment. 図8は、本実施形態の形状測定部で測定するパラメータの表である。FIG. 8 is a table of parameters measured by the shape measuring unit of the present embodiment. 図9は、本発明の一実施形態の血管特性算出部が組織血液量を算出する場合の説明図である。FIG. 9 is an explanatory diagram when the blood vessel characteristic calculation unit according to the embodiment of the present invention calculates the tissue blood volume. 図10は、本実施形態の血管特性算出部の算出結果を医用画像に重畳して出力した一例である。FIG. 10 is an example in which the calculation result of the blood vessel characteristic calculation unit of the present embodiment is output by being superimposed on a medical image. 図11は、本発明の一実施形態の圧力計算部に関わる血管のグラフ図である。FIG. 11 is a graph of blood vessels related to the pressure calculation unit according to the embodiment of the present invention. 図12は、前記圧力計算部によって算出される圧力損失値の一例である。FIG. 12 is an example of a pressure loss value calculated by the pressure calculation unit. 図13は、本実施形態の抹消抵抗計算部によって算出される抹消抵抗を説明する模式図である。FIG. 13 is a schematic diagram for explaining the erasure resistance calculated by the erasure resistance calculation unit of the present embodiment. 図14は、本発明の一実施形態における機能構成図である。FIG. 14 is a functional configuration diagram in one embodiment of the present invention. 図15は、重畳部の説明図である。FIG. 15 is an explanatory diagram of the superimposing unit. 図16は、本実施形態のターゲット指定部の画面表示の一例である。FIG. 16 is an example of a screen display of the target designation unit of the present embodiment. 図17は、本実施形態の近傍血管抽出部による最近傍血管抽出の処理を説明する図である。FIG. 17 is a diagram for explaining the nearest blood vessel extraction processing by the neighboring blood vessel extraction unit of the present embodiment. 図18は、本実施形態の流線計算部の処理を説明する図である。FIG. 18 is a diagram for explaining processing of the streamline calculation unit of the present embodiment.
 以下、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
 図1は、この実施形態に係る血管特性表示装置を示す概略構成図である。 FIG. 1 is a schematic configuration diagram showing a blood vessel characteristic display device according to this embodiment.
 図1は、本発明の一実施形態における血管特性表示装置100のシステム構成図を示すものである。この血管特性表示装置100は、制御部1、操作部2、記録部3、及び表示部4等を有する。制御部1は、CPUとメモリ(いずれも図示せず)を有し、記録部3に記録されている医用画像データ、コンピュータ・ソフトウエアや各種の変数及び係数(後述するせん断応力値、組織血流量算出係数などを含む)を適宜読み出し、メモリ上に展開することにより、図2に示すような各構成要素として機能する。すなわち、医用画像入力部21、細線化部22、グラフ化部23、形状測定部24、血管血流量算出部25、(図示していない)責任血管同定部26、血管特定算出部27として機能する。 FIG. 1 shows a system configuration diagram of a blood vessel characteristic display device 100 according to an embodiment of the present invention. The blood vessel characteristic display device 100 includes a control unit 1, an operation unit 2, a recording unit 3, a display unit 4, and the like. The control unit 1 includes a CPU and a memory (both not shown), medical image data recorded in the recording unit 3, computer software, and various variables and coefficients (a shear stress value, tissue blood, which will be described later). 2) are appropriately read out and developed on the memory, thereby functioning as each component as shown in FIG. That is, it functions as a medical image input unit 21, a thinning unit 22, a graphing unit 23, a shape measuring unit 24, a vascular blood flow rate calculating unit 25, a responsible blood vessel identifying unit 26 (not shown), and a blood vessel specific calculating unit 27. .
 次に図2~10を参照して各構成部によって実行される動作について、ステップを追って詳細に説明する。 Next, with reference to FIGS. 2 to 10, the operations executed by each component will be described in detail step by step.
 (医用画像入力部:ステップS1)
 医用画像入力部21は医用画像等を入力する入力インターフェースとして機能する。入力される医用画像は、MRA(磁気共鳴血管造影)、CTA(コンピュータ断層血管造影)、DSA(デジタル差分血管造影)等の撮像装置で撮像された断層画像が望ましく、医用画像は、図示しないネットワークやその他の転送手段により一旦記録部3に記録された後、制御部1に入力される(図1)。
(Medical image input unit: Step S1)
The medical image input unit 21 functions as an input interface for inputting medical images and the like. The input medical image is preferably a tomographic image captured by an imaging device such as MRA (magnetic resonance angiography), CTA (computer tomographic angiography), DSA (digital differential angiography), and the medical image is a network (not shown). The data is once recorded in the recording unit 3 by other transfer means and then input to the control unit 1 (FIG. 1).
 また、医用画像入力部21では画像(医用画像)の他、流体物性、境界条件、計算条件等の流体解析に必要なパラメータ等の入力処理をすることもできるようになっている。 In addition to the image (medical image), the medical image input unit 21 can also input parameters necessary for fluid analysis such as fluid physical properties, boundary conditions, and calculation conditions.
 (細線化部:ステップS2)
 細線化部22では、医用画像入力部21で入力された医用画像を二値化(ステップS2-1)及び細線化処理(ステップS2-2)して血管の中心線を取得する。細線化部22における処理は、図3を参照して説明する。
(Thinning section: Step S2)
The thinning unit 22 binarizes the medical image input by the medical image input unit 21 (step S2-1) and thins the line (step S2-2), and acquires the center line of the blood vessel. The processing in the thinning unit 22 will be described with reference to FIG.
 二値化(ステップS2-1)
 まず、細線化部22はステップS1で入力された医用画像((図3(a))を二値化し、血管の3次元形状を抽出する(図3(b):ステップS2-1)。本実施形態では、細線化部22は二値化の閾値を画像全体の輝度値のヒストグラムに基づいて血管壁特有の特徴を抽出するように自動設定する。他の実施形態では、ユーザーが二値化の閾値を選定して設定するようにしてもよい。
Binarization (Step S2-1)
First, the thinning unit 22 binarizes the medical image ((FIG. 3A)) input in step S1, and extracts the three-dimensional shape of the blood vessel (FIG. 3B: step S2-1). In the embodiment, the thinning unit 22 automatically sets the binarization threshold so as to extract a characteristic specific to the blood vessel wall based on a histogram of luminance values of the entire image. The threshold value may be selected and set.
 細線化(ステップS2-2)
 次に、細線化部22は、二値化した3次元血管形状データに対して細線化処理を行い血管中心線を取得する(図3(c):ステップS2-2)。細線化は複数のアルゴリズムが知られており、特定のアルゴリズムに限定されないが、この実施形態では、細線化部は、抽出した血管領域のボクセルを当該血管領域の外周側(すなわち表面)から中心に向けて削ることで血管の芯を抽出し、血管走行方向にスプライン曲線などをフィッティングすることで中心線を取得する。
Thinning (Step S2-2)
Next, the thinning unit 22 performs thinning processing on the binarized three-dimensional blood vessel shape data to obtain a blood vessel center line (FIG. 3C: step S2-2). A plurality of algorithms are known for thinning and are not limited to a specific algorithm, but in this embodiment, the thinning unit centers the extracted voxel of the blood vessel region on the outer peripheral side (that is, the surface) of the blood vessel region. The core of the blood vessel is extracted by shaving and the center line is obtained by fitting a spline curve or the like in the blood vessel running direction.
 (グラフ化部23:ステップS3)
 グラフ化(ステップS3-1)
 次に、グラフ化部23は、細線化部22で得られた血管中心線を用いてグラフ化を行う(図3(d):ステップS3-1)。グラフ化とは、この実施形態では中心線データの各血管部分にラベリングすることであり、そのグラフ化されたデータをグラフデータと呼ぶ。グラフ化処理において、グラフ化部は、まず血管中心線を領域ごとに要素分割する。この要素分割は、図3(d)に示すように、細線化処理で取得した中心線においてその端部・分岐点(A、B、C、・・・)を特定し、当該端部・分岐点で前記中心線を分割することで行う。以下、この分割された端点・分岐点間の中心線に対応する各血管部分を血管要素と言う。その後、グラフ化部は、各血管要素の中心線データにラベリング(#1、2、3、・・・)を行いグラフデータを生成する(ステップS3-1)。
(Graphing unit 23: Step S3)
Graphing (Step S3-1)
Next, the graphing unit 23 performs graphing using the blood vessel center line obtained by the thinning unit 22 (FIG. 3D: step S3-1). In this embodiment, the graphing is to label each blood vessel portion of the center line data, and the graphed data is referred to as graph data. In the graphing process, the graphing unit first divides the blood vessel center line into elements for each region. In this element division, as shown in FIG. 3 (d), the end / branch point (A, B, C,...) Is specified in the center line acquired by the thinning process, and the end / branch. This is done by dividing the center line by points. Hereinafter, each blood vessel portion corresponding to the center line between the divided end points and branch points is referred to as a blood vessel element. Thereafter, the graphing unit performs labeling (# 1, 2, 3,...) On the center line data of each blood vessel element to generate graph data (step S3-1).
 尚、グラフ化において、血管の癒着により血管にアーチファクトとしてのループ形状が発生する場合がある。 In graphing, a loop shape as an artifact may occur in the blood vessel due to the adhesion of the blood vessel.
 グラフ化部に、血管のループの有無を判定し、血管ループが検出された場合は血管同士の癒着を切り離す処理を含めてもよい。ここでいう癒着とは図4(a)~(b)に示すように、本来血管同士は癒着していないにも関わらず、画像精度の不足から癒着しているかのようにみえ、ループ形状が発生している現象である。この現象を以下、「癒着」または、「癒着アーチファクト」と言う。 The graphing unit may include a process of determining the presence or absence of a blood vessel loop and separating the adhesion between blood vessels when a blood vessel loop is detected. As shown in FIGS. 4 (a) to 4 (b), the term “adhesion” used here appears to be adhered due to lack of image accuracy even though blood vessels are not originally adhered to each other. This is a phenomenon that occurs. This phenomenon is hereinafter referred to as “adhesion” or “adhesion artifact”.
 癒着の検出(ステップS3-2)
 通常、血管とは全身レベルでは一巡閉鎖系のループ回路となっているが、血流解析が取り扱う比較的に微視的な領域においてループは形成しない。従って、この実施形態では、ループの有無に応じて癒着の有無を検出する。具体的には、図5(a)~(c)に示すように、癒着部位の検出を、血管形状のグラフ化、および当該グラフの深さ優先探索により行う(ステップS3-2)。すなわち、端点と分岐点を検出し、それらの接続関係を調べる。
Detection of adhesions (step S3-2)
Normally, a blood vessel is a loop circuit of a closed circuit at the whole body level, but a loop is not formed in a relatively microscopic region handled by blood flow analysis. Therefore, in this embodiment, the presence or absence of adhesion is detected according to the presence or absence of a loop. Specifically, as shown in FIGS. 5A to 5C, the adhesion site is detected by graphing the blood vessel shape and depth-first search of the graph (step S3-2). That is, end points and branch points are detected and their connection relations are examined.
 例えば、図5(a)に示す血管形状をもとに処理された図5(b)に示すグラフでは血管の分岐構造が表現されている。この図上で、円で示したものは節点であり、端点または分岐点を示す。癒着が生じると、このグラフに閉路(ループ)として表れるようになっており、この閉路をグラフの深さ擾先探索を行うことで検出する(図5(c))。これは初期の節点からすべての節点を通るように辺をたどっていく操作である。たどり方の規則は以下の通りである。
(1)分岐点に来たときには、通過していない辺を選び、次の節点に進む。
(2)端点に来たときには、手前の分岐点に戻る。
(3)分岐点に戻ったときに通過していない辺がなければ、手前の分岐点に戻る。
For example, in the graph shown in FIG. 5B processed based on the blood vessel shape shown in FIG. 5A, the branch structure of the blood vessel is expressed. In this figure, what is indicated by a circle is a node, which indicates an end point or a branch point. When adhesion occurs, this graph appears as a closed circuit (loop), and this closed circuit is detected by searching the depth of the graph (FIG. 5C). This is an operation that follows the edges from the initial node through all nodes. The rules for tracing are as follows.
(1) When a branch point is reached, an edge that has not passed is selected and the process proceeds to the next node.
(2) When the end point is reached, return to the previous branch point.
(3) If there is no side that has not passed when returning to the branch point, the process returns to the previous branch point.
 図5(c)において、各節点の番号は分岐深さ優先探索の訪問順序を表す。また、実線矢印は往路、点線矢印は復路を示す。この図5(c)に示す例では5番と6番の間に閉路が生じている。深さ優先探索を行うと、5番の節点から6番,7番,8番と進み6番に戻ってくる。ここで、往路は図の下側の辺を通ってきたので、上側の辺はまだ通過していない。ところが上の辺を選ぶとすでに訪問済みの5番に着く。閉路がなければ訪問済みの節点に戻るのは復路だけであるが、閉路が存在する場合は往路で訪問済みの節点に到達する。従って、節点と辺の通過状況を記録しておくことによって閉路を検出することができ、閉路と判定された時点の節点(図5(c)に示す例では6番)が癒着部位とみなすことができる。 In FIG. 5 (c), the number of each node represents the visiting order of branch depth priority search. A solid arrow indicates a forward path, and a dotted arrow indicates a return path. In the example shown in FIG. 5C, a closed circuit is generated between the fifth and sixth. When the depth-first search is performed, it proceeds from the 5th node to 6th, 7th, 8th and returns to 6th. Here, since the outward path has passed through the lower side of the figure, the upper side has not yet passed. However, if you select the upper side, you will arrive at the number 5 that you have already visited. If there is no closed path, only the return path will return to the visited node, but if there is a closed path, the visited node will be reached in the forward path. Therefore, it is possible to detect a closed path by recording the passing situation of the nodes and sides, and the node at the time point determined to be closed (No. 6 in the example shown in FIG. 5C) is regarded as an adhesion site. Can do.
 癒着部位の分離(ステップS3-3)
 グラフ化部23は癒着部位を検出すると、次に当該癒着部位の分離を行う。この癒着分離は、ある閾値を設定し、癒着の程度を評価することで行なう。癒着の程度が閾値以上であれば、領域分割の始点にもどり、より厳格な基準で二値化を行うことで積極的に癒着の程度を緩和する。癒着の程度が閾値以下であれば、癒着部位に接続されている血管の走行方向と形状にもとづいて癒着部位を分離する。分離の処理は、血管領域、中心線、血管の走行方向および断面積に基づいて行う。血管領域、中心線、血管の走行方向は領域分割および構造解析で取得したものであり、血管の断面は血管領域の血管走行方向に垂直な断面を計測することにより取得する。
Separation of adhesion site (step S3-3)
When the graphing unit 23 detects the adhesion site, it next separates the adhesion site. This adhesion separation is performed by setting a certain threshold value and evaluating the degree of adhesion. If the degree of adhesion is equal to or greater than the threshold, the process returns to the starting point of the region division, and the degree of adhesion is positively reduced by binarization based on a stricter standard. If the degree of adhesion is less than or equal to the threshold, the adhesion site is separated based on the running direction and shape of the blood vessel connected to the adhesion site. The separation process is performed based on the blood vessel region, the center line, the traveling direction of the blood vessel, and the cross-sectional area. The blood vessel region, the center line, and the running direction of the blood vessel are obtained by region division and structural analysis, and the cross section of the blood vessel is obtained by measuring a cross section perpendicular to the blood vessel running direction of the blood vessel region.
 分離処理の流れは以下の通りである。
(1)血管の断面積の変化から癒着区間を求める。
(2)癒着区間の前後の血管の中心線を用いて、癒着区間の中心線を推定する。
(3)癒着区間の血管断面において二つの接する楕円を血管表面の輪郭に当てはめることによって各血管の形状を推定する。
(4)癒着区間断面を二つに分割する。
The flow of separation processing is as follows.
(1) The adhesion section is obtained from the change in the cross-sectional area of the blood vessel.
(2) Estimate the center line of the adhesion section using the center line of the blood vessels before and after the adhesion section.
(3) The shape of each blood vessel is estimated by fitting two tangent ellipses in the blood vessel cross section of the adhesion section to the contour of the blood vessel surface.
(4) Divide the cross section of the adhesion section into two.
 以下に、図6を参照して、上記(1)~(4)の各分離処理をより詳細に説明する。まず、癒着区間とその前後における血管の断面積を計測する。癒着している部分は二本の血管が一体となっているため、血管の走行に沿って断面積をプロットしていくと図6(a)中の下方に示したグラフのように癒着区間のみ断面積が増大する。この変化を検出して、癒着区間を決定する。 Hereinafter, with reference to FIG. 6, each of the separation processes (1) to (4) will be described in more detail. First, the cross-sectional area of the blood vessel before and after the adhesion section is measured. Since the two blood vessels are integrated in the part where the adhesion is made, when the cross-sectional area is plotted along the running of the blood vessel, only the adhesion section as shown in the lower part of FIG. The cross-sectional area increases. This change is detected and the adhesion interval is determined.
 次に血管の中心線に着目すると、元々は二本だった中心線が内側へとずれていき、ついには接して分岐点となる。図6(a)上図において一点鎖線で示したものがそれに相当する。しかし、本来は二本の血管であるから、図6(a)上図において点線で示したように、交わることの無い二本の曲線になっているはずである。そこで、癒着区間の本来の中心線をその前後の中心線から補間することによって推定する。その次に、推定された中心線を用いて、癒着区間の断面上で各血管の輪郭を推定する。図6(b)は癒着区間における血管走行方向に垂直な断面を示している。二つの黒い点71は推定された中心線を示す。血管の断面は楕円と仮定して、二つ楕円72の中心が既知であり、接しているという条件の下で癒着区間の血管の輪郭73に二つの楕円を当てはめる。図6(b)の点線が当てはめた二つの楕円を示す。最後に、癒着区間の内部を二つの血管の径の比に応じて二つの領域に分割し、分離処理を完了する。 Next, paying attention to the center line of the blood vessel, the two center lines originally shifted to the inside, and finally touched to become a branch point. The one indicated by the alternate long and short dash line in the upper diagram of FIG. However, since it is originally two blood vessels, it should be two curves that do not intersect as shown by the dotted line in the upper diagram of FIG. Therefore, the original center line of the adhesion section is estimated by interpolating from the front and back center lines. Next, the outline of each blood vessel is estimated on the cross section of the adhesion section using the estimated center line. FIG. 6B shows a cross section perpendicular to the blood vessel running direction in the adhesion section. Two black dots 71 indicate the estimated center line. Assuming that the cross section of the blood vessel is an ellipse, the two ellipses 72 are fitted to the blood vessel contour 73 of the adhesion section under the condition that the centers of the two ellipses 72 are known and are in contact. Two ellipses fitted by dotted lines in FIG. 6B are shown. Finally, the inside of the adhesion section is divided into two regions according to the ratio of the diameters of the two blood vessels, and the separation process is completed.
 (形状計測部24:ステップS4)
 形状計測部24では、グラフ化処理により得られた各血管要素の形状計測を行う。具体的には、この実施形態では下記のパラメータを計測する(図8)。 
    (1)直径
    (2)凹凸
    (3)曲げ
    (4)捻れ
    (5)分岐角度
 (1)直径は、血管中心線走行方向での血管断面積の等価直径である。(2)凹凸は、図7に示すように、血管表面走行座標系の線分の各点と当該点を含む中心線直行断面で定義しうる血管高さを写像した3次元情報より定量化する。(3)曲げと(4)捻れは血管中心線をスプライン関数近似することで定量する。(5)分岐角度は、血管分岐部における親血管と娘血管のなす角度である。
(Shape Measurement Unit 24: Step S4)
The shape measuring unit 24 measures the shape of each blood vessel element obtained by the graphing process. Specifically, in this embodiment, the following parameters are measured (FIG. 8).
(1) Diameter (2) Concavity and convexity (3) Bending (4) Twisting (5) Branching angle (1) The diameter is an equivalent diameter of the blood vessel cross-sectional area in the blood vessel centerline running direction. (2) As shown in FIG. 7, the unevenness is quantified by three-dimensional information obtained by mapping each point of the line segment of the blood vessel surface running coordinate system and the height of the blood vessel that can be defined by a center line orthogonal section including the point. . (3) Bending and (4) Twist are quantified by approximating the blood vessel center line with a spline function. (5) The branching angle is an angle formed by the parent blood vessel and the daughter blood vessel at the blood vessel branching portion.
 (血管血流量計算部25:ステップS5)
 血管血流量計算部25は、形状計測部24で出力された血管平均径をもとに以下の数1を使用して各血管要素における血流量を算出する。
Figure JPOXMLDOC01-appb-M000001
(Vessel blood flow rate calculation unit 25: Step S5)
The vascular blood flow rate calculation unit 25 calculates the blood flow rate in each vascular element using the following equation 1 based on the average blood vessel diameter output from the shape measurement unit 24.
Figure JPOXMLDOC01-appb-M000001
 なお、ここでτは壁面せん断応力、μは血液粘度である。この実施形態では、τとμは定数として与えられるが、対象患者で実測した値を用いてもよい。または、加齢や疾患ごとに応じて別途に用意された至適せん断応力ダイアグラムからせん断応力を決めても良い。ここで、αは血管の曲げや蛇行による影響を補正する係数である。 Here, τ is wall shear stress and μ is blood viscosity. In this embodiment, τ and μ are given as constants, but values actually measured in the target patient may be used. Alternatively, the shear stress may be determined from an optimum shear stress diagram prepared separately according to aging or disease. Here, α is a coefficient for correcting the influence of the bending or meandering of the blood vessel.
 (責任血管同定部26)
 図2には図示されていない責任血管同定部26は、血管特性の解析対象領域に血液を供給する責任血管を同定する。この工程は、ステップS5の後に形状計測部24(ステップS4)によって取得された血管の3次元形状データを画面上に表示させて、ユーザーがターゲットを指定した上で責任血管が抽出されるようにしてもよいし、ステップS5の後ではなく、ステップS7B-1で行われてもよい。
(Responsible Blood Vessel Identification Unit 26)
The responsible blood vessel identification unit 26 not shown in FIG. 2 identifies the responsible blood vessel that supplies blood to the analysis target region of the blood vessel characteristics. In this process, after step S5, the three-dimensional shape data of the blood vessel acquired by the shape measuring unit 24 (step S4) is displayed on the screen so that the responsible blood vessel is extracted after the user designates the target. Alternatively, it may be performed in step S7B-1 instead of after step S5.
 また別の実施形態では、責任血管の同定はステップS1で医用画像を入力した後に行われる。この場合、ステップS1の後に画面上に医用画像を表示してユーザーにターゲットを指定させ、近傍血管の抽出、最近傍血管の同定、及び最近傍血管中を流れる血流の流線計算を行うことにより、ターゲットに血液を供給する血液輸送経路が可視化され、責任血管が同定される。この責任血管同定の工程については、後述の別の実施形態の説明において、図14~18を参照して詳細に説明する。 In yet another embodiment, the responsible blood vessel is identified after inputting the medical image in step S1. In this case, after step S1, a medical image is displayed on the screen to allow the user to specify a target, and the extraction of the nearby blood vessel, the identification of the nearest blood vessel, and the streamline calculation of the blood flow flowing in the nearest blood vessel are performed. Thus, the blood transport route for supplying blood to the target is visualized, and the responsible blood vessel is identified. This responsible blood vessel identification step will be described in detail with reference to FIGS. 14 to 18 in the description of another embodiment to be described later.
 (血管特性算出部27:ステップS7)
 血管特性算出部27は、責任血管同定部26で同定された責任血管を用いて、組織毎、あるいは指定領域毎の血管特性を算出するものである。以下に算出される組織血管特性別に詳細に説明する。
(Vessel characteristic calculation unit 27: Step S7)
The blood vessel characteristic calculation unit 27 calculates the blood vessel characteristic for each tissue or for each designated region using the responsible blood vessel identified by the responsible blood vessel identification unit 26. Details will be described for each tissue blood vessel characteristic calculated below.
 (組織血管特性A:組織血液量の可視化)
 組織血液量計算部41(ステップS7A-1)
 組織血液量計算部41は、血管血流量計算部25で算出された血管血流量をもとに、以下の数2を使用して組織血流量を計算する。
Figure JPOXMLDOC01-appb-M000002
(Tissue vascular characteristic A: visualization of tissue blood volume)
Tissue blood volume calculation unit 41 (step S7A-1)
Based on the vascular blood flow calculated by the vascular blood flow calculation unit 25, the tissue blood volume calculation unit 41 calculates the tissue blood flow using the following formula 2.
Figure JPOXMLDOC01-appb-M000002
 ここで、Qtissueは単位重量当たりの組織血液量[ml/min/gram]、βは比例係数、Qは責任血管同定部26で抽出された最近傍血管を流れる血管血流量である。図9では、Q=150と示されている。 Here, Q tissue is the tissue blood volume per unit weight [ml / min / gram], β is a proportionality coefficient, and Q i is the blood flow of blood flowing through the nearest blood vessel extracted by the responsible blood vessel identification unit 26. In FIG. 9, Q i = 150 is shown.
 上記比例係数βは、血管血流量と組織血流量の関連性を統計処理することで得られた値である。より詳しくは、この実施形態では例えば脳を対象とした場合、脳全体に供給される血流量すなわち上記血管血流量の積算値と、脳の組織に供給される血流量とは一致するものであり、脳組織単位重量当たりの組織血流量であるQtissueを脳全体で積算すると上記血管血流量の積算値と一致する。βは、このような血流量の質量保存則を利用して算出した値である。より具体的には、βは、最近傍血管の血流量に関連付けてQtissueを取得できるように質量保存を拘束条件として取得される。 The proportionality coefficient β is a value obtained by statistically processing the relationship between the vascular blood flow and the tissue blood flow. More specifically, in this embodiment, for example, when targeting the brain, the blood flow supplied to the entire brain, that is, the integrated value of the vascular blood flow, and the blood flow supplied to the brain tissue are the same. When Q tissue , which is a tissue blood flow per brain tissue unit weight, is integrated over the entire brain, the integrated value of the vascular blood flow is the same. β is a value calculated using such a law of conservation of blood flow mass. More specifically, β is acquired using mass conservation as a constraint condition so that Q tissue can be acquired in association with the blood flow volume of the nearest blood vessel.
 Qtissueが図9に四角で示す組織の場合、最近傍血管は、図9に示す#1であり、この血管を流れる血流量をもとに組織血流量を算出する。βは、血管血流量と組織血流量の関連性を統計処理することで得られた値である。この実施形態では、血管血流量は位相コントラストMRI等による形態イメージングから得られたであり、組織血液量はPET/SPECT等による機能イメージングから得られたである。 When the Q tissue is a tissue shown by a square in FIG. 9, the nearest blood vessel is # 1 shown in FIG. 9, and the tissue blood flow is calculated based on the blood flow flowing through this blood vessel. β is a value obtained by statistically processing the relationship between vascular blood flow and tissue blood flow. In this embodiment, vascular blood flow was obtained from morphological imaging such as phase contrast MRI, and tissue blood volume was obtained from functional imaging such as PET / SPECT.
 組織血液量の表示
 最終的に、血管特性可視化装置100は組織血流量を画面に表示する。この実施形態では、図10に示すようにCT撮像された医用画像に組織血流量計算部の結果を重畳したものを断面表示する。この組織血流量計算部の結果は、脳において3次元的すなわち各単位組織毎に組織血液量を計算した結果である。尚、この図では重畳した結果が2次元断面で示されているが、本発明の装置は当該結果を3次元的に表示してもよい。ここでは、組織血液量の値を4段階に区別して表示する。例えば組織血流量の大小は図10に示すように赤、黄色、緑、青で表わす。赤の領域が最も組織血液量が高く、黄色、緑、青の順で組織血流量が低くなっていくものとする。
Display of tissue blood volume Finally, the blood vessel characteristic visualization device 100 displays the tissue blood flow on the screen. In this embodiment, as shown in FIG. 10, a cross-sectional display of a medical image obtained by CT imaging with the result of the tissue blood flow rate calculation unit superimposed thereon is displayed. The result of the tissue blood flow rate calculation unit is the result of calculating the tissue blood volume in the brain three-dimensionally, that is, for each unit tissue. In this figure, the superimposed result is shown in a two-dimensional cross section, but the apparatus of the present invention may display the result in three dimensions. Here, the value of the tissue blood volume is displayed in four stages. For example, the magnitude of tissue blood flow is represented by red, yellow, green, and blue as shown in FIG. Assume that the red region has the highest tissue blood volume, and the tissue blood flow decreases in the order of yellow, green, and blue.
 本実施形態では、最終的に算出・可視化される組織血管特性が組織血液量の場合を説明したが、次に算出される組織血管特性が抹消抵抗の場合の実施形態を説明する。 In the present embodiment, the case where the tissue blood vessel characteristic that is finally calculated and visualized is the tissue blood volume has been described, but an embodiment in which the tissue blood vessel characteristic that is calculated next is the erasure resistance will be described.
 (組織血管特性B:抹消抵抗の可視化)
 次に、血管特性算出部27で出力される組織血管特性が抹消抵抗の場合の実施形態について説明する。この実施形態では、血管特性算出部27は、圧力計算部45(ステップS7B-1)と抹消抵抗計算部46(ステップS7B-2)をさらに有す。
(Tissue vascular characteristic B: Visualization of erasure resistance)
Next, an embodiment in which the tissue blood vessel characteristic output from the blood vessel characteristic calculation unit 27 is the erasure resistance will be described. In this embodiment, the blood vessel characteristic calculation unit 27 further includes a pressure calculation unit 45 (step S7B-1) and an erasure resistance calculation unit 46 (step S7B-2).
 圧力計算部45(ステップS7B-1)
 まず、圧力計算部45は、形状計算部24と血流量計算部25で算出されたデータをもとに、以下の数3を使用して各血管要素における圧力損失値Δpを計算する。
Figure JPOXMLDOC01-appb-M000003
Pressure calculation unit 45 (step S7B-1)
First, the pressure calculation unit 45 calculates the pressure loss value Δp in each vascular element using the following Equation 3 based on the data calculated by the shape calculation unit 24 and the blood flow rate calculation unit 25.
Figure JPOXMLDOC01-appb-M000003
 ここで、μは血液粘度、lは血管長さ、Dは血管直径、Qは血流量である。Βは血管の曲げや蛇行を補正する係数である。 Here, μ is blood viscosity, l is blood vessel length, D is blood vessel diameter, and Q is blood flow. Β is a coefficient that corrects bending and meandering of blood vessels.
 具体的には、まず、圧力計算部45は、各器官に血液を供給する主幹動脈のルートとなる基底血管を抽出する。図11に示す血管(グラフ)の例では、基底血管は#1に相当する。基底血管を抽出するアルゴリズムは形状情報や解剖情報であり特段の指定はない。その後、圧力計算部45は、基底血管をもとに上記数3を用いて図13に示すように各血管要素(#1,#2,#3,・・・)の圧力損失値を計算し出力する。 Specifically, first, the pressure calculation unit 45 extracts a basal blood vessel serving as a route of a main artery that supplies blood to each organ. In the example of the blood vessel (graph) shown in FIG. 11, the basal blood vessel corresponds to # 1. The algorithm for extracting the basal blood vessel is shape information or anatomical information, and there is no special designation. After that, the pressure calculation unit 45 calculates the pressure loss value of each blood vessel element (# 1, # 2, # 3,...) Using the above equation 3 based on the basal blood vessel as shown in FIG. Output.
 抹消抵抗計算部46(ステップS7B-2)
 次に抹消抵抗計算部46は、圧力計算部45で計算された圧力損失値をもとに以下の数4を使用して抹消抵抗値R_iを計算し出力する。
Figure JPOXMLDOC01-appb-M000004
Erasing resistance calculator 46 (step S7B-2)
Next, the erasure resistance calculation unit 46 calculates and outputs the erasure resistance value R_i using the following equation 4 based on the pressure loss value calculated by the pressure calculation unit 45.
Figure JPOXMLDOC01-appb-M000004
 ここで、動脈圧P_iは基底動脈圧Pref_arteryと前述の圧力損失値Δpから計算する。上記抹消抵抗値の計算では、静脈圧P_(ref_vein)に実測値を用いてもよい。あるいは、静脈圧P_(ref_vein)は動脈圧に対して小さいため、これを無視して以下の数5により抹消抵抗値の計算を行ってもよい。
Figure JPOXMLDOC01-appb-M000005
Here, the arterial pressure P_i is calculated from the basal artery pressure Pref_artery and the aforementioned pressure loss value Δp. In the calculation of the erasure resistance value, an actual measurement value may be used for the venous pressure P_ (ref_vein). Alternatively, since the venous pressure P_ (ref_vein) is small relative to the arterial pressure, the erasure resistance value may be calculated by the following equation 5 ignoring this.
Figure JPOXMLDOC01-appb-M000005
(血流輸送経路の可視化:責任血管の同定)
 次に、対象組織に対する血流輸送経路を可視化する場合の実施形態を図15~19を参照して説明する。本実施形態では、形態としてイメージングできる主幹動脈を利用して、血液の輸送経路を可視化する方法及びその装置に関するものである。方法は、コンピュータシミュレーションによる。形態から血液シミュレーションを行う。その後、ターゲット(例えば脳で言えば溜や腫瘍など)付近にシーディングポイントをおいて流線を作成する。流線はこの場合、流れ方法上流に向かって作成しいくことになる。この流線の軌跡をたどることによって責任血管を同定する。
(Visualization of blood flow transport path: identification of responsible blood vessels)
Next, an embodiment in the case of visualizing a blood flow transport route for a target tissue will be described with reference to FIGS. The present embodiment relates to a method and an apparatus for visualizing a blood transport route using a main artery that can be imaged as a form. The method is by computer simulation. Perform blood simulation from morphology. After that, a streamline is created with a seeding point near the target (for example, a reservoir or a tumor in the brain). In this case, the streamline should be created upstream of the flow method. The responsible blood vessel is identified by following the trajectory of this streamline.
 図15は、本実施形態における血流輸送経路可視化装置の機能構成を示す図である。 FIG. 15 is a diagram showing a functional configuration of the blood flow transport path visualization device in the present embodiment.
 入力部(ステップSC1)
この装置は、医用画像データと、当該画像データを用いて数値流体力学(Computational Fluid Dynamics:CFD)による血流解析を行うことで取得される速度場・圧力場データとを入力とする(ステップSC1)。医用画像データは、上述の実施形態で入力される医用画像と同様に、MRA、CTA、DSAなどの撮像装置で撮像された断層画像群である。
Input unit (step SC1)
This apparatus receives medical image data and velocity field / pressure field data acquired by performing blood flow analysis by computational fluid dynamics (CFD) using the image data (step SC1). ). The medical image data is a group of tomographic images captured by an imaging apparatus such as MRA, CTA, and DSA, similarly to the medical image input in the above-described embodiment.
 重畳部32(ステップSC2)
 重畳部32は、図15で示すように、入力された医用画像データの座標系(Ximage, Yimage, Zimage)と速度場・圧力場の座標系(XCFD、YCFD、ZCFD)のデータを受け取り、同一座標系で表現するために、前記医用画像データの座標系を速度場・圧力場の座標系に座標変換する。
Superposition unit 32 (step SC2)
As shown in FIG. 15, the superimposing unit 32 receives the data of the coordinate system (Ximage, Yimage, Zimage) of the input medical image data and the coordinate system of the velocity field / pressure field (XCFD, YCFD, ZCFD), and is the same. In order to express in the coordinate system, the coordinate system of the medical image data is transformed into the coordinate system of the velocity field / pressure field.
 ターゲット指定部33(ステップSC3)
 次に、ターゲット指定部33は、重畳部32で座標変換した医用画像データを表示部に表示し、ユーザーインターフェースを介して当該画像データにおいてターゲットとなる血管病変部をユーザーに選択させる。ターゲットの一例をあげれば、脳動脈瘤や脳腫瘍などが相当する。図16は、表示部に表示された医用画像の例を示す。図16では2重円で示したものがターゲットとして指定された部位に相当する。
Target designation unit 33 (step SC3)
Next, the target designating unit 33 displays the medical image data coordinate-converted by the superimposing unit 32 on the display unit, and allows the user to select a target vascular lesion site in the image data via the user interface. Examples of targets are cerebral aneurysms and brain tumors. FIG. 16 shows an example of a medical image displayed on the display unit. In FIG. 16, what is indicated by a double circle corresponds to a portion designated as a target.
 近傍血管抽出部34(ステップSC4)
 次に、図17と18を参照して近傍血管抽出部34が行う処理を説明する。
(ステップSC4-1)
 近傍血管抽出部34は、まず、ターゲット指定部33でターゲット指定された医用画像を上述したステップS2-1~S2-2の二値化・細線化処理を行い、次にステップS3-1~S3-3グラフ化・癒着検出・分離処理を行う。
(ステップSC4-2)
 次に、近傍血管抽出部34は、ターゲット指定部33で指定したターゲットに対する近傍血管を抽出する。近傍血管抽出部は近傍血管をターゲットからの距離に応じて分類するが、連続した血管は一つとみなす。ターゲットからの距離はボロノイ線図等の手法を利用して算出する。図17は、ターゲットから各血管までの距離を測定し、最近傍血管を同定した段階を示す。図17において、2重円で示したものがターゲットであり、点線で示した区間が同定された最近傍血管である。
Neighboring blood vessel extraction unit 34 (step SC4)
Next, processing performed by the nearby blood vessel extraction unit 34 will be described with reference to FIGS. 17 and 18.
(Step SC4-1)
The nearby blood vessel extraction unit 34 first performs the binarization / thinning processing of steps S2-1 to S2-2 on the medical image specified by the target specification unit 33, and then steps S3-1 to S3. -3 Perform graphing / adhesion detection / separation processing.
(Step SC4-2)
Next, the nearby blood vessel extraction unit 34 extracts a nearby blood vessel for the target designated by the target designation unit 33. The neighboring blood vessel extraction unit classifies the neighboring blood vessels according to the distance from the target, but considers a continuous blood vessel as one. The distance from the target is calculated using a technique such as Voronoi diagram. FIG. 17 shows a stage where the distance from the target to each blood vessel is measured and the nearest blood vessel is identified. In FIG. 17, a target indicated by a double circle is the target, and a section indicated by a dotted line is the nearest blood vessel identified.
 流線計算部35(ステップSC5)
 流線計算部35は、ターゲットへの血液の輸送経路を計算し可視化する。具体的には、近傍血管抽出部34で抽出した近傍血管内にシード点を配置し、当該近傍血管内のシード点から流れ方向上流に向けて流線を計算することによりターゲットへの血液輸送経路を可視化する。
Streamline calculation unit 35 (step SC5)
The streamline calculation unit 35 calculates and visualizes the blood transport route to the target. Specifically, a seed point is placed in a nearby blood vessel extracted by the nearby blood vessel extraction unit 34, and a blood flow path to the target is calculated by calculating a streamline from the seed point in the nearby blood vessel toward the upstream in the flow direction. Is visualized.
 (流線の表示36:ステップSC6)
 図18は、近傍血管内で最もターゲットから近い位置にシード点が配置され、血流輸送経路が計算された結果の一例を示す。流線計算部35によってターゲットに対する血流輸送経路を可視化することにより、ターゲットに血液を供給する責任血管の同定が可能になる。この血流輸送経路の可視化による責任血管の同定方法は、上述の実施形態における責任血管同定部26でも用いられる。
(Stream line display 36: Step SC6)
FIG. 18 shows an example of a result of calculating a blood flow transport route by arranging a seed point at a position closest to the target in a nearby blood vessel. By visualizing the blood flow transportation path with respect to the target by the streamline calculation unit 35, it becomes possible to identify the responsible blood vessel supplying blood to the target. This method for identifying the responsible blood vessel by visualizing the blood flow transport route is also used by the responsible blood vessel identifying unit 26 in the above-described embodiment.
 その他、本発明は、さまざまに変形可能であることは言うまでもなく、上述した一実施形態に限定されず、発明の要旨を変更しない範囲で種々変形可能である。 In addition, it goes without saying that the present invention can be variously modified, and is not limited to the above-described embodiment, and can be variously modified without changing the gist of the invention.

Claims (24)

  1.  コンピュータが解析対象領域を含む医用画像を処理し、当該解析対象領域に血液を供給する責任血管を同定し、その血流量を出力する工程と、
     コンピュータが前記血流量から当該解析対象領域の組織血管特性を算出し、上記医用画像に重畳若しくは個別に表示する工程と
     を有する組織血管特性を可視化するための方法。
    A computer processing a medical image including an analysis target region, identifying a responsible blood vessel supplying blood to the analysis target region, and outputting the blood flow;
    A method for visualizing the tissue blood vessel characteristic comprising: calculating a tissue blood vessel characteristic of the analysis target region from the blood flow volume and superimposing or individually displaying the tissue blood vessel characteristic on the medical image.
  2.  請求項1記載の方法において、
     前記責任血管を同定する工程は、
     コンピュータが当該解析対象領域に対する最近傍血管を抽出する工程と、
     コンピュータが前記最近傍血管を流れる血流の流線を計算する工程と、
     コンピュータが前記計算された流線に基づいて前記責任血管を決定する工程と
     をさらに有するものである、方法。
    The method of claim 1, wherein
    Identifying the responsible blood vessel comprises:
    A computer extracting a nearest blood vessel for the analysis target region;
    A computer calculating a streamline of blood flow through the nearest blood vessel;
    A computer further comprising: determining the responsible blood vessel based on the calculated streamline.
  3.  請求項1記載の方法において、
     前記組織血管特性は、前記解析対象領域に供給される組織血流量であり、
     前記組織血管特性を算出する工程は、
     コンピュータがメモリに格納された組織血流量算出係数を読み出す工程と、
     コンピュータが前記読みだした組織血流量算出係数を前記責任血管の血流量に乗することで前記解析対象領域の単位重量当たりの組織血流量を出力する工程と
     を有するものである、方法。
    The method of claim 1, wherein
    The tissue blood vessel characteristic is a tissue blood flow volume supplied to the analysis target region,
    The step of calculating the tissue vascular characteristic comprises:
    Reading a tissue blood flow calculation coefficient stored in a memory by a computer;
    And outputting a tissue blood flow rate per unit weight of the analysis target region by multiplying the blood flow rate of the responsible blood vessel by the computer-calculated tissue blood flow rate calculation coefficient.
  4.  請求項2記載の方法において、
     前記組織血管特性は、前記解析対象領域の毛細血管における抹消抵抗であり、
     前記組織血管特性を算出する工程はさらに、
     コンピュータが前記責任血管の血流量に基づいて前記責任血管の圧力損失値を算出する工程と、
     コンピュータが前記圧力損失値に基づいて前記解析対象領域の抹消抵抗を算出して出力する工程と
     を有するものである、方法。
    The method of claim 2, wherein
    The tissue vascular characteristic is a erasure resistance in capillaries in the analysis target region,
    The step of calculating the tissue vascular characteristic further includes:
    Calculating a pressure loss value of the responsible blood vessel based on a blood flow rate of the responsible blood vessel;
    A computer calculating and outputting an erasing resistance of the analysis target region based on the pressure loss value.
  5.  請求項1記載の方法において、
     前記医用画像は、MRA、CTA、DSAによる血管断層画像である
     ことを特徴とする方法。
    The method of claim 1, wherein
    The medical image is a blood vessel tomographic image obtained by MRA, CTA, or DSA.
  6.  請求項1記載の方法において、
     前記血流量は、コンピュータがハーゲンポアズイユ理論と内皮細胞の一定せん断応力調節機能からモデル化した式から算出するものである、方法。
    The method of claim 1, wherein
    The blood flow rate is calculated from an equation modeled by a computer from Hagen-Poiseuille theory and a constant shear stress adjustment function of endothelial cells.
  7.  請求項3記載の方法において、
     前記組織血流量算出係数は、形態イメージングから求めた血管血流量と機能イメージングから求めた組織血液量の関連性を統計処理して得られ、前記メモリに格納されたものである、方法。
    The method of claim 3, wherein
    The tissue blood flow calculation coefficient is a method obtained by statistically processing a relationship between a vascular blood flow obtained from morphological imaging and a tissue blood volume obtained from functional imaging, and stored in the memory.
  8.  請求項4記載の方法において、
     圧力損失値を算出する工程は、コンピュータがハーゲンポアズイユ理論をもとにモデル化した式に前記流量を適用することで算出するものである、方法。
    The method of claim 4, wherein
    The step of calculating the pressure loss value is a method in which the computer applies the flow rate to an equation modeled on the basis of the Hagen Poiseuille theory.
  9.  請求項1記載の方法において、
     前記医用画像から各血管の血管形状を算出する工程をさらに有するものである、方法。
    The method of claim 1, wherein
    A method further comprising calculating a blood vessel shape of each blood vessel from the medical image.
  10.  請求項9記載の方法において、
     前記算出された血管形状に基づいて、各血管における血流量を物理的に算出する工程をさらに有するものである、方法。
    The method of claim 9, wherein
    A method further comprising a step of physically calculating a blood flow in each blood vessel based on the calculated blood vessel shape.
  11.  請求項2記載の方法において、
     前記責任血管を同定する工程はさらに、
     前記医用画像を血流解析の計算結果に対して重畳表示する工程と、
     前記重畳表示された医用画像上でユーザーが前記解析対象領域のターゲット点を指定する工程と、
     前記ターゲット点を指定した医用画像から近傍血管を抽出する工程と、
     を有するものである、方法。
    The method of claim 2, wherein
    The step of identifying the responsible blood vessel further comprises:
    Displaying the medical image superimposed on the calculation result of blood flow analysis;
    A user designates a target point of the analysis target region on the superimposed medical image;
    Extracting a nearby blood vessel from a medical image designating the target point;
    Having a method.
  12.  請求項2記載の方法において、
     前記流線を計算する工程は、前記抽出された最近傍血管上で前記ターゲット点から最も近い位置にシード点を配置することで流線を計算するものである、方法。
    The method of claim 2, wherein
    The method of calculating the streamline is a method of calculating a streamline by arranging a seed point at a position closest to the target point on the extracted nearest blood vessel.
  13.  コンピュータが解析対象領域を含む医用画像を処理し、当該解析対象領域に血液を供給する責任血管を同定し、その血流量を出力する責任血管同定部と、
     コンピュータが前記血流量から当該解析対象領域の組織血管特性を算出し、上記医用画像に重畳若しくは個別に表示する組織血管特性算出部と
     を有する組織血管特性を可視化するための装置。
    A computer that processes a medical image including an analysis target region, identifies a responsible blood vessel that supplies blood to the analysis target region, and outputs a blood flow amount;
    An apparatus for visualizing a tissue blood vessel characteristic, comprising: a tissue blood vessel characteristic calculating unit that calculates a tissue blood vessel characteristic of the analysis target region from the blood flow volume and superimposes or individually displays the tissue blood vessel characteristic on the medical image.
  14.  請求項13記載の装置において、
     前記責任血管同定部は、
     コンピュータが当該解析対象領域に対する最近傍血管を抽出する最近傍血管抽出部と、
     コンピュータが前記最近傍血管を流れる血流の流線を計算する流線計算部と、
     コンピュータが前記計算された流線に基づいて前記責任血管を決定する責任血管決定部と
     をさらに有するものである、装置。
    The apparatus of claim 13.
    The responsible blood vessel identification unit
    A nearest-neighboring blood-vessel extraction unit for the computer to extract the nearest-neighbor blood vessels for the analysis target region
    A streamline calculator for calculating a streamline of blood flow through the nearest blood vessel by a computer;
    A device further comprising: a responsible blood vessel determination unit that determines the responsible blood vessel based on the calculated streamline.
  15.  請求項13記載の装置において、
     前記組織血管特性は、前記解析対象領域に供給される組織血流量であり、
     前記組織血管特性算出部は、
     コンピュータがメモリに格納された組織血流量算出係数を読み出す組織血流量算出係数読出し部と、
     コンピュータが前記読みだした組織血流量算出係数を前記責任血管の血流量に乗することで前記解析対象領域の単位重量当たりの組織血流量を出力する組織血流量出力部と
     を有するものである、装置。
    The apparatus of claim 13.
    The tissue blood vessel characteristic is a tissue blood flow volume supplied to the analysis target region,
    The tissue vascular characteristic calculation unit
    A tissue blood flow calculation coefficient reading unit for reading a tissue blood flow calculation coefficient stored in a memory by a computer;
    A tissue blood flow output unit that outputs a tissue blood flow per unit weight of the region to be analyzed by multiplying the blood flow rate of the responsible blood vessel by the computer-calculated tissue blood flow rate calculation coefficient; apparatus.
  16.  請求項14記載の装置において、
     前記組織血管特性は、前記解析対象領域の毛細血管における抹消抵抗であり、
     前記組織血管特性算出部はさらに、
     コンピュータが前記責任血管の血流量に基づいて前記責任血管の圧力損失値を算出する圧力損失値算出部と、
     コンピュータが前記圧力損失値に基づいて前記解析対象領域の抹消抵抗を算出して出力する抹消抵抗算出部と
     を有するものである、装置。
    The apparatus of claim 14.
    The tissue vascular characteristic is a erasure resistance in capillaries in the analysis target region,
    The tissue vascular characteristic calculation unit further includes
    A pressure loss value calculation unit that calculates a pressure loss value of the responsible blood vessel based on the blood flow volume of the responsible blood vessel;
    And a erasing resistance calculating unit that calculates and outputs the erasing resistance of the analysis target region based on the pressure loss value.
  17.  請求項13記載の装置において、
     前記医用画像は、MRA、CTA、DSAによる血管断層画像である
     ことを特徴とする装置。
    The apparatus of claim 13.
    The medical image is a blood vessel tomographic image by MRA, CTA, or DSA.
  18.  請求項13記載の装置において、
     前記血流量は、コンピュータがハーゲンポアズイユ理論と内皮細胞の一定せん断応力調節機能からモデル化した式から算出するものである、装置。
    The apparatus of claim 13.
    The blood flow rate is calculated from an expression modeled by a computer from Hagen Poiseuille theory and a constant shear stress adjustment function of endothelial cells.
  19.  請求項15記載の装置において、
     前記組織血流量算出係数は、形態イメージングから求めた血管血流量と機能イメージングから求めた組織血液量の関連性を統計処理して得られ、前記メモリに格納されたものである、装置。
    The apparatus of claim 15.
    The tissue blood flow rate calculation coefficient is obtained by statistically processing the relationship between the vascular blood flow rate obtained from morphological imaging and the tissue blood volume obtained from functional imaging, and is stored in the memory.
  20.  請求項16記載の装置において、
     前記圧力損失値算出部は、コンピュータがハーゲンポアズイユ理論をもとにモデル化した式に前記流量を適用することで算出するものである、装置。
    The apparatus of claim 16.
    The said pressure loss value calculation part is a device which calculates by applying the said flow volume to the formula which the computer modeled based on the Hagen Poiseuille theory.
  21.  請求項13記載の装置において、
     前記医用画像から各血管の血管形状を算出する血管形状算出部をさらに有するものである、装置。
    The apparatus of claim 13.
    An apparatus further comprising a blood vessel shape calculation unit for calculating a blood vessel shape of each blood vessel from the medical image.
  22.  請求項21記載の装置において、
     前記算出された血管形状に基づいて、各血管における血流量を物理的に算出する血流量算出部をさらに有するものである、装置。
    The apparatus of claim 21.
    An apparatus further comprising a blood flow rate calculation unit that physically calculates a blood flow rate in each blood vessel based on the calculated blood vessel shape.
  23.  請求項14記載の装置において、
     前記責任血管同定部はさらに、
     前記医用画像を血流解析の計算結果に対して重畳表示する重畳表示部と、
     前記重畳表示された医用画像上でユーザーが前記解析対象領域のターゲット点を指定するターゲット指定部と、
     前記ターゲット点を指定した医用画像から近傍血管を抽出する近傍血管抽出部と
     を有するものである、装置。
    The apparatus of claim 14.
    The responsible blood vessel identification unit further includes
    A superimposed display unit that superimposes and displays the medical image on a calculation result of blood flow analysis;
    A target designating unit for a user to designate a target point of the analysis target area on the superimposed medical image;
    A neighboring blood vessel extraction unit that extracts a neighboring blood vessel from a medical image in which the target point is specified.
  24.  請求項14記載の装置において、
     前記流線計算部は、前記抽出された最近傍血管上で前記ターゲット点から最も近い位置にシード点を配置することで流線を計算するものである、装置。
    The apparatus of claim 14.
    The streamline calculation unit calculates a streamline by arranging a seed point at a position closest to the target point on the extracted nearest blood vessel.
PCT/JP2016/077756 2015-09-18 2016-09-20 Method and device for visualizing tissue blood vessel characteristics WO2017047821A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017540053A JPWO2017047821A1 (en) 2015-09-18 2016-09-20 Method and apparatus for visualizing tissue vascular properties

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201562220611P 2015-09-18 2015-09-18
US201562220604P 2015-09-18 2015-09-18
US201562220606P 2015-09-18 2015-09-18
US62/220,611 2015-09-18
US62/220,604 2015-09-18
US62/220,606 2015-09-18

Publications (1)

Publication Number Publication Date
WO2017047821A1 true WO2017047821A1 (en) 2017-03-23

Family

ID=58289384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077756 WO2017047821A1 (en) 2015-09-18 2016-09-20 Method and device for visualizing tissue blood vessel characteristics

Country Status (2)

Country Link
JP (1) JPWO2017047821A1 (en)
WO (1) WO2017047821A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013031744A1 (en) * 2011-08-26 2013-03-07 イービーエム株式会社 System for diagnosing bloodflow characteristics, method thereof, and computer software program
JP2014128650A (en) * 2012-11-30 2014-07-10 Toshiba Corp Medical image processing apparatus
JP2014528770A (en) * 2011-08-17 2014-10-30 ノビタ セラピューティクス エルエルシー Systems and methods for increasing the overall diameter of veins and arteries
US20150250395A1 (en) * 2014-03-10 2015-09-10 Kabushiki Kaisha Toshiba Medical image processing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528770A (en) * 2011-08-17 2014-10-30 ノビタ セラピューティクス エルエルシー Systems and methods for increasing the overall diameter of veins and arteries
WO2013031744A1 (en) * 2011-08-26 2013-03-07 イービーエム株式会社 System for diagnosing bloodflow characteristics, method thereof, and computer software program
JP2014128650A (en) * 2012-11-30 2014-07-10 Toshiba Corp Medical image processing apparatus
US20150250395A1 (en) * 2014-03-10 2015-09-10 Kabushiki Kaisha Toshiba Medical image processing apparatus

Also Published As

Publication number Publication date
JPWO2017047821A1 (en) 2018-08-02

Similar Documents

Publication Publication Date Title
CN110168613B (en) System and method for estimating blood flow characteristics using reduced order models and machine learning
WO2019210553A1 (en) Microcirculation resistance index calculation method based on angiogram image and hydrodynamics model
JP6776283B2 (en) Blood vessel segmentation methods and equipment
Balocco et al. Standardized evaluation methodology and reference database for evaluating IVUS image segmentation
Friman et al. Multiple hypothesis template tracking of small 3D vessel structures
WO2020107667A1 (en) Method for calculating coronary artery fractional flow reserve on basis of myocardial blood flow and ct images
US9629563B2 (en) Method and system for functional assessment of renal artery stenosis from medical images
US9842401B2 (en) Segmentation apparatus for interactively segmenting blood vessels in angiographic image data
Galassi et al. 3D reconstruction of coronary arteries from 2D angiographic projections using non-uniform rational basis splines (NURBS) for accurate modelling of coronary stenoses
WO2017047819A1 (en) Blood vessel shape analysis device, method for same, and computer software program for same
CN105184086A (en) Method and system for improved hemodynamic computation in coronary arteries
JP2006081906A (en) Automated method and automated device for analyzing region affected by embolism in organ, and computer readable medium in which computer program code for analyzing region affected by embolism in organ is stored
EP3497669B1 (en) Method for automatically detecting systemic arteries in arbitrary field-of-view computed tomography angiography (cta).
JP2022508239A (en) Calculation method of microcirculatory resistance index based on myocardial blood flow and CT image
US20170323587A1 (en) Blood-vessel-shape construction device for blood-flow simulation, method therefor, and computer software program
WO2016159379A1 (en) Apparatus and method for constructing blood vessel configuration and computer software program
KR101479577B1 (en) Integrated analysis method of matching myocardial and cardiovascular anatomy informations
Jeon et al. Identification of coronary arteries in CT images by Bayesian analysis of geometric relations among anatomical landmarks
WO2017047821A1 (en) Method and device for visualizing tissue blood vessel characteristics
WO2016159353A1 (en) Information integrating method, device, system and program
CN113143305A (en) Providing a set of blood flow parameters for vascular malformations
WO2017047135A1 (en) Blood flow analysis device, method, and computer software program
JPWO2020054019A1 (en) Image processing equipment, image processing methods, and programs
CN113139961B (en) Method and device for determining dominant type of coronary artery
Plantefève et al. Robust automatic graph-based skeletonization of hepatic vascular trees

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846692

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017540053

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846692

Country of ref document: EP

Kind code of ref document: A1