WO2017029753A1 - Communication device, optical transmission system, and frequency control method - Google Patents

Communication device, optical transmission system, and frequency control method Download PDF

Info

Publication number
WO2017029753A1
WO2017029753A1 PCT/JP2015/073356 JP2015073356W WO2017029753A1 WO 2017029753 A1 WO2017029753 A1 WO 2017029753A1 JP 2015073356 W JP2015073356 W JP 2015073356W WO 2017029753 A1 WO2017029753 A1 WO 2017029753A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
frequency
signal
shift amount
optical frequency
Prior art date
Application number
PCT/JP2015/073356
Other languages
French (fr)
Japanese (ja)
Inventor
崇宏 小玉
吉田 剛
石井 健二
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/073356 priority Critical patent/WO2017029753A1/en
Priority to PCT/JP2016/054486 priority patent/WO2017029817A1/en
Priority to JP2017535244A priority patent/JP6407443B2/en
Publication of WO2017029753A1 publication Critical patent/WO2017029753A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present invention relates to a communication apparatus, an optical transmission system, and a frequency control method for controlling the frequency of an optical signal.
  • optical filters for wavelength selection are arranged in multiple stages in a transmission path, and demultiplexing, multiplexing, and path switching of signals of arbitrary plural subcarriers are performed. For this reason, there is a problem that signal quality is deteriorated due to the reduction of the subcarrier signal band other than the transmission band of the optical filter, that is, the signal band narrowing.
  • optimizing the optical frequency arrangement of subcarriers is important to suppress signal quality degradation due to inter-subcarrier interference and signal band narrowing. Even if the optical frequency arrangement is optimized at the start of system operation, the optical frequency of the light source shifts due to changes in the surrounding environment or changes over time, and the optimal conditions for optical frequency arrangement cannot be maintained. Therefore, in order to maintain the signal quality from the start to the end of system operation, it is necessary to optimally control the optical frequency arrangement following the change in optical frequency of each subcarrier signal.
  • the optical transmitter transmits a signal with frequency fluctuation added, and the optical receiver measures the signal quality.
  • control which corrects the optical frequency shift of each subcarrier of an optical transmission part for every subcarrier based on the change information of the signal quality measured by the optical receiving part is performed.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a communication device capable of appropriately controlling the arrangement of optical frequencies of subcarriers in consideration of the signal quality of the entire optical transmission system. To do.
  • a communication apparatus includes a first optical transceiver that transmits an optical signal having a first optical frequency by adding a first frequency fluctuation; And a second optical transceiver that transmits the optical signal having the second optical frequency by adding a second frequency fluctuation synchronized with the first optical frequency. Further, the first optical transceiver is configured to output the first optical transceiver based on the error signal calculated based on the reception quality of the optical signal having the first optical frequency and the reception quality of the optical signal having the second frequency.
  • the second optical transceiver calculates a second shift amount, which is a shift amount for shifting the optical frequency of the optical signal of the second optical frequency, based on the error signal, and outputs the light of the second optical frequency.
  • the optical frequency of the signal is shifted by the second shift amount.
  • FIG. 1 is a diagram illustrating a configuration example of an optical transmission system according to a first embodiment.
  • the schematic diagram which shows an example of the change of the average optical frequency by the polarity of a dither at the time of performing the average optical frequency control of Embodiment 1 Schematic diagram showing an example of a temporal change in the optical frequency of the optical signal of each subcarrier transmitted from the communication apparatus when the average optical frequency control of the first embodiment is performed.
  • Schematic diagram illustrating an example of a change in signal quality of each subcarrier transmitted from a communication apparatus when average optical frequency control according to Embodiment 1 is performed The schematic diagram which shows an example of the change of the optical frequency interval by the polarity of a dither at the time of performing the optical frequency interval control of Embodiment 1
  • Schematic diagram illustrating an example of a change in signal quality of each subcarrier transmitted from a communication apparatus when optical frequency interval control according to Embodiment 1 is performed 7 is a flowchart illustrating an example of a processing procedure in the optical frequency shift synchronization apparatus according to the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of a processing procedure in the optical frequency shifter according to the first embodiment.
  • FIG. 3 illustrates a configuration example of a processing circuit according to the first embodiment.
  • FIG. 3 is a diagram illustrating a configuration example of a control circuit according to the first embodiment.
  • the flowchart which shows an example of the process sequence in the case of performing the average optical frequency control of Embodiment 1.
  • FIG. The figure which shows the structural example of the optical transmitter-receiver of the communication apparatus of Embodiment 2.
  • FIG. 1 is a diagram illustrating a configuration example of an optical transmission system according to a first embodiment of the present invention.
  • the optical transmission system of the present embodiment includes a communication device 1, a communication device 2, and a transmission path 3.
  • the optical frequency of an optical signal transmitted from the communication device 1 and received by the communication device 2 via the transmission path 3 is adjusted.
  • the optical transmission system is a communication system that transmits an optical signal by a super channel transmission method, and is a communication network called a trunk optical communication network, for example.
  • FIG. 1 shows an example in which two subcarriers are multiplexed, the number of subcarriers to be multiplexed is not limited to this example.
  • a portion indicating an optical signal path among lines connecting each component is indicated by a solid line, and a portion indicating an electric signal path is indicated by a dotted line.
  • the communication device 1 as the first communication device includes an optical frequency shift synchronization device 11, optical transceivers 12-1 and 12-2, and an optical coupler 13.
  • the optical frequency shift synchronization device 11 corrects an optical frequency shift that is a frequency shift of the optical signal based on the error signal indicating the frequency error of the optical signal calculated in the communication device 2.
  • the optical transceiver 12-1 generates and outputs an optical signal of subcarrier # 1, which is the first subcarrier.
  • the optical transceiver 12-2 generates and outputs an optical signal of subcarrier # 2, which is the second subcarrier.
  • the first subcarrier and the second subcarrier are carriers having different optical frequencies, that is, different optical wavelengths.
  • the optical coupler 13 combines the optical signal output from the optical transceiver 12-1 and the optical signal output from the optical transceiver 12-2, and outputs the combined signal to the transmission path 3.
  • the optical coupler 13 demultiplexes the optical signal received from the communication device 2 via the transmission path 3 into two, and outputs one to the optical transceiver 12-1 and the other to the optical transceiver 12-2.
  • the communication device 2 as the second communication device includes an optical demultiplexer 21, optical transceivers 22-1 and 22-2, and an error signal calculation unit 23.
  • the optical demultiplexer 21 demultiplexes the optical signal received from the communication device 2 via the transmission path 3 into two, and outputs one to the optical transceiver 22-1 and the other to the optical transceiver 22-2.
  • the optical demultiplexer 21 combines the optical signal output from the optical transmitter / receiver 22-1 and the optical signal output from the optical transmitter / receiver 22-2, and outputs the combined signal to the transmission line 3.
  • the error signal calculation unit 23 calculates an error signal indicating an optical frequency shift using the signal quality calculated by the optical transceiver 22-1 and the optical transceiver 22-2.
  • FIG. 2 is a diagram illustrating a configuration example of the optical transceiver 12-1 of the communication device 1 according to the present embodiment.
  • the optical transceiver 12-1 includes an optical signal generation unit 121, a transmission digital signal processing unit 122, and an optical demodulation unit 123.
  • the configuration of the optical transceiver 12-2 is the same as that of the optical transceiver 12-1.
  • the optical signal generation unit 121 includes a light source 124 and an optical modulator 125.
  • the light source 124 emits continuous light.
  • the optical modulator 125 modulates the continuous light transmitted from the light source 124 according to a data signal that is an electrical signal, generates an optical signal, and outputs the generated optical signal to the optical coupler 13.
  • the transmission digital signal processing unit 122 includes an optical frequency shifter 126, an optical frequency shift amount calculator 127, and a data signal generation unit 128.
  • the data signal generation unit 128 generates a data signal. Specifically, the data signal generation unit 128 performs, for example, a process of error correction encoding information to be transmitted, binary phase modulation (BPSK: Binary Phase Shift Keying), quaternary phase modulation (QPSK: Quadrature Phase Shift Keying). Alternatively, a data signal is generated by performing a symbol mapping process according to a modulation method such as 16-value amplitude phase modulation (16QAM (Quadrature Amplitude Modulation)), a process for shaping a signal spectrum, and the like.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • a data signal is generated by performing a symbol mapping process according to a modulation method such as 16-value amplitude phase modulation (16QAM (Quadrature Amplitude Mod
  • the optical frequency shift amount calculator 127 calculates the optical frequency shift amount using the error signal notified from the communication device 2, and outputs the calculated frequency shift amount to the optical frequency shifter 126.
  • the optical frequency shifter 126 electrically adds a frequency shift of the optical frequency shift amount notified from the optical frequency shift amount calculator 127 to the data signal. Further, the optical frequency shifter 126 can apply a dither having a predetermined frequency amplitude of ⁇ f to the data signal. That is, the optical frequency shifter 126 changes the dither frequency between + ⁇ f and ⁇ f. Dither refers to frequency fluctuation.
  • dithering may increase the frequency or decrease the frequency. That is, the dither frequency polarity may be positive or negative.
  • the polarity of the dither frequency is simply referred to as the dither polarity.
  • the amplitude of the dither frequency may not be fixed.
  • the amplitude of the dither frequency is appropriately referred to as dither amplitude.
  • the dither is generated by changing the optical frequency shift amount at regular time intervals using a rectangular electric clock signal.
  • the register in the DSP is rewritten so as to shift the optical frequency by + ⁇ f when the voltage a changes to b.
  • the DSP register is rewritten so as to shift the frequency by ⁇ f.
  • the optical demodulator 123 includes a coherent receiver 130 and a reception digital signal processor 129.
  • the coherent receiver 130 converts the optical signal received from the communication device 2 via the transmission path 3 and the optical coupler 13 into an electrical signal and outputs the electrical signal. Specifically, light having a desired wavelength is converted into an electric signal by causing the optical signal input from the optical coupler 13 and the light transmitted from the light source 124 to interfere with each other.
  • the reception digital signal processor 129 demodulates the electrical signal output from the coherent receiver 130. Also, the reception digital signal processor 129 outputs an error signal notified from the communication device 2 among the data obtained by demodulation to the optical frequency shift amount calculator 127.
  • FIG. 3 is a diagram illustrating a configuration example of the optical transceiver 22-1 of the communication device 2 which is the opposite device of the present embodiment.
  • the opposing device refers to a device that is opposed to the communication device 1 that is a device to be controlled of the optical frequency, that is, a device that receives a signal transmitted from the communication device 1.
  • the optical transceiver 22-1 includes an optical demodulator 221 and an optical signal generator 222.
  • the configuration of the optical transceiver 22-2 is the same as that of the optical transceiver 22-1.
  • the optical demodulator 221 includes a coherent receiver 223, a received digital signal processor 224, a signal quality monitor 225, and a frequency offset unit 226.
  • the coherent receiver 223 performs coherent detection on the optical signal input from the optical demultiplexer 21 and converts it into an electrical signal. That is, the coherent receiver 223 converts light having a desired wavelength into an electrical signal by causing the optical signal input from the optical demultiplexer 21 to interfere with the light transmitted from the light source 227.
  • the reception digital signal processor 224 restores the information transmitted from the communication device 1 on the transmission side. That is, for example, when the data signal generation unit 128 of the communication apparatus 1 on the transmission side performs modulation, demodulation corresponding to the modulation is performed, and the data signal generation unit 128 performs error correction coding. If so, error correction decoding is performed.
  • the signal quality monitor 225 calculates the quality of the signal received from the communication apparatus 1 using the information output from the reception digital signal processor 224 and outputs the calculated result to the error signal calculation unit 23.
  • a signal quality calculation method in the signal quality monitor 225 for example, there is a method of calculating a Q value indicating the quality of an optical signal using a noise distribution of received signal point arrangement on a complex plane.
  • the information output from the reception digital signal processor 224 is the noise distribution of the reception signal point arrangement on the complex plane.
  • another method for calculating the signal quality in the signal quality monitor 225 there is a method for calculating a BER (Bit Error Rate) using the number of bits corrected in error correction decoding.
  • the information output from the reception digital signal processor 224 is the number of bits subjected to error correction in error correction decoding.
  • the signal quality calculation method in the signal quality monitor 225 is not limited to the method described above, and any method may be used.
  • the frequency offset unit 226 calculates the polarity of the optical frequency shift of the dither added in the communication device 1 and outputs the calculated polarity to the error signal calculation unit 23.
  • the optical signal generator 222 includes a light source 227 and an optical modulator 228.
  • the light source 227 emits continuous light.
  • the optical modulator 228 modulates the continuous light transmitted from the light source 227 according to an error signal that is an electrical signal, generates an optical signal, and outputs the generated optical signal to the optical demultiplexer 21.
  • the optical frequency shift synchronizer 11 instructs the optical transceivers 12-1 and 12-2 to add synchronized dither or reverse phase dither according to a predetermined control sequence.
  • the optical frequency control of the present embodiment is configured by average optical frequency control and optical frequency interval control.
  • the control sequence indicates which one of the average optical frequency control, that is, the control with the added in-phase dither, and the optical frequency interval control, ie, the control with the anti-phase dither added, performed first.
  • the data signal generation unit 128 In the optical transceiver 12-1 of the communication apparatus 1, the data signal generation unit 128 generates a data signal and inputs the data signal to the optical frequency shifter 126.
  • the optical frequency shifter 126 of the optical transceiver 12-1 adds a dither having a predetermined amplitude ⁇ f to the input data signal.
  • the data signal with the dither added is input to the optical modulator 125 of the optical transceiver 12-1.
  • the optical modulator 125 of the optical transceiver 12-1 optically modulates the light transmitted from the light source 124 based on the data signal input from the optical frequency shifter 126, and generates an optical signal of subcarrier # 1. .
  • the optical transceiver 12-2 of the communication device 1 generates an optical signal of subcarrier # 2 by the same operation as that of the optical transceiver 12-1.
  • the optical frequency shifter 126 of the optical transceiver 12-2 is instructed to add the synchronized in-phase dither from the frequency shift synchronizer 11, the optical frequency shifter of the optical transceiver 12-1 In-phase dither, that is, the same dither is added in synchronization with 126.
  • the optical frequency shifter 126 of the optical transceiver 12-2 when instructed by the frequency shift synchronizer 11 to add a reverse phase dither, is an optical frequency shifter of the optical transceiver 12-1.
  • a dither having a phase different from that of the dither added by the optical frequency shifter 126 of the optical transceiver 12-1 by 180 degrees is added.
  • the light source 124 of the optical transceiver 12-2 transmits light having a different optical frequency, that is, a light wavelength different from that of the light source 124 of the optical transceiver 12-1. That is, the light source 124 of the optical transceiver 12-1 transmits light having an optical wavelength corresponding to subcarrier # 1, and the light source 124 of the optical transceiver 12-2 transmits light having an optical wavelength corresponding to subcarrier # 2. To do.
  • the optical transmitter / receiver 12-1 is the first optical transmitter / receiver that transmits the optical signal having the first optical frequency by adding the first frequency fluctuation
  • the optical transmitter / receiver 12-2 A second optical transceiver that transmits an optical signal having a second optical frequency by adding a second frequency fluctuation synchronized with the first optical frequency to transmit the optical signal.
  • the optical signal of the first optical frequency is an optical signal of subcarrier # 1
  • the optical signal of the second optical frequency is an optical signal of subcarrier # 2.
  • the first frequency fluctuation is an optical frequency fluctuation added to the optical signal of the subcarrier # 1 by the dither added by the optical frequency shifter 126 of the optical transceiver 12-1
  • the second frequency fluctuation is the second frequency fluctuation.
  • the optical coupler 13 combines the optical signal of the subcarrier # 1 and the optical signal of the subcarrier # 2 and outputs the multiplexed signal to the transmission path 3.
  • the optical demultiplexer 21 of the communication device 2 receives the optical signal combined by the optical coupler 13 of the communication device 1 via the transmission path 3, demultiplexes the received optical signal into two, To the optical transceiver 22-1 and the other to the optical transceiver 22-2.
  • the coherent receiver 223 converts the optical signal received using the light transmitted from the light source 227 into an electrical signal and outputs the electrical signal to the reception digital signal processor 224.
  • the light source 227 of the optical transceiver 22-1 transmits light having an optical wavelength corresponding to the subcarrier # 1. Therefore, in the coherent receiver 223 of the optical transceiver 22-1, the optical signal of subcarrier # 1 is detected and converted into an electrical signal.
  • the reception digital signal processor 224 of the optical transceiver 22-1 restores the electrical signal output from the coherent receiver 223 to the transmitted information, and outputs information used for signal quality calculation to the signal quality monitor 225.
  • the information used to calculate the signal quality is, for example, the noise distribution of the received signal point arrangement on the complex plane or the number of error-corrected bits.
  • the reception digital signal processor 224 outputs the electrical signal output from the coherent receiver 223 to the frequency offset unit 226.
  • the signal quality monitor 225 of the optical transceiver 22-1 calculates the signal quality based on the information output from the received digital signal processor 224, and outputs the calculated signal quality to the error signal calculator 23.
  • the signal quality calculated by the signal quality monitor 225 is, for example, a Q value based on the noise distribution of the received signal point arrangement on the complex plane, or a BER calculated based on the number of error-corrected bits.
  • the frequency offset unit 226 of the optical transceiver 22-1 calculates the dither optical frequency shift polarity based on the electrical signal output from the received digital signal processor 224, and outputs it to the error signal calculator 23.
  • the frequency offset unit 226 adds - ⁇ f to the optical frequency of the optical signal transmitted from the communication apparatus 1 for half the dither period and the other half of the dither period. Is added with + ⁇ f. Therefore, for example, the frequency offset unit 226 calculates the frequency of the electrical signal output from the reception digital signal processor 224, and determines the dither polarity based on whether the calculated frequency is higher or lower than the frequency of the corresponding subcarrier. To do.
  • the frequency offset unit 226 observes the time change of the calculated frequency, for example, the amount of change of the frequency per fixed time, and the polarity is ⁇ from the time when the frequency is decreased by a certain amount to the time when the frequency is increased by a certain amount It can be determined that the polarity is determined to be + from the time when the frequency is increased by a certain amount or more until the frequency is decreased by a certain amount or more.
  • the optical transmitter / receiver 22-2 calculates the optical frequency shift polarity and signal quality corresponding to the subcarrier # 2 by the same processing as the optical transmitter / receiver 22-1 and calculates the calculated optical frequency shift polarity and signal quality. Are input to the error signal calculator 23.
  • the light source 227 of the optical transceiver 22-2 transmits light having an optical wavelength corresponding to the subcarrier # 2. Thereby, in the coherent receiver 223 of the optical transceiver 22-2, the optical signal of the subcarrier # 2 is detected and converted into an electrical signal.
  • the error signal calculation unit 23 determines the order of calculation using the dither optical frequency shift polarity, and the signal quality of the subcarrier # 1 output from the optical transceiver 21-1, that is, the reception quality and the optical transceiver 21- 2, an error signal is calculated based on the signal quality of subcarrier # 2, that is, the reception quality. A method for calculating the error signal will be described later.
  • the optical modulator 228 of the optical transceiver 22-1 modulates the light transmitted from the light source 227 according to the error signal to generate an optical signal, and outputs the generated optical signal to the optical demultiplexer 21.
  • the optical demultiplexer 21 outputs the optical signal output from the optical modulator 228 to the transmission path 3.
  • the optical signal receives the optical signal transmitted from the communication device 2 via the transmission path 3.
  • the error signal calculated by the communication device 2 is transmitted to the communication device 1 as an optical signal. That is, an error signal indicating an optical frequency error of the optical signal transmitted from the communication device 1 is fed back to the communication device 1.
  • the error signal is used for controlling the optical frequency in the communication device 1.
  • the optical transceiver 22-1 transmits the error signal to the communication device 1
  • the optical transceiver 22-2 also transmits the error signal to the communication device 1.
  • either the optical transceiver 22-1 or the optical transceiver 22-2 may transmit the error signal.
  • the optical transceiver 12-1 or the optical transceiver 12-2 transmits the error signal. Will receive. Therefore, the optical transceiver 12-1 or the optical transceiver 12-2 that has received the error signal sends the error signal to the optical frequency shift amount calculator 127 of the other optical transceiver 12-1 or the optical transceiver 12-2. Notice.
  • the error signal may be transmitted separately from the data signal.
  • the error signal is input to the optical modulator 288 together with the data signal and used for modulation. May be.
  • OTN Optical-channel Transport Unit
  • ITU-T International Telecommunication Union Telecommunication standardization sector
  • the communication channel in the data frame is Can be used.
  • the communication device 2 also has a function on the data signal transmission side as shown in FIG.
  • FIG. 4 is a diagram illustrating a configuration example of the communication device 2 when the communication device 2 transmits a data signal.
  • the optical transceiver 22-1 of the communication apparatus 2 has a configuration in which a transmission digital signal processing unit 230 is added to the optical transceiver 22-1 shown in FIG.
  • the transmission digital signal processing unit 230 includes a data signal generation unit 232 and a framer 231 that generate a data signal.
  • the data signal generation unit 232 generates a data signal similarly to the data signal generation unit 128 of the communication device 1.
  • the framer 231 arranges a data signal and an error signal in a data frame such as an OTN frame and outputs the data signal to the optical modulator 228.
  • the error signal may be transmitted using the dark fiber.
  • the signal output from the optical demultiplexer 21 of the communication device 2 can be output to the dark fiber, and the signal via the dark fiber can be input to the optical coupler 13 of the communication device 1.
  • the error signal may be transmitted using a free optical frequency that is not used for data transmission, that is, a free wavelength.
  • the communication device 2 includes an optical transceiver corresponding to an optical frequency different from that of the optical transceivers 22-1 and 22-2, in addition to the illustrated optical transceivers 22-1 and 22-2.
  • the communication apparatus 1 includes an optical transceiver corresponding to an optical frequency different from that of the optical transceivers 12-1 and 12-2, in addition to the illustrated optical transceivers 12-1 and 12-2. In any case, it is assumed that how the error signal is transmitted is determined in advance and is set in the communication device 1 and the communication device 2.
  • the optical coupler 13 of the communication apparatus 1 receives the error signal as an optical signal via the optical transmission path 3, demultiplexes the received optical signal into two, and inputs one to the optical transceiver 12-1. The other is input to the optical transceiver 12-2.
  • the optical transceiver 12-1 receives the error signal.
  • the coherent receiver 130 of the optical demodulator 123 of the optical transceiver 12-1 converts the optical signal into an electrical signal
  • the received digital signal processor 129 extracts the error signal from the electrical signal and the optical frequency shift amount. Input to the calculator 127.
  • the optical frequency shift amount calculator 127 converts the error signal into the optical frequency shift amount, that is, calculates the optical frequency shift amount based on the error signal, and notifies the optical frequency shifter 126 of the optical frequency shift amount.
  • the optical frequency shifter 126 generates a data signal for shifting the optical frequency by the optical frequency shift amount notified from the optical frequency shift amount calculator 127.
  • the optical signal generated by the optical signal generator 121 of the optical transceiver 12-1 is shifted by the optical frequency shift amount.
  • the optical transceiver 12-2 calculates the optical frequency shift amount based on the received error signal, and shifts the optical frequency shift amount of the optical signal generated by the optical signal generation unit 121 of the optical transceiver 12-2. .
  • the optical transceiver 12-1 uses the first optical frequency based on the error signal calculated based on the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency.
  • the first shift amount which is a shift amount for shifting the optical frequency of the optical signal of subcarrier # 1, which is an optical signal of the first optical frequency
  • the optical transceiver 12-2 calculates a second shift amount that is a shift amount for shifting the optical frequency of the optical signal of the subcarrier # 2 that is the optical signal of the second optical frequency, based on the error signal. Then, the optical frequency of the optical signal having the second optical frequency is shifted by the second shift amount.
  • FIG. 5 is a flowchart showing an example of the optical frequency control procedure of the present embodiment.
  • the optical frequency control of the present embodiment includes (A) average optical frequency control and (B) optical frequency interval control.
  • the example of FIG. 5 shows an example in which (B) optical frequency interval control is performed after (A) average optical frequency control is performed.
  • the communication device 1 adds in-phase frequency fluctuations or dithers synchronized in amplitude ⁇ f to the subcarrier # 1 and the subcarrier # 2 (step S1). Specifically, the optical frequency shift synchronizer 11 instructs the optical transceivers 12-1 and 12-2 to add synchronized in-phase dither.
  • the optical frequency shifter 126 of the optical transceiver 12-1 and the optical frequency shifter 126 of the optical transceiver 12-2 add the same synchronized dither according to the instruction from the optical frequency shift synchronizer 11.
  • the optical frequency shift synchronizer 11 instructs the optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 to start adding dither simultaneously.
  • the optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 are configured to be able to generate the same dither.
  • the optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 are configured to be able to generate the same square wave, sine wave, or the like.
  • the optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 simultaneously generate the same dither based on an instruction from the optical frequency shift synchronizer 11 and add it to the data signal.
  • the optical modulators 125 of the optical transceivers 12-1 and 12-2 generate optical signals corresponding to the electrical signals output from the optical frequency shifter 126, respectively, and output the optical signals to the optical coupler 13.
  • the optical coupler 13 combines the optical signal output from the optical transceiver 12-1 and the optical signal output from the optical transceiver 12-2, and outputs the combined signal to the transmission path 3.
  • the communication device 2 via the transmission path 3 receives the optical signal, calculates an error signal E a (step S2).
  • the optical transmitter / receiver 22-1 and the optical demodulator 221 of the optical transmitter / receiver 22-2 via the optical demultiplexer 21 convert the optical signal into an electrical signal as described above, and transmit the transmitted information.
  • the error signal calculator 23 calculates the error signal E a according to the following equation (1). calculate.
  • the signal quality is the Q value
  • the Q value of the subcarrier number # i ⁇ ⁇ 1,2 ⁇ corresponding to the dither polarity j ⁇ ⁇ +, ⁇ is defined as Q ij . That is, the Q value optical transceiver 22-1 is calculated when the polarity of the dither + a Q 1+, the polarity of the dither - the Q value optical transceiver 22-1 to calculate the time for Q 1
  • the Q value calculated by the optical transceiver 22-2 when the dither polarity is + is Q 2+ and the Q value calculated by the optical transceiver 22-2 when the dither polarity is- Q 2- .
  • Min ⁇ x, y ⁇ represents the minimum value of x and y.
  • E a Min ⁇ Q 1+ , Q 2+ ⁇ ⁇ Min ⁇ Q 1 ⁇ , Q 2 ⁇ ⁇ (1)
  • the error signal is transmitted from the communication device 2 to the communication device 1 as an optical signal.
  • the optical frequency shift amount f i, FC is updated by the following equations (2), (3) (step S3).
  • k ⁇ is a proportional coefficient, and is assumed to be predetermined, for example.
  • the optical frequency shift amount corresponding to the subcarrier #i is described as fi, FC .
  • the initial optical frequency shift amount that is, the initial value of f i, FC is 0 Hz.
  • the optical frequency shift amount calculator 127 of the optical transceiver 12-1 calculates f 1, FC by the above equation (2) , and the optical frequency shift amount calculator 127 of the optical transceiver 12-2 Then, f2 , FC is calculated by the above equation (3).
  • the optical frequency shift amount calculator 127 of the optical transceiver 12-1 notifies f 1 and FC as the optical frequency shift amount to the optical frequency shifter 126 of the optical transceiver 12-1.
  • the optical frequency shift amount calculator 127 of the transceiver 12-2 notifies f 2 and FC as the optical frequency shift amount to the optical frequency shifter 126 of the optical transceiver 12-2.
  • the optical frequency shifters 126 of the optical transceiver 12-1 and the optical transceiver 12-2 shift the data signal based on the notified optical frequency shift amount.
  • the first and second frequency fluctuations are the same in the first control period, which is a period during which the average optical frequency control is performed, and the first and second frequency fluctuations increase the optical frequency. 1 period and a second period for decreasing the optical frequency.
  • the error signal has a value of the lower quality of the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the first period. The signal indicating the difference between the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the second period, the value having the lower quality.
  • the optical transceiver 12-1 performs control to update the first shift amount with a value obtained by adding a value obtained by multiplying the error signal to the proportional coefficient to the first shift amount
  • the optical transceiver 12-2 performs control to update the second shift amount with a value obtained by adding a value obtained by multiplying the error signal by the proportional coefficient to the second shift amount.
  • the error signal is calculated in the communication device 2 which is the opposite device that receives the optical signals of the first and second frequencies, and the optical transceiver 12-1 receives the error received from the opposite device.
  • the first shift amount is calculated based on the signal
  • the optical transceiver 12-2 calculates the second shift amount based on the error signal received from the opposite device.
  • the average optical frequency of the two subcarriers indicates a value obtained by averaging the center frequencies of the two subcarriers, that is, an average value. Specifically, the difference between the case where the average optical frequency of the two subcarriers is changed in the direction of increasing the optical frequency and the case where the average optical frequency of the two subcarriers is changed in the direction of decreasing the optical frequency.
  • the average optical frequency can be set so as to reduce the error signal.
  • the average optical frequency is set near the center of the entire transmission band due to the optical filter or the like of the transmission path 3.
  • FIG. 6 is a schematic diagram illustrating an example of a change in average optical frequency due to dither polarity when average optical frequency control is performed.
  • SC # 1 in FIG. 6 indicates subcarrier # 1
  • SC # 2 indicates subcarrier # 2.
  • the horizontal axis in FIG. 6 is the frequency, and the vertical axis is the intensity of the optical signal.
  • FIG. 6 shows the frequency distribution of the intensity of the optical signal of each subcarrier transmitted from the communication apparatus 1.
  • F 1, + indicates the frequency range when the dither polarity of the optical signal of subcarrier # 1 is +
  • F 1 ⁇ indicates the frequency range when the dither polarity of the optical signal of subcarrier # 1 is ⁇ . Indicates the range.
  • F 2 + indicates the frequency range when the dither polarity of the optical signal of subcarrier # 2 is +
  • F 2 ⁇ indicates the frequency range when the dither polarity of the optical signal of subcarrier # 2 is ⁇ . Indicates the range.
  • FIG. 6 since the dither synchronized with two subcarriers is added in the average optical frequency control, when the polarities of both subcarriers are +, the average optical frequency indicated by white circles in FIG. The direction changes to the direction indicated by the black arrow in FIG. Further, when the polarities of both subcarriers are ⁇ , the average optical frequency indicated by white circles in FIG. 6 changes in the direction indicated by white arrows in FIG.
  • FIG. 7 is a schematic diagram illustrating an example of a temporal change in the optical frequency of the optical signal of each subcarrier transmitted from the communication apparatus 1 when average optical frequency control is performed.
  • FIG. 7 shows an example in which a square wave is added as dither.
  • the horizontal axis in FIG. 7 is time, and the vertical axis is frequency.
  • f 1, FC and f 2 FC are optical frequencies after the above-described frequency offset of subcarrier # 1 and subcarrier # 2.
  • FIG. 8 is a schematic diagram illustrating an example of a change in signal quality of each subcarrier transmitted from the communication apparatus 1 when average optical frequency control is performed.
  • the horizontal axis indicates the average optical frequency
  • the vertical axis indicates the signal quality.
  • signal quality 61 shows the signal quality to Q 1 subcarrier # 1 of the optical signal, the signal quality.
  • 62 shows the signal quality Q 2 of the sub-carrier # 2 of the optical signal.
  • Min ⁇ Q 1 , Q 2 ⁇ is indicated by a solid line in the figure.
  • 8 shows the frequency distribution of subcarrier # 1 and subcarrier # 2 in a state where the average optical frequency of subcarrier # 1 and subcarrier # 2 is shifted to the lower side of the optical frequency. ing.
  • the frequency distribution 64 indicates the frequency distribution of subcarrier # 1 and subcarrier # 2 in a state where the average optical frequency of subcarrier # 1 and subcarrier # 2 is shifted in the direction in which the optical frequency increases.
  • the frequency distribution 65 shows the frequency distribution of subcarrier # 1 and subcarrier # 2 in an appropriate state.
  • the frequency distribution 65 in an appropriate state indicates that the average optical frequency is in the center of the transmission band of the optical filter.
  • F M in FIG. 8 the average light frequency when a frequency distribution 65 of the appropriate state.
  • the communication apparatus 1 changes the setting to the optical frequency interval control (step S4), and the subcarrier # 1 and the subcarrier # 2 have opposite phase frequency fluctuations or dithers synchronized with each other in amplitude ⁇ f. Is added.
  • the optical frequency shift synchronizer 11 changes the setting to optical frequency interval control, instructs the optical transceivers 12-1 and 12-2 to start dither generation, and the optical transceiver 12-2 is instructed to add a dither having an opposite phase.
  • the optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 add anti-phase frequency fluctuations or dithers synchronized with each other in amplitude ⁇ f (step S5).
  • the optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 can generate the same dither.
  • the optical frequency shift synchronizer 11 gives an instruction to add a reverse phase dither
  • the optical frequency shifter 126 of the optical transceiver 12-1 is instructed by the optical frequency shift synchronizer 11 in the same manner as in step S1.
  • the dither generation is started and the dither is added, and the optical frequency shifter 126 of the optical transmitter / receiver 12-1 starts generating the dither having the reverse phase at the timing instructed by the optical frequency shift synchronizer 11. And add dither.
  • the optical frequency shift synchronizer 11 instead of instructing the optical transceiver 12-2 to add a dither having an opposite phase to the optical transceiver 12-2, the optical frequency shift synchronizer 11 performs a dither having an opposite phase to the optical transceiver 12-1. You may instruct to add.
  • the communication device 2 receives the optical signal via the transmission path 3, and calculates the error signal Eb (step S6).
  • the optical transmitter / receiver 22-1 and the optical demodulator 221 of the optical transmitter / receiver 22-2 via the optical demultiplexer 21 convert the optical signal into an electrical signal as described above, and transmit the transmitted information. Restore and calculate dither polarity and signal quality.
  • the error signal calculator 23 calculates the error signal E b according to the following equation (4). calculate.
  • the communication device 2 is notified from the communication device 1 whether the average optical frequency control is being performed or the optical frequency interval control is being performed, and the signal quality monitor 25 receives the signal received from the communication device 2. Based on the above, it can be determined whether average optical frequency control is being performed or whether optical frequency interval control is being performed.
  • E b Min ⁇ Q 1 ⁇ , Q 2+ ⁇ ⁇ Min ⁇ Q 1+ , Q 2 ⁇ ⁇ (4)
  • the error signal is transmitted from the communication device 2 to the communication device 1 as an optical signal.
  • the optical frequency shift amount f i, FC is updated by the following equations (5), (6) (step S7).
  • k ⁇ is a proportionality coefficient and is set in advance, for example.
  • the optical frequency shift amount calculator 127 of the optical transceiver 12-1 calculates f 1, FC by the above equation (5)
  • the optical frequency shift amount calculator 127 of the optical transceiver 12-2 F 2 FC is calculated from the above equation (6).
  • the optical frequency shift amount calculator 127 of the optical transceiver 12-1 notifies f 1 and FC as the optical frequency shift amount to the optical frequency shifter 126 of the optical transceiver 12-1.
  • the optical frequency shift amount calculator 127 of the transceiver 12-2 notifies f 2 and FC as the optical frequency shift amount to the optical frequency shifter 126 of the optical transceiver 12-2.
  • the optical frequency shifter 126 of the optical transceiver 12-1 and the optical transceiver 12-2 shifts the data signal of the notified optical frequency shift amount.
  • the first and second frequency fluctuations have the same amplitude and opposite phases, and the optical frequency is set by the first frequency fluctuation.
  • a first anti-phase period for decreasing and increasing the optical frequency by the second frequency fluctuation, and a second anti-phase period for increasing the optical frequency by the first frequency fluctuation and decreasing the optical frequency by the second frequency fluctuation are generated to include the period.
  • the error signal has a lower quality of the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the first reverse phase period.
  • the optical transceiver 12-1 performs control to update the first shift amount with a value obtained by adding a value obtained by multiplying the error signal by the proportional coefficient to the first shift amount
  • the optical transceiver 12-2 performs control to update the second shift amount by a value obtained by subtracting a value obtained by multiplying the error signal by the proportional coefficient from the second shift amount.
  • the communication device 1 changes the setting to the average optical frequency control (step S8), and returns to step S1.
  • the optical frequency shift synchronizer 11 changes the setting to average optical frequency control.
  • FIG. 9 is a schematic diagram illustrating an example of a change in the optical frequency interval depending on the dither polarity when the optical frequency interval control is performed.
  • SC # 1 in FIG. 9 indicates subcarrier # 1
  • SC # 2 indicates subcarrier # 2.
  • the horizontal axis represents frequency
  • the vertical axis represents optical signal intensity.
  • d +, ⁇ is the optical frequency interval, that is, the optical signal of subcarrier # 1 when the dither polarity of the optical signal of subcarrier # 1 is + and the dither polarity of the optical signal of subcarrier # 2 is ⁇ , And the center frequency of the optical signal of subcarrier # 2.
  • d ⁇ , + indicates an optical frequency interval when the dither polarity of the optical signal of subcarrier # 1 is ⁇ and the dither polarity of the optical signal of subcarrier # 2 is +.
  • the optical frequency interval is narrowed or widened by changing the optical frequencies of the two subcarriers in opposite directions and in the same amount.
  • FIG. 10 is a schematic diagram illustrating an example of a temporal change in the optical frequency of the optical signal of each subcarrier transmitted from the communication device 1 when the optical frequency interval control is performed.
  • FIG. 10 shows an example in which the dither frequency changes in a square wave shape.
  • the horizontal axis in FIG. 10 is time, and the vertical axis is frequency.
  • f1 , FC and f2 , FC are optical frequencies after the frequency offset of the subcarrier # 1 and the subcarrier # 2 described above.
  • the dither polarities of subcarrier # 1 and subcarrier # 2 are reversed.
  • the dither of the two subcarriers is changed by the same amount in the opposite direction with respect to time.
  • FIG. 11 is a schematic diagram illustrating an example of a change in signal quality of each subcarrier transmitted from the communication apparatus 1 when optical frequency interval control is performed.
  • the horizontal axis in FIG. 11 indicates the optical frequency interval, and the vertical axis indicates the signal quality.
  • the frequency distribution 67 in the upper part of FIG. 11 shows the frequency distribution of subcarrier # 1 and subcarrier # 2 in a state where the optical frequency interval between subcarrier # 1 and subcarrier # 2 is shifted to the lower side of the optical frequency interval. Show.
  • the frequency distribution 68 indicates the frequency distribution of subcarrier # 1 and subcarrier # 2 in a state where the optical frequency interval between subcarrier # 1 and subcarrier # 2 is shifted in the direction in which the optical frequency interval is increased.
  • the frequency distribution 69 shows the frequency distribution of subcarrier # 1 and subcarrier # 2 in which the optical frequency interval is in an appropriate state.
  • An appropriate optical frequency interval means that the optical frequency interval between subcarrier # 1 and subcarrier # 2 is such that the optical signals of subcarrier # 1 and subcarrier # 2 do not interfere with each other and the optical frequency is too far away. For example, it shows a state that is within a predetermined range.
  • FIG. 11 shows that signal quality deteriorates due to crosstalk as the optical frequency interval becomes narrower, and signal quality deteriorates due to band narrowing as the optical frequency interval becomes wider. It shows that there is a point with the highest quality.
  • the optical frequency interval between two subcarriers is affected by the narrowing by the optical filter. Therefore, it is possible to perform control so that crosstalk between subcarriers does not occur, and it is possible to improve the quality of two subcarrier signals without deviation. Further, it is possible to control so that the influence of crosstalk and the influence of band narrowing are balanced.
  • proportional-integral control based on an error signal has been described.
  • the present invention is not limited to proportional-integral control, and any method that controls to reduce an error based on an error signal can be used. A control method may be used.
  • FIG. 12 is a flowchart showing an example of a processing procedure in the optical frequency shift synchronizer 11 of the present embodiment.
  • the optical frequency shift synchronizer 11 instructs the subcarrier # 1 and the subcarrier # 2 to generate in-phase dithers synchronized in amplitude ⁇ f for average optical frequency control (step S21).
  • the optical frequency shift synchronizer 11 instructs the subcarrier # 1 and the subcarrier # 2 to generate dithers having opposite phases with the amplitude ⁇ f in order to control the optical frequency interval (step S22). .
  • the process returns to step S21.
  • FIG. 13 is a flowchart showing an example of a processing procedure in the optical frequency shifter 126 of the present embodiment.
  • the optical frequency shifter 126 determines whether or not the start of dither generation is instructed from the frequency shift synchronizer 11 (step S31). When the start of dither generation is instructed (Yes in step S31), the reverse phase dither is determined. It is determined whether or not generation of the instruction is instructed (step S32). When instructed to generate diphase dither (Yes in step S32), addition of diphase dither to the data signal is started at the timing instructed by the frequency shift synchronizer 11 (step S33), and the process returns to step S31. .
  • step S34 the addition of the dither to the data signal is started at the timing instructed by the frequency shift synchronizer 11 (step S34), and the process returns to step S31.
  • the optical frequency shifter 126 converts the notified shift of the optical frequency shift amount into a data signal. give. If the start of dither generation is not instructed (No in step S31), step S31 is repeated.
  • Each component of the communication device 1 and the communication device 2 can be realized by hardware.
  • the light source 124 and the light source 227 are, for example, semiconductor lasers, and the optical modulator 125 is, for example, an LN (lithium niobate) modulator or an InP (indium phosphide) modulator.
  • LN lithium niobate
  • InP indium phosphide
  • These other components are each configured as a processing circuit, for example.
  • a plurality of components may be configured as one processing circuit, and one component may be configured by a plurality of processing circuits.
  • a CPU Central Processing Unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, which executes a program stored in the memory
  • a control circuit including a processor and a DSP (Digital Signal Processor) may also be used.
  • the memory is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory, etc.) Volatile semiconductor memories, magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disks), and the like are applicable.
  • the processing circuit is, for example, the processing circuit 300 shown in FIG.
  • the processing circuit 300 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • this control circuit is, for example, a control circuit 400 having a configuration shown in FIG. As shown in FIG. 15, the control circuit 400 includes a processor 401 that is a CPU and a memory 402. When the above processing circuit is realized by the control circuit 400, the processor 401 reads out and executes a program stored in the memory 402 corresponding to each process of each component. The memory 402 is also used as a temporary memory in each process executed by the processor 401.
  • the components constituting the communication device 1 and the communication device 2 may be partially realized by dedicated hardware and partially realized by a control circuit including a CPU.
  • optical frequency control in superchannel transmission is performed by adding in-phase or anti-phase dither synchronized between subcarriers and performing control in consideration of the signal quality of both subcarriers.
  • the signal quality is constantly monitored directly and controlled to improve the signal quality, thereby improving the signal quality of the entire network according to the transmission path, and tracking optical frequency drift due to aging and changes in the surrounding environment. Can be realized.
  • FIG. 16 is a diagram illustrating an example of a control procedure when processing is performed in the order of (B) optical frequency interval control and (A) average optical frequency control. Steps S11 to S14 are the same as steps S5 to S8 in FIG. 5, and steps S15 to S18 are the same as steps S1 to S4 in FIG. Even if the control is performed in the order shown in FIG. 16, the optical frequency arrangement at the time of convergence is the same as that in the case of performing the process shown in FIG.
  • FIG. 17 is a flowchart illustrating an example of a processing procedure when average optical frequency control is performed. Steps S21 to S23 are the same as steps S1 to S3 in FIG. In the example shown in FIG. 17, the subcarrier interval is not optimized as compared with the case where (A) average optical frequency control and (B) optical frequency interval control are combined. There is an advantage that can be made.
  • FIG. FIG. 18 is a diagram of a configuration example of the optical transmission system according to the second embodiment of the present invention.
  • the optical transmission system of the present embodiment includes a communication device 1a, a communication device 2a, and a transmission path 3.
  • an example will be described in which the optical frequency of an optical signal transmitted from the communication device 1a and received by the communication device 2a via the transmission path 3 is adjusted.
  • a different part from Embodiment 1 is demonstrated, and the description which overlaps with Embodiment 1 is abbreviate
  • the communication device 1a is different from the communication device 1 of the first embodiment except that an error signal calculation unit 14 is added and optical transceivers 12a-1 and 12a-2 are provided instead of the optical transceivers 12-1 and 12-2. These are the same as those of the communication apparatus 1 of the first embodiment.
  • the error signal calculation unit 14 receives subcarriers # 1 and subcarriers received from the communication device 2a that is an opposite device that receives optical signals of the first and second frequencies, that is, optical signals of subcarrier # 1 and subcarrier # 2. An error signal is calculated based on the reception quality of the optical signal # 2.
  • the communication device 2a is the same as the communication device 2 of the first embodiment except that the error signal calculation unit 23 is deleted and the optical transceivers 22a-1 and 22a-2 are provided instead of the optical transceivers 22-1 and 22-2. This is the same as the communication device 2 of the first embodiment. Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
  • FIG. 19 is a diagram illustrating a configuration example of the optical transceiver 12a-1 of the communication device 1 according to the present embodiment.
  • the optical transceiver 12a-1 of the present embodiment includes an optical signal generation unit 121, a transmission digital signal processing unit 122a, and an optical demodulation unit 123a similar to those of the first embodiment.
  • the transmission digital signal processing unit 123a is the same as the transmission digital signal processing unit 123 of the first embodiment except that the transmission digital signal processing unit 123a includes an optical frequency shift amount calculation unit 127a instead of the optical frequency shift amount calculation unit 127 of the first embodiment.
  • the optical frequency shift amount calculation unit 127a is the same as the embodiment except for calculating the optical frequency shift amount based on the error signal input from the error signal calculation unit 14 instead of the error signal input from the reception digital signal processor 128. This is the same as the first embodiment and the optical frequency shift amount calculation unit 127.
  • the optical demodulator 123a is the same as the optical demodulator 123 of the first embodiment except that it includes a received digital signal processor 129a instead of the received digital signal processor 129.
  • the reception digital signal processor 129 a extracts the signal quality and the dither polarity from the electrical signal output from the coherent receiver 130 and inputs the extracted signal quality and the dither polarity to the error signal calculation unit 14.
  • FIG. 20 is a diagram illustrating a configuration example of the optical transceiver 22a-1 of the communication device 2 according to the present embodiment.
  • the optical transceiver 22 a-1 inputs the signal quality output from the optical demodulator 221 and the dither polarity to the optical modulator 229.
  • the optical modulator 229 converts the signal quality, which is an electrical signal, and the dither polarity into an optical signal, and outputs the optical signal to the optical demultiplexing unit 21. Thereby, the signal quality and the dither polarity are transmitted as optical signals to the communication device 1a.
  • the communication device 2 that receives the optical signal calculates the error signal.
  • the communication device 1a calculates the error signal. Accordingly, the communication device on the receiving side does not need to add a function corresponding to the processing described in the first embodiment, and can use a conventional communication device.
  • the error signal calculation unit 14 calculates an error signal based on the signal quality and the dither polarity transmitted from the communication device 1a. .
  • the optical frequency control of the present embodiment is the same as that of the first embodiment except that the error signal is calculated by the error calculator 14.
  • the error signal calculation unit 14 of the communication device 1a of the present embodiment can also be realized by a processing circuit in the same manner as the error signal calculation unit 23 of the first embodiment.
  • This processing circuit may be the processing circuit 300 shown in FIG. 14 or the control circuit 400 having the configuration shown in FIG.
  • the error signal calculation unit 14 is realized by the control circuit 400, it is realized by the processor 401 reading and executing a program stored in the memory 402 and corresponding to the processing of the error signal calculation unit 14.
  • the communication device 1a that transmits the optical signal whose optical frequency is to be adjusted calculates the error signal based on the signal quality and the dither polarity calculated by the communication device 2a on the receiving side. I tried to do it. For this reason, the same effects as those of the first embodiment can be obtained, and the hardware configuration of the communication device 2a can be simplified as compared with the first embodiment.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

A communication device 1 according to the present invention is provided with: an optical transmitter/receiver 12-1 which adds a first frequency fluctuation to an optical signal having a first optical frequency, and transmits said optical signal; and an optical transmitter/receiver 12-2 which adds, to an optical signal having a second optical frequency, a second frequency fluctuation synchronized with the first optical frequency, and transmits said optical signal. Optical transmitter/receiver 12-1 calculates, on the basis of an error signal calculated on the basis of the reception quality of the optical signal having the first optical frequency and the reception quality of the optical signal having the second frequency, a first shift amount by which the optical frequency of the optical signal having the first optical frequency is to be shifted, and shifts the optical frequency of the optical signal having the first optical frequency by the first shift amount. Optical transmitter/receiver 12-2 calculates, on the basis of the error signal, a second shift amount by which the optical frequency of the optical signal having the second optical frequency is to be shifted, and shifts the optical frequency of the optical signal having the second optical frequency by the second shift amount.

Description

通信装置、光伝送システムおよび周波数制御方法Communication apparatus, optical transmission system, and frequency control method
 本発明は、光信号の周波数の制御を行う通信装置、光伝送システムおよび周波数制御方法に関する。 The present invention relates to a communication apparatus, an optical transmission system, and a frequency control method for controlling the frequency of an optical signal.
 幹線系光通信網では、1本の光ファイバ内において100Gbpsを超える大容量伝送すなわち超100Gbps級の伝送が求められている。超100Gbps級の伝送を実現する手法として、サブキャリアとよばれる搬送波を複数重ね合わせて大容量の情報を割り当てるスーパーチャネル技術の検討が進んでいる。スーパーチャネル伝送は、光周波数の利用効率を高め、大容量化を実現する。一方で、スーパーチャネル伝送では、サブキャリアが光周波数上で高密度に配置されるため、隣接するサブキャリア間で干渉が発生し信号品質が劣化するという課題がある。 In trunk-system optical communication networks, large-capacity transmission exceeding 100 Gbps within one optical fiber, that is, ultra 100 Gbps class transmission is required. As a technique for realizing ultra 100 Gbps class transmission, super channel technology for allocating a large amount of information by superimposing a plurality of subcarriers called subcarriers has been studied. Super-channel transmission increases the use efficiency of optical frequencies and realizes large capacity. On the other hand, in super channel transmission, since subcarriers are arranged with high density on the optical frequency, there is a problem that signal quality deteriorates due to interference between adjacent subcarriers.
 また、幹線系光通信網のスーパーチャネル伝送では、伝送路中に波長選択用の光フィルタが多段に配置され、任意の複数のサブキャリアの信号の分波、合波および経路切り替えが行われる。このため、光フィルタの透過帯域以外のサブキャリア信号帯域が削られることすなわち信号帯域狭窄により、信号品質が劣化するという課題も存在する。 Also, in super channel transmission of a trunk optical communication network, optical filters for wavelength selection are arranged in multiple stages in a transmission path, and demultiplexing, multiplexing, and path switching of signals of arbitrary plural subcarriers are performed. For this reason, there is a problem that signal quality is deteriorated due to the reduction of the subcarrier signal band other than the transmission band of the optical filter, that is, the signal band narrowing.
 幹線系光通信網のスーパーチャネル伝送において、サブキャリア間干渉と信号帯域狭窄による信号品質劣化を抑圧するには、サブキャリアの光周波数配置の最適化が重要である。また、システム運用開始時に光周波数配置を最適化したとしても、周囲環境変化または経年変化によって光源の光周波数がずれ、光周波数配置の最適条件を維持できない。したがって、システム運用開始時から終了時まで信号品質を維持するには、各サブキャリア信号の光周波数変化に追従した光周波数配置の最適制御が必要となる。 In super-channel transmission in trunk optical communication networks, optimizing the optical frequency arrangement of subcarriers is important to suppress signal quality degradation due to inter-subcarrier interference and signal band narrowing. Even if the optical frequency arrangement is optimized at the start of system operation, the optical frequency of the light source shifts due to changes in the surrounding environment or changes over time, and the optimal conditions for optical frequency arrangement cannot be maintained. Therefore, in order to maintain the signal quality from the start to the end of system operation, it is necessary to optimally control the optical frequency arrangement following the change in optical frequency of each subcarrier signal.
 例えば、特許文献1に開示されている従来方式では、光送信部が周波数揺らぎを付加して信号を送信し、光受信部が信号品質を測定する。そして、この従来方式では、光受信部により測定された信号品質の変化情報を基に、光送信部の各サブキャリアの光周波数ずれをサブキャリアごとに修正する制御が行われる。 For example, in the conventional method disclosed in Patent Document 1, the optical transmitter transmits a signal with frequency fluctuation added, and the optical receiver measures the signal quality. And in this conventional system, control which corrects the optical frequency shift of each subcarrier of an optical transmission part for every subcarrier based on the change information of the signal quality measured by the optical receiving part is performed.
特開2007-104008号公報JP 2007-104008 A
 しかしながら、上記特許文献1に記載の従来方式によれば、1サブキャリアずつクロストークを評価して波長ずれを求めているため、クロストークを低減させることはできるが、サブキャリアの光周波数の配置を、光伝送システム全体の信号品質を考慮して制御することができないという問題がある。 However, according to the conventional method described in Patent Document 1, since crosstalk is evaluated for each subcarrier to obtain a wavelength shift, the crosstalk can be reduced. However, the arrangement of optical frequencies of subcarriers can be reduced. Cannot be controlled in consideration of the signal quality of the entire optical transmission system.
 本発明は、上記に鑑みてなされたものであって、サブキャリアの光周波数の配置を、光伝送システム全体の信号品質を考慮して適切に制御することができる通信装置を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a communication device capable of appropriately controlling the arrangement of optical frequencies of subcarriers in consideration of the signal quality of the entire optical transmission system. To do.
 上述した課題を解決し、目的を達成するために、本発明にかかる通信装置は、第1の光周波数の光信号に第1の周波数揺らぎを付加して送信する第1の光送受信器と、第2の光周波数の光信号に前記第1の光周波数に同期した第2の周波数揺らぎを付加して送信する第2の光送受信器と、を備える。また、前記第1の光送受信器は、前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とに基づいて算出された誤差信号に基づいて、前記第1の光周波数の光信号の光周波数をシフトさせるシフト量である第1のシフト量を算出し、前記第1の光周波数の光信号の光周波数を前記第1のシフト量シフトさせ、前記第2の光送受信器は、前記誤差信号に基づいて、前記第2の光周波数の光信号の光周波数をシフトさせるシフト量である第2のシフト量を算出し、前記第2の光周波数の光信号の光周波数を前記第2のシフト量シフトさせる。 In order to solve the above-described problems and achieve the object, a communication apparatus according to the present invention includes a first optical transceiver that transmits an optical signal having a first optical frequency by adding a first frequency fluctuation; And a second optical transceiver that transmits the optical signal having the second optical frequency by adding a second frequency fluctuation synchronized with the first optical frequency. Further, the first optical transceiver is configured to output the first optical transceiver based on the error signal calculated based on the reception quality of the optical signal having the first optical frequency and the reception quality of the optical signal having the second frequency. Calculating a first shift amount, which is a shift amount for shifting the optical frequency of the optical signal of the first optical frequency, shifting the optical frequency of the optical signal of the first optical frequency by the first shift amount, and The second optical transceiver calculates a second shift amount, which is a shift amount for shifting the optical frequency of the optical signal of the second optical frequency, based on the error signal, and outputs the light of the second optical frequency. The optical frequency of the signal is shifted by the second shift amount.
 本発明によれば、サブキャリアの光周波数の配置を、光伝送システム全体の信号品質を考慮して適切に制御することができるという効果を奏する。 According to the present invention, it is possible to appropriately control the arrangement of optical frequencies of subcarriers in consideration of the signal quality of the entire optical transmission system.
実施の形態1にかかる光伝送システムの構成例を示す図1 is a diagram illustrating a configuration example of an optical transmission system according to a first embodiment. 実施の形態1の通信装置の光送受信器の構成例を示す図The figure which shows the structural example of the optical transmitter-receiver of the communication apparatus of Embodiment 1. 実施の形態1の対向装置である通信装置の光送受信器の構成例を示す図The figure which shows the structural example of the optical transmitter / receiver of the communication apparatus which is an opposing apparatus of Embodiment 1. 実施の形態1の対向装置である通信装置がデータ信号を送信する場合の対向装置の構成例を示す図The figure which shows the structural example of an opposing apparatus in case the communication apparatus which is an opposing apparatus of Embodiment 1 transmits a data signal. 実施の形態1の光周波数制御手順の一例を示すフローチャートA flowchart showing an example of an optical frequency control procedure according to the first embodiment. 実施の形態1の平均光周波数制御を行った場合の、ディザの極性による平均光周波数の変化の一例を示す模式図The schematic diagram which shows an example of the change of the average optical frequency by the polarity of a dither at the time of performing the average optical frequency control of Embodiment 1 実施の形態1の平均光周波数制御を行った場合の、通信装置から送信された各サブキャリアの光信号の光周波数の時間変化の一例を示す模式図Schematic diagram showing an example of a temporal change in the optical frequency of the optical signal of each subcarrier transmitted from the communication apparatus when the average optical frequency control of the first embodiment is performed. 実施の形態1の平均光周波数制御を行った場合の、通信装置から送信された各サブキャリアの信号品質の変化の一例を示す模式図Schematic diagram illustrating an example of a change in signal quality of each subcarrier transmitted from a communication apparatus when average optical frequency control according to Embodiment 1 is performed 実施の形態1の光周波数間隔制御を行った場合の、ディザの極性による光周波数間隔の変化の一例を示す模式図The schematic diagram which shows an example of the change of the optical frequency interval by the polarity of a dither at the time of performing the optical frequency interval control of Embodiment 1 実施の形態1の光周波数間隔制御を行った場合の、通信装置から送信された各サブキャリアの光信号の光周波数の時間変化の一例を示す模式図Schematic diagram showing an example of temporal change of the optical frequency of the optical signal of each subcarrier transmitted from the communication device when the optical frequency interval control of the first embodiment is performed. 実施の形態1の光周波数間隔制御を行った場合の、通信装置から送信された各サブキャリアの信号品質の変化の一例を示す模式図Schematic diagram illustrating an example of a change in signal quality of each subcarrier transmitted from a communication apparatus when optical frequency interval control according to Embodiment 1 is performed 実施の形態1の光周波数シフト同期装置における処理手順の一例を示すフローチャート7 is a flowchart illustrating an example of a processing procedure in the optical frequency shift synchronization apparatus according to the first embodiment. 実施の形態1の光周波数シフト器における処理手順の一例を示すフローチャート6 is a flowchart illustrating an example of a processing procedure in the optical frequency shifter according to the first embodiment. 実施の形態1の処理回路の構成例を示す図FIG. 3 illustrates a configuration example of a processing circuit according to the first embodiment. 実施の形態1の制御回路の構成例を示す図FIG. 3 is a diagram illustrating a configuration example of a control circuit according to the first embodiment. 実施の形態1の光周波数間隔制御、平均光周波数制御の順に処理を行う場合の制御手順の一例を示す図The figure which shows an example of the control procedure in the case of processing in order of the optical frequency interval control of Embodiment 1, and an average optical frequency control 実施の形態1の平均光周波数制御を行う場合の処理手順の一例を示すフローチャートThe flowchart which shows an example of the process sequence in the case of performing the average optical frequency control of Embodiment 1. 実施の形態2にかかる光伝送システムの構成例を示す図The figure which shows the structural example of the optical transmission system concerning Embodiment 2. FIG. 実施の形態2の通信装置の光送受信器の構成例を示す図The figure which shows the structural example of the optical transmitter-receiver of the communication apparatus of Embodiment 2. 実施の形態2の対向装置である通信装置の光送受信器の構成例を示す図The figure which shows the structural example of the optical transmitter-receiver of the communication apparatus which is an opposing apparatus of Embodiment 2.
 以下に、本発明の実施の形態にかかる通信装置、光伝送システムおよび周波数制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a communication apparatus, an optical transmission system, and a frequency control method according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる光伝送システムの構成例を示す図である。図1に示すように、本実施の形態の光伝送システムは、通信装置1、通信装置2および伝送路3を備える。本実施の形態では、通信装置1から送信され伝送路3を介して通信装置2で受信される光信号の光周波数を調整する例を説明する。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration example of an optical transmission system according to a first embodiment of the present invention. As shown in FIG. 1, the optical transmission system of the present embodiment includes a communication device 1, a communication device 2, and a transmission path 3. In the present embodiment, an example will be described in which the optical frequency of an optical signal transmitted from the communication device 1 and received by the communication device 2 via the transmission path 3 is adjusted.
 本実施の形態の光伝送システムは、スーパーチャネル伝送方式により光信号を伝送する通信システムであり、例えば、幹線系光通信網と呼ばれる通信網である。図1では、2つのサブキャリアが多重される例を示しているが、多重されるサブキャリアの数はこの例に限定されない。なお、図1では、各構成要素を接続する線のうち光信号の経路を示す部分を実線で示し、電気信号の経路を示す部分を点線で示している。 The optical transmission system according to the present embodiment is a communication system that transmits an optical signal by a super channel transmission method, and is a communication network called a trunk optical communication network, for example. Although FIG. 1 shows an example in which two subcarriers are multiplexed, the number of subcarriers to be multiplexed is not limited to this example. In FIG. 1, a portion indicating an optical signal path among lines connecting each component is indicated by a solid line, and a portion indicating an electric signal path is indicated by a dotted line.
 第1の通信装置である通信装置1は、光周波数シフト同期装置11と、光送受信器12-1,12-2と、光結合器13とを備える。光周波数シフト同期装置11は、通信装置2において算出された光信号の周波数誤差を示す誤差信号に基づいて光信号の周波数のシフトである光周波数シフトを補正する。光送受信器12-1は、第1のサブキャリアであるサブキャリア#1の光信号を生成して出力する。光送受信器12-2は、第2のサブキャリアであるサブキャリア#2の光信号を生成して出力する。第1のサブキャリアと第2のサブキャリアとは、それぞれ光周波数の異なるすなわち光波長の異なる搬送波である。光結合器13は、光送受信器12-1から出力される光信号と光送受信器12-2から出力される光信号とを結合して伝送路3へ出力する。また、光結合器13は、伝送路3経由で通信装置2から受信した光信号を2つに分波し、一方を光送受信器12-1へ他方を光送受信器12-2へ出力する。 The communication device 1 as the first communication device includes an optical frequency shift synchronization device 11, optical transceivers 12-1 and 12-2, and an optical coupler 13. The optical frequency shift synchronization device 11 corrects an optical frequency shift that is a frequency shift of the optical signal based on the error signal indicating the frequency error of the optical signal calculated in the communication device 2. The optical transceiver 12-1 generates and outputs an optical signal of subcarrier # 1, which is the first subcarrier. The optical transceiver 12-2 generates and outputs an optical signal of subcarrier # 2, which is the second subcarrier. The first subcarrier and the second subcarrier are carriers having different optical frequencies, that is, different optical wavelengths. The optical coupler 13 combines the optical signal output from the optical transceiver 12-1 and the optical signal output from the optical transceiver 12-2, and outputs the combined signal to the transmission path 3. The optical coupler 13 demultiplexes the optical signal received from the communication device 2 via the transmission path 3 into two, and outputs one to the optical transceiver 12-1 and the other to the optical transceiver 12-2.
 第2の通信装置である通信装置2は、光分波器21と、光送受信器22-1,22-2と、誤差信号演算部23とを備える。光分波器21は、伝送路3経由で通信装置2から受信した光信号を2つに分波し、一方を光送受信器22-1へ他方を光送受信器22-2へ出力する。また、光分波器21は、光送受信器22-1から出力される光信号と光送受信器22-2から出力される光信号とを結合して伝送路3へ出力する。誤差信号演算部23は、光送受信器22-1および光送受信器22-2により算出された信号品質を用いて、光周波数シフトを示す誤差信号を算出する。 The communication device 2 as the second communication device includes an optical demultiplexer 21, optical transceivers 22-1 and 22-2, and an error signal calculation unit 23. The optical demultiplexer 21 demultiplexes the optical signal received from the communication device 2 via the transmission path 3 into two, and outputs one to the optical transceiver 22-1 and the other to the optical transceiver 22-2. The optical demultiplexer 21 combines the optical signal output from the optical transmitter / receiver 22-1 and the optical signal output from the optical transmitter / receiver 22-2, and outputs the combined signal to the transmission line 3. The error signal calculation unit 23 calculates an error signal indicating an optical frequency shift using the signal quality calculated by the optical transceiver 22-1 and the optical transceiver 22-2.
 図2は、本実施の形態の通信装置1の光送受信器12-1の構成例を示す図である。図2に示すように、光送受信器12-1は、光信号生成部121、送信デジタル信号処理部122および光復調部123を備える。なお、光送受信器12-2の構成は、光送受信器12-1と同様である。光信号生成部121は光源124および光変調器125を備える。光源124は、連続光を送出する。光変調器125は、光源124から送出された連続光を電気信号であるデータ信号に応じて変調して光信号を生成し、生成した光信号を光結合器13へ出力する。 FIG. 2 is a diagram illustrating a configuration example of the optical transceiver 12-1 of the communication device 1 according to the present embodiment. As shown in FIG. 2, the optical transceiver 12-1 includes an optical signal generation unit 121, a transmission digital signal processing unit 122, and an optical demodulation unit 123. The configuration of the optical transceiver 12-2 is the same as that of the optical transceiver 12-1. The optical signal generation unit 121 includes a light source 124 and an optical modulator 125. The light source 124 emits continuous light. The optical modulator 125 modulates the continuous light transmitted from the light source 124 according to a data signal that is an electrical signal, generates an optical signal, and outputs the generated optical signal to the optical coupler 13.
 送信デジタル信号処理部122は、光周波数シフト器126、光周波数シフト量演算器127およびデータ信号生成部128を備える。データ信号生成部128は、データ信号を生成する。具体的には、データ信号生成部128は、例えば、送信する情報を誤り訂正符号化する処理、2値位相変調(BPSK:Binary Phase Shift Keying)、4値位相変調(QPSK:Quadrature Phase Shift Keying)または16値振幅位相変調(16QAM(Quadrature Amplitude Modulation))等の変調方式に応じてシンボルマッピングする処理、信号のスペクトルを整形する処理等を行ってデータ信号を生成する。データ信号生成部128の具体的処理内容およびデータ信号生成部128の構成については特に制約はない。光周波数シフト量演算器127は、通信装置2から通知された誤差信号を用いて光周波数シフト量を算出し、算出した周波数シフト量を光周波数シフト器126へ出力する。光周波数シフト器126は、データ信号に対し、光周波数シフト量演算器127から通知された光周波数シフト量の周波数シフトを電気的に付加する。また、光周波数シフト器126は、あらかじめ定めた周波数の振幅がΔfとなるディザをデータ信号に与えることができる。すなわち、光周波数シフト器126は、ディザの周波数は+Δfから-Δfの間で変化させる。なお、ディザは、周波数の揺らぎのことである。したがって、ディザは、周波数を増加させる場合もあるし、周波数を減少させる場合もある。すなわち、ディザの周波数の極性は+の場合もあれば-の場合もある。以下、ディザの周波数の極性を、単にディザの極性と呼ぶ。なお、以下では、ディザの周波数の振幅は固定である例を説明するが、ディザの周波数の振幅は固定でなくてもよい。以下、ディザの周波数の振幅を適宜、ディザの振幅と呼ぶ。ディザは例えば、矩形型の電気クロック信号を用いて一定時間周期ごとに光周波数シフト量を変化させることにより生成される。例えば、光周波数シフト器126がDSP(Digital Signal Processor)により実装される場合、電圧aからbに変化するとき、光周波数を+ΔfシフトするようにDSP内レジスタを書き換える。一方、電圧bからaに変化するとき、周波数を-ΔfシフトするようにDSP内レジスタを書き換える。 The transmission digital signal processing unit 122 includes an optical frequency shifter 126, an optical frequency shift amount calculator 127, and a data signal generation unit 128. The data signal generation unit 128 generates a data signal. Specifically, the data signal generation unit 128 performs, for example, a process of error correction encoding information to be transmitted, binary phase modulation (BPSK: Binary Phase Shift Keying), quaternary phase modulation (QPSK: Quadrature Phase Shift Keying). Alternatively, a data signal is generated by performing a symbol mapping process according to a modulation method such as 16-value amplitude phase modulation (16QAM (Quadrature Amplitude Modulation)), a process for shaping a signal spectrum, and the like. There are no particular restrictions on the specific processing content of the data signal generation unit 128 and the configuration of the data signal generation unit 128. The optical frequency shift amount calculator 127 calculates the optical frequency shift amount using the error signal notified from the communication device 2, and outputs the calculated frequency shift amount to the optical frequency shifter 126. The optical frequency shifter 126 electrically adds a frequency shift of the optical frequency shift amount notified from the optical frequency shift amount calculator 127 to the data signal. Further, the optical frequency shifter 126 can apply a dither having a predetermined frequency amplitude of Δf to the data signal. That is, the optical frequency shifter 126 changes the dither frequency between + Δf and −Δf. Dither refers to frequency fluctuation. Thus, dithering may increase the frequency or decrease the frequency. That is, the dither frequency polarity may be positive or negative. Hereinafter, the polarity of the dither frequency is simply referred to as the dither polarity. In the following, an example in which the amplitude of the dither frequency is fixed will be described. However, the amplitude of the dither frequency may not be fixed. Hereinafter, the amplitude of the dither frequency is appropriately referred to as dither amplitude. For example, the dither is generated by changing the optical frequency shift amount at regular time intervals using a rectangular electric clock signal. For example, when the optical frequency shifter 126 is mounted by a DSP (Digital Signal Processor), the register in the DSP is rewritten so as to shift the optical frequency by + Δf when the voltage a changes to b. On the other hand, when the voltage b changes to a, the DSP register is rewritten so as to shift the frequency by −Δf.
 光復調部123は、コヒーレントレシーバ130および受信デジタル信号処理器129を備える。コヒーレントレシーバ130は、通信装置2から伝送路3および光結合器13経由で受信した光信号を電気信号に変換して出力する。具体的には、光結合器13から入力された光信号と光源124から送出された光とを干渉させることにより所望の波長の光を電気信号に変換する。受信デジタル信号処理器129は、コヒーレントレシーバ130から出力された電気信号を復調する。また、受信デジタル信号処理器129は、復調して得られたデータのうち通信装置2から通知された誤差信号を光周波数シフト量演算器127へ出力する。 The optical demodulator 123 includes a coherent receiver 130 and a reception digital signal processor 129. The coherent receiver 130 converts the optical signal received from the communication device 2 via the transmission path 3 and the optical coupler 13 into an electrical signal and outputs the electrical signal. Specifically, light having a desired wavelength is converted into an electric signal by causing the optical signal input from the optical coupler 13 and the light transmitted from the light source 124 to interfere with each other. The reception digital signal processor 129 demodulates the electrical signal output from the coherent receiver 130. Also, the reception digital signal processor 129 outputs an error signal notified from the communication device 2 among the data obtained by demodulation to the optical frequency shift amount calculator 127.
 図3は、本実施の形態の対向装置である通信装置2の光送受信器22-1の構成例を示す図である。なお、本実施の形態では、対向装置とは、光周波数の制御対象となる装置である通信装置1に対向する装置すなわち通信装置1から送信された信号を受信する装置のことを示す。図3に示すように、光送受信器22-1は、光復調部221および光信号生成部222を備える。なお、光送受信器22-2の構成は、光送受信器22-1と同様である。 FIG. 3 is a diagram illustrating a configuration example of the optical transceiver 22-1 of the communication device 2 which is the opposite device of the present embodiment. In the present embodiment, the opposing device refers to a device that is opposed to the communication device 1 that is a device to be controlled of the optical frequency, that is, a device that receives a signal transmitted from the communication device 1. As shown in FIG. 3, the optical transceiver 22-1 includes an optical demodulator 221 and an optical signal generator 222. The configuration of the optical transceiver 22-2 is the same as that of the optical transceiver 22-1.
 光復調部221は、コヒーレントレシーバ223、受信デジタル信号処理器224、信号品質モニタ225および周波数オフセット器226を備える。コヒーレントレシーバ223は、光分波器21から入力される光信号をコヒーレント検波して電気信号に変換する。すなわち、コヒーレントレシーバ223は、光分波器21から入力された光信号と光源227から送出された光とを干渉させることにより所望の波長の光を電気信号に変換する。 The optical demodulator 221 includes a coherent receiver 223, a received digital signal processor 224, a signal quality monitor 225, and a frequency offset unit 226. The coherent receiver 223 performs coherent detection on the optical signal input from the optical demultiplexer 21 and converts it into an electrical signal. That is, the coherent receiver 223 converts light having a desired wavelength into an electrical signal by causing the optical signal input from the optical demultiplexer 21 to interfere with the light transmitted from the light source 227.
 受信デジタル信号処理器224は、送信側である通信装置1から送信された情報を復元する。すなわち、例えば、送信側である通信装置1のデータ信号生成部128において、変調が施されている場合には変調に対応した復調を実施し、データ信号生成部128において誤り訂正符号化がなされている場合には誤り訂正復号を行う。信号品質モニタ225は、受信デジタル信号処理器224から出力される情報を用いて通信装置1から受信した信号の品質を算出し、算出した結果を誤差信号演算部23へ出力する。信号品質モニタ225における信号品質の算出手法としては、例えば、複素平面上における受信信号点配置の雑音分布を用いて光信号の品質を示すQ値を算出する手法がある。この場合、受信デジタル信号処理器224から出力される情報は、複素平面上における受信信号点配置の雑音分布である。また、信号品質モニタ225における信号品質の他の算出手法としては、誤り訂正復号において誤り訂正されたビット数を用いてBER(Bit Error Rate:ビットエラーレート)を算出方法がある。この場合、受信デジタル信号処理器224から出力される情報は、誤り訂正復号において誤り訂正されたビット数である。信号品質モニタ225における信号品質の算出手法は、上述した方法に限らずどのような方法を用いてもよい。周波数オフセット器226は、通信装置1において付加されたディザの光周波数シフトの極性を算出し、算出した極性を誤差信号演算部23へ出力する。 The reception digital signal processor 224 restores the information transmitted from the communication device 1 on the transmission side. That is, for example, when the data signal generation unit 128 of the communication apparatus 1 on the transmission side performs modulation, demodulation corresponding to the modulation is performed, and the data signal generation unit 128 performs error correction coding. If so, error correction decoding is performed. The signal quality monitor 225 calculates the quality of the signal received from the communication apparatus 1 using the information output from the reception digital signal processor 224 and outputs the calculated result to the error signal calculation unit 23. As a signal quality calculation method in the signal quality monitor 225, for example, there is a method of calculating a Q value indicating the quality of an optical signal using a noise distribution of received signal point arrangement on a complex plane. In this case, the information output from the reception digital signal processor 224 is the noise distribution of the reception signal point arrangement on the complex plane. As another method for calculating the signal quality in the signal quality monitor 225, there is a method for calculating a BER (Bit Error Rate) using the number of bits corrected in error correction decoding. In this case, the information output from the reception digital signal processor 224 is the number of bits subjected to error correction in error correction decoding. The signal quality calculation method in the signal quality monitor 225 is not limited to the method described above, and any method may be used. The frequency offset unit 226 calculates the polarity of the optical frequency shift of the dither added in the communication device 1 and outputs the calculated polarity to the error signal calculation unit 23.
 光信号生成部222は光源227および光変調器228を備える。光源227は、連続光を送出する。光変調器228は、光源227から送出された連続光を電気信号である誤差信号に応じて変調して光信号を生成し、生成した光信号を光分波器21へ出力する。 The optical signal generator 222 includes a light source 227 and an optical modulator 228. The light source 227 emits continuous light. The optical modulator 228 modulates the continuous light transmitted from the light source 227 according to an error signal that is an electrical signal, generates an optical signal, and outputs the generated optical signal to the optical demultiplexer 21.
 次に、本実施の形態の動作について説明する。ここでは、通信装置1から対向する通信装置2へ向かって送信される光信号の光周波数を制御する動作を説明する。光周波数シフト同期装置11は、あらかじめ定められた制御シーケンスにしたがって、光送受信器12-1,12-2に対して、同期したディザを付加するか逆相のディザを付加するかを指示する。本実施の形態の光周波数制御は、後述するように、平均光周波数制御および光周波数間隔制御で構成される。制御シーケンスは、平均光周波数制御すなわち同期した同相ディザを付加した制御と、光周波数間隔制御すなわち逆相のディザを付加した制御とのうちどちらを先に行うかを示す。通信装置1の光送受信器12-1では、データ信号生成部128がデータ信号を生成して、光周波数シフト器126へデータ信号を入力する。光送受信器12-1の光周波数シフト器126は、入力されたデータ信号にあらかじめ定められた振幅Δfのディザを付加する。ディザが付加されたデータ信号は、光送受信器12-1の光変調器125へ入力される。光送受信器12-1の光変調器125は、光源124から送出された光を、光周波数シフト器126から入力されたデータ信号に基づいて光変調し、サブキャリア#1の光信号を生成する。 Next, the operation of this embodiment will be described. Here, an operation for controlling the optical frequency of an optical signal transmitted from the communication device 1 toward the opposite communication device 2 will be described. The optical frequency shift synchronizer 11 instructs the optical transceivers 12-1 and 12-2 to add synchronized dither or reverse phase dither according to a predetermined control sequence. As will be described later, the optical frequency control of the present embodiment is configured by average optical frequency control and optical frequency interval control. The control sequence indicates which one of the average optical frequency control, that is, the control with the added in-phase dither, and the optical frequency interval control, ie, the control with the anti-phase dither added, performed first. In the optical transceiver 12-1 of the communication apparatus 1, the data signal generation unit 128 generates a data signal and inputs the data signal to the optical frequency shifter 126. The optical frequency shifter 126 of the optical transceiver 12-1 adds a dither having a predetermined amplitude Δf to the input data signal. The data signal with the dither added is input to the optical modulator 125 of the optical transceiver 12-1. The optical modulator 125 of the optical transceiver 12-1 optically modulates the light transmitted from the light source 124 based on the data signal input from the optical frequency shifter 126, and generates an optical signal of subcarrier # 1. .
 通信装置1の光送受信器12-2では、光送受信器12-1と同様の動作により、サブキャリア#2の光信号を生成する。このとき、光送受信器12-2の光周波数シフト器126は、周波数シフト同期装置11から同期した同相のディザを付加することを指示されている場合、光送受信器12-1の光周波数シフト器126と同期して同相のディザすなわち同一のディザを付加する。また、光送受信器12-2の光周波数シフト器126は、周波数シフト同期装置11から同期した逆相のディザを付加することを指示されている場合、光送受信器12-1の光周波数シフト器126と逆相のディザ、すなわち光送受信器12-1の光周波数シフト器126が付加するディザと位相が180度異なるディザを付加する。なお、光送受信器12-2の光源124は、光送受信器12-1の光源124と光周波数が異なるすなわち光波長が異なる光を送出している。すなわち、光送受信器12-1の光源124はサブキャリア#1に対応する光波長の光を送出し、光送受信器12-2の光源124はサブキャリア#2に対応する光波長の光を送出する。 The optical transceiver 12-2 of the communication device 1 generates an optical signal of subcarrier # 2 by the same operation as that of the optical transceiver 12-1. At this time, when the optical frequency shifter 126 of the optical transceiver 12-2 is instructed to add the synchronized in-phase dither from the frequency shift synchronizer 11, the optical frequency shifter of the optical transceiver 12-1 In-phase dither, that is, the same dither is added in synchronization with 126. The optical frequency shifter 126 of the optical transceiver 12-2, when instructed by the frequency shift synchronizer 11 to add a reverse phase dither, is an optical frequency shifter of the optical transceiver 12-1. A dither having a phase different from that of the dither added by the optical frequency shifter 126 of the optical transceiver 12-1 by 180 degrees is added. The light source 124 of the optical transceiver 12-2 transmits light having a different optical frequency, that is, a light wavelength different from that of the light source 124 of the optical transceiver 12-1. That is, the light source 124 of the optical transceiver 12-1 transmits light having an optical wavelength corresponding to subcarrier # 1, and the light source 124 of the optical transceiver 12-2 transmits light having an optical wavelength corresponding to subcarrier # 2. To do.
 以上のように、光送受信器12-1は、第1の光周波数の光信号に第1の周波数揺らぎを付加して送信する第1の光送受信器であり、光送受信器12-2は、第2の光周波数の光信号に前記第1の光周波数に同期した第2の周波数揺らぎを付加して送信する第2の光送受信器である。第1の光周波数の光信号は、サブキャリア#1の光信号であり、第2の光周波数の光信号は、サブキャリア#2の光信号である。また、第1の周波数揺らぎは、光送受信器12-1の光周波数シフト器126が付加したディザによりサブキャリア#1の光信号に付加される光周波数の揺らぎであり、第2の周波数揺らぎは、光送受信器12-2の光周波数シフト器126が付加したディザによりサブキャリア#2の光信号に付加される光周波数の揺らぎである。 As described above, the optical transmitter / receiver 12-1 is the first optical transmitter / receiver that transmits the optical signal having the first optical frequency by adding the first frequency fluctuation, and the optical transmitter / receiver 12-2 A second optical transceiver that transmits an optical signal having a second optical frequency by adding a second frequency fluctuation synchronized with the first optical frequency to transmit the optical signal. The optical signal of the first optical frequency is an optical signal of subcarrier # 1, and the optical signal of the second optical frequency is an optical signal of subcarrier # 2. The first frequency fluctuation is an optical frequency fluctuation added to the optical signal of the subcarrier # 1 by the dither added by the optical frequency shifter 126 of the optical transceiver 12-1, and the second frequency fluctuation is the second frequency fluctuation. The fluctuation of the optical frequency added to the optical signal of subcarrier # 2 by the dither added by the optical frequency shifter 126 of the optical transceiver 12-2.
 光結合器13は、サブキャリア#1の光信号とサブキャリア#2の光信号とを合波して、伝送路3へ出力する。通信装置2の光分波器21は、伝送路3を介して通信装置1の光結合器13により合波された光信号を受信し、受信した光信号を2つに分波して、一方を光送受信器22-1へ、他方を光送受信器22-2へ出力する。 The optical coupler 13 combines the optical signal of the subcarrier # 1 and the optical signal of the subcarrier # 2 and outputs the multiplexed signal to the transmission path 3. The optical demultiplexer 21 of the communication device 2 receives the optical signal combined by the optical coupler 13 of the communication device 1 via the transmission path 3, demultiplexes the received optical signal into two, To the optical transceiver 22-1 and the other to the optical transceiver 22-2.
 光送受信器22-1では、コヒーレントレシーバ223が、光源227から送出される光を用いて受信した光信号を電気信号に変換して受信デジタル信号処理器224へ出力する。なお、光送受信器22-1の光源227は、サブキャリア#1に対応する光波長の光を送出する。したがって、光送受信器22-1のコヒーレントレシーバ223では、サブキャリア#1の光信号が検波されて電気信号に変換されることになる。光送受信器22-1の受信デジタル信号処理器224は、コヒーレントレシーバ223から出力される電気信号を送信された情報に復元し、信号品質の算出に用いる情報を信号品質モニタ225へ出力する。信号品質の算出に用いる情報は、上述したように、例えば、複素平面上における受信信号点配置の雑音分布または誤り訂正されたビット数等である。また、受信デジタル信号処理器224は、コヒーレントレシーバ223から出力された電気信号を周波数オフセット器226へ出力する。 In the optical transceiver 22-1, the coherent receiver 223 converts the optical signal received using the light transmitted from the light source 227 into an electrical signal and outputs the electrical signal to the reception digital signal processor 224. The light source 227 of the optical transceiver 22-1 transmits light having an optical wavelength corresponding to the subcarrier # 1. Therefore, in the coherent receiver 223 of the optical transceiver 22-1, the optical signal of subcarrier # 1 is detected and converted into an electrical signal. The reception digital signal processor 224 of the optical transceiver 22-1 restores the electrical signal output from the coherent receiver 223 to the transmitted information, and outputs information used for signal quality calculation to the signal quality monitor 225. As described above, the information used to calculate the signal quality is, for example, the noise distribution of the received signal point arrangement on the complex plane or the number of error-corrected bits. The reception digital signal processor 224 outputs the electrical signal output from the coherent receiver 223 to the frequency offset unit 226.
 光送受信器22-1の信号品質モニタ225は、受信デジタル信号処理器224から出力された情報に基づいて信号品質を算出し、算出した信号品質を誤差信号演算部23へ出力する。信号品質モニタ225により算出される信号品質は、例えば、複素平面上における受信信号点配置の雑音分布に基づくQ値、または誤り訂正されたビット数に基づいて算出されたBER等である。光送受信器22-1の周波数オフセット器226は、受信デジタル信号処理器224から出力された電気信号に基づいて、ディザの光周波数シフトの極性を算出し、誤差信号演算部23へ出力する。周波数オフセット器226は、例えば、ディザが方形波である場合は、通信装置1から送信された光信号の光周波数には、ディザの周期の半分は-Δfが付加され、ディザの周期の残り半分は+Δfが付加される。このため、例えば、周波数オフセット器226は、受信デジタル信号処理器224から出力された電気信号の周波数を算出し、算出した周波数が対応するサブキャリアの周波数より高いか低いかによりディザの極性を判定する。または、周波数オフセット器226は、算出した周波数の時間変化、例えば一定時間あたりの周波数の変化量を観測し、周波数が一定量以上減少した時刻から周波数が一定量以上増加した時刻までは極性が-であると判定し、周波数が一定量以上増加した時刻から周波数が一定量以上減少するまでは極性が+と判定する等の方法も考えられる。 The signal quality monitor 225 of the optical transceiver 22-1 calculates the signal quality based on the information output from the received digital signal processor 224, and outputs the calculated signal quality to the error signal calculator 23. The signal quality calculated by the signal quality monitor 225 is, for example, a Q value based on the noise distribution of the received signal point arrangement on the complex plane, or a BER calculated based on the number of error-corrected bits. The frequency offset unit 226 of the optical transceiver 22-1 calculates the dither optical frequency shift polarity based on the electrical signal output from the received digital signal processor 224, and outputs it to the error signal calculator 23. For example, when the dither is a square wave, the frequency offset unit 226 adds -Δf to the optical frequency of the optical signal transmitted from the communication apparatus 1 for half the dither period and the other half of the dither period. Is added with + Δf. Therefore, for example, the frequency offset unit 226 calculates the frequency of the electrical signal output from the reception digital signal processor 224, and determines the dither polarity based on whether the calculated frequency is higher or lower than the frequency of the corresponding subcarrier. To do. Alternatively, the frequency offset unit 226 observes the time change of the calculated frequency, for example, the amount of change of the frequency per fixed time, and the polarity is − from the time when the frequency is decreased by a certain amount to the time when the frequency is increased by a certain amount It can be determined that the polarity is determined to be + from the time when the frequency is increased by a certain amount or more until the frequency is decreased by a certain amount or more.
 光送受信器22-2は、光送受信器22-1と同様の処理により、サブキャリア#2に対応する光周波数シフトの極性と信号品質とを算出し、算出した光周波数シフトの極性と信号品質とを誤差信号演算部23へ入力する。なお、光送受信器22-2の光源227は、サブキャリア#2に対応する光波長の光を送出する。これにより、光送受信器22-2のコヒーレントレシーバ223では、サブキャリア#2の光信号が検波されて電気信号に変換されることになる。 The optical transmitter / receiver 22-2 calculates the optical frequency shift polarity and signal quality corresponding to the subcarrier # 2 by the same processing as the optical transmitter / receiver 22-1 and calculates the calculated optical frequency shift polarity and signal quality. Are input to the error signal calculator 23. The light source 227 of the optical transceiver 22-2 transmits light having an optical wavelength corresponding to the subcarrier # 2. Thereby, in the coherent receiver 223 of the optical transceiver 22-2, the optical signal of the subcarrier # 2 is detected and converted into an electrical signal.
 誤差信号演算部23は、ディザの光周波数シフトの極性を用いて演算の順序を判断し、光送受信器21-1から出力されたサブキャリア#1の信号品質すなわち受信品質と光送受信器21-2から出力されたとサブキャリア#2の信号品質すなわち受信品質とに基づいて誤差信号を算出する。誤差信号の算出方法については後述する。光送受信器22-1の光変調器228は、光源227から送出された光を誤差信号に応じて変調して光信号を生成し、生成した光信号を光分波器21へ出力する。光分波器21は、光変調器228から出力された光信号を伝送路3へ出力する。光信号は、伝送路3を介して通信装置2から送信された光信号を受信する。これにより、通信装置2で算出された誤差信号が光信号として通信装置1へ送信される。すなわち通信装置1から送信された光信号の光周波数の誤差を示す誤差信号が通信装置1へフィードバックされる。誤差信号は、通信装置1において光周波数の制御に用いられる。 The error signal calculation unit 23 determines the order of calculation using the dither optical frequency shift polarity, and the signal quality of the subcarrier # 1 output from the optical transceiver 21-1, that is, the reception quality and the optical transceiver 21- 2, an error signal is calculated based on the signal quality of subcarrier # 2, that is, the reception quality. A method for calculating the error signal will be described later. The optical modulator 228 of the optical transceiver 22-1 modulates the light transmitted from the light source 227 according to the error signal to generate an optical signal, and outputs the generated optical signal to the optical demultiplexer 21. The optical demultiplexer 21 outputs the optical signal output from the optical modulator 228 to the transmission path 3. The optical signal receives the optical signal transmitted from the communication device 2 via the transmission path 3. As a result, the error signal calculated by the communication device 2 is transmitted to the communication device 1 as an optical signal. That is, an error signal indicating an optical frequency error of the optical signal transmitted from the communication device 1 is fed back to the communication device 1. The error signal is used for controlling the optical frequency in the communication device 1.
 なお、ここでは、光送受信器22-1が誤差信号を通信装置1へ送信する動作を説明したが、同様に光送受信器22-2も誤差信号を通信装置1へ送信する。なお、光送受信器22-1と光送受信器22-2のいずれか一方が誤差信号を送信するようにしてもよい。光送受信器22-1と光送受信器22-2のいずれか一方が誤差信号を送信する場合、通信装置1では、光送受信器12-1または光送受信器12-2のいずれかが誤差信号を受信することになる。このため、誤差信号を受信した光送受信器12-1または光送受信器12-2は、他方の光送受信器12-1または光送受信器12-2の光周波数シフト量演算器127へ誤差信号を通知する。 Here, the operation in which the optical transceiver 22-1 transmits the error signal to the communication device 1 has been described. Similarly, the optical transceiver 22-2 also transmits the error signal to the communication device 1. Note that either the optical transceiver 22-1 or the optical transceiver 22-2 may transmit the error signal. When one of the optical transceiver 22-1 and the optical transceiver 22-2 transmits an error signal, in the communication device 1, either the optical transceiver 12-1 or the optical transceiver 12-2 transmits the error signal. Will receive. Therefore, the optical transceiver 12-1 or the optical transceiver 12-2 that has received the error signal sends the error signal to the optical frequency shift amount calculator 127 of the other optical transceiver 12-1 or the optical transceiver 12-2. Notice.
 また、誤差信号は、データ信号とは別に送信されてもよいし、通信装置2から通信装置1へのデータ信号の送信も行われる場合、データ信号とともに光変調器288に入力されて変調に用いられてもよい。また、データ信号を送信するためのフレームであるデータフレーム内の利用可能な領域を用いて送信してもよい。例えば、データ信号が、ITU-T(International Telecommunication Union Telecommunication standardization sector) G.709で定められているOTN(Optical-channel Transport Unit)フレームのデータフレームとして送信される場合、データフレーム内のコミュニケーションチャネルを用いることができる。データフレーム内の領域を用いて誤差信号を送信する場合、通信装置2は、図4に示すように、データ信号の送信側の機能も有する。 The error signal may be transmitted separately from the data signal. When the data signal is also transmitted from the communication device 2 to the communication device 1, the error signal is input to the optical modulator 288 together with the data signal and used for modulation. May be. Moreover, you may transmit using the area | region which can be utilized in the data frame which is a frame for transmitting a data signal. For example, when a data signal is transmitted as a data frame of an OTN (Optical-channel Transport Unit) frame defined in ITU-T (International Telecommunication Union Telecommunication standardization sector) G.709, the communication channel in the data frame is Can be used. When the error signal is transmitted using the area in the data frame, the communication device 2 also has a function on the data signal transmission side as shown in FIG.
 図4は、通信装置2が、データ信号を送信する場合の通信装置2の構成例を示す図である。この場合、通信装置2の光送受信器22-1は、図3に示した光送受信器22-1に送信デジタル信号処理部230を追加した構成となる。送信ジタル信号処理部230は、データ信号を生成するデータ信号生成部232とフレーマ231を備える。データ信号生成部232は、通信装置1のデータ信号生成部128と同様にデータ信号を生成する。フレーマ231は、OTNフレームなどのデータフレームにデータ信号および誤差信号を配置して光変調器228へ出力する。 FIG. 4 is a diagram illustrating a configuration example of the communication device 2 when the communication device 2 transmits a data signal. In this case, the optical transceiver 22-1 of the communication apparatus 2 has a configuration in which a transmission digital signal processing unit 230 is added to the optical transceiver 22-1 shown in FIG. The transmission digital signal processing unit 230 includes a data signal generation unit 232 and a framer 231 that generate a data signal. The data signal generation unit 232 generates a data signal similarly to the data signal generation unit 128 of the communication device 1. The framer 231 arranges a data signal and an error signal in a data frame such as an OTN frame and outputs the data signal to the optical modulator 228.
 また、ダークファイバと呼ばれる空き光ファイバすなわち空き伝送路がある場合、ダークファイバを用いて誤差信号を伝送してもよい。この場合、通信装置2の光分波器21から出力された信号をダークファイバに出力可能であり、通信装置1の光結合器13にはダークファイバを経由した信号が入力可能であるとする。また、誤差信号は、データ伝送に使用していない空き光周波数すなわち空き波長を用いて伝送されもよい。空波長で伝送する場合には、通信装置2は図示した光送受信器22-1,22-2とは別に光送受信器22-1,22-2と異なる光周波数に対応した光送受信器を備え、通信装置1は図示した光送受信器12-1,12-2とは別に光送受信器12-1,12-2と異なる光周波数に対応した光送受信器を備えているとする。いずれの場合にも、誤差信号をどのように送信するかはあらかじめ定めておき、通信装置1および通信装置2に設定されているとする。 In addition, when there is an empty optical fiber called a dark fiber, that is, an empty transmission line, the error signal may be transmitted using the dark fiber. In this case, it is assumed that the signal output from the optical demultiplexer 21 of the communication device 2 can be output to the dark fiber, and the signal via the dark fiber can be input to the optical coupler 13 of the communication device 1. Further, the error signal may be transmitted using a free optical frequency that is not used for data transmission, that is, a free wavelength. When transmitting at an empty wavelength, the communication device 2 includes an optical transceiver corresponding to an optical frequency different from that of the optical transceivers 22-1 and 22-2, in addition to the illustrated optical transceivers 22-1 and 22-2. Assume that the communication apparatus 1 includes an optical transceiver corresponding to an optical frequency different from that of the optical transceivers 12-1 and 12-2, in addition to the illustrated optical transceivers 12-1 and 12-2. In any case, it is assumed that how the error signal is transmitted is determined in advance and is set in the communication device 1 and the communication device 2.
 通信装置1の光結合器13は、光伝送路3経由で光信号として誤差信号を受信し、受信した光信号を2つに分波して、一方を光送受信器12-1へ入力し、他方を光送受信器12-2へ入力する。ここでは、通信装置2の光送受信器22-1から誤差信号が送信されたとすると、光送受信器12-1が誤差信号を受信する。具体的には、光送受信器12-1の光復調部123のコヒーレントレシーバ130が光信号を電気信号に変換し、受信デジタル信号処理器129が電気信号から誤差信号を抽出して光周波数シフト量演算器127へ入力する。光周波数シフト量演算器127は、誤差信号を光周波数シフト量に変換し、すなわち誤差信号に基づいて光周波数シフト量を算出し、光周波数シフト量を光周波数シフト器126へ通知する。光周波数シフト器126は、光周波数を光周波数シフト量演算器127から通知された光周波数シフト量だけシフトさせるためのデータ信号を生成する。これにより、光送受信器12-1の光信号生成部121により生成される光信号は、光周波数シフト量シフトする。光送受信器12-2も同様に、受信した誤差信号に基づいて光周波数シフト量を算出し、光送受信器12-2の光信号生成部121により生成される光信号を光周波数シフト量シフトさせる。 The optical coupler 13 of the communication apparatus 1 receives the error signal as an optical signal via the optical transmission path 3, demultiplexes the received optical signal into two, and inputs one to the optical transceiver 12-1. The other is input to the optical transceiver 12-2. Here, assuming that an error signal is transmitted from the optical transceiver 22-1 of the communication apparatus 2, the optical transceiver 12-1 receives the error signal. Specifically, the coherent receiver 130 of the optical demodulator 123 of the optical transceiver 12-1 converts the optical signal into an electrical signal, and the received digital signal processor 129 extracts the error signal from the electrical signal and the optical frequency shift amount. Input to the calculator 127. The optical frequency shift amount calculator 127 converts the error signal into the optical frequency shift amount, that is, calculates the optical frequency shift amount based on the error signal, and notifies the optical frequency shifter 126 of the optical frequency shift amount. The optical frequency shifter 126 generates a data signal for shifting the optical frequency by the optical frequency shift amount notified from the optical frequency shift amount calculator 127. As a result, the optical signal generated by the optical signal generator 121 of the optical transceiver 12-1 is shifted by the optical frequency shift amount. Similarly, the optical transceiver 12-2 calculates the optical frequency shift amount based on the received error signal, and shifts the optical frequency shift amount of the optical signal generated by the optical signal generation unit 121 of the optical transceiver 12-2. .
 すなわち、光送受信器12-1は、第1の光周波数の光信号の受信品質と第2の周波数の光信号の受信品質とに基づいて算出された誤差信号に基づいて、第1の光周波数の光信号であるサブキャリア#1の光信号の光周波数をシフトさせるシフト量である第1のシフト量を算出し、第1の光周波数の光信号の光周波数を第1のシフト量シフトさせる。また、光送受信器12-2は、誤差信号に基づいて、第2の光周波数の光信号であるサブキャリア#2の光信号の光周波数をシフトさせるシフト量である第2のシフト量を算出し、第2の光周波数の光信号の光周波数を第2のシフト量シフトさせる。 That is, the optical transceiver 12-1 uses the first optical frequency based on the error signal calculated based on the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency. The first shift amount, which is a shift amount for shifting the optical frequency of the optical signal of subcarrier # 1, which is an optical signal of the first optical frequency, is calculated, and the optical frequency of the optical signal of the first optical frequency is shifted by the first shift amount. . Further, the optical transceiver 12-2 calculates a second shift amount that is a shift amount for shifting the optical frequency of the optical signal of the subcarrier # 2 that is the optical signal of the second optical frequency, based on the error signal. Then, the optical frequency of the optical signal having the second optical frequency is shifted by the second shift amount.
 次に、本実施の形態の通信装置1の送信する光信号の光周波数制御について詳細に説明する。図5は、本実施の形態の光周波数制御手順の一例を示すフローチャートである。本実施の形態の光周波数制御は、(A)平均光周波数制御および(B)光周波数間隔制御により構成される。図5の例では、(A)平均光周波数制御を行った後に(B)光周波数間隔制御を行う例を示している。 Next, the optical frequency control of the optical signal transmitted by the communication apparatus 1 according to the present embodiment will be described in detail. FIG. 5 is a flowchart showing an example of the optical frequency control procedure of the present embodiment. The optical frequency control of the present embodiment includes (A) average optical frequency control and (B) optical frequency interval control. The example of FIG. 5 shows an example in which (B) optical frequency interval control is performed after (A) average optical frequency control is performed.
 まず、通信装置1は、平均光周波数制御を行うために、サブキャリア#1とサブキャリア#2とに振幅Δfの互いに同期した同相の周波数揺らぎすなわちディザを付加する(ステップS1)。具体的には、光周波数シフト同期装置11は、光送受信器12-1,12-2に対して同期した同相のディザを付加するよう指示する。光送受信器12-1の光周波数シフト器126と光送受信器12-2の光周波数シフト器126とは、光周波数シフト同期装置11からの指示に従って、同期した同一のディザを付加する。同期の方法としては、例えば、光周波数シフト同期装置11が光送受信器12-1,12-2の各々の光周波数シフト器126へ同時にディザの付加開始を指示する。光送受信器12-1,12-2の光周波数シフト器126は、同一のディザを生成可能なように構成される。例えば、光送受信器12-1,12-2の光周波数シフト器126は、同一の方形波、または正弦波等を生成可能なように構成される。光送受信器12-1,12-2の光周波数シフト器126が光周波数シフト同期装置11からの指示に基づいて同時に同一のディザを生成してデータ信号に付加する。光送受信器12-1,12-2の光変調器125は、それぞれ光周波数シフト器126から出力された電気信号に応じた光信号を生成して、光結合器13へ出力する。光結合器13は、光送受信器12-1から出力された光信号と光送受信器12-2から出力された光信号と合波して伝送路3へ出力する。 First, in order to perform the average optical frequency control, the communication device 1 adds in-phase frequency fluctuations or dithers synchronized in amplitude Δf to the subcarrier # 1 and the subcarrier # 2 (step S1). Specifically, the optical frequency shift synchronizer 11 instructs the optical transceivers 12-1 and 12-2 to add synchronized in-phase dither. The optical frequency shifter 126 of the optical transceiver 12-1 and the optical frequency shifter 126 of the optical transceiver 12-2 add the same synchronized dither according to the instruction from the optical frequency shift synchronizer 11. As a synchronization method, for example, the optical frequency shift synchronizer 11 instructs the optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 to start adding dither simultaneously. The optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 are configured to be able to generate the same dither. For example, the optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 are configured to be able to generate the same square wave, sine wave, or the like. The optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 simultaneously generate the same dither based on an instruction from the optical frequency shift synchronizer 11 and add it to the data signal. The optical modulators 125 of the optical transceivers 12-1 and 12-2 generate optical signals corresponding to the electrical signals output from the optical frequency shifter 126, respectively, and output the optical signals to the optical coupler 13. The optical coupler 13 combines the optical signal output from the optical transceiver 12-1 and the optical signal output from the optical transceiver 12-2, and outputs the combined signal to the transmission path 3.
 次に、伝送路3経由で通信装置2が光信号を受信し、誤差信号Eaを算出する(ステップS2)。具体的には、光分波器21を介して光送受信器22-1および光送受信器22-2の光復調部221は上述したように光信号を電気信号に変換して送信された情報を復元するとともに、ディザの極性および信号品質を算出する。誤差信号演算部23は、光送受信器22-1および光送受信器22-2の光復調部221が算出したディザの極性および信号品質に基づいて、以下の式(1)に従って誤差信号Eaを算出する。なお、ここでは、信号品質はQ値であるとし、ディザ極性j∈{+,-}に対応するサブキャリア番号#i∈{1,2}のQ値をQijと定義する。すなわち、ディザの極性が+のときの光送受信器22-1が算出したQ値をQ1+であり、ディザの極性が-のときの光送受信器22-1が算出したQ値をQ1-であり、ディザの極性が+のときの光送受信器22-2が算出したQ値をQ2+であり、ディザの極性が-のときの光送受信器22-2が算出したQ値をQ2-である。また、Min{x,y}は、xとyのうちの最小値を示す。なお、ここでは、信号品質は小さい値ほど信号の品質が悪いことを示す値であるとする。
 Ea=Min{Q1+,Q2+}-Min{Q1-,Q2-}  …(1)
Next, the communication device 2 via the transmission path 3 receives the optical signal, calculates an error signal E a (step S2). Specifically, the optical transmitter / receiver 22-1 and the optical demodulator 221 of the optical transmitter / receiver 22-2 via the optical demultiplexer 21 convert the optical signal into an electrical signal as described above, and transmit the transmitted information. Restore and calculate dither polarity and signal quality. Based on the dither polarity and signal quality calculated by the optical demodulator 221 of the optical transceiver 22-1 and optical transceiver 22-2, the error signal calculator 23 calculates the error signal E a according to the following equation (1). calculate. Here, it is assumed that the signal quality is the Q value, and the Q value of the subcarrier number # iε {1,2} corresponding to the dither polarity jε {+, −} is defined as Q ij . That is, the Q value optical transceiver 22-1 is calculated when the polarity of the dither + a Q 1+, the polarity of the dither - the Q value optical transceiver 22-1 to calculate the time for Q 1 The Q value calculated by the optical transceiver 22-2 when the dither polarity is + is Q 2+ and the Q value calculated by the optical transceiver 22-2 when the dither polarity is- Q 2- . Min {x, y} represents the minimum value of x and y. Here, it is assumed that the smaller the signal quality, the lower the signal quality.
E a = Min {Q 1+ , Q 2+ } −Min {Q 1− , Q 2− } (1)
 誤差信号は、上述したように、光信号として通信装置2から通信装置1へ送信される。通信装置1では、比例積分制御が行われ、以下の式(2),(3)により、光周波数シフト量fi,FCが更新される(ステップS3)。なお、kαは比例係数であり、例えばあらかじめ定められているとする。サブキャリア#iに対応する光周波数シフト量をfi,FCと記載することとする。初期光周波数シフト量すなわちfi,FCの初期値は、0Hzである。
 f1,FC=f1,FC+kαa  …(2)
 f2,FC=f2,FC+kαa  …(3)
As described above, the error signal is transmitted from the communication device 2 to the communication device 1 as an optical signal. In the communication device 1, proportional-integral control is performed, and the optical frequency shift amount f i, FC is updated by the following equations (2), (3) (step S3). Note that k α is a proportional coefficient, and is assumed to be predetermined, for example. The optical frequency shift amount corresponding to the subcarrier #i is described as fi, FC . The initial optical frequency shift amount, that is, the initial value of f i, FC is 0 Hz.
f 1, FC = f 1, FC + k α E a (2)
f 2, FC = f 2, FC + k α E a ... (3)
 具体的には、光送受信器12-1の光周波数シフト量演算器127が、上記式(2)によりf1,FCを算出し、光送受信器12-2の光周波数シフト量演算器127が、上記式(3)によりf2,FCを算出する。光送受信器12-1の光周波数シフト量演算器127は、光送受信器12-1の光周波数シフト器126へ光周波数シフト量としてf1,FCを通知する。送受信器12-2の光周波数シフト量演算器127は、光送受信器12-2の光周波数シフト器126へ光周波数シフト量としてf2,FCを通知する。光送受信器12-1および光送受信器12-2の光周波数シフト器126は、それぞれ通知された光周波数シフト量に基づいてデータ信号をシフトさせる。 Specifically, the optical frequency shift amount calculator 127 of the optical transceiver 12-1 calculates f 1, FC by the above equation (2) , and the optical frequency shift amount calculator 127 of the optical transceiver 12-2 Then, f2 , FC is calculated by the above equation (3). The optical frequency shift amount calculator 127 of the optical transceiver 12-1 notifies f 1 and FC as the optical frequency shift amount to the optical frequency shifter 126 of the optical transceiver 12-1. The optical frequency shift amount calculator 127 of the transceiver 12-2 notifies f 2 and FC as the optical frequency shift amount to the optical frequency shifter 126 of the optical transceiver 12-2. The optical frequency shifters 126 of the optical transceiver 12-1 and the optical transceiver 12-2 shift the data signal based on the notified optical frequency shift amount.
 以上のように、平均光周波数制御を行う期間である第1の制御期間では、第1および第2の周波数揺らぎは同一であり、第1および第2の周波数揺らぎは、光周波数を増加させる第1の期間と光周波数を減少させる第2の期間とを含むよう生成される。また、第1の制御期間では、誤差信号は、第1の期間における第1の光周波数の光信号の受信品質と第2の周波数の光信号の受信品質とのうち品質の悪い方の値と、第2の期間における第1の光周波数の光信号の受信品質と第2の周波数の光信号の受信品質とのうち品質の悪い方の値との差を示す信号である。また、第1の制御期間では、光送受信器12-1は、第1のシフト量に誤差信号に比例係数を乗算した値を加算した値で、第1のシフト量を更新する制御を行い、光送受信器12-2は、第2のシフト量に誤差信号に比例係数を乗算した値を加算した値で、第2のシフト量を更新する制御を行う。また、本実施の形態では、誤差信号は、第1および第2の周波数の光信号を受信する対向装置である通信装置2において算出され、光送受信器12-1は、対向装置から受信した誤差信号に基づいて第1のシフト量を算出し、光送受信器12-2は、対向装置から受信した誤差信号に基づいて前記第2のシフト量を算出する。 As described above, the first and second frequency fluctuations are the same in the first control period, which is a period during which the average optical frequency control is performed, and the first and second frequency fluctuations increase the optical frequency. 1 period and a second period for decreasing the optical frequency. Further, in the first control period, the error signal has a value of the lower quality of the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the first period. The signal indicating the difference between the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the second period, the value having the lower quality. In the first control period, the optical transceiver 12-1 performs control to update the first shift amount with a value obtained by adding a value obtained by multiplying the error signal to the proportional coefficient to the first shift amount, The optical transceiver 12-2 performs control to update the second shift amount with a value obtained by adding a value obtained by multiplying the error signal by the proportional coefficient to the second shift amount. In the present embodiment, the error signal is calculated in the communication device 2 which is the opposite device that receives the optical signals of the first and second frequencies, and the optical transceiver 12-1 receives the error received from the opposite device. The first shift amount is calculated based on the signal, and the optical transceiver 12-2 calculates the second shift amount based on the error signal received from the opposite device.
 以上述べた処理により、2つのサブキャリアの平均光周波数を、両サブキャリアの信号品質を偏りなく改善するように制御することができる。なお、2つのサブキャリアの平均光周波数とは、2つのサブキャリアの中心周波数を平均した値すなわち平均値を示す。具体的には、2つのサブキャリアの平均光周波数を光周波数の増加する方向に変化させた場合と、2つのサブキャリアの平均光周波数を光周波数の減少する方向に変化させた場合との差を誤差信号として、誤差信号を低減させるように平均光周波数を設定することができる。これにより、伝送路3の光フィルタ等により帯域の狭窄化が生じている場合に、光フィルタ等により削られる信号を低減させることができる。結果として、伝送路3の光フィルタ等により透過帯域自体がわからない場合でも、伝送路3の光フィルタ等による全体の透過帯域の中心付近に平均光周波数が設定されることになる。 By the processing described above, it is possible to control the average optical frequency of two subcarriers so as to improve the signal quality of both subcarriers without deviation. The average optical frequency of the two subcarriers indicates a value obtained by averaging the center frequencies of the two subcarriers, that is, an average value. Specifically, the difference between the case where the average optical frequency of the two subcarriers is changed in the direction of increasing the optical frequency and the case where the average optical frequency of the two subcarriers is changed in the direction of decreasing the optical frequency. As an error signal, the average optical frequency can be set so as to reduce the error signal. As a result, when the band is narrowed by the optical filter or the like of the transmission line 3, the signal cut by the optical filter or the like can be reduced. As a result, even when the transmission band itself is unknown due to the optical filter or the like of the transmission path 3, the average optical frequency is set near the center of the entire transmission band due to the optical filter or the like of the transmission path 3.
 図6は、平均光周波数制御を行った場合の、ディザの極性による平均光周波数の変化の一例を示す模式図である。図6中のSC#1は、サブキャリア#1を示し、SC#2は、サブキャリア#2を示す。図6の横軸は周波数であり、縦軸は光信号の強度である。図6には、通信装置1から送信された各サブキャリアの光信号の強度の周波数分布を示している。F1,+はサブキャリア#1の光信号のディザの極性が+の場合の周波数の範囲を示し、F1,-はサブキャリア#1の光信号のディザの極性が-の場合の周波数の範囲を示す。F2,+はサブキャリア#2の光信号のディザの極性が+の場合の周波数の範囲を示し、F2,-はサブキャリア#2の光信号のディザの極性が-の場合の周波数の範囲を示す。図6に示すように、平均光周波数制御では、2つのサブキャリアに同期したディザが付加されるため、両サブキャリアの極性が+の場合に、図6中に白丸で示した平均光周波数は、図6の黒矢印で示した方向すなわち+側に変化する。また、両サブキャリアの極性が-の場合に、図6中に白丸で示した平均光周波数は、図6の白矢印で示した方向すなわち-側に変化する。 FIG. 6 is a schematic diagram illustrating an example of a change in average optical frequency due to dither polarity when average optical frequency control is performed. SC # 1 in FIG. 6 indicates subcarrier # 1, and SC # 2 indicates subcarrier # 2. The horizontal axis in FIG. 6 is the frequency, and the vertical axis is the intensity of the optical signal. FIG. 6 shows the frequency distribution of the intensity of the optical signal of each subcarrier transmitted from the communication apparatus 1. F 1, + indicates the frequency range when the dither polarity of the optical signal of subcarrier # 1 is +, and F 1, − indicates the frequency range when the dither polarity of the optical signal of subcarrier # 1 is −. Indicates the range. F 2, + indicates the frequency range when the dither polarity of the optical signal of subcarrier # 2 is +, and F 2, − indicates the frequency range when the dither polarity of the optical signal of subcarrier # 2 is −. Indicates the range. As shown in FIG. 6, since the dither synchronized with two subcarriers is added in the average optical frequency control, when the polarities of both subcarriers are +, the average optical frequency indicated by white circles in FIG. The direction changes to the direction indicated by the black arrow in FIG. Further, when the polarities of both subcarriers are −, the average optical frequency indicated by white circles in FIG. 6 changes in the direction indicated by white arrows in FIG.
 図7は、平均光周波数制御を行った場合の、通信装置1から送信された各サブキャリアの光信号の光周波数の時間変化の一例を示す模式図である。図7では、ディザとして方形波を付加する例を示している。図7の横軸は時間であり、縦軸は周波数である。f1,FC,f2,FCは、上述したサブキャリア#1,サブキャリア#2の周波数オフセット後の光周波数である。 FIG. 7 is a schematic diagram illustrating an example of a temporal change in the optical frequency of the optical signal of each subcarrier transmitted from the communication apparatus 1 when average optical frequency control is performed. FIG. 7 shows an example in which a square wave is added as dither. The horizontal axis in FIG. 7 is time, and the vertical axis is frequency. f 1, FC and f 2, FC are optical frequencies after the above-described frequency offset of subcarrier # 1 and subcarrier # 2.
 図8は、平均光周波数制御を行った場合の、通信装置1から送信された各サブキャリアの信号品質の変化の一例を示す模式図である。図8の横軸は平均光周波数を示し、縦軸は信号品質を示している。また、信号品質61は、サブキャリア#1の光信号の信号品質Q1を示し、信号品質62は、サブキャリア#2の光信号の信号品質Q2を示す。また、Min{Q1,Q2}を図中の実線で示している。また、図8の上部の周波数分布63は、サブキャリア#1,サブキャリア#2の平均光周波数が光周波数の低下側にずれた状態のサブキャリア#1,サブキャリア#2の周波数分布を示している。また、周波数分布64は、サブキャリア#1,サブキャリア#2の平均光周波数が光周波数の高くなる方向にずれた状態のサブキャリア#1,サブキャリア#2の周波数分布を示している。周波数分布65は、適切な状態のサブキャリア#1,サブキャリア#2の周波数分布を示している。図8の上部の周波数分布63,64,65に重ねて示した点線は伝送路3に設けられた光フィルタの透過帯域すなわち光フィルタ帯域を示している。適切な状態の周波数分布65とは、平均光周波数が、光フィルタの透過帯域の中央となった状態のことを示している。図8中のfMは、適切な状態の周波数分布65となる場合の平均光周波数である。図5に示したステップS2で算出する誤差信号が0に近づくように制御することで、平均光周波数がfMへ近づくように制御することができる。 FIG. 8 is a schematic diagram illustrating an example of a change in signal quality of each subcarrier transmitted from the communication apparatus 1 when average optical frequency control is performed. In FIG. 8, the horizontal axis indicates the average optical frequency, and the vertical axis indicates the signal quality. Also, signal quality 61 shows the signal quality to Q 1 subcarrier # 1 of the optical signal, the signal quality. 62 shows the signal quality Q 2 of the sub-carrier # 2 of the optical signal. Min {Q 1 , Q 2 } is indicated by a solid line in the figure. 8 shows the frequency distribution of subcarrier # 1 and subcarrier # 2 in a state where the average optical frequency of subcarrier # 1 and subcarrier # 2 is shifted to the lower side of the optical frequency. ing. The frequency distribution 64 indicates the frequency distribution of subcarrier # 1 and subcarrier # 2 in a state where the average optical frequency of subcarrier # 1 and subcarrier # 2 is shifted in the direction in which the optical frequency increases. The frequency distribution 65 shows the frequency distribution of subcarrier # 1 and subcarrier # 2 in an appropriate state. A dotted line superimposed on the frequency distributions 63, 64, and 65 in the upper part of FIG. The frequency distribution 65 in an appropriate state indicates that the average optical frequency is in the center of the transmission band of the optical filter. F M in FIG. 8, the average light frequency when a frequency distribution 65 of the appropriate state. By controlling the error signal calculated in step S2 shown in FIG. 5 to approach 0, the average optical frequency can be controlled to approach f M.
 図5の説明に戻り、通信装置1は、光周波数間隔制御に設定を変更し(ステップS4)、サブキャリア#1とサブキャリア#2とに振幅Δfの互いに同期した逆相の周波数揺らぎすなわちディザを付加する。具体的には、光周波数シフト同期装置11が、光周波数間隔制御に設定を変更し、光送受信器12-1,12-2に対してディザの生成開始のタイミングを指示するとともに、光送受信器12-2に対しては位相が逆のディザを付加するよう指示する。光送受信器12-1,12-2の光周波数シフト器126は、振幅Δfの互いに同期した逆相の周波数揺らぎすなわちディザを付加する(ステップS5)。例えば、上述したように、光送受信器12-1,12-2の光周波数シフト器126が、同一のディザを生成可能とする。そして、光周波数シフト同期装置11から逆相のディザを付加するよう指示された場合、光送受信器12-1の光周波数シフト器126は、ステップS1と同様に光周波数シフト同期装置11から指示されたタイミングでディザの生成を開始してディザを付加し、光送受信器12-1の光周波数シフト器126は、光周波数シフト同期装置11から指示されたタイミングで逆相にしたディザの生成を開始してディザを付加する。または、光周波数シフト同期装置11は、光送受信器12-2に対しては位相が逆のディザを付加するよう指示する替わりに、光送受信器12-1に対しては位相が逆のディザを付加するように指示してもよい。 Returning to the description of FIG. 5, the communication apparatus 1 changes the setting to the optical frequency interval control (step S4), and the subcarrier # 1 and the subcarrier # 2 have opposite phase frequency fluctuations or dithers synchronized with each other in amplitude Δf. Is added. Specifically, the optical frequency shift synchronizer 11 changes the setting to optical frequency interval control, instructs the optical transceivers 12-1 and 12-2 to start dither generation, and the optical transceiver 12-2 is instructed to add a dither having an opposite phase. The optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 add anti-phase frequency fluctuations or dithers synchronized with each other in amplitude Δf (step S5). For example, as described above, the optical frequency shifters 126 of the optical transceivers 12-1 and 12-2 can generate the same dither. When the optical frequency shift synchronizer 11 gives an instruction to add a reverse phase dither, the optical frequency shifter 126 of the optical transceiver 12-1 is instructed by the optical frequency shift synchronizer 11 in the same manner as in step S1. The dither generation is started and the dither is added, and the optical frequency shifter 126 of the optical transmitter / receiver 12-1 starts generating the dither having the reverse phase at the timing instructed by the optical frequency shift synchronizer 11. And add dither. Alternatively, instead of instructing the optical transceiver 12-2 to add a dither having an opposite phase to the optical transceiver 12-2, the optical frequency shift synchronizer 11 performs a dither having an opposite phase to the optical transceiver 12-1. You may instruct to add.
 次に、伝送路3経由で通信装置2が光信号を受信し、誤差信号Ebを算出する(ステップS6)。具体的には、光分波器21を介して光送受信器22-1および光送受信器22-2の光復調部221は上述したように光信号を電気信号に変換して送信された情報を復元するとともに、ディザの極性および信号品質を算出する。誤差信号演算部23は、光送受信器22-1および光送受信器22-2の光復調部221が算出したディザの極性および信号品質に基づいて、以下の式(4)に従って誤差信号Ebを算出する。なお、通信装置2には、平均光周波数制御が行われているか、光周波数間隔制御が行われているかが通信装置1から通知されるとし、信号品質モニタ25は、通信装置2から受信した信号に基づいて、平均光周波数制御が行われているか、光周波数間隔制御が行われているかを判断できるとする。
 Eb=Min{Q1-,Q2+}-Min{Q1+,Q2-}  …(4)
Next, the communication device 2 receives the optical signal via the transmission path 3, and calculates the error signal Eb (step S6). Specifically, the optical transmitter / receiver 22-1 and the optical demodulator 221 of the optical transmitter / receiver 22-2 via the optical demultiplexer 21 convert the optical signal into an electrical signal as described above, and transmit the transmitted information. Restore and calculate dither polarity and signal quality. Based on the dither polarity and signal quality calculated by the optical demodulator 221 of the optical transceiver 22-1 and the optical transceiver 22-2, the error signal calculator 23 calculates the error signal E b according to the following equation (4). calculate. The communication device 2 is notified from the communication device 1 whether the average optical frequency control is being performed or the optical frequency interval control is being performed, and the signal quality monitor 25 receives the signal received from the communication device 2. Based on the above, it can be determined whether average optical frequency control is being performed or whether optical frequency interval control is being performed.
E b = Min {Q 1− , Q 2+ } −Min {Q 1+ , Q 2− } (4)
 誤差信号は、上述したように、光信号として通信装置2から通信装置1へ送信される。通信装置1では、比例積分制御が行われ、以下の式(5),(6)により、光周波数シフト量fi,FCが更新される(ステップS7)。なお、kβは比例係数であり、例えばあらかじめ定められているとする。サブキャリア#iに対応する光周波数シフト量をfi,FCと記載することとする。
  f1,FC=f1,FC+kβb  …(5)
  f2,FC=f2,FC-kβb  …(6)
As described above, the error signal is transmitted from the communication device 2 to the communication device 1 as an optical signal. In the communication device 1, proportional-integral control is performed, and the optical frequency shift amount f i, FC is updated by the following equations (5), (6) (step S7). Note that is a proportionality coefficient and is set in advance, for example. The optical frequency shift amount corresponding to the subcarrier #i is described as fi, FC .
f 1, FC = f 1, FC + k β E b (5)
f 2, FC = f 2, FC −k β E b (6)
 具体的には、光送受信器12-1の光周波数シフト量演算器127が、上記式(5)によりf1,FCを算出し、光送受信器12-2の光周波数シフト量演算器127が、上記式(6)によりf2,FCを算出する。光送受信器12-1の光周波数シフト量演算器127は、光送受信器12-1の光周波数シフト器126へ光周波数シフト量としてf1,FCを通知する。送受信器12-2の光周波数シフト量演算器127は、光送受信器12-2の光周波数シフト器126へ光周波数シフト量としてf2,FCを通知する。光送受信器12-1および光送受信器12-2の光周波数シフト器126は、それぞれ通知された光周波数シフト量のデータ信号をシフトさせる。 Specifically, the optical frequency shift amount calculator 127 of the optical transceiver 12-1 calculates f 1, FC by the above equation (5) , and the optical frequency shift amount calculator 127 of the optical transceiver 12-2 F 2 FC is calculated from the above equation (6). The optical frequency shift amount calculator 127 of the optical transceiver 12-1 notifies f 1 and FC as the optical frequency shift amount to the optical frequency shifter 126 of the optical transceiver 12-1. The optical frequency shift amount calculator 127 of the transceiver 12-2 notifies f 2 and FC as the optical frequency shift amount to the optical frequency shifter 126 of the optical transceiver 12-2. The optical frequency shifter 126 of the optical transceiver 12-1 and the optical transceiver 12-2 shifts the data signal of the notified optical frequency shift amount.
 以上のように、第2の制御期間である光周波数間隔制御を行う期間では、第1および前記第2の周波数揺らぎは振幅が同一で位相が逆であり、第1の周波数揺らぎにより光周波数を減少させかつ第2の周波数揺らぎにより光周波数を増加させる第1の逆相期間と、第1の周波数揺らぎにより光周波数を増加させかつ第2の周波数揺らぎにより光周波数を減少させる第2の逆相期間とを含むよう第1および第2の周波数揺らぎは生成される。また、第2の制御期間では、誤差信号は、第1の逆相期間における第1の光周波数の光信号の受信品質と第2の周波数の光信号の受信品質とのうち品質の悪い方の値と、第2の逆相期間における第1の光周波数の光信号の受信品質と第2の周波数の光信号の受信品質とのうち品質の悪い方の値との差を示す信号である。また、第2の制御期間では、光送受信器12-1は、第1のシフト量に誤差信号に比例係数を乗算した値を加算した値で、第1のシフト量を更新する制御を行い、光送受信器12-2は、第2のシフト量から、誤差信号に比例係数を乗算した値を減算した値で、第2のシフト量を更新する制御を行う。 As described above, in the period in which the optical frequency interval control, which is the second control period, is performed, the first and second frequency fluctuations have the same amplitude and opposite phases, and the optical frequency is set by the first frequency fluctuation. A first anti-phase period for decreasing and increasing the optical frequency by the second frequency fluctuation, and a second anti-phase period for increasing the optical frequency by the first frequency fluctuation and decreasing the optical frequency by the second frequency fluctuation The first and second frequency fluctuations are generated to include the period. Further, in the second control period, the error signal has a lower quality of the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the first reverse phase period. It is a signal indicating the difference between the value and the value with the lower quality of the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the second reverse phase period. Further, in the second control period, the optical transceiver 12-1 performs control to update the first shift amount with a value obtained by adding a value obtained by multiplying the error signal by the proportional coefficient to the first shift amount, The optical transceiver 12-2 performs control to update the second shift amount by a value obtained by subtracting a value obtained by multiplying the error signal by the proportional coefficient from the second shift amount.
 図5の説明に戻り、通信装置1は、平均光周波数制御に設定を変更し(ステップS8)、ステップS1へ戻る。具体的には、光周波数シフト同期装置11が、平均光周波数制御に設定を変更する。 Returning to the description of FIG. 5, the communication device 1 changes the setting to the average optical frequency control (step S8), and returns to step S1. Specifically, the optical frequency shift synchronizer 11 changes the setting to average optical frequency control.
 光送受信器12-1,12-2の平均光周波数制御では、帯域狭窄化による劣化を抑制することができる。本実施の形態では、帯域狭窄化による劣化とサブキャリア信号間干渉による劣化とがバランスするように、上述したように、さらに2サブキャリアの光周波数間隔を調整する光周波数間隔制御を行う。図9は、光周波数間隔制御を行った場合の、ディザの極性による光周波数間隔の変化の一例を示す模式図である。図9中のSC#1は、サブキャリア#1を示し、SC#2は、サブキャリア#2を示す。図9の横軸は周波数であり、縦軸は光信号の強度である。図9には、通信装置1から送信された各サブキャリアの光信号の強度の周波数分布を示している。d+,-はサブキャリア#1の光信号のディザの極性が+であり、サブキャリア#2の光信号のディザの極性が-である場合の、光周波数間隔すなわちサブキャリア#1の光信号の中心周波数とサブキャリア#2の光信号の中心周波数との間の間隔を示している。d-,+はサブキャリア#1の光信号のディザの極性が-であり、サブキャリア#2の光信号のディザの極性が+である場合の光周波数間隔を示している。図9に示すように、2つのサブキャリアの光周波数を逆方向かつ同一量に変化させることで、光周波数間隔を狭くしたり広くしたりすることになる。 In the average optical frequency control of the optical transceivers 12-1 and 12-2, deterioration due to band narrowing can be suppressed. In the present embodiment, as described above, optical frequency interval control for adjusting the optical frequency interval of two subcarriers is performed so that deterioration due to band narrowing and deterioration due to interference between subcarrier signals are balanced. FIG. 9 is a schematic diagram illustrating an example of a change in the optical frequency interval depending on the dither polarity when the optical frequency interval control is performed. SC # 1 in FIG. 9 indicates subcarrier # 1, and SC # 2 indicates subcarrier # 2. In FIG. 9, the horizontal axis represents frequency, and the vertical axis represents optical signal intensity. FIG. 9 shows the frequency distribution of the intensity of the optical signal of each subcarrier transmitted from the communication apparatus 1. d +, − is the optical frequency interval, that is, the optical signal of subcarrier # 1 when the dither polarity of the optical signal of subcarrier # 1 is + and the dither polarity of the optical signal of subcarrier # 2 is − , And the center frequency of the optical signal of subcarrier # 2. d −, + indicates an optical frequency interval when the dither polarity of the optical signal of subcarrier # 1 is − and the dither polarity of the optical signal of subcarrier # 2 is +. As shown in FIG. 9, the optical frequency interval is narrowed or widened by changing the optical frequencies of the two subcarriers in opposite directions and in the same amount.
 図10は、光周波数間隔制御を行った場合の、通信装置1から送信された各サブキャリアの光信号の光周波数の時間変化の一例を示す模式図である。図10では、ディザの周波数が方形波状に変化する例を示している。図10の横軸は時間であり、縦軸は周波数である。また、f1,FC,f2,FCは、上述したサブキャリア#1,サブキャリア#2の周波数オフセット後の光周波数である。図10に示すように、光周波数間隔制御では、図7の例と異なり、サブキャリア#1,サブキャリア#2のディザの極性は逆である。このように、図10の例では、時間に対し、2つのサブキャリアのディザを逆方向に同一量変化させている。 FIG. 10 is a schematic diagram illustrating an example of a temporal change in the optical frequency of the optical signal of each subcarrier transmitted from the communication device 1 when the optical frequency interval control is performed. FIG. 10 shows an example in which the dither frequency changes in a square wave shape. The horizontal axis in FIG. 10 is time, and the vertical axis is frequency. Further, f1 , FC and f2 , FC are optical frequencies after the frequency offset of the subcarrier # 1 and the subcarrier # 2 described above. As shown in FIG. 10, in the optical frequency interval control, unlike the example of FIG. 7, the dither polarities of subcarrier # 1 and subcarrier # 2 are reversed. Thus, in the example of FIG. 10, the dither of the two subcarriers is changed by the same amount in the opposite direction with respect to time.
 図11は、光周波数間隔制御を行った場合の、通信装置1から送信された各サブキャリアの信号品質の変化の一例を示す模式図である。図11の横軸は光周波数間隔を示し、縦軸は信号品質を示している。また、図11の上部の周波数分布67は、サブキャリア#1,サブキャリア#2の光周波数間隔が光周波数間隔の低下側にずれた状態のサブキャリア#1,サブキャリア#2の周波数分布を示している。また、周波数分布68は、サブキャリア#1,サブキャリア#2の光周波数間隔が光周波数間隔の高くなる方向にずれた状態のサブキャリア#1,サブキャリア#2の周波数分布を示している。周波数分布69は、光周波数間隔が適切な状態となったサブキャリア#1,サブキャリア#2の周波数分布を示している。光周波数間隔が適切な状態とは、サブキャリア#1,サブキャリア#2の光周波数間隔が、サブキャリア#1,サブキャリア#2の光信号が干渉せずにまた光周波数が離れすぎてもいない状態であり、例えばあらかじめ定めた範囲内に収まっている状態を示す。図11では、光周波数間隔が狭くなるにつれて、クロストークにより信号品質が劣化し、光周波数間隔が広くなるにつれて、帯域狭窄により信号品質が劣化することを示しており、2つの効果がバランスし信号品質が最大となる点が存在することを示している。 FIG. 11 is a schematic diagram illustrating an example of a change in signal quality of each subcarrier transmitted from the communication apparatus 1 when optical frequency interval control is performed. The horizontal axis in FIG. 11 indicates the optical frequency interval, and the vertical axis indicates the signal quality. Also, the frequency distribution 67 in the upper part of FIG. 11 shows the frequency distribution of subcarrier # 1 and subcarrier # 2 in a state where the optical frequency interval between subcarrier # 1 and subcarrier # 2 is shifted to the lower side of the optical frequency interval. Show. The frequency distribution 68 indicates the frequency distribution of subcarrier # 1 and subcarrier # 2 in a state where the optical frequency interval between subcarrier # 1 and subcarrier # 2 is shifted in the direction in which the optical frequency interval is increased. The frequency distribution 69 shows the frequency distribution of subcarrier # 1 and subcarrier # 2 in which the optical frequency interval is in an appropriate state. An appropriate optical frequency interval means that the optical frequency interval between subcarrier # 1 and subcarrier # 2 is such that the optical signals of subcarrier # 1 and subcarrier # 2 do not interfere with each other and the optical frequency is too far away. For example, it shows a state that is within a predetermined range. FIG. 11 shows that signal quality deteriorates due to crosstalk as the optical frequency interval becomes narrower, and signal quality deteriorates due to band narrowing as the optical frequency interval becomes wider. It shows that there is a point with the highest quality.
 以上のように、平均光周波数制御のための比例積分制御と光周波数間隔制御のための比例積分制御とを行うことにより、2つのサブキャリアの光周波数間隔を光フィルタによる狭窄化の影響を受けず、サブキャリア間クロストークが発生しないように配置する制御を行うことができ、2つのサブキャリア信号品質を偏りなく改善することが可能となる。また、クロストークの影響と帯域狭窄の影響とがバランスするように制御することができる。なお、本実施の形態では、誤差信号に基づく比例積分制御を用いる例を説明したが、比例積分制御に限らず、誤差信号に基づいて誤差を低減させるように制御する方法であればどのような制御方法を用いてもよい。 As described above, by performing proportional integral control for average optical frequency control and proportional integral control for optical frequency interval control, the optical frequency interval between two subcarriers is affected by the narrowing by the optical filter. Therefore, it is possible to perform control so that crosstalk between subcarriers does not occur, and it is possible to improve the quality of two subcarrier signals without deviation. Further, it is possible to control so that the influence of crosstalk and the influence of band narrowing are balanced. In this embodiment, an example using proportional-integral control based on an error signal has been described. However, the present invention is not limited to proportional-integral control, and any method that controls to reduce an error based on an error signal can be used. A control method may be used.
 図12は、本実施の形態の光周波数シフト同期装置11における処理手順の一例を示すフローチャートである。光周波数シフト同期装置11は、まず、平均光周波数制御のためにサブキャリア#1とサブキャリア#2とに振幅Δfの互いに同期した同相のディザの生成を指示する(ステップS21)。一定時間経過後、光周波数シフト同期装置11は、光周波数間隔制御のためにサブキャリア#1とサブキャリア#2とに振幅Δfの互いに同期した逆相のディザの生成を指示する(ステップS22)。一定時間経過後、ステップS21へ戻る。 FIG. 12 is a flowchart showing an example of a processing procedure in the optical frequency shift synchronizer 11 of the present embodiment. First, the optical frequency shift synchronizer 11 instructs the subcarrier # 1 and the subcarrier # 2 to generate in-phase dithers synchronized in amplitude Δf for average optical frequency control (step S21). After a predetermined time has elapsed, the optical frequency shift synchronizer 11 instructs the subcarrier # 1 and the subcarrier # 2 to generate dithers having opposite phases with the amplitude Δf in order to control the optical frequency interval (step S22). . After a certain time has elapsed, the process returns to step S21.
 図13は、本実施の形態の光周波数シフト器126における処理手順の一例を示すフローチャートである。光周波数シフト器126は、周波数シフト同期装置11からディザの生成開始を指示されたか否かを判断する(ステップS31)、ディザの生成開始を指示された場合(ステップS31 Yes)、逆相のディザの生成を指示されたか否かを判断する(ステップS32)。逆相のディザの生成を指示された場合(ステップS32 Yes)、周波数シフト同期装置11から指示されたタイミングでデータ信号への逆相のディザの付加を開始し(ステップS33)、ステップS31へ戻る。逆相のディザの生成を指示されていない場合(ステップS32 No)、周波数シフト同期装置11から指示されたタイミングでデータ信号へのディザの付加を開始し(ステップS34)、ステップS31へ戻る。また、この処理とは独立して、光周波数シフト器126は、光周波数シフト量演算器127から光周波数シフト量が通知された場合には、通知された光周波数シフト量のシフトをデータ信号に与える。ディザの生成開始を指示されていない場合(ステップS31 No)、ステップS31を繰り返す。 FIG. 13 is a flowchart showing an example of a processing procedure in the optical frequency shifter 126 of the present embodiment. The optical frequency shifter 126 determines whether or not the start of dither generation is instructed from the frequency shift synchronizer 11 (step S31). When the start of dither generation is instructed (Yes in step S31), the reverse phase dither is determined. It is determined whether or not generation of the instruction is instructed (step S32). When instructed to generate diphase dither (Yes in step S32), addition of diphase dither to the data signal is started at the timing instructed by the frequency shift synchronizer 11 (step S33), and the process returns to step S31. . When the generation of the reverse phase dither is not instructed (No in step S32), the addition of the dither to the data signal is started at the timing instructed by the frequency shift synchronizer 11 (step S34), and the process returns to step S31. Independent of this processing, when the optical frequency shift amount is notified from the optical frequency shift amount calculator 127, the optical frequency shifter 126 converts the notified shift of the optical frequency shift amount into a data signal. give. If the start of dither generation is not instructed (No in step S31), step S31 is repeated.
 次に、本実施の形態の通信装置1および通信装置2のハードウェア構成について説明する。通信装置1および通信装置2のうち各構成要素は、全てハードウェアにより実現することができる。光源124,光源227は例えば半導体レーザであり、光変調器125は、例えばLN(ニオブ酸リチウム)変調器、InP(インジウムリン)変調器である。この他の構成要素は、例えば、それぞれ処理回路として構成される。また、複数の構成要素が、1つの処理回路として構成されてもよいし、1つの構成要素が複数の処理回路により構成されてもよい。 Next, the hardware configuration of the communication device 1 and the communication device 2 according to the present embodiment will be described. Each component of the communication device 1 and the communication device 2 can be realized by hardware. The light source 124 and the light source 227 are, for example, semiconductor lasers, and the optical modulator 125 is, for example, an LN (lithium niobate) modulator or an InP (indium phosphide) modulator. These other components are each configured as a processing circuit, for example. In addition, a plurality of components may be configured as one processing circuit, and one component may be configured by a plurality of processing circuits.
 また、上記の処理回路は、専用のハードウェアであっても、メモリおよびメモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSP(Digital Signal Processor)ともいう)とを備える制御回路であってもよい。ここで、メモリとは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリー、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disk)等が該当する。 Further, even if the above processing circuit is dedicated hardware, a CPU (Central Processing Unit, a central processing unit, a processing unit, a processing unit, a microprocessor, a microcomputer, which executes a program stored in the memory, A control circuit including a processor and a DSP (Digital Signal Processor) may also be used. Here, the memory is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory, etc.) Volatile semiconductor memories, magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Disks), and the like are applicable.
 上記の処理回路が、専用のハードウェアで実現される場合、処理回路は、例えば図14に示す処理回路300である。処理回路300は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものである。 When the above processing circuit is realized by dedicated hardware, the processing circuit is, for example, the processing circuit 300 shown in FIG. The processing circuit 300 is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof.
 上記の処理回路が、CPUを備える制御回路で実現される場合、この制御回路は例えば図15に示す構成の制御回路400である。図15に示すように制御回路400は、CPUであるプロセッサ401と、メモリ402とを備える。上記の処理回路が制御回路400により実現される場合、プロセッサ401がメモリ402に記憶された、各構成要素の各々の処理に対応するプログラムを読み出して実行することにより実現される。また、メモリ402は、プロセッサ401が実施する各処理における一時メモリとしても使用される。 When the above processing circuit is realized by a control circuit including a CPU, this control circuit is, for example, a control circuit 400 having a configuration shown in FIG. As shown in FIG. 15, the control circuit 400 includes a processor 401 that is a CPU and a memory 402. When the above processing circuit is realized by the control circuit 400, the processor 401 reads out and executes a program stored in the memory 402 corresponding to each process of each component. The memory 402 is also used as a temporary memory in each process executed by the processor 401.
 通信装置1および通信装置2を構成する各構成要素は、一部が専用のハードウェアで実現され、一部がCPUを備える制御回路で実現されてもよい。 The components constituting the communication device 1 and the communication device 2 may be partially realized by dedicated hardware and partially realized by a control circuit including a CPU.
 以上のように、本実施の形態では、サブキャリア間で同期した同相または逆相のディザを付加して、両サブキャリアの信号品質を考慮した制御を行うことで、スーパーチャネル伝送における光周波数制御を低コストかつ小規模な構成で実現できる。また、信号品質を定常的に直接モニタリングし、信号品質が向上する方向に制御することで、伝送路に合わせたネットワーク全体の信号品質の向上、経年劣化や周囲環境変化による光周波数ドリフトへの追従を実現できる。 As described above, in this embodiment, optical frequency control in superchannel transmission is performed by adding in-phase or anti-phase dither synchronized between subcarriers and performing control in consideration of the signal quality of both subcarriers. Can be realized with a low-cost and small-scale configuration. In addition, the signal quality is constantly monitored directly and controlled to improve the signal quality, thereby improving the signal quality of the entire network according to the transmission path, and tracking optical frequency drift due to aging and changes in the surrounding environment. Can be realized.
 次に、本実施の形態の変形例について述べる。なお、上記の例では、(A)平均光周波数制御、(B)光周波数間隔制御の順番で光周波数制御を実施した。しかしながら、制御の順序はこの例に限定されず、図16に示すように、(B)光周波数間隔制御、(A)平均光周波数制御の順に行ってもよい。図16は、(B)光周波数間隔制御、(A)平均光周波数制御の順に処理を行う場合の制御手順の一例を示す図である。ステップS11~S14は、図5のステップS5~S8と同様であり、ステップS15~S18は、図5のステップS1~S4と同様である。図16に示す順序で制御を行っても、収束時の光周波数配置は図5で示した処理を行う場合と同様となる。 Next, a modification of this embodiment will be described. In the above example, the optical frequency control is performed in the order of (A) average optical frequency control and (B) optical frequency interval control. However, the order of control is not limited to this example, and as shown in FIG. 16, (B) optical frequency interval control and (A) average optical frequency control may be performed in this order. FIG. 16 is a diagram illustrating an example of a control procedure when processing is performed in the order of (B) optical frequency interval control and (A) average optical frequency control. Steps S11 to S14 are the same as steps S5 to S8 in FIG. 5, and steps S15 to S18 are the same as steps S1 to S4 in FIG. Even if the control is performed in the order shown in FIG. 16, the optical frequency arrangement at the time of convergence is the same as that in the case of performing the process shown in FIG.
 また、(A)平均光周波数制御、(B)光周波数間隔制御の両方を行うのではなく、いずれか一方を実施してもよい。例えば、平均光周波数制御のみを行ってもよい。図17は、平均光周波数制御を行う場合の処理手順の一例を示すフローチャートである。ステップS21~S23は、図5のステップS1~ステップS3と同様である。図17に示す例では、(A)平均光周波数制御、(B)光周波数間隔制御の両方の制御を組み合わせた場合と比較すると、サブキャリア間隔は最適化されないが、制御に用いる回路を小規模化できるといった利点がある。 Also, instead of performing both (A) average optical frequency control and (B) optical frequency interval control, either one may be implemented. For example, only average optical frequency control may be performed. FIG. 17 is a flowchart illustrating an example of a processing procedure when average optical frequency control is performed. Steps S21 to S23 are the same as steps S1 to S3 in FIG. In the example shown in FIG. 17, the subcarrier interval is not optimized as compared with the case where (A) average optical frequency control and (B) optical frequency interval control are combined. There is an advantage that can be made.
実施の形態2.
 図18は、本発明の実施の形態2にかかる光伝送システムの構成例を示す図である。図18に示すように、本実施の形態の光伝送システムは、通信装置1a、通信装置2aおよび伝送路3を備える。本実施の形態では、通信装置1aから送信され伝送路3を介して通信装置2aで受信される光信号の光周波数を調整する例を説明する。以下、実施の形態1と異なる部分を説明し、実施の形態1と重複する説明を省略する。
Embodiment 2. FIG.
FIG. 18 is a diagram of a configuration example of the optical transmission system according to the second embodiment of the present invention. As shown in FIG. 18, the optical transmission system of the present embodiment includes a communication device 1a, a communication device 2a, and a transmission path 3. In the present embodiment, an example will be described in which the optical frequency of an optical signal transmitted from the communication device 1a and received by the communication device 2a via the transmission path 3 is adjusted. Hereinafter, a different part from Embodiment 1 is demonstrated, and the description which overlaps with Embodiment 1 is abbreviate | omitted.
 通信装置1aは、実施の形態1の通信装置1に、誤差信号演算部14を追加し、光送受信器12-1,12-2に替えて光送受信器12a-1,12a-2を備える以外は、実施の形態1の通信装置1と同様である。誤差信号演算部14は、第1および第2の周波数の光信号すなわちサブキャリア#1およびサブキャリア#2の光信号を受信する対向装置である通信装置2aから受信したサブキャリア#1およびサブキャリア#2の光信号の受信品質に基づいて誤差信号を算出する。通信装置2aは、実施の形態1の通信装置2から誤差信号演算部23を削除し、光送受信器22-1,22-2に替えて光送受信器22a-1,22a-2を備える以外は、実施の形態1の通信装置2と同様である。実施の形態1と同様の機能を有する構成要素は実施の形態1と同一の符号を付して重複する説明を省略する。 The communication device 1a is different from the communication device 1 of the first embodiment except that an error signal calculation unit 14 is added and optical transceivers 12a-1 and 12a-2 are provided instead of the optical transceivers 12-1 and 12-2. These are the same as those of the communication apparatus 1 of the first embodiment. The error signal calculation unit 14 receives subcarriers # 1 and subcarriers received from the communication device 2a that is an opposite device that receives optical signals of the first and second frequencies, that is, optical signals of subcarrier # 1 and subcarrier # 2. An error signal is calculated based on the reception quality of the optical signal # 2. The communication device 2a is the same as the communication device 2 of the first embodiment except that the error signal calculation unit 23 is deleted and the optical transceivers 22a-1 and 22a-2 are provided instead of the optical transceivers 22-1 and 22-2. This is the same as the communication device 2 of the first embodiment. Components having the same functions as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment, and redundant description is omitted.
 図19は、本実施の形態の通信装置1の光送受信器12a-1の構成例を示す図である。図19に示すように、本実施の形態の光送受信器12a-1は、実施の形態1と同様の光信号生成部121と、送信デジタル信号処理部122aと、光復調部123aとを備える。 FIG. 19 is a diagram illustrating a configuration example of the optical transceiver 12a-1 of the communication device 1 according to the present embodiment. As shown in FIG. 19, the optical transceiver 12a-1 of the present embodiment includes an optical signal generation unit 121, a transmission digital signal processing unit 122a, and an optical demodulation unit 123a similar to those of the first embodiment.
 送信デジタル信号処理部123aは、実施の形態1の光周波数シフト量演算部127に替えて光周波数シフト量演算部127aを備える以外は、実施の形態1の送信デジタル信号処理部123と同様である。光周波数シフト量演算部127aは、受信デジタル信号処理器128から入力される誤差信号の替わりに誤差信号演算部14から入力される誤差信号に基づいて光周波数シフト量を算出する以外は、実施の形態1と光周波数シフト量演算部127と同様である。 The transmission digital signal processing unit 123a is the same as the transmission digital signal processing unit 123 of the first embodiment except that the transmission digital signal processing unit 123a includes an optical frequency shift amount calculation unit 127a instead of the optical frequency shift amount calculation unit 127 of the first embodiment. . The optical frequency shift amount calculation unit 127a is the same as the embodiment except for calculating the optical frequency shift amount based on the error signal input from the error signal calculation unit 14 instead of the error signal input from the reception digital signal processor 128. This is the same as the first embodiment and the optical frequency shift amount calculation unit 127.
 光復調部123aは、受信デジタル信号処理器129に替えて受信デジタル信号処理器129aを備える以外は、実施の形態1の光復調部123と同様である。受信デジタル信号処理器129aは、コヒーレントレシーバ130から出力される電気信号から信号品質およびディザの極性を抽出して誤差信号演算部14へ入力する。 The optical demodulator 123a is the same as the optical demodulator 123 of the first embodiment except that it includes a received digital signal processor 129a instead of the received digital signal processor 129. The reception digital signal processor 129 a extracts the signal quality and the dither polarity from the electrical signal output from the coherent receiver 130 and inputs the extracted signal quality and the dither polarity to the error signal calculation unit 14.
 図20は、本実施の形態の通信装置2の光送受信器22a-1の構成例を示す図である。光送受信器22a-1は、光復調部221から出力される信号品質およびディザの極性を光変調器229へ入力する。これにより、光変調器229は、電気信号である信号品質およびディザの極性を光信号に変換して、光分波部21へ出力する。これにより、信号品質およびディザの極性が光信号として通信装置1aへ送信される。 FIG. 20 is a diagram illustrating a configuration example of the optical transceiver 22a-1 of the communication device 2 according to the present embodiment. The optical transceiver 22 a-1 inputs the signal quality output from the optical demodulator 221 and the dither polarity to the optical modulator 229. As a result, the optical modulator 229 converts the signal quality, which is an electrical signal, and the dither polarity into an optical signal, and outputs the optical signal to the optical demultiplexing unit 21. Thereby, the signal quality and the dither polarity are transmitted as optical signals to the communication device 1a.
 実施の形態1では、光信号を受信する通信装置2が誤差信号を算出するようにしたが、本実施の形態では、通信装置1aが誤差信号を算出する。これにより、受信側の通信装置は、実施の形態1で述べた処理に対応する部分の機能を追加する必要がなく、従来の通信装置を用いることができる。 In Embodiment 1, the communication device 2 that receives the optical signal calculates the error signal. However, in the present embodiment, the communication device 1a calculates the error signal. Accordingly, the communication device on the receiving side does not need to add a function corresponding to the processing described in the first embodiment, and can use a conventional communication device.
 本実施の形態では、図5に示したステップS2,ステップS6では、誤差信号演算部14が、通信装置1aから送信された信号品質およびディザの極性に基づいて、誤差信号を算出することになる。本実施の形態の光周波数制御は、誤差信号が誤差演算部14で算出される以外は、実施の形態1と同様である。 In the present embodiment, in step S2 and step S6 shown in FIG. 5, the error signal calculation unit 14 calculates an error signal based on the signal quality and the dither polarity transmitted from the communication device 1a. . The optical frequency control of the present embodiment is the same as that of the first embodiment except that the error signal is calculated by the error calculator 14.
 本実施の形態の通信装置1aの誤差信号演算部14も実施の形態1の誤差信号演算部23と同様に処理回路により実現できる。この処理回路は、図14に示した処理回路300であってもよく、図15に示す構成の制御回路400であってもよい。誤差信号演算部14が制御回路400により実現される場合、プロセッサ401がメモリ402に記憶された、誤差信号演算部14の処理に対応するプログラムを読み出して実行することにより実現される。 The error signal calculation unit 14 of the communication device 1a of the present embodiment can also be realized by a processing circuit in the same manner as the error signal calculation unit 23 of the first embodiment. This processing circuit may be the processing circuit 300 shown in FIG. 14 or the control circuit 400 having the configuration shown in FIG. When the error signal calculation unit 14 is realized by the control circuit 400, it is realized by the processor 401 reading and executing a program stored in the memory 402 and corresponding to the processing of the error signal calculation unit 14.
 以上のように、本実施の形態では、光周波数の調整対象の光信号を送信する通信装置1aが、受信側の通信装置2aにより算出された信号品質およびディザの極性に基づいて誤差信号を算出するようにした。このため、実施の形態1と同様の効果が得られるとともに、実施の形態1に比べ通信装置2aのハードウェア構成を簡略化することができる。 As described above, in the present embodiment, the communication device 1a that transmits the optical signal whose optical frequency is to be adjusted calculates the error signal based on the signal quality and the dither polarity calculated by the communication device 2a on the receiving side. I tried to do it. For this reason, the same effects as those of the first embodiment can be obtained, and the hardware configuration of the communication device 2a can be simplified as compared with the first embodiment.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,1a,2,2a 通信装置、3 伝送路、11 光周波数シフト同期装置、12-1,12-2,12a-1,12a-2,22-1,22-2 光送受信器、13 光結合器、14,23 誤差信号演算部、21 光分波器、121,222 光信号生成部、122 送信デジタル信号処理部、123,221 光復調部、124,227 光源、125,228 光変調器、126 光周波数シフト器、127,127a 光周波数シフト量演算器、128,128a データ信号生成部、129,224 受信デジタル信号処理器、130,223 コヒーレントレシーバ、225 信号品質モニタ、226 周波数オフセット器。 1, 1a, 2, 2a communication device, 3 transmission path, 11 optical frequency shift synchronization device, 12-1, 12-2, 12a-1, 12a-2, 22-1, 22-2 optical transceiver, 13 light Coupler, 14, 23 error signal calculation unit, 21 optical demultiplexer, 121, 222 optical signal generation unit, 122 transmission digital signal processing unit, 123, 221 optical demodulation unit, 124, 227 light source, 125, 228 optical modulator , 126 optical frequency shifter, 127, 127a optical frequency shift amount calculator, 128, 128a data signal generator, 129, 224 received digital signal processor, 130, 223 coherent receiver, 225 signal quality monitor, 226 frequency offset device.

Claims (11)

  1.  第1の光周波数の光信号に第1の周波数揺らぎを付加して送信する第1の光送受信器と、
     第2の光周波数の光信号に前記第1の光周波数に同期した第2の周波数揺らぎを付加して送信する第2の光送受信器と、
     を備え、
     前記第1の光送受信器は、前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とに基づいて算出された誤差信号に基づいて、前記第1の光周波数の光信号の光周波数をシフトさせるシフト量である第1のシフト量を算出し、前記第1の光周波数の光信号の光周波数を前記第1のシフト量シフトさせ、
     前記第2の光送受信器は、前記誤差信号に基づいて、前記第2の光周波数の光信号の光周波数をシフトさせるシフト量である第2のシフト量を算出し、前記第2の光周波数の光信号の光周波数を前記第2のシフト量シフトさせることを特徴とする通信装置。
    A first optical transceiver for adding a first frequency fluctuation to an optical signal having a first optical frequency and transmitting the optical signal;
    A second optical transceiver for transmitting an optical signal having a second optical frequency by adding a second frequency fluctuation synchronized with the first optical frequency;
    With
    The first optical transceiver receives the first signal based on the error signal calculated based on the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency. Calculating a first shift amount, which is a shift amount for shifting the optical frequency of the optical signal of the optical frequency, shifting the optical frequency of the optical signal of the first optical frequency by the first shift amount;
    The second optical transceiver calculates a second shift amount that is a shift amount for shifting the optical frequency of the optical signal of the second optical frequency based on the error signal, and the second optical frequency. An optical frequency of the optical signal is shifted by the second shift amount.
  2.  前記第1および前記第2の周波数揺らぎは同一であり、
     前記第1および前記第2の周波数揺らぎは、光周波数を増加させる第1の期間と光周波数を減少させる第2の期間とを含むよう生成され、
     前記誤差信号は、前記第1の期間における前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とのうち品質の悪い方の値と、前記第2の期間における前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とのうち品質の悪い方の値との差を示す信号であることを特徴とする請求項1に記載の通信装置。
    The first and second frequency fluctuations are the same;
    The first and second frequency fluctuations are generated to include a first period for increasing an optical frequency and a second period for decreasing an optical frequency;
    The error signal has a value of the poor quality of the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the first period, and the second signal. The signal indicating a difference between a reception quality of the optical signal of the first optical frequency and a reception quality of the optical signal of the second frequency in a period, which is a lower quality value. The communication apparatus according to 1.
  3.  前記第1の光送受信器は、前記第1のシフト量に前記誤差信号に比例係数を乗算した値を加算した値で、前記第1のシフト量を更新する制御を行い、
     前記第2の光送受信器は、前記第2のシフト量に前記誤差信号に前記比例係数を乗算した値を加算した値で、前記第2のシフト量を更新する制御を行うことを特徴とする請求項2に記載の通信装置。
    The first optical transceiver performs control to update the first shift amount with a value obtained by adding a value obtained by multiplying the error signal by a proportional coefficient to the first shift amount,
    The second optical transceiver performs control to update the second shift amount with a value obtained by adding a value obtained by multiplying the error signal by the proportional coefficient to the second shift amount. The communication apparatus according to claim 2.
  4.  前記第1および前記第2の周波数揺らぎは振幅が同一で位相が逆であり、
     前記第1の周波数揺らぎにより光周波数を減少させかつ前記第2の周波数揺らぎにより光周波数を増加させる第1の逆相期間と、前記第1の周波数揺らぎにより光周波数を増加させかつ前記第2の周波数揺らぎにより光周波数を減少させる第2の逆相期間とを含むよう前記第1および前記第2の周波数揺らぎは生成され、
     前記誤差信号は、前記第1の逆相期間における前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とのうち品質の悪い方の値と、前記第2の逆相期間における前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とのうち品質の悪い方の値との差を示す信号であることを特徴とする請求項1に記載の通信装置。
    The first and second frequency fluctuations have the same amplitude and opposite phases;
    A first reverse phase period in which an optical frequency is decreased by the first frequency fluctuation and an optical frequency is increased by the second frequency fluctuation; an optical frequency is increased by the first frequency fluctuation; and the second frequency fluctuation The first and second frequency fluctuations are generated to include a second anti-phase period in which the optical frequency is reduced by frequency fluctuations;
    The error signal has a lower quality value among the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the first reverse phase period, And a signal indicating a difference between a reception quality of the optical signal of the first optical frequency and a reception quality of the optical signal of the second frequency in the opposite phase period of 2, which has a lower quality. The communication device according to claim 1.
  5.  前記第1の光送受信器は、前記第1のシフト量に前記誤差信号に比例係数を乗算した値を加算した値で、前記第1のシフト量を更新する制御を行い、
     前記第2の光送受信器は、前記第2のシフト量から、前記誤差信号に前記比例係数を乗算した値を減算した値で、前記第2のシフト量を更新する制御を行うことを特徴とする請求項4に記載の通信装置。
    The first optical transceiver performs control to update the first shift amount with a value obtained by adding a value obtained by multiplying the error signal by a proportional coefficient to the first shift amount,
    The second optical transceiver performs control to update the second shift amount by a value obtained by subtracting a value obtained by multiplying the error signal by the proportional coefficient from the second shift amount. The communication apparatus according to claim 4.
  6.  第1の制御期間では、前記第1および前記第2の周波数揺らぎは同一であり、
     前記第1の制御期間では、前記第1および前記第2の周波数揺らぎは、光周波数を増加させる第1の期間と光周波数を減少させる第2の期間とを含むよう生成され、
     前記第1の制御期間では、前記誤差信号は、前記第1の期間における前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とのうち品質の悪い方の値と、前記第2の期間における前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とのうち品質の悪い方の値との差を示す信号であり、
     第2の制御期間では、前記第1および前記第2の周波数揺らぎは振幅が同一で位相が逆であり、
     前記第2の制御期間では、前記第1の周波数揺らぎにより光周波数を減少させかつ前記第2の周波数揺らぎにより光周波数を増加させる第1の逆相期間と、前記第1の周波数揺らぎにより光周波数を増加させかつ前記第2の周波数揺らぎにより光周波数を減少させる第2の逆相期間とを含むよう前記第1および前記第2の周波数揺らぎは生成され、
     前記第2の制御期間では、前記誤差信号は、前記第1の逆相期間における前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とのうち品質の悪い方の値と、前記第2の逆相期間における前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とのうち品質の悪い方の値との差を示す信号であることを特徴とする請求項1に記載の通信装置。
    In the first control period, the first and second frequency fluctuations are the same,
    In the first control period, the first and second frequency fluctuations are generated to include a first period for increasing an optical frequency and a second period for decreasing an optical frequency,
    In the first control period, the error signal has a lower quality of the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the first period. And a signal indicating a difference between the reception quality of the optical signal having the first optical frequency and the reception quality of the optical signal having the second frequency in the second period. Yes,
    In the second control period, the first and second frequency fluctuations have the same amplitude and opposite phases,
    In the second control period, a first reverse phase period in which an optical frequency is decreased by the first frequency fluctuation and an optical frequency is increased by the second frequency fluctuation, and an optical frequency by the first frequency fluctuation. The first and second frequency fluctuations are generated to include a second anti-phase period in which the second frequency fluctuations and an optical frequency is reduced by the second frequency fluctuations,
    In the second control period, the error signal has a quality of the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the first reverse phase period. The difference between the worse value and the worse quality value of the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency in the second reverse phase period. The communication apparatus according to claim 1, wherein the communication apparatus is a signal indicating
  7.  前記第1の光送受信器は、前記第1の制御期間では、前記第1のシフト量に前記誤差信号に比例係数を乗算した値を加算した値で、前記第1のシフト量を更新する制御を行い、
     前記第2の光送受信器は、前記第1の制御期間では、前記第2のシフト量に前記誤差信号に前記比例係数を乗算した値を加算した値で、前記第2のシフト量を更新する制御を行い、
     前記第1の光送受信器は、前記第2の制御期間では、前記第1のシフト量に前記誤差信号に比例係数を乗算した値を加算した値で、前記第1のシフト量を更新する制御を行い、
     前記第2の光送受信器は、前記第2の制御期間では、前記第2のシフト量から、前記誤差信号に前記比例係数を乗算した値を減算した値で、前記第2のシフト量を更新する制御を行うことを特徴とする請求項6に記載の通信装置。
    In the first control period, the first optical transmitter / receiver updates the first shift amount by a value obtained by adding a value obtained by multiplying the error signal by a proportional coefficient to the first shift amount. And
    In the first control period, the second optical transceiver updates the second shift amount with a value obtained by adding a value obtained by multiplying the error signal to the proportional coefficient to the second shift amount. Control
    In the second control period, the first optical transceiver updates the first shift amount with a value obtained by adding a value obtained by multiplying the error signal by a proportional coefficient to the first shift amount. And
    In the second control period, the second optical transceiver updates the second shift amount with a value obtained by subtracting a value obtained by multiplying the error signal by the proportional coefficient from the second shift amount. The communication apparatus according to claim 6, wherein control is performed.
  8.  前記誤差信号は、前記第1および前記第2の周波数の光信号を受信する対向装置において算出され、
     前記第1の光送受信器は、前記対向装置から受信した前記誤差信号に基づいて前記第1のシフト量を算出し、
     前記第2の光送受信器は、前記対向装置から受信した前記誤差信号に基づいて前記第2のシフト量を算出することを特徴とする請求項1から7のいずれか1つに記載の通信装置。
    The error signal is calculated in a counter device that receives the optical signals of the first and second frequencies,
    The first optical transceiver calculates the first shift amount based on the error signal received from the opposite device;
    8. The communication apparatus according to claim 1, wherein the second optical transceiver calculates the second shift amount based on the error signal received from the opposite apparatus. 9. .
  9.  前記第1および前記第2の周波数の光信号を受信する対向装置から受信した前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とに基づいて前記誤差信号を算出する誤差信号演算部、
     を備えることを特徴とする請求項1から7のいずれか1つに記載の通信装置。
    The error based on the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency received from the opposite device that receives the optical signals of the first and second frequencies. An error signal calculation unit for calculating a signal,
    The communication apparatus according to any one of claims 1 to 7, further comprising:
  10.  第1の通信装置と、
     第2の通信装置と、
     を備え、
     前記第1の通信装置は、
     第1の光周波数の光信号に第1の周波数揺らぎを付加して送信する第1の光送受信器と、
     第2の光周波数の光信号に前記第1の光周波数に同期した第2の周波数揺らぎを付加して送信する第2の光送受信器と、
     を備え、
     前記第1の光送受信器は、前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とに基づいて算出された誤差信号に基づいて、前記第1の光周波数の光信号の光周波数をシフトさせるシフト量である第1のシフト量を算出し、前記第1の光周波数の光信号の光周波数を前記第1のシフト量シフトさせ、
     前記第2の光送受信器は、前記誤差信号に基づいて、前記第2の光周波数の光信号の光周波数をシフトさせるシフト量である第2のシフト量を算出し、前記第2の光周波数の光信号の光周波数を前記第2のシフト量シフトさせ、
     前記第2の通信装置は、前記第1の通信装置から受信した前記第1の光周波数の光信号と前記第1の通信装置から受信した前記第1の光周波数の光信号とに基づいて前記誤差信号を算出する誤差信号演算部、
     を備えることを特徴とする光伝送システム。
    A first communication device;
    A second communication device;
    With
    The first communication device is:
    A first optical transceiver for adding a first frequency fluctuation to an optical signal having a first optical frequency and transmitting the optical signal;
    A second optical transceiver for transmitting an optical signal having a second optical frequency by adding a second frequency fluctuation synchronized with the first optical frequency;
    With
    The first optical transceiver receives the first signal based on the error signal calculated based on the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency. Calculating a first shift amount, which is a shift amount for shifting the optical frequency of the optical signal of the optical frequency, shifting the optical frequency of the optical signal of the first optical frequency by the first shift amount;
    The second optical transceiver calculates a second shift amount that is a shift amount for shifting the optical frequency of the optical signal of the second optical frequency based on the error signal, and the second optical frequency. The optical frequency of the optical signal is shifted by the second shift amount,
    The second communication device is based on the optical signal of the first optical frequency received from the first communication device and the optical signal of the first optical frequency received from the first communication device. An error signal calculation unit for calculating an error signal;
    An optical transmission system comprising:
  11.  第1の光周波数の光信号に第1の周波数揺らぎを付加して送信する第1のステップと、
     第2の光周波数の光信号に前記第1の光周波数に同期した第2の周波数揺らぎを付加して送信する第2のステップと、
     前記第1の光周波数の光信号の受信品質と前記第2の周波数の光信号の受信品質とに基づいて誤差信号を算出する第3のステップと、
     前記第1の光周波数の光信号の光周波数をシフトさせるシフト量である第1のシフト量を算出し、前記第1の光周波数の光信号の光周波数を前記第1のシフト量シフトさせる第4のステップと、
     前記誤差信号に基づいて、前記第2の光周波数の光信号の光周波数をシフトさせるシフト量である第2のシフト量を算出し、前記第2の光周波数の光信号の光周波数を前記第2のシフト量シフトさせる第5のステップと、
     を含むことを特徴とする光周波数制御方法。
    A first step of transmitting by adding a first frequency fluctuation to an optical signal of a first optical frequency;
    A second step of transmitting an optical signal having a second optical frequency by adding a second frequency fluctuation synchronized with the first optical frequency;
    A third step of calculating an error signal based on the reception quality of the optical signal of the first optical frequency and the reception quality of the optical signal of the second frequency;
    A first shift amount, which is a shift amount for shifting the optical frequency of the optical signal of the first optical frequency, is calculated, and an optical frequency of the optical signal of the first optical frequency is shifted by the first shift amount. 4 steps,
    Based on the error signal, a second shift amount, which is a shift amount for shifting the optical frequency of the optical signal of the second optical frequency, is calculated, and the optical frequency of the optical signal of the second optical frequency is calculated. A fifth step of shifting the shift amount by 2;
    An optical frequency control method comprising:
PCT/JP2015/073356 2015-08-20 2015-08-20 Communication device, optical transmission system, and frequency control method WO2017029753A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2015/073356 WO2017029753A1 (en) 2015-08-20 2015-08-20 Communication device, optical transmission system, and frequency control method
PCT/JP2016/054486 WO2017029817A1 (en) 2015-08-20 2016-02-16 Communication device, optical transmission system, and optical frequency control method
JP2017535244A JP6407443B2 (en) 2015-08-20 2016-02-16 Communication apparatus, optical transmission system, and optical frequency control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/073356 WO2017029753A1 (en) 2015-08-20 2015-08-20 Communication device, optical transmission system, and frequency control method

Publications (1)

Publication Number Publication Date
WO2017029753A1 true WO2017029753A1 (en) 2017-02-23

Family

ID=58051533

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/073356 WO2017029753A1 (en) 2015-08-20 2015-08-20 Communication device, optical transmission system, and frequency control method
PCT/JP2016/054486 WO2017029817A1 (en) 2015-08-20 2016-02-16 Communication device, optical transmission system, and optical frequency control method

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054486 WO2017029817A1 (en) 2015-08-20 2016-02-16 Communication device, optical transmission system, and optical frequency control method

Country Status (2)

Country Link
JP (1) JP6407443B2 (en)
WO (2) WO2017029753A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212148A1 (en) * 2017-05-16 2018-11-22 日本電気株式会社 Optical transmission device, communication system, transmission frequency control method, and program
CN114450903A (en) 2019-10-01 2022-05-06 三菱电机株式会社 Transmitting/receiving device and transmitting/receiving method
JP2023096375A (en) * 2021-12-27 2023-07-07 国立研究開発法人産業技術総合研究所 Optical network system, optical transmission method, and communication device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165885A (en) * 2004-12-06 2006-06-22 Mitsubishi Electric Corp Wavelength monitoring controller and wavelength multiple transmitting device
JP2010226169A (en) * 2009-03-19 2010-10-07 Fujitsu Ltd Optical transmission apparatus, optical communication method and optical communication system
JP2012120010A (en) * 2010-12-02 2012-06-21 Fujitsu Ltd Optical transmitter and optical transmission device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015170916A (en) * 2014-03-05 2015-09-28 三菱電機株式会社 Optical transmission device and optical transmission control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165885A (en) * 2004-12-06 2006-06-22 Mitsubishi Electric Corp Wavelength monitoring controller and wavelength multiple transmitting device
JP2010226169A (en) * 2009-03-19 2010-10-07 Fujitsu Ltd Optical transmission apparatus, optical communication method and optical communication system
JP2012120010A (en) * 2010-12-02 2012-06-21 Fujitsu Ltd Optical transmitter and optical transmission device

Also Published As

Publication number Publication date
JP6407443B2 (en) 2018-10-17
WO2017029817A1 (en) 2017-02-23
JPWO2017029817A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
US10396899B1 (en) Probabilistic constellation shaping using set-partitioned M-QAM
US8818207B2 (en) Optical transmitter
JP6257866B2 (en) Optical repeater
US11881898B2 (en) Clock recovery for digital subcarriers for optical networks
EP3028394B1 (en) Parameter control for optical multicarrier signal
EP2448153B1 (en) Optical transmission device and optical transmission system
US10601517B1 (en) Probabilistic shaping on eight-dimensional super-symbols
US10700807B1 (en) Fiber input power selection for probabilistically shaped signals in optical networks
US9246735B2 (en) Equalizing a signal modulated using a 5QAM modulation format
US11165502B2 (en) Optical transmission device and optical transmission system
JP5892299B1 (en) Optical transmission method and optical transmission system
US8849128B2 (en) Multi-wavelength light source
US11265086B2 (en) Low rate loss bit-level distribution matcher for constellation shaping
JP6214847B1 (en) Communication apparatus and subcarrier signal arrangement method
WO2017029753A1 (en) Communication device, optical transmission system, and frequency control method
Nakamura et al. Long haul transmission of four-dimensional 64SP-12QAM signal based on 16QAM constellation for longer distance at same spectral efficiency as PM-8QAM
US20230198626A1 (en) Clock Recovery For Subcarriers In Optical Networks
US10594392B2 (en) Optical transmitter, optical transmission device, optical transmission/reception system, and optical transmission method
WO2017002178A1 (en) Optical transmitter, optical receiver, optical transmission system, and optical transmission method
WO2018003083A1 (en) Communication device, optical transmission system, and frequency adjustment method
de Gabory et al. Demonstration of the improvement of transmission distance using multiple state trellis coded optical modulation
US20230121555A1 (en) System and method for optical communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15901735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15901735

Country of ref document: EP

Kind code of ref document: A1