WO2017047400A1 - Dry etching method, method for manufacturing semiconductor element and chamber cleaning method - Google Patents

Dry etching method, method for manufacturing semiconductor element and chamber cleaning method Download PDF

Info

Publication number
WO2017047400A1
WO2017047400A1 PCT/JP2016/075752 JP2016075752W WO2017047400A1 WO 2017047400 A1 WO2017047400 A1 WO 2017047400A1 JP 2016075752 W JP2016075752 W JP 2016075752W WO 2017047400 A1 WO2017047400 A1 WO 2017047400A1
Authority
WO
WIPO (PCT)
Prior art keywords
noble metal
metal element
dry etching
etching method
group
Prior art date
Application number
PCT/JP2016/075752
Other languages
French (fr)
Japanese (ja)
Inventor
啓之 大森
章史 八尾
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2017047400A1 publication Critical patent/WO2017047400A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/12Gaseous compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only

Definitions

  • the present invention relates to a dry etching method for a material containing a noble metal element.
  • nonvolatile memory elements such as a magnetic memory (MRAM) and a phase change memory (PRAM or PCRAM) have been developed today as a new memory that replaces a NAND flash memory and a DRAM.
  • MRAM magnetic memory
  • PRAM phase change memory
  • transition metals, noble metals, and the like have been used instead of conventional Si-based SiO x , SiN, SiON, etc. in the development of these new memory elements.
  • the element dry processing technique and the manufacturing apparatus dry cleaning technique must be changed from the conventional method.
  • plasma processing technology and cleaning technology using fluorocarbon which is an etching method for Si-based compounds, makes it difficult to convert a noble metal element such as Pt, which is a stable element, into a volatile compound and to remove it. .
  • a wet etching method As a method for removing noble metal elements such as Pt, a wet etching method is generally known in which it is dissolved and ionized to be removed by immersion in aqua regia.
  • a wet etching method is generally known in which it is dissolved and ionized to be removed by immersion in aqua regia.
  • the process of immersing and dissolving in aqua regia etc. is applied as an element etching process, it reacts with aqua regia etc. and the characteristics of the element are lost.
  • a method capable of removing a noble metal element by a dry process has been desired.
  • a pattern is formed by performing plasma reactive etching on an etching target film containing Co, Fe, Tb, Ru, Pd, Pt, Mn, etc., used for MRAM elements and PRAM elements, using ammonia gas and fluorine-containing gas.
  • a method of forming a structure is disclosed (see Patent Document 2).
  • a film containing at least one element of Ru, Rh, Pd, Os, Ir, Pt, Re, Au, Pb, Zr, Ti, Hf, and Bi is formed on a substrate.
  • a method for manufacturing a semiconductor device is disclosed in which unnecessary deposits in a film forming or etching apparatus are removed with a gas containing at least one of a ⁇ -diketone-based gas and a cyclopentadienyl-based gas (see Patent Document 3).
  • a lower electrode layer using a noble metal material or its oxide has a laminated structure of a lower electrode layer using a noble metal material or its oxide, a ferroelectric layer such as SBT or PZT, and an upper electrode layer using a noble metal material or its oxide formed on a semiconductor substrate.
  • a method of etching a ferroelectric memory (FeRAM) element by plasma processing a method of converting a noble metal element into a highly volatile substance by using a strong fluorinating agent such as F 2 is known. (See Patent Document 4).
  • a metal film such as Cr, Mo, W, Mn, Fe, Ru, Co, Ir, Ni, Pd, Pt, Cu, Ag, Au, etc. adhering to the inside of the film forming apparatus is formed by using ⁇ -diketone and NO x (A method of dry cleaning using a gas containing NO or N 2 O) within a temperature range of 200 to 400 ° C. is disclosed (see Patent Document 5).
  • Patent Documents 1 and 2 disclose a method for removing a plasma by exciting an etching gas and reacting with a film containing a noble metal element such as Pd in plasma, but the etching target is a magnetic material.
  • the plasma may adversely affect the magnetic characteristics, and it is necessary to provide an RF power source to generate the plasma, and the apparatus is expensive. Therefore, a method that does not use the plasma has been desired.
  • Patent Document 3 Pt is listed as an object to be etched.
  • oxidation reaction of Pt does not occur sufficiently, the complexing reaction with ⁇ -diketone does not proceed, and it is extremely The etching rate was slow and not practical.
  • an alloy such as Pt—Mn, the progress of the reaction was observed, but in the case of Pt alone, no improvement in etching rate was observed even when an oxidizing agent such as O 2 was added.
  • An object of the present invention is to provide a method capable of removing a material containing a noble metal element such as Pt by a dry process without using plasma.
  • the present inventors contacted the noble metal element with a mixed gas of a halogen-containing substance and NO or a nitrosyl halide in the step of removing the material containing the noble metal element. After oxidation, the present inventors found that a material containing a noble metal element can be removed by contacting with a gas containing ⁇ -diketone, and the present invention has been achieved.
  • a pretreatment including at least one selected from the group consisting of a mixed gas of a halogen-containing substance containing fluorine or chlorine and nitrogen monoxide (NO), nitrosyl fluoride (NOF), and nitrosyl chloride (NOCl)
  • the noble metal element is one or more elements selected from the group consisting of Au, Pt, Pd, Rh, Ir, Ru, and Os. To do.
  • a material containing a noble metal element such as Pt can be etched by a dry process that does not use plasma.
  • the present invention can be used to remove the noble metal element in a dry process without using plasma. .
  • pretreatment including at least one selected from the group consisting of a mixed gas of a halogen-containing substance and nitric oxide (NO), nitrosyl fluoride (NOF), and nitrosyl chloride (NOCl).
  • a material containing a noble metal element such as Pt is etched by a dry process.
  • FIG. 1 is a diagram showing a schematic process of the dry etching method of the present invention.
  • a pretreatment gas 12 is brought into contact with the material 11 as shown in FIG. 1B, and the noble metal element, nitrogen and oxygen are brought into contact with the surface of the material 11.
  • a solid compound 13 containing fluorine, or a noble metal element, nitrogen, oxygen, and chlorine.
  • the pretreatment gas 12 includes at least one selected from the group consisting of a mixed gas of a halogen-containing substance and nitric oxide (NO), nitrosyl fluoride (NOF), and nitrosyl chloride (NOCl).
  • ⁇ -diketone 14 and solid compound 13 are reacted to form complex 15 containing ⁇ -diketone and a noble metal element. Since the complex 15 is highly volatile, it becomes a gas and is removed from the material 11. As a result, as shown in FIG. 1D, the surface of the material 11 containing the noble metal element is etched. Note that the first step and the second step may be repeated to further etch the material 11 containing the noble metal element.
  • the halogen-containing substance preferably contains a fluorine atom or a chlorine atom.
  • the halogen-containing substance is F 2 , Cl 2 or a mixture thereof from the viewpoint of easy availability and handling.
  • the first step it is preferable to use a mixed gas of F 2 and NO, or NOF, because the corrosion of the device members is small.
  • the halogen-containing substance used in combination with NO may be used alone, or two or more kinds may be mixed and NOF and NOCl may be used alone, or two or more kinds may be mixed. May be used.
  • ⁇ -diketone is dipivaloylmethane (2,2,6,6-tetramethyl-3,5-heptanedione), hexafluoroacetylacetone (1,1,1,5,5,5-hexafluoro-2) , 4-pentanedione), trifluoroacetylacetone (1,1,1-trifluoro-2,4-pentanedione) and at least one compound selected from the group consisting of acetylacetone (2,4-pentanedione). It is preferable that not only one type but also two or more types may be used in combination. In particular, it is more preferable to use hexafluoroacetylacetone (HFAc) as the ⁇ -diketone in terms of enabling high-speed etching.
  • HFAc hexafluoroacetylacetone
  • the noble metal element is one or more elements selected from the group consisting of gold (Au), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru) and osmium (Os). It is preferable that it is one or more platinum group elements selected from the group consisting of Pt, Pd, Rh, Ir, Ru, and Os.
  • a material containing a noble metal element to be etched by this dry etching method not only a material consisting essentially of a noble metal but also a compound of a noble metal element such as a noble metal oxide and other elements, a noble metal An alloy containing an element may be used.
  • the present dry etching method to a material containing a precious metal element of 30% by mass or more, more preferably 50% by mass or more.
  • a Pt—Co alloy or a Pt—Mn alloy is used for the magnetic memory.
  • the shape of the material containing the noble metal element is not particularly limited, but may be a powder, a foil, or a thin film.
  • the reaction temperature in the first step is preferably 50 ° C. or higher and 150 ° C. or lower, more preferably 90 ° C. or higher and 150 ° C. or lower, and further preferably 120 ° C. or higher and 150 ° C. or lower.
  • the reaction temperature in the first step is too low, the reaction proceeds slowly and the etching amount in the second step decreases.
  • the reaction temperature in the first step is too high, there is a possibility that even a portion that should not be etched in the device or in the apparatus may be damaged.
  • the reaction temperature in the second step is preferably 200 ° C. or more and 400 ° C. or less, and more preferably 250 ° C. or more and 350 ° C. or less in order to obtain a sufficient etching rate. If the reaction temperature in the second step is too low, the etching rate decreases, and if the reaction temperature in the second step is too high, the ⁇ -diketone undergoes self-decomposition and the reactivity decreases.
  • reaction process will be described by taking F 2 or Cl 2 as a halogen-containing substance and using Pt, which is particularly stable among noble metal elements, as an example of etching, but includes other fluorine atoms or chlorine atoms. Even when the halogen-containing substance is used and applied to other noble metal elements, the same reaction is exhibited and the dry etching method can be applied.
  • NOCl X or NOF X (X is an integer greater than or equal to 1 and less than or equal to 3) is generated and is considered to act as a reaction substrate.
  • a mixed gas of Cl 2 or F 2 and NO Pt and NOCl x or NOF x react from around 90 ° C., and Pt and N and O and Cl or Pt and N and O and F
  • the solid Pt compound containing was produced, and the phenomenon that the weight of the solid component increased was observed, and a significant weight increase was observed at 110 ° C. or higher. This is the same when NOF or NOCl is used.
  • the reaction with Pt did not proceed with Cl 2 not containing NO even at 350 ° C. or higher. Further, with F 2 not containing NO, direct fluorination of Pt proceeded at about 320 ° C. or higher, PtF 6 having high volatility was preferentially generated, and the weight loss of the solid component occurred.
  • NO is added to a fluorinating agent such as F 2
  • the solid Pt compound produced by the reaction of Pt and NOF x does not volatilize even at 320 ° C. or higher, and the weight of the solid component increases. The phenomenon to be seen was seen. That is, Pt could not be removed only with a mixed gas of F 2 and NO.
  • ⁇ -diketone forms a complex with a solid Pt compound containing Pt, N, O, and Cl, or Pt, N, O, and F produced by a reaction of Pt and NOCl x or NOF x.
  • Pt to be etched is removed by the vaporization of the highly volatile ⁇ -diketone and Pt complex.
  • the concentration of the gas flowing in the first step that is, the mixed gas of the halogen-containing substance and NO, NOF, or NOCl in the pretreatment gas is 1% by volume with respect to the total flow rate in order to obtain a sufficient reaction rate. Preferably, it is preferably 10% by volume or more.
  • the concentration of NO to be added when using halogen-containing substance it is necessary to determine as appropriate depending on the concentration of the halogen-containing substance, but from proceeds ease of production reaction of NOCl X or NOF X, generally, including
  • the concentration of NO with respect to the concentration of the halogen substance is preferably in the range of 1: 0.2 or more and 5 or less, more preferably in the range of 1: 0.3 or more and 3 or less, and 1: 0.
  • a range of 5 or more and 2 or less is particularly preferable.
  • the concentration of ⁇ -diketone in the gas brought into contact with the material is preferably 1% by volume or more with respect to the total flow rate because the etching rate increases as the concentration of ⁇ -diketone increases. 10% by volume is particularly preferred.
  • the concentration of ⁇ -diketone in the gas brought into contact with the material is preferably 1% by volume or more with respect to the total flow rate because the etching rate increases as the concentration of ⁇ -diketone increases. 10% by volume is particularly preferred.
  • At least one kind of diluent gas selected from inert gases such as N 2 , He, and Ar may be mixed, and its concentration is also particularly high. It is not limited.
  • the concentration of the inert gas can be used in the range of 0 volume% or more and 90 volume% or less.
  • the pressure in the reactor is not particularly limited, but for example, the pressure range is 0.1 kPa or more and 101.3 kPa or less. What is necessary is just to determine a flow volume suitably in the range which can keep the pressure in a reactor constant according to the magnitude
  • a thin film containing a noble metal element may be formed as a ferromagnetic layer or an electrode layer on a semiconductor substrate.
  • the dry etching method of the present invention can be used. Specifically, a layer containing a noble metal element is formed on a semiconductor substrate, a mask having a predetermined pattern is further formed, and the mask containing the noble metal element is applied by applying the dry etching method of the present invention to the layer. By transferring the pattern, a ferromagnetic layer or an electrode layer for a semiconductor memory element can be formed.
  • a material containing a noble metal element may be used for the wiring material of the semiconductor element.
  • the dry etching method of the present invention can be used. Specifically, a layer containing a noble metal element is formed on a semiconductor substrate, a mask having a predetermined wiring pattern is further formed, and the dry etching method of the present invention is applied to the layer containing a noble metal element, The wiring of the semiconductor element can be formed by transferring the wiring pattern of the mask.
  • a material containing a noble metal element adhered in the chamber can be cleaned under the same conditions as in the present etching method.
  • the chamber cleaning method can be used for cleaning unnecessary deposits in the chamber after a step of forming a material containing a noble metal element on a substrate or an etching step.
  • FIG. 2 is a schematic diagram of the reaction apparatus 1 used in Examples and Comparative Examples, and a stage 3 having a function as a heater is installed in the chamber 2.
  • a heater is also provided around the chamber 2 so that the chamber wall can be heated.
  • the sample 4 can be etched by bringing a dry etching agent into contact with the sample 4 placed on the stage 3.
  • the gas in the chamber 2 is discharged through the gas discharge line 6 in a state where the dry etching agent is introduced from the gas inlet 5 installed at the upper part of the chamber.
  • a pressure gauge 7 is installed in the chamber.
  • a Pt plate (shape: 1 cm ⁇ 1 cm, thickness: 0.1 mm, Pt purity: 99% or more), the weight of which was previously measured, was set as the sample 4 and the stage 3 was heated to 120 ° C. .
  • this Pt board assumes the thin film Pt produced by the powder, foil, vapor deposition, plating, etc. which become removal object.
  • F 2 and NO were mixed at 50% by volume, and the total flow rate was set to 100 sccm.
  • the pressure in the chamber was 200 torr. After the gas was circulated for 30 minutes, the inside was evacuated.
  • the stage 3 was heated to 300 ° C., and a gas in which HFAc and N 2 were mixed at 50 vol% each was circulated at a total flow rate of 100 sccm for 30 minutes at a chamber internal pressure of 100 torr. Thereafter, the inside was evacuated. When the chamber was opened and the weight of Sample 4 was measured again to calculate the etching rate, the etching amount of Pt was 3.5 nm.
  • the etching amount can be obtained from the following formula using the weight of the Pt plate before and after etching.
  • Example 2 Etching was performed under the same conditions as in Example 1 except that F 2 and NO were mixed at 75% by volume and 25% by volume as the flow gas in the first step, and the total flow rate was set at 100 sccm. As a result, the etching amount of Pt was 3.0 nm.
  • Example 3 Etching was performed under the same conditions as in Example 1 except that F 2 and NO were mixed at 25% by volume and 75% by volume as the flow gas in the first step, and the total flow rate was set at 100 sccm. As a result, the etching amount of Pt was 3.7 nm.
  • Example 4 Etching was performed under the same conditions as in Example 3 except that the cycle of performing the second step after the first step was repeated two cycles. As a result, the etching amount of Pt was 6.9 nm.
  • Example 5 Etching was performed under the same conditions as in Example 1 except that Cl 2 and NO were mixed at 50% by volume instead of F 2 and NO as the flow gas in the first step, and the total flow rate was 100 sccm. . As a result, the etching amount of Pt was 2.5 nm.
  • Example 6 Etching was performed under the same conditions as in Example 1 except that NOF alone was circulated at 100 sccm instead of F 2 and NO as the circulation gas in the first step. As a result, the etching amount of Pt was 3.7 nm.
  • Example 1 Etching was performed under the same conditions as in Example 1, except that NO alone was passed at 100 sccm instead of F 2 and NO as the flow gas in the first step. As a result, the etching amount of Pt was 0.1 nm or less.
  • Example 7 and 8 instead of the Pt plate used in Example 1, an Au plate (shape 1 cm ⁇ 1 cm, thickness 0.1 mm, purity 99% or more) and an Ru plate (shape 1 cm ⁇ 1 cm, thickness 0.1 mm) Etching was performed under the same conditions as in Example 1 except that a purity of 99% or more was used. As a result, the etching amount of Au was 2.5 nm, the etching amount of Ru was 10 nm, and it was confirmed that the etching progressed.
  • the present invention is effective for forming a semiconductor memory element using a material containing a noble metal element such as Pt or a chamber cleaning used for forming a semiconductor memory element in a semiconductor element manufacturing process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

Disclosed is a dry etching method which is characterized by comprising: a first step wherein a pretreatment gas that contains a mixed gas of a halogen-containing substance containing fluorine or chlorine and nitrogen monoxide (NO) and at least one substance selected from the group consisting of nitrosyl fluoride (NOF) and nitrosyl chloride (NOCl) is reacted with a material containing a noble metal element, thereby forming a solid compound on the surface of the material; and a second step wherein β-diketone is reacted with the solid compound on the surface of the material, thereby etching the material. The present invention provides a method which is capable of removing a material containing a noble metal element such as Pt by means of a dry process that does not use a plasma.

Description

ドライエッチング方法、半導体素子の製造方法及びチャンバークリーニング方法Dry etching method, semiconductor device manufacturing method, and chamber cleaning method
 本発明は、貴金属元素を含む材料のドライエッチング方法等に関する。 The present invention relates to a dry etching method for a material containing a noble metal element.
発明の背景Background of the Invention
 今日、NAND型フラッシュメモリや、DRAMに代わる新規メモリとして、磁気メモリ(MRAM)、相変化メモリ(PRAM又はPCRAM)等様々なタイプの不揮発性メモリ素子が開発されている。これらの新規メモリ素子の開発において、素子を構成する材料は従来のSiを基材としたSiOx、SiN、SiON等に代わり、遷移金属や貴金属等が用いられるようになってきている。これら素子構成材料の変更に伴って、素子のドライ加工技術や製造装置のドライクリーニング技術についても従来法からの変更を余儀なくされている。例えば、Si系化合物のエッチング方法である、フルオロカーボン等を用いたプラズマ加工技術やクリーニング技術では、安定した元素であるPt等の貴金属元素を揮発性化合物へ変換することが難しく、除去が困難である。 2. Description of the Related Art Various types of nonvolatile memory elements such as a magnetic memory (MRAM) and a phase change memory (PRAM or PCRAM) have been developed today as a new memory that replaces a NAND flash memory and a DRAM. In the development of these new memory elements, transition metals, noble metals, and the like have been used instead of conventional Si-based SiO x , SiN, SiON, etc. in the development of these new memory elements. Along with the change in these element constituent materials, the element dry processing technique and the manufacturing apparatus dry cleaning technique must be changed from the conventional method. For example, plasma processing technology and cleaning technology using fluorocarbon, which is an etching method for Si-based compounds, makes it difficult to convert a noble metal element such as Pt, which is a stable element, into a volatile compound and to remove it. .
 Pt等の貴金属元素を除去する方法としては、王水等に浸すことにより、溶解、イオン化させて除去するウエットエッチング方法が一般的に知られている。しかし、王水等に浸し溶解させて除去するプロセスを、素子のエッチングプロセスとして適用すると、王水等と反応して素子の特性が失われてしまう。また、クリーニングプロセスとして適用する場合においても、装置を開放する必要が生じることから、ドライプロセスで貴金属元素を除去できる方法が望まれていた。 As a method for removing noble metal elements such as Pt, a wet etching method is generally known in which it is dissolved and ionized to be removed by immersion in aqua regia. However, when the process of immersing and dissolving in aqua regia etc. is applied as an element etching process, it reacts with aqua regia etc. and the characteristics of the element are lost. In addition, even when applied as a cleaning process, it is necessary to open the apparatus. Therefore, a method capable of removing a noble metal element by a dry process has been desired.
 Co、Fe、B、Pd、Pt、Mn、Ir、Ru、Mg、Ti、W等が含まれた金属積層膜を含む多層膜から形成されるMRAM素子をドライプロセスによりエッチングする方法として、プラズマ中でPF3を励起させ、金属と錯体を形成させて除去するエッチング方法が開示されている(特許文献1を参照)。 As a method for etching an MRAM element formed of a multilayer film including a metal laminated film containing Co, Fe, B, Pd, Pt, Mn, Ir, Ru, Mg, Ti, W, etc. by a dry process, Discloses an etching method in which PF 3 is excited to form a complex with a metal and removed (see Patent Document 1).
 また、MRAM素子やPRAM素子に使用される、Co、Fe、Tb、Ru、Pd、Pt、Mn等を含むエッチング対象膜を、アンモニアガスとフッ素含有ガスを用いてプラズマ反応性エッチングすることでパターン構造物を形成する方法が開示されている(特許文献2を参照)。 In addition, a pattern is formed by performing plasma reactive etching on an etching target film containing Co, Fe, Tb, Ru, Pd, Pt, Mn, etc., used for MRAM elements and PRAM elements, using ammonia gas and fluorine-containing gas. A method of forming a structure is disclosed (see Patent Document 2).
 プラズマを用いないドライエッチング方法としては、基板上に、Ru、Rh、Pd、Os、Ir、Pt、Re、Au、Pb、Zr、Ti、Hf及びBiのうちの少なくとも一つの元素を含む膜を成膜又はエッチングする装置内の不要堆積物をβジケトン系ガス及びシクロペンタジエニル系ガスの少なくとも一方を含むガスで除去する半導体装置の製造方法が開示されている(特許文献3を参照)。 As a dry etching method not using plasma, a film containing at least one element of Ru, Rh, Pd, Os, Ir, Pt, Re, Au, Pb, Zr, Ti, Hf, and Bi is formed on a substrate. A method for manufacturing a semiconductor device is disclosed in which unnecessary deposits in a film forming or etching apparatus are removed with a gas containing at least one of a β-diketone-based gas and a cyclopentadienyl-based gas (see Patent Document 3).
 そのほか、半導体基板上に形成された、貴金属材料又はその酸化物を用いた下部電極層、SBTやPZT等の強誘電体層、貴金属材料又はその酸化物を用いた上部電極層の積層構造からなる強誘電体メモリ(FeRAM)素子をプラズマ処理によりエッチング加工を行なう方法において、強力なフッ素化剤、例えばF2等を用いて、貴金属元素を揮発性の高い物質に変換して除去する方法が知られている(特許文献4を参照)。 In addition, it has a laminated structure of a lower electrode layer using a noble metal material or its oxide, a ferroelectric layer such as SBT or PZT, and an upper electrode layer using a noble metal material or its oxide formed on a semiconductor substrate. In a method of etching a ferroelectric memory (FeRAM) element by plasma processing, a method of converting a noble metal element into a highly volatile substance by using a strong fluorinating agent such as F 2 is known. (See Patent Document 4).
 また、成膜装置内に付着した、Cr、Mo、W、Mn、Fe、Ru、Co、Ir、Ni、Pd、Pt、Cu、Ag、Au等の金属膜を、β-ジケトンとNOX(NO又はN2O)を含むガスを、200~400℃の温度範囲内で用いて、ドライクリーニングする方法が開示されている(特許文献5を参照)。 Further, a metal film such as Cr, Mo, W, Mn, Fe, Ru, Co, Ir, Ni, Pd, Pt, Cu, Ag, Au, etc. adhering to the inside of the film forming apparatus is formed by using β-diketone and NO x ( A method of dry cleaning using a gas containing NO or N 2 O) within a temperature range of 200 to 400 ° C. is disclosed (see Patent Document 5).
 そのほか、基板上に形成された、Zn、Co、Hf、Fe、Mn、V等の金属膜を、H2O又はH22を添加したβ-ジケトンによりドライエッチングする方法が開示されている(特許文献6を参照)。 In addition, there is disclosed a method of dry etching a metal film such as Zn, Co, Hf, Fe, Mn, and V formed on a substrate with β-diketone to which H 2 O or H 2 O 2 is added. (See Patent Document 6).
特開2014-49466号公報JP 2014-49466 A 特開2011-103467号公報JP 2011-103467 A 特開2001-176807号公報JP 2001-176807 A 特開2006-100672号公報JP 2006-1000067 A 特開2013-194307号公報JP 2013-194307 A 特開2014-236096号公報JP 2014-236096 A
 しかしながら、特許文献1、2では、プラズマ中で、エッチングガスを励起させてPd等の貴金属元素を含む膜と反応させることにより除去する方法が公開されているが、エッチング対象が磁性材料である場合には、プラズマが磁気特性に悪影響を及ぼす可能性がある上に、プラズマを発生させるためにRF電源を備える必要があり、装置が高額となるため、プラズマを用いない方法が望まれていた。 However, Patent Documents 1 and 2 disclose a method for removing a plasma by exciting an etching gas and reacting with a film containing a noble metal element such as Pd in plasma, but the etching target is a magnetic material. In addition, there is a possibility that the plasma may adversely affect the magnetic characteristics, and it is necessary to provide an RF power source to generate the plasma, and the apparatus is expensive. Therefore, a method that does not use the plasma has been desired.
 また、特許文献3ではPtがエッチング対象物として列記されているが、本発明者らが実施したところ、Ptの酸化反応が十分に生じず、β-ジケトンと錯体化反応が進まず、極端にエッチング速度が遅く、実用的ではなかった。Pt-Mn等の合金であれば、反応の進行が認められたが、Pt単体では、O2等の酸化剤を添加しても、エッチング速度の改善は認められなかった。 Further, in Patent Document 3, Pt is listed as an object to be etched. However, when the present inventors have carried out, oxidation reaction of Pt does not occur sufficiently, the complexing reaction with β-diketone does not proceed, and it is extremely The etching rate was slow and not practical. In the case of an alloy such as Pt—Mn, the progress of the reaction was observed, but in the case of Pt alone, no improvement in etching rate was observed even when an oxidizing agent such as O 2 was added.
 さらに、F2等を用いてPtを揮発性の高いPtF6等に変換して除去することも可能であるが、プラズマを用いない場合はその反応温度は320℃以上であり、F2雰囲気下で高温条件とする必要がある。このような条件においては、Pt以外の材料に対するダメージが顕著であり、工業的に適用することが難しかった。 Furthermore, it is possible to remove Pt by converting it into highly volatile PtF 6 or the like using F 2 or the like. However, when plasma is not used, the reaction temperature is 320 ° C. or higher, and the F 2 atmosphere is used. It is necessary to use high temperature conditions. Under such conditions, damage to materials other than Pt was significant, and it was difficult to apply industrially.
 本発明の目的は、プラズマを用いないドライプロセスで、Pt等の貴金属元素を含む材料を除去できる方法を提供することである。 An object of the present invention is to provide a method capable of removing a material containing a noble metal element such as Pt by a dry process without using plasma.
 本発明者等は、上記目的を達成すべく種々検討した結果、貴金属元素を含む材料を除去する工程において、貴金属元素に対して、含ハロゲン物質とNOの混合ガスや、ハロゲン化ニトロシルを接触させて酸化させた後、β-ジケトンを含むガスと接触させることにより、貴金属元素を含む材料を除去できることを見出し、本発明に至った。 As a result of various studies to achieve the above object, the present inventors contacted the noble metal element with a mixed gas of a halogen-containing substance and NO or a nitrosyl halide in the step of removing the material containing the noble metal element. After oxidation, the present inventors found that a material containing a noble metal element can be removed by contacting with a gas containing β-diketone, and the present invention has been achieved.
 すなわち、フッ素又は塩素を含有する含ハロゲン物質と一酸化窒素(NO)との混合ガスと、フッ化ニトロシル(NOF)と、塩化ニトロシル(NOCl)からなる群から選ばれる少なくとも一つを含む前処理ガスを、貴金属元素を含む材料と反応させ、前記材料の表面に固体化合物を形成する第1工程と、さらに、前記材料の表面の固体化合物にβ-ジケトンを反応させて、前記材料をエッチングする第2工程と、を有し、前記貴金属元素が、Au、Pt、Pd、Rh、Ir、Ru及びOsからなる群より選ばれる1種以上の元素であることを特徴とするドライエッチング方法を提供するものである。 That is, a pretreatment including at least one selected from the group consisting of a mixed gas of a halogen-containing substance containing fluorine or chlorine and nitrogen monoxide (NO), nitrosyl fluoride (NOF), and nitrosyl chloride (NOCl) A first step of reacting a gas with a material containing a noble metal element to form a solid compound on the surface of the material; and further, a β-diketone is reacted with the solid compound on the surface of the material to etch the material A dry etching method, wherein the noble metal element is one or more elements selected from the group consisting of Au, Pt, Pd, Rh, Ir, Ru, and Os. To do.
 本発明により、プラズマを用いないドライプロセスで、Pt等の貴金属元素を含む材料をエッチングすることが可能となる。 According to the present invention, a material containing a noble metal element such as Pt can be etched by a dry process that does not use plasma.
 素子の加工プロセスや装置のクリーニングプロセスなどの、Pt等の貴金属元素を含む材料を除去するプロセスにおいて、本発明を用いることにより、プラズマを用いないドライプロセスで貴金属元素を除去することが可能となる。 In a process for removing a material containing a noble metal element such as Pt, such as an element processing process or an apparatus cleaning process, the present invention can be used to remove the noble metal element in a dry process without using plasma. .
本発明のドライエッチング方法の概略工程を示す図である。It is a figure which shows the schematic process of the dry etching method of this invention. 実施例・比較例で用いた反応装置1の概略図である。It is the schematic of the reaction apparatus 1 used by the Example and the comparative example.
詳細な説明Detailed description
 以下、本発明の実施方法について以下に説明する。なお、本発明の範囲は、これらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。 Hereinafter, the implementation method of the present invention will be described below. It should be noted that the scope of the present invention is not limited by these descriptions, and can be changed and implemented as appropriate without departing from the spirit of the present invention other than the following examples.
 本発明によるドライエッチング方法では、含ハロゲン物質と一酸化窒素(NO)との混合ガスと、フッ化ニトロシル(NOF)と、塩化ニトロシル(NOCl)からなる群から選ばれる少なくとも一つを含む前処理ガスを、貴金属元素を含む材料と反応させ、前記材料の表面に固体化合物を生成する第1工程と、さらに、前記材料の表面の固体化合物にβ-ジケトンを反応させて、前記材料をエッチングする第2工程と、により、Pt等の貴金属元素を含む材料をドライプロセスでエッチングする。 In the dry etching method according to the present invention, pretreatment including at least one selected from the group consisting of a mixed gas of a halogen-containing substance and nitric oxide (NO), nitrosyl fluoride (NOF), and nitrosyl chloride (NOCl). A first step of reacting a gas with a material containing a noble metal element to produce a solid compound on the surface of the material, and further reacting a solid compound on the surface of the material with a β-diketone to etch the material By the second step, a material containing a noble metal element such as Pt is etched by a dry process.
 図1は本発明のドライエッチング方法の概略工程を示す図である。図1(a)に示す貴金属元素を含む材料11を準備した後、図1(b)のように、材料11に前処理ガス12を接触させ、材料11の表面に、貴金属元素と窒素と酸素とフッ素、又は貴金属元素と窒素と酸素と塩素を含む固体化合物13を形成する。前処理ガス12は、含ハロゲン物質と一酸化窒素(NO)との混合ガスと、フッ化ニトロシル(NOF)と、塩化ニトロシル(NOCl)からなる群より選ばれる少なくとも一つを含む。その後、図1(c)のように、β-ジケトン14と、固体化合物13を反応させ、β-ジケトンと貴金属元素を含む錯体15を形成する。錯体15は、揮発性が高いため、気体となり材料11から除去される。その結果、図1(d)のように、貴金属元素を含む材料11の表面がエッチングされる。なお、第1工程と第2工程を繰り返し行い、貴金属元素を含む材料11をさらにエッチングしてもよい。 FIG. 1 is a diagram showing a schematic process of the dry etching method of the present invention. After preparing the material 11 containing the noble metal element shown in FIG. 1A, a pretreatment gas 12 is brought into contact with the material 11 as shown in FIG. 1B, and the noble metal element, nitrogen and oxygen are brought into contact with the surface of the material 11. And a solid compound 13 containing fluorine, or a noble metal element, nitrogen, oxygen, and chlorine. The pretreatment gas 12 includes at least one selected from the group consisting of a mixed gas of a halogen-containing substance and nitric oxide (NO), nitrosyl fluoride (NOF), and nitrosyl chloride (NOCl). Thereafter, as shown in FIG. 1C, β-diketone 14 and solid compound 13 are reacted to form complex 15 containing β-diketone and a noble metal element. Since the complex 15 is highly volatile, it becomes a gas and is removed from the material 11. As a result, as shown in FIG. 1D, the surface of the material 11 containing the noble metal element is etched. Note that the first step and the second step may be repeated to further etch the material 11 containing the noble metal element.
 含ハロゲン物質が、フッ素原子又は塩素原子を含むことが好ましく、フッ素(F2)、塩素(Cl2)、一フッ化塩素(ClF)、一フッ化臭素(BrF)、一塩化臭素(BrCl)、一塩化ヨウ素(ICl)、三フッ化塩素(ClF3)、三フッ化臭素(BrF3)、三フッ化ヨウ素(IF3)、五フッ化塩素(ClF5)、五フッ化臭素(BrF5)、五フッ化ヨウ素(IF5)、七フッ化ヨウ素(IF7)及び三塩化ヨウ素(I2Cl6)からなる群より選ばれる1種以上の物質であることが好ましい。さらに、含ハロゲン物質がF2、Cl2又はこれらの混合物であることが、入手のしやすさ、取り扱いの容易さの点で、より好ましい。 The halogen-containing substance preferably contains a fluorine atom or a chlorine atom. Fluorine (F 2 ), chlorine (Cl 2 ), chlorine monofluoride (ClF), bromine monofluoride (BrF), bromine monochloride (BrCl) Iodine monochloride (ICl), chlorine trifluoride (ClF 3 ), bromine trifluoride (BrF 3 ), iodine trifluoride (IF 3 ), chlorine pentafluoride (ClF 5 ), bromine pentafluoride (BrF) 5 ), iodine pentafluoride (IF 5 ), iodine heptafluoride (IF 7 ), and iodine trichloride (I 2 Cl 6 ). Further, it is more preferable that the halogen-containing substance is F 2 , Cl 2 or a mixture thereof from the viewpoint of easy availability and handling.
 第1工程では、装置部材への腐食の少なさから、F2とNOの混合ガス、又はNOFを用いることが好ましい。なお、NOと併用する含ハロゲン物質は、それぞれ単独で用いてもよく、2種類以上を混合して用いても良く、NOFとNOClも、それぞれ単独で用いてもよく、2種類以上を混合して用いてもよい。 In the first step, it is preferable to use a mixed gas of F 2 and NO, or NOF, because the corrosion of the device members is small. In addition, the halogen-containing substance used in combination with NO may be used alone, or two or more kinds may be mixed and NOF and NOCl may be used alone, or two or more kinds may be mixed. May be used.
 β-ジケトンが、ジピバロイルメタン(2,2,6,6-テトラメチル-3,5-ヘプタンジオン)、ヘキサフルオロアセチルアセトン(1,1,1,5,5,5-ヘキサフルオロ-2,4-ペンタンジオン)、トリフルオロアセチルアセトン(1,1,1-トリフルオロ-2,4-ペンタンジオン)及びアセチルアセトン(2,4-ペンタンジオン)からなる群より選ばれる少なくとも1種の化合物であることが好ましく、1種類だけでなく、2種類以上の複数を併用してもよい。特に、高速のエッチングが可能な点で、β-ジケトンとして、ヘキサフルオロアセチルアセトン(HFAc)を用いることがより好ましい。 β-diketone is dipivaloylmethane (2,2,6,6-tetramethyl-3,5-heptanedione), hexafluoroacetylacetone (1,1,1,5,5,5-hexafluoro-2) , 4-pentanedione), trifluoroacetylacetone (1,1,1-trifluoro-2,4-pentanedione) and at least one compound selected from the group consisting of acetylacetone (2,4-pentanedione). It is preferable that not only one type but also two or more types may be used in combination. In particular, it is more preferable to use hexafluoroacetylacetone (HFAc) as the β-diketone in terms of enabling high-speed etching.
 貴金属元素が、金(Au)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)及びオスミウム(Os)からなる群より選ばれる1種以上の元素であることが好ましく、さらに、Pt、Pd、Rh、Ir、Ru及びOsからなる群より選ばれる1種以上の白金族元素であることが好ましい。また、本ドライエッチング方法の被エッチング対象である貴金属元素を含む材料としては、実質的に貴金属のみからなる材料だけでなく、貴金属の酸化物などの貴金属元素と他の元素との化合物や、貴金属元素を含む合金でもよい。特に、貴金属元素を30質量%以上、より好ましくは50質量%以上含む材料に対して、本ドライエッチング方法を適用することが好ましい。例えば、磁気メモリには、Pt-Co合金や、Pt-Mn合金が使用される。貴金属元素を含む材料は、その形状は特に問わないが、粉末、箔、又は薄膜であっても良い。 The noble metal element is one or more elements selected from the group consisting of gold (Au), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru) and osmium (Os). It is preferable that it is one or more platinum group elements selected from the group consisting of Pt, Pd, Rh, Ir, Ru, and Os. In addition, as a material containing a noble metal element to be etched by this dry etching method, not only a material consisting essentially of a noble metal but also a compound of a noble metal element such as a noble metal oxide and other elements, a noble metal An alloy containing an element may be used. In particular, it is preferable to apply the present dry etching method to a material containing a precious metal element of 30% by mass or more, more preferably 50% by mass or more. For example, a Pt—Co alloy or a Pt—Mn alloy is used for the magnetic memory. The shape of the material containing the noble metal element is not particularly limited, but may be a powder, a foil, or a thin film.
 第1工程における反応温度は、50℃以上150℃以下であることが好ましく、90℃以上150℃以下であることがより好ましく、120℃以上150℃以下であることが更に好ましい。第1工程における反応温度が低すぎる場合、反応の進行が遅く、第2工程におけるエッチング量が減少する。また、第1工程における反応温度が高すぎる場合、素子中あるいは装置内の本来エッチングされるべきでない部分までもが損傷を受ける可能性がある。 The reaction temperature in the first step is preferably 50 ° C. or higher and 150 ° C. or lower, more preferably 90 ° C. or higher and 150 ° C. or lower, and further preferably 120 ° C. or higher and 150 ° C. or lower. When the reaction temperature in the first step is too low, the reaction proceeds slowly and the etching amount in the second step decreases. In addition, when the reaction temperature in the first step is too high, there is a possibility that even a portion that should not be etched in the device or in the apparatus may be damaged.
 第2工程における反応温度が、十分なエッチングレートを得るうえで、200℃以上400℃以下であることが好ましく、250℃以上350℃以下であることがより好ましい。第2工程における反応温度が低すぎると、エッチングレートが小さくなってしまい、第2工程における反応温度が高すぎると、β-ジケトンが自己分解を起こし、反応性が低下してしまう。 The reaction temperature in the second step is preferably 200 ° C. or more and 400 ° C. or less, and more preferably 250 ° C. or more and 350 ° C. or less in order to obtain a sufficient etching rate. If the reaction temperature in the second step is too low, the etching rate decreases, and if the reaction temperature in the second step is too high, the β-diketone undergoes self-decomposition and the reactivity decreases.
 以下、反応過程を、含ハロゲン物質としてF2又はCl2を用い、貴金属元素の中でも特に安定性の高いPtをエッチング対象とする場合を例として説明するが、他のフッ素原子又は塩素原子を含む含ハロゲン物質を用いて、他の貴金属元素に適用した場合でも、同様の反応を示し、本ドライエッチング方法の適用が可能である。 Hereinafter, the reaction process will be described by taking F 2 or Cl 2 as a halogen-containing substance and using Pt, which is particularly stable among noble metal elements, as an example of etching, but includes other fluorine atoms or chlorine atoms. Even when the halogen-containing substance is used and applied to other noble metal elements, the same reaction is exhibited and the dry etching method can be applied.
 第1の工程で、NOと、F2又はCl2の混合ガスを用いた場合、ライン中、又は反応装置中でNOと、F2又はCl2とが反応することにより、NOClX又はNOFX(Xは1以上3以下の整数)が生成し、反応基質として働くと考えられる。Cl2又はF2と、NOの混合ガスを用いた場合には、90℃付近から、PtとNOClx又はNOFxが反応し、PtとNとOとCl、又はPtとNとOとFを含む固体のPt化合物が生成して、固体成分の重量が増加する現象が見られ、110℃以上において顕著な重量増加が認められた。これは、NOF又はNOClを用いた際にも同様である。 In the first step, and NO, in the case of using a mixed gas of F 2 or Cl 2, in the line, or with NO in the reactor, by which the F 2 or Cl 2 is reacted, NOCl X or NOF X (X is an integer greater than or equal to 1 and less than or equal to 3) is generated and is considered to act as a reaction substrate. When a mixed gas of Cl 2 or F 2 and NO is used, Pt and NOCl x or NOF x react from around 90 ° C., and Pt and N and O and Cl or Pt and N and O and F The solid Pt compound containing was produced, and the phenomenon that the weight of the solid component increased was observed, and a significant weight increase was observed at 110 ° C. or higher. This is the same when NOF or NOCl is used.
 一方、NOを含まないCl2とは、350℃以上でもPtとの反応が進行しなかった。また、NOを含まないF2とは、およそ320℃以上でPtの直接フッ素化が進行し、揮発性の高いPtF6が優先的に生成し、固体成分の重量減少が発生した。一方で、F2等のフッ素化剤にNOを添加した場合には、320℃以上においても、PtとNOFxが反応して生成した固体のPt化合物は揮発せず、固体成分の重量が増加する現象が見られた。即ち、F2とNOとの混合ガスのみでは、Ptは除去できなかった。 On the other hand, the reaction with Pt did not proceed with Cl 2 not containing NO even at 350 ° C. or higher. Further, with F 2 not containing NO, direct fluorination of Pt proceeded at about 320 ° C. or higher, PtF 6 having high volatility was preferentially generated, and the weight loss of the solid component occurred. On the other hand, when NO is added to a fluorinating agent such as F 2 , the solid Pt compound produced by the reaction of Pt and NOF x does not volatilize even at 320 ° C. or higher, and the weight of the solid component increases. The phenomenon to be seen was seen. That is, Pt could not be removed only with a mixed gas of F 2 and NO.
 第2工程では、PtとNOClx又はNOFxが反応して生成した、PtとNとOとCl、又はPtとNとOとFを含む固体のPt化合物と、β-ジケトンが錯体を形成し、揮発性の高い物質へと変換していると考えられる。揮発性の高いβ-ジケトンとPtの錯体が気化することで、エッチング対象のPtが除去される。 In the second step, β-diketone forms a complex with a solid Pt compound containing Pt, N, O, and Cl, or Pt, N, O, and F produced by a reaction of Pt and NOCl x or NOF x. However, it is considered that it has been converted into a highly volatile substance. Pt to be etched is removed by the vaporization of the highly volatile β-diketone and Pt complex.
 第1工程において流通するガス、すなわち前処理ガスの、含ハロゲン物質とNOとの混合ガス、NOF、又はNOClの濃度は、十分な反応速度を得る上で、総流量に対して、1体積%以上であることが好ましく、10体積%以上であることが特に好ましい。 The concentration of the gas flowing in the first step, that is, the mixed gas of the halogen-containing substance and NO, NOF, or NOCl in the pretreatment gas is 1% by volume with respect to the total flow rate in order to obtain a sufficient reaction rate. Preferably, it is preferably 10% by volume or more.
 また、含ハロゲン物質を使用する場合に添加するNOの濃度は、含ハロゲン物質の濃度に合わせて適宜決定する必要があるが、NOClX又はNOFXの生成反応の進みやすさから、概ね、含ハロゲン物質の濃度に対してNO濃度が体積比で1:0.2以上5以下の範囲にあることが好ましく、1:0.3以上3以下の範囲にあることがより好ましく、1:0.5以上2以下の範囲にあることが特に好ましい。 The concentration of NO to be added when using halogen-containing substance, it is necessary to determine as appropriate depending on the concentration of the halogen-containing substance, but from proceeds ease of production reaction of NOCl X or NOF X, generally, including The concentration of NO with respect to the concentration of the halogen substance is preferably in the range of 1: 0.2 or more and 5 or less, more preferably in the range of 1: 0.3 or more and 3 or less, and 1: 0. A range of 5 or more and 2 or less is particularly preferable.
 また、第2工程において、材料に接触させるガスのβ-ジケトンの濃度は、エッチング速度がβ-ジケトンの濃度上昇と共に上昇するため、総流量に対して、1体積%以上であることが好ましく、10体積%であることが特に好ましい。但し、β-ジケトンの蒸気圧が低く、成膜装置内で液化が生じる可能性が懸念される場合には、希釈ガスにより適宜濃度を調整することが好ましい。 In the second step, the concentration of β-diketone in the gas brought into contact with the material is preferably 1% by volume or more with respect to the total flow rate because the etching rate increases as the concentration of β-diketone increases. 10% by volume is particularly preferred. However, when the vapor pressure of β-diketone is low and there is a concern that liquefaction may occur in the film forming apparatus, it is preferable to adjust the concentration appropriately with a diluent gas.
 第1工程又は第2工程にいて流通するガス中には、N2、He、Arのような不活性ガスから選ばれる少なくとも1種類の希釈ガスが混合されていても良く、またその濃度も特に限定されない。例えば、不活性ガスの濃度を0体積%以上90体積%以下の範囲で使用できる。 In the gas flowing in the first step or the second step, at least one kind of diluent gas selected from inert gases such as N 2 , He, and Ar may be mixed, and its concentration is also particularly high. It is not limited. For example, the concentration of the inert gas can be used in the range of 0 volume% or more and 90 volume% or less.
 第1工程と第2工程のいずれにおいても、反応器内圧力は、特に限定されることは無いが、例えば圧力範囲は0.1kPa以上101.3kPa以下である。流量は、反応器の大きさ及び、真空排気設備の能力に合わせて、反応器内圧力が一定に保てる範囲で適宜決定すればよい。 In both the first step and the second step, the pressure in the reactor is not particularly limited, but for example, the pressure range is 0.1 kPa or more and 101.3 kPa or less. What is necessary is just to determine a flow volume suitably in the range which can keep the pressure in a reactor constant according to the magnitude | size of a reactor and the capability of an evacuation installation.
 ところで、半導体メモリ素子を形成するために、半導体基板上の強磁性体層や電極層として貴金属元素を含む薄膜を成膜することがある。貴金属元素を含む薄膜にパターンを形成する際に、本発明のドライエッチング方法を用いることができる。具体的には、半導体基板上に、貴金属元素を含む層を形成し、さらに、所定のパターンを有するマスクを形成し、貴金属元素を含む層に、本発明のドライエッチング方法を適用して、マスクのパターンを転写することで、半導体メモリ素子用の強磁性体層や電極層を形成することができる。 Incidentally, in order to form a semiconductor memory element, a thin film containing a noble metal element may be formed as a ferromagnetic layer or an electrode layer on a semiconductor substrate. When forming a pattern on a thin film containing a noble metal element, the dry etching method of the present invention can be used. Specifically, a layer containing a noble metal element is formed on a semiconductor substrate, a mask having a predetermined pattern is further formed, and the mask containing the noble metal element is applied by applying the dry etching method of the present invention to the layer. By transferring the pattern, a ferromagnetic layer or an electrode layer for a semiconductor memory element can be formed.
 また、半導体素子の配線材料に貴金属元素を含む材料を用いることがある。半導体素子の配線を形成する際に、本発明のドライエッチング方法を用いることができる。具体的には、半導体基板上に、貴金属元素を含む層を形成し、さらに、所定の配線パターンを有するマスクを形成し、貴金属元素を含む層に、本発明のドライエッチング方法を適用して、マスクの配線パターンを転写することで、半導体素子の配線を形成することができる。 Also, a material containing a noble metal element may be used for the wiring material of the semiconductor element. When forming the wiring of the semiconductor element, the dry etching method of the present invention can be used. Specifically, a layer containing a noble metal element is formed on a semiconductor substrate, a mask having a predetermined wiring pattern is further formed, and the dry etching method of the present invention is applied to the layer containing a noble metal element, The wiring of the semiconductor element can be formed by transferring the wiring pattern of the mask.
 また、本エッチング方法と同様の条件で、チャンバー内に付着した貴金属元素を含む材料をクリーニングすることができる。例えば、貴金属元素を含む材料を基板上に成膜する工程又はエッチング工程の後に、チャンバー内の不要堆積物をクリーニングするために、本チャンバークリーニング方法を用いることができる。 Also, a material containing a noble metal element adhered in the chamber can be cleaned under the same conditions as in the present etching method. For example, the chamber cleaning method can be used for cleaning unnecessary deposits in the chamber after a step of forming a material containing a noble metal element on a substrate or an etching step.
 以下に本発明の実施例を比較例とともに挙げるが、本発明は以下の実施例に制限されるものではない。 Examples of the present invention will be described below together with comparative examples, but the present invention is not limited to the following examples.
[実施例1]
 図2は、実施例・比較例で用いた反応装置1の概略図である、チャンバー2内には、ヒーターとしての機能を有するステージ3が設置されている。また、チャンバー2の周囲にもヒーターが設置されており、チャンバー壁を加熱できるようになっている。ステージ3上に設置した試料4に対しドライエッチング剤を接触させ、試料4をエッチングすることができる。チャンバー上部に設置されたガス導入口5からドライエッチング剤を導入した状態で、チャンバー2内のガスはガス排出ライン6を経由して排出される。また、チャンバー内には圧力計7が設置されている。
[Example 1]
FIG. 2 is a schematic diagram of the reaction apparatus 1 used in Examples and Comparative Examples, and a stage 3 having a function as a heater is installed in the chamber 2. A heater is also provided around the chamber 2 so that the chamber wall can be heated. The sample 4 can be etched by bringing a dry etching agent into contact with the sample 4 placed on the stage 3. The gas in the chamber 2 is discharged through the gas discharge line 6 in a state where the dry etching agent is introduced from the gas inlet 5 installed at the upper part of the chamber. A pressure gauge 7 is installed in the chamber.
 まず、第1の工程として、試料4として予め重量を測定したPt製の板(形状1cm×1cm、厚さ0.1mm、Pt純度99%以上)を設置し、ステージ3を120℃に加熱した。なお、該Pt板は、除去対象となる粉末、箔、又は蒸着・鍍金等により作成された薄膜Ptを想定したものである。ここに、F2及びNOをそれぞれ、50体積%で混合し、総流量を100sccmとして流通させた。チャンバー内圧力は200torrとした。該ガスを30分間にわたり流通させた後、内部を真空排気した。つぎに、第2の工程として、ステージ3を300℃まで加熱し、チャンバー内圧力は100torrでHFAcとN2をそれぞれ50体積%で混合したガスを総流量100sccmで30分間流通させた。その後、内部を真空排気した。
 チャンバーを開放し、再び試料4の重量を測定しエッチング速度を計算したところ、Ptのエッチング量は3.5nmであった。
First, as a first step, a Pt plate (shape: 1 cm × 1 cm, thickness: 0.1 mm, Pt purity: 99% or more), the weight of which was previously measured, was set as the sample 4 and the stage 3 was heated to 120 ° C. . In addition, this Pt board assumes the thin film Pt produced by the powder, foil, vapor deposition, plating, etc. which become removal object. Here, F 2 and NO were mixed at 50% by volume, and the total flow rate was set to 100 sccm. The pressure in the chamber was 200 torr. After the gas was circulated for 30 minutes, the inside was evacuated. Next, as a second step, the stage 3 was heated to 300 ° C., and a gas in which HFAc and N 2 were mixed at 50 vol% each was circulated at a total flow rate of 100 sccm for 30 minutes at a chamber internal pressure of 100 torr. Thereafter, the inside was evacuated.
When the chamber was opened and the weight of Sample 4 was measured again to calculate the etching rate, the etching amount of Pt was 3.5 nm.
 なお、エッチング量は、Pt板のエッチング前後の重量を利用して、以下の式から求められる。 The etching amount can be obtained from the following formula using the weight of the Pt plate before and after etching.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
[実施例2]
 第1の工程の流通ガスとしてF2及びNOを、それぞれ75体積%及び25体積%で混合し、総流量を100sccmとして流通させた以外は実施例1と同じ条件でエッチングを行った。その結果、Ptのエッチング量は3.0nmであった。
[Example 2]
Etching was performed under the same conditions as in Example 1 except that F 2 and NO were mixed at 75% by volume and 25% by volume as the flow gas in the first step, and the total flow rate was set at 100 sccm. As a result, the etching amount of Pt was 3.0 nm.
[実施例3]
 第1の工程の流通ガスとしてF2及びNOを、それぞれ25体積%及び75体積%で混合し、総流量を100sccmとして流通させた以外は実施例1と同じ条件でエッチングを行った。その結果、Ptのエッチング量は3.7nmであった。
[Example 3]
Etching was performed under the same conditions as in Example 1 except that F 2 and NO were mixed at 25% by volume and 75% by volume as the flow gas in the first step, and the total flow rate was set at 100 sccm. As a result, the etching amount of Pt was 3.7 nm.
[実施例4]
 第1の工程の後に第2の工程を行うサイクルを2サイクル繰り返した以外は実施例3と同じ条件でエッチングを行った。その結果、Ptのエッチング量は6.9nmであった。
[Example 4]
Etching was performed under the same conditions as in Example 3 except that the cycle of performing the second step after the first step was repeated two cycles. As a result, the etching amount of Pt was 6.9 nm.
[実施例5]
 第1の工程の流通ガスとしてF2及びNOの代わりにCl2及びNOをそれぞれ、50体積%で混合し、総流量を100sccmとして流通させた以外は実施例1と同じ条件でエッチングを行った。その結果、Ptのエッチング量は2.5nmであった。
[Example 5]
Etching was performed under the same conditions as in Example 1 except that Cl 2 and NO were mixed at 50% by volume instead of F 2 and NO as the flow gas in the first step, and the total flow rate was 100 sccm. . As a result, the etching amount of Pt was 2.5 nm.
[実施例6]
 第1の工程の流通ガスとしてF2及びNOの代わりにNOF単体を100sccmで流通した以外は実施例1と同じ条件でエッチングを行った。その結果、Ptのエッチング量は3.7nmであった。
[Example 6]
Etching was performed under the same conditions as in Example 1 except that NOF alone was circulated at 100 sccm instead of F 2 and NO as the circulation gas in the first step. As a result, the etching amount of Pt was 3.7 nm.
[比較例1]
 第1の工程の流通ガスとしてF2及びNOの代わりにNO単体を100sccmで流通した以外は実施例1と同じ条件でエッチングを行った。その結果、Ptのエッチング量は0.1nm以下であった。
[Comparative Example 1]
Etching was performed under the same conditions as in Example 1, except that NO alone was passed at 100 sccm instead of F 2 and NO as the flow gas in the first step. As a result, the etching amount of Pt was 0.1 nm or less.
[比較例2]
 第1の工程の流通ガスとしてF2及びNOの代わりにF2単体を100sccmで流通した以外は実施例1と同じ条件でエッチングを行った。その結果、Ptのエッチング量は0.1nm以下であった。
[Comparative Example 2]
Etching was performed under the same conditions as in Example 1 except that F 2 alone was passed at 100 sccm instead of F 2 and NO as the flow gas in the first step. As a result, the etching amount of Pt was 0.1 nm or less.
[比較例3]
 ステージ3を300℃まで加熱し、流通ガスとしてHFAc単体のみを100sccmで30分間流通させた。なお、チャンバー内圧力は700torrとした。それ以外は実施例1と同じ条件でエッチングを行った。すなわち、第1の工程を行わずに第2の工程のみ行った。その結果、Ptのエッチング量は0.1nm以下であった。
[Comparative Example 3]
Stage 3 was heated to 300 ° C., and only HFAc alone was circulated as a flow gas at 100 sccm for 30 minutes. The chamber internal pressure was 700 torr. Except that, etching was performed under the same conditions as in Example 1. That is, only the second step was performed without performing the first step. As a result, the etching amount of Pt was 0.1 nm or less.
[比較例4]
 ステージ3を120℃に加熱し、F2及びNOをそれぞれ、50体積%で混合した前処理ガスを、総流量を100sccmとして流通させた。チャンバー内圧力は200torrとした。該ガスを30分間にわたり流通させた後、内部を真空排気した。すなわち、実施例1と同じ条件で、第1の工程のみを行い、第2の工程を行わなかった。その結果、Pt板の表面にPtとNとFとOの化合物が生成し、Pt板の重量の増加が観察され、Ptのエッチングはできなかった。
[Comparative Example 4]
The stage 3 was heated to 120 ° C., and a pretreatment gas in which F 2 and NO were mixed at 50 vol% was circulated at a total flow rate of 100 sccm. The pressure in the chamber was 200 torr. After the gas was circulated for 30 minutes, the inside was evacuated. That is, only the first step was performed under the same conditions as in Example 1, and the second step was not performed. As a result, Pt, N, F, and O compounds were formed on the surface of the Pt plate, an increase in the weight of the Pt plate was observed, and Pt could not be etched.
 上記の実施例・比較例を表1にまとめた。 The above examples and comparative examples are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~6に示すとおり、第1工程で、F2やCl2の含ハロゲン物質とNOを併用した混合ガス、又はNOFを流通させた後に、第2工程で、HFAcで処理することで、Ptのエッチングが可能であった。一方で、比較例3に示すように第2の工程のみを行う場合や、比較例4に示すように第1の工程のみを行う場合はPtをエッチングできず、比較例1、2に示すように第1工程でNOのみ又はF2のみを用いる場合も、Ptをエッチングできないことが分かった。 As shown in Examples 1 to 6, after flowing a mixed gas containing NO and a halogen-containing substance such as F 2 or Cl 2 or NOF in the first step, it is treated with HFAc in the second step. , Pt could be etched. On the other hand, when only the second step is performed as shown in Comparative Example 3 or when only the first step is performed as shown in Comparative Example 4, Pt cannot be etched, as shown in Comparative Examples 1 and 2. It was also found that Pt cannot be etched when only NO or only F 2 is used in the first step.
[実施例7、8]
 実施例1で用いたPt板に代えて、Au製の板(形状1cm×1cm、厚さ0.1mm、純度99%以上)と、Ru製の板(形状1cm×1cm、厚さ0.1mm、純度99%以上)を用いる以外は実施例1と同じ条件でエッチングを行った。その結果、Auのエッチング量は2.5nmであり、Ruのエッチング量は10nmであり、エッチングが進行することを確認した。
[Examples 7 and 8]
Instead of the Pt plate used in Example 1, an Au plate (shape 1 cm × 1 cm, thickness 0.1 mm, purity 99% or more) and an Ru plate (shape 1 cm × 1 cm, thickness 0.1 mm) Etching was performed under the same conditions as in Example 1 except that a purity of 99% or more was used. As a result, the etching amount of Au was 2.5 nm, the etching amount of Ru was 10 nm, and it was confirmed that the etching progressed.
 本発明は、半導体素子製造プロセスにおいて、Pt等の貴金属元素を含む材料を用いる半導体メモリ素子の形成や半導体メモリ素子の形成に使用するチャンバークリーニング等に有効である。 The present invention is effective for forming a semiconductor memory element using a material containing a noble metal element such as Pt or a chamber cleaning used for forming a semiconductor memory element in a semiconductor element manufacturing process.
1.反応装置
2.チャンバー
3.ステージ
4.試料
5.ガス導入口
6.ガス排出ライン
7.圧力計
11.貴金属元素を含む材料 
12.前処理ガス
13.貴金属元素材料の表面の固体化合物 
14.β-ジケトン
15.錯体
1. Reactor 2. Chamber 3. Stage 4. Sample 5. 5. Gas inlet 6. Gas discharge line Pressure gauge 11. Materials containing precious metal elements
12 Pretreatment gas13. Solid compounds on the surface of noble metal element materials
14 β-diketone15. Complex

Claims (11)

  1. フッ素又は塩素を含有する含ハロゲン物質と一酸化窒素(NO)との混合ガスと、フッ化ニトロシル(NOF)と、塩化ニトロシル(NOCl)からなる群から選ばれる少なくとも一つを含む前処理ガスを、貴金属元素を含む材料と反応させ、前記材料の表面に固体化合物を形成する第1工程と、
     さらに、前記材料の表面の固体化合物にβ-ジケトンを反応させて、前記材料をエッチングする第2工程と、
    を有し、
     前記貴金属元素が、Au、Pt、Pd、Rh、Ir、Ru及びOsからなる群より選ばれる1種以上の元素であることを特徴とするドライエッチング方法。
    A pretreatment gas containing at least one selected from the group consisting of a halogen-containing substance containing fluorine or chlorine and nitrogen monoxide (NO), nitrosyl fluoride (NOF), and nitrosyl chloride (NOCl) A first step of reacting with a material containing a noble metal element to form a solid compound on the surface of the material;
    A second step of etching the material by reacting a solid compound on the surface of the material with β-diketone;
    Have
    The dry etching method, wherein the noble metal element is at least one element selected from the group consisting of Au, Pt, Pd, Rh, Ir, Ru, and Os.
  2. 前記含ハロゲン物質が、F2、Cl2、ClF、BrF、BrCl、ICl、ClF3、BrF3、IF3、ClF5、BrF5、IF5、IF7及びI2Cl6からなる群より選ばれる1種以上の物質であることを特徴とする請求項1に記載のドライエッチング方法。 The halogen-containing substance is selected from F 2, Cl 2, ClF, BrF, BrCl, ICl, ClF 3, BrF 3, IF 3, ClF 5, BrF 5, IF 5, the group consisting of IF 7 and I 2 Cl 6 The dry etching method according to claim 1, wherein the dry etching method is one or more kinds of substances.
  3. 前記含ハロゲン物質がF2又はCl2である請求項2に記載のドライエッチング方法。 The dry etching method according to claim 2 , wherein the halogen-containing material is F 2 or Cl 2 .
  4. 前記β-ジケトンが、ジピバロイルメタン、ヘキサフルオロアセチルアセトン、トリフルオロアセチルアセトン及びアセチルアセトンからなる群より選ばれる少なくとも1種の化合物であることを特徴とする請求項1~3のいずれか1項に記載のドライエッチング方法。 4. The method according to claim 1, wherein the β-diketone is at least one compound selected from the group consisting of dipivaloylmethane, hexafluoroacetylacetone, trifluoroacetylacetone, and acetylacetone. The dry etching method as described.
  5. 前記β-ジケトンがヘキサフルオロアセチルアセトンである請求項4に記載のドライエッチング方法。 The dry etching method according to claim 4, wherein the β-diketone is hexafluoroacetylacetone.
  6. 前記貴金属元素が、Pt、Pd、Rh、Ir、Ru及びOsからなる群より選ばれる1種以上の白金族元素であることを特徴とする請求項1~5のいずれか1項に記載のドライエッチング方法。 The dry metal element according to any one of claims 1 to 5, wherein the noble metal element is one or more platinum group elements selected from the group consisting of Pt, Pd, Rh, Ir, Ru, and Os. Etching method.
  7. 前記第1工程における反応温度が、50℃以上150℃以下であり、
     前記第2工程における反応温度が、200℃以上400℃以下である請求項1~6のいずれか1項に記載のドライエッチング方法。
    The reaction temperature in the first step is 50 ° C. or higher and 150 ° C. or lower,
    The dry etching method according to any one of claims 1 to 6, wherein a reaction temperature in the second step is 200 ° C or higher and 400 ° C or lower.
  8. 2又はCl2と、NOとを含む混合ガスと、NOFと、NOClからなる群から選ばれる少なくとも一つを含む前処理ガスを、Ptを含む材料と、50℃以上150℃以下で反応させ、前記Ptを含む材料の表面に固体化合物を形成する第1工程と、
     さらに、前記Ptを含む材料の表面の固体化合物にヘキサフルオロアセチルアセトンを200℃以上400℃以下で反応させて、前記Ptを含む材料をエッチングする第2工程と、
     を有することを特徴とするドライエッチング方法。
    A mixed gas containing F 2 or Cl 2 and NO, a pretreatment gas containing at least one selected from the group consisting of NOF and NOCl are reacted with a material containing Pt at 50 ° C. or higher and 150 ° C. or lower. A first step of forming a solid compound on the surface of the Pt-containing material;
    A second step of etching the material containing Pt by reacting hexafluoroacetylacetone at 200 ° C. or more and 400 ° C. or less with a solid compound on the surface of the material containing Pt;
    A dry etching method comprising:
  9. 前記材料が、薄膜状であることを特徴とする請求項1~8のいずれか1項に記載のドライエッチング方法。 9. The dry etching method according to claim 1, wherein the material is in a thin film form.
  10. 半導体基板に、貴金属元素を含む層を形成する工程と、
     前記貴金属元素を含む層上に、所定のパターンを有するマスクを形成する工程と、
     前記貴金属元素を含む層に、請求項1~9のいずれか1項に記載のドライエッチング方法を適用して、前記パターンを転写する工程と、
    を含むことを特徴とする半導体素子の製造方法。
    Forming a layer containing a noble metal element on a semiconductor substrate;
    Forming a mask having a predetermined pattern on the layer containing the noble metal element;
    Applying the dry etching method according to any one of claims 1 to 9 to the layer containing the noble metal element to transfer the pattern;
    The manufacturing method of the semiconductor element characterized by the above-mentioned.
  11. フッ素又は塩素を含有する含ハロゲン物質と一酸化窒素(NO)との混合ガスと、フッ化ニトロシル(NOF)と、塩化ニトロシル(NOCl)からなる群から選ばれる少なくとも一つを含む前処理ガスを、チャンバー内に付着した貴金属元素を含む材料と反応させ、前記材料の表面に固体化合物を形成する第1工程と、
     さらに、前記材料の表面の固体化合物にβ-ジケトンを反応させて、前記材料をエッチングする第2工程と、
    を有し、
     前記貴金属元素が、Au、Pt、Pd、Rh、Ir、Ru及びOsからなる群より選ばれる1種以上の元素であることを特徴とするチャンバークリーニング方法。
    A pretreatment gas containing at least one selected from the group consisting of a halogen-containing substance containing fluorine or chlorine and nitrogen monoxide (NO), nitrosyl fluoride (NOF), and nitrosyl chloride (NOCl) A first step of reacting with a material containing a noble metal element attached in the chamber to form a solid compound on the surface of the material;
    A second step of etching the material by reacting a solid compound on the surface of the material with β-diketone;
    Have
    The chamber cleaning method, wherein the noble metal element is at least one element selected from the group consisting of Au, Pt, Pd, Rh, Ir, Ru, and Os.
PCT/JP2016/075752 2015-09-15 2016-09-02 Dry etching method, method for manufacturing semiconductor element and chamber cleaning method WO2017047400A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-181336 2015-09-15
JP2015181336 2015-09-15

Publications (1)

Publication Number Publication Date
WO2017047400A1 true WO2017047400A1 (en) 2017-03-23

Family

ID=58289163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075752 WO2017047400A1 (en) 2015-09-15 2016-09-02 Dry etching method, method for manufacturing semiconductor element and chamber cleaning method

Country Status (3)

Country Link
JP (1) JP6777851B2 (en)
TW (1) TWI612573B (en)
WO (1) WO2017047400A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971322A4 (en) * 2019-05-15 2022-07-27 Showa Denko K.K. Metal removal method, dry etching method, and production method for semiconductor element
WO2024019025A1 (en) * 2022-07-19 2024-01-25 セントラル硝子株式会社 Dry etching method, cleaning method, and manufacutring method for semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI770150B (en) 2017-03-27 2022-07-11 日商關東電化工業股份有限公司 Dry etching method and dry cleaning method
JP7053991B2 (en) * 2017-03-28 2022-04-13 セントラル硝子株式会社 Dry etching method, semiconductor device manufacturing method and chamber cleaning method
JP7063117B2 (en) * 2018-03-30 2022-05-09 東京エレクトロン株式会社 Etching method and etching equipment
WO2021192210A1 (en) * 2020-03-27 2021-09-30 株式会社日立ハイテク Method for producing semiconductor
WO2022123725A1 (en) 2020-12-10 2022-06-16 株式会社日立ハイテク Method for producing a semiconductor and device for producing a semiconductor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068094A (en) * 1996-06-13 1998-03-10 Samsung Electron Co Ltd Etching gaseous mixture for transition metallic thin film and method for etching transition metallic thin film formed by using the same
JPH11330050A (en) * 1998-05-14 1999-11-30 Sharp Corp Method for forming dielectric element
JP2000138202A (en) * 1998-10-30 2000-05-16 Nec Corp Method and device for manufacturing semiconductor device
US20130270227A1 (en) * 2012-04-13 2013-10-17 Lam Research Corporation Layer-layer etch of non volatile materials

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176807A (en) * 1999-12-20 2001-06-29 Hitachi Ltd Device and method for manufacturing semiconductor device, and cleaning method
US8315181B2 (en) * 2009-08-28 2012-11-20 At&T Intellectual Property I, Lp System and method for mapping potential internet protocol television interference
JP5929386B2 (en) * 2012-03-22 2016-06-08 セントラル硝子株式会社 Dry cleaning method for metal film in film forming apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068094A (en) * 1996-06-13 1998-03-10 Samsung Electron Co Ltd Etching gaseous mixture for transition metallic thin film and method for etching transition metallic thin film formed by using the same
JPH11330050A (en) * 1998-05-14 1999-11-30 Sharp Corp Method for forming dielectric element
JP2000138202A (en) * 1998-10-30 2000-05-16 Nec Corp Method and device for manufacturing semiconductor device
US20130270227A1 (en) * 2012-04-13 2013-10-17 Lam Research Corporation Layer-layer etch of non volatile materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3971322A4 (en) * 2019-05-15 2022-07-27 Showa Denko K.K. Metal removal method, dry etching method, and production method for semiconductor element
WO2024019025A1 (en) * 2022-07-19 2024-01-25 セントラル硝子株式会社 Dry etching method, cleaning method, and manufacutring method for semiconductor device

Also Published As

Publication number Publication date
JP6777851B2 (en) 2020-10-28
TW201715603A (en) 2017-05-01
TWI612573B (en) 2018-01-21
JP2017059824A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2017047400A1 (en) Dry etching method, method for manufacturing semiconductor element and chamber cleaning method
JP7053991B2 (en) Dry etching method, semiconductor device manufacturing method and chamber cleaning method
JP3502096B2 (en) Plasma cleaning method for removing residue in plasma processing apparatus
TWI529808B (en) Method for selectively depositing film on substrate
JP2009050854A (en) Process of removing titanium nitride
JP2022504527A (en) Methods for depositing tungsten or molybdenum films
US20040118812A1 (en) Etch method using supercritical fluids
JPH06260463A (en) Detergent for removing metal- containing contaminant and contaminant cleaning
JP2014236096A (en) Dry etching method, dry etching apparatus, metal film and device including the same
US8475677B2 (en) Etchant gas
TWI793417B (en) Metal removal method, dry etching method, and manufacturing method of semiconductor element
JPH01161839A (en) Plasma etching
JP2008060171A (en) Method of cleaning semiconductor processing equipment
JP2006148122A (en) Method for removing residue from metal structure on semiconductor substrate
TW504767B (en) Method of anisotropic plasma etching using nonchlorofluorocarbon, fluorine-based chemistry
US7232766B2 (en) System and method for surface reduction, passivation, corrosion prevention and activation of copper surface
JP7029068B2 (en) Tungsten oxide treatment method and tungsten hexafluoride manufacturing method
JP2022164060A (en) Etching method and processor
EP4113582A1 (en) Dry etching method, production method for semiconductor element, and cleaning method
JP7342288B2 (en) Processing method for transition metal semiconductors and reducing agent-containing processing solution for transition metal oxides
WO2021241143A1 (en) Dry etching method, method for producing semiconductor element, and cleaning method
JP3178947B2 (en) Thin film formation method
WO2023150520A1 (en) Atomic layer etching of metals using co-reactants as halogenating agents
TW202025301A (en) Methods of patterning nickel silicide layers on a semiconductor device
JPH05275395A (en) Dry etching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16846271

Country of ref document: EP

Kind code of ref document: A1