WO2017039000A1 - Moving body travel trajectory measuring system, moving body, and measuring program - Google Patents

Moving body travel trajectory measuring system, moving body, and measuring program Download PDF

Info

Publication number
WO2017039000A1
WO2017039000A1 PCT/JP2016/075890 JP2016075890W WO2017039000A1 WO 2017039000 A1 WO2017039000 A1 WO 2017039000A1 JP 2016075890 W JP2016075890 W JP 2016075890W WO 2017039000 A1 WO2017039000 A1 WO 2017039000A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
gnss
moving body
calculation unit
positioning
Prior art date
Application number
PCT/JP2016/075890
Other languages
French (fr)
Japanese (ja)
Inventor
秀幸 鳥本
正浩 浅子
真平 加藤
憲幸 篠田
田中 克典
Original Assignee
測位衛星技術株式会社
国立大学法人名古屋大学
アクト電子株式会社
株式会社メイエレック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 測位衛星技術株式会社, 国立大学法人名古屋大学, アクト電子株式会社, 株式会社メイエレック filed Critical 測位衛星技術株式会社
Publication of WO2017039000A1 publication Critical patent/WO2017039000A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement

Definitions

  • the present invention relates to a technique for positioning the position of a moving body such as a vehicle using GPS (Global Positioning System), and more specifically, the position and speed of the moving body by a combined system of GPS and other measuring devices.
  • GPS Global Positioning System
  • the present invention relates to a technique for measuring a direction, a locus, and the like.
  • GNSS positioning since absolute position and absolute orientation can be obtained, GPS has been widely used for measuring the travel trajectory of moving objects.
  • a tunnel section (inside) or in a city with many buildings there is a problem that it is impossible to grasp the exact traveling trajectory of a moving body because satellite signals do not reach and accurate positioning cannot be performed due to the influence of multipath. there were.
  • IMU Inertial Measurement Device
  • Patent Document 1 a device or the like for enabling the position of a vehicle to be determined with high accuracy when a GPS satellite is invisible has been proposed.
  • Patent Document 1 a coordinate value of a vehicle in which a GPS receiver that observes a carrier wave transmitted from a GPS satellite, an inertia device that detects an acceleration vector, and a vehicle speed detection device that detects a vehicle speed value is determined.
  • An inertial navigation unit that calculates a vehicle coordinate value and a vehicle velocity vector based on an acceleration vector detected by the inertial device, and an observation acquired by the GPS receiver when a GPS satellite is visible
  • An observation information generation unit that generates predetermined information as observation information based on the value, and a correction amount of the calculation error of the inertial navigation unit using the observation information generated by the observation information generation unit as a GPS visible time correction amount
  • the Kalman filter to be calculated, the vehicle coordinate value calculated by the inertial navigation unit, and the vehicle speed vector are calculated by the Kalman filter.
  • a navigation correction unit that corrects the corrected GPS visible time, a speed scalar calculation unit that calculates a vehicle speed scalar based on the vehicle speed value detected by the vehicle speed detection device, and the speed scalar calculation when the GPS satellite is visible.
  • a side slip angle calculation unit that calculates a side slip angle of the vehicle based on a speed scalar calculated by the unit and a lateral component of the speed vector corrected by the navigation correction unit, and a side slip angle calculated by the side slip angle calculation unit
  • a lateral slip angle accumulating unit that accumulates the left and right components of the acceleration vector detected by the inertial device in association with each other, and a lateral component of the acceleration vector of the vehicle based on the skid angle accumulated in the side slip angle accumulating unit,
  • a cornering power calculation unit for calculating a relationship value with a side slip angle as cornering power, and a GPS satellite invisible.
  • the vehicle based on the velocity scalar calculated by the velocity scalar calculation unit at the invisible time, the lateral component of the acceleration vector detected at the GPS invisible time by the inertial device, and the cornering power calculated by the cornering power calculation unit.
  • a velocity vector calculating unit that calculates a velocity vector of the vehicle, and a difference between the velocity vector calculated by the inertial navigation unit at the GPS invisible time and the velocity vector calculated by the velocity vector calculating unit is calculated as a velocity vector residual.
  • a velocity vector residual calculation unit, and the Kalman filter calculates a correction amount of the calculation error of the inertial navigation unit as a GPS invisible correction amount using the velocity vector residual calculated by the velocity vector residual calculation unit
  • the navigation correction unit is connected to the inertial navigation unit when a GPS satellite is visible.
  • the coordinate value of the vehicle is determined by correcting the calculated coordinate value of the vehicle with the correction amount when the GPS is visible, and the coordinate value of the vehicle calculated by the inertial navigation unit when the GPS satellite is not visible is
  • a position locating device characterized by locating a coordinate value of a vehicle by correcting with a correction amount.
  • an inertial measurement device that measures motion information of a moving body that passes through the set passing point position coordinates, and receives the motion information of the moving body from the inertial measurement device
  • a DR calculation unit that calculates a first estimated position and a first estimated speed of the moving body, a passing point position coordinate through which the moving body passes, a passing time through which the passing point position coordinate passes, and a speed are set.
  • the passing point coordinate setting unit and the movement information of the moving body are held every unit time, and the time when the first estimated position and the passing point position coordinate coincide with each other, and set by the passing point coordinate setting unit.
  • a reference for calculating the second estimated position and the second estimated speed of the moving body by dead reckoning using the motion information based on the difference value with the passed time Receiving the difference value between the first estimated position and the second estimated position and the difference value between the first estimated speed and the second estimated speed as an observed value, And a Kalman filter that calculates an error estimated value of the current position of the current position is disclosed.
  • LDV laser Doppler sensor
  • Patent Document 3 a moving body to which two speed sensors for detecting the relative speed between the vehicle body and the road surface on which the vehicle body travels is attached has been proposed.
  • the control device calculates the slip amount S between each drive wheel and the floor based on the detection results of the two laser Doppler sensors attached to the left and right of the vehicle body. Since the speed command to the actuator is added and corrected, errors due to slippage between the drive wheels and the floor, which cannot be detected only by the detection result of the encoder, can be reduced, and the moving body can be more accurately and accurately with respect to the travel route R A mobile system that can be run is disclosed.
  • the position and absolute orientation in the absolute coordinates such as GNSS cannot be obtained, and when the long distance measurement is performed only by the LDV, only the IMU is used. As in the case, there is a problem that the distance error accumulates and an accurate traveling locus cannot be grasped.
  • LDV laser Doppler velocimeter
  • GNSS is completely unsuitable for traveling in tunnel sections (inside) or traveling in urban areas due to the lack of satellite signals or the effects of multipath, etc., while IMU (INS) and 2 It can be seen that the shaft LDV can ensure a certain accuracy regardless of the traveling environment.
  • the following table shows the quality of performance for each positioning parameter for positioning performance by GNSS, IMU, and biaxial LDV.
  • GNSS GNSS
  • IMU IMU
  • biaxial LDV biaxial LDV
  • GNSS (Consideration about GNSS) Positioning by GNSS can cause satellite signal blocking, reduction, multipath, etc. due to external factors such as shielding of buildings, etc., resulting in deterioration of accuracy and inability to measure positioning. It can be said that GNSS is indispensable for obtaining absolute coordinates as System). Overcoming the above error factors and instabilities is a problem for constant high-accuracy position acquisition.
  • the triaxial gyro part which is responsible for calculating the posture and direction, has technologies and methods such as MEMS (Microelectromechanical Systems), FOG (Fiber Optic Gyro), and RLG (Ring Laser Gyro).
  • MEMS Microelectromechanical Systems
  • FOG Fiber Optic Gyro
  • RLG Ring Laser Gyro
  • the moving direction (distance direction) can be calculated with a three-axis acceleration clock, but the accuracy is difficult to maintain, especially at low speeds and in a stopped state, due to factors other than the moving direction such as vibration and tilt of the moving body. There are also challenges. On the other hand, since these measurements are performed completely independently, the error does not increase due to external factors, and the error between measurement epochs is significantly small.
  • LDV can accurately determine the movement distance of the target surface by the “Coriolis phenomenon of coherent optical interference”, and the amplitude change of the interference light can be measured over time. Accurate speed can be measured by measuring the axis.
  • a differential LDV it is possible to irradiate a road surface with laser light attached to a moving body such as a vehicle, and accurately measure the ground speed and moving distance of the moving body from the beat frequency of the scattered light obtained therefrom. it can. Then, it is considered that by installing two LDVs parallel to the traveling direction, it is possible to measure the traveling direction change in addition to the accurate moving distance and speed of the moving body.
  • the calculated distance is the distance on the ground (surface layer) and does not take into account the road gradient or inclination, and is replaced with the coordinates and distance on the same ellipsoidal surface in order to match the GNSS position. Treatment such as is necessary.
  • the present invention is a situation in which GNSS positioning cannot maintain sufficient accuracy, and a system that can always measure an accurate traveling locus even during long-time traveling in a tunnel section (inside) where high-accuracy positioning cannot be performed.
  • the purpose is to provide.
  • a traveling locus measurement system includes a plurality of GPS satellites, an SBAS satellite, a global navigation satellite system (GNSS), a communication device for receiving correction information, an LDV unit, and a positioning calculation unit.
  • GNSS global navigation satellite system
  • the positioning calculation unit determines that the reliability of the data from the GNSS is low in the determination process, the positioning calculation unit stores the data from the GNSS immediately before the determination, and the stored data The relative position in the local coordinate system generated based on the data from the aggregation device is reflected.
  • the correction or change amount calculation processing includes calculation of the change amount of the azimuth of the moving body in two dimensions, where the change amount of the azimuth is ⁇ , It is calculated by these. However, It is.
  • the GNSS positioning cannot be maintained with sufficient accuracy, and is always accurate even when traveling for a long time in a tunnel section (inside) where high accuracy positioning cannot be performed. It is possible to provide a system or the like that can measure a travel locus.
  • the basic concept of the present invention is a hybrid method that mutually complements the weak points of each measuring device and each sensor. More specifically, for example, for an IMU, an XYZ local space coordinate system with the IMU mounting position as the origin The basic operation is to measure the posture / movement direction / movement distance of the moving body at. In the biaxial LDV, the moving direction and moving distance of the moving body in the XY local plane coordinate system expressed by the two LDV sensor mounting positions are measured.
  • the moving direction and moving distance increase in accumulation error (drift) over time, and it is difficult to measure stably, and the movement measured by the two-axis LDV
  • the direction / movement distance has a small accumulation error due to the passage of time, it is difficult to express in the local space coordinate system and the world coordinate system because it is a local plane coordinate system expressed by the mounting position of the biaxial LDV.
  • the coordinates converted into the XYZ local space coordinate system are further converted into the world coordinate system based on signal data from the GPS. This makes it possible to measure the posture / movement direction / movement distance of the moving object in the world coordinate system with little accumulation error due to the passage of time (described later with reference to FIGS. 3 to 4).
  • the GNSS positioning data is compared with the LDV positioning data described above, the distance error rate is measured / calculated, and distance correction is performed based on the measured / calculated values. Is done. This point is also one of the features of the present invention.
  • FIG. 1 shows a system configuration concept of a travel locus measurement system according to an embodiment of the present invention.
  • a system 100 generally includes GPS satellites 101a to 101c, SBAS (SatellitetelAugmentation System) satellites 102, GPS satellites 101a to 101c, and SBAS satellites 102 for transmitting GPS satellite correction information and reliability information.
  • SBAS SetellitetelAugmentation System
  • GNSS Global Navigation Satellite System
  • LDV units two LDVs 105a to 105b (collectively referred to as “LDV units”), LDVs 105a to 105b
  • a positioning calculation unit 109 that calculates signal information by calculating signal data from the GNSS 103 and the aggregation device 106.
  • the GNSS 103, the communication device 104, the LDVs 105a to 105b, the aggregation device 106, and the positioning calculation unit 109 are typically mounted on a moving body (not shown in FIG. 1) such as a vehicle.
  • a calculation board or a computer including a CPU and a memory can be employed.
  • positioning signals are transmitted from the GPS satellites 101a to 101c.
  • SBAS satellite 102 From the SBAS satellite 102, as an example, WAAS / MSAS correction information, PPP correction information, and the like are transmitted.
  • the WAAS (Wide Area Augmentation ⁇ System) correction information is a correction signal in a wide-area reinforcement system using INMARSAT in the United States, and the MSAS correction information is a transport multipurpose satellite using the multi-functional transport satellite in Japan (MTSAT). It is the correction information in the satellite navigation reinforcement system. Both can be referred to as correction signals or correction data from dedicated geostationary satellites.
  • PPP correction information is high-precision correction information derived from correction information (for example, WAAS correction information) received from an SBAS satellite by a PPP (high-precision single positioning) algorithm.
  • the correction signal (correction information) from the ground received by the communication device 104 includes RTK (Real-time Kinematic) correction information and VRS correction information in addition to PPP correction information.
  • RTK Real-time Kinematic
  • the RTK correction information is correction information for transmitting correction observation information from a known point to a mobile station (mobile body) using a mobile phone or radio and measuring the position of the mobile station (mobile body) in real time.
  • the VRS correction information is correction information based on a method for performing RTK positioning by performing baseline analysis using virtual reference points.
  • position information according to WGS84 as a world geodetic system
  • accuracy index information such as ground speed, time (time), traveling direction, positioning state, number of satellites, and DOP.
  • the aggregation device 106 it is possible to acquire relative measurement data based on the moving body such as speed, moving distance, azimuth change amount, and estimated position.
  • the positioning calculation unit 109 calculates positioning information by calculating signal data from the signal data from the GNSS 103 and the aggregation device 106. Data obtained as a result of the calculation is position information according to WGS84, ground speed, time (time), and traveling direction.
  • the positioning computation unit 109 always (to be precise, repeats at short time intervals) (1)
  • the information (data) from the GNSS 103 and the information (data) from the aggregation device 106 are compared, or (2) Item data related to the reliability of information (data) from GNSS 103 is checked, If it can be determined that the reliability of the data from the GNSS 103 is high by the processing determination of either (1) or (2) above, the correction or change amount of the data from the aggregation device 106 is determined using this data as a positioning reference. Perform the calculation process.
  • the data from the aggregating device 106 cannot take into account the slope of the road on which the moving body travels or the inclination of the vehicle. In other words, the data is purely the speed / movement distance of the ground. Position information such as during automatic driving becomes position coordinates on the map data.
  • FIG. 2 shows a system configuration concept of a travel locus measurement system according to another embodiment of the present invention.
  • GPS satellites 201a to 201c, SBAS satellite 202, GNSS 203, communication device 204, LDV 205a to 205b, and aggregation device 206 in system 200 are GPS satellites 101a to 101c, SBAS satellite 102, GNSS 103, and communication device 104 in FIG. , LDVs 105a to 105b, and the aggregation device 106, respectively, are not described here.
  • the information (data) from the GNSS 203 is compared with the information (data) from the aggregation device 206, or (2) Checking item data related to the reliability of information (data) from GNSS 203, When it can be determined that the reliability of the data from the GNSS 203 is high by the processing determination of either (1) or (2) above, as an example, the IMU (Inertial Measurement Device: Inertial) described later using this data as a positioning reference Correction processing to Measurement Unit) or INS (Inertial Navigation System) 207 can be performed.
  • IMU Inertial Measurement Device: Inertial
  • INS Inertial Navigation System
  • IMU or INS 207 is further included.
  • triaxial attitude data From the IMU / INS 207, triaxial attitude data, triaxial acceleration data, and azimuth (orientation of the moving body) can be acquired.
  • the positioning calculation unit 209 calculates the positioning information by calculating the signal data from the GNSS 203 and the aggregation device 206 and the signal data from the IMU / INS 207. Data obtained as a result of the calculation is position information according to WGS84, ground speed, time (time), and traveling direction.
  • the system 200 in the second embodiment can take into account the 3-axis attitude data, the 3-axis acceleration data, and the like in the IMU / INS data. It is possible to accurately identify the travel locus at.
  • FIG. 3 explains the concept of processing operation of the traveling locus measurement system shown in FIG.
  • the processing operation in FIG. 3 is a kind of flowchart, and the processing operations from step S301 to step S308 are mainly executed by the positioning calculation unit 109 (some are processed by the aggregation device 106 or the like). May be included).
  • the processing steps for each device from which the data is derived are shown on the vertical line (vertical broken line) in the figure so that the origin of the data handled in the processing performed in each processing step can be understood. It is matched.
  • the vertical flow (from top to bottom) in the figure represents the flow of time, but does not necessarily represent a uniform flow of time in a strict sense.
  • steps S304 to S307 are located below step S303 in the figure does not mean that they are processed in this order.
  • Steps S304 to S307 are not necessarily read in such a way that the process moves along the dashed arrow when the process determination in step S301 is “No”.
  • steps S304 to S307 are The GPS signal can also be operated at predetermined time intervals (in this sense, if “No” in step S301, the operation is guided to step S304 by a broken line arrow).
  • step S301 even if the determination is always “Yes” in step S301, the absolute position acquired in step S302 can be used as data for correction in step S305.
  • step S302 the absolute position acquired in step S302 is usable in step S305 (that is, usable for correcting the distance), but the present invention is not limited to this, and in step S302. It is also possible to use the acquired absolute position for correcting the orientation of S304 (marked as a dashed arrow from step S302 to step S304 in FIG. 3).
  • step S301 the positioning calculation unit 109 determines whether the positioning result received by the GNSS 103 is highly reliable (for example, determining from the number of positioning using satellites, DOP (Dilution of Precision), or the like). If it is determined in step S301 that the positioning result of the GNSS 103 is highly reliable, the process proceeds to step S302, where the absolute position (latitude, longitude, altitude) is extracted from the positioning result, and the process returns to step S301.
  • the positioning calculation unit 109 can sequentially acquire highly accurate position information (latitude, longitude, altitude). Further, even when highly reliable GNSS positioning can be maintained, signal processing from the biaxial LDV can be performed at any time, and the relative position in the local coordinate system can be acquired. Then, the high-accuracy absolute position information that is sequentially acquired in step S302 can be used as appropriate for the correction of the relative position (in the figure, as an example, the flow from step S302 to step S305).
  • step S301 the process proceeds to step S303, and the positioning calculation unit 109 stores the absolute position (high reliability) immediately before the determination. This absolute position is updated while the relative position in the local coordinate system generated based on the biaxial LDV signal is reflected each time until a highly reliable absolute position can be obtained again by GNSS positioning. (See below).
  • the positioning calculation unit 109 can acquire signals from the biaxial LDVs 105a and 105b as needed, and calculate the relative position of the moving object in the local coordinate system based on the signals.
  • the procedure is started by the two-dimensional relative azimuth detection or calculation process in the local coordinate system of the moving body in step S304, separately from the processing of the signal from the GNSS, and then the horizontal plane of the moving body in the coordinate system in step S305.
  • the two-dimensional relative distance detection or calculation process is continued.
  • step S304 Since the two-dimensional relative orientation was acquired in step S304 and the two-dimensional relative distance was acquired in step S305, the relative position of the moving object in the local coordinate system is calculated in step S306 based on these pieces of information. Can be obtained.
  • step S307 the relative position obtained in the previous step (step S306) is reflected in the absolute position saved in step S303. And it progresses to step S308 and updates the absolute position of a moving body.
  • step S301 the processing from step S301 to step S308 is relatively short (as an example, about several ms to several tens of ms. Of course, as long as the arithmetic processing capability of the device permits, it is shorter than that. May be repeated).
  • FIG. 4 explains the concept of processing operation of the traveling locus measurement system shown in FIG.
  • the processing operation in FIG. 4 is a kind of flowchart, and the processing operations from step S401 to step S415 are mainly executed by the positioning calculation unit 209 (some are processed by the aggregation device 206 or the like). May be included).
  • the processing steps for each device from which the data is derived are shown on the vertical line (vertical broken line) in the figure so that the origin of the data handled in the processing performed in each processing step can be understood. It is matched.
  • the vertical flow (from top to bottom) in the figure represents the flow of time, but it does not necessarily represent a uniform flow of time in the strict sense, as in the description of FIG.
  • step S401 even if “Yes” is always determined in step S401, the absolute position acquired in step S402 can be used as data for correction in step S405.
  • step S401 the positioning calculation unit 209 determines whether or not the positioning result received by the GNSS 203 is highly reliable (for example, determining from the number of positioning using satellites or DOP (Dilution of Precision)). If it is determined in step S401 that the positioning result of the GNSS 203 is highly reliable, the process proceeds to step S402, the absolute position (latitude, longitude, altitude) is extracted from the positioning result, and the process returns to step S401.
  • the positioning calculation unit 209 determines whether or not the positioning result received by the GNSS 203 is highly reliable (for example, determining from the number of positioning using satellites or DOP (Dilution of Precision)). If it is determined in step S401 that the positioning result of the GNSS 203 is highly reliable, the process proceeds to step S402, the absolute position (latitude, longitude, altitude) is extracted from the positioning result, and the process returns to step S401.
  • the positioning calculation unit 209 can sequentially acquire highly accurate position information (latitude, longitude, altitude).
  • highly reliable GNSS positioning can be maintained, signal processing from the IMU and 2-axis LDV can be performed at any time, and the relative position in the local coordinate system can be acquired. it can.
  • the high-accuracy absolute position information that is sequentially acquired in step S402 can be used as appropriate for the correction of the relative position (in the figure, as an example, the flow from step S402 to step S406).
  • step S401 the process proceeds to step S403, and the absolute position (highly reliable) immediately before the determination is stored in the positioning calculation unit 209.
  • This absolute position is a local coordinate system that is generated based on the biaxial LDV signal in consideration of tilt information and azimuth information acquired from the IMU until a reliable absolute position can be acquired again by GNSS positioning. Are updated while being reflected each time (described later).
  • the positioning calculation unit 209 can acquire signals from the biaxial LDVs 205a and 205b as needed, and calculate the relative position of the moving object in the local coordinate system based on these signals.
  • the procedure starts with the two-dimensional relative azimuth detection or calculation process in the local coordinate system of the moving object in step S405, separately from the processing of the signal from GNSS, and then in the local coordinate system of the moving object in step S407. To the three-dimensional relative orientation detection or calculation process.
  • the positioning calculation unit 209 can obtain a signal from the IMU / INS 207 as needed and calculate the relative position of the mobile object in the local coordinate system based on this signal.
  • the procedure is as follows. First, apart from processing of signals from GNSS and biaxial LDV, the extraction of tilt information from IMU / INS in step S404 (which is a parameter that can be extracted from the angular velocity sensor of IMU / INS), and Among such tilt information, the roll and pitch appear in the reflection of the two-dimensional relative orientation in the local coordinate system of the moving object calculated in step S405. That is, the positioning calculation unit 209 reflects the roll information and pitch information extracted in step S404 on the two-dimensional relative orientation in the local coordinate system of the moving object calculated in step S405. As a result, it is possible to calculate the three-dimensional relative orientation in the local coordinate system of the moving body.
  • the extraction of orientation information from the IMU / INS in step S406 and the heading of the inclination information to the three-dimensional relative orientation in the local coordinate system of the moving object calculated in step S407. Appears in the reflection. That is, the positioning calculation unit 209 reflects the heading information extracted in step S406 on the three-dimensional relative azimuth in the local coordinate system of the moving object calculated in step S407. It is possible to calculate the three-dimensional relative orientation of the moving object in the world coordinate system.
  • step S408 if the three-dimensional relative orientation in the world coordinate system of the moving body is detected or calculated in step S408, the process proceeds to step S410, and the two-dimensional relative distance using the horizontal plane of the moving body as the coordinate system is detected. Or it calculates, and also progresses to step S412 and determines the relative position in the local coordinate system of a moving body.
  • step S414 the process proceeds to step S414, and the relative position obtained in the previous step (step S412) is reflected in the absolute position stored in step S403. And it progresses to step S415 and updates the absolute position of a moving body.
  • step S401 the processing from step S401 to step S415 is relatively short (as an example, about several ms to several tens of ms. Of course, as long as the arithmetic processing capability of the device permits, it is shorter than that. May be repeated).
  • step S301 and step S401 in the reliability determination, the determination can be made from the data of “number of positioning use satellites” and “DOP”.
  • the present invention is not limited to this, and is an example.
  • the correction coefficient and the results in step S308 and step S415 are expressed in steps S301 and S415. It can also be used for the determination in S401.
  • one LDV is installed on each side of a moving body such as a vehicle to form a biaxial LDV, and the effects and effects unique to the present invention are achieved. It has become.
  • the processing described below can be typically performed in the aggregation devices 106 and 206, but the present invention is not limited to this. For example, part or all of the processing is performed by the positioning calculation unit 109. , 209 can also be configured.
  • FIG. 5 exemplarily illustrates a vector decomposition process of a distance measured by the LDV of a moving body traveling on a road having a longitudinal gradient.
  • a deviation corresponding to the gradient occurs between the moving distance measured by the LDV and the horizontal distance.
  • a process of calculating the horizontal movement distance and the vertical movement distance is performed as follows.
  • can be associated with the pitch value of the gyro sensor.
  • FIG. 6 shows a correction process of the turning radius of a moving body that travels on a road having a cross slope (typically, a curve with an inclination to prevent a lateral displacement of the moving body due to a centrifugal force can be given). It is a figure explaining the (vehicle width (horizontal width) horizontal component indexing process of a mobile body).
  • the LDVs 611 and 612 are installed on both sides of the moving body 61 such as a vehicle
  • the starboard moving distance measured by the LDV611 and the starboard moving distance measured by the LDV612 are as follows.
  • the amount of change in the azimuth of the moving body can be finally obtained from the relationship between the port side moving distance and the starboard side moving distance.
  • the horizontal component of the vehicle width (width) of the moving body is calculated.
  • the starboard travel distance measured by the LDV 611 is L 1
  • the starboard travel distance measured by the LDV 612 is L 2
  • the vehicle width of the mobile body is W
  • the vehicle width of the mobile body is
  • the horizontal component is W ′
  • the transverse gradient value is ⁇
  • the vertical movement distance is h
  • the longitudinal gradient value is ⁇
  • can be associated with the roll value of the gyro sensor.
  • FIG. 7 is a diagram for explaining an example of calculation processing of the amount of change in the direction of the moving body using the pitch value and roll value of the gyro sensor of the IMU / INS.
  • the rotation angle can be obtained by the following equation, which can be considered as an azimuth angle. This point can be easily understood by those skilled in the art when considered geometrically as shown in FIG.
  • the accurate movement distance of the moving body is measured based on the port movement amount and the starboard movement amount acquired from the biaxial LDV installed in the moving body.
  • the tunnel section where the GNSS positioning cannot maintain sufficient accuracy and the high-precision positioning cannot be performed (inside ), Etc. and a system that can always measure an accurate travel locus even during long-time travel in a tunnel section (inside) where high-precision positioning cannot be performed even if complemented by IMU. be able to.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

[Problem] To provide a system that can constantly measure a travel trajectory accurately. [Solution] A moving body travel trajectory measuring system having a plurality of GPS satellites, an SBAS satellite, a global navigation satellite system (GNSS), a communication device for receiving correction information, an LDV unit, and a positioning calculation unit, said moving body travel trajectory measuring system being characterized in that the LDV unit has a biaxial configuration, the moving body travel trajectory measuring system is further provided with an aggregation device for aggregating signal data from the biaxial LDV, the positioning calculation unit assesses the reliability of data from the GNSS, and if the data from the GNSS is deemed to be highly reliable, the positioning calculation unit uses said data as a positioning benchmark to revise the data from the aggregation device or calculate the degree of change.

Description

移動体の走行軌跡計測システム、移動体、及び計測プログラムMoving track measurement system, moving body, and measurement program for moving body
 本発明は、GPS(Global Positioning System)を用いて車両等の移動体の位置等を測位する技術に関し、より詳細には、GPSと他の計測機器との複合システムによって、移動体の位置、速度、方向、軌跡等を計測する技術に関する。 The present invention relates to a technique for positioning the position of a moving body such as a vehicle using GPS (Global Positioning System), and more specifically, the position and speed of the moving body by a combined system of GPS and other measuring devices. The present invention relates to a technique for measuring a direction, a locus, and the like.
 GNSS測位においては、絶対位置及び絶対方位の取得が可能であるので、移動体の走行軌跡計測用として広くGPSが採用されてきた。一方で、トンネル区間(内)やビルが乱立する街中では、衛星信号が届かないことやマルチパスなどの影響により正確な測位ができないため、移動体の正確な走行軌跡を把握できなくなるという課題があった。従来、そのようなGNSSの課題を解決する為に、IMU(慣性計測装置)による推定測位を組み合わせることで、測位率や精度の改善が試みられてきた。 In GNSS positioning, since absolute position and absolute orientation can be obtained, GPS has been widely used for measuring the travel trajectory of moving objects. On the other hand, in a tunnel section (inside) or in a city with many buildings, there is a problem that it is impossible to grasp the exact traveling trajectory of a moving body because satellite signals do not reach and accurate positioning cannot be performed due to the influence of multipath. there were. Conventionally, in order to solve such a problem of GNSS, attempts have been made to improve the positioning rate and accuracy by combining estimated positioning by an IMU (Inertial Measurement Device).
 例えば、GPS衛星の不可視時に車両の位置を高い精度で標定できるようにするための装置等が提案されている(特許文献1)。 For example, a device or the like for enabling the position of a vehicle to be determined with high accuracy when a GPS satellite is invisible has been proposed (Patent Document 1).
 すなわち、特許文献1によれば、GPS衛星から発信される搬送波を観測するGPS受信機と加速度ベクトルを検出する慣性装置と車速値を検出する車速検出装置とが設置された車両の座標値を標定する位置標定装置において、前記慣性装置により検出された加速度ベクトルに基づいて車両の座標値と車両の速度ベクトルとを算出する慣性航法部と、GPS衛星の可視時に前記GPS受信機により取得された観測値に基づいて所定の情報を観測情報として生成する観測情報生成部と、前記観測情報生成部により生成された観測情報を用いて前記慣性航法部の算出誤差の補正量をGPS可視時補正量として算出するカルマンフィルタと、前記慣性航法部により算出された車両の座標値と車両の速度ベクトルとを前記カルマンフィルタにより算出されたGPS可視時補正量により補正する航法補正部と、前記車速検出装置により検出された車速値に基づいて車両の速度スカラーを算出する速度スカラー算出部と、GPS衛星の可視時に前記速度スカラー算出部により算出された速度スカラーと前記航法補正部により補正された速度ベクトルの左右方向成分とに基づいて車両の横滑り角を算出する横滑り角算出部と、前記横滑り角算出部により算出された横滑り角と前記慣性装置により検出された加速度ベクトルの左右方向成分とを対応づけて蓄積する横滑り角蓄積部と、前記横滑り角蓄積部に蓄積された横滑り角に基づいて車両の加速度ベクトルの左右方向成分と横滑り角との関係値をコーナリングパワーとして算出するコーナリングパワー算出部と、GPS衛星が不可視であるGPS不可視時点に前記速度スカラー算出部により算出された速度スカラーと前記慣性装置により前記GPS不可視時点に検出された加速度ベクトルの左右方向成分と前記コーナリングパワー算出部により算出されたコーナリングパワーとに基づいて車両の速度ベクトルを算出する速度ベクトル算出部と、前記慣性航法部により前記GPS不可視時点に算出された速度ベクトルと前記速度ベクトル算出部により算出された速度ベクトルとの差を速度ベクトル残差として算出する速度ベクトル残差算出部とを備え、前記カルマンフィルタは、前記速度ベクトル残差算出部により算出された速度ベクトル残差を用いて前記慣性航法部の算出誤差の補正量をGPS不可視時補正量として算出し、前記航法補正部は、GPS衛星の可視時に前記慣性航法部により算出された車両の座標値を前記GPS可視時補正量により補正することにより車両の座標値を標定し、GPS衛星の不可視時に前記慣性航法部により算出された車両の座標値を前記GPS不可視時補正量により補正することにより車両の座標値を標定することを特徴とする位置標定装置が開示されている。 That is, according to Patent Document 1, a coordinate value of a vehicle in which a GPS receiver that observes a carrier wave transmitted from a GPS satellite, an inertia device that detects an acceleration vector, and a vehicle speed detection device that detects a vehicle speed value is determined. An inertial navigation unit that calculates a vehicle coordinate value and a vehicle velocity vector based on an acceleration vector detected by the inertial device, and an observation acquired by the GPS receiver when a GPS satellite is visible An observation information generation unit that generates predetermined information as observation information based on the value, and a correction amount of the calculation error of the inertial navigation unit using the observation information generated by the observation information generation unit as a GPS visible time correction amount The Kalman filter to be calculated, the vehicle coordinate value calculated by the inertial navigation unit, and the vehicle speed vector are calculated by the Kalman filter. A navigation correction unit that corrects the corrected GPS visible time, a speed scalar calculation unit that calculates a vehicle speed scalar based on the vehicle speed value detected by the vehicle speed detection device, and the speed scalar calculation when the GPS satellite is visible. A side slip angle calculation unit that calculates a side slip angle of the vehicle based on a speed scalar calculated by the unit and a lateral component of the speed vector corrected by the navigation correction unit, and a side slip angle calculated by the side slip angle calculation unit And a lateral slip angle accumulating unit that accumulates the left and right components of the acceleration vector detected by the inertial device in association with each other, and a lateral component of the acceleration vector of the vehicle based on the skid angle accumulated in the side slip angle accumulating unit, A cornering power calculation unit for calculating a relationship value with a side slip angle as cornering power, and a GPS satellite invisible. The vehicle based on the velocity scalar calculated by the velocity scalar calculation unit at the invisible time, the lateral component of the acceleration vector detected at the GPS invisible time by the inertial device, and the cornering power calculated by the cornering power calculation unit. A velocity vector calculating unit that calculates a velocity vector of the vehicle, and a difference between the velocity vector calculated by the inertial navigation unit at the GPS invisible time and the velocity vector calculated by the velocity vector calculating unit is calculated as a velocity vector residual. A velocity vector residual calculation unit, and the Kalman filter calculates a correction amount of the calculation error of the inertial navigation unit as a GPS invisible correction amount using the velocity vector residual calculated by the velocity vector residual calculation unit The navigation correction unit is connected to the inertial navigation unit when a GPS satellite is visible. The coordinate value of the vehicle is determined by correcting the calculated coordinate value of the vehicle with the correction amount when the GPS is visible, and the coordinate value of the vehicle calculated by the inertial navigation unit when the GPS satellite is not visible is There has been disclosed a position locating device characterized by locating a coordinate value of a vehicle by correcting with a correction amount.
 また、移動体の自己位置を推定するGPS/INS複合航法システムを用いた自己位置推定装置において、GPSが使用できない環境下で、画像情報を用いずに移動体の自己位置の推定を可能とする自己位置推定装置も提案されている(特許文献2)。 In addition, in a self-position estimation apparatus using a GPS / INS combined navigation system that estimates the self-position of a mobile object, the self-position of the mobile object can be estimated without using image information in an environment where GPS cannot be used. A self-position estimation apparatus has also been proposed (Patent Document 2).
 すなわち、特許文献2によれば、設定した通過ポイント位置座標を通過する移動体の運動情報を計測する慣性計測装置と、前記慣性計測装置から前記移動体の運動情報を受けて、デッドレコニングにより前記移動体の第一の推定位置及び第一の推定速度を算出するDR計算部と、前記移動体が通過する通過ポイント位置座標と該通過ポイント位置座標を通過する通過時刻と、速度とを設定する通過ポイント座標設定部と、前記移動体の運動情報を単位時間毎に保持し、前記第一の推定位置と前記通過ポイント位置座標とが一致した時点における時刻と、前記通過ポイント座標設定部で設定された通過時刻との差分値に基づいて、前記運動情報を用いてデッドレコニングにより前記移動体の第二の推定位置と第二の推定速度とを算出する参照情報計算部と、前記第一の推定位置と第二の推定位置との差分値と、前記第一の推定速度と第二の推定速度との差分値とを観測値として受けて、前記移動体の現在位置の誤差推定値を算出するカルマンフィルタとを備えることを特徴とする自己位置推定装置が開示されている。 That is, according to Patent Document 2, an inertial measurement device that measures motion information of a moving body that passes through the set passing point position coordinates, and receives the motion information of the moving body from the inertial measurement device, A DR calculation unit that calculates a first estimated position and a first estimated speed of the moving body, a passing point position coordinate through which the moving body passes, a passing time through which the passing point position coordinate passes, and a speed are set. The passing point coordinate setting unit and the movement information of the moving body are held every unit time, and the time when the first estimated position and the passing point position coordinate coincide with each other, and set by the passing point coordinate setting unit. A reference for calculating the second estimated position and the second estimated speed of the moving body by dead reckoning using the motion information based on the difference value with the passed time Receiving the difference value between the first estimated position and the second estimated position and the difference value between the first estimated speed and the second estimated speed as an observed value, And a Kalman filter that calculates an error estimated value of the current position of the current position is disclosed.
 一方で、IMU以外の推測測位方法として、レーザト゛ップラセンサ(LDV)を使用することも考えらえる。例えば、移動体に2個のLDV取り付けること(以下、2軸LDVとも呼ぶ)により、相対的走行軌跡を把握することができるものと考えられる。 On the other hand, it is conceivable to use a laser Doppler sensor (LDV) as an inferred positioning method other than the IMU. For example, it is considered that a relative traveling locus can be grasped by attaching two LDVs to a moving body (hereinafter also referred to as a biaxial LDV).
 例えば、車体と車体が走行する路面との相対速度を検出する速度センサが2個取り付けられた移動体が提案されえている(特許文献3)。 For example, a moving body to which two speed sensors for detecting the relative speed between the vehicle body and the road surface on which the vehicle body travels is attached has been proposed (Patent Document 3).
 特許文献3によれば、車体の左右に取り付けられた2つのレーザドップラセンサの検出結果に基づいて制御装置が各駆動輪のそれぞれとフロアとの滑り量Sを算出し、この滑り量Sを各アクチュエータへの速度指令に加算補正するので、エンコーダの検出結果のみでは検出できない、駆動輪とフロアとの滑りによる誤差を低減することができ、移動体をより走行経路Rに対して正確に精度良く走行させることができる移動体システムについて開示されている。 According to Patent Literature 3, the control device calculates the slip amount S between each drive wheel and the floor based on the detection results of the two laser Doppler sensors attached to the left and right of the vehicle body. Since the speed command to the actuator is added and corrected, errors due to slippage between the drive wheels and the floor, which cannot be detected only by the detection result of the encoder, can be reduced, and the moving body can be more accurately and accurately with respect to the travel route R A mobile system that can be run is disclosed.
特開2011-122921号公報JP2011-122921A 特開2014-102137号公報JP 2014-102137 A 特開2010-262461号公報JP 2010-262461 A
 しかしながら、補完機器として、IMUを用いる場合、長時間GNSS測位ができない状況においては、IMU単体での長時間推測測位によって誤差が累積してしまい、この累積誤差の軽減が解決すべき課題となっていた。 However, when an IMU is used as a complementary device, in a situation where GNSS positioning cannot be performed for a long time, errors accumulate due to long-term estimation positioning by the IMU alone, and reduction of the accumulated error is a problem to be solved. It was.
 また、レーザドップラ速度計(LDV)による推測測位においても、GNSSのような絶対座標での位置や絶対方位は取得できず、また、LDVのみにより長距離計測を行うと、やはりIMUのみを用いた場合と同様に、距離誤差が累積して正確な走行軌跡が把握できなくなるという課題があった。 Also, in the estimated positioning by the laser Doppler velocimeter (LDV), the position and absolute orientation in the absolute coordinates such as GNSS cannot be obtained, and when the long distance measurement is performed only by the LDV, only the IMU is used. As in the case, there is a problem that the distance error accumulates and an accurate traveling locus cannot be grasped.
 ここで、GNSS、IMU、2軸LDVによる、移動体の走行状況(環境)に応じた測位性能についてまとめと、下表のとおりである。 Here, the positioning performance according to the traveling state (environment) of the moving body by GNSS, IMU, and 2-axis LDV is summarized and shown in the table below.
Figure JPOXMLDOC01-appb-T000009
 GNSSは、トンネル区間(内)での走行や都市部での走行に対しては、衛星信号が届かないか、あるいはマルチパス等の影響により、全く不向きである一方で、IMU(INS)や2軸LDVは、かかる走行環境に関わらず一定の精度を確保できることが分かる。
Figure JPOXMLDOC01-appb-T000009
GNSS is completely unsuitable for traveling in tunnel sections (inside) or traveling in urban areas due to the lack of satellite signals or the effects of multipath, etc., while IMU (INS) and 2 It can be seen that the shaft LDV can ensure a certain accuracy regardless of the traveling environment.
 また、下表に、GNSS、IMU、2軸LDVによる測位性能について、各測位パラメータごとに対する発揮性能の良否を示す。 In addition, the following table shows the quality of performance for each positioning parameter for positioning performance by GNSS, IMU, and biaxial LDV.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 上表等を踏まえ、GNSS、IMU、2軸LDVに対し、発明者は、次のとおり考察した。 Based on the above table, etc., the inventors considered GNSS, IMU, and biaxial LDV as follows.
(GNSSについての考察)
 GNSSによる測位は、ビルなどの遮蔽等の外界要因により、衛星信号の遮断、減少、マルチパスなどが発生し、精度劣化、測位不能になる場合がある一方で、広域におけるワールド座標系(World Coordinate System)としての絶対座標を求めるためには、GNSSは必須と言える。
 上記の誤差要因や不安定性を克服することが、恒常的な高精度位置取得のための課題である。
(Consideration about GNSS)
Positioning by GNSS can cause satellite signal blocking, reduction, multipath, etc. due to external factors such as shielding of buildings, etc., resulting in deterioration of accuracy and inability to measure positioning. It can be said that GNSS is indispensable for obtaining absolute coordinates as System).
Overcoming the above error factors and instabilities is a problem for constant high-accuracy position acquisition.
(IMUについての考察)
 GNSSを補完する機器としてIMUを考えた場合、IMUの特性として、姿勢・方位の誤差は、時間とともに積算され増大する傾向がある。特に姿勢・方向を算出する部分を担う3軸ジャイロ部については、MEMS(Microelectromechanical Systems)、FOG(Fiber Optic Gyro)、RLG(Ring Laser Gyro)などの技術ないし方式があるが、MEMSなどで構成される安価なジャイロでは、積算誤差が大きくなる為、3軸の姿勢精度を一定レベルに保持できる時間は短いという課題がある。また、移動方向(距離方向)は、3軸の加速時計をもって算出可能であるが、移動体の振動や傾きなど移動方向とは別の要因によって、特に低速や停止状態では精度が維持しにくいという課題もある。
 一方、完全自立でこれらの計測を行うため、外界要因で誤差が増大することはなく、計測エポック間の誤差は有意に小さい。
(Discussion about IMU)
When an IMU is considered as a device that complements GNSS, as an IMU characteristic, errors in posture and direction tend to be integrated and increased with time. In particular, the triaxial gyro part, which is responsible for calculating the posture and direction, has technologies and methods such as MEMS (Microelectromechanical Systems), FOG (Fiber Optic Gyro), and RLG (Ring Laser Gyro). In such an inexpensive gyro, since the integration error becomes large, there is a problem that the time during which the attitude accuracy of the three axes is maintained at a constant level is short. The moving direction (distance direction) can be calculated with a three-axis acceleration clock, but the accuracy is difficult to maintain, especially at low speeds and in a stopped state, due to factors other than the moving direction such as vibration and tilt of the moving body. There are also challenges.
On the other hand, since these measurements are performed completely independently, the error does not increase due to external factors, and the error between measurement epochs is significantly small.
(LDVについての考察)
 GNSSを補完する他の機器としてLDVを考えた場合、LDVは、「コヒーレント光干渉のコリオリ現象」により、正確に対象面の移動距離を求めることが可能であり、その干渉光の振幅変化を時間軸計測することで、正確な速度が測定できる。例えば、差動型LDVであれば、車両などの移動体に取付けレーザ光を路面に照射し、ここから得られる散乱光のビート周波数から移動体の対地速度・移動距離を正確に計測することができる。そして、このLDVを2台進行方向に平行に設置することで、移動体の正確な移動距離及び速度に加えて進行方位変化を計測することが出来るものと思われる。
(Discussion about LDV)
When LDV is considered as another device that complements GNSS, LDV can accurately determine the movement distance of the target surface by the “Coriolis phenomenon of coherent optical interference”, and the amplitude change of the interference light can be measured over time. Accurate speed can be measured by measuring the axis. For example, in the case of a differential LDV, it is possible to irradiate a road surface with laser light attached to a moving body such as a vehicle, and accurately measure the ground speed and moving distance of the moving body from the beat frequency of the scattered light obtained therefrom. it can. Then, it is considered that by installing two LDVs parallel to the traveling direction, it is possible to measure the traveling direction change in addition to the accurate moving distance and speed of the moving body.
 しかしながら、LDVであっても、ジャイロ同様の累積誤差が生ずる。また、かかる動作原理からは、相対距離や移動方向変化量が把握できるのみであり、絶対方向や位置座標を直接得ることは出来ない。 However, even with LDV, a cumulative error similar to a gyro occurs. Further, from such an operating principle, it is only possible to grasp the relative distance and the moving direction change amount, and it is not possible to directly obtain the absolute direction and the position coordinates.
 また、算出する距離は、地面(表層)での距離であり、道路の勾配や傾きは加味されておらず、GNSS位置との整合をとるためには、同じ楕円体面での座標や距離に置き換えるなどの処置が必要である。 The calculated distance is the distance on the ground (surface layer) and does not take into account the road gradient or inclination, and is replaced with the coordinates and distance on the same ellipsoidal surface in order to match the GNSS position. Treatment such as is necessary.
 以上に述べた技術背景や発明者による考察を踏まえると、GNSS/IMU/2軸LDVの改善された組み合わせ制御や改善された最適化制御が望まれる。 Based on the above-described technical background and consideration by the inventors, improved combination control of GNSS / IMU / 2-axis LDV and improved optimization control are desired.
 そこで、本発明は、GNSS測位が十分な精度を維持できない状況であって、高精度測位が行えないトンネル区間(内)等における長時間走行時においても、常に正確な走行軌跡が計測できるシステム等を提供することを目的とする。 Therefore, the present invention is a situation in which GNSS positioning cannot maintain sufficient accuracy, and a system that can always measure an accurate traveling locus even during long-time traveling in a tunnel section (inside) where high-accuracy positioning cannot be performed. The purpose is to provide.
 本発明にかかる走行軌跡計測システムは、複数のGPS衛星と、SBAS衛星と、全地球航法衛星システム(GNSS)と、補正情報を受信するための通信装置と、LDVユニットと、測位演算部とを有する移動体の走行軌跡計測システムであって、前記LDVユニットは2軸で構成されるとともに、前記2軸のLDVからの信号データを集約するための集約装置をさらに備え、前記測位演算部は、前記GNSSからのデータの信頼性の判断処理を行い、前記GNSSからのデータの信頼性が高いと判断した場合には、当該データを測位基準として前記集約装置からのデータの修正ないし変化量の計算処理を行うことを特徴とする。 A traveling locus measurement system according to the present invention includes a plurality of GPS satellites, an SBAS satellite, a global navigation satellite system (GNSS), a communication device for receiving correction information, an LDV unit, and a positioning calculation unit. A travel trajectory measurement system for a moving body, wherein the LDV unit is configured with two axes, and further includes an aggregation device for aggregating signal data from the two-axis LDV, and the positioning calculation unit includes: If the reliability of the data from the GNSS is determined and it is determined that the reliability of the data from the GNSS is high, the data is corrected or calculated from the aggregation device using the data as a positioning reference. It is characterized by performing processing.
 また、前記測位演算部は、前記判断処理において前記GNSSからのデータの信頼性が低いと判断した場合には、当該判断の直前の前記GNSSからのデータを保存し、前記保存されたデータに対し、前記集約装置からのデータに基づいて生成されるローカル座標系での相対位置を反映させることを特徴とする。 In addition, if the positioning calculation unit determines that the reliability of the data from the GNSS is low in the determination process, the positioning calculation unit stores the data from the GNSS immediately before the determination, and the stored data The relative position in the local coordinate system generated based on the data from the aggregation device is reflected.
 また、前記修正ないし変化量の計算処理には、2次元における前記移動体の方位の変化量の算出が含まれ、ここにおいて、前記方位の変化量をθとしたとき、
Figure JPOXMLDOC01-appb-M000011
によって算出されることを特徴とする。
 但し、
Figure JPOXMLDOC01-appb-M000012
である。
The correction or change amount calculation processing includes calculation of the change amount of the azimuth of the moving body in two dimensions, where the change amount of the azimuth is θ,
Figure JPOXMLDOC01-appb-M000011
It is calculated by these.
However,
Figure JPOXMLDOC01-appb-M000012
It is.
 本発明にかかる走行軌跡計測システム等によれば、GNSS測位が十分な精度を維持できない状況であって、高精度測位が行えないトンネル区間(内)等における長時間走行時においても、常に正確な走行軌跡が計測できるシステム等を提供することができる。 According to the travel locus measurement system and the like according to the present invention, the GNSS positioning cannot be maintained with sufficient accuracy, and is always accurate even when traveling for a long time in a tunnel section (inside) where high accuracy positioning cannot be performed. It is possible to provide a system or the like that can measure a travel locus.
本発明の一実施形態にかかる走行軌跡計測システム等のシステム構成概念を説明する説明図である。It is explanatory drawing explaining system configuration | structure concepts, such as a driving | running | working locus measurement system concerning one Embodiment of this invention. 本発明の他の実施形態にかかる走行軌跡計測システム等のシステム構成概念を説明する説明図である。It is explanatory drawing explaining system configuration | structure concepts, such as a driving | running track measuring system concerning other embodiment of this invention. 図1に示した走行軌跡計測システム等の処理動作概念を説明する説明図である。It is explanatory drawing explaining the processing operation | movement concept, such as a running locus measurement system shown in FIG. 図2に示した走行軌跡計測システム等の処理動作概念を説明する説明図である。It is explanatory drawing explaining the processing operation | movement concept, such as a running locus measurement system shown in FIG. 本発明の一実施形態にかかる走行軌跡計測システム等におけるLDVによって検出される信号の演算処理概念の詳細を説明する説明図である。It is explanatory drawing explaining the detail of the arithmetic processing concept of the signal detected by LDV in the driving | running | working locus measurement system etc. concerning one Embodiment of this invention. 本発明の一実施形態にかかる走行軌跡計測システム等におけるLDVによって検出される信号の演算処理概念の詳細を説明する説明図である。It is explanatory drawing explaining the detail of the arithmetic processing concept of the signal detected by LDV in the driving | running | working locus measurement system etc. concerning one Embodiment of this invention. 本発明の一実施形態にかかる走行軌跡計測システム等におけるLDVによって検出される信号の演算処理概念の詳細を説明する説明図である。It is explanatory drawing explaining the detail of the arithmetic processing concept of the signal detected by LDV in the driving | running | working locus measurement system etc. concerning one Embodiment of this invention.
(本発明の基本概念)
 本発明の理解のために、まず、本発明の基本概念について説明する。
(Basic concept of the present invention)
In order to understand the present invention, first, the basic concept of the present invention will be described.
 本発明の基本概念は、各計測機器、各センサの弱点を相互に補完するハイブリッド手法であるが、より詳細には、例えばIMUについては、IMUの取り付け位置を原点とした、XYZローカル空間座標系における移動体の姿勢/移動方向/移動距離を計測することが基本動作となる。そして、2軸LDVにおいては、2つのLDVセンサ取り付け位置で表現されるXYローカル平面座標系における移動体の移動方向、移動距離が計測される。 The basic concept of the present invention is a hybrid method that mutually complements the weak points of each measuring device and each sensor. More specifically, for example, for an IMU, an XYZ local space coordinate system with the IMU mounting position as the origin The basic operation is to measure the posture / movement direction / movement distance of the moving body at. In the biaxial LDV, the moving direction and moving distance of the moving body in the XY local plane coordinate system expressed by the two LDV sensor mounting positions are measured.
 なお、実装上の指摘として、MEMSなどの安価なIMUでは、移動方向および移動距離は時間経過とともに蓄積誤差(ドリフト)が増加し、安定した計測が難しく、また、2軸LDVで計測される移動方向/移動距離は、時間経過による蓄積誤差が少ないものの、2軸LDVの取り付け位置で表現されるローカル平面座標系のため、 ローカル空間座標系およびワールド座標系での表現が困難である。 In addition, as an indication of mounting, in an inexpensive IMU such as MEMS, the moving direction and moving distance increase in accumulation error (drift) over time, and it is difficult to measure stably, and the movement measured by the two-axis LDV Although the direction / movement distance has a small accumulation error due to the passage of time, it is difficult to express in the local space coordinate system and the world coordinate system because it is a local plane coordinate system expressed by the mounting position of the biaxial LDV.
 そこで、本発明においては、「IMUの姿勢」及び「2軸LDVの移動方向/移動距離」については、時間経過による蓄積誤差が少ないことに着目し、2軸LDVで計測された移動方向/移動距離を、IMUの姿勢情報を用いてXYZローカル空間座標系に変換する。この点が、本発明の特徴の1つとなっている(図4を参照して後述する)。  Therefore, in the present invention, with regard to “IMU posture” and “movement direction / movement distance of the biaxial LDV”, focusing on the fact that there is little accumulation error over time, the movement direction / movement measured by the biaxial LDV. The distance is converted into the XYZ local space coordinate system using the IMU attitude information. This is one of the features of the present invention (described later with reference to FIG. 4).
 そして、上記XYZローカル空間座標系に変換された座標は、さらにGPSからの信号データに基づき、ワールド座標系に変換される。
 これにより、時間経過による蓄積誤差の少ないワールド座標系における、移動体の姿勢/移動方向/移動距離を計測することが可能となる(図3~図4を参照して後述する)。
The coordinates converted into the XYZ local space coordinate system are further converted into the world coordinate system based on signal data from the GPS.
This makes it possible to measure the posture / movement direction / movement distance of the moving object in the world coordinate system with little accumulation error due to the passage of time (described later with reference to FIGS. 3 to 4).
 一方で、高精度なGNSS測位ができている間は、GNSS測位データと上記のLDV測位データとの比較を行い、距離誤差率を計測/算出し、その計測/算出値に基づき距離補正が実施される。この点も、本発明の特徴の1つとなっている。 On the other hand, while high-accuracy GNSS positioning is possible, the GNSS positioning data is compared with the LDV positioning data described above, the distance error rate is measured / calculated, and distance correction is performed based on the measured / calculated values. Is done. This point is also one of the features of the present invention.
 以下、本発明にかかる走行軌跡計測システム等ついて、図面を参照しながら詳述する。 Hereinafter, a travel locus measurement system and the like according to the present invention will be described in detail with reference to the drawings.
 図1に、本発明の一実施形態にかかる走行軌跡計測システムのシステム構成概念を示す。図1において、システム100は、全体として、GPS衛星101a~101c、GPS衛星の補正情報や信頼性情報を送信するためのSBAS(Satellite Based Augmentation System)衛星102、GPS衛星101a~101c及びSBAS衛星102からの送信信号を受信する全地球航法衛星システム(GNSS)103、地上からの各種補正信号を受信する通信装置104、2つのLDV105a~105b(これらを総称して「LDVユニット」)、LDV105a~105bからの信号データを集約演算する集約装置106、そして、GNSS103及び集約装置106からの信号データを演算して測位情報を算出する測位演算部109を含む。 FIG. 1 shows a system configuration concept of a travel locus measurement system according to an embodiment of the present invention. In FIG. 1, a system 100 generally includes GPS satellites 101a to 101c, SBAS (SatellitetelAugmentation System) satellites 102, GPS satellites 101a to 101c, and SBAS satellites 102 for transmitting GPS satellite correction information and reliability information. Global Navigation Satellite System (GNSS) 103 for receiving transmission signals from the communication device 104, communication device 104 for receiving various correction signals from the ground, two LDVs 105a to 105b (collectively referred to as “LDV units”), LDVs 105a to 105b And a positioning calculation unit 109 that calculates signal information by calculating signal data from the GNSS 103 and the aggregation device 106.
 ここで、GNSS103、通信装置104、LDV105a~105b、集約装置106、測位演算部109は、典型的には車両等の移動体(図1において不図示)に装備される。また、集約装置106や測位演算部109には、CPUやメモリを含む演算ボードやコンピュータを採用することができる。 Here, the GNSS 103, the communication device 104, the LDVs 105a to 105b, the aggregation device 106, and the positioning calculation unit 109 are typically mounted on a moving body (not shown in FIG. 1) such as a vehicle. For the aggregation device 106 and the positioning calculation unit 109, a calculation board or a computer including a CPU and a memory can be employed.
 図1において、各種信号(ないしその信号に含まれる情報やデータ)のおよその流れを説明すると、まず、GPS衛星101a~101cからは測位信号が送信される。SBAS衛星102からは、一例として、WAAS/MSAS補正情報やPPP補正情報等が送信される。 Referring to FIG. 1, the approximate flow of various signals (or information and data included in the signals) will be described. First, positioning signals are transmitted from the GPS satellites 101a to 101c. From the SBAS satellite 102, as an example, WAAS / MSAS correction information, PPP correction information, and the like are transmitted.
 WAAS(Wide Area Augmentation System)補正情報は、米国におけるINMARSATを利用した広域補強システムにおける補正信号であり、MSAS補正情報は、日本における運輸多目的衛星MTSAT(Multi-functional Transport Satellite)を利用した運輸多目的衛星用衛星航法補強システムにおける補正情報である。いずれも、専用の静止衛星からの補正信号ないし補正データということができる。 The WAAS (Wide Area Augmentation 補正 System) correction information is a correction signal in a wide-area reinforcement system using INMARSAT in the United States, and the MSAS correction information is a transport multipurpose satellite using the multi-functional transport satellite in Japan (MTSAT). It is the correction information in the satellite navigation reinforcement system. Both can be referred to as correction signals or correction data from dedicated geostationary satellites.
 PPP補正情報は、SBAS衛星から受信した補正情報(例えば、WAAS補正情報など)からPPP(高精度単独測位)アルゴリズムによって導出された高精度の補正情報である。 PPP correction information is high-precision correction information derived from correction information (for example, WAAS correction information) received from an SBAS satellite by a PPP (high-precision single positioning) algorithm.
 通信装置104が受信する地上からの補正信号(補正情報)には、PPP補正情報のほか、RTK(Real-time Kinematic)補正情報やVRS補正情報がある。 The correction signal (correction information) from the ground received by the communication device 104 includes RTK (Real-time Kinematic) correction information and VRS correction information in addition to PPP correction information.
 RTK補正情報は、既知点からの補正観測情報を携帯電話や無線を利用して移動局(移動体)に送信し、移動局(移動体)の位置をリアルタイムで測定するための補正情報である。
 VRS補正情報は、仮想基準点により基線解析を行ってRTK測位を行う方式に基づく補正情報である。
The RTK correction information is correction information for transmitting correction observation information from a known point to a mobile station (mobile body) using a mobile phone or radio and measuring the position of the mobile station (mobile body) in real time. .
The VRS correction information is correction information based on a method for performing RTK positioning by performing baseline analysis using virtual reference points.
 また、GNSS103からは、衛星からの信号受信状況や受信環境条件が整ったときには、常に高精度の絶対的な位置情報が取得可能である。具体的には、一例として世界測地系としてWGS84に準じた位置情報や、対地速度、時間(時刻)、進行方位、測位状態、衛星数、DOPなどの精度指標情報である。 In addition, from the GNSS 103, when the signal reception status from the satellite and the reception environment conditions are ready, it is possible to always obtain highly accurate absolute position information. Specifically, for example, position information according to WGS84 as a world geodetic system, and accuracy index information such as ground speed, time (time), traveling direction, positioning state, number of satellites, and DOP.
 一方、集約装置106からは、速度、移動距離、方位変化量、推定位置といった移動体を基点とした相対的な計測データが取得可能である。 On the other hand, from the aggregation device 106, it is possible to acquire relative measurement data based on the moving body such as speed, moving distance, azimuth change amount, and estimated position.
 そして、測位演算部109は、GNSS103及び集約装置106からの信号データからの信号データを演算して測位情報を算出する。算出された結果得られるデータは、WGS84に準じた位置情報や、対地速度、時間(時刻)、進行方位である。 The positioning calculation unit 109 calculates positioning information by calculating signal data from the signal data from the GNSS 103 and the aggregation device 106. Data obtained as a result of the calculation is position information according to WGS84, ground speed, time (time), and traveling direction.
(実施例1における制御/演算の概要)
 図1に示したシステムにおける制御/演算の概要を説明すると、測位演算部109では、常に(正確には、短い時間間隔で繰り返し)、
(1)GNSS103からの情報(データ)と集約装置106からの情報(データ)との比較処理を行うか、あるいは、
(2)GNSS103からの情報(データ)の信頼性にかかわる項目データをチェックしており、
上記(1)又は(2)のいずれかの処理判断により、GNSS103からのデータの信頼性が高いと判断できる場合には、このデータを測位基準として集約装置106からのデータの修正ないし変化量の計算処理を行う。
(Outline of control / calculation in the first embodiment)
The outline of the control / calculation in the system shown in FIG. 1 will be described. The positioning computation unit 109 always (to be precise, repeats at short time intervals)
(1) The information (data) from the GNSS 103 and the information (data) from the aggregation device 106 are compared, or
(2) Item data related to the reliability of information (data) from GNSS 103 is checked,
If it can be determined that the reliability of the data from the GNSS 103 is high by the processing determination of either (1) or (2) above, the correction or change amount of the data from the aggregation device 106 is determined using this data as a positioning reference. Perform the calculation process.
 このような制御を行うことにより、トンネル区間(内)やビル街など、GNSS測位信号が遮断ないし減少した場合、あるいは、マルチパスの影響等により測位が困難であるか、精度が著しく劣化する場合であっても高精度の測位を維持することができる。 By performing such control, when the GNSS positioning signal is interrupted or reduced, such as in a tunnel section (inside) or a building street, or when positioning is difficult due to the influence of multipath, etc., or the accuracy deteriorates significantly Even so, highly accurate positioning can be maintained.
 この点は、従来のGPS及びIMUの複合システムに比べても顕著な効果を奏する。例えば、本発明においては、もともと移動距離算出性能の高いLDVを2つ組み合わせ、適宜制御しながらより高精度の方位変化を算出できるので、長時間にわたりGNSS測位信号を受信することができなくても、高精度の測位を維持することができる(2つのLDVの動作の詳細については、図5~図7を参照して後述する)。 This point has a remarkable effect even compared with the conventional GPS and IMU combined system. For example, in the present invention, it is possible to calculate a more accurate azimuth change by combining two LDVs that originally have high travel distance calculation performance and appropriately controlling them, so even if a GNSS positioning signal cannot be received over a long period of time. High-precision positioning can be maintained (details of the operation of the two LDVs will be described later with reference to FIGS. 5 to 7).
(実施例1における制御/演算のさらなる改善点)
 集約装置106からのデータは、移動体が走行する道路の斜面や車両の傾きなどは考慮できない。つまり、純粋に対地の速度/移動距離としてのデータである。自動運転時などの位置情報は地図データ上での位置座標となる。
(Further improvements in control / calculation in the first embodiment)
The data from the aggregating device 106 cannot take into account the slope of the road on which the moving body travels or the inclination of the vehicle. In other words, the data is purely the speed / movement distance of the ground. Position information such as during automatic driving becomes position coordinates on the map data.
 図2に、本発明の他の実施形態にかかる走行軌跡計測システムのシステム構成概念を示す。図2において、システム200におけるGPS衛星201a~201c、SBAS衛星202、GNSS203、通信装置204、LDV205a~205b、集約装置206は、図1におけるGPS衛星101a~101c、SBAS衛星102、GNSS103、通信装置104、LDV105a~105b、集約装置106にそれぞれ対応するので説明を割愛する。 FIG. 2 shows a system configuration concept of a travel locus measurement system according to another embodiment of the present invention. 2, GPS satellites 201a to 201c, SBAS satellite 202, GNSS 203, communication device 204, LDV 205a to 205b, and aggregation device 206 in system 200 are GPS satellites 101a to 101c, SBAS satellite 102, GNSS 103, and communication device 104 in FIG. , LDVs 105a to 105b, and the aggregation device 106, respectively, are not described here.
 なお、図2に示したシステムにおける制御/演算の概要を説明すると、測位演算部209では、常に(正確には、短い時間間隔で繰り返し)、
(1)GNSS203からの情報(データ)と集約装置206からの情報(データ)との比較処理を行うか、あるいは、
(2)GNSS203からの情報(データ)の信頼性にかかわる項目データをチェックしており、
上記(1)又は(2)のいずれかの処理判断により、GNSS203からのデータの信頼性が高いと判断できる場合には、一例として、このデータを測位基準として後述するIMU(慣性計測装置:Inertial Measurement Unit)ないしINS(慣性装置:Inertial Navigation System)207への補正処理を行うことができる。
Note that the outline of the control / calculation in the system shown in FIG. 2 will be described. In the positioning calculation unit 209, it is always (to be precise, repeated at a short time interval)
(1) The information (data) from the GNSS 203 is compared with the information (data) from the aggregation device 206, or
(2) Checking item data related to the reliability of information (data) from GNSS 203,
When it can be determined that the reliability of the data from the GNSS 203 is high by the processing determination of either (1) or (2) above, as an example, the IMU (Inertial Measurement Device: Inertial) described later using this data as a positioning reference Correction processing to Measurement Unit) or INS (Inertial Navigation System) 207 can be performed.
 そして、図2におけるシステム200は、図1におけるシステム100示した構成に加え、さらに上記のIMUないしINS207が含まれる点が相違している。 2 is different from the system 100 shown in FIG. 1 in that the IMU or INS 207 is further included.
 IMU/INS207からは、3軸姿勢データ、3軸加速度データ、方位(移動体の向きなど)の計測データが取得可能である。 From the IMU / INS 207, triaxial attitude data, triaxial acceleration data, and azimuth (orientation of the moving body) can be acquired.
 そして、測位演算部209は、GNSS203及び集約装置206からの信号データ、並びに、IMU/INS207からの信号データを演算して測位情報を算出する。算出された結果得られるデータは、WGS84に準じた位置情報や、対地速度、時間(時刻)、進行方位である。 The positioning calculation unit 209 calculates the positioning information by calculating the signal data from the GNSS 203 and the aggregation device 206 and the signal data from the IMU / INS 207. Data obtained as a result of the calculation is position information according to WGS84, ground speed, time (time), and traveling direction.
(実施例2における制御/演算の特徴)
 実施例1におけるシステム100に比べ、実施例2におけるシステム200では、IMU/INSデータにおける3軸姿勢データや3軸加速度データ等を考慮することができるので、移動体の3次元位置及び3次元空間における走行軌跡を精度よく特定することができる。
(Features of control / calculation in the second embodiment)
Compared to the system 100 in the first embodiment, the system 200 in the second embodiment can take into account the 3-axis attitude data, the 3-axis acceleration data, and the like in the IMU / INS data. It is possible to accurately identify the travel locus at.
 図3に、図1に示した走行軌跡計測システム等の処理動作概念を説明する。図3における処理動作はフローチャートの一種であり、ステップS301~ステップS308までの処理動作は、主に測位演算部109において実行される処理である(一部、集約装置106等で処理されるものが含まれる場合がある)。図3におけるフローでは、それぞれの処理ステップで実施される処理において扱われるデータの由来が分かるように、データの由来となる機器ごとの処理ステップを、図中縦のライン(縦の破線)上に合わせている。 FIG. 3 explains the concept of processing operation of the traveling locus measurement system shown in FIG. The processing operation in FIG. 3 is a kind of flowchart, and the processing operations from step S301 to step S308 are mainly executed by the positioning calculation unit 109 (some are processed by the aggregation device 106 or the like). May be included). In the flow in FIG. 3, the processing steps for each device from which the data is derived are shown on the vertical line (vertical broken line) in the figure so that the origin of the data handled in the processing performed in each processing step can be understood. It is matched.
 また、図の縦の流れ(上から下)は、時間の流れを表わすが、必ずしも厳密な意味での一律な時間の流れを表わすものではない。例えば、ステップS304~ステップS307が、図中、ステップS303の下に位置しているからといって、この順序で処理されることを意味するものではない。また、ステップS304~ステップS307は、必ずステップS301の処理判断で「No」の場合に、破線の矢印に沿って処理が移行されるというように読み取るのではなく、例えば、ステップS304~ステップS307は、GPS信号受信時も所定時間ごとに作動させることもできる(その意味で、ステップS301で「No」の場合に、破線矢印によってステップS304へ導くようにした)。 The vertical flow (from top to bottom) in the figure represents the flow of time, but does not necessarily represent a uniform flow of time in a strict sense. For example, just because steps S304 to S307 are located below step S303 in the figure does not mean that they are processed in this order. Steps S304 to S307 are not necessarily read in such a way that the process moves along the dashed arrow when the process determination in step S301 is “No”. For example, steps S304 to S307 are The GPS signal can also be operated at predetermined time intervals (in this sense, if “No” in step S301, the operation is guided to step S304 by a broken line arrow).
 同様の前提で、例えば、ステップS301において常に「Yes」の判断であっても、ステップS302において取得された絶対位置は、ステップS305において補正のためのデータとして使用され得る。 On the same assumption, for example, even if the determination is always “Yes” in step S301, the absolute position acquired in step S302 can be used as data for correction in step S305.
 なお、上述のとおり、ステップS302で取得された絶対位置は、ステップS305において利用可能(つまり距離の補正ために利用可能)であるが、本発明はこれに限定されるものではなく、ステップS302で取得された絶対位置をS304の方位の補正のために利用することも可能である(図3中、ステップS302からステップS304への破線矢印として注記した)。 As described above, the absolute position acquired in step S302 is usable in step S305 (that is, usable for correcting the distance), but the present invention is not limited to this, and in step S302. It is also possible to use the acquired absolute position for correcting the orientation of S304 (marked as a dashed arrow from step S302 to step S304 in FIG. 3).
 例えば、図6を参照して後述するように、LDV611、612を車両に取り付ける場合などには、車両(移動体)の進行方向とLDVの設置向きを厳密に合わせる必要があるが、現実には設置誤差が生じるため、LDVが計測する距離にもその誤差が含まれてしまうことがある。そこで、この設置誤差(オフセット)を上述のS302からの絶対位置の変化量で補正していくと、更に好適である。 For example, as will be described later with reference to FIG. 6, when the LDVs 611 and 612 are attached to the vehicle, it is necessary to strictly match the traveling direction of the vehicle (moving body) and the installation direction of the LDV. Since an installation error occurs, the error may be included in the distance measured by the LDV. Therefore, it is more preferable to correct this installation error (offset) by the change amount of the absolute position from S302 described above.
 以下、図3に基づいて処理を説明する。
 まず、ステップS301では、測位演算部109において、GNSS103で受信された測位結果が信頼性の高いものかどうかを判断する(例えば、測位利用衛星数やDOP(Dilution of Precision)などから判断する)。ステップS301において、GNSS103の測位結果が信頼性の高いものと判断された場合には、ステップS302へ進み、測位結果から絶対位置(緯度、経度、高度)を抽出して、ステップS301へ復帰する。
Hereinafter, the processing will be described with reference to FIG.
First, in step S301, the positioning calculation unit 109 determines whether the positioning result received by the GNSS 103 is highly reliable (for example, determining from the number of positioning using satellites, DOP (Dilution of Precision), or the like). If it is determined in step S301 that the positioning result of the GNSS 103 is highly reliable, the process proceeds to step S302, where the absolute position (latitude, longitude, altitude) is extracted from the positioning result, and the process returns to step S301.
 この場合、信頼性の高いGNSS測位が維持できている場合には、測位演算部109は高精度の位置情報(緯度、経度、高度)を逐次取得することができる。
 また、信頼性の高いGNSS測位が維持できている場合であっても、2軸LDVからの信号処理は随時実施することができ、ローカル座標系での相対位置を取得していくこともできる。そして、ステップS302で逐次取得できている高精度の絶対位置情報を前記相対位置の補正のために適宜使用することができる(図中、一例として、ステップS302からステップS305への流れ)。
In this case, when highly reliable GNSS positioning can be maintained, the positioning calculation unit 109 can sequentially acquire highly accurate position information (latitude, longitude, altitude).
Further, even when highly reliable GNSS positioning can be maintained, signal processing from the biaxial LDV can be performed at any time, and the relative position in the local coordinate system can be acquired. Then, the high-accuracy absolute position information that is sequentially acquired in step S302 can be used as appropriate for the correction of the relative position (in the figure, as an example, the flow from step S302 to step S305).
 一方で、ステップS301において「No」と判断された場合、ステップS303へ進み、測位演算部109において当該判断の直前の絶対位置(高信頼度のもの)が保存される。この絶対位置は、再び高信頼の絶対位置がGNSS測位によって取得できるようになるまで、2軸LDV信号に基づいて生成されるローカル座標系での相対位置が都度反映されながら更新されることとなる(後述)。 On the other hand, if “No” is determined in step S301, the process proceeds to step S303, and the positioning calculation unit 109 stores the absolute position (high reliability) immediately before the determination. This absolute position is updated while the relative position in the local coordinate system generated based on the biaxial LDV signal is reflected each time until a highly reliable absolute position can be obtained again by GNSS positioning. (See below).
 測位演算部109においては、2軸LDV105a、105bからの信号を随時取得してこの信号に基づき移動体のローカル座標系での相対位置を算出していくことができる。その手順は、GNSSからの信号の処理とは別に、ステップS304における移動体のローカル座標系での2次元相対方位検出ないし算出処理によってスタートし、次に、ステップS305における移動体の水平面を座標系とした2次元相対距離検出ないし算出処理へと続く。 The positioning calculation unit 109 can acquire signals from the biaxial LDVs 105a and 105b as needed, and calculate the relative position of the moving object in the local coordinate system based on the signals. The procedure is started by the two-dimensional relative azimuth detection or calculation process in the local coordinate system of the moving body in step S304, separately from the processing of the signal from the GNSS, and then the horizontal plane of the moving body in the coordinate system in step S305. The two-dimensional relative distance detection or calculation process is continued.
 ステップS304において2次元での相対方位を取得し、ステップS305において2次元での相対距離を取得できたので、これらの情報に基づき、ステップS306において移動体のローカル座標系での相対位置を算出して求めることができる。 Since the two-dimensional relative orientation was acquired in step S304 and the two-dimensional relative distance was acquired in step S305, the relative position of the moving object in the local coordinate system is calculated in step S306 based on these pieces of information. Can be obtained.
 次に、ステップS307へ進み、前ステップ(ステップS306)で求めた相対位置をステップS303で保存した絶対位置に反映する。そして、ステップS308へ進み、移動体の絶対位置を更新する。 Next, the process proceeds to step S307, and the relative position obtained in the previous step (step S306) is reflected in the absolute position saved in step S303. And it progresses to step S308 and updates the absolute position of a moving body.
 その後、ステップS301へ復帰するが、ステップS301~ステップS308までの処理は、比較的短時間(一例として、数ms~数十ms程度。もちろん、機器の演算処理能力が許す限り、それよりも短くても良い)で繰り返し実施される。 Thereafter, the process returns to step S301, but the processing from step S301 to step S308 is relatively short (as an example, about several ms to several tens of ms. Of course, as long as the arithmetic processing capability of the device permits, it is shorter than that. May be repeated).
 図4に、図2に示した走行軌跡計測システム等の処理動作概念を説明する。図4における処理動作はフローチャートの一種であり、ステップS401~ステップS415までの処理動作は、主に測位演算部209において実行される処理である(一部、集約装置206等で処理されるものが含まれる場合がある)。図4におけるフローでは、それぞれの処理ステップで実施される処理において扱われるデータの由来が分かるように、データの由来となる機器ごとの処理ステップを、図中縦のライン(縦の破線)上に合わせている。 FIG. 4 explains the concept of processing operation of the traveling locus measurement system shown in FIG. The processing operation in FIG. 4 is a kind of flowchart, and the processing operations from step S401 to step S415 are mainly executed by the positioning calculation unit 209 (some are processed by the aggregation device 206 or the like). May be included). In the flow in FIG. 4, the processing steps for each device from which the data is derived are shown on the vertical line (vertical broken line) in the figure so that the origin of the data handled in the processing performed in each processing step can be understood. It is matched.
 また、図の縦の流れ(上から下)は、時間の流れを表わすが、必ずしも厳密な意味での一律な時間の流れを表わすものではないことは、図3についての説明と同様である。 Also, the vertical flow (from top to bottom) in the figure represents the flow of time, but it does not necessarily represent a uniform flow of time in the strict sense, as in the description of FIG.
 また、例えば、ステップS401において常に「Yes」の判断であっても、ステップS402において取得された絶対位置は、ステップS405において補正のためのデータとして使用され得る。 Also, for example, even if “Yes” is always determined in step S401, the absolute position acquired in step S402 can be used as data for correction in step S405.
 以下、図4に基づいて処理を説明する。
 まず、ステップS401では、測位演算部209において、GNSS203で受信された測位結果が信頼性の高いものかどうかを判断する(例えば、測位利用衛星数やDOP(Dilution of Precision)などから判断する)。ステップS401において、GNSS203の測位結果が信頼性の高いものと判断された場合には、ステップS402へ進み、測位結果から絶対位置(緯度、経度、高度)を抽出して、ステップS401へ復帰する。
Hereinafter, the processing will be described with reference to FIG.
First, in step S401, the positioning calculation unit 209 determines whether or not the positioning result received by the GNSS 203 is highly reliable (for example, determining from the number of positioning using satellites or DOP (Dilution of Precision)). If it is determined in step S401 that the positioning result of the GNSS 203 is highly reliable, the process proceeds to step S402, the absolute position (latitude, longitude, altitude) is extracted from the positioning result, and the process returns to step S401.
 この場合、信頼性の高いGNSS測位が維持できている場合には、測位演算部209は高精度の位置情報(緯度、経度、高度)を逐次取得することができる。
 また、信頼性の高いGNSS測位が維持できている場合であっても、IMUや2軸LDVからの信号処理は随時実施することができ、ローカル座標系での相対位置を取得していくこともできる。そして、ステップS402で逐次取得できている高精度の絶対位置情報を前記相対位置の補正のために適宜使用することができる(図中、一例として、ステップS402からステップS406への流れ)。
In this case, when highly reliable GNSS positioning can be maintained, the positioning calculation unit 209 can sequentially acquire highly accurate position information (latitude, longitude, altitude).
In addition, even when highly reliable GNSS positioning can be maintained, signal processing from the IMU and 2-axis LDV can be performed at any time, and the relative position in the local coordinate system can be acquired. it can. Then, the high-accuracy absolute position information that is sequentially acquired in step S402 can be used as appropriate for the correction of the relative position (in the figure, as an example, the flow from step S402 to step S406).
 一方で、ステップS401において「No」と判断された場合、ステップS403へ進み、測位演算部209において当該判断の直前の絶対位置(高信頼度のもの)が保存される。この絶対位置は、再び高信頼の絶対位置がGNSS測位によって取得できるようになるまで、IMUから取得される傾き情報や方位情報を考慮して2軸LDV信号に基づいて生成されるローカル座標系での相対位置が都度反映されながら更新されることとなる(後述)。 On the other hand, if “No” is determined in step S401, the process proceeds to step S403, and the absolute position (highly reliable) immediately before the determination is stored in the positioning calculation unit 209. This absolute position is a local coordinate system that is generated based on the biaxial LDV signal in consideration of tilt information and azimuth information acquired from the IMU until a reliable absolute position can be acquired again by GNSS positioning. Are updated while being reflected each time (described later).
 測位演算部209においては、2軸LDV205a、205bからの信号を随時取得してこの信号に基づき移動体のローカル座標系での相対位置を算出していくことができる。
 その手順は、GNSSからの信号の処理とは別に、ステップS405における移動体のローカル座標系での2次元相対方位検出ないし算出処理によってスタートし、次に、ステップS407における移動体のローカル座標系での3次元相対方位検出ないし算出処理へと続く。
The positioning calculation unit 209 can acquire signals from the biaxial LDVs 205a and 205b as needed, and calculate the relative position of the moving object in the local coordinate system based on these signals.
The procedure starts with the two-dimensional relative azimuth detection or calculation process in the local coordinate system of the moving object in step S405, separately from the processing of the signal from GNSS, and then in the local coordinate system of the moving object in step S407. To the three-dimensional relative orientation detection or calculation process.
 さらに、測位演算部209においては、IMU/INS207からの信号を随時取得してこの信号に基づき移動体のローカル座標系での相対位置を算出していくことができる。 Furthermore, the positioning calculation unit 209 can obtain a signal from the IMU / INS 207 as needed and calculate the relative position of the mobile object in the local coordinate system based on this signal.
 その手順は、第1に、GNSSや2軸LDVからの信号の処理とは別に、ステップS404におけるIMU/INSからの傾き情報(IMU/INSの角速度センサから抽出できるパラメータである)の抽出、及びかかる傾き情報のうち、ロール(Roll)及びピッチ(Pitch)をステップS405で算出された移動体のローカル座標系での2次元相対方位への反映に表れる。つまり、測位演算部209においては、ステップS405で算出された移動体のローカル座標系での2次元相対方位に対し、ステップS404で抽出されたロール(Roll)情報及びピッチ(Pitch)情報を反映することにより、移動体のローカル座標系での3次元相対方位を算出することが可能となる。 The procedure is as follows. First, apart from processing of signals from GNSS and biaxial LDV, the extraction of tilt information from IMU / INS in step S404 (which is a parameter that can be extracted from the angular velocity sensor of IMU / INS), and Among such tilt information, the roll and pitch appear in the reflection of the two-dimensional relative orientation in the local coordinate system of the moving object calculated in step S405. That is, the positioning calculation unit 209 reflects the roll information and pitch information extracted in step S404 on the two-dimensional relative orientation in the local coordinate system of the moving object calculated in step S405. As a result, it is possible to calculate the three-dimensional relative orientation in the local coordinate system of the moving body.
 また、第2に、ステップS406におけるIMU/INSからの方位情報の抽出、及びかかる傾き情報のうち、ヘディング(Heading)をステップS407で算出された移動体のローカル座標系での3次元相対方位への反映に表れる。つまり、測位演算部209においては、ステップS407で算出された移動体のローカル座標系での3次元相対方位に対し、ステップS406で抽出されたヘディング(Heading)情報を反映することにより、ステップS408において、移動体のワールド座標系での3次元相対方位を算出することが可能となる。 Secondly, the extraction of orientation information from the IMU / INS in step S406 and the heading of the inclination information to the three-dimensional relative orientation in the local coordinate system of the moving object calculated in step S407. Appears in the reflection. That is, the positioning calculation unit 209 reflects the heading information extracted in step S406 on the three-dimensional relative azimuth in the local coordinate system of the moving object calculated in step S407. It is possible to calculate the three-dimensional relative orientation of the moving object in the world coordinate system.
 以上の処理を経て、ステップS408における移動体のワールド座標系での3次元相対方位を検出ないし算出すると、次に、ステップS410へ進み、移動体の水平面を座標系とした2次元相対距離を検出ないし算出し、さらにステップS412へ進み、移動体のローカル座標系での相対位置を決定する。 After the above processing, if the three-dimensional relative orientation in the world coordinate system of the moving body is detected or calculated in step S408, the process proceeds to step S410, and the two-dimensional relative distance using the horizontal plane of the moving body as the coordinate system is detected. Or it calculates, and also progresses to step S412 and determines the relative position in the local coordinate system of a moving body.
 次に、ステップS414へ進み、前ステップ(ステップS412)で求めた相対位置をステップS403で保存した絶対位置に反映する。そして、ステップS415へ進み、移動体の絶対位置を更新する。 Next, the process proceeds to step S414, and the relative position obtained in the previous step (step S412) is reflected in the absolute position stored in step S403. And it progresses to step S415 and updates the absolute position of a moving body.
 その後、ステップS401へ復帰するが、ステップS401~ステップS415までの処理は、比較的短時間(一例として、数ms~数十ms程度。もちろん、機器の演算処理能力が許す限り、それよりも短くても良い)で繰り返し実施される。 Thereafter, the process returns to step S401, but the processing from step S401 to step S415 is relatively short (as an example, about several ms to several tens of ms. Of course, as long as the arithmetic processing capability of the device permits, it is shorter than that. May be repeated).
(GNSSの測位結果の信頼性判定における補足)
 上述のステップS301やステップS401のように、信頼性判定においては、「測位利用衛星数」、「DOP」のデータから判定することができるが、本発明はこれに限定されるものではなく、一例として、ステップS302、ステップS403、ステップS405などの補正が十分に繰り返され、それらにより求まる補正計測が一定以上収束した場合には、その補正係数とステップS308とステップS415での結果を、ステップS301およびS401での判定に利用することも可能である。
(Supplementary information for determining the reliability of GNSS positioning results)
As in the above step S301 and step S401, in the reliability determination, the determination can be made from the data of “number of positioning use satellites” and “DOP”. However, the present invention is not limited to this, and is an example. As described above, when the corrections in step S302, step S403, step S405, etc. are sufficiently repeated and the correction measurement obtained thereby converges to a certain level or more, the correction coefficient and the results in step S308 and step S415 are expressed in steps S301 and S415. It can also be used for the determination in S401.
 上記の処理は、マルチパスなどの影響により、「測位利用衛星数」が多く、かつ「DOP」が低くても測位結果が好ましくない場合にも好適に作用し、良好な判定結果を得ることが可能となる。 The above processing works well even when the number of positioning use satellites is large due to the influence of multipath, etc. and the positioning result is not favorable even if the “DOP” is low, and a good judgment result can be obtained. It becomes possible.
 次に、図5~図7を参照して、本発明の一実施形態にかかる走行軌跡計測システム等におけるLDVやIMU/INSのジャイロセンサによって検出される信号の演算処理について説明する。本発明の一実施形態にかかる走行軌跡計測システムでは、車両等の移動体の両側にLDVがそれぞれ1つずつ設置されて2軸LDVを構成しており、本発明に特有の作用効果を奏するようになっている。
 なお、後述の処理は、典型的には、集約装置106、206において実施することができるが、本発明はこれに限定されるものではなく、例えば、処理の一部又は全部を測位演算部109、209において実施するよう構成することもできる。
Next, with reference to FIG. 5 to FIG. 7, the calculation processing of signals detected by the LDV or IMU / INS gyro sensor in the travel locus measurement system or the like according to one embodiment of the present invention will be described. In the travel locus measurement system according to an embodiment of the present invention, one LDV is installed on each side of a moving body such as a vehicle to form a biaxial LDV, and the effects and effects unique to the present invention are achieved. It has become.
Note that the processing described below can be typically performed in the aggregation devices 106 and 206, but the present invention is not limited to this. For example, part or all of the processing is performed by the positioning calculation unit 109. , 209 can also be configured.
 図5は、例示的に、縦断勾配を有する道路を走行する移動体のLDVによって計測される距離のベクトル分解処理を説明する図である。同図において、移動体がAからBへ(あるいは、BからAへ)移動する場合、LDVで計測される移動距離と水平距離との間には勾配(縦断勾配値)に応じたズレが生じるが、こうしたズレを修正するために、水平移動距離及び垂直移動距離を算出する処理を次のとおり実施する。 FIG. 5 exemplarily illustrates a vector decomposition process of a distance measured by the LDV of a moving body traveling on a road having a longitudinal gradient. In the figure, when the moving body moves from A to B (or from B to A), a deviation corresponding to the gradient (longitudinal gradient value) occurs between the moving distance measured by the LDV and the horizontal distance. However, in order to correct such a deviation, a process of calculating the horizontal movement distance and the vertical movement distance is performed as follows.
 つまり、LDVで計測される移動距離をl、水平移動距離をd、垂直移動距離をh、縦断勾配値をθとしたとき、
Figure JPOXMLDOC01-appb-M000013
で表わされる。
That is, when the moving distance measured by LDV is l, the horizontal moving distance is d, the vertical moving distance is h, and the longitudinal gradient value is θ,
Figure JPOXMLDOC01-appb-M000013
It is represented by
 このとき、θは、ジャイロセンサのピッチ(pitch)値に対応付け可能である。 At this time, θ can be associated with the pitch value of the gyro sensor.
 図6は、横断勾配を有する道路(典型的には、遠心力による移動体の横ずれ等を防止するための傾斜を伴ったカーブを挙げることができる)を走行する移動体の回転半径の補正処理(のうちの移動体の車幅(横幅)水平成分の割り出し処理)を説明する図である。同図(A)に示されるように、車両等の移動体61の両脇にLDV611、612を設置した場合には、LDV611によって計測される左舷移動距離と、LDV612によって計測される右舷移動距離とが検出されるが、これら左舷移動距離及び右舷移動距離との関係によって、最終的には移動体の方位の変化量を求めることができる。
 ここでは、まず、移動体の車幅(横幅)の水平成分を算出する。
FIG. 6 shows a correction process of the turning radius of a moving body that travels on a road having a cross slope (typically, a curve with an inclination to prevent a lateral displacement of the moving body due to a centrifugal force can be given). It is a figure explaining the (vehicle width (horizontal width) horizontal component indexing process of a mobile body). As shown in FIG. 6A, when the LDVs 611 and 612 are installed on both sides of the moving body 61 such as a vehicle, the starboard moving distance measured by the LDV611 and the starboard moving distance measured by the LDV612 are as follows. However, the amount of change in the azimuth of the moving body can be finally obtained from the relationship between the port side moving distance and the starboard side moving distance.
Here, first, the horizontal component of the vehicle width (width) of the moving body is calculated.
 つまり、図6(B)に示されるように、LDV611で計測される左舷移動距離をL、LDV612で計測される右舷移動距離をL、移動体の車幅をW、移動体の車幅の水平成分をW´、横断勾配値をθとしたとき、垂直移動距離をh、縦断勾配値をθとしたとき、
Figure JPOXMLDOC01-appb-M000014
で表わされる。
That is, as shown in FIG. 6B, the starboard travel distance measured by the LDV 611 is L 1 , the starboard travel distance measured by the LDV 612 is L 2 , the vehicle width of the mobile body is W, and the vehicle width of the mobile body is When the horizontal component is W ′, the transverse gradient value is θ, the vertical movement distance is h, and the longitudinal gradient value is θ,
Figure JPOXMLDOC01-appb-M000014
It is represented by
 このとき、θは、ジャイロセンサのロール(Roll)値に対応付け可能である。 At this time, θ can be associated with the roll value of the gyro sensor.
 図7に、IMU/INSのジャイロセンサのピッチ(Pitch)値及びロール(Roll)値を用いた移動体の方位の変化量の算出処理例を説明する図である。 FIG. 7 is a diagram for explaining an example of calculation processing of the amount of change in the direction of the moving body using the pitch value and roll value of the gyro sensor of the IMU / INS.
 図7(A)に示されるように、2次元平面において左舷移動量(距離)と右舷移動量(距離)とから方位の変化量を求めるには、回転半径に着目することが極めて有効である。 As shown in FIG. 7A, it is extremely effective to pay attention to the rotation radius in order to obtain the azimuth change amount from the starboard movement amount (distance) and starboard movement amount (distance) in the two-dimensional plane. .
 図7(A)において、左舷移動量をL、右舷移動量をLとし、移動体の回転半径をR、車幅をW、回転角をθとしたとき、
Figure JPOXMLDOC01-appb-M000015
が成り立つ。
In FIG. 7A, when the port side movement amount is L 1 , the starboard movement amount is L 2 , the rotational radius of the moving body is R, the vehicle width is W, and the rotation angle is θ,
Figure JPOXMLDOC01-appb-M000015
Holds.
 ここで、上記2式よりRを消去すると、下記方程式により回転角を求めることができ、これを方位角と考えることができる。この点は、図7(B)のように幾何学的に考えると、当業者であれば容易に理解できるであろう。
Figure JPOXMLDOC01-appb-M000016
Here, if R is eliminated from the above two equations, the rotation angle can be obtained by the following equation, which can be considered as an azimuth angle. This point can be easily understood by those skilled in the art when considered geometrically as shown in FIG.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
ただし、
Figure JPOXMLDOC01-appb-M000018
である。
Figure JPOXMLDOC01-appb-M000017
However,
Figure JPOXMLDOC01-appb-M000018
It is.
 このように、本発明の一実施形態におけるシステム等では、移動体に設置された2軸のLDVから取得される左舷移動量及び右舷移動量に基づき、移動体の正確な移動距離を計測することができ、さらにIMU/INSからの情報に基づいて進行方位変化を正確に計測することができるので、GNSS測位が十分な精度を維持できない状況であって、高精度測位が行えないトンネル区間(内)等における長時間走行時や、IMUによる補完を行ってもなお高精度測位が行えないトンネル区間(内)等における長時間走行時においても、常に正確な走行軌跡が計測できるシステム等を提供することができる。 As described above, in the system or the like according to an embodiment of the present invention, the accurate movement distance of the moving body is measured based on the port movement amount and the starboard movement amount acquired from the biaxial LDV installed in the moving body. In addition, since it is possible to accurately measure the heading change based on information from the IMU / INS, the tunnel section where the GNSS positioning cannot maintain sufficient accuracy and the high-precision positioning cannot be performed (inside ), Etc., and a system that can always measure an accurate travel locus even during long-time travel in a tunnel section (inside) where high-precision positioning cannot be performed even if complemented by IMU. be able to.
 以上のとおり、図面を参照しながら本発明の実施形態について、様々な局面から具体的に説明したが、特許請求の範囲、明細書、要約書、図面に記載された全ての技術的要素、ならびに、方法ないし処理ステップは、これら要素及び/又はステップの少なくとも一部が相互に排他的となる組み合わせを除く任意の組み合わせによって、本発明にかかるシステムならびにプログラムの構成要素ないし構成段階となりうる。 As described above, embodiments of the present invention have been specifically described from various aspects with reference to the drawings, but all technical elements described in the claims, specification, abstract, drawings, and The method or the processing step can be a component or a component stage of the system and the program according to the present invention by any combination except a combination in which at least a part of these elements and / or steps are mutually exclusive.
 また、本発明は、上述した実施形態のいずれの個別具体的な詳細記載に制限ないし限定されることはない。さらに、本発明の技術的範囲は、上述の説明のみによってではなく、特許請求の範囲の記載によってその外延が特定されるものであり、特許請求の範囲と均等となる置換ないし変更も本発明の技術的範囲となるものである。 Further, the present invention is not limited or limited to any individual specific detailed description of the above-described embodiment. Further, the technical scope of the present invention is not limited only to the above description, but the extension thereof is specified by the description of the scope of claims, and substitutions or modifications equivalent to the scope of the claims are also included in the scope of the present invention. It is within the technical scope.
100,200 走行軌跡計測システム
101a~101c、201a~201c GPS衛星
102、202 SBAS衛星
103、203 全地球航法衛星システム(GNSS)
104、204 通信装置
105a~105b、205a~205b LDV 
106、206 集約装置
109、209 測位演算部
207 IMU(INS)
100, 200 Traveling track measurement systems 101a to 101c, 201a to 201c GPS satellites 102, 202 SBAS satellites 103, 203 Global navigation satellite system (GNSS)
104, 204 Communication devices 105a-105b, 205a-205b LDV
106, 206 Aggregation device 109, 209 Positioning calculation unit 207 IMU (INS)

Claims (14)

  1.  複数のGPS衛星と、SBAS衛星と、全地球航法衛星システム(GNSS)と、補正情報を受信するための通信装置と、LDVユニットと、測位演算部とを有する移動体の走行軌跡計測システムであって、
     前記LDVユニットは2軸で構成されるとともに、前記2軸のLDVからの信号データを集約するための集約装置をさらに備え、
     前記測位演算部は、前記GNSSからのデータの信頼性の判断処理を行い、
     前記GNSSからのデータの信頼性が高いと判断した場合には、当該データを測位基準として前記集約装置からのデータの修正ないし変化量の計算処理を行う
    ことを特徴とする走行軌跡計測システム。
    A traveling trajectory measurement system for a moving body having a plurality of GPS satellites, an SBAS satellite, a global navigation satellite system (GNSS), a communication device for receiving correction information, an LDV unit, and a positioning calculation unit. And
    The LDV unit includes two axes, and further includes an aggregation device for aggregating signal data from the two-axis LDV,
    The positioning calculation unit performs a process of determining reliability of data from the GNSS,
    When it is determined that the reliability of the data from the GNSS is high, the travel locus measurement system is characterized in that the data from the aggregation device is corrected or the amount of change is calculated using the data as a positioning reference.
  2.  前記測位演算部は、前記判断処理において前記GNSSからのデータの信頼性が低いと判断した場合には、当該判断の直前の前記GNSSからのデータを保存し、
     前記保存されたデータに対し、前記集約装置からのデータに基づいて生成されるローカル座標系での相対位置を反映させる
    ことを特徴とする請求項1に記載の走行軌跡計測システム。
    When the positioning calculation unit determines that the reliability of the data from the GNSS is low in the determination process, the positioning calculation unit stores the data from the GNSS immediately before the determination,
    The travel locus measurement system according to claim 1, wherein a relative position in a local coordinate system generated based on data from the aggregation device is reflected on the stored data.
  3.  前記修正ないし変化量の計算処理には、2次元における前記移動体の方位の変化量の算出が含まれ、ここにおいて、前記方位の変化量をθとしたとき、
    Figure JPOXMLDOC01-appb-M000001
    によって算出されることを特徴とする請求項1または2に記載の走行軌跡計測システム。
     但し、
    Figure JPOXMLDOC01-appb-M000002
    である。
    The correction or change amount calculation processing includes calculation of the change amount of the azimuth of the moving body in two dimensions, where the change amount of the azimuth is θ,
    Figure JPOXMLDOC01-appb-M000001
    The travel locus measurement system according to claim 1, wherein the travel locus measurement system is calculated by:
    However,
    Figure JPOXMLDOC01-appb-M000002
    It is.
  4.  複数のGPS衛星と、SBAS衛星と、全地球航法衛星システム(GNSS)と、補正情報を受信するための通信装置と、2軸で構成されたLDVユニットと、前記LDVユニットからの信号データを集約するための集約装置と、測位演算部とを有する移動体の走行軌跡計測システムで実行されるコンピュータプログラムあって、前記走行軌跡計測システムで実行されたとき、
     前記測位演算部に、
      前記GNSSからのデータの信頼性の判断処理を行わせるステップと、
      前記GNSSからのデータの信頼性が高いと判断された場合には、当該データを測位基準として前記集約装置からのデータの修正ないし変化量の計算処理を行わせるステップと
    を実行させることを特徴とするプログラム。
    Aggregate multiple GPS satellites, SBAS satellite, Global Navigation Satellite System (GNSS), communication device for receiving correction information, two-axis LDV unit, and signal data from the LDV unit A computer program executed by a traveling locus measurement system for a moving body having an aggregation device and a positioning calculation unit, and when executed by the traveling locus measurement system,
    In the positioning calculation unit,
    Performing a process for determining the reliability of data from the GNSS;
    When it is determined that the reliability of the data from the GNSS is high, the step of correcting the data from the aggregation device or calculating the amount of change using the data as a positioning reference is executed. Program to do.
  5.  前記判断処理において前記GNSSからのデータの信頼性が低いと判断された場合には、
     前記測位演算部に、
      当該判断の直前の前記GNSSからのデータを保存させるステップと、
      前記保存されたデータに対し、前記集約装置からのデータに基づいて生成されるローカル座標系での相対位置を反映させるステップと
    を実行させることを特徴とする請求項5に記載のプログラム。
    If it is determined in the determination process that the reliability of data from the GNSS is low,
    In the positioning calculation unit,
    Storing data from the GNSS immediately before the determination;
    6. The program according to claim 5, wherein a step of reflecting a relative position in a local coordinate system generated based on data from the aggregation device is executed on the stored data.
  6.  前記修正ないし変化量の計算処理には、2次元における前記移動体の方位の変化量の算出が含まれ、ここにおいて、前記方位の変化量をθとしたとき、
    Figure JPOXMLDOC01-appb-M000003
    によって算出されることを特徴とする請求項4または5に記載のプログラム。
     但し、
    Figure JPOXMLDOC01-appb-M000004
    である。
    The correction or change amount calculation processing includes calculation of the change amount of the azimuth of the moving body in two dimensions, where the change amount of the azimuth is θ,
    Figure JPOXMLDOC01-appb-M000003
    The program according to claim 4, wherein the program is calculated by:
    However,
    Figure JPOXMLDOC01-appb-M000004
    It is.
  7.  複数のGPS衛星と、SBAS衛星と、全地球航法衛星システム(GNSS)と、補正情報を受信するための通信装置と、LDVユニットと、慣性計測装置ないし慣性装置と、測位演算部とを有する移動体の走行軌跡計測システムであって、
     前記LDVユニットは2軸で構成されるとともに、前記2軸のLDVからの信号データを集約するための集約装置をさらに備え、
     前記測位演算部は、前記GNSSからのデータの信頼性の判断処理を行い、
     前記GNSSからのデータの信頼性が高いと判断した場合には、当該データを測位基準として前記慣性計測装置ないし慣性装置からのデータのうち、少なくとも方位情報に対する修正ないし変化量の計算処理を行う
    ことを特徴とする走行軌跡計測システム。
    Movement having a plurality of GPS satellites, an SBAS satellite, a global navigation satellite system (GNSS), a communication device for receiving correction information, an LDV unit, an inertial measurement device or an inertial device, and a positioning calculation unit A body trajectory measurement system,
    The LDV unit includes two axes, and further includes an aggregation device for aggregating signal data from the two-axis LDV,
    The positioning calculation unit performs a process of determining reliability of data from the GNSS,
    When it is determined that the reliability of the data from the GNSS is high, at least correction of the azimuth information or calculation processing of the amount of change is performed among the data from the inertial measurement device or the inertial device using the data as a positioning reference. Traveling track measurement system characterized by
  8.  前記測位演算部は、前記判断処理において前記GNSSからのデータの信頼性が低いと判断した場合には、当該判断の直前の前記GNSSからのデータを保存し、
     前記保存されたデータに対し、前記慣性計測装置ないし慣性装置からのデータと前記集約装置からのデータとに基づいて生成されるローカル座標系での相対位置を反映させる
    ことを特徴とする請求項7に記載の走行軌跡計測システム。
    When the positioning calculation unit determines that the reliability of the data from the GNSS is low in the determination process, the positioning calculation unit stores the data from the GNSS immediately before the determination,
    8. The relative position in the local coordinate system generated based on the data from the inertial measurement device or the inertial device and the data from the aggregation device is reflected on the stored data. The travel locus measurement system described in 1.
  9.  前記修正ないし変化量の計算処理には、3次元における前記移動体の方位の変化量の算出が含まれ、ここにおいて、前記方位の変化量をθとしたとき、
    Figure JPOXMLDOC01-appb-M000005
    によって算出されることを特徴とする請求項7または8に記載の走行軌跡計測システム。
     但し、
    Figure JPOXMLDOC01-appb-M000006
    である。
    The correction or change amount calculation processing includes calculation of the change amount of the azimuth of the moving body in three dimensions, where the change amount of the azimuth is θ,
    Figure JPOXMLDOC01-appb-M000005
    The travel locus measurement system according to claim 7 or 8, wherein the travel locus measurement system according to claim 7 or 8 is calculated.
    However,
    Figure JPOXMLDOC01-appb-M000006
    It is.
  10.  複数のGPS衛星と、SBAS衛星と、全地球航法衛星システム(GNSS)と、補正情報を受信するための通信装置と、2軸で構成されたLDVユニットからの信号データを集約するための集約装置と、慣性計測装置ないし慣性装置と、測位演算部とを有する移動体の走行軌跡計測システムで実行されるコンピュータプログラムであって、前記走行軌跡計測システムで実行されたとき、
     前記測位演算部に、
      前記GNSSからのデータの信頼性の判断処理を行わせるステップと、
      前記GNSSからのデータの信頼性が高いと判断された場合には、当該データを測位基準として前記慣性計測装置ないし慣性装置からのデータのうち、少なくとも方位情報に対する修正ないし変化量の計算処理を行わせるステップと
    を実行させることを特徴とするプログラム。
    Multiple GPS satellites, SBAS satellites, global navigation satellite system (GNSS), communication device for receiving correction information, and aggregation device for aggregating signal data from LDV units composed of two axes And a computer program executed by a traveling locus measurement system of a moving body having an inertial measurement device or inertial device and a positioning calculation unit, and when executed by the traveling locus measurement system,
    In the positioning calculation unit,
    Performing a process for determining the reliability of data from the GNSS;
    When it is determined that the reliability of the data from the GNSS is high, at least correction of the azimuth information or calculation processing of the amount of change is performed on the data from the inertial measurement device or the inertial device using the data as a positioning reference. And a step for executing the program.
  11.  前記判断処理において前記GNSSからのデータの信頼性が低いと判断された場合には、
     前記測位演算部に、
      当該判断の直前の前記GNSSからのデータを保存させるステップと、
      前記保存されたデータに対し、前記慣性計測装置ないし慣性装置からのデータと前記集約装置からのデータとに基づいて生成されるローカル座標系での相対位置を反映させるステップと
    を実行させることを特徴とする請求項10に記載のプログラム。
    If it is determined in the determination process that the reliability of data from the GNSS is low,
    In the positioning calculation unit,
    Storing data from the GNSS immediately before the determination;
    Reflecting the relative position in the local coordinate system generated based on the data from the inertial measurement device or the inertial device and the data from the aggregation device on the stored data. The program according to claim 10.
  12.  前記修正ないし変化量の計算処理には、3次元における前記移動体の方位の変化量の算出が含まれ、ここにおいて、前記方位の変化量をθとしたとき、
    Figure JPOXMLDOC01-appb-M000007
    によって算出されることを特徴とする請求項10または11に記載のプログラム。
     但し、
    Figure JPOXMLDOC01-appb-M000008
    である。
    The correction or change amount calculation processing includes calculation of the change amount of the azimuth of the moving body in three dimensions, where the change amount of the azimuth is θ,
    Figure JPOXMLDOC01-appb-M000007
    The program according to claim 10, wherein the program is calculated by the following.
    However,
    Figure JPOXMLDOC01-appb-M000008
    It is.
  13.  請求項1に記載の移動体の走行軌跡計測システムにおける移動体であって、
     前記移動体は、前記走行軌跡計測システムにおける、少なくとも前記全地球航法衛星システムと、前記補正情報を受信するための前記通信装置と、前記LDVユニットと、前記測位演算部とを備えたことを特徴とする移動体。
    A moving body in the traveling locus measurement system for a moving body according to claim 1,
    The mobile body includes at least the global navigation satellite system in the traveling locus measurement system, the communication device for receiving the correction information, the LDV unit, and the positioning calculation unit. A moving body.
  14.  請求項7に記載の移動体の走行軌跡計測システムにおける移動体であって、
     前記移動体は、前記走行軌跡計測システムにおける、少なくとも前記全地球航法衛星システム(GNSS)と、前記補正情報を受信するための通信装置と、前記LDVユニットと、前記慣性計測装置ないし慣性装置と、前記測位演算部とを備えたことを特徴とする移動体。
    A moving body in the traveling locus measurement system for a moving body according to claim 7,
    The mobile body includes at least the global navigation satellite system (GNSS), a communication device for receiving the correction information, the LDV unit, the inertial measurement device or the inertial device in the traveling locus measurement system, A moving body comprising the positioning calculation unit.
PCT/JP2016/075890 2015-09-03 2016-09-02 Moving body travel trajectory measuring system, moving body, and measuring program WO2017039000A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015173646A JP2017049162A (en) 2015-09-03 2015-09-03 Moving body driving trajectory measurement system, moving body, and measurement program
JP2015-173646 2015-09-03

Publications (1)

Publication Number Publication Date
WO2017039000A1 true WO2017039000A1 (en) 2017-03-09

Family

ID=58187746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075890 WO2017039000A1 (en) 2015-09-03 2016-09-02 Moving body travel trajectory measuring system, moving body, and measuring program

Country Status (2)

Country Link
JP (1) JP2017049162A (en)
WO (1) WO2017039000A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114097586A (en) * 2021-11-08 2022-03-01 天津市科睿思奇智控技术有限公司 Positioning and deviation rectifying method and system for translation type sprinkling machine
CN117708960A (en) * 2024-02-04 2024-03-15 武汉大学 Real-time conversion method, device, equipment and medium for plane coordinates and normal height

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7240472B2 (en) * 2018-08-30 2023-03-15 先進モビリティ株式会社 Automatic operation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289014A (en) * 1997-04-15 1998-10-27 Hitachi Cable Ltd Detector for travel route of traveling object
JP2000214244A (en) * 1999-01-26 2000-08-04 Japan Radio Co Ltd Satellite navigation reinforcement system
JP2003254766A (en) * 2002-02-28 2003-09-10 Mitsubishi Electric Corp Behavior measuring device
JP2007155365A (en) * 2005-11-30 2007-06-21 Aisin Aw Co Ltd Unit and program for computing correction factor of direction sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA944283B (en) * 1993-06-21 1995-02-10 Armament Dev Authority Gps-aided dead reckoning navigation
US8508722B2 (en) * 2008-04-30 2013-08-13 Optical Air Data Systems, Llc Laser doppler velocimeter
JP6071264B2 (en) * 2012-06-25 2017-02-01 アクト電子株式会社 Railway vehicle speed measuring method and measuring apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289014A (en) * 1997-04-15 1998-10-27 Hitachi Cable Ltd Detector for travel route of traveling object
JP2000214244A (en) * 1999-01-26 2000-08-04 Japan Radio Co Ltd Satellite navigation reinforcement system
JP2003254766A (en) * 2002-02-28 2003-09-10 Mitsubishi Electric Corp Behavior measuring device
JP2007155365A (en) * 2005-11-30 2007-06-21 Aisin Aw Co Ltd Unit and program for computing correction factor of direction sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114097586A (en) * 2021-11-08 2022-03-01 天津市科睿思奇智控技术有限公司 Positioning and deviation rectifying method and system for translation type sprinkling machine
CN114097586B (en) * 2021-11-08 2022-09-30 天津市科睿思奇智控技术有限公司 Positioning and deviation rectifying method and system for translation type sprinkling machine
CN117708960A (en) * 2024-02-04 2024-03-15 武汉大学 Real-time conversion method, device, equipment and medium for plane coordinates and normal height
CN117708960B (en) * 2024-02-04 2024-05-03 武汉大学 Real-time conversion method, device, equipment and medium for plane coordinates and normal height

Also Published As

Publication number Publication date
JP2017049162A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
RU2662462C1 (en) Method for determining the spatial position of a vehicle based on gnss-ins using a single antenna
KR101326889B1 (en) A method and system to control relative position among vehicles using dgps mobile reference station
US9488480B2 (en) Method and apparatus for improved navigation of a moving platform
US9234758B2 (en) Machine positioning system utilizing position error checking
CN109099912A (en) Outdoor accurate positioning air navigation aid, device, electronic equipment and storage medium
US9816820B2 (en) Positioning system having smoothed kalman filter update
WO2014002211A1 (en) Positioning device
JP5602070B2 (en) POSITIONING DEVICE, POSITIONING METHOD OF POSITIONING DEVICE, AND POSITIONING PROGRAM
JP2005070046A (en) Gps/autonomous navigation integration system, and its operation method
EP3040680B1 (en) Magnetic anomaly tracking for an inertial navigation system
EP3734223B1 (en) Dead reckoning by determining misalignment angle between movement direction and sensor heading direction
AU2015213260B2 (en) Machine positioning system having alignment error detection
US20110153266A1 (en) Augmented vehicle location system
WO2017039000A1 (en) Moving body travel trajectory measuring system, moving body, and measuring program
JPH10267650A (en) Instrument for automatically surveying linearity of road
JP2006119144A (en) Road linearity automatic survey device
JP2020169953A (en) Method for calibrating inertia navigation device
JP2011137708A (en) Evaluation apparatus for positioning reliability of satellite positioning system receiver
RU2539131C1 (en) Strapdown integrated navigation system of average accuracy for mobile onshore objects
JP4884109B2 (en) Moving locus calculation method, moving locus calculation device, and map data generation method
Wang et al. A comparison of loosely-coupled mode and tightly-coupled mode for INS/VMS
US9465113B2 (en) Machine positioning system utilizing relative pose information
KR20160056083A (en) System and method for positioning
EP4194895A1 (en) Methods and systems for millimeter wave assisted vehicle navigation
KR20040035011A (en) Dead reckoning system for backward improvement and the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16842029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16842029

Country of ref document: EP

Kind code of ref document: A1