WO2017018129A1 - Layered wiring forming method - Google Patents

Layered wiring forming method Download PDF

Info

Publication number
WO2017018129A1
WO2017018129A1 PCT/JP2016/069687 JP2016069687W WO2017018129A1 WO 2017018129 A1 WO2017018129 A1 WO 2017018129A1 JP 2016069687 W JP2016069687 W JP 2016069687W WO 2017018129 A1 WO2017018129 A1 WO 2017018129A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
surface region
conductive layer
group
radiation
Prior art date
Application number
PCT/JP2016/069687
Other languages
French (fr)
Japanese (ja)
Inventor
仁 浜口
健朗 田中
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2017531101A priority Critical patent/JP6799267B2/en
Publication of WO2017018129A1 publication Critical patent/WO2017018129A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits

Definitions

  • the present invention relates to a method for forming a laminated wiring.
  • Photolithographic methods are widely used for forming wirings, electrodes and the like used for semiconductor elements and electronic circuits.
  • the photolithography method requires expensive equipment, and the process is complicated, resulting in an increase in manufacturing cost.
  • printed electronics that directly prints the wiring has attracted attention.
  • Each printing method such as ink jet printing, screen printing, and gravure printing used in printed electronics is a simple and low-cost method because a desired pattern of wiring can be directly formed on a substrate.
  • the ink material used flows as a result of these wetting spread and blurring, there is a limit in forming a fine wiring pattern.
  • the conventional general printing method it is not possible to form a laminated wiring in which wirings having a layer structure are connected by vias.
  • a method of forming a laminated wiring by a printing method using a material whose surface energy changes by applying energy has been proposed (see Japanese Patent Application Laid-Open No. 2015-15378).
  • a multilayer wiring is formed by the following steps. First, a wettability changing layer is formed on a substrate having a first wiring formed on the surface, using a material whose surface energy is changed by applying energy. This wettability changing layer becomes an interlayer insulating film. Next, a region having high wettability is formed by irradiating a part of the surface of the wettability changing layer with laser. This region with high wettability becomes a wiring pattern. Next, a via hole is formed by further irradiating a part of the formed region with high wettability with laser. After that, by applying a conductive ink on this highly wettable region, the second wiring and the via can be formed at the same time.
  • the above-described method performs high-energy laser irradiation to form a highly wettable region that becomes a wiring pattern, and it is difficult to say that the efficiency is good.
  • a laser for example, as the wiring pattern becomes complicated, the scanning path becomes complicated and the working time becomes longer.
  • a polymer having a side chain that contains polyimide in the main chain and can generate a hydrophilic group by irradiation with ultraviolet rays is used. Only.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to provide a method for forming a multilayer wiring capable of efficiently forming a multilayer wiring.
  • the invention made in order to solve the above-described problems includes a step of preparing a base material having a first conductive layer as an outermost layer, an insulation having a liquid-repellent surface region and a lyophilic surface region on the surface of the base material.
  • a step of forming a film, and a step of forming a second conductive layer laminated on the lyophilic surface region of the insulating film by contacting the surface of the insulating film with the second conductive layer forming material An insulating film forming step of forming an insulating coating film having a liquid repellent surface with an insulating film forming composition comprising a first polymer having an acid dissociable group and a first acid generator; and It is a formation method of laminated wiring provided with the process of forming the above-mentioned lyophilic surface area in a part of surface area of an insulating coat.
  • an insulating film forming composition including a first polymer having an acid dissociable group and a first acid generator is used for forming an insulating film. For this reason, for example, in the region of the insulating coating that has been heated or irradiated with radiation, an acid is generated, and the acid dissociable group of the first polymer is dissociated by the generation of this acid, thereby changing the wettability. To do. Such heating and radiation irradiation can be performed without using a laser. Therefore, according to the formation method, a multilayer wiring can be formed efficiently.
  • the present invention can provide a method of forming a multilayer wiring that can efficiently form the multilayer wiring.
  • FIG. 1A is an explanatory diagram of the step (A-1) in the method for forming a multilayer wiring according to one embodiment of the present invention
  • FIG. 1B is an explanatory diagram of the step (A-2).
  • 1C is an explanatory diagram of the step (A-3)
  • FIG. 1D is an explanatory diagram of the step (A-4)
  • FIG. 1E is a schematic diagram of the step (A-3).
  • FIG. FIG. 2 (a) is an explanatory diagram of the step (B-1)
  • FIG. 2 (b) is an explanatory diagram of the step (B-2)
  • FIG. 2 (c) is an explanatory diagram of the step (B-3).
  • FIG. 6 is an explanatory diagram of (B-4).
  • FIG. 3 is an explanatory diagram of the step (C).
  • FIG. 4 is an image showing the substrate on which the first conductive layer in the example is formed.
  • FIG. 5 is an image showing a substrate on which a repellent pattern is formed on the second layer in the example.
  • FIG. 6 is an image showing the substrate on which the second conductive layer is formed in the example.
  • FIG. 7 is an enlarged image of the substrate on which the second conductive layer of FIG. 6 is formed.
  • FIG. 8 is an image showing the substrate on which the second conductive layer and the via conductor are formed in the example.
  • FIG. 9 is an SEM image showing the substrate on which the second conductive layer and the via conductor are formed in the example.
  • a method for forming a laminated wiring according to an embodiment of the present invention includes: Preparing a base material having the first conductive layer as the outermost layer (A), Step (B) of forming an insulating film on the surface of the base material, and Step (C) of forming a second conductive layer With The insulating film forming step (B) Step (B-1) for forming an insulating coating, and Step (B-2) for forming a lyophilic surface region Is provided.
  • the insulating film forming step (B) in the forming method includes: Step of forming via hole (B-3) It is preferable to comprise Heating the insulating coating film irradiated with radiation (B-4) It is also preferable to comprise.
  • preparation step (A) A step (A-1) of forming a base coating film, Step of forming lyophilic surface region (A-2) and step of forming first conductive layer (A-4)) It is preferable to provide.
  • the preparation step (A) in the formation method includes: Before the first conductive layer forming step (A-4), Heating the base coating film irradiated with radiation (A-3) It is preferable to provide.
  • the preparation step (A) in the forming method includes: After the first conductive layer forming step (A-4), A step of irradiating the entire surface on the side where the first conductive layer is formed (A-5) It is preferable to provide.
  • the formation method will be described in detail in order. Note that the order of the steps is not limited to the following order. The order of the steps may be different as long as a similar multilayer wiring can be formed, and a plurality of steps may be performed simultaneously.
  • the preparation step (A) is a step of preparing a base material having the first conductive layer as the outermost layer.
  • the preparation step (A) is preferably composed of the following steps (A-1) to (A-5).
  • the undercoat film forming step (A-1) is a step of forming an undercoat film having a liquid repellent surface with the undercoat film forming composition.
  • the composition for forming a base film includes a polymer having an acid dissociable group (second polymer) and an acid generator (second acid generator).
  • the acid dissociable group refers to a group in which a hydrogen atom in an acidic functional group such as a phenolic hydroxyl group, a carboxyl group, or a sulfonic acid group is substituted, and refers to a group that dissociates in the presence of an acid.
  • the composition for forming the base film will be described in detail later. Specifically, in the step (A-1), as shown in FIG. 1A, a base coating film 11 is formed by applying a base film forming composition to the surface of the substrate 10. The base coating film 11 finally becomes the base film 15 (see FIG. 1 (e)).
  • Examples of the material of the substrate 10 include glass, quartz, silicon, and resin.
  • Examples of the resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethersulfone, polycarbonate, polyimide, and a ring-opening polymer (ROMP polymer) of cyclic olefin.
  • the substrate 10 is preferably a resin substrate, a glass substrate, or a semiconductor substrate conventionally used in electronic circuits. By using such a substrate, the obtained laminated wiring can be used as it is in an electronic circuit or the like.
  • the coating method of the undercoat film forming composition is not particularly limited, and is a coating method using a brush or brush, a dipping method, a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, Known methods such as a bar coating method, flexographic printing, offset printing, ink jet printing, and dispensing method can be used.
  • the undercoat film 11 is preferably heated (prebaked).
  • the heating conditions vary depending on the composition of the composition for forming a base film, but are, for example, about 60 ° C. to 120 ° C. and about 1 minute to 10 minutes.
  • the average thickness of the obtained base coating film 11 can be appropriately adjusted according to the use and the like, but the lower limit is preferably 0.05 ⁇ m, more preferably 0.1 ⁇ m. On the other hand, the upper limit is preferably 20 ⁇ m, and more preferably 10 ⁇ m.
  • irradiation (exposure) of radiation (h ⁇ ) to a part of the surface region of the base coating film 11 is performed. This is a step of forming the liquid surface region 12.
  • the surface of the base coating film 11 obtained from the base film forming composition has liquid repellency, and the region irradiated with radiation becomes the lyophilic surface region 12.
  • the region not irradiated with radiation is the liquid repellent surface region 13.
  • liquid repellency and lyophilicity are relative concepts.
  • the reason why the lyophilic surface region 12 is formed by irradiation with radiation is as follows.
  • an acid is generated from the radiation-sensitive acid generator in the undercoat film forming composition, whereby the acid-dissociable group of the polymer is dissociated. Due to the dissociation of the acid dissociable group, the surface energy of the irradiated region changes, and wettability increases. In particular, when the acid-dissociable group has a fluorine atom, the expression of this liquid repellency becomes remarkable.
  • the component derived from the dissociated acid dissociable group is preferably volatilized, the lyophilic surface region 12 becomes a recess (concave pattern). Since the lyophilic surface region 12 becomes a recess, as will be described later, the recess (lyophilic surface region 12) can be filled with the conductive layer forming material without bleeding.
  • Irradiation (exposure) of radiation can be performed through a photomask having a predetermined pattern so that the lyophilic surface region 12 having the same shape as the shape of the wiring to be formed is formed.
  • a photomask having a predetermined pattern so that the lyophilic surface region 12 having the same shape as the shape of the wiring to be formed is formed.
  • irradiation can be efficiently performed even when a complicated pattern is formed.
  • a predetermined pattern can be drawn and exposed using a direct drawing type exposure machine or the like.
  • the radiation irradiated in this step (A-2) visible light, ultraviolet light, far ultraviolet light, charged particle beam, X-ray or the like can be used.
  • radiation having a wavelength in the range of 190 nm to 450 nm is preferable, and radiation containing ultraviolet light having a wavelength of 365 nm is more preferable.
  • the exposure dose of radiation in this step (A-2) may be appropriately set within a range in which a sufficient change in wettability and formation of recesses can be formed.
  • the lower limit of the exposure amount is preferably 10 mJ / cm 2 and more preferably 20 mJ / cm 2 as the intensity of radiation at a wavelength of 365 nm.
  • this upper limit 1000 mJ / cm 2 is preferable, and 500 mJ / cm 2 is more preferable.
  • the size and shape of the lyophilic surface region 12 to be formed correspond to the desired size and shape of the wiring, but can be a linear shape having a width of 10 ⁇ m to 300 ⁇ m, for example.
  • the heating step (A-3) is a step of heating the base coating film 11 irradiated with radiation.
  • components dissociated in the region irradiated with radiation can be further volatilized.
  • the lyophilic surface region 12 (concave portion) becomes deeper (see FIG. 1C).
  • the wettability of the lyophilic surface region 12 is further increased by volatilization of the dissociated component.
  • the depth of the lyophilic surface region 12 can be, for example, 0.1 ⁇ m or more and 1 ⁇ m or less. Moreover, as a minimum of the depth of the lyophilic surface area
  • the heating method in this step is not particularly limited, and examples thereof include a method of heating using a hot plate, oven, dryer or the like. In addition, you may heat by vacuum baking.
  • the heating conditions are also appropriately set depending on the composition and film thickness of the composition for forming the base film, but are preferably 60 ° C. or higher and 150 ° C. or lower, and preferably 3 minutes or longer and 30 minutes or shorter.
  • the contact angle difference between the lyophilic surface region 12 thus formed and the liquid repellent surface region 13 with respect to tetradecane contact angle in the liquid repellent surface region 13 ⁇ contact angle in the lyophilic surface region 12.
  • 30 degrees is preferred, 40 degrees is more preferred, and 50 degrees is still more preferred.
  • the upper limit of the contact angle difference is, for example, 70 °.
  • the lower limit of the contact angle difference between water between the lyophilic surface region 12 and the lyophobic surface region 13 (contact angle in the lyophobic surface region 13 ⁇ contact angle in the lyophilic surface region 12) is 20 ° is preferred, and 25 degrees is more preferred.
  • the upper limit of this contact angle difference is, for example, 60 °.
  • the conductive layer forming material in contact with the liquid-repellent surface region 13 can easily move to the lyophilic surface region 12, and the lyophilic property. Wiring can be suitably formed along the surface region 12.
  • the first conductive layer forming step (A-4) is a step of forming the first conductive layer 14 by the contact of the first conductive layer forming material with the surface of the base coating film 11 irradiated with radiation (FIG. 1). (See (d)).
  • the material for forming the first conductive layer is not particularly limited.
  • any conductive material that can form wiring can be used, and examples include conductive film forming ink and conductive film forming paste.
  • first conductive layer forming materials include ink or paste in which metal particles are dispersed, ink or paste containing a metal salt and a reducing agent, and metal oxide particles that can be metallized by heating in a reducing atmosphere. And an ink or paste in which a conductive polymer is dispersed or a solution, an ink or paste in which nanocarbons such as carbon nanotubes and graphene are dispersed, and the like.
  • inks and pastes in which metal particles such as silver particles are dispersed, and inks and pastes containing metal salts and a reducing agent are preferable.
  • These inks or pastes can form a coating film by various printing methods and coating methods. In addition, such a coating film of the first conductive layer forming material is heated to become the first conductive layer 14 (wiring).
  • the contact of the first conductive layer forming material with the surface of the base coating film 11 can be performed by a known method such as coating.
  • a known method such as coating.
  • application method using brush or brush, dipping method, spray method, roll coating method, spin coating method (spin coating method), slit die coating method, bar coating method, flexographic printing, offset printing, inkjet Well-known methods, such as printing and a dispensing method can be mentioned.
  • a dipping method, a spray method, a spin coating method, a slit die coating method, an offset printing method, an ink jet method, and a dispensing method are preferable.
  • a lyophilic surface region 12 and a liquid repellent surface region 13 are formed on the surface of the base coating film 11. For this reason, when the first conductive layer forming material is brought into contact with the surface of the base coating film 11, the first conductive layer forming material is repelled in the liquid repellent surface region 13 and is preferably lyophilic, which is a recess. It flows into the surface region 12. Thereby, the first conductive layer forming material is disposed along the lyophilic surface region 12 which is a recess.
  • the radiation irradiating step (A-5) is a step of irradiating the entire surface of the surface on which the first conductive layer forming material is applied, that is, the side on which the first conductive layer 14 is formed, with radiation (h ⁇ ).
  • the radiation irradiating step (A-5) is a step of irradiating the entire surface of the surface on which the first conductive layer forming material is applied, that is, the side on which the first conductive layer 14 is formed, with radiation (h ⁇ ).
  • Specific examples and preferred examples of radiation irradiated in this step are the same as those in the lyophilic surface region forming step (A-2). Further, the radiation exposure amount in this step can be the same as in the lyophilic surface region forming step (A-2).
  • the base coating film 11 and the like it is preferable to heat the base coating film 11 and the like after irradiation of radiation to the entire surface.
  • the component derived from the acid dissociable group dissociated in the exposed portion (exposed portion) is volatilized, and the exposed portion becomes thinner and more lyophilic.
  • the first conductive layer forming material (first conductive layer 14) is sufficiently cured by this heating.
  • the base coating film 11 becomes the base film 15, and the base material 16 having the first conductive layer 14 (wiring) as the outermost layer can be obtained (see FIG. 1E).
  • This heating method is not particularly limited, and examples thereof include a method of heating using a hot plate, oven, dryer or the like. In addition, you may heat by vacuum baking.
  • the heating conditions are not particularly limited, but may be, for example, 50 ° C. or higher and 200 ° C. or lower and 1 minute or longer and 120 minutes or shorter. However, since it is not necessary to make the undercoat film 15 (the undercoat film 11) thin, the heating conditions may be milder than in the heating step (A-3).
  • ⁇ Insulating film forming step (B)> an insulating film 23 having a lyophobic surface region 19 and a lyophilic surface region 18 provided with via holes 20 is formed on the surface of the substrate 16. It is a process (see FIG. 2C). In FIG. 2C and the like, the via hole 20 is formed in the lyophilic surface region 18 of the insulating film 23, but the via hole 20 may not be formed.
  • the insulating coating film forming step (B-1) is a step of forming the insulating coating film 17 having a liquid-repellent surface with the insulating film forming composition.
  • the composition for forming an insulating film includes a polymer having an acid dissociable group (first polymer) and an acid generator (first acid generator). This insulating film forming composition will be described in detail later.
  • the insulating film forming composition is applied to the surface of the base material 16 on the side where the first conductive layer 14 is formed.
  • the insulating coating film 17 is formed by application.
  • the insulating coating film 17 finally becomes the insulating film 23.
  • the coating method of the insulating film forming composition is the same as the coating method of the base film forming composition in step (A-1) described above.
  • the insulating coating film 17 is preferably heated (pre-baked).
  • the heating condition varies depending on the composition of the composition for forming an insulating film, and is, for example, about 60 ° C. to 120 ° C. and about 1 minute to 10 minutes.
  • the average thickness of the insulating coating 17 to be obtained can be appropriately adjusted according to the use etc., but the lower limit is preferably 0.05 ⁇ m, more preferably 0.1 ⁇ m. On the other hand, the upper limit is preferably 20 ⁇ m, and more preferably 10 ⁇ m.
  • the lyophilic surface region forming step (B-2) is a step of forming a lyophilic surface region by irradiating a part of the surface region of the insulating coating film 17 with radiation (h ⁇ ) (FIG. 2B). )reference). Similar to the base coating film 11 obtained from the base film forming composition, the surface of the insulating coating film 17 has liquid repellency, and the region irradiated with radiation becomes the lyophilic surface region 18. On the other hand, the region not irradiated with radiation is the liquid repellent surface region 19. Moreover, like the base coating film 11, the lyophilic surface region 18 becomes a recess (concave pattern).
  • the radiation irradiation (exposure) method, the type of radiation, specific examples of the exposure dose, and preferred examples are the same as those in the lyophilic surface region forming step (A-2). That is, it is preferable that the irradiation of radiation is performed by exposure through a photomask. Further, the shape and the like of the lyophilic surface region 18 formed can be the same as that of the lyophilic surface region 12 formed in the step (A-2).
  • the via hole forming step (B-3) is a step of forming the via hole 20 (see FIG. 2C).
  • the method for forming the via hole 20 is not particularly limited, but it can be preferably performed by laser irradiation to a part of the lyophilic surface region 18 of the insulating coating film 17. By such laser ablation, a via hole 20 for connecting the first conductive layer 14 and the second conductive layer 21 (see FIG. 3) is formed.
  • the via hole 20 penetrates the insulating coating film 17.
  • the via hole 20 may be formed by a method other than laser ablation.
  • the via hole 20 may be formed by irradiation with a sufficient amount of radiation through a photomask.
  • the wavelength of the laser used in this step (B-3) is not particularly limited, but it is preferable to use radiation (ultraviolet rays) in the range of 190 nm to 450 nm.
  • radiation ultraviolet rays
  • ArF (193 nm) ArF (193 nm), and the like.
  • the size of the via hole 20 to be formed is not particularly limited, but is usually narrower than the width of the linear lyophilic surface region 18.
  • the specific size of the via hole 20 can be, for example, about 1 ⁇ m to 100 ⁇ m.
  • the size of the via hole 20 means the diameter when the opening of the via hole 20 is circular, and the length of one side (long side) when the opening is square.
  • the heating step (B-4) is a step of heating the insulating coating film 17 irradiated with radiation.
  • the dissociated component in the region irradiated with radiation can be further volatilized.
  • the lyophilic surface region 18 (concave portion) is further deepened.
  • the wettability of the lyophilic surface region 18 is further increased by volatilization of the dissociated component.
  • the heating step (B-4) may be performed before the via hole forming step (B-3) as long as it is after the lyophilic surface region forming step (B-2). It may be performed after the hole forming step (B-3). However, the heating step (B-4) is preferably performed before the via hole forming step (B-3). By thinning the lyophilic surface region 18 through the heating step (B-4) and then performing laser ablation, the via hole 20 can be formed efficiently and accurately.
  • ⁇ Second conductive layer forming step (C)> In the second conductive layer forming step (C), the second conductive layer 21 (wiring) laminated on the lyophilic surface region 18 of the insulating film 23 by the contact of the second conductive layer forming material with the surface of the insulating film 23. ). At this time, via conductors 22 that connect the first conductive layer 14 and the second conductive layer 21 are formed together with the second conductive layer 21 by the second conductive layer forming material.
  • Specific examples and preferred examples of the second conductive layer forming material are the same as those of the first conductive layer forming material described above.
  • the contact method of the second conductive layer forming material to the surface of the insulating film 23 is the same as that of the first conductive layer forming material in the first conductive layer forming step (A-4).
  • the second conductive layer forming material is brought into contact with the surface of the insulating film 23, the second conductive layer forming material is repelled in the liquid repellent surface region 19 and preferably in the lyophilic surface region 18 which is a recess. Flows in.
  • the second conductive layer forming material is disposed along the lyophilic surface region 18. Further, the second conductive layer forming material that has flowed into the lyophilic surface region 18 is filled in the via holes 20 formed in the lyophilic surface region 18.
  • the second conductive layer forming material After the contact (application) of the second conductive layer forming material, the second conductive layer forming material is heated together with the substrate 10 and the like. By this heating, the second conductive layer forming material is cured, and the second conductive layer 21 and the via conductor 22 are formed.
  • Examples of the heating method include heating using a hot plate, an oven, a dryer, etc., and vacuum baking.
  • the heating conditions are not particularly limited, but may be, for example, 50 ° C. or higher and 200 ° C. or lower and 1 minute or longer and 120 minutes or shorter.
  • a laminated wiring 24 that is a laminated body of the wiring including the first conductive layer 14 and the second conductive layer 21 can be obtained.
  • a wettability pattern (lyophilic surface region 12 and lyophilic surface region 18) can be formed by exposure through a photomask or the like without using a laser.
  • the laminated wiring 24 can be formed efficiently.
  • composition for forming a base film and the composition for forming an insulating film (hereinafter, both compositions are collectively referred to as “film forming composition”) will be described in detail.
  • the composition for forming the base film and the composition for forming the insulating film may have different compositions or the same composition, but are preferably the same composition. Since these are the same composition, laminated wiring can be manufactured efficiently.
  • the film-forming composition comprises a polymer having an acid-dissociable group (hereinafter also referred to as “polymer (A)”), and an acid generator (hereinafter referred to as “acid generator (B)”). Also called).
  • the film-forming composition usually contains a solvent (C), and other suitable components include a sensitizer (D), a quencher (E), a polymerizable compound (F), and radiation-sensitive polymerization initiation.
  • An agent (G) can be contained.
  • the polymer (A) is not particularly limited as long as it is a polymer having an acid dissociable group, but is usually a polymer having a structural unit (I) having this acid dissociable group.
  • This structural unit (I) is preferably a structure containing either an acetal bond or a hemiacetal ester bond.
  • the structural unit (I) containing an acid dissociable group more preferably contains a group represented by the following formula (5-1) or (5-2).
  • R 4 and R 5 are each independently a hydrogen atom or a methyl group.
  • Rf is independently an organic group having a fluorine atom. * Represents a binding site.
  • —C (R 1 ) (R 2 ) ORf is an acid dissociable group.
  • the acid dissociable group is efficiently dissociated in the exposed portion of the coating film, and the surface energy is increased.
  • the acid-dissociable group contains a fluorine atom as described above, the change in the surface energy of the film before and after the dissociation of the acid-dissociable group, that is, the wettability is increased.
  • Rf is preferably a hydrocarbon group in which one or more hydrogen atoms are substituted with a fluorine atom, and a group having an oxygen atom between the carbon-carbon bonds of such a hydrocarbon group.
  • a more preferred group of Rf includes a group represented by — (R 2 —O) n —R 3 in formulas (1) to (4) described later.
  • the structural unit (I) is preferably a structural unit represented by any one of the following formulas (1) to (4).
  • the structural unit (I) may be composed of only one type of structural unit or may include a plurality of types of structural units.
  • each R 1 is independently a hydrogen atom or a methyl group.
  • R 2 each independently represents a methylene group, an alkylene group having 2 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, or 4 to 12 carbon atoms. A divalent alicyclic hydrocarbon group, or a group in which one or more hydrogen atoms of these groups are substituted with a substituent.
  • R 3 is each independently a hydrocarbon group in which one or more hydrogen atoms are substituted with fluorine atoms.
  • Each m is independently 0 or 1.
  • n is each independently an integer of 0 to 12.
  • Examples of the alkylene group having 2 to 12 carbon atoms represented by R 2 include an ethylene group, a propylene group, and a butylene group.
  • Examples of the alkenylene group having 2 to 12 carbon atoms represented by R 2 include a vinylene group and an ethene-1,2-diyl group.
  • Examples of the divalent aromatic hydrocarbon group having 6 to 12 carbon atoms represented by R 2 include a phenylene group, a tolylene group, a naphthylene group, and a biphenylene group.
  • Examples of the divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms represented by R 2 include a cyclobutanediyl group and a cyclohexanediyl group.
  • substituent for substituting the hydrogen atom of these groups include a halogen atom such as a fluorine atom and a hydroxy group.
  • R 2 is preferably a methylene group, an alkylene group or an aromatic hydrocarbon group, more preferably a methylene group, an ethylene group, a propylene group, a butylene group, a phenylene group or a biphenylene group.
  • Examples of the hydrocarbon group in which one or more hydrogen atoms represented by R 3 are substituted with a fluorine atom include a fluorine-substituted aliphatic hydrocarbon group and a fluorine-substituted aromatic hydrocarbon group. Fluorine-substituted aliphatic hydrocarbon groups are preferred.
  • the lower limit of the number of carbon atoms of the fluorine-substituted hydrocarbon group is preferably 3, and more preferably 4.
  • the upper limit is preferably 30, more preferably 20, and even more preferably 15.
  • the lower limit of the fluorine number of the fluorine-substituted hydrocarbon group is preferably 5 and more preferably 10.
  • the upper limit can be set to 30, for example.
  • fluorine-substituted hydrocarbon group represented by R 3 include groups represented by the following formulas (Rf-1) to (Rf-33).
  • N is an integer from 0 to 12, but the upper limit is preferably 8, preferably 4 and more preferably 2.
  • n is particularly preferably 0.
  • the upper limit may be 100% by mass, or 80% by mass.
  • the polymer (A) can have a structural unit other than the structural unit (I).
  • Other structural units specifically include (meth) acrylic acid chain alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, unsaturated aromatic compound, conjugated diene, tetrahydro, which will be described later.
  • Examples include structural units derived from unsaturated compounds having a skeleton, maleimides, other monomers, and the like.
  • the polymer (A) is (1) a method of reacting a compound (a) represented by the following formula (a) with a polymer having a hydroxyl group or a carboxy group as a precursor, and (2) a compound (a). It can be obtained by, for example, a method of polymerizing a monomer obtained by use.
  • R 1 - R 3 and n are the above formula (1) the same meaning as R 1 - R 3 and n in - (4).
  • Examples of the monomer having a hydroxyl group include (meth) acrylic acid ester having a hydroxyl group. Specifically, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl methacrylate, 2-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate 2-acryloyloxyethyl-2-hydroxylethylphthalic acid, dipropylene glycol methacrylate, dipropylene glycol acrylate, 4-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, cyclohexanedimethanol monoacrylate, cyclohexanedimethanol monomethacrylate, ethyl ⁇ - (Hydroxymethyl) acrylate, polypropylene glycol monomethacrylate, polyp Pyrene glycol monoacrylate, glycerin monomethacrylate, glycerin mono
  • Examples of the monomer having a carboxy group include acrylic acid, methacrylic acid, 2-acryloyloxyethyl succinic acid, 2-methacryloyloxyethyl succinic acid, 2-acryloyloxyethyl phthalic acid, 2-methacryloyloxyethyl phthalic acid, and 2-acryloyloxy.
  • Ethyltetrahydrophthalic acid 2-methacryloyloxyethyltetrahydrophthalic acid, 2-acryloyloxyethylhexahydrophthalic acid, 2-methacryloyloxyethylhexahydrophthalic acid, 2-acryloyloxypropylphthalic acid, 2-methacryloyloxypropylphthalic acid, 2-acryloyloxypropyltetrahydrophthalic acid, 2-methacryloyloxypropyltetrahydrophthalic acid, 2-acryloyloxypropylhexahydrophthalic acid, - it can be exemplified methacryloyloxypropyl hexahydrophthalic acid.
  • the polymer having a hydroxyl group or a carboxy group can be obtained by using only the monomer having a hydroxyl group or a carboxy group as described above, or a monomer other than the monomer having a hydroxyl group or a carboxy group and a monomer having a hydroxyl group or a carboxy group. It can be obtained by copolymerizing with a monomer.
  • Examples of the monomer other than the monomer having a hydroxyl group or a carboxy group include (meth) acrylic acid chain alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, unsaturated aromatic compound, conjugated diene, tetrahydrofuran Examples thereof include unsaturated compounds containing a skeleton, maleimides, and other monomers.
  • Examples of the (meth) acrylic acid chain alkyl ester include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, methacrylic acid.
  • N-lauryl acid tridecyl methacrylate, n-stearyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, isodecyl acrylate And n-lauryl acrylate, tridecyl acrylate, and n-stearyl acrylate.
  • Examples of (meth) acrylic acid cyclic alkyl esters include cyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, isobornyl methacrylate, cyclohexyl acrylate. 2-methylcyclohexyl acrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl acrylate, isobornyl acrylate, and the like.
  • (meth) acrylic acid aryl esters examples include phenyl methacrylate, benzyl methacrylate, phenyl acrylate, and benzyl acrylate.
  • Examples of the unsaturated aromatic compound include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-methoxystyrene and the like.
  • conjugated diene examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and the like.
  • Examples of the unsaturated compound containing a tetrahydrofuran skeleton include tetrahydrofurfuryl (meth) acrylate, 2-methacryloyloxy-propionic acid tetrahydrofurfuryl ester, 3- (meth) acryloyloxytetrahydrofuran-2-one, and the like. .
  • maleimide examples include N-phenylmaleimide, N-cyclohexylmaleimide, N-tolylmaleimide, N-naphthylmaleimide, N-ethylmaleimide, N-hexylmaleimide, N-benzylmaleimide and the like.
  • Examples of other monomers include (meth) acrylic acid ester having an epoxy group (cyclic ether group). Specifically, glycidyl methacrylate, 3,4-epoxycyclohexyl methacrylate, 3,4-epoxycyclohexyl acrylate, 3- (methacryloyloxymethyl) -3-ethyloxetane, 3- (acryloyloxymethyl) -3- Examples include ethyl oxetane, tricyclo [5.2.1.0 2,6 ] decan-8-yloxyethyl methacrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yloxyethyl acrylate, and the like. be able to.
  • Examples of the solvent used in the polymerization reaction for synthesizing a polymer having a hydroxyl group or a carboxy group include glycol ether, ethylene glycol alkyl ether acetate, diethylene glycol monoalkyl ether, diethylene glycol dialkyl ether, dipropylene glycol dialkyl ether, propylene glycol mono Examples include alkyl ether, propylene glycol alkyl ether acetate, propylene glycol monoalkyl ether propionate and the like. Other alcohols, ethers, ketones, esters and the like can also be used.
  • a molecular weight modifier can be used to adjust the molecular weight.
  • molecular weight modifiers include halogenated hydrocarbons such as chloroform and carbon tetrabromide; mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, and thioglycolic acid; Xanthogens such as xanthogen sulfide and diisopropylxanthogen disulfide; terpinolene, ⁇ -methylstyrene dimer and the like can be mentioned.
  • polystyrene conversion weight average molecular weight (Mw) by gel permeation chromatography (GPC) of a polymer which has a hydroxyl group or a carboxy group 1000 is preferred and 5000 is more preferred. On the other hand, as this upper limit, 50000 is preferable and 30000 is more preferable.
  • An acetal bond is formed by the hydroxyl group of the polymer having a hydroxyl group and the vinyl ether group of the compound (a), and the carboxy group of the polymer having a carboxy group and the vinyl ether group of the compound (a)
  • a hemiacetal ester bond is formed to form the polymer (A).
  • a polymer having a hydroxyl group or a carboxy group is dissolved in an organic solvent, and then an equimolar or excess amount of the compound (a) is added to the hydroxyl group or carboxy group of the polymer. .
  • an acid eg, oxalic acid
  • the target polymer (A) can be obtained by removing the organic solvent.
  • an acetal bond is formed by the hydroxyl group of the polymerizable compound having a hydroxyl group and the vinyl ether group of the vinyl ether compound (compound (a)), or the carboxy group of the polymerizable compound having a carboxy group.
  • a hemiacetal ester bond is formed by the group and the vinyl ether group of the vinyl ether compound (compound (a)) to obtain a desired monomer.
  • the polymer (A) can be obtained by polymerizing the obtained monomer in the same manner as in the method for producing a polymer having a hydroxyl group or a carboxy group.
  • the acid generator (B) has a function of generating an acid in response to, for example, heating or radiation.
  • the acid generator (B) is preferably a radiation-sensitive acid generator.
  • the acid generator (B) may be contained in the form of a compound as a so-called acid generator, or may be incorporated in a part of the polymer such as the polymer (A). When the composition for film formation contains the acid generator (B), the acid dissociable group can be eliminated from the polymer (A).
  • Examples of the acid generator that is a radiation-sensitive acid generator include oxime sulfonate compounds, onium salts, sulfonimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, and carboxylic acid ester compounds. it can. You may use an acid generator individually or in combination of 2 or more types. These radiation-sensitive acid generators may function as a heat-sensitive acid generator.
  • oxime sulfonate compound As said oxime sulfonate compound, the compound containing the oxime sulfonate group represented by following formula (6) is preferable.
  • R 11 is an alkyl group having 1 to 12 carbon atoms, a fluoroalkyl group having 1 to 12 carbon atoms, an alicyclic hydrocarbon group having 4 to 12 carbon atoms, or an aryl having 6 to 20 carbon atoms. Or a group in which some or all of the hydrogen atoms of the alkyl group, alicyclic hydrocarbon group and aryl group are substituted with a substituent.
  • alkyl group, alicyclic hydrocarbon group, and aryl group may have include an alkoxy group having 1 to 10 carbon atoms, a hydroxyl group, and a halogen atom.
  • Examples of the compound containing an oxime sulfonate group represented by the above formula (6) include oxime sulfonate compounds represented by the following formulas (6-1) to (6-3).
  • R 11 has the same meaning as R 11 in the formula (6).
  • R 15 is an alkyl group having 1 to 12 carbon atoms or a fluoroalkyl group having 1 to 12 carbon atoms.
  • X is an alkyl group, an alkoxy group, or a halogen atom.
  • m is an integer of 0 to 3. However, when there are a plurality of Xs, the plurality of Xs may be the same or different.
  • Examples of the oxime sulfonate compound represented by the above formula (6-3) include compounds represented by the following formulas (6-3-1) to (6-3-5).
  • the compounds represented by the above formulas (6-3-1) to (6-3-5) are sequentially (5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (5-octylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (camphorsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (5 -P-toluenesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile and (5-octylsulfonyloxyimino)-(4-methoxyphenyl) acetonitrile.
  • Examples of other compounds containing the oxime sulfonate group represented by the above formula (6) include (5-octylsulfonyloxyimino)-(4-methoxyphenyl) acetonitrile.
  • onium salt examples include diphenyliodonium salt, triphenylsulfonium salt, alkylsulfonium salt, benzylsulfonium salt, dibenzylsulfonium salt, substituted benzylsulfonium salt, benzothiazonium salt, and tetrahydrothiophenium salt. it can.
  • diphenyliodonium salt examples include diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluorophosphonate, diphenyliodonium hexafluoroarsenate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium trifluoroacetate, diphenyliodonium-p-toluenesulfonate, diphenyl Iodonium butyltris (2,6-difluorophenyl) borate, 4-methoxyphenylphenyliodonium tetrafluoroborate, bis (4-t-butylphenyl) iodonium tetrafluoroborate, bis (4-t-butylphenyl) iodonium hexafluoroarce Bis (4-tert-butylphenyl) iodonium triflate Romethanesulf
  • triphenylsulfonium salt examples include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium camphorsulfonic acid, triphenylsulfonium tetrafluoroborate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfonate, and triphenyl. And sulfonium butyl tris (2,6-difluorophenyl) borate.
  • alkylsulfonium salt examples include 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate, dimethyl-4- (benzyloxycarbonyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4 -(Benzoyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4- (benzoyloxy) phenylsulfonium hexafluoroarsenate, dimethyl-3-chloro-4-acetoxyphenylsulfonium hexafluoroantimonate, and the like.
  • benzylsulfonium salt examples include benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, benzyl-4-methoxy Phenylmethylsulfonium hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, 4-methoxybenzyl-4-hydroxy Examples thereof include phenylmethylsulfonium hexafluorophosphate.
  • dibenzylsulfonium salt examples include dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluorophosphate, 4-acetoxyphenyl dibenzylsulfonium hexafluoroantimonate, and dibenzyl-4-methoxyphenyl.
  • Sulfonium hexafluoroantimonate dibenzyl-3-chloro-4-hydroxyphenylsulfonium hexafluoroarsenate, dibenzyl-3-methyl-4-hydroxy-5-tert-butylphenylsulfonium hexafluoroantimonate, benzyl-4-methoxybenzyl Examples include -4-hydroxyphenylsulfonium hexafluorophosphate.
  • substituted benzylsulfonium salt examples include p-chlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, p-nitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, and p-chlorobenzyl-4-hydroxyphenyl.
  • Methylsulfonium hexafluorophosphate p-nitrobenzyl-3-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 3,5-dichlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, o-chlorobenzyl-3 And -chloro-4-hydroxyphenylmethylsulfonium hexafluoroantimonate.
  • benzothiazonium salt examples include 3-benzylbenzothiazonium hexafluoroantimonate, 3-benzylbenzothiazonium hexafluorophosphate, 3-benzylbenzothiazonium tetrafluoroborate, 3- (p-methoxy).
  • Benzyl) benzothiazonium hexafluoroantimonate 3-benzyl-2-methylthiobenzothiazonium hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazonium hexafluoroantimonate, and the like.
  • tetrahydrothiophenium salt examples include 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoro.
  • sulfonimide compound examples include N- (trifluoromethylsulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, N- (4-methylphenylsulfonyloxy) succinimide, N- (2-trifluoromethylphenylsulfonyl).
  • Halogen-containing compounds examples include haloalkyl group-containing hydrocarbon compounds and haloalkyl group-containing heterocyclic compounds.
  • diazomethane compounds examples include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, bis (p-tolylsulfonyl) diazomethane, and bis (2,4-xylylsulfonyl) diazomethane.
  • sulfone compound examples include ⁇ -ketosulfone compounds, ⁇ -sulfonylsulfone compounds, diaryldisulfone compounds, and the like.
  • sulfonic acid ester compounds examples include alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, and imino sulfonates.
  • carboxylic acid ester compound examples include carboxylic acid o-nitrobenzyl ester.
  • thermosensitive acid generator examples include diphenyliodonium salts, triphenylsulfonium salts, sulfonium salts, benzothiazonium salts, ammonium salts, phosphonium salts, onium salts such as tetrahydrothiophenium salts, and sulfonimides. Compounds and the like. These heat-sensitive acid generators may function as a radiation-sensitive acid generator.
  • an oxime sulfonate compound, an onium salt and a sulfonate compound are preferable, and an oxime sulfonate compound is more preferable.
  • the film-forming composition can further improve the sensitivity, and can also improve the solubility.
  • the lower limit of the content of the acid generator is preferably 0.1 parts by weight and more preferably 1 part by weight with respect to 100 parts by weight of the polymer (A). preferable.
  • the upper limit 10 mass parts is preferable and 5 mass parts is more preferable.
  • solvent (C) Although it does not specifically limit as a solvent (C), The solvent which can melt
  • Solvents (C) include alcohols, ethers, diethylene glycol alkyl ethers, ethylene glycol alkyl ether acetates, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionates, aliphatic hydrocarbons, aromatics Group hydrocarbons, ketones, esters and the like.
  • alcohols examples include long-chain alkyl alcohols such as 1-hexanol, 1-octanol, 1-nonanol, 1-dodecanol, 1,6-hexanediol, 1,8-octanediol; Aromatic alcohols such as benzyl alcohol; Ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether; Propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether; Examples include dipropylene glycol monoalkyl ethers such as dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl
  • ethers examples include tetrahydrofuran, hexyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, 1,4-dioxane, and the like.
  • diethylene glycol alkyl ethers examples include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol ethyl methyl ether.
  • ethylene glycol alkyl ether acetates examples include methyl cellosolve acetate, ethyl cellosolve acetate, ethylene glycol monobutyl ether acetate, and ethylene glycol monoethyl ether acetate.
  • propylene glycol monoalkyl ether acetates examples include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate and the like.
  • propylene glycol monoalkyl ether propionates examples include propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether propionate, propylene glycol monopropyl ether propionate, and propylene glycol monobutyl ether propionate. be able to.
  • Examples of the aliphatic hydrocarbons include n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-undecane, n-dodecane, cyclohexane, decalin and the like. it can.
  • aromatic hydrocarbons examples include benzene, toluene, xylene, ethylbenzene, n-propylbenzene, i-propylbenzene, n-butylbenzene, mesitylene, chlorobenzene, dichlorobenzene and the like.
  • ketones examples include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, 4-hydroxy-4-methyl-2-pentanone, and the like.
  • esters examples include methyl acetate, ethyl acetate, propyl acetate, i-propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, 2-hydroxy-2-methylpropion Ethyl acetate, methyl hydroxyacetate, ethyl hydroxyacetate, butyl hydroxyacetate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, 3- Butyl hydroxypropionate, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, propyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, Butyl acetate
  • a solvent (C) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • the content of the solvent (C) within the above range, the coating property is improved, and the occurrence of coating unevenness (such as streaky unevenness, pin mark unevenness, and mottled unevenness) is suppressed, and the film thickness uniformity is improved. Can be obtained.
  • the sensitizer (D) has a function of improving the radiation sensitivity of the film-forming composition.
  • the sensitizer (D) is preferably a compound that absorbs radiation and becomes an electronically excited state.
  • the sensitizer (D) in the electronically excited state comes into contact with the acid generator (B) to cause electron transfer, energy transfer, heat generation, etc., and the acid generator (B) undergoes a chemical change. Decomposes to produce acid.
  • Examples of the sensitizer (D) include compounds belonging to the following compounds and having an absorption wavelength in the region of 350 nm to 450 nm.
  • Examples of the sensitizer (D) include pyrene, perylene, triphenylene, anthracene, 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, 3,7-dimethoxyanthracene, 9,10-dipropyloxyanthracene and the like.
  • Xanthenes such as fluorescein, eosin, erythrosine, rhodamine B, rose bengal;
  • Xanthones such as xanthone, thioxanthone, dimethylthioxanthone, diethylthioxanthone (2,4-diethylthioxanthen-9-one, etc.), isopropylthioxanthone (2-isopropylthioxanthone, etc.); Cyanines such as thiacarbocyanine, oxacarbocyanine; Merocyanines such as merocyanine and carbomerocyanine; Rhodocyanines; Oxonols; Thiazines such as thionine, methylene blue and toluidine blue; Acridines such as acridine orange, chloroflavin, acriflavine; Acridones such as acridone, 10-butyl-2-ch
  • sensitizers (D) polynuclear aromatics, acridones, styryls, base styryls, coumarins and xanthones are preferred, and xanthones are more preferred.
  • a sensitizer (D) may be used individually by 1 type, and may mix and use 2 or more types.
  • a sensitizer (D) As a minimum of content of a sensitizer (D), 0.1 mass part is preferable with respect to 100 mass parts of polymers (A), and 0.3 mass part is more preferable. On the other hand, as this upper limit, 8 mass parts is preferable and 4 mass parts is more preferable.
  • the quencher (E) has a function of controlling the diffusion of the acid from the acid generator (B).
  • Examples of the quencher (E) include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.
  • Examples of the amine compound include mono (cyclo) alkylamines; di (cyclo) alkylamines; tri (cyclo) alkylamines; substituted alkylanilines or derivatives thereof; ethylenediamine, N, N, N ′, N′-tetra Methylethylenediamine, tetramethylenediamine, hexamethylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylamine, 2,2-bis (4 -Aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl) -2- (3-hydroxyphenyl) propane, 2- (4-amino) Phenyl) -2- (4-hydroxyphenyl) propane, 1 4-bis (1- (4-a
  • amide group-containing compounds include Nt-butoxycarbonyl group-containing amino compounds, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, Examples thereof include benzamide, pyrrolidone, N-methylpyrrolidone, N-acetyl-1-adamantylamine, and isocyanuric acid tris (2-hydroxyethyl).
  • urea compounds include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butylthiourea, etc. Is mentioned.
  • nitrogen-containing heterocyclic compound examples include imidazoles such as 2-phenylbenzimidazole; pyridines such as 4- (dimethylamino) pyridine; piperazines; pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, piperidine ethanol 3-piperidino-1,2-propanediol, morpholine, 4-methylmorpholine, 1- (4-morpholinyl) ethanol, 4-acetylmorpholine, 3- (N-morpholino) -1,2-propanediol, 1, 4-dimethylpiperazine, 1,4-diazabicyclo [2.2.2] octane and the like.
  • imidazoles such as 2-phenylbenzimidazole
  • pyridines such as 4- (dimethylamino) pyridine
  • piperazines pyrazine, pyrazole, pyridazine, quinosa
  • a photodegradable base can be used as the quencher (E).
  • the photodegradable base include sulfonium salt compounds and onium salt compounds such as iodonium salt compounds.
  • quencher (E) a nitrogen-containing heterocyclic compound is preferable, and imidazoles and pyridines are more preferable.
  • a quencher (E) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • quencher (E) As a minimum of content of quencher (E), 0.001 mass part is preferred to 100 mass parts of polymer (A), and 0.01 mass part is more preferred. On the other hand, as this upper limit, 3 mass parts is preferable and 1 mass part is more preferable.
  • the film forming composition can improve curability by containing the polymerizable compound (F).
  • the polymerizable compound (F) is usually a polymerizable compound having an ethylenically unsaturated bond.
  • the polymerizable compound (F) a monofunctional, bifunctional, or trifunctional (meth) acrylic acid ester is preferable from the viewpoints of good polymerizability and improved strength of the obtained film.
  • the monofunctional compound refers to a compound having one (meth) acryloyl group
  • the bifunctional or trifunctional or higher functional compound is a compound having two or three (meth) acryloyl groups, respectively. I mean.
  • Examples of the monofunctional (meth) acrylic acid ester include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, diethylene glycol monoethyl ether acrylate, diethylene glycol monoethyl ether methacrylate, (2-acryloyloxyethyl) (2-hydroxypropyl)
  • Examples include phthalate, (2-methacryloyloxyethyl) (2-hydroxypropyl) phthalate, and ⁇ -carboxypolycaprolactone monoacrylate.
  • bifunctional (meth) acrylic acid ester examples include ethylene glycol diacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, tetraethylene glycol diacrylate, and tetraethylene glycol.
  • Examples include dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol diacrylate, and 1,9-nonanediol dimethacrylate.
  • trifunctional or higher functional (meth) acrylic acid ester examples include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, and dipentaerythritol.
  • the polymerizable compound (F) is preferably a bifunctional or trifunctional or higher (meth) acrylic acid ester, 1,9-nonanediol dimethacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, Dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate, ethylene oxide modified dipentaerythritol hexaacrylate, succinic acid modified pentaerythritol triacrylate, succinic acid modified dipentaerythritol More preferred are pentaacrylate and polyfunctional urethane acrylate compounds.
  • a polymeric compound (F) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • a polymeric compound (F) As a minimum of content of a polymeric compound (F), 1 mass part is preferable with respect to 100 mass parts of polymers (A), 3 mass parts is more preferable, and 5 mass parts is further more preferable. On the other hand, as this upper limit, 100 mass parts is preferable, 50 mass parts is more preferable, 20 mass parts is further more preferable, 10 mass parts is especially preferable.
  • the radiation sensitive polymerization initiator (G) is a compound that starts or accelerates the polymerization of the polymerizable compound (F) upon irradiation with radiation. Therefore, when the film-forming composition contains a polymerizable compound (F), it is preferable to use a radiation-sensitive polymerization initiator (G).
  • Examples of the radiation sensitive polymerization initiator (G) include O-acyloxime compounds, acetophenone compounds, biimidazole compounds and the like.
  • O-acyloxime compound examples include ethanone-1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), 1- [9 -Ethyl-6-benzoyl-9. H. -Carbazol-3-yl] -octane-1-one oxime-O-acetate, 1- [9-ethyl-6- (2-methylbenzoyl) -9. H. -Carbazol-3-yl] -ethane-1-one oxime-O-benzoate, 1- [9-n-butyl-6- (2-ethylbenzoyl) -9. H.
  • acetophenone compound examples include ⁇ -aminoketone compounds and ⁇ -hydroxyketone compounds.
  • amino ketone compound examples include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4 -Morpholin-4-yl-phenyl) -butan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, and the like.
  • Examples of the ⁇ -hydroxyketone compound include 1-phenyl-2-hydroxy-2-methylpropan-1-one and 1- (4-i-propylphenyl) -2-hydroxy-2-methylpropan-1-one. 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenylketone and the like.
  • biimidazole compound examples include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2,2 '-Bis (2-chlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4 ', 5 , 5′-tetraphenyl-1,2′-biimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′- Biimidazole etc. can be mentioned.
  • an aliphatic or aromatic compound having a dialkylamino group can be used in combination in order to sensitize it.
  • the aliphatic or aromatic compound having a dialkylamino group include 4,4'-bis (dimethylamino) benzophenone and 4,4'-bis (diethylamino) benzophenone.
  • an O-acyloxime compound and an acetophenone compound are preferable.
  • an acetophenone compound an aminoketone compound is preferable.
  • a radiation sensitive polymerization initiator (G) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • a radiation sensitive polymerization initiator (G) As a minimum of content of a radiation sensitive polymerization initiator (G), 0.05 mass part is preferred to 100 mass parts of polymer (A), and 0.1 mass part is more preferred. On the other hand, as this upper limit, 10 mass parts is preferable and 2 mass parts is more preferable.
  • the film-forming composition may further contain other optional components as long as the effects of the present invention are not impaired.
  • other optional components include a surfactant, a storage stabilizer, an adhesion aid, and a heat resistance improver.
  • Other optional components may be used alone or in combination of two or more.
  • a multilayer wiring according to an embodiment of the present invention is a multilayer wiring obtained by the method for forming a multilayer wiring. Since the multilayer wiring is obtained by the above-described forming method, it is excellent in productivity and can be reduced in cost.
  • the laminated wiring can be suitably used for semiconductor elements and electronic circuits. Moreover, this semiconductor element and electronic circuit can be used suitably for an electronic device etc.
  • An electronic device using the multilayer wiring can be downsized, thinned, enhanced in functionality, and the like. Examples of the electronic device include a liquid crystal display, a portable information device, a digital camera, an organic display, an organic EL lighting, a sensor, and a wearable device.
  • a multilayer multilayer wiring having three or more conductive layers (wirings) can be formed.
  • a multilayer wiring can be formed by repeating the step (B) and the step (C) a plurality of times.
  • a step (A) of preparing a base material having the first conductive layer as the outermost layer an existing substrate with a conductive layer is prepared instead of forming the first conductive layer using a base film forming composition or the like. You can also use it as it is.
  • the formation method of the said multilayer wiring is a method which can obtain a pattern, without passing through the image development process using a developing solution after irradiation.
  • a development process or a cleaning process can be performed instead of or together with the heating after radiation irradiation.
  • thermosensitive acid generator As the acid generator contained in the insulating film forming composition or the base film forming composition, a thermosensitive acid generator or the like can be used. In this case, instead of irradiation with radiation, an acid can be generated by heating a part of the surface region to form a lyophilic surface region. Part of the surface region can be heated, for example, with a laser. Further, a part of the surface region may be heated by radiation irradiation.
  • the insulating film may not have a via hole.
  • a laminated wiring in which the first conductive layer and the second conductive layer are not conductive (insulated) can be formed.
  • Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) in terms of polystyrene of the polymers obtained in the following synthesis examples were measured under the following conditions.
  • solid content concentration 34.6% by mass.
  • solid content concentration means the ratio of the copolymer mass which occupies for the total mass of a copolymer solution.
  • the obtained reaction solution was added dropwise to an excessive amount of methanol for reprecipitation purification. Subsequently, the precipitate was dissolved again in 30 parts by mass of tetrahydrofuran, and then reprecipitated and purified by dropwise addition to hexane, and the precipitate was dried to obtain a polymer (P-5) as a white solid copolymer. ) The obtained polymer (P-5) was analyzed using 1 H-NMR to confirm that acetalization had progressed (chemical shift: 5.48 ppm, acetal group C—H).
  • reaction solution was cooled to room temperature, and 0.5 parts by mass of pyridine was added to quench the reaction.
  • the obtained reaction solution was added dropwise to an excessive amount of methanol for reprecipitation purification.
  • the precipitate was dissolved again in 30 parts by mass of tetrahydrofuran, and then purified by reprecipitation by dropwise addition to hexane, and the precipitate was dried to obtain a polymer (P-6) as a white solid copolymer. ) 12.1 parts by mass were obtained.
  • the obtained polymer (P-6) was analyzed using 1 H-NMR to confirm that acetalization had progressed (chemical shift: 5.49 ppm, acetal group C—H).
  • first layer wiring first conductive layer
  • the film-forming compositions prepared in Preparation Examples 1 to 9 or Comparative Preparation Examples 1 and 2 were applied on a glass substrate (Corning “EAGLE-XG”) with a spinner, respectively, in a clean oven at 90 ° C.
  • a coating film having a thickness of 0.2 ⁇ m was formed by pre-baking for 5 minutes.
  • a high-pressure mercury lamp (“MA-1400” from Dainippon Kaken Co., Ltd.) is used to apply a quartz mask (contact) to the coating film formed by the above-mentioned “coatability of the second layer film-forming composition”.
  • the exposure dose was 250 mJ / cm 2 and the irradiation was performed. Thereafter, baking was performed at 110 ° C. for 15 minutes using a hot plate to form a lyophilic surface region (exposed portion) and a liquid repellent surface region (non-exposed portion).
  • FIG. 5 shows an image of “a substrate on which a repellent pattern is formed on the second layer” in Example 1.
  • a second layer repellent pattern is formed in the left-right direction.
  • a 20 ⁇ m square hole was formed in the lyophilic portion (lyophilic surface region) of the obtained lyophilic / repellent patterning substrate with a YAG laser thin film processing apparatus (“VL-C” of TNS Systems LLC, oscillation wavelength: 266 nm). .
  • VL-C YAG laser thin film processing apparatus
  • the method for forming a laminated wiring according to the present invention can efficiently form a three-dimensional wiring pattern and can be used for printed electronics or the like.
  • the multilayer wiring obtained by the method for forming a multilayer wiring according to the present invention is suitable for an electronic circuit provided in an electronic device such as a liquid crystal display, a portable information device, a digital camera, an organic display, an organic EL lighting, a sensor, and a wearable device. Can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

Provided is a layered wiring forming method that enables forming of layered wiring, efficiently. The present invention is a layered wiring forming method comprising: a step for preparing a substrate having a first conductive layer as the outermost layer; a step for forming, on the surface of the substrate, an insulation film having a liquid-phobic surface region and a liquid-philic surface region; and a step for forming a second conductive layer layered on the liquid-philic surface region of the insulation film by causing a second conductive layer forming material to make contact with the surface of the insulation film, wherein the step for forming the insulation film comprises a step for forming an insulative coating film having a liquid-phobic surface, by means of an insulation film forming composition containing a first acid generator and a first polymer having an acid-dissociable group, and a step for forming the liquid-philic surface region on one portion of the surface region of the insulative coating film.

Description

積層配線の形成方法Method for forming multilayer wiring
 本発明は、積層配線の形成方法に関する。 The present invention relates to a method for forming a laminated wiring.
 半導体素子や電子回路等に使われる配線、電極等の形成には、フォトリソグラフィー法が広く用いられている。しかし、フォトリソグラフィー法は、高価な設備を必要とし、また、工程も複雑であるため、製造コストが高くなる。これに対し、安価に配線等を形成する技術として、配線を直接印刷するプリンテッドエレクトロニクスが注目されている。 Photolithographic methods are widely used for forming wirings, electrodes and the like used for semiconductor elements and electronic circuits. However, the photolithography method requires expensive equipment, and the process is complicated, resulting in an increase in manufacturing cost. On the other hand, as a technique for forming wiring and the like at a low cost, printed electronics that directly prints the wiring has attracted attention.
 プリンテッドエレクトロニクスにおいて用いられるインクジェット印刷、スクリーン印刷、グラビア印刷等の各印刷法は、基板上に直接所望パターンの配線を形成できるため、簡便で低コストな方法とされている。しかしながら、印刷法による配線の形成においては、使用するインク材料が流動する結果、これらの濡れ広がりやにじみが生じるため、微細な配線パターンを形成するには限界がある。また、従来の一般的な印刷法では、層構造の配線間がビアで接続されてなる積層配線の形成を行うことができない。 Each printing method such as ink jet printing, screen printing, and gravure printing used in printed electronics is a simple and low-cost method because a desired pattern of wiring can be directly formed on a substrate. However, in the formation of the wiring by the printing method, since the ink material used flows as a result of these wetting spread and blurring, there is a limit in forming a fine wiring pattern. In addition, in the conventional general printing method, it is not possible to form a laminated wiring in which wirings having a layer structure are connected by vias.
 このような中、エネルギーの付与により表面エネルギーが変化する材料を用いた印刷法により積層配線を形成する方法が提案されている(特開2015-15378号公報参照)。この方法においては、以下の工程により積層配線が形成される。まず、表面に第1の配線が形成された基板上に、エネルギーの付与により表面エネルギーが変化する材料により濡れ性変化層を形成する。この濡れ性変化層が、層間の絶縁膜となる。次いで、この濡れ性変化層の表面の一部に対してレーザーを照射することにより、濡れ性の高い領域を形成する。この濡れ性の高い領域が配線パターンとなる。次いで、形成された濡れ性の高い領域の一部にさらにレーザー照射することによりビア用の孔を形成する。その後、この濡れ性の高い領域上に導電性インクを塗布することで、第2の配線とビアとを同時に形成することができるとされる。 In such circumstances, a method of forming a laminated wiring by a printing method using a material whose surface energy changes by applying energy has been proposed (see Japanese Patent Application Laid-Open No. 2015-15378). In this method, a multilayer wiring is formed by the following steps. First, a wettability changing layer is formed on a substrate having a first wiring formed on the surface, using a material whose surface energy is changed by applying energy. This wettability changing layer becomes an interlayer insulating film. Next, a region having high wettability is formed by irradiating a part of the surface of the wettability changing layer with laser. This region with high wettability becomes a wiring pattern. Next, a via hole is formed by further irradiating a part of the formed region with high wettability with laser. After that, by applying a conductive ink on this highly wettable region, the second wiring and the via can be formed at the same time.
 しかし、上記方法は、配線パターンとなる濡れ性の高い領域の形成に高エネルギーのレーザー照射を行うものであり、効率性が良いとは言い難い。レーザーを用いる場合、例えば、配線パターンが複雑になるにつれて、走査経路が複雑になり、作業時間も長くなる。また、上記方法におけるエネルギーの付与により表面エネルギーが変化する具体的な材料としては、主鎖中にポリイミドを含み、紫外線の照射により親水性基を生成可能な側鎖を有するポリマーが用いられているのみである。 However, the above-described method performs high-energy laser irradiation to form a highly wettable region that becomes a wiring pattern, and it is difficult to say that the efficiency is good. When a laser is used, for example, as the wiring pattern becomes complicated, the scanning path becomes complicated and the working time becomes longer. In addition, as a specific material whose surface energy is changed by applying energy in the above method, a polymer having a side chain that contains polyimide in the main chain and can generate a hydrophilic group by irradiation with ultraviolet rays is used. Only.
特開2015-15378号公報Japanese Patent Laid-Open No. 2015-15378
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、効率的に積層配線を形成することができる積層配線の形成方法を提供することである。 The present invention has been made based on the above circumstances, and an object of the present invention is to provide a method for forming a multilayer wiring capable of efficiently forming a multilayer wiring.
 上記課題を解決するためになされた発明は、第1導電層を最表層に有する基材を用意する工程、上記基材の表面に、撥液性表面領域と親液性表面領域とを有する絶縁膜を形成する工程、及び上記絶縁膜の表面への第2導電層形成用材料の接触により、上記絶縁膜の親液性表面領域へ積層される第2導電層を形成する工程を備え、上記絶縁膜形成工程が、酸解離性基を有する第1重合体と第1酸発生体とを含む絶縁膜形成用組成物により、撥液性の表面を有する絶縁塗膜を形成する工程、及び上記絶縁塗膜の一部の表面領域に上記親液性表面領域を形成する工程を備える積層配線の形成方法である。 The invention made in order to solve the above-described problems includes a step of preparing a base material having a first conductive layer as an outermost layer, an insulation having a liquid-repellent surface region and a lyophilic surface region on the surface of the base material. A step of forming a film, and a step of forming a second conductive layer laminated on the lyophilic surface region of the insulating film by contacting the surface of the insulating film with the second conductive layer forming material, An insulating film forming step of forming an insulating coating film having a liquid repellent surface with an insulating film forming composition comprising a first polymer having an acid dissociable group and a first acid generator; and It is a formation method of laminated wiring provided with the process of forming the above-mentioned lyophilic surface area in a part of surface area of an insulating coat.
 当該形成方法においては、絶縁膜の形成に、酸解離性基を有する第1重合体及び第1酸発生体を含む絶縁膜形成用組成物を用いている。このため、例えば、絶縁塗膜における加熱や放射線照射がなされた領域にいては、酸が発生し、この酸の発生により第1重合体の酸解離性基が解離することにより、濡れ性が変化する。このような加熱や放射線照射は、レーザーを用いなくともできるため、当該形成方法によれば、効率的に積層配線を形成することができる。 In the formation method, an insulating film forming composition including a first polymer having an acid dissociable group and a first acid generator is used for forming an insulating film. For this reason, for example, in the region of the insulating coating that has been heated or irradiated with radiation, an acid is generated, and the acid dissociable group of the first polymer is dissociated by the generation of this acid, thereby changing the wettability. To do. Such heating and radiation irradiation can be performed without using a laser. Therefore, according to the formation method, a multilayer wiring can be formed efficiently.
 本発明は、効率的に積層配線を形成することができる積層配線の形成方法を提供することができる。 The present invention can provide a method of forming a multilayer wiring that can efficiently form the multilayer wiring.
図1(a)は、本発明の一実施形態に係る積層配線の形成方法における工程(A-1)の説明図であり、図1(b)は、工程(A-2)の説明図であり、図1(c)は、工程(A-3)の説明図であり、図1(d)は、工程(A-4)の説明図であり、図1(e)は、工程(A-5)の説明図である。FIG. 1A is an explanatory diagram of the step (A-1) in the method for forming a multilayer wiring according to one embodiment of the present invention, and FIG. 1B is an explanatory diagram of the step (A-2). 1C is an explanatory diagram of the step (A-3), FIG. 1D is an explanatory diagram of the step (A-4), and FIG. 1E is a schematic diagram of the step (A-3). FIG. 図2(a)は、工程(B-1)の説明図であり、図2(b)は、工程(B-2)の説明図であり、図2(c)は、工程(B-3)~(B-4)の説明図である。FIG. 2 (a) is an explanatory diagram of the step (B-1), FIG. 2 (b) is an explanatory diagram of the step (B-2), and FIG. 2 (c) is an explanatory diagram of the step (B-3). FIG. 6 is an explanatory diagram of (B-4). 図3は、工程(C)の説明図である。FIG. 3 is an explanatory diagram of the step (C). 図4は、実施例における第1導電層が形成された基板を示す画像である。FIG. 4 is an image showing the substrate on which the first conductive layer in the example is formed. 図5は、実施例における第2層目に親撥パターンが形成された基板を示す画像である。FIG. 5 is an image showing a substrate on which a repellent pattern is formed on the second layer in the example. 図6は、実施例における第2導電層が形成された基板を示す画像である。FIG. 6 is an image showing the substrate on which the second conductive layer is formed in the example. 図7は、図6の第2導電層が形成された基板の拡大画像である。FIG. 7 is an enlarged image of the substrate on which the second conductive layer of FIG. 6 is formed. 図8は、実施例における第2導電層及びビア導体が形成された基板を示す画像である。FIG. 8 is an image showing the substrate on which the second conductive layer and the via conductor are formed in the example. 図9は、実施例における第2導電層及びビア導体が形成された基板を示すSEM画像である。FIG. 9 is an SEM image showing the substrate on which the second conductive layer and the via conductor are formed in the example.
 以下、適宜図面を参照にしつつ、本発明の一実施形態に係る積層配線の形成方法及び積層配線について詳説する。 Hereinafter, a multilayer wiring forming method and a multilayer wiring according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
<積層配線の形成方法>
 本発明の一実施形態に係る積層配線の形成方法は、
 第1導電層を最表層に有する基材を用意する工程(A)、
 上記基材の表面に、絶縁膜を形成する工程(B)、及び
 第2導電層を形成する工程(C)
 を備え、
 上記絶縁膜形成工程(B)が、
 絶縁塗膜を形成する工程(B-1)、及び
 親液性表面領域を形成する工程(B-2)
 を備える。
<Method for forming laminated wiring>
A method for forming a laminated wiring according to an embodiment of the present invention includes:
Preparing a base material having the first conductive layer as the outermost layer (A),
Step (B) of forming an insulating film on the surface of the base material, and Step (C) of forming a second conductive layer
With
The insulating film forming step (B)
Step (B-1) for forming an insulating coating, and Step (B-2) for forming a lyophilic surface region
Is provided.
 なお、当該形成方法における絶縁膜形成工程(B)は、
 ビア用孔を形成する工程(B-3)
 を備えることが好ましく、
 放射線が照射された絶縁塗膜を加熱する工程(B-4)
 を備えることも好ましい。
Note that the insulating film forming step (B) in the forming method includes:
Step of forming via hole (B-3)
It is preferable to comprise
Heating the insulating coating film irradiated with radiation (B-4)
It is also preferable to comprise.
 また、用意工程(A)が、
 下地塗膜を形成する工程(A-1)、
 親液性表面領域を形成する工程(A-2)、及び
 第1導電層を形成する工程(A-4))
 を備えることが好ましい。
In addition, the preparation step (A)
A step (A-1) of forming a base coating film,
Step of forming lyophilic surface region (A-2) and step of forming first conductive layer (A-4))
It is preferable to provide.
 さらに、当該形成方法における用意工程(A)は、
 第1導電層形成工程(A-4)の前に、
 放射線が照射された上記下地塗膜を加熱する工程(A-3)
 を備えることが好ましい。
Furthermore, the preparation step (A) in the formation method includes:
Before the first conductive layer forming step (A-4),
Heating the base coating film irradiated with radiation (A-3)
It is preferable to provide.
 また、当該形成方法における用意工程(A)は、
 第1導電層形成工程(A-4)の後に、
 第1導電層が形成された側の面の全面に放射線を照射する工程(A-5)
 を備えることが好ましい。
In addition, the preparation step (A) in the forming method includes:
After the first conductive layer forming step (A-4),
A step of irradiating the entire surface on the side where the first conductive layer is formed (A-5)
It is preferable to provide.
 以下、当該形成方法について、順に詳説する。なお、工程の順は、以下の順に限定されるものでは無く、同様の積層配線を形成することができる限り、工程の順は異なっていてもよく、複数の工程を同時に行ってもよい。 Hereinafter, the formation method will be described in detail in order. Note that the order of the steps is not limited to the following order. The order of the steps may be different as long as a similar multilayer wiring can be formed, and a plurality of steps may be performed simultaneously.
<用意工程(A)>
 用意工程(A)は、第1導電層を最表層に有する基材を用意する工程である。用意工程(A)は、以下の工程(A-1)~(A-5)から好ましくは構成される。
<Preparation process (A)>
The preparation step (A) is a step of preparing a base material having the first conductive layer as the outermost layer. The preparation step (A) is preferably composed of the following steps (A-1) to (A-5).
<下地塗膜形成工程(A-1)>
 下地塗膜形成工程(A-1)は、下地膜形成用組成物により、撥液性の表面を有する下地塗膜を形成する工程である。下地膜形成用組成物は、酸解離性基を有する重合体(第2重合体)及び酸発生体(第2酸発生体)を含む。酸解離性基とは、例えばフェノール性水酸基、カルボキシル基、スルホン酸基等の酸性官能基中の水素原子を置換した基をいい、酸の存在下で解離する基をいう。この下地膜形成用組成物については、後に詳述する。工程(A-1)は、具体的には、図1(a)に示すように、基板10表面への下地膜形成用組成物の塗布により、下地塗膜11を形成する。なお、この下地塗膜11は、最終的に下地膜15になる(図1(e)参照)。
<Undercoat film forming step (A-1)>
The undercoat film forming step (A-1) is a step of forming an undercoat film having a liquid repellent surface with the undercoat film forming composition. The composition for forming a base film includes a polymer having an acid dissociable group (second polymer) and an acid generator (second acid generator). The acid dissociable group refers to a group in which a hydrogen atom in an acidic functional group such as a phenolic hydroxyl group, a carboxyl group, or a sulfonic acid group is substituted, and refers to a group that dissociates in the presence of an acid. The composition for forming the base film will be described in detail later. Specifically, in the step (A-1), as shown in FIG. 1A, a base coating film 11 is formed by applying a base film forming composition to the surface of the substrate 10. The base coating film 11 finally becomes the base film 15 (see FIG. 1 (e)).
 基板10の材質としては、例えばガラス、石英、シリコン、樹脂等を挙げることができる。樹脂としては、ポリエチレンテレフラレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリカーボネート、ポリイミド、環状オレフィンの開環重合体(ROMPポリマー)等を挙げることができる。 Examples of the material of the substrate 10 include glass, quartz, silicon, and resin. Examples of the resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyethersulfone, polycarbonate, polyimide, and a ring-opening polymer (ROMP polymer) of cyclic olefin.
 基板10としては、従来電子回路に用いられている樹脂製基板、ガラス基板及び半導体基板が好ましい。このような基板を用いることで、得られる積層配線をそのまま電子回路等に用いることができる。 The substrate 10 is preferably a resin substrate, a glass substrate, or a semiconductor substrate conventionally used in electronic circuits. By using such a substrate, the obtained laminated wiring can be used as it is in an electronic circuit or the like.
 なお、基板10に下地膜形成用組成物を塗布する前に、必要に応じて基板10表面に前処理を施してもよい。前処理としては、洗浄、粗面化処理等を挙げることができる。 In addition, before apply | coating the composition for base film formation to the board | substrate 10, you may pre-process the surface of the board | substrate 10 as needed. Examples of the pretreatment include washing and roughening treatment.
 下地膜形成用組成物の塗布方法としては特に限定されず、はけやブラシを用いた塗布法、ディッピング法、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法、フレキソ印刷、オフセット印刷、インクジェット印刷、ディスペンス法等の公知の方法を挙げることができる。 The coating method of the undercoat film forming composition is not particularly limited, and is a coating method using a brush or brush, a dipping method, a spray method, a roll coating method, a spin coating method (spin coating method), a slit die coating method, Known methods such as a bar coating method, flexographic printing, offset printing, ink jet printing, and dispensing method can be used.
 下地膜形成用組成物の塗布後、好ましくは下地塗膜11を加熱(プレベーク)する。加熱条件は、下地膜形成用組成物の組成等によって異なるが、例えば60℃以上120℃以下、1分以上10分以下程度である。 After application of the composition for forming the undercoat film, the undercoat film 11 is preferably heated (prebaked). The heating conditions vary depending on the composition of the composition for forming a base film, but are, for example, about 60 ° C. to 120 ° C. and about 1 minute to 10 minutes.
 得られる下地塗膜11の平均厚みは、用途等に応じて適宜調整することができるが、この下限としては0.05μmが好ましく、0.1μmがより好ましい。一方、この上限としては20μmが好ましく、10μmがより好ましい。 The average thickness of the obtained base coating film 11 can be appropriately adjusted according to the use and the like, but the lower limit is preferably 0.05 μm, more preferably 0.1 μm. On the other hand, the upper limit is preferably 20 μm, and more preferably 10 μm.
<親液性表面領域形成工程(A-2)>
 親液性表面領域形成工程(A-2)は、図1(b)に示すように、例えば、下地塗膜11の一部の表面領域への放射線(hν)の照射(露光)により、親液性表面領域12を形成する工程である。なお、下地膜形成用組成物から得られる下地塗膜11の表面は、撥液性を有しており、放射線が照射された領域が親液性表面領域12となる。一方、放射線が照射されていない領域は撥液性表面領域13である。ここで、撥液性と親液性とは、相対的な概念である。
<Lipophilic surface region forming step (A-2)>
In the lyophilic surface region forming step (A-2), as shown in FIG. 1B, for example, irradiation (exposure) of radiation (hν) to a part of the surface region of the base coating film 11 is performed. This is a step of forming the liquid surface region 12. Note that the surface of the base coating film 11 obtained from the base film forming composition has liquid repellency, and the region irradiated with radiation becomes the lyophilic surface region 12. On the other hand, the region not irradiated with radiation is the liquid repellent surface region 13. Here, liquid repellency and lyophilicity are relative concepts.
 放射線の照射により、親液性表面領域12が形成される理由は以下の通りである。放射線の照射により、下地膜形成用組成物中の感放射線性酸発生体から酸が発生し、これにより、重合体が有する酸解離性基が解離する。酸解離性基の解離により、照射された領域の表面エネルギーが変化し、濡れ性が高まる。特に、酸解離性基がフッ素原子を有する場合、この撥液性の発現が顕著になる。なお、解離した酸解離性基に由来する成分は、好ましくは揮発するため、親液性表面領域12は凹部(凹パターン)となる。親液性表面領域12が凹部となることで、後述するようにこの凹部(親液性表面領域12)に、滲みだすことなく導電層形成用材料を充填することができる。 The reason why the lyophilic surface region 12 is formed by irradiation with radiation is as follows. By irradiation with radiation, an acid is generated from the radiation-sensitive acid generator in the undercoat film forming composition, whereby the acid-dissociable group of the polymer is dissociated. Due to the dissociation of the acid dissociable group, the surface energy of the irradiated region changes, and wettability increases. In particular, when the acid-dissociable group has a fluorine atom, the expression of this liquid repellency becomes remarkable. In addition, since the component derived from the dissociated acid dissociable group is preferably volatilized, the lyophilic surface region 12 becomes a recess (concave pattern). Since the lyophilic surface region 12 becomes a recess, as will be described later, the recess (lyophilic surface region 12) can be filled with the conductive layer forming material without bleeding.
 放射線の照射(露光)は、形成したい配線の形状と同様の形状の親液性表面領域12が形成されるように、所定のパターンを有するフォトマスクを介して行うことができる。フォトマスクを介して露光を行うことで、複雑なパターンを形成する場合も効率的に照射を行うことができる。その他、直描式露光機等を用いて、所定のパターンを描画露光することができる。 Irradiation (exposure) of radiation can be performed through a photomask having a predetermined pattern so that the lyophilic surface region 12 having the same shape as the shape of the wiring to be formed is formed. By performing exposure through a photomask, irradiation can be efficiently performed even when a complicated pattern is formed. In addition, a predetermined pattern can be drawn and exposed using a direct drawing type exposure machine or the like.
 本工程(A-2)において照射する放射線としては、可視光線、紫外線、遠紫外線、荷電粒子線、X線等を使用することができる。これらの中でも、波長が190nm以上450nm以下の範囲内にある放射線が好ましく、365nmの波長の紫外線を含む放射線がより好ましい。 As the radiation irradiated in this step (A-2), visible light, ultraviolet light, far ultraviolet light, charged particle beam, X-ray or the like can be used. Among these, radiation having a wavelength in the range of 190 nm to 450 nm is preferable, and radiation containing ultraviolet light having a wavelength of 365 nm is more preferable.
 本工程(A-2)における放射線の露光量としては、十分な濡れ性の変化や、凹部の形成ができる範囲で適宜設定すればよい。この露光量の下限としては、放射線の波長365nmにおける強度として、10mJ/cmが好ましく、20mJ/cmがより好ましい。一方、この上限としては、1000mJ/cmが好ましく、500mJ/cmがより好ましい。 The exposure dose of radiation in this step (A-2) may be appropriately set within a range in which a sufficient change in wettability and formation of recesses can be formed. The lower limit of the exposure amount is preferably 10 mJ / cm 2 and more preferably 20 mJ / cm 2 as the intensity of radiation at a wavelength of 365 nm. On the other hand, as this upper limit, 1000 mJ / cm 2 is preferable, and 500 mJ / cm 2 is more preferable.
 形成される親液性表面領域12のサイズ及び形状は、所望する配線のサイズ及び形状に対応するものであるが、例えば幅が10μm以上300μm以下の線状とすることができる。 The size and shape of the lyophilic surface region 12 to be formed correspond to the desired size and shape of the wiring, but can be a linear shape having a width of 10 μm to 300 μm, for example.
<加熱工程(A-3)>
 加熱工程(A-3)は、放射線が照射された下地塗膜11を加熱する工程である。この加熱により、放射線が照射された領域(親液性表面領域12)において解離した成分をさらに揮発させることができる。これにより、親液性表面領域12(凹部)がさらに深くなる(図1(c)参照)。また、解離した成分が揮発することにより、親液性表面領域12の濡れ性がより高まる。
<Heating step (A-3)>
The heating step (A-3) is a step of heating the base coating film 11 irradiated with radiation. By this heating, components dissociated in the region irradiated with radiation (lyophilic surface region 12) can be further volatilized. Thereby, the lyophilic surface region 12 (concave portion) becomes deeper (see FIG. 1C). Moreover, the wettability of the lyophilic surface region 12 is further increased by volatilization of the dissociated component.
 親液性表面領域12(凹部)の深さとしては、例えば0.1μm以上1μm以下とすることができる。また、下地塗膜11における撥液性表面領域13の平均厚みに対する親液性表面領域12(凹部)の深さの下限としては、5%が好ましく、10%がより好ましい。一方、この上限としては、70%が好ましく、50%がより好ましい。このような深さの親液性表面領域12を形成することにより、親液性表面領域12に導電層形成用材料を効果的に充填することができる。これにより、微細な配線を精度よく形成することができる。 The depth of the lyophilic surface region 12 (concave portion) can be, for example, 0.1 μm or more and 1 μm or less. Moreover, as a minimum of the depth of the lyophilic surface area | region 12 (recessed part) with respect to the average thickness of the liquid-repellent surface area | region 13 in the base coating film 11, 5% is preferable and 10% is more preferable. On the other hand, the upper limit is preferably 70% and more preferably 50%. By forming the lyophilic surface region 12 having such a depth, the lyophilic surface region 12 can be effectively filled with the conductive layer forming material. Thereby, a fine wiring can be formed with high accuracy.
 本工程における加熱方法としては、特に限定されないが、ホットプレート、オーブン、ドライヤー等を用いて加熱する方法を挙げることができる。その他、真空ベークによって加熱してもよい。加熱条件も、下地膜形成用組成物の組成や膜厚等によって適宜設定されるが、60℃以上150℃以下が好ましく、3分以上30分以下が好ましい。 The heating method in this step is not particularly limited, and examples thereof include a method of heating using a hot plate, oven, dryer or the like. In addition, you may heat by vacuum baking. The heating conditions are also appropriately set depending on the composition and film thickness of the composition for forming the base film, but are preferably 60 ° C. or higher and 150 ° C. or lower, and preferably 3 minutes or longer and 30 minutes or shorter.
 このようにして形成される親液性表面領域12と、撥液性表面領域13とのテトラデカンに対する接触角差(撥液性表面領域13における接触角-親液性表面領域12における接触角)の下限としては、30°が好ましく、40°がより好ましく、50°がさらに好ましい。この接触角差の上限としては、例えば70°である。また、親液性表面領域12と、撥液性表面領域13との水に対する接触角差(撥液性表面領域13における接触角-親液性表面領域12における接触角)の下限としては、20°が好ましく、25°がより好ましい。この接触角差の上限としては、例えば60°である。このように、テトラデカン又は水に対しての接触角差が大きいことで、撥液性表面領域13に接触した導電層形成用材料が、親液性表面領域12へ移動しやすくなり、親液性表面領域12に沿った配線の形成を好適に行うことができる。 The contact angle difference between the lyophilic surface region 12 thus formed and the liquid repellent surface region 13 with respect to tetradecane (contact angle in the liquid repellent surface region 13−contact angle in the lyophilic surface region 12). As a minimum, 30 degrees is preferred, 40 degrees is more preferred, and 50 degrees is still more preferred. The upper limit of the contact angle difference is, for example, 70 °. The lower limit of the contact angle difference between water between the lyophilic surface region 12 and the lyophobic surface region 13 (contact angle in the lyophobic surface region 13−contact angle in the lyophilic surface region 12) is 20 ° is preferred, and 25 degrees is more preferred. The upper limit of this contact angle difference is, for example, 60 °. Thus, since the contact angle difference with respect to tetradecane or water is large, the conductive layer forming material in contact with the liquid-repellent surface region 13 can easily move to the lyophilic surface region 12, and the lyophilic property. Wiring can be suitably formed along the surface region 12.
<第1導電層形成工程(A-4)>
 第1導電層形成工程(A-4)は、放射線が照射された下地塗膜11表面への第1導電層形成用材料の接触により、第1導電層14を形成する工程である(図1(d)参照)。
<First conductive layer forming step (A-4)>
The first conductive layer forming step (A-4) is a step of forming the first conductive layer 14 by the contact of the first conductive layer forming material with the surface of the base coating film 11 irradiated with radiation (FIG. 1). (See (d)).
 第1導電層形成用材料は、特に限定されるものではない。例えば、配線を形成できるような導電性の材料であればよく、導電膜形成インク、導電膜形成ペースト等を挙げることができる。 The material for forming the first conductive layer is not particularly limited. For example, any conductive material that can form wiring can be used, and examples include conductive film forming ink and conductive film forming paste.
 具体的な好ましい第1導電層形成用材料としては、金属粒子を分散したインク又はペースト、金属塩と還元剤とを含むインク又はペースト、還元雰囲気下による加熱で金属化が可能な金属酸化物粒子を分散したインク又はペースト、導電性高分子の分散体又は溶液であるインク又はペースト、カーボンナノチューブやグラフェン等のナノカーボンを分散したインク又はペースト等を挙げることができる。これらの中でも、特に導電性と塗工性との観点から、銀粒子等の金属粒子を分散したインク及びペースト、並びに金属塩と還元剤とを含むインク及びペーストが好ましい。これらのインク又はペーストは、各種の印刷法、塗布法により塗膜の形成が可能である。また、このような第1導電層形成用材料の塗膜は、加熱されて、第1導電層14(配線)となる。 Specific preferred first conductive layer forming materials include ink or paste in which metal particles are dispersed, ink or paste containing a metal salt and a reducing agent, and metal oxide particles that can be metallized by heating in a reducing atmosphere. And an ink or paste in which a conductive polymer is dispersed or a solution, an ink or paste in which nanocarbons such as carbon nanotubes and graphene are dispersed, and the like. Among these, particularly from the viewpoints of conductivity and coating properties, inks and pastes in which metal particles such as silver particles are dispersed, and inks and pastes containing metal salts and a reducing agent are preferable. These inks or pastes can form a coating film by various printing methods and coating methods. In addition, such a coating film of the first conductive layer forming material is heated to become the first conductive layer 14 (wiring).
 第1導電層形成用材料の下地塗膜11表面への接触は、塗布等の公知に方法で行うことができる。具体的には、はけやブラシを用いた塗布法、ディッピング法、スプレー法、ロールコート法、回転塗布法(スピンコート法)、スリットダイ塗布法、バー塗布法、フレキソ印刷、オフセット印刷、インクジェット印刷、ディスペンス法等の公知の方法を挙げることができる。これらの中でも、ディッピング法、スプレー法、スピンコート法、スリットダイ塗布法、オフセット印刷法、インクジェット法及びディスペンス法が好ましい。 The contact of the first conductive layer forming material with the surface of the base coating film 11 can be performed by a known method such as coating. Specifically, application method using brush or brush, dipping method, spray method, roll coating method, spin coating method (spin coating method), slit die coating method, bar coating method, flexographic printing, offset printing, inkjet Well-known methods, such as printing and a dispensing method, can be mentioned. Among these, a dipping method, a spray method, a spin coating method, a slit die coating method, an offset printing method, an ink jet method, and a dispensing method are preferable.
 下地塗膜11の表面には、親液性表面領域12と撥液性表面領域13とが形成されている。このため、下地塗膜11の表面へ第1導電層形成用材料を接触させた場合、第1導電層形成用材料は、撥液性表面領域13でははじかれ、好ましくは凹部である親液性表面領域12に流れ込む。これにより、凹部である親液性表面領域12に沿って第1導電層形成材料が配設される。 A lyophilic surface region 12 and a liquid repellent surface region 13 are formed on the surface of the base coating film 11. For this reason, when the first conductive layer forming material is brought into contact with the surface of the base coating film 11, the first conductive layer forming material is repelled in the liquid repellent surface region 13 and is preferably lyophilic, which is a recess. It flows into the surface region 12. Thereby, the first conductive layer forming material is disposed along the lyophilic surface region 12 which is a recess.
<放射線照射工程(A-5)>
 放射線照射工程(A-5)は、第1導電層形成用材料が塗布された側、すなわち第1導電層14が形成された側の面の全面に放射線(hν)を照射する工程である。このように、露出している下地塗膜11の表面全面に放射線を照射することにより、撥液性表面領域13の表面全面が親液性となる。これにより、後述する後工程における下地膜15表面への絶縁膜形成用組成物の塗布性が向上する。
<Radiation irradiation process (A-5)>
The radiation irradiating step (A-5) is a step of irradiating the entire surface of the surface on which the first conductive layer forming material is applied, that is, the side on which the first conductive layer 14 is formed, with radiation (hν). Thus, by irradiating the entire surface of the exposed undercoat 11 with radiation, the entire surface of the liquid repellent surface region 13 becomes lyophilic. Thereby, the applicability | paintability of the composition for insulating film formation to the base film 15 surface in the post process mentioned later improves.
 本工程において照射する放射線の具体例、及び好ましい例としては、親液性表面領域形成工程(A-2)と同様である。また、本工程における放射線の露光量も、親液性表面領域形成工程(A-2)と同様とすることができる。 Specific examples and preferred examples of radiation irradiated in this step are the same as those in the lyophilic surface region forming step (A-2). Further, the radiation exposure amount in this step can be the same as in the lyophilic surface region forming step (A-2).
 全面への放射線の照射後、下地塗膜11等を加熱することが好ましい。この加熱により、露出部分(露光部分)において解離した酸解離性基由来の成分が揮発し、露出部分が薄くなると共に親液性がより高まる。また、この加熱により、第1導電層形成用材料(第1導電層14)が十分に硬化する。このような工程を経て、下地塗膜11は下地膜15となり、第1導電層14(配線)を最表層に有する基材16を得ることができる(図1(e)参照)。 It is preferable to heat the base coating film 11 and the like after irradiation of radiation to the entire surface. By this heating, the component derived from the acid dissociable group dissociated in the exposed portion (exposed portion) is volatilized, and the exposed portion becomes thinner and more lyophilic. In addition, the first conductive layer forming material (first conductive layer 14) is sufficiently cured by this heating. Through such steps, the base coating film 11 becomes the base film 15, and the base material 16 having the first conductive layer 14 (wiring) as the outermost layer can be obtained (see FIG. 1E).
 この加熱方法としては、特に限定されず、ホットプレート、オーブン、ドライヤー等を用いて加熱する方法を挙げることができる。その他、真空ベークによって加熱してもよい。加熱条件も特に限定されないが、例えば50℃以上200℃以下、1分以上120分以下とすることができる。但し、下地膜15(下地塗膜11)を薄くする必要性は無いため、加熱工程(A-3)よりも穏やかな加熱条件であってよい。 This heating method is not particularly limited, and examples thereof include a method of heating using a hot plate, oven, dryer or the like. In addition, you may heat by vacuum baking. The heating conditions are not particularly limited, but may be, for example, 50 ° C. or higher and 200 ° C. or lower and 1 minute or longer and 120 minutes or shorter. However, since it is not necessary to make the undercoat film 15 (the undercoat film 11) thin, the heating conditions may be milder than in the heating step (A-3).
<絶縁膜形成工程(B)>
 絶縁膜形成工程(B)は、例えば、基材16の表面に、撥液性表面領域19と、ビア用孔20が設けられている親液性表面領域18とを有する絶縁膜23を形成する工程である(図2(c)参照)。なお、図2(c)等においては、絶縁膜23の親液性表面領域18にビア用孔20を形成しているが、ビア用孔20は形成されていなくてもよい。
<Insulating film forming step (B)>
In the insulating film forming step (B), for example, an insulating film 23 having a lyophobic surface region 19 and a lyophilic surface region 18 provided with via holes 20 is formed on the surface of the substrate 16. It is a process (see FIG. 2C). In FIG. 2C and the like, the via hole 20 is formed in the lyophilic surface region 18 of the insulating film 23, but the via hole 20 may not be formed.
<絶縁塗膜形成工程(B-1)>
 絶縁塗膜形成工程(B-1)は、絶縁膜形成用組成物により、撥液性の表面を有する絶縁塗膜17を形成する工程である。絶縁膜形成用組成物は、酸解離性基を有する重合体(第1重合体)及び酸発生体(第1酸発生体)を含む。この絶縁膜形成用組成物については、後に詳述する。工程(B-1)においては、具体的には、図2(a)に示すように、基材16の第1導電層14が形成されている側の面への絶縁膜形成用組成物の塗布により、絶縁塗膜17を形成する。絶縁塗膜17は、最終的に絶縁膜23になる。
<Insulating coating film forming step (B-1)>
The insulating coating film forming step (B-1) is a step of forming the insulating coating film 17 having a liquid-repellent surface with the insulating film forming composition. The composition for forming an insulating film includes a polymer having an acid dissociable group (first polymer) and an acid generator (first acid generator). This insulating film forming composition will be described in detail later. In the step (B-1), specifically, as shown in FIG. 2A, the insulating film forming composition is applied to the surface of the base material 16 on the side where the first conductive layer 14 is formed. The insulating coating film 17 is formed by application. The insulating coating film 17 finally becomes the insulating film 23.
 絶縁膜形成用組成物の塗布方法としては、上述した工程(A-1)の下地膜形成用組成物の塗布方法と同様である。 The coating method of the insulating film forming composition is the same as the coating method of the base film forming composition in step (A-1) described above.
 絶縁膜形成用組成物の塗布後、好ましくは絶縁塗膜17を加熱(プレベーク)する。加熱条件は、絶縁膜形成用組成物の組成等によって異なるが、例えば60℃以上120℃以下、1分以上10分以下程度である。 After applying the insulating film forming composition, the insulating coating film 17 is preferably heated (pre-baked). The heating condition varies depending on the composition of the composition for forming an insulating film, and is, for example, about 60 ° C. to 120 ° C. and about 1 minute to 10 minutes.
 得られる絶縁塗膜17の平均厚みは、用途等に応じて適宜調整することができるが、この下限としては0.05μmが好ましく、0.1μmがより好ましい。一方、この上限としては20μmが好ましく、10μmがより好ましい。 The average thickness of the insulating coating 17 to be obtained can be appropriately adjusted according to the use etc., but the lower limit is preferably 0.05 μm, more preferably 0.1 μm. On the other hand, the upper limit is preferably 20 μm, and more preferably 10 μm.
<親液性表面領域形成工程(B-2)>
 親液性表面領域形成工程(B-2)は、絶縁塗膜17の一部の表面領域への放射線(hν)の照射により、親液性表面領域を形成する工程である(図2(b)参照)。下地膜形成用組成物から得られる下地塗膜11と同様に、絶縁塗膜17の表面は、撥液性を有しており、放射線が照射された領域が親液性表面領域18となる。一方、放射線が照射されていない領域は撥液性表面領域19である。また、下地塗膜11と同様に、親液性表面領域18は凹部(凹パターン)となる。
<Lipophilic surface region forming step (B-2)>
The lyophilic surface region forming step (B-2) is a step of forming a lyophilic surface region by irradiating a part of the surface region of the insulating coating film 17 with radiation (hν) (FIG. 2B). )reference). Similar to the base coating film 11 obtained from the base film forming composition, the surface of the insulating coating film 17 has liquid repellency, and the region irradiated with radiation becomes the lyophilic surface region 18. On the other hand, the region not irradiated with radiation is the liquid repellent surface region 19. Moreover, like the base coating film 11, the lyophilic surface region 18 becomes a recess (concave pattern).
 本工程(B-2)における放射線の照射(露光)方法、放射線の種類、露光量の具体例、及び好ましい例は、親液性表面領域形成工程(A-2)と同様である。すなわち、放射線の照射は、フォトマスクを介した露光により行うことが好ましい。また、形成される親液性表面領域18の形状等も、工程(A-2)で形成される親液性表面領域12と同様とすることができる。 In this step (B-2), the radiation irradiation (exposure) method, the type of radiation, specific examples of the exposure dose, and preferred examples are the same as those in the lyophilic surface region forming step (A-2). That is, it is preferable that the irradiation of radiation is performed by exposure through a photomask. Further, the shape and the like of the lyophilic surface region 18 formed can be the same as that of the lyophilic surface region 12 formed in the step (A-2).
<ビア用孔形成工程(B-3)>
 ビア用孔形成工程(B-3)は、ビア用孔20を形成する工程である(図2(c)参照)。このビア用孔20の形成方法は特に限定されないが、好ましくは絶縁塗膜17の親液性表面領域18の一部の領域へのレーザーの照射により行うことができる。このようなレーザーアブレーションにより、第1導電層14と第2導電層21(図3参照)とを連結させるためのビア用孔20が形成される。このビア用孔20は、絶縁塗膜17を貫通している。なお、ビア用孔20の形成をレーザーアブレーション以外の方法により行うこともできる。例えば、フォトマスクを介した十分な露光量の放射線照射などによりビア用孔20を形成してもよい。
<Via hole forming step (B-3)>
The via hole forming step (B-3) is a step of forming the via hole 20 (see FIG. 2C). The method for forming the via hole 20 is not particularly limited, but it can be preferably performed by laser irradiation to a part of the lyophilic surface region 18 of the insulating coating film 17. By such laser ablation, a via hole 20 for connecting the first conductive layer 14 and the second conductive layer 21 (see FIG. 3) is formed. The via hole 20 penetrates the insulating coating film 17. The via hole 20 may be formed by a method other than laser ablation. For example, the via hole 20 may be formed by irradiation with a sufficient amount of radiation through a photomask.
 本工程(B-3)において用いられるレーザーの波長としては、特に限定されないが、190nm以上450nm以下の範囲内にある放射線(紫外線)を用いることが好ましい。具体的には、YAGレーザーの3倍波(355nm)、4倍波(266nm)、5倍波(215nm)や、エキシマ―レーザーであるXeFレーザー(351nm)、XeClレーザー(308nm)、KrF(248nm)、ArF(193nm)等を挙げることができる。これらの中でも、YAGレーザーの4倍波(266nm)を用いることが好ましい。 The wavelength of the laser used in this step (B-3) is not particularly limited, but it is preferable to use radiation (ultraviolet rays) in the range of 190 nm to 450 nm. Specifically, the third harmonic (355 nm), the fourth harmonic (266 nm), the fifth harmonic (215 nm) of the YAG laser, the XeF laser (351 nm) that is an excimer laser, the XeCl laser (308 nm), and the KrF (248 nm). ), ArF (193 nm), and the like. Among these, it is preferable to use a fourth wave (266 nm) of a YAG laser.
 形成されるビア用孔20のサイズとしては特に限定されないが、通常、線状の親液性表面領域18の幅より狭い。ビア用孔20の具体的サイズとしては、例えば1μm以上100μm以下程度とすることができる。なお、ビア用孔20のサイズとは、ビア用孔20の開口部が円形である場合はその直径、方形である場合は一辺(長辺)の長さをいう。 The size of the via hole 20 to be formed is not particularly limited, but is usually narrower than the width of the linear lyophilic surface region 18. The specific size of the via hole 20 can be, for example, about 1 μm to 100 μm. The size of the via hole 20 means the diameter when the opening of the via hole 20 is circular, and the length of one side (long side) when the opening is square.
<加熱工程(B-4)>
 加熱工程(B-4)は、放射線が照射された絶縁塗膜17を加熱する工程である。この加熱により、放射線が照射された領域(親液性表面領域18)において解離した成分をさらに揮発させることができる。これにより、親液性表面領域18(凹部)がさらに深くなる。また、解離した成分が揮発することにより、親液性表面領域18の濡れ性がより高まる。
<Heating step (B-4)>
The heating step (B-4) is a step of heating the insulating coating film 17 irradiated with radiation. By this heating, the dissociated component in the region irradiated with radiation (lyophilic surface region 18) can be further volatilized. Thereby, the lyophilic surface region 18 (concave portion) is further deepened. Moreover, the wettability of the lyophilic surface region 18 is further increased by volatilization of the dissociated component.
 この加熱工程(B-4)を経て得られる絶縁膜23における親液性表面領域18の形状、親液性表面領域18と撥液性表面領域19との接触角差の関係、加熱方法等は、加熱工程(A-3)の記載と同様である。 The shape of the lyophilic surface region 18 in the insulating film 23 obtained through this heating step (B-4), the relationship between the contact angle difference between the lyophilic surface region 18 and the liquid repellent surface region 19, the heating method, etc. The same as described in the heating step (A-3).
 なお、この加熱工程(B-4)は、親液性表面領域形成工程(B-2)より後であれば、ビア用孔形成工程(B-3)よりも先に行ってもよく、ビア用孔形成工程(B-3)よりも後に行ってもよい。但し、ビア用孔形成工程(B-3)よりも、加熱工程(B-4)を先に行うことが好ましい。加熱工程(B-4)を経て親液性表面領域18を薄膜化した後に、レーザーアブレーションを行うことにより、ビア用孔20を効率的かつ正確に形成することができる。 The heating step (B-4) may be performed before the via hole forming step (B-3) as long as it is after the lyophilic surface region forming step (B-2). It may be performed after the hole forming step (B-3). However, the heating step (B-4) is preferably performed before the via hole forming step (B-3). By thinning the lyophilic surface region 18 through the heating step (B-4) and then performing laser ablation, the via hole 20 can be formed efficiently and accurately.
<第2導電層形成工程(C)>
 第2導電層形成工程(C)は、絶縁膜23の表面への第2導電層形成用材料の接触により、絶縁膜23の親液性表面領域18へ積層される第2導電層21(配線)を形成する工程である。この際、第2導電層形成用材料により、第2導電層21と共に、第1導電層14と第2導電層21とを接続するビア導体22も形成される。第2導電層形成用材料の具体例及び好ましい例については、上述した第1導電層形成用材料と同様である。
<Second conductive layer forming step (C)>
In the second conductive layer forming step (C), the second conductive layer 21 (wiring) laminated on the lyophilic surface region 18 of the insulating film 23 by the contact of the second conductive layer forming material with the surface of the insulating film 23. ). At this time, via conductors 22 that connect the first conductive layer 14 and the second conductive layer 21 are formed together with the second conductive layer 21 by the second conductive layer forming material. Specific examples and preferred examples of the second conductive layer forming material are the same as those of the first conductive layer forming material described above.
 第2導電層形成用材料の絶縁膜23表面への接触方法は、第1導電層形成工程(A-4)における第1導電層形成用材料の場合と同様である。第2導電層形成用材料を絶縁膜23の表面に接触させた場合、第2導電層形成用材料は、撥液性表面領域19でははじかれ、好ましくは凹部である親液性表面領域18に流れ込む。これにより、親液性表面領域18に沿って第2導電層形成材料が配設される。さらに、親液性表面領域18に流れ込んだ第2導電層形成用材料は、親液性表面領域18に形成されたビア用孔20に充填される。 The contact method of the second conductive layer forming material to the surface of the insulating film 23 is the same as that of the first conductive layer forming material in the first conductive layer forming step (A-4). When the second conductive layer forming material is brought into contact with the surface of the insulating film 23, the second conductive layer forming material is repelled in the liquid repellent surface region 19 and preferably in the lyophilic surface region 18 which is a recess. Flows in. As a result, the second conductive layer forming material is disposed along the lyophilic surface region 18. Further, the second conductive layer forming material that has flowed into the lyophilic surface region 18 is filled in the via holes 20 formed in the lyophilic surface region 18.
 第2導電層形成用材料の接触(塗布)後、第2導電層形成用材料を基板10等と共に加熱する。この加熱により、第2導電層形成用材料が硬化し、第2導電層21とビア導体22とが形成される。この加熱方法としては、ホットプレート、オーブン、ドライヤー等を用いた加熱や、真空ベーク等が挙げられる。加熱条件も特に限定されないが、例えば50℃以上200℃以下、1分以上120分以下とすることができる。 After the contact (application) of the second conductive layer forming material, the second conductive layer forming material is heated together with the substrate 10 and the like. By this heating, the second conductive layer forming material is cured, and the second conductive layer 21 and the via conductor 22 are formed. Examples of the heating method include heating using a hot plate, an oven, a dryer, etc., and vacuum baking. The heating conditions are not particularly limited, but may be, for example, 50 ° C. or higher and 200 ° C. or lower and 1 minute or longer and 120 minutes or shorter.
 このような工程を経て、第1導電層14と第2導電層21とを含む配線の積層体である積層配線24を得ることができる。当該形成方法によれば、このように、レーザーを用いなくとも、フォトマスクを介した露光等により濡れ性パターン(親液性表面領域12及び親液性表面領域18)を形成することができるため、効率的に積層配線24を形成することができる。 Through such steps, a laminated wiring 24 that is a laminated body of the wiring including the first conductive layer 14 and the second conductive layer 21 can be obtained. According to the forming method, a wettability pattern (lyophilic surface region 12 and lyophilic surface region 18) can be formed by exposure through a photomask or the like without using a laser. The laminated wiring 24 can be formed efficiently.
<膜形成用組成物>
 以下、下地膜形成用組成物及び絶縁膜形成用組成物(以下、両組成物をまとめて「膜形成用組成物」ともいう。)について詳説する。下地膜形成用組成物と、絶縁膜形成用組成物とは、異なった組成であってもよいし、同一の組成であってもよいが、同一の組成物であることが好ましい。これらが同一の組成物であることで、積層配線を効率的に製造することができる。
<Film forming composition>
Hereinafter, the composition for forming a base film and the composition for forming an insulating film (hereinafter, both compositions are collectively referred to as “film forming composition”) will be described in detail. The composition for forming the base film and the composition for forming the insulating film may have different compositions or the same composition, but are preferably the same composition. Since these are the same composition, laminated wiring can be manufactured efficiently.
 膜形成用組成物は、上述のように、酸解離性基を有する重合体(以下、「重合体(A)」ともいう。)、及び酸発生体(以下、「酸発生体(B)」ともいう。)を含有する。上記膜形成用組成物は、通常、溶媒(C)を含有し、その他、好適な成分として、増感剤(D)、クエンチャー(E)、重合性化合物(F)及び感放射線性重合開始剤(G)を含有することができる。 As described above, the film-forming composition comprises a polymer having an acid-dissociable group (hereinafter also referred to as “polymer (A)”), and an acid generator (hereinafter referred to as “acid generator (B)”). Also called). The film-forming composition usually contains a solvent (C), and other suitable components include a sensitizer (D), a quencher (E), a polymerizable compound (F), and radiation-sensitive polymerization initiation. An agent (G) can be contained.
<重合体(A)>
 重合体(A)は、酸解離性基を有する重合体である限り特に限定されないが、通常、この酸解離性基を有する構造単位(I)を有する重合体である。この構造単位(I)は、アセタール結合及びヘミアセタールエステル結合のいずれかを含む構造であることが好ましい。酸解離性基を含む構造単位(I)としては、下記式(5-1)又は(5-2)で表される基を含むことがより好ましい。
<Polymer (A)>
The polymer (A) is not particularly limited as long as it is a polymer having an acid dissociable group, but is usually a polymer having a structural unit (I) having this acid dissociable group. This structural unit (I) is preferably a structure containing either an acetal bond or a hemiacetal ester bond. The structural unit (I) containing an acid dissociable group more preferably contains a group represented by the following formula (5-1) or (5-2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(5-1)及び(5-2)中、R及びRは、それぞれ独立して、水素原子又はメチル基である。Rfは、独立して、フッ素原子を有する有機基である。*は、結合部位を表す。 In formulas (5-1) and (5-2), R 4 and R 5 are each independently a hydrogen atom or a methyl group. Rf is independently an organic group having a fluorine atom. * Represents a binding site.
 式(5-1)及び(5-2)における-C(R)(R)ORfが酸解離性基となる。このような基を有する重合体(A)を用いることで、塗膜の露光部において酸解離性基が効率的に解離し、表面エネルギーが上昇する。また、このように、酸解離性基がフッ素原子を含有する場合、この酸解離性基の解離の前後での膜の表面エネルギー、すなわち濡れ性の変化が大きくなるため好ましい。 In the formulas (5-1) and (5-2), —C (R 1 ) (R 2 ) ORf is an acid dissociable group. By using the polymer (A) having such a group, the acid dissociable group is efficiently dissociated in the exposed portion of the coating film, and the surface energy is increased. In addition, when the acid-dissociable group contains a fluorine atom as described above, the change in the surface energy of the film before and after the dissociation of the acid-dissociable group, that is, the wettability is increased.
 Rfとしては、1又は複数の水素原子がフッ素原子で置換された炭化水素基、及びこのような炭化水素基の炭素-炭素結合間に酸素原子を有する基が好ましい。Rfのより好ましい基としては、後述する式(1)~(4)中の-(R-O)-Rで表される基を挙げることができる。 Rf is preferably a hydrocarbon group in which one or more hydrogen atoms are substituted with a fluorine atom, and a group having an oxygen atom between the carbon-carbon bonds of such a hydrocarbon group. A more preferred group of Rf includes a group represented by — (R 2 —O) n —R 3 in formulas (1) to (4) described later.
 構造単位(I)は、下記式(1)から下記式(4)のいずれかで表される構造単位であることが好ましい。なお、構造単位(I)は、1種の構造単位のみからなっていてもよいし、複数種の構造単位を含んでいてもよい。 The structural unit (I) is preferably a structural unit represented by any one of the following formulas (1) to (4). The structural unit (I) may be composed of only one type of structural unit or may include a plurality of types of structural units.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)~(4)中、Rは、それぞれ独立して、水素原子又はメチル基である。Rは、それぞれ独立して、メチレン基、炭素数2~12のアルキレン基、炭素数2~12のアルケニレン基、炭素数6~12の2価の芳香族炭化水素基、炭素数4~12の2価の脂環式炭化水素基、又はこれらの基が有する1つ以上の水素原子が置換基で置換された基である。Rは、それぞれ独立して、1つ以上の水素原子がフッ素原子で置換された炭化水素基である。mは、それぞれ独立して、0又は1である。nは、それぞれ独立して、0~12の整数である。 In formulas (1) to (4), each R 1 is independently a hydrogen atom or a methyl group. R 2 each independently represents a methylene group, an alkylene group having 2 to 12 carbon atoms, an alkenylene group having 2 to 12 carbon atoms, a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, or 4 to 12 carbon atoms. A divalent alicyclic hydrocarbon group, or a group in which one or more hydrogen atoms of these groups are substituted with a substituent. R 3 is each independently a hydrocarbon group in which one or more hydrogen atoms are substituted with fluorine atoms. Each m is independently 0 or 1. n is each independently an integer of 0 to 12.
 Rで表される炭素数2~12のアルキレン基としては、エチレン基、プロピレン基、ブチレン基等を挙げることができる。 Examples of the alkylene group having 2 to 12 carbon atoms represented by R 2 include an ethylene group, a propylene group, and a butylene group.
 Rで表される炭素数2~12のアルケニレン基としては、ビニレン基、エテン-1,2-ジイル基等を挙げることができる。 Examples of the alkenylene group having 2 to 12 carbon atoms represented by R 2 include a vinylene group and an ethene-1,2-diyl group.
 Rで表される炭素数6~12の2価の芳香族炭化水素基としては、フェニレン基、トリレン基、ナフチレン基、ビフェニレン基等を挙げることができる。 Examples of the divalent aromatic hydrocarbon group having 6 to 12 carbon atoms represented by R 2 include a phenylene group, a tolylene group, a naphthylene group, and a biphenylene group.
 Rで表される炭素数4~12の2価の脂環式炭化水素基としては、シクロブタンジイル基、シクロヘキサンジイル基等を挙げることができる。 Examples of the divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms represented by R 2 include a cyclobutanediyl group and a cyclohexanediyl group.
 これらの基が有する水素原子を置換する置換基としては、フッ素原子等のハロゲン原子、ヒドロキシ基等を挙げることができる。 Examples of the substituent for substituting the hydrogen atom of these groups include a halogen atom such as a fluorine atom and a hydroxy group.
 Rとしては、メチレン基、アルキレン基及び芳香族炭化水素基が好ましく、メチレン基、エチレン基、プロピレン基、ブチレン基、フェニレン基及びビフェニレン基がより好ましい。 R 2 is preferably a methylene group, an alkylene group or an aromatic hydrocarbon group, more preferably a methylene group, an ethylene group, a propylene group, a butylene group, a phenylene group or a biphenylene group.
 Rで表される1つ以上の水素原子がフッ素原子で置換された炭化水素基(フッ素置換炭化水素基)としては、フッ素置換脂肪族炭化水素基やフッ素置換芳香族炭化水素基を挙げることができるが、フッ素置換脂肪族炭化水素基が好ましい。このフッ素置換炭化水素基の炭素数の下限は、3が好ましく、4がより好ましい。一方、この上限は、30が好ましく、20がより好ましく、15がさらに好ましい。このフッ素置換炭化水素基のフッ素数の下限としては、5が好ましく、10がより好ましい。一方、この上限としては、例えば30とすることができる。Rをこのような基とすることで、表面エネルギーの変化をより大きくすることができ、また、解離した成分の揮発性を高めることなどもできる。 Examples of the hydrocarbon group in which one or more hydrogen atoms represented by R 3 are substituted with a fluorine atom (fluorine-substituted hydrocarbon group) include a fluorine-substituted aliphatic hydrocarbon group and a fluorine-substituted aromatic hydrocarbon group. Fluorine-substituted aliphatic hydrocarbon groups are preferred. The lower limit of the number of carbon atoms of the fluorine-substituted hydrocarbon group is preferably 3, and more preferably 4. On the other hand, the upper limit is preferably 30, more preferably 20, and even more preferably 15. The lower limit of the fluorine number of the fluorine-substituted hydrocarbon group is preferably 5 and more preferably 10. On the other hand, the upper limit can be set to 30, for example. By using R 3 as such a group, the change in surface energy can be further increased, and the volatility of the dissociated component can be increased.
 Rで表されるフッ素置換炭化水素基の具体例としては、下記式(Rf-1)~(Rf-33)で表される基等を例示することができる。 Specific examples of the fluorine-substituted hydrocarbon group represented by R 3 include groups represented by the following formulas (Rf-1) to (Rf-33).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 nは、0~12の整数であるが、この上限としては、8が好ましく、4がより好ましく、2がより好ましい。nとしては、0が特に好ましい。 N is an integer from 0 to 12, but the upper limit is preferably 8, preferably 4 and more preferably 2. n is particularly preferably 0.
 上記式(1)~(4)で表される構造単位(I)の具体例としては、以下のものを例示することができる。 Specific examples of the structural unit (I) represented by the above formulas (1) to (4) include the following.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 重合体(A)の全構造単位に対する構造単位(I)の含有量の下限としては、20質量%が好ましく、35質量%がより好ましい。また、この下限は、50質量%であってもよく、70質量%であってもよい。一方、この上限としては、100質量%とすることができ、80質量%であってもよい。 As a minimum of content of structural unit (I) with respect to all the structural units of polymer (A), 20 mass% is preferred and 35 mass% is more preferred. Moreover, this lower limit may be 50 mass% or 70 mass%. On the other hand, the upper limit may be 100% by mass, or 80% by mass.
 重合体(A)は、構造単位(I)以外の構造単位を有することができる。他の構造単位は、具体的には、後述する(メタ)アクリル酸鎖状アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和芳香族化合物、共役ジエン、テトラヒドロ骨格を有する不飽和化合物、マレイミド、その他のモノマー等に由来する構造単位を挙げることができる。 The polymer (A) can have a structural unit other than the structural unit (I). Other structural units specifically include (meth) acrylic acid chain alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, unsaturated aromatic compound, conjugated diene, tetrahydro, which will be described later. Examples include structural units derived from unsaturated compounds having a skeleton, maleimides, other monomers, and the like.
 重合体(A)は、(1)前駆体となる水酸基又はカルボキシ基を有する重合体に、下記式(a)で表される化合物(a)を反応させる方法、(2)化合物(a)を用いて得られるモノマーを重合する方法等により得ることができる。 The polymer (A) is (1) a method of reacting a compound (a) represented by the following formula (a) with a polymer having a hydroxyl group or a carboxy group as a precursor, and (2) a compound (a). It can be obtained by, for example, a method of polymerizing a monomer obtained by use.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(a)中、R~R及びnは、上記式(1)~(4)中のR~R及びnと同義である。 Wherein (a), R 1 - R 3 and n are the above formula (1) the same meaning as R 1 - R 3 and n in - (4).
(1)前駆体となる重合体に化合物(a)を反応させる方法
 本方法では、水酸基又はカルボキシ基を有するモノマーを重合することにより水酸基又はカルボキシ基を有する重合体を得て、この重合体に化合物(a)を反応させて、重合体(A)を得る。
(1) Method of reacting compound (a) with polymer as precursor In this method, a polymer having a hydroxyl group or a carboxy group is obtained by polymerizing a monomer having a hydroxyl group or a carboxy group. The compound (a) is reacted to obtain the polymer (A).
 水酸基を有するモノマーとしては、水酸基を有する(メタ)アクリル酸エステル等を挙げることができる。具体的には、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシブチルメタクリレート、2-ヒドロキシブチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-アクリロイロキシエチル-2-ヒドロキシルエチルフタル酸、ジプロピレングリコールメタクリレート、ジプロピレングリコールアクリレート、4-ヒドロキシブチルメタクリレート、4-ヒドロキシブチルアクリレート、シクロヘキサンジメタノールモノアクリレート、シクロヘキサンジメタノールモノメタクリレート、エチルα-(ヒドロキシメチル)アクリレート、ポリプロピレングリコールモノメタクリレート、ポリプロピレングリコールモノアクリレート、グリセリンモノメタクリレート、グリセリンモノアクリレート、ポリエチレングリコールモノメタクリレート、ポリエチレングリコールモノアクリレート、ポリ(エチレングリコール-プロピレングリコール)モノメタクリレート、ポリ(エチレングリコール-プロピレングリコール)モノアクリレート、ポリエチレングリコール-ポリプロピレングリコールモノメタクリレート、ポリエチレングリコール-ポリプロピレングリコールモノアクリレート、ポリ(エチレングリコール-テトラメチレングリコール)モノメタクリレート、ポリ(エチレングリコール-テトラメチレングリコール)モノアクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノメタクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)モノアクリレート、プロピレングリコールポリブチレングリコールモノメタクリレート、プロピレングリコールポリブチレングリコールモノアクリレート、p-ヒドロキシフェニルメタクリレート、パラヒドロキシフェニルアクリレート等を挙げることができる。 Examples of the monomer having a hydroxyl group include (meth) acrylic acid ester having a hydroxyl group. Specifically, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxybutyl methacrylate, 2-hydroxybutyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate 2-acryloyloxyethyl-2-hydroxylethylphthalic acid, dipropylene glycol methacrylate, dipropylene glycol acrylate, 4-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, cyclohexanedimethanol monoacrylate, cyclohexanedimethanol monomethacrylate, ethyl α- (Hydroxymethyl) acrylate, polypropylene glycol monomethacrylate, polyp Pyrene glycol monoacrylate, glycerin monomethacrylate, glycerin monoacrylate, polyethylene glycol monomethacrylate, polyethylene glycol monoacrylate, poly (ethylene glycol-propylene glycol) monomethacrylate, poly (ethylene glycol-propylene glycol) monoacrylate, polyethylene glycol-polypropylene glycol Monomethacrylate, polyethylene glycol-polypropylene glycol monoacrylate, poly (ethylene glycol-tetramethylene glycol) monomethacrylate, poly (ethylene glycol-tetramethylene glycol) monoacrylate, poly (propylene glycol-tetramethylene glycol) monomethacrylate, poly (propylene) (Propylene glycol-tetramethylene glycol) monoacrylate, propylene glycol polybutylene glycol monomethacrylate, propylene glycol polybutylene glycol monoacrylate, p-hydroxyphenyl methacrylate, parahydroxyphenyl acrylate, and the like.
 カルボキシ基を有するモノマーとしては、アクリル酸、メタクリル酸、2-アクリロイルオキシエチルコハク酸、2-メタクリロイルオキシエチルコハク酸、2-アクリロイルオキシエチルフタル酸、2-メタクリロイルオキシエチルフタル酸、2-アクリロイルオキシエチルテトラヒドロフタル酸、2-メタクリロイルオキシエチルテトラヒドロフタル酸、2-アクリロイルオキシエチルヘキサヒドロフタル酸、2-メタクリロイルオキシエチルヘキサヒドロフタル酸、2-アクリロイルオキシプロピルフタル酸、2-メタクリロイルオキシプロピルフタル酸、2-アクリロイルオキシプロピルテトラヒドロフタル酸、2-メタクリロイルオキシプロピルテトラヒドロフタル酸、2-アクリロイルオキシプロピルヘキサヒドロフタル酸、2-メタクリロイルオキシプロピルヘキサヒドロフタル酸等を挙げることができる。 Examples of the monomer having a carboxy group include acrylic acid, methacrylic acid, 2-acryloyloxyethyl succinic acid, 2-methacryloyloxyethyl succinic acid, 2-acryloyloxyethyl phthalic acid, 2-methacryloyloxyethyl phthalic acid, and 2-acryloyloxy. Ethyltetrahydrophthalic acid, 2-methacryloyloxyethyltetrahydrophthalic acid, 2-acryloyloxyethylhexahydrophthalic acid, 2-methacryloyloxyethylhexahydrophthalic acid, 2-acryloyloxypropylphthalic acid, 2-methacryloyloxypropylphthalic acid, 2-acryloyloxypropyltetrahydrophthalic acid, 2-methacryloyloxypropyltetrahydrophthalic acid, 2-acryloyloxypropylhexahydrophthalic acid, - it can be exemplified methacryloyloxypropyl hexahydrophthalic acid.
 上記水酸基又はカルボキシ基を有する重合体は、上述の水酸基又はカルボキシ基を有するモノマーのみを用いて得ることができるほか、上述の水酸基又はカルボキシ基を有するモノマーと、水酸基又はカルボキシ基を有するモノマー以外のモノマーとを共重合して得ることができる。水酸基又はカルボキシ基を有するモノマー以外のモノマーとしては、(メタ)アクリル酸鎖状アルキルエステル、(メタ)アクリル酸環状アルキルエステル、(メタ)アクリル酸アリールエステル、不飽和芳香族化合物、共役ジエン、テトラヒドロフラン骨格を含有する不飽和化合物、マレイミド、及びその他のモノマー等を挙げることができる。 The polymer having a hydroxyl group or a carboxy group can be obtained by using only the monomer having a hydroxyl group or a carboxy group as described above, or a monomer other than the monomer having a hydroxyl group or a carboxy group and a monomer having a hydroxyl group or a carboxy group. It can be obtained by copolymerizing with a monomer. Examples of the monomer other than the monomer having a hydroxyl group or a carboxy group include (meth) acrylic acid chain alkyl ester, (meth) acrylic acid cyclic alkyl ester, (meth) acrylic acid aryl ester, unsaturated aromatic compound, conjugated diene, tetrahydrofuran Examples thereof include unsaturated compounds containing a skeleton, maleimides, and other monomers.
 (メタ)アクリル酸鎖状アルキルエステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸sec-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸イソデシル、メタクリル酸n-ラウリル、メタクリル酸トリデシル、メタクリル酸n-ステアリル、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸sec-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸イソデシル、アクリル酸n-ラウリル、アクリル酸トリデシル、アクリル酸n-ステアリル等を挙げることができる。 Examples of the (meth) acrylic acid chain alkyl ester include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, methacrylic acid. N-lauryl acid, tridecyl methacrylate, n-stearyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, isodecyl acrylate And n-lauryl acrylate, tridecyl acrylate, and n-stearyl acrylate.
 (メタ)アクリル酸環状アルキルエステルとしては、例えばメタクリル酸シクロヘキシル、メタクリル酸2-メチルシクロヘキシル、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イル、メタクリル酸イソボルニル、シクロヘキシルアクリレート、2-メチルシクロヘキシルアクリレート、トリシクロ[5.2.1.02,6]デカン-8-イルアクリレート、イソボルニルアクリレート等を挙げることができる。 Examples of (meth) acrylic acid cyclic alkyl esters include cyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate, isobornyl methacrylate, cyclohexyl acrylate. 2-methylcyclohexyl acrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yl acrylate, isobornyl acrylate, and the like.
 (メタ)アクリル酸アリールエステルとしては、例えばメタクリル酸フェニル、メタクリル酸ベンジル、アクリル酸フェニル、アクリル酸ベンジル等を挙げることができる。 Examples of (meth) acrylic acid aryl esters include phenyl methacrylate, benzyl methacrylate, phenyl acrylate, and benzyl acrylate.
 不飽和芳香族化合物としては、例えばスチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、p-メトキシスチレン等を挙げることができる。 Examples of the unsaturated aromatic compound include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-methoxystyrene and the like.
 共役ジエンとしては、例えば1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン等を挙げることができる。 Examples of the conjugated diene include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and the like.
 テトラヒドロフラン骨格を含有する不飽和化合物としては、例えばテトラヒドロフルフリル(メタ)アクリレート、2-メタクリロイルオキシ-プロピオン酸テトラヒドロフルフリルエステル、3-(メタ)アクリロイルオキシテトラヒドロフラン-2-オン等を挙げることができる。 Examples of the unsaturated compound containing a tetrahydrofuran skeleton include tetrahydrofurfuryl (meth) acrylate, 2-methacryloyloxy-propionic acid tetrahydrofurfuryl ester, 3- (meth) acryloyloxytetrahydrofuran-2-one, and the like. .
 マレイミドとしては、例えばN-フェニルマレイミド、N-シクロヘキシルマレイミド、N-トリルマレイミド、N-ナフチルマレイミド、N-エチルマレイミド、N-ヘキシルマレイミド、N-ベンジルマレイミド等を挙げることができる。 Examples of maleimide include N-phenylmaleimide, N-cyclohexylmaleimide, N-tolylmaleimide, N-naphthylmaleimide, N-ethylmaleimide, N-hexylmaleimide, N-benzylmaleimide and the like.
 その他のモノマーとして、例えばエポキシ基(環状エーテル基)を有する(メタ)アクリル酸エステル等を挙げることができる。具体的には、メタクリル酸グリシジル、メタクリル酸3,4-エポキシシクロヘキシル、アクリル酸3,4-エポキシシクロヘキシル、3-(メタクリロイルオキシメチル)-3-エチルオキセタン、3-(アクリロイルオキシメチル)-3-エチルオキセタン、メタクリル酸トリシクロ[5.2.1.02,6]デカン-8-イルオキシエチル、トリシクロ[5.2.1.02,6]デカン-8-イルオキシエチルアクリレート等を挙げることができる。 Examples of other monomers include (meth) acrylic acid ester having an epoxy group (cyclic ether group). Specifically, glycidyl methacrylate, 3,4-epoxycyclohexyl methacrylate, 3,4-epoxycyclohexyl acrylate, 3- (methacryloyloxymethyl) -3-ethyloxetane, 3- (acryloyloxymethyl) -3- Examples include ethyl oxetane, tricyclo [5.2.1.0 2,6 ] decan-8-yloxyethyl methacrylate, tricyclo [5.2.1.0 2,6 ] decan-8-yloxyethyl acrylate, and the like. be able to.
 水酸基又はカルボキシ基を有する重合体を合成するための重合反応に用いられる溶媒としては、例えばグリコールエーテル、エチレングリコールアルキルエーテルアセテート、ジエチレングリコールモノアルキルエーテル、ジエチレングリコールジアルキルエーテル、ジプロピレングリコールジアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルプロピオネート等を挙げることができる。また、その他のアルコール、エーテル、ケトン、エステル等を用いることもできる。 Examples of the solvent used in the polymerization reaction for synthesizing a polymer having a hydroxyl group or a carboxy group include glycol ether, ethylene glycol alkyl ether acetate, diethylene glycol monoalkyl ether, diethylene glycol dialkyl ether, dipropylene glycol dialkyl ether, propylene glycol mono Examples include alkyl ether, propylene glycol alkyl ether acetate, propylene glycol monoalkyl ether propionate and the like. Other alcohols, ethers, ketones, esters and the like can also be used.
 水酸基又はカルボキシ基を有する重合体を得るための重合反応においては、分子量を調整するために、分子量調整剤を使用できる。分子量調整剤としては、例えばクロロホルム、四臭化炭素等のハロゲン化炭化水素類;n-ヘキシルメルカプタン、n-オクチルメルカプタン、n-ドデシルメルカプタン、t-ドデシルメルカプタン、チオグリコール酸等のメルカプタン類;ジメチルキサントゲンスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲン類;ターピノーレン、α-メチルスチレンダイマー等を挙げることができる。 In the polymerization reaction for obtaining a polymer having a hydroxyl group or a carboxy group, a molecular weight modifier can be used to adjust the molecular weight. Examples of molecular weight modifiers include halogenated hydrocarbons such as chloroform and carbon tetrabromide; mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, and thioglycolic acid; Xanthogens such as xanthogen sulfide and diisopropylxanthogen disulfide; terpinolene, α-methylstyrene dimer and the like can be mentioned.
 水酸基又はカルボキシ基を有する重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、1000が好ましく、5000がより好ましい。一方、この上限としては、50000が好ましく、30000がより好ましい。水酸基又はカルボキシ基を有する重合体のMwを上記範囲とすることで、重合体(A)を含有する膜形成用組成物の感度を高めることなどができる。 As a minimum of polystyrene conversion weight average molecular weight (Mw) by gel permeation chromatography (GPC) of a polymer which has a hydroxyl group or a carboxy group, 1000 is preferred and 5000 is more preferred. On the other hand, as this upper limit, 50000 is preferable and 30000 is more preferable. By setting the Mw of the polymer having a hydroxyl group or a carboxy group within the above range, the sensitivity of the film-forming composition containing the polymer (A) can be increased.
 次いで、得られた水酸基又はカルボキシルを有する重合体の水酸基又はカルボキシ基に化合物(a)を反応させる。これらの反応の一例は、以下の反応式により表される。 Next, the compound (a) is reacted with the hydroxyl group or carboxy group of the obtained polymer having a hydroxyl group or carboxyl. An example of these reactions is represented by the following reaction formula.
 水酸基を有する重合体の水酸基と、上記化合物(a)のビニルエーテル基とによって、アセタール結合が形成され、また、カルボキシ基を有する重合体のカルボキシ基と、上記化合物(a)のビニルエーテル基とによって、ヘミアセタールエステル結合が形成され、重合体(A)となる。 An acetal bond is formed by the hydroxyl group of the polymer having a hydroxyl group and the vinyl ether group of the compound (a), and the carboxy group of the polymer having a carboxy group and the vinyl ether group of the compound (a) A hemiacetal ester bond is formed to form the polymer (A).
 具体的な反応方法としては、まず、水酸基又はカルボキシ基を有する重合体を有機溶媒中に溶解した後、重合体が有する水酸基又はカルボキシ基に対して等モル又は過剰量の化合物(a)を加える。得られた反応混合物を0℃から室温程度に冷却した後、上記有機溶媒と同じ溶媒に溶解させた酸(例えばシュウ酸)を触媒として滴下し、室温下で1時間~24時間程度撹拌し、反応させる。反応終了後、有機溶媒を除去することにより、目的の重合体(A)を得ることができる。 As a specific reaction method, first, a polymer having a hydroxyl group or a carboxy group is dissolved in an organic solvent, and then an equimolar or excess amount of the compound (a) is added to the hydroxyl group or carboxy group of the polymer. . After cooling the obtained reaction mixture from 0 ° C. to about room temperature, an acid (eg, oxalic acid) dissolved in the same solvent as the organic solvent was added dropwise as a catalyst, and the mixture was stirred at room temperature for about 1 to 24 hours. React. After completion of the reaction, the target polymer (A) can be obtained by removing the organic solvent.
(2)化合物(a)を用いて得られるモノマーを重合する方法
 本方法では、水酸基又はカルボキシ基を有する重合性化合物の水酸基又はカルボキシ基に上記化合物(a)を反応させることで所望するモノマーを得て、このモノマーを重合させることで、重合体(A)を得る。このような重合体(A)の製造方法は、公知の方法を参考にすることができる。
(2) Method of polymerizing monomer obtained using compound (a) In this method, a desired monomer is obtained by reacting the above compound (a) with a hydroxyl group or a carboxy group of a polymerizable compound having a hydroxyl group or a carboxy group. The polymer (A) is obtained by polymerizing this monomer. A known method can be referred to for the production method of such a polymer (A).
 上記方法においては、具体的には、水酸基を有する重合性化合物の水酸基と、ビニルエーテル化合物(化合物(a))のビニルエーテル基とによってアセタール結合が形成され、又は、カルボキシ基を有する重合性化合物のカルボキシ基と、ビニルエーテル化合物(化合物(a))のビニルエーテル基とによってヘミアセタールエステル結合が形成され、所望するモノマーが得られる。次いで、得られたモノマーを用いて、上述した水酸基又はカルボキシ基を有する重合体の製造方法と同様にして重合することで、重合体(A)を得ることができる。 Specifically, in the above method, an acetal bond is formed by the hydroxyl group of the polymerizable compound having a hydroxyl group and the vinyl ether group of the vinyl ether compound (compound (a)), or the carboxy group of the polymerizable compound having a carboxy group. A hemiacetal ester bond is formed by the group and the vinyl ether group of the vinyl ether compound (compound (a)) to obtain a desired monomer. Next, the polymer (A) can be obtained by polymerizing the obtained monomer in the same manner as in the method for producing a polymer having a hydroxyl group or a carboxy group.
<酸発生体(B)>
 酸発生体(B)は、例えば、加熱や放射線等に感応して酸を発生する機能を有する。酸発生体(B)は、感放射線性酸発生体であることが好ましい。酸発生体(B)は、所謂酸発生剤として、化合物の形態で含有されていてもよいし、重合体(A)等の重合体の一部に組み込まれた形態であってもよい。膜形成用組成物が、酸発生体(B)を含有することで、重合体(A)から酸解離性基を脱離させることができる。
<Acid generator (B)>
The acid generator (B) has a function of generating an acid in response to, for example, heating or radiation. The acid generator (B) is preferably a radiation-sensitive acid generator. The acid generator (B) may be contained in the form of a compound as a so-called acid generator, or may be incorporated in a part of the polymer such as the polymer (A). When the composition for film formation contains the acid generator (B), the acid dissociable group can be eliminated from the polymer (A).
 感放射線性酸発生体である酸発生剤としては、例えばオキシムスルホネート化合物、オニウム塩、スルホンイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物等を挙げることができる。酸発生剤は、単独で又は2種類以上を組み合わせて用いてもよい。これらの感放射線性酸発生剤は、感熱性酸発生剤として機能するものであってもよい。 Examples of the acid generator that is a radiation-sensitive acid generator include oxime sulfonate compounds, onium salts, sulfonimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, and carboxylic acid ester compounds. it can. You may use an acid generator individually or in combination of 2 or more types. These radiation-sensitive acid generators may function as a heat-sensitive acid generator.
 [オキシムスルホネート化合物]
 上記オキシムスルホネート化合物としては、下記式(6)で表されるオキシムスルホネート基を含む化合物が好ましい。
[Oxime sulfonate compound]
As said oxime sulfonate compound, the compound containing the oxime sulfonate group represented by following formula (6) is preferable.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記式(6)中、R11は、炭素数1~12のアルキル基、炭素数1~12のフルオロアルキル基、炭素数4~12の脂環式炭化水素基、炭素数6~20のアリール基、又はこれらのアルキル基、脂環式炭化水素基及びアリール基が有する水素原子の一部又は全部が置換基で置換された基である。 In the above formula (6), R 11 is an alkyl group having 1 to 12 carbon atoms, a fluoroalkyl group having 1 to 12 carbon atoms, an alicyclic hydrocarbon group having 4 to 12 carbon atoms, or an aryl having 6 to 20 carbon atoms. Or a group in which some or all of the hydrogen atoms of the alkyl group, alicyclic hydrocarbon group and aryl group are substituted with a substituent.
 上記アルキル基、脂環式炭化水素基及びアリール基が有していてもよい置換基としては、炭素数1~10のアルコキシ基、水酸基、ハロゲン原子等を挙げることができる。 Examples of the substituent that the alkyl group, alicyclic hydrocarbon group, and aryl group may have include an alkoxy group having 1 to 10 carbon atoms, a hydroxyl group, and a halogen atom.
 上記式(6)で表されるオキシムスルホネート基を含有する化合物としては、例えば下記式(6-1)~(6-3)で表されるオキシムスルホネート化合物が挙げられる。 Examples of the compound containing an oxime sulfonate group represented by the above formula (6) include oxime sulfonate compounds represented by the following formulas (6-1) to (6-3).
Figure JPOXMLDOC01-appb-C000010
 
Figure JPOXMLDOC01-appb-C000010
 
 上記式(6-1)~(6-3)中、R11は、上記式(6)中のR11と同義である。R15は、炭素数1~12のアルキル基、又は炭素数1~12のフルオロアルキル基である。Xは、アルキル基、アルコキシ基又はハロゲン原子である。mは、0~3の整数である。但し、Xが複数の場合、複数のXは同一であっても異なっていてもよい。 In the above formula (6-1) ~ (6-3), R 11 has the same meaning as R 11 in the formula (6). R 15 is an alkyl group having 1 to 12 carbon atoms or a fluoroalkyl group having 1 to 12 carbon atoms. X is an alkyl group, an alkoxy group, or a halogen atom. m is an integer of 0 to 3. However, when there are a plurality of Xs, the plurality of Xs may be the same or different.
 上記式(6-3)で表されるオキシムスルホネート化合物としては、例えば下記式(6-3-1)~(6-3-5)で表される化合物等が挙げられる。 Examples of the oxime sulfonate compound represented by the above formula (6-3) include compounds represented by the following formulas (6-3-1) to (6-3-5).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式(6-3-1)~(6-3-5)で表される化合物は、順に(5-プロピルスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(5-オクチルスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(カンファースルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、(5-p-トルエンスルフォニルオキシイミノ-5H-チオフェン-2-イリデン)-(2-メチルフェニル)アセトニトリル、及び(5-オクチルスルフォニルオキシイミノ)-(4-メトキシフェニル)アセトニトリルである。 The compounds represented by the above formulas (6-3-1) to (6-3-5) are sequentially (5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (5-octylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (camphorsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (5 -P-toluenesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile and (5-octylsulfonyloxyimino)-(4-methoxyphenyl) acetonitrile.
 上記式(6)で表されるオキシムスルホネート基を含有するその他の化合物としては、(5-オクチルスルフォニルオキシイミノ)-(4-メトキシフェニル)アセトニトリル等を挙げることができる。 Examples of other compounds containing the oxime sulfonate group represented by the above formula (6) include (5-octylsulfonyloxyimino)-(4-methoxyphenyl) acetonitrile.
 [オニウム塩]
 上記オニウム塩としては、例えばジフェニルヨードニウム塩、トリフェニルスルホニウム塩、アルキルスルホニウム塩、ベンジルスルホニウム塩、ジベンジルスルホニウム塩、置換ベンジルスルホニウム塩、ベンゾチアゾニウム塩、テトラヒドロチオフェニウム塩等を挙げることができる。
[Onium salt]
Examples of the onium salt include diphenyliodonium salt, triphenylsulfonium salt, alkylsulfonium salt, benzylsulfonium salt, dibenzylsulfonium salt, substituted benzylsulfonium salt, benzothiazonium salt, and tetrahydrothiophenium salt. it can.
 上記ジフェニルヨードニウム塩としては、例えばジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロホスホネート、ジフェニルヨードニウムヘキサフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホナート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム-p-トルエンスルホナート、ジフェニルヨードニウムブチルトリス(2,6-ジフルオロフェニル)ボレート、4-メトキシフェニルフェニルヨードニウムテトラフルオロボレート、ビス(4-t-ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(4-t-ブチルフェニル)ヨードニウムヘキサフルオロアルセネート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロメタンスルホナート、ビス(4-t-ブチルフェニル)ヨードニウムトリフルオロアセテート、ビス(4-t-ブチルフェニル)ヨードニウム-p-トルエンスルホナート、ビス(4-t-ブチルフェニル)ヨードニウムカンファースルホン酸等を挙げることができる。 Examples of the diphenyliodonium salt include diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluorophosphonate, diphenyliodonium hexafluoroarsenate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium trifluoroacetate, diphenyliodonium-p-toluenesulfonate, diphenyl Iodonium butyltris (2,6-difluorophenyl) borate, 4-methoxyphenylphenyliodonium tetrafluoroborate, bis (4-t-butylphenyl) iodonium tetrafluoroborate, bis (4-t-butylphenyl) iodonium hexafluoroarce Bis (4-tert-butylphenyl) iodonium triflate Romethanesulfonate, bis (4-t-butylphenyl) iodonium trifluoroacetate, bis (4-t-butylphenyl) iodonium-p-toluenesulfonate, bis (4-t-butylphenyl) iodonium camphorsulfonic acid, etc. Can be mentioned.
 上記トリフェニルスルホニウム塩としては、例えばトリフェニルスルホニウムトリフルオロメタンスルホナート、トリフェニルスルホニウムカンファースルホン酸、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム-p-トルエンスルホナート、トリフェニルスルホニウムブチルトリス(2、6-ジフルオロフェニル)ボレート等を挙げることができる。 Examples of the triphenylsulfonium salt include triphenylsulfonium trifluoromethanesulfonate, triphenylsulfonium camphorsulfonic acid, triphenylsulfonium tetrafluoroborate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluenesulfonate, and triphenyl. And sulfonium butyl tris (2,6-difluorophenyl) borate.
 上記アルキルスルホニウム塩としては、例えば4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4-アセトキシフェニルジメチルスルホニウムヘキサフルオロアルセネート、ジメチル-4-(ベンジルオキシカルボニルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル-4-(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアンチモネート、ジメチル-4-(ベンゾイルオキシ)フェニルスルホニウムヘキサフルオロアルセネート、ジメチル-3-クロロ-4-アセトキシフェニルスルホニウムヘキサフルオロアンチモネート等を挙げることができる。 Examples of the alkylsulfonium salt include 4-acetoxyphenyldimethylsulfonium hexafluoroantimonate, 4-acetoxyphenyldimethylsulfonium hexafluoroarsenate, dimethyl-4- (benzyloxycarbonyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4 -(Benzoyloxy) phenylsulfonium hexafluoroantimonate, dimethyl-4- (benzoyloxy) phenylsulfonium hexafluoroarsenate, dimethyl-3-chloro-4-acetoxyphenylsulfonium hexafluoroantimonate, and the like.
 上記ベンジルスルホニウム塩としては、例えばベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、4-アセトキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-4-メトキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-2-メチル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、ベンジル-3-クロロ-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアルセネート、4-メトキシベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート等を挙げることができる。 Examples of the benzylsulfonium salt include benzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-4-hydroxyphenylmethylsulfonium hexafluorophosphate, 4-acetoxyphenylbenzylmethylsulfonium hexafluoroantimonate, benzyl-4-methoxy Phenylmethylsulfonium hexafluoroantimonate, benzyl-2-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, benzyl-3-chloro-4-hydroxyphenylmethylsulfonium hexafluoroarsenate, 4-methoxybenzyl-4-hydroxy Examples thereof include phenylmethylsulfonium hexafluorophosphate.
 上記ジベンジルスルホニウム塩としては、例えばジベンジル-4-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル-4-ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート、4-アセトキシフェニルジベンジルスルホニウムヘキサフルオロアンチモネート、ジベンジル-4-メトキシフェニルスルホニウムヘキサフルオロアンチモネート、ジベンジル-3-クロロ-4-ヒドロキシフェニルスルホニウムヘキサフルオロアルセネート、ジベンジル-3-メチル-4-ヒドロキシ-5-t-ブチルフェニルスルホニウムヘキサフルオロアンチモネート、ベンジル-4-メトキシベンジル-4-ヒドロキシフェニルスルホニウムヘキサフルオロホスフェート等を挙げることができる。 Examples of the dibenzylsulfonium salt include dibenzyl-4-hydroxyphenylsulfonium hexafluoroantimonate, dibenzyl-4-hydroxyphenylsulfonium hexafluorophosphate, 4-acetoxyphenyl dibenzylsulfonium hexafluoroantimonate, and dibenzyl-4-methoxyphenyl. Sulfonium hexafluoroantimonate, dibenzyl-3-chloro-4-hydroxyphenylsulfonium hexafluoroarsenate, dibenzyl-3-methyl-4-hydroxy-5-tert-butylphenylsulfonium hexafluoroantimonate, benzyl-4-methoxybenzyl Examples include -4-hydroxyphenylsulfonium hexafluorophosphate.
 上記置換ベンジルスルホニウム塩としては、例えばp-クロロベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p-ニトロベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、p-クロロベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロホスフェート、p-ニトロベンジル-3-メチル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、3,5-ジクロロベンジル-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート、o-クロロベンジル-3-クロロ-4-ヒドロキシフェニルメチルスルホニウムヘキサフルオロアンチモネート等を挙げることができる。 Examples of the substituted benzylsulfonium salt include p-chlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, p-nitrobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, and p-chlorobenzyl-4-hydroxyphenyl. Methylsulfonium hexafluorophosphate, p-nitrobenzyl-3-methyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, 3,5-dichlorobenzyl-4-hydroxyphenylmethylsulfonium hexafluoroantimonate, o-chlorobenzyl-3 And -chloro-4-hydroxyphenylmethylsulfonium hexafluoroantimonate.
 上記ベンゾチアゾニウム塩としては、例えば3-ベンジルベンゾチアゾニウムヘキサフルオロアンチモネート、3-ベンジルベンゾチアゾニウムヘキサフルオロホスフェート、3-ベンジルベンゾチアゾニウムテトラフルオロボレート、3-(p-メトキシベンジル)ベンゾチアゾニウムヘキサフルオロアンチモネート、3-ベンジル-2-メチルチオベンゾチアゾニウムヘキサフルオロアンチモネート、3-ベンジル-5-クロロベンゾチアゾニウムヘキサフルオロアンチモネート等を挙げることができる。 Examples of the benzothiazonium salt include 3-benzylbenzothiazonium hexafluoroantimonate, 3-benzylbenzothiazonium hexafluorophosphate, 3-benzylbenzothiazonium tetrafluoroborate, 3- (p-methoxy). Benzyl) benzothiazonium hexafluoroantimonate, 3-benzyl-2-methylthiobenzothiazonium hexafluoroantimonate, 3-benzyl-5-chlorobenzothiazonium hexafluoroantimonate, and the like.
 上記テトラヒドロチオフェニウム塩としては、例えば4,7-ジ-n-ブトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムトリフルオロメタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム-1,1,2,2-テトラフルオロ-2-(ノルボルナン-2-イル)エタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム-2-(5-t-ブトキシカルボニルオキシビシクロ[2.2.1]ヘプタン-2-イル)-1,1,2,2-テトラフルオロエタンスルホネート、1-(4-n-ブトキシナフタレン-1-イル)テトラヒドロチオフェニウム-2-(6-t-ブトキシカルボニルオキシビシクロ[2.2.1]ヘプタン-2-イル)-1,1,2,2-テトラフルオロエタンスルホネート等を挙げることができる。 Examples of the tetrahydrothiophenium salt include 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium trifluoro. L-methanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium nonafluoro-n-butanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium-1, 1,2,2-tetrafluoro-2- (norbornan-2-yl) ethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium-2- (5-t-butoxycarbonyloxy) Bicyclo [2.2.1] heptan-2-yl) -1 1,2,2-tetrafluoroethanesulfonate, 1- (4-n-butoxynaphthalen-1-yl) tetrahydrothiophenium-2- (6-t-butoxycarbonyloxybicyclo [2.2.1] heptane- 2-yl) -1,1,2,2-tetrafluoroethanesulfonate and the like.
 [スルホンイミド化合物]
 上記スルホンイミド化合物としては、例えばN-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(カンファスルホニルオキシ)スクシンイミド、N-(4-メチルフェニルスルホニルオキシ)スクシンイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)スクシンイミド、N-(4-フルオロフェニルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(カンファスルホニルオキシ)フタルイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)フタルイミド、N-(2-フルオロフェニルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(カンファスルホニルオキシ)ジフェニルマレイミド、4-メチルフェニルスルホニルオキシ)ジフェニルマレイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)ジフェニルマレイミド、N-(4-フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N-(4-フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N-(フェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(ノナフルオロブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(カンファスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-メチルフェニルスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(4-フルオロフェニルスルホニルオキシ)-7-オキサビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボキシイミド、N-(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボキシイミド、N-(4-メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボキシイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボキシイミド、N-(4-フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルジカルボキシイミド、N-(カンファスルホニルオキシ)ナフチルジカルボキシイミド、N-(4-メチルフェニルスルホニルオキシ)ナフチルジカルボキシイミド、N-(フェニルスルホニルオキシ)ナフチルジカルボキシイミド、N-(2-トリフルオロメチルフェニルスルホニルオキシ)ナフチルジカルボキシイミド、N-(4-フルオロフェニルスルホニルオキシ)ナフチルジカルボキシイミド、N-(ペンタフルオロエチルスルホニルオキシ)ナフチルジカルボキシイミド、N-(ヘプタフルオロプロピルスルホニルオキシ)ナフチルジカルボキシイミド、N-(ノナフルオロブチルスルホニルオキシ)ナフチルジカルボキシイミド、N-(エチルスルホニルオキシ)ナフチルジカルボキシイミド、N-(プロピルスルホニルオキシ)ナフチルジカルボキシイミド、N-(ブチルスルホニルオキシ)ナフチルジカルボキシイミド、N-(ペンチルスルホニルオキシ)ナフチルジカルボキシイミド、N-(ヘキシルスルホニルオキシ)ナフチルジカルボキシイミド、N-(ヘプチルスルホニルオキシ)ナフチルジカルボキシイミド、N-(オクチルスルホニルオキシ)ナフチルジカルボキシイミド、N-(ノニルスルホニルオキシ)ナフチルジカルボキシイミド等が挙げられる。
[Sulfonimide compound]
Examples of the sulfonimide compound include N- (trifluoromethylsulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, N- (4-methylphenylsulfonyloxy) succinimide, N- (2-trifluoromethylphenylsulfonyl). Oxy) succinimide, N- (4-fluorophenylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (camphorsulfonyloxy) phthalimide, N- (2-trifluoromethylphenylsulfonyloxy) phthalimide, N- (2-fluorophenylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (camphorsulfonyloxy) dipheny Maleimide, 4-methylphenylsulfonyloxy) diphenylmaleimide, N- (2-trifluoromethylphenylsulfonyloxy) diphenylmaleimide, N- (4-fluorophenylsulfonyloxy) diphenylmaleimide, N- (4-fluorophenylsulfonyloxy) Diphenylmaleimide, N- (phenylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4-methylphenylsulfonyloxy) bicyclo [2.2.1] Hept-5-ene-2,3-dicarboximide, N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (nonafluorobutane Sulfonyloxy) bicyclo [2.2.1] he To-5-ene-2,3-dicarboximide, N- (camphorsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (camphorsulfonyloxy) -7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) -7-oxabicyclo [2.2.1] hept-5 -Ene-2,3-dicarboximide, N- (4-methylphenylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4-methylphenyl) Sulfonyloxy) -7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-trifluoromethylphenylsulfonyloxy) bis Chlo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-trifluoromethylphenylsulfonyloxy) -7-oxabicyclo [2.2.1] hept-5 Ene-2,3-dicarboximide, N- (4-fluorophenylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4-fluorophenylsulfonyl) Oxy) -7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) bicyclo [2.2.1] heptane-5,6 -Oxy-2,3-dicarboximide, N- (camphorsulfonyloxy) bicyclo [2.2.1] heptane-5,6-oxy-2,3-dicarboximide, N- ( -Methylphenylsulfonyloxy) bicyclo [2.2.1] heptane-5,6-oxy-2,3-dicarboximide, N- (2-trifluoromethylphenylsulfonyloxy) bicyclo [2.2.1] Heptane-5,6-oxy-2,3-dicarboximide, N- (4-fluorophenylsulfonyloxy) bicyclo [2.2.1] heptane-5,6-oxy-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthyl dicarboximide, N- (camphorsulfonyloxy) naphthyl dicarboximide, N- (4-methylphenylsulfonyloxy) naphthyl dicarboximide, N- (phenylsulfonyloxy) naphthyl di Carboximide, N- (2-trifluoromethylphenylsulfonate Oxy) naphthyl dicarboximide, N- (4-fluorophenylsulfonyloxy) naphthyl dicarboximide, N- (pentafluoroethylsulfonyloxy) naphthyl dicarboximide, N- (heptafluoropropylsulfonyloxy) naphthyl dicarboximide, N- (nonafluorobutylsulfonyloxy) naphthyl dicarboximide, N- (ethylsulfonyloxy) naphthyl dicarboximide, N- (propylsulfonyloxy) naphthyl dicarboximide, N- (butylsulfonyloxy) naphthyl dicarboximide, N- (pentylsulfonyloxy) naphthyl dicarboximide, N- (hexylsulfonyloxy) naphthyl dicarboximide, N- (heptylsulfonyloxy) naphthyl dicar Examples include boximide, N- (octylsulfonyloxy) naphthyl dicarboximide, N- (nonylsulfonyloxy) naphthyl dicarboximide, and the like.
 [ハロゲン含有化合物]
 上記ハロゲン含有化合物としては、例えばハロアルキル基含有炭化水素化合物、ハロアルキル基含有ヘテロ環状化合物等を挙げることができる。
[Halogen-containing compounds]
Examples of the halogen-containing compound include haloalkyl group-containing hydrocarbon compounds and haloalkyl group-containing heterocyclic compounds.
 [ジアゾメタン化合物]
 上記ジアゾメタン化合物としては、例えばビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン、ビス(p-トリルスルホニル)ジアゾメタン、ビス(2,4-キシリルスルホニル)ジアゾメタン、ビス(p-クロロフェニルスルホニル)ジアゾメタン、メチルスルホニル-p-トルエンスルホニルジアゾメタン、シクロヘキシルスルホニル(1,1-ジメチルエチルスルホニル)ジアゾメタン、ビス(1,1-ジメチルエチルスルホニル)ジアゾメタン、フェニルスルホニル(ベンゾイル)ジアゾメタン等を挙げることができる。
[Diazomethane compounds]
Examples of the diazomethane compound include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (phenylsulfonyl) diazomethane, bis (p-tolylsulfonyl) diazomethane, and bis (2,4-xylylsulfonyl) diazomethane. Bis (p-chlorophenylsulfonyl) diazomethane, methylsulfonyl-p-toluenesulfonyldiazomethane, cyclohexylsulfonyl (1,1-dimethylethylsulfonyl) diazomethane, bis (1,1-dimethylethylsulfonyl) diazomethane, phenylsulfonyl (benzoyl) diazomethane Etc.
 [スルホン化合物]
 上記スルホン化合物としては、例えばβ-ケトスルホン化合物、β-スルホニルスルホン化合物、ジアリールジスルホン化合物等を挙げることができる。
[Sulfone compound]
Examples of the sulfone compounds include β-ketosulfone compounds, β-sulfonylsulfone compounds, diaryldisulfone compounds, and the like.
 [スルホン酸エステル化合物]
 上記スルホン酸エステル化合物としては、例えばアルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等を挙げることができる。
[Sulfonic acid ester compounds]
Examples of the sulfonic acid ester compounds include alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, and imino sulfonates.
 [カルボン酸エステル化合物]
 上記カルボン酸エステル化合物としては、例えばカルボン酸o-ニトロベンジルエステル等を挙げることができる。
[Carboxylic ester compounds]
Examples of the carboxylic acid ester compound include carboxylic acid o-nitrobenzyl ester.
 感熱性酸発生体である酸発生剤としては、例えばジフェニルヨードニウム塩、トリフェニルスルホニウム塩、スルホニウム塩、ベンゾチアゾニウム塩、アンモニウム塩、ホスホニウム塩、テトラヒドロチオフェニウム塩等のオニウム塩、スルホンイミド化合物等が挙げられる。これらの感熱性酸発生剤は、感放射線性酸発生剤として機能するものであってもよい。 Examples of the acid generator that is a thermosensitive acid generator include diphenyliodonium salts, triphenylsulfonium salts, sulfonium salts, benzothiazonium salts, ammonium salts, phosphonium salts, onium salts such as tetrahydrothiophenium salts, and sulfonimides. Compounds and the like. These heat-sensitive acid generators may function as a radiation-sensitive acid generator.
 酸発生体(B)としては、オキシムスルホネート化合物、オニウム塩及びスルホン酸エステル化合物が好ましく、オキシムスルホネート化合物がより好ましい。酸発生体(B)をこれらの化合物とすることで、膜形成用組成物は、感度をより向上させることができ、また、溶解性を向上させることなどもできる。 As the acid generator (B), an oxime sulfonate compound, an onium salt and a sulfonate compound are preferable, and an oxime sulfonate compound is more preferable. By using the acid generator (B) as these compounds, the film-forming composition can further improve the sensitivity, and can also improve the solubility.
 酸発生体(B)が酸発生剤である場合、酸発生剤の含有量の下限としては、重合体(A)100質量部に対して、0.1質量部が好ましく、1質量部がより好ましい。一方、この上限としては、10質量部が好ましく、5質量部がより好ましい。酸発生剤の含有量を上記範囲とすることで、感度を最適化でき、より良好な積層配線を形成できる。 When the acid generator (B) is an acid generator, the lower limit of the content of the acid generator is preferably 0.1 parts by weight and more preferably 1 part by weight with respect to 100 parts by weight of the polymer (A). preferable. On the other hand, as this upper limit, 10 mass parts is preferable and 5 mass parts is more preferable. By setting the content of the acid generator within the above range, the sensitivity can be optimized and a better laminated wiring can be formed.
<溶媒(C)>
 溶媒(C)としては特に限定されないが、重合体(A)及び酸発生体(B)の他、他の成分を均一に溶解又は分散することができる溶媒が好ましい。
<Solvent (C)>
Although it does not specifically limit as a solvent (C), The solvent which can melt | dissolve or disperse | distribute other components other than a polymer (A) and an acid generator (B) uniformly is preferable.
 溶媒(C)としては、アルコール類、エーテル類、ジエチレングリコールアルキルエーテル類、エチレングリコールアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルプロピオネート類、脂肪族炭化水素類、芳香族炭化水素類、ケトン類、エステル類等を挙げることができる。 Solvents (C) include alcohols, ethers, diethylene glycol alkyl ethers, ethylene glycol alkyl ether acetates, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propionates, aliphatic hydrocarbons, aromatics Group hydrocarbons, ketones, esters and the like.
 上記アルコール類としては、例えば1-ヘキサノール、1-オクタノール、1-ノナノール、1-ドデカノール、1,6-ヘキサンジオール、1,8-オクタンジオール等の長鎖アルキルアルコール類;
ベンジルアルコール等の芳香族アルコール類;
エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル等のエチレングリコールモノアルキルエーテル類;
プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のプロピレングリコールモノアルキルエーテル類;
ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノブチルエーテル等のジプロピレングリコールモノアルキルエーテル類等を挙げることができる。
Examples of the alcohols include long-chain alkyl alcohols such as 1-hexanol, 1-octanol, 1-nonanol, 1-dodecanol, 1,6-hexanediol, 1,8-octanediol;
Aromatic alcohols such as benzyl alcohol;
Ethylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether;
Propylene glycol monoalkyl ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether;
Examples include dipropylene glycol monoalkyl ethers such as dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monopropyl ether, and dipropylene glycol monobutyl ether.
 上記エーテル類としては、例えばテトラヒドロフラン、ヘキシルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、1,4-ジオキサン等を挙げることができる。 Examples of the ethers include tetrahydrofuran, hexyl methyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, 1,4-dioxane, and the like.
 上記ジエチレングリコールアルキルエーテル類としては、例えばジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールエチルメチルエーテル等を挙げることができる。 Examples of the diethylene glycol alkyl ethers include diethylene glycol dimethyl ether, diethylene glycol diethyl ether, and diethylene glycol ethyl methyl ether.
 上記エチレングリコールアルキルエーテルアセテート類としては、例えばメチルセロソルブアセテート、エチルセロソルブアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテー等を挙げることができる。 Examples of the ethylene glycol alkyl ether acetates include methyl cellosolve acetate, ethyl cellosolve acetate, ethylene glycol monobutyl ether acetate, and ethylene glycol monoethyl ether acetate.
 上記プロピレングリコールモノアルキルエーテルアセテート類としては、例えばプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等を挙げることができる。 Examples of the propylene glycol monoalkyl ether acetates include propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate and the like.
 上記プロピレングリコールモノアルキルエーテルプロピオネート類としては、例えばプロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルプロピオネート、プロピレングリコールモノプロピルエーテルプロピオネート、プロピレングリコールモノブチルエーテルプロピオネート等を挙げることができる。 Examples of the propylene glycol monoalkyl ether propionates include propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether propionate, propylene glycol monopropyl ether propionate, and propylene glycol monobutyl ether propionate. be able to.
 上記脂肪族炭化水素類としては、例えばn-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカン、n-ウンデカン、n-ドデカン、シクロヘキサン、デカリン等を挙げることができる。 Examples of the aliphatic hydrocarbons include n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n-decane, n-undecane, n-dodecane, cyclohexane, decalin and the like. it can.
 上記芳香族炭化水素類としては、例えばベンゼン、トルエン、キシレン、エチルベンゼン、n-プロピルベンゼン、i-プロピルベンゼン、n-ブチルベンゼン、メシチレン、クロロベンゼン、ジクロロベンゼン等を挙げることができる。 Examples of the aromatic hydrocarbons include benzene, toluene, xylene, ethylbenzene, n-propylbenzene, i-propylbenzene, n-butylbenzene, mesitylene, chlorobenzene, dichlorobenzene and the like.
 上記ケトン類としては、例えばメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、2-ヘプタノン、4-ヒドロキシ-4-メチル-2-ペンタノン等を挙げることができる。 Examples of the ketones include methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 2-heptanone, 4-hydroxy-4-methyl-2-pentanone, and the like.
 上記エステル類としては、例えば酢酸メチル、酢酸エチル、酢酸プロピル、酢酸i-プロピル、酢酸ブチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、ヒドロキシ酢酸メチル、ヒドロキシ酢酸エチル、ヒドロキシ酢酸ブチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、3-ヒドロキシプロピオン酸メチル、3-ヒドロキシプロピオン酸エチル、3-ヒドロキシプロピオン酸プロピル、3-ヒドロキシプロピオン酸ブチル、2-ヒドロキシ-3-メチルブタン酸メチル、メトキシ酢酸メチル、メトキシ酢酸エチル、メトキシ酢酸プロピル、メトキシ酢酸ブチル、エトキシ酢酸メチル、エトキシ酢酸エチル、エトキシ酢酸プロピル、エトキシ酢酸ブチル、プロポキシ酢酸メチル、プロポキシ酢酸エチル、プロポキシ酢酸プロピル、プロポキシ酢酸ブチル、ブトキシ酢酸メチル、ブトキシ酢酸エチル、ブトキシ酢酸プロピル、ブトキシ酢酸ブチル、2-メトキシプロピオン酸メチル、2-メトキシプロピオン酸エチル、2-メトキシプロピオン酸プロピル、2-メトキシプロピオン酸ブチル、2-エトキシプロピオン酸メチル、2-エトキシプロピオン酸エチル等を挙げることができる。 Examples of the esters include methyl acetate, ethyl acetate, propyl acetate, i-propyl acetate, butyl acetate, ethyl 2-hydroxypropionate, methyl 2-hydroxy-2-methylpropionate, 2-hydroxy-2-methylpropion Ethyl acetate, methyl hydroxyacetate, ethyl hydroxyacetate, butyl hydroxyacetate, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, methyl 3-hydroxypropionate, ethyl 3-hydroxypropionate, propyl 3-hydroxypropionate, 3- Butyl hydroxypropionate, methyl 2-hydroxy-3-methylbutanoate, methyl methoxyacetate, ethyl methoxyacetate, propyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, propyl ethoxyacetate, Butyl acetate, methyl propoxyacetate, ethyl propoxyacetate, propylpropoxyacetate, butyl propoxyacetate, methyl butoxyacetate, ethyl butoxyacetate, propylbutoxyacetate, butylbutoxyacetate, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, Examples include propyl 2-methoxypropionate, butyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate, and the like.
 溶媒(C)は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。
 溶媒(C)の含有量の下限としては、膜形成用組成物の溶媒(C)以外の成分100質量部に対して、200質量部が好ましく、400質量部がより好ましい。一方、この上限としては、1600質量部が好ましく、1000質量部がより好ましい。溶媒(C)の含有量を上記範囲とすることによって、塗布性が向上し、塗布ムラ(筋状ムラ、ピン跡ムラ、モヤムラ等)の発生が抑制され、膜厚均一性の向上した塗膜を得ることができる。
A solvent (C) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
As a minimum of content of a solvent (C), 200 mass parts is preferable with respect to 100 mass parts of components other than the solvent (C) of the film forming composition, and 400 mass parts is more preferable. On the other hand, as this upper limit, 1600 mass parts is preferable and 1000 mass parts is more preferable. By setting the content of the solvent (C) within the above range, the coating property is improved, and the occurrence of coating unevenness (such as streaky unevenness, pin mark unevenness, and mottled unevenness) is suppressed, and the film thickness uniformity is improved. Can be obtained.
<増感剤(D)>
 増感剤(D)は、膜形成用組成物の放射線感度を向上させる機能を有する。増感剤(D)は、放射線を吸収して電子励起状態となる化合物であることが好ましい。電子励起状態となった増感剤(D)は、酸発生体(B)と接触して、電子移動、エネルギー移動、発熱等が生じ、これにより酸発生体(B)は化学変化を起こして分解し、酸を生成する。
<Sensitizer (D)>
The sensitizer (D) has a function of improving the radiation sensitivity of the film-forming composition. The sensitizer (D) is preferably a compound that absorbs radiation and becomes an electronically excited state. The sensitizer (D) in the electronically excited state comes into contact with the acid generator (B) to cause electron transfer, energy transfer, heat generation, etc., and the acid generator (B) undergoes a chemical change. Decomposes to produce acid.
 増感剤(D)としては、以下の化合物類に属し、かつ350nm~450nmの領域に吸収波長を有する化合物等が挙げられる。 Examples of the sensitizer (D) include compounds belonging to the following compounds and having an absorption wavelength in the region of 350 nm to 450 nm.
 増感剤(D)としては、例えばピレン、ペリレン、トリフェニレン、アントラセン、9,10-ジブトキシアントラセン、9,10-ジエトキシアントラセン,3,7-ジメトキシアントラセン、9,10-ジプロピルオキシアントラセン等の多核芳香族類;
フルオレッセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル等のキサンテン類;
キサントン、チオキサントン、ジメチルチオキサントン、ジエチルチオキサントン(2,4-ジエチルチオキサンテン-9-オン等)、イソプロピルチオキサントン(2-イソプロピルチオキサントン等)等のキサントン類;
チアカルボシアニン、オキサカルボシアニン等のシアニン類;
メロシアニン、カルボメロシアニン等のメロシアニン類;
ローダシアニン類;
オキソノール類;
チオニン、メチレンブルー、トルイジンブルー等のチアジン類;
アクリジンオレンジ、クロロフラビン、アクリフラビン等のアクリジン類;
アクリドン、10-ブチル-2-クロロアクリドン等のアクリドン類;
アントラキノン等のアントラキノン類;
スクアリウム等のスクアリウム類;
スチリル類;
2-[2-[4-(ジメチルアミノ)フェニル]エテニル]ベンゾオキサゾール等のベーススチリル類;
7-ジエチルアミノ4-メチルクマリン、7-ヒドロキシ4-メチルクマリン、2,3,6,7-テトラヒドロ-9-メチル-1H,5H,11H[l]ベンゾピラノ[6,7,8-ij]キノリジン-11-ノン等のクマリン類等を挙げることができる。
Examples of the sensitizer (D) include pyrene, perylene, triphenylene, anthracene, 9,10-dibutoxyanthracene, 9,10-diethoxyanthracene, 3,7-dimethoxyanthracene, 9,10-dipropyloxyanthracene and the like. Polynuclear aromatics of
Xanthenes such as fluorescein, eosin, erythrosine, rhodamine B, rose bengal;
Xanthones such as xanthone, thioxanthone, dimethylthioxanthone, diethylthioxanthone (2,4-diethylthioxanthen-9-one, etc.), isopropylthioxanthone (2-isopropylthioxanthone, etc.);
Cyanines such as thiacarbocyanine, oxacarbocyanine;
Merocyanines such as merocyanine and carbomerocyanine;
Rhodocyanines;
Oxonols;
Thiazines such as thionine, methylene blue and toluidine blue;
Acridines such as acridine orange, chloroflavin, acriflavine;
Acridones such as acridone, 10-butyl-2-chloroacridone;
Anthraquinones such as anthraquinone;
Squariums such as squalium;
Styryls;
Base styryls such as 2- [2- [4- (dimethylamino) phenyl] ethenyl] benzoxazole;
7-diethylamino 4-methylcoumarin, 7-hydroxy 4-methylcoumarin, 2,3,6,7-tetrahydro-9-methyl-1H, 5H, 11H [l] benzopyrano [6,7,8-ij] quinolidine- Examples thereof include coumarins such as 11-non.
 これらの増感剤(D)の中でも、多核芳香族類、アクリドン類、スチリル類、ベーススチリル類、クマリン類及びキサントン類が好ましく、キサントン類がより好ましい。増感剤(D)は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。 Among these sensitizers (D), polynuclear aromatics, acridones, styryls, base styryls, coumarins and xanthones are preferred, and xanthones are more preferred. A sensitizer (D) may be used individually by 1 type, and may mix and use 2 or more types.
 増感剤(D)の含有量の下限としては、重合体(A)100質量部に対して、0.1質量部が好ましく、0.3質量部がより好ましい。一方、この上限としては、8質量部が好ましく、4質量部がより好ましい。増感剤(D)の含有量を上記範囲とすることで、膜形成用組成物の感度を最適化でき、高解像度なパターン(配線)を形成できる。 As a minimum of content of a sensitizer (D), 0.1 mass part is preferable with respect to 100 mass parts of polymers (A), and 0.3 mass part is more preferable. On the other hand, as this upper limit, 8 mass parts is preferable and 4 mass parts is more preferable. By making content of a sensitizer (D) into the said range, the sensitivity of the composition for film formation can be optimized, and a high-resolution pattern (wiring) can be formed.
<クエンチャー(E)>
 クエンチャー(E)は、酸発生体(B)からの酸の拡散を制御する機能を有する。クエンチャー(E)としては、例えばアミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等が挙げられる。
<Quencher (E)>
The quencher (E) has a function of controlling the diffusion of the acid from the acid generator (B). Examples of the quencher (E) include amine compounds, amide group-containing compounds, urea compounds, nitrogen-containing heterocyclic compounds, and the like.
 アミン化合物としては、例えばモノ(シクロ)アルキルアミン類;ジ(シクロ)アルキルアミン類;トリ(シクロ)アルキルアミン類;置換アルキルアニリン又はその誘導体;エチレンジアミン、N,N,N’,N’-テトラメチルエチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルアミン、2,2-ビス(4-アミノフェニル)プロパン、2-(3-アミノフェニル)-2-(4-アミノフェニル)プロパン、2-(4-アミノフェニル)-2-(3-ヒドロキシフェニル)プロパン、2-(4-アミノフェニル)-2-(4-ヒドロキシフェニル)プロパン、1,4-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン、1,3-ビス(1-(4-アミノフェニル)-1-メチルエチル)ベンゼン、ビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジエチルアミノエチル)エーテル、1-(2-ヒドロキシエチル)-2-イミダゾリジノン、2-キノキサリノール、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン、N,N,N’,N’’N’’-ペンタメチルジエチレントリアミン等が挙げられる。 Examples of the amine compound include mono (cyclo) alkylamines; di (cyclo) alkylamines; tri (cyclo) alkylamines; substituted alkylanilines or derivatives thereof; ethylenediamine, N, N, N ′, N′-tetra Methylethylenediamine, tetramethylenediamine, hexamethylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylamine, 2,2-bis (4 -Aminophenyl) propane, 2- (3-aminophenyl) -2- (4-aminophenyl) propane, 2- (4-aminophenyl) -2- (3-hydroxyphenyl) propane, 2- (4-amino) Phenyl) -2- (4-hydroxyphenyl) propane, 1 4-bis (1- (4-aminophenyl) -1-methylethyl) benzene, 1,3-bis (1- (4-aminophenyl) -1-methylethyl) benzene, bis (2-dimethylaminoethyl) Ether, bis (2-diethylaminoethyl) ether, 1- (2-hydroxyethyl) -2-imidazolidinone, 2-quinoxalinol, N, N, N ′, N′-tetrakis (2-hydroxypropyl) ethylenediamine N, N, N ′, N ″ N ″ -pentamethyldiethylenetriamine and the like.
 アミド基含有化合物としては、例えばN-t-ブトキシカルボニル基含有アミノ化合物、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン、N-アセチル-1-アダマンチルアミン、イソシアヌル酸トリス(2-ヒドロキシエチル)等が挙げられる。 Examples of amide group-containing compounds include Nt-butoxycarbonyl group-containing amino compounds, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, Examples thereof include benzamide, pyrrolidone, N-methylpyrrolidone, N-acetyl-1-adamantylamine, and isocyanuric acid tris (2-hydroxyethyl).
 ウレア化合物としては、例えば尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-テトラメチルウレア、1,3-ジフェニルウレア、トリ-n-ブチルチオウレア等が挙げられる。 Examples of urea compounds include urea, methylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1,1,3,3-tetramethylurea, 1,3-diphenylurea, tri-n-butylthiourea, etc. Is mentioned.
 含窒素複素環化合物としては、例えば2-フェニルベンゾイミダゾール等のイミダゾール類;4-(ジメチルアミノ)ピリジン等のピリジン類;ピペラジン類;ピラジン、ピラゾール、ピリダジン、キノザリン、プリン、ピロリジン、ピペリジン、ピペリジンエタノール、3-ピペリジノ-1,2-プロパンジオール、モルホリン、4-メチルモルホリン、1-(4-モルホリニル)エタノール、4-アセチルモルホリン、3-(N-モルホリノ)-1,2-プロパンジオール、1,4-ジメチルピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン等が挙げられる。 Examples of the nitrogen-containing heterocyclic compound include imidazoles such as 2-phenylbenzimidazole; pyridines such as 4- (dimethylamino) pyridine; piperazines; pyrazine, pyrazole, pyridazine, quinosaline, purine, pyrrolidine, piperidine, piperidine ethanol 3-piperidino-1,2-propanediol, morpholine, 4-methylmorpholine, 1- (4-morpholinyl) ethanol, 4-acetylmorpholine, 3- (N-morpholino) -1,2-propanediol, 1, 4-dimethylpiperazine, 1,4-diazabicyclo [2.2.2] octane and the like.
 また、クエンチャー(E)としては、光崩壊性塩基を用いることができる。光崩壊性塩基としては、スルホニウム塩化合物や、ヨードニウム塩化合物等のオニウム塩化合物を挙げることができる。 Further, as the quencher (E), a photodegradable base can be used. Examples of the photodegradable base include sulfonium salt compounds and onium salt compounds such as iodonium salt compounds.
 クエンチャー(E)としては、含窒素複素環化合物が好ましく、イミダゾール類及びピリジン類がより好ましい。クエンチャー(E)は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。 As the quencher (E), a nitrogen-containing heterocyclic compound is preferable, and imidazoles and pyridines are more preferable. A quencher (E) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
 クエンチャー(E)の含有量の下限としては、重合体(A)100質量部に対して、0.001質量部が好ましく、0.01質量部がより好ましい。一方、この上限としては、3質量部が好ましく、1質量部がより好ましい。クエンチャー(E)の含有量を上記範囲とすることで、膜形成用組成物の反応性を最適化等することができ、高解像度なパターン(配線)を形成できる。 As a minimum of content of quencher (E), 0.001 mass part is preferred to 100 mass parts of polymer (A), and 0.01 mass part is more preferred. On the other hand, as this upper limit, 3 mass parts is preferable and 1 mass part is more preferable. By setting the content of the quencher (E) within the above range, the reactivity of the film-forming composition can be optimized, and a high-resolution pattern (wiring) can be formed.
<重合性化合物(F)>
 膜形成用組成物は、重合性化合物(F)を含有することで、硬化性を高めることができる。重合性化合物(F)は、通常、エチレン性不飽和結合を有する重合性化合物である。
<Polymerizable compound (F)>
The film forming composition can improve curability by containing the polymerizable compound (F). The polymerizable compound (F) is usually a polymerizable compound having an ethylenically unsaturated bond.
 重合性化合物(F)としては、重合性が良好であり、得られる膜の強度が向上するという観点から、単官能、2官能又は3官能以上の(メタ)アクリル酸エステルが好ましい。なお、単官能化合物とは、(メタ)アクリロイル基を1つ有する化合物のことをいい、2官能又は3官能以上の化合物とは、それぞれ、(メタ)アクリロイル基を2つ又は3つ以上有する化合物のことをいう。 As the polymerizable compound (F), a monofunctional, bifunctional, or trifunctional (meth) acrylic acid ester is preferable from the viewpoints of good polymerizability and improved strength of the obtained film. The monofunctional compound refers to a compound having one (meth) acryloyl group, and the bifunctional or trifunctional or higher functional compound is a compound having two or three (meth) acryloyl groups, respectively. I mean.
 上記単官能(メタ)アクリル酸エステルとしては、例えば2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、ジエチレングリコールモノエチルエーテルアクリレート、ジエチレングリコールモノエチルエーテルメタクリレート、(2-アクリロイルオキシエチル)(2-ヒドロキシプロピル)フタレート、(2-メタクリロイルオキシエチル)(2-ヒドロキシプロピル)フタレート、ω-カルボキシポリカプロラクトンモノアクリレート等を挙げることができる。 Examples of the monofunctional (meth) acrylic acid ester include 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, diethylene glycol monoethyl ether acrylate, diethylene glycol monoethyl ether methacrylate, (2-acryloyloxyethyl) (2-hydroxypropyl) Examples include phthalate, (2-methacryloyloxyethyl) (2-hydroxypropyl) phthalate, and ω-carboxypolycaprolactone monoacrylate.
 上記2官能(メタ)アクリル酸エステルとしては、例えばエチレングリコールジアクリレート、プロピレングリコールジアクリレート、プロピレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート、テトラエチレングリコールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジアクリレート、1,9-ノナンジオールジメタクリレート等を挙げることができる。 Examples of the bifunctional (meth) acrylic acid ester include ethylene glycol diacrylate, propylene glycol diacrylate, propylene glycol dimethacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, tetraethylene glycol diacrylate, and tetraethylene glycol. Examples include dimethacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol diacrylate, and 1,9-nonanediol dimethacrylate.
 上記3官能以上の(メタ)アクリル酸エステルとしては、例えばトリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物、ジペンタエリスリトールヘキサメタクリレート、エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート、トリ(2-アクリロイルオキシエチル)フォスフェート、トリ(2-メタクリロイルオキシエチル)フォスフェート、コハク酸変性ペンタエリスリトールトリアクリレート、コハク酸変性ジペンタエリスリトールペンタアクリレート、トリス(アクリロキシエチル)イソシアヌレート等を挙げることができる。 Examples of the trifunctional or higher functional (meth) acrylic acid ester include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, pentaerythritol tetraacrylate, pentaerythritol tetramethacrylate, and dipentaerythritol. Pentaacrylate, dipentaerythritol pentamethacrylate, dipentaerythritol hexaacrylate, mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, ethylene oxide modified dipentaerythritol hexaacrylate, tri (2-acryloyloxy) ethyl) Osufeto, tri (2-methacryloyloxyethyl) phosphate, succinic acid-modified pentaerythritol triacrylate, succinic acid-modified dipentaerythritol pentaacrylate, and tris (acryloxyethyl) can be given isocyanurate.
 重合性化合物(F)としては、2官能又は3官能以上の(メタ)アクリル酸エステルが好ましく、1,9-ノナンジオールジメタクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサアクリレートとジペンタエリスリトールペンタアクリレートとの混合物、エチレンオキサイド変性ジペンタエリスリトールヘキサアクリレート、コハク酸変性ペンタエリスリトールトリアクリレート、コハク酸変性ジペンタエリスリトールペンタアクリレート、及び多官能ウレタンアクリレート系化合物がより好ましい。重合性化合物(F)は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。 The polymerizable compound (F) is preferably a bifunctional or trifunctional or higher (meth) acrylic acid ester, 1,9-nonanediol dimethacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, Dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, mixture of dipentaerythritol hexaacrylate and dipentaerythritol pentaacrylate, ethylene oxide modified dipentaerythritol hexaacrylate, succinic acid modified pentaerythritol triacrylate, succinic acid modified dipentaerythritol More preferred are pentaacrylate and polyfunctional urethane acrylate compounds. A polymeric compound (F) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
 重合性化合物(F)の含有量の下限としては、重合体(A)100質量部に対して、1質量部が好ましく、3質量部がより好ましく、5質量部がさらに好ましい。一方、この上限としては、100質量部が好ましく、50質量部がより好ましく、20質量部がさらに好ましく、10質量部が特に好ましい。重合性化合物(F)の含有量を上記範囲とすることで、得られる膜の硬度を高めることなどができる。 As a minimum of content of a polymeric compound (F), 1 mass part is preferable with respect to 100 mass parts of polymers (A), 3 mass parts is more preferable, and 5 mass parts is further more preferable. On the other hand, as this upper limit, 100 mass parts is preferable, 50 mass parts is more preferable, 20 mass parts is further more preferable, 10 mass parts is especially preferable. By setting the content of the polymerizable compound (F) in the above range, the hardness of the resulting film can be increased.
<感放射線性重合開始剤(G)>
 感放射線性重合開始剤(G)は、放射線の照射を受けて、重合性化合物(F)の重合を開始又は促進させる化合物である。従って、膜形成用組成物が重合性化合物(F)を含有する場合、感放射線性重合開始剤(G)を用いることが好ましい。
<Radiation sensitive polymerization initiator (G)>
The radiation sensitive polymerization initiator (G) is a compound that starts or accelerates the polymerization of the polymerizable compound (F) upon irradiation with radiation. Therefore, when the film-forming composition contains a polymerizable compound (F), it is preferable to use a radiation-sensitive polymerization initiator (G).
 感放射線性重合開始剤(G)としては、O-アシルオキシム化合物、アセトフェノン化合物、ビイミダゾール化合物等を挙げることができる。 Examples of the radiation sensitive polymerization initiator (G) include O-acyloxime compounds, acetophenone compounds, biimidazole compounds and the like.
 上記O-アシルオキシム化合物としては、例えばエタノン-1-〔9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、1-〔9-エチル-6-ベンゾイル-9.H.-カルバゾール-3-イル〕-オクタン-1-オンオキシム-O-アセテート、1-〔9-エチル-6-(2-メチルベンゾイル)-9.H.-カルバゾール-3-イル〕-エタン-1-オンオキシム-O-ベンゾエート、1-〔9-n-ブチル-6-(2-エチルベンゾイル)-9.H.-カルバゾール-3-イル〕-エタン-1-オンオキシム-O-ベンゾエート、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロフラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロピラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-5-テトラヒドロフラニルベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-{2-メチル-4-(2,2-ジメチル-1,3-ジオキソラニル)メトキシベンゾイル}-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)、エタノン-1-〔9-エチル-6-(2-メチル-4-テトラヒドロフラニルメトキシベンゾイル)-9.H.-カルバゾール-3-イル〕-1-(O-アセチルオキシム)等を挙げることができる。 Examples of the O-acyloxime compound include ethanone-1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime), 1- [9 -Ethyl-6-benzoyl-9. H. -Carbazol-3-yl] -octane-1-one oxime-O-acetate, 1- [9-ethyl-6- (2-methylbenzoyl) -9. H. -Carbazol-3-yl] -ethane-1-one oxime-O-benzoate, 1- [9-n-butyl-6- (2-ethylbenzoyl) -9. H. -Carbazol-3-yl] -ethane-1-one oxime-O-benzoate, ethanone-1- [9-ethyl-6- (2-methyl-4-tetrahydrofuranylbenzoyl) -9. H. -Carbazol-3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl-6- (2-methyl-4-tetrahydropyranylbenzoyl) -9. H. -Carbazol-3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl-6- (2-methyl-5-tetrahydrofuranylbenzoyl) -9. H. -Carbazol-3-yl] -1- (O-acetyloxime), Ethanone-1- [9-ethyl-6- {2-methyl-4- (2,2-dimethyl-1,3-dioxolanyl) methoxybenzoyl } -9. H. -Carbazol-3-yl] -1- (O-acetyloxime), ethanone-1- [9-ethyl-6- (2-methyl-4-tetrahydrofuranylmethoxybenzoyl) -9. H. -Carbazol-3-yl] -1- (O-acetyloxime) and the like.
 上記アセトフェノン化合物としては、例えばα-アミノケトン化合物、α-ヒドロキシケトン化合物等を挙げることができる。 Examples of the acetophenone compound include α-aminoketone compounds and α-hydroxyketone compounds.
 上記アミノケトン化合物としては、例えば2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン等を挙げることができる。 Examples of the amino ketone compound include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2-dimethylamino-2- (4-methylbenzyl) -1- (4 -Morpholin-4-yl-phenyl) -butan-1-one, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one, and the like.
 上記α-ヒドロキシケトン化合物としては、例えば1-フェニル-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-i-プロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン等を挙げることができる。 Examples of the α-hydroxyketone compound include 1-phenyl-2-hydroxy-2-methylpropan-1-one and 1- (4-i-propylphenyl) -2-hydroxy-2-methylpropan-1-one. 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl phenylketone and the like.
 上記ビイミダゾール化合物としては、例えば2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール等を挙げることができる。 Examples of the biimidazole compound include 2,2′-bis (2-chlorophenyl) -4,4 ′, 5,5′-tetrakis (4-ethoxycarbonylphenyl) -1,2′-biimidazole, 2,2 '-Bis (2-chlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4 ', 5 , 5′-tetraphenyl-1,2′-biimidazole, 2,2′-bis (2,4,6-trichlorophenyl) -4,4 ′, 5,5′-tetraphenyl-1,2′- Biimidazole etc. can be mentioned.
 感放射線性重合開始剤(G)としてビイミダゾール化合物を使用する場合、これを増感するために、ジアルキルアミノ基を有する脂肪族又は芳香族化合物を併用することができる。このようなジアルキルアミノ基を有する脂肪族又は芳香族化合物としては、例えば4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン等を挙げることができる。 When a biimidazole compound is used as the radiation-sensitive polymerization initiator (G), an aliphatic or aromatic compound having a dialkylamino group can be used in combination in order to sensitize it. Examples of the aliphatic or aromatic compound having a dialkylamino group include 4,4'-bis (dimethylamino) benzophenone and 4,4'-bis (diethylamino) benzophenone.
 感放射線性重合開始剤(G)としては、O-アシルオキシム化合物及びアセトフェノン化合物が好ましい。アセトフェノン化合物としては、アミノケトン化合物が好ましい。感放射線性重合開始剤(G)は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。 As the radiation sensitive polymerization initiator (G), an O-acyloxime compound and an acetophenone compound are preferable. As the acetophenone compound, an aminoketone compound is preferable. A radiation sensitive polymerization initiator (G) may be used individually by 1 type, and 2 or more types may be mixed and used for it.
 感放射線性重合開始剤(G)の含有量の下限としては、重合体(A)100質量部に対して、0.05質量部が好ましく、0.1質量部がより好ましい。一方、この上限としては、10質量部が好ましく、2質量部がより好ましい。感放射線性重合開始剤(G)の含有量を上記範囲とすることによって、膜形成用組成物は、低露光量でも、高い放射線感度で塗膜の硬化を十分に行うことができる。 As a minimum of content of a radiation sensitive polymerization initiator (G), 0.05 mass part is preferred to 100 mass parts of polymer (A), and 0.1 mass part is more preferred. On the other hand, as this upper limit, 10 mass parts is preferable and 2 mass parts is more preferable. By setting the content of the radiation-sensitive polymerization initiator (G) in the above range, the film-forming composition can sufficiently cure the coating film with high radiation sensitivity even at a low exposure amount.
 <その他の任意成分>
 上記膜形成用組成物は、さらに、本発明の効果を損なわない限りその他の任意成分を含有することができる。その他の任意成分としては、界面活性剤、保存安定剤、接着助剤、耐熱性向上剤等を挙げることができる。その他の任意成分は、1種を単独で使用してもよいし、2種以上を混合して使用してもよい。
<Other optional components>
The film-forming composition may further contain other optional components as long as the effects of the present invention are not impaired. Examples of other optional components include a surfactant, a storage stabilizer, an adhesion aid, and a heat resistance improver. Other optional components may be used alone or in combination of two or more.
<積層配線>
 本発明の一実施形態に係る積層配線は、上記積層配線の形成方法により得られた積層配線である。当該積層配線は、上記形成方法により得られるものであるため、生産性に優れ、低コスト化を可能にすることができる。
<Laminated wiring>
A multilayer wiring according to an embodiment of the present invention is a multilayer wiring obtained by the method for forming a multilayer wiring. Since the multilayer wiring is obtained by the above-described forming method, it is excellent in productivity and can be reduced in cost.
 当該積層配線は、半導体素子や電子回路に好適に使用することができる。また、この半導体素子や電子回路は、電子デバイス等に好適に使用することができる。当該積層配線が用いられた電子デバイスは、小型化、薄型化、高機能化等が可能となる。この電子デバイスとしては、液晶ディスプレイ、携帯情報機器、デジタルカメラ、有機ディスプレイ、有機EL照明、センサー、ウェアラブルデバイス等を挙げることができる。 The laminated wiring can be suitably used for semiconductor elements and electronic circuits. Moreover, this semiconductor element and electronic circuit can be used suitably for an electronic device etc. An electronic device using the multilayer wiring can be downsized, thinned, enhanced in functionality, and the like. Examples of the electronic device include a liquid crystal display, a portable information device, a digital camera, an organic display, an organic EL lighting, a sensor, and a wearable device.
<その他の実施形態>
 本発明の積層配線の形成方法及び積層配線は、上記実施形態に限定されるものでは無い。例えば、当該積層配線の形成方法において、3層以上の導電層(配線)を有する多層の積層配線を形成することもできる。この場合、例えば工程(B)と工程(C)とを複数回繰り返すことなどによって、多層の積層配線を形成することができる。一方、第1導電層を最表層に有する基材を用意する工程(A)として、下地膜形成用組成物等を用いて第1導電層を形成するかわりに、既存の導電層付き基板を用意してそのまま使用することなどもできる。なお、当該積層配線の形成方法は、放射線の照射後、現像液を用いた現像工程を経ずにパターンを得ることができる方法である。但し、当該形成方法において、例えば放射線照射後の加熱に代えて、又は加熱と共に、現像処理あるいは洗浄処理を行うこともできる。
<Other embodiments>
The method for forming a multilayer wiring and the multilayer wiring of the present invention are not limited to the above embodiment. For example, in the multilayer wiring formation method, a multilayer multilayer wiring having three or more conductive layers (wirings) can be formed. In this case, for example, a multilayer wiring can be formed by repeating the step (B) and the step (C) a plurality of times. On the other hand, as a step (A) of preparing a base material having the first conductive layer as the outermost layer, an existing substrate with a conductive layer is prepared instead of forming the first conductive layer using a base film forming composition or the like. You can also use it as it is. In addition, the formation method of the said multilayer wiring is a method which can obtain a pattern, without passing through the image development process using a developing solution after irradiation. However, in the formation method, for example, a development process or a cleaning process can be performed instead of or together with the heating after radiation irradiation.
 また、絶縁膜形成用組成物や下地膜形成用組成物に含まれる酸発生体として、感熱性酸発生体等を用いることができる。この場合、放射線照射に代えて、表面領域の一部を加熱することで酸を発生させ、親液性表面領域を形成することができる。表面領域の一部の加熱は、例えばレーザー等により行うことができる。また、放射線の照射によって、表面領域の一部を加熱してもよい。 Further, as the acid generator contained in the insulating film forming composition or the base film forming composition, a thermosensitive acid generator or the like can be used. In this case, instead of irradiation with radiation, an acid can be generated by heating a part of the surface region to form a lyophilic surface region. Part of the surface region can be heated, for example, with a laser. Further, a part of the surface region may be heated by radiation irradiation.
 また、絶縁膜にはビア用孔を設けなくてもよい。この場合、第1導電層と第2導電層とが導通していない(絶縁された)積層配線を形成することができる。 In addition, the insulating film may not have a via hole. In this case, a laminated wiring in which the first conductive layer and the second conductive layer are not conductive (insulated) can be formed.
 以下、実施例に基づき本発明を詳述するが、本発明は、この実施例に限定的して解釈されるものではない。以下に、本実施例で用いた測定方法を示す。 Hereinafter, the present invention will be described in detail based on examples, but the present invention should not be construed as being limited to these examples. The measurement method used in this example is shown below.
[重量平均分子量(Mw)及び分子量分布(Mw/Mn)]
 以下の合成例で得られた重合体のポリスチレン換算の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、以下の条件で測定した。
・測定方法:ゲルパーミエーションクロマトグラフィー(GPC)法
・標準物質:ポリスチレン換算
・装置  :東ソー社の「HLC-8220」
・カラム :東ソー社のガードカラム「HXL-H」、「TSK gel G7000HXL」、「TSK gel GMHXL」2本、及び「TSK gel G2000HXL」を順次連結したもの
・溶媒  :テトラヒドロフラン
・サンプル濃度:0.7質量%
・注入量 :70μL
・流速  :1mL/min
[Weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn)]
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) in terms of polystyrene of the polymers obtained in the following synthesis examples were measured under the following conditions.
・ Measurement method: Gel permeation chromatography (GPC) method ・ Standard material: polystyrene conversion ・ Device: “HLC-8220” manufactured by Tosoh Corporation
Column: Tosoh guard column “H XL -H”, “TSK gel G7000H XL ”, “TSK gel GMH XL ”, and “TSK gel G2000H XL ” sequentially connected • Solvent: Tetrahydrofuran Sample concentration : 0.7% by mass
・ Injection volume: 70 μL
・ Flow rate: 1mL / min
H-NMRの測定]
 H-NMRは、溶媒としてCDClを用い、核磁気共鳴装置(Bruker社の「AVANCEIII AV400N」)を用い、温度25℃の条件下で測定した。
[Measurement of 1 H-NMR]
1 H-NMR was measured using CDCl 3 as a solvent and using a nuclear magnetic resonance apparatus (“AVANCE III AV400N” manufactured by Bruker) at a temperature of 25 ° C.
<重合体の合成>
[合成例1]
 冷却管及び撹拌機を備えたフラスコに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)8質量部、2,4-ジフェニル-4-メチル-1-ペンテン2質量部、及び、ジエチレングリコールジメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸2-ヒドロキシエチル42質量部及びメタクリル酸ベンジル58質量部を仕込み、窒素雰囲気下で緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A-1)を含む溶液を得た(固形分濃度=34.6質量%)。なお、固形分濃度は共重合体溶液の全質量に占める共重合体質量の割合を意味する。得られた溶液を大過剰のヘキサンに滴下し、沈殿物を乾燥させることで白色固体状の重合体(A-1)を得た(Mw=26000、Mw/Mn=2.2)。
<Synthesis of polymer>
[Synthesis Example 1]
In a flask equipped with a condenser and a stirrer, 8 parts by mass of dimethyl 2,2′-azobis (2-methylpropionate), 2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and diethylene glycol 200 parts by mass of dimethyl ether was charged. Subsequently, 42 parts by mass of 2-hydroxyethyl methacrylate and 58 parts by mass of benzyl methacrylate were charged, the temperature of the solution was raised to 80 ° C. while gently stirring in a nitrogen atmosphere, and this temperature was maintained for 4 hours for polymerization. As a result, a solution containing the copolymer (A-1) as a copolymer was obtained (solid content concentration = 34.6% by mass). In addition, solid content concentration means the ratio of the copolymer mass which occupies for the total mass of a copolymer solution. The obtained solution was added dropwise to a large excess of hexane, and the precipitate was dried to obtain a white solid polymer (A-1) (Mw = 26000, Mw / Mn = 2.2).
 次いで、得られた重合体(A-1)を含む溶液10質量部に、ジエチレングリコールジメチルエーテル13質量部、及び3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-ビニルオキシオクタン4.8質量部を加え、十分に攪拌した後、トリフルオロ酢酸0.27質量部を加え、窒素雰囲気下、80℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.3質量部を加え反応をクエンチした。得られた反応溶液を大過剰のメタノールに滴下することにより再沈殿精製を行った。続いて沈殿物を10質量部のジエチレングリコールジメチルエーテルに溶解させた後、大過剰のヘキサンに滴下することにより再沈殿精製を行い、沈殿物を乾燥させることで、白色固形状の共重合体として重合体(P-1)6.8質量部を得た。得られた重合体(P-1)についてH-NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:4.80ppm、アセタール基C-H)。 Next, 10 parts by mass of the solution containing the obtained polymer (A-1) was added to 13 parts by mass of diethylene glycol dimethyl ether and 3,3,4,4,5,5,6,6,7,7,8,8. , 8-Tridecafluoro-1-vinyloxyoctane was added, and after stirring sufficiently, 0.27 parts by mass of trifluoroacetic acid was added and reacted at 80 ° C. for 9 hours in a nitrogen atmosphere. Subsequently, the reaction solution was cooled to room temperature, and 0.3 parts by mass of pyridine was added to quench the reaction. The obtained reaction solution was added dropwise to a large excess of methanol for reprecipitation purification. Subsequently, after dissolving the precipitate in 10 parts by mass of diethylene glycol dimethyl ether, the precipitate is purified by re-precipitation by dripping into a large excess of hexane, and the precipitate is dried to obtain a polymer as a white solid copolymer. (P-1) 6.8 parts by mass were obtained. The obtained polymer (P-1) was analyzed using 1 H-NMR to confirm that acetalization had progressed (chemical shift: 4.80 ppm, acetal group C—H).
[合成例2]
 冷却管及び撹拌機を備えたフラスコに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)8質量部、2,4-ジフェニル-4-メチル-1-ペンテン2質量部、及びジエチレングリコールジメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸2-ヒドロキシエチル42質量部、N-シクロヘキシルマレイミド37質量部、及びスチレン21質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A-2)を含有する溶液を得た。得られた溶液を大過剰のヘキサンに滴下し、沈殿物を乾燥させることで白色固体状の重合体(A-2)を得た(Mw=20100、Mw/Mn=2.1)。
[Synthesis Example 2]
In a flask equipped with a condenser and a stirrer, 8 parts by mass of dimethyl 2,2′-azobis (2-methylpropionate), 2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and diethylene glycol dimethyl ether 200 parts by weight were charged. Subsequently, 42 parts by mass of 2-hydroxyethyl methacrylate, 37 parts by mass of N-cyclohexylmaleimide and 21 parts by mass of styrene were charged, and after the atmosphere was replaced with nitrogen, the temperature of the solution was raised to 80 ° C. while gently stirring. For 4 hours to obtain a solution containing a polymer (A-2) as a copolymer. The obtained solution was added dropwise to a large excess of hexane, and the precipitate was dried to obtain a white solid polymer (A-2) (Mw = 20100, Mw / Mn = 2.1).
 次いで重合体(A-2)10質量部をテトラヒドロフラン45質量部に溶解させ、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-ビニルオキシオクタン13.8質量部を加え、十分に攪拌した後にトリフルオロ酢酸0.77質量部を加え、窒素雰囲気下、60℃で8時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン1.0質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行った。続いて沈殿物を再度30質量部のテトラヒドロフランに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、沈殿物を乾燥させることで白色固形状の共重合体として重合体(P-2)16.5質量部を得た。得られた重合体(P-2)についてH-NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:4.80ppm、アセタール基C-H)。 Next, 10 parts by mass of the polymer (A-2) is dissolved in 45 parts by mass of tetrahydrofuran, and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro- 13.8 parts by weight of 1-vinyloxyoctane was added, and after sufficient stirring, 0.77 parts by weight of trifluoroacetic acid was added and reacted at 60 ° C. for 8 hours in a nitrogen atmosphere. Subsequently, the reaction solution was cooled to room temperature, and 1.0 part by mass of pyridine was added to quench the reaction. The obtained reaction solution was added dropwise to an excessive amount of methanol for reprecipitation purification. Subsequently, the precipitate was dissolved again in 30 parts by mass of tetrahydrofuran and then re-precipitated and purified by adding dropwise to hexane. The precipitate was dried to obtain a polymer (P-2 as a white solid copolymer). ) 16.5 parts by mass were obtained. The obtained polymer (P-2) was analyzed using 1 H-NMR to confirm that acetalization had progressed (chemical shift: 4.80 ppm, acetal group C—H).
[合成例3]
 冷却管及び撹拌機を備えたフラスコに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)8質量部、2,4-ジフェニル-4-メチル-1-ペンテン2質量部、及びプロピレングリコールモノメチルエーテルアセテート200質量部を仕込んだ。引き続きメタクリル酸30質量部及びメタクリル酸ベンジル70質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A-3)を含有する溶液を得た。得られた溶液を大過剰のヘキサンに滴下し、沈殿物を乾燥させることで白色固体状の重合体(A-3)を得た(Mw=24000、Mw/Mn=2.2)。
[Synthesis Example 3]
In a flask equipped with a condenser and a stirrer, 8 parts by mass of dimethyl 2,2′-azobis (2-methylpropionate), 2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and propylene glycol 200 parts by mass of monomethyl ether acetate was charged. Subsequently, 30 parts by weight of methacrylic acid and 70 parts by weight of benzyl methacrylate were charged, and after nitrogen substitution, the temperature of the solution was raised to 80 ° C. while gently stirring, and this temperature was maintained for 4 hours to perform polymerization. A solution containing the copolymer (A-3) as a copolymer was obtained. The obtained solution was added dropwise to a large excess of hexane, and the precipitate was dried to obtain a white solid polymer (A-3) (Mw = 24000, Mw / Mn = 2.2).
 次いで、重合体(A-3)5質量部をジエチレングリコールジメチルエーテル34質量部に溶かし、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロ-1-ビニルオキシデカン9.4質量部を加え、十分に攪拌した後にパラトルエンスルホン酸ピリジニウム0.09質量部を加え、窒素雰囲気下、80℃で5時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.04質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行った。続いて沈殿物を再度15質量部のジエチレングリコールジメチルエーテルに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、沈殿物を乾燥させることで白色固形状の共重合体として重合体(P-3)10.9質量部を得た。得られた重合体(P-3)についてH-NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:5.74ppm、アセタール基C-H)。 Next, 5 parts by mass of the polymer (A-3) was dissolved in 34 parts by mass of diethylene glycol dimethyl ether, and 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10 , 10,10-heptadecafluoro-1-vinyloxydecane 9.4 parts by mass, after sufficient stirring, 0.09 parts by mass of pyridinium paratoluenesulfonate was added and reacted at 80 ° C. for 5 hours in a nitrogen atmosphere. I let you. Subsequently, the reaction solution was cooled to room temperature, and 0.04 parts by mass of pyridine was added to quench the reaction. The obtained reaction solution was added dropwise to an excessive amount of methanol for reprecipitation purification. Subsequently, the precipitate was dissolved again in 15 parts by mass of diethylene glycol dimethyl ether, and then reprecipitated and purified by adding dropwise to hexane, and the precipitate was dried to obtain a polymer (P- 3) 10.9 mass parts was obtained. The obtained polymer (P-3) was analyzed using 1 H-NMR to confirm that acetalization had progressed (chemical shift: 5.74 ppm, acetal group C—H).
[合成例4]
 冷却管及び撹拌機を備えたフラスコに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)8質量部、2,4-ジフェニル-4-メチル-1-ペンテン2質量部、及びジエチレングリコールジメチルエーテル200質量部を仕込んだ。引き続きp-ヒドロキシフェニルメタクリレート56質量部、N-シクロヘキシルマレイミド28質量部、及びスチレン16質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(A-4)を含有する溶液を得た。得られた溶液を大過剰のヘキサンに滴下し、沈殿物を乾燥させることで白色固体状の重合体(A-4)を得た(Mw=20500、Mw/Mn=2.0)。
[Synthesis Example 4]
In a flask equipped with a condenser and a stirrer, 8 parts by mass of dimethyl 2,2′-azobis (2-methylpropionate), 2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and diethylene glycol dimethyl ether 200 parts by weight were charged. Subsequently, 56 parts by mass of p-hydroxyphenyl methacrylate, 28 parts by mass of N-cyclohexylmaleimide, and 16 parts by mass of styrene were charged. After nitrogen substitution, the temperature of the solution was raised to 80 ° C. while gently stirring, By polymerizing while maintaining for 4 hours, a solution containing the copolymer (A-4) was obtained. The obtained solution was added dropwise to a large excess of hexane, and the precipitate was dried to obtain a white solid polymer (A-4) (Mw = 20500, Mw / Mn = 2.0).
 次いで、重合体(A-4)10質量部をテトラヒドロフラン45質量部に溶かし、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-ビニルオキシオクタン13.5質量部を加え、十分に攪拌した後にトリフルオロ酢酸0.079質量部を加え、窒素雰囲気下、60℃で8時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン1.1質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行った。続いて沈殿物を再度30質量部のテトラヒドロフランに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、沈殿物を乾燥させることで白色固形状の共重合体として重合体(P-4)17.5質量部を得た。得られた重合体(P-4)についてH-NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:5.50ppm、アセタール基C-H)。 Next, 10 parts by mass of the polymer (A-4) is dissolved in 45 parts by mass of tetrahydrofuran, and 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro- 13.5 parts by weight of 1-vinyloxyoctane was added, and after sufficient stirring, 0.079 parts by weight of trifluoroacetic acid was added and reacted at 60 ° C. for 8 hours in a nitrogen atmosphere. Subsequently, the reaction solution was cooled to room temperature, and 1.1 parts by mass of pyridine was added to quench the reaction. The obtained reaction solution was added dropwise to an excessive amount of methanol for reprecipitation purification. Subsequently, the precipitate was dissolved again in 30 parts by mass of tetrahydrofuran, and then reprecipitated and purified by adding dropwise to hexane, and the precipitate was dried to obtain a polymer (P-4) as a white solid copolymer. ) 17.5 parts by mass were obtained. The obtained polymer (P-4) was analyzed using 1 H-NMR to confirm that acetalization had progressed (chemical shift: 5.50 ppm, acetal group C—H).
[合成例5]
 冷却管及び撹拌機を備えたフラスコに、ポリビニルフェノール(丸善石油化学社の「マルカリンカーS-4P」)5質量部を加え、テトラヒドロフラン50質量部で溶かし、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-ビニルオキシオクタン16質量部を加え、十分に攪拌した後にトリフルオロ酢酸0.50質量部を加え、窒素雰囲気下、60℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.5質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行った。続いて沈殿物を再度30質量部のテトラヒドロフランに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、沈殿物を乾燥させることで白色固形状の共重合体として重合体(P-5)を得た。得られた重合体(P-5)についてH-NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:5.48ppm、アセタール基C-H)。
[Synthesis Example 5]
To a flask equipped with a condenser and a stirrer, 5 parts by weight of polyvinylphenol (“Marcalinker S-4P” from Maruzen Petrochemical Co., Ltd.) is added, dissolved in 50 parts by weight of tetrahydrofuran, 3, 3, 4, 4, 5, Add 5,6,6,7,7,8,8,8-tridecafluoro-1-vinyloxyoctane (16 parts by mass), and after stirring well, add 0.50 parts by mass of trifluoroacetic acid. And reacted at 60 ° C. for 9 hours. Subsequently, the reaction solution was cooled to room temperature, and 0.5 parts by mass of pyridine was added to quench the reaction. The obtained reaction solution was added dropwise to an excessive amount of methanol for reprecipitation purification. Subsequently, the precipitate was dissolved again in 30 parts by mass of tetrahydrofuran, and then reprecipitated and purified by dropwise addition to hexane, and the precipitate was dried to obtain a polymer (P-5) as a white solid copolymer. ) The obtained polymer (P-5) was analyzed using 1 H-NMR to confirm that acetalization had progressed (chemical shift: 5.48 ppm, acetal group C—H).
[合成例6]
 冷却管及び撹拌機を備えたフラスコに、下記式で示されるフェノールノボラック樹脂(荒川化学工業社の「P-200」)5質量部を加え、テトラヒドロフラン60質量部で溶かし、3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-ヘプタデカフルオロ-1-ビニルオキシデカン20質量部を加え、十分に攪拌した後にトリフルオロ酢酸0.50質量部を加え、窒素雰囲気下、60℃で9時間反応させた。続いて反応溶液を室温まで冷却し、ピリジン0.5質量部を加え反応をクエンチした。得られた反応溶液を過剰量のメタノールに滴下することにより再沈殿精製を行った。続いて沈殿物を再度30質量部のテトラヒドロフランに溶解させた後、ヘキサンに滴下することにより再沈殿精製を行い、沈殿物を乾燥させることで白色固形状の共重合体として重合体(P-6)12.1質量部を得た。得られた重合体(P-6)についてH-NMRを用いて分析を行い、アセタール化が進行していることを確認した(化学シフト:5.49ppm、アセタール基C-H)。
[Synthesis Example 6]
To a flask equipped with a condenser and a stirrer, 5 parts by mass of a phenol novolac resin (“P-200” from Arakawa Chemical Industries) represented by the following formula was added, dissolved in 60 parts by mass of tetrahydrofuran, 3, 3, 4, 4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-vinyloxydecane was added in 20 parts by mass, and after thorough stirring, trifluoro 0.50 part by mass of acetic acid was added and reacted at 60 ° C. for 9 hours under a nitrogen atmosphere. Subsequently, the reaction solution was cooled to room temperature, and 0.5 parts by mass of pyridine was added to quench the reaction. The obtained reaction solution was added dropwise to an excessive amount of methanol for reprecipitation purification. Subsequently, the precipitate was dissolved again in 30 parts by mass of tetrahydrofuran, and then purified by reprecipitation by dropwise addition to hexane, and the precipitate was dried to obtain a polymer (P-6) as a white solid copolymer. ) 12.1 parts by mass were obtained. The obtained polymer (P-6) was analyzed using 1 H-NMR to confirm that acetalization had progressed (chemical shift: 5.49 ppm, acetal group C—H).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
[合成例7]
 冷却管及び撹拌機を備えたフラスコに、メタクリル酸2-ヒドロキシエチル25質量部、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-ビニルオキシ-オクタン101質量部、トリフルオロ酢酸(TFA)2.0質量部及びテトラヒドロフラン(THF)200質量部を仕込み、窒素雰囲気下、60℃で9時間保持して反応させた。冷却後、反応液にピリジン2.1質量部を加えクエンチした。得られた反応液を水洗、分液し、ロータリーエバポレーターで溶媒を除去し、減圧蒸留により未反応成分を除去することにより下記のアセタール化生成物(M-1)を得た。
[Synthesis Example 7]
In a flask equipped with a condenser and a stirrer, 25 parts by mass of 2-hydroxyethyl methacrylate, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro First, 101 parts by weight of 1-vinyloxy-octane, 2.0 parts by weight of trifluoroacetic acid (TFA) and 200 parts by weight of tetrahydrofuran (THF) were charged, and the reaction was carried out under a nitrogen atmosphere at 60 ° C. for 9 hours. After cooling, the reaction solution was quenched by adding 2.1 parts by mass of pyridine. The obtained reaction solution was washed with water and separated, and the solvent was removed with a rotary evaporator. Unreacted components were removed by distillation under reduced pressure to obtain the following acetalized product (M-1).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 次いで、冷却管及び撹拌機を備えたフラスコに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)8質量部、2,4-ジフェニル-4-メチル-1-ペンテン2質量部、及びプロピレングリコールモノメチルエーテル200質量部を仕込んだ。引き続き得られた上記アセタール化生成物(M-1)70質量部及びメタクリル酸ベンジル30質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(P-7)を含有する溶液を得た(Mw=22200、Mw/Mn=2.3、H-NMR 化学シフト:4.80ppm、アセタール基C-H)。 Next, in a flask equipped with a condenser and a stirrer, 8 parts by mass of dimethyl 2,2′-azobis (2-methylpropionate), 2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and 200 parts by mass of propylene glycol monomethyl ether was charged. Subsequently, 70 parts by mass of the obtained acetalization product (M-1) and 30 parts by mass of benzyl methacrylate were charged, and after replacing with nitrogen, the temperature of the solution was raised to 80 ° C. while gently stirring. For 4 hours to obtain a solution containing a polymer (P-7) as a copolymer (Mw = 2200, Mw / Mn = 2.3, 1 H-NMR chemical shift: 4.80 ppm, acetal group C—H).
[合成例8]
 冷却管及び撹拌機を備えたフラスコに、ヒドロキシフェニルメタクリレート25質量部、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロ-1-ビニルオキシ-オクタン82質量部、トリフルオロ酢酸(TFA)1.6質量部、及びテトラヒドロフラン(THF)200質量部を仕込み、窒素雰囲気下、60℃で9時間保持して反応させた。冷却後、反応液にピリジン1.7質量部を加えクエンチした。得られた反応液を水洗、分液し、ロータリーエバポレーターで溶媒を除去し、減圧蒸留により未反応成分を除去することにより下記のアセタール化生成物(M-2)を得た。
[Synthesis Example 8]
In a flask equipped with a condenser and a stirrer, 25 parts by mass of hydroxyphenyl methacrylate, 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1- 82 parts by mass of vinyloxy-octane, 1.6 parts by mass of trifluoroacetic acid (TFA), and 200 parts by mass of tetrahydrofuran (THF) were charged, and the reaction was carried out under a nitrogen atmosphere at 60 ° C. for 9 hours. After cooling, 1.7 parts by mass of pyridine was added to the reaction solution to quench. The obtained reaction solution was washed with water, separated, and the solvent was removed with a rotary evaporator. Unreacted components were removed by distillation under reduced pressure to obtain the following acetalized product (M-2).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 次いで、冷却管及び撹拌機を備えたフラスコに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)8質量部、2,4-ジフェニル-4-メチル-1-ペンテン2質量部、及びプロピレングリコールモノメチルエーテル200質量部を仕込んだ。次いで、得られた上記アセタール化生成物(M-2)75質量部、及びメタクリル酸ベンジル25質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(P-8)を含有する溶液を得た(Mw=23200、Mw/Mn=2.2、H-NMR 化学シフト:5.50ppm、アセタール基C-H)。 Next, in a flask equipped with a condenser and a stirrer, 8 parts by mass of dimethyl 2,2′-azobis (2-methylpropionate), 2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and 200 parts by mass of propylene glycol monomethyl ether was charged. Next, after adding 75 parts by mass of the obtained acetalization product (M-2) and 25 parts by mass of benzyl methacrylate and replacing with nitrogen, the temperature of the solution was raised to 80 ° C. while gently stirring, By polymerizing while maintaining this temperature for 4 hours, a solution containing a copolymer (P-8) was obtained (Mw = 23200, Mw / Mn = 2.2, 1 H-NMR chemistry). Shift: 5.50 ppm, acetal group C—H).
[合成例9]
 冷却管及び撹拌機を備えたフラスコに、メタクリル酸2-(2-ビニロキシエトキシ)エチル(日本触媒社の「VEEM」)25質量部、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクタノール45質量部、パラトルエンスルホン酸ピリジニウム(PPTSA)1.6質量部、及びテトラヒドロフラン(THF)200質量部を仕込み、窒素雰囲気下、室温で8時間保持して反応させた。反応終了後、反応液にピリジン0.7質量部を加えクエンチした。得られた反応液を水洗、分液し、ロータリーエバポレーターで溶媒を除去し、減圧蒸留により未反応成分を除去することにより以下のアセタール化生成物(M-3)を得た。
[Synthesis Example 9]
To a flask equipped with a condenser and a stirrer, 25 parts by mass of 2- (2-vinyloxyethoxy) ethyl methacrylate (“VEEM” from Nippon Shokubai Co., Ltd.), 3,3,4,4,5,5,6, 6,7,7,8,8,8-Tridecafluorooctanol 45 parts by mass, pyridinium paratoluenesulfonate (PPTSA) 1.6 parts by mass, and tetrahydrofuran (THF) 200 parts by mass were charged at room temperature in a nitrogen atmosphere. For 8 hours. After completion of the reaction, the reaction solution was quenched by adding 0.7 parts by mass of pyridine. The obtained reaction solution was washed with water and separated, and the solvent was removed with a rotary evaporator. Unreacted components were removed by distillation under reduced pressure to obtain the following acetalized product (M-3).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 次いで、冷却管及び撹拌機を備えたフラスコに、ジメチル2,2’-アゾビス(2-メチルプロピオネート)8質量部、2,4-ジフェニル-4-メチル-1-ペンテン2質量部、及びプロピレングリコールモノメチルエーテル200質量部を仕込んだ。次いで、得られた上記アセタール化生成物(M-3)75質量部及びメタクリル酸ベンジル25質量部を仕込み、窒素置換した後、緩やかに攪拌しつつ、溶液の温度を80℃に上昇させ、この温度を4時間保持して重合することにより、共重合体である重合体(P-9)を含有する溶液を得た(Mw=24200、Mw/Mn=2.1、化学シフト:4.80ppm、アセタール基C-H)。 Next, in a flask equipped with a condenser and a stirrer, 8 parts by mass of dimethyl 2,2′-azobis (2-methylpropionate), 2 parts by mass of 2,4-diphenyl-4-methyl-1-pentene, and 200 parts by mass of propylene glycol monomethyl ether was charged. Next, 75 parts by mass of the obtained acetalization product (M-3) and 25 parts by mass of benzyl methacrylate were charged and purged with nitrogen, and then the temperature of the solution was raised to 80 ° C. while gently stirring. Polymerization was performed while maintaining the temperature for 4 hours to obtain a solution containing a copolymer (P-9) (Mw = 24200, Mw / Mn = 2.1, chemical shift: 4.80 ppm). An acetal group C—H).
<膜形成用組成物の調製>
 実施例及び比較例で用いた各成分の詳細を以下に示す。
<重合体(A)>
P-1:合成例1で合成した重合体(P-1)
P-2:合成例2で合成した重合体(P-2)
P-3:合成例3で合成した重合体(P-3)
P-4:合成例4で合成した重合体(P-4)
P-5:合成例5で合成した重合体(P-5)
P-6:合成例6で合成した重合体(P-6)
P-7:合成例7で合成した重合体(P-7)
P-8:合成例8で合成した重合体(P-8)
P-9:合成例9で合成した重合体(P-9)
A-1:合成例1で合成した重合体(A-1)
A-3:合成例3で合成した重合体(A-3)
<酸発生剤(B)>
C-1:N-ヒドロキシナフタルイミド-トリフルオロメタンスルホン酸エステル
C-2:4,7-ジ-n-ブトキシ-1-ナフチルテトラヒドロチオフェニウム トリフルオロメタンスルホネート
C-3:(5-オクチルスルフォニルオキシイミノ)-(4-メトキシフェニル)アセトニトリル(BASF社の「CGI725」)
<増感剤(D)>
D-1:2-イソプロピルチオキサントン
D-2:2,4-ジエチルチオキサンテン-9-オン
<クエンチャー(E)>
E-1:2-フェニルベンゾイミダゾール
E-2:4-(ジメチルアミノ)ピリジン
<重合性化合物(F)>
F-1:ジペンタエリスリトールヘキサアクリレート
F-2:1,9-ノナンジオールジアクリレート
<感放射線性重合開始剤(G)>
G-1:2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF社の「イルガキュア(登録商標)907」)
G-2:2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン(BASF社の「イルガキュア(登録商標)379」)
G-3:エタノン-1-〔9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル〕-1-(O-アセチルオキシム)(BASF社の「イルガキュア(登録商標)OXE02」)
<Preparation of film-forming composition>
The detail of each component used by the Example and the comparative example is shown below.
<Polymer (A)>
P-1: Polymer synthesized in Synthesis Example 1 (P-1)
P-2: Polymer synthesized in Synthesis Example 2 (P-2)
P-3: Polymer synthesized in Synthesis Example 3 (P-3)
P-4: Polymer synthesized in Synthesis Example 4 (P-4)
P-5: Polymer synthesized in Synthesis Example 5 (P-5)
P-6: Polymer synthesized in Synthesis Example 6 (P-6)
P-7: Polymer synthesized in Synthesis Example 7 (P-7)
P-8: Polymer synthesized in Synthesis Example 8 (P-8)
P-9: Polymer synthesized in Synthesis Example 9 (P-9)
A-1: Polymer synthesized in Synthesis Example 1 (A-1)
A-3: Polymer synthesized in Synthesis Example 3 (A-3)
<Acid generator (B)>
C-1: N-hydroxynaphthalimide-trifluoromethanesulfonic acid ester C-2: 4,7-di-n-butoxy-1-naphthyltetrahydrothiophenium trifluoromethanesulfonate C-3: (5-octylsulfonyloxyimino )-(4-Methoxyphenyl) acetonitrile (“CGI725” from BASF)
<Sensitizer (D)>
D-1: 2-isopropylthioxanthone D-2: 2,4-diethylthioxanthen-9-one <quencher (E)>
E-1: 2-Phenylbenzimidazole E-2: 4- (Dimethylamino) pyridine <Polymerizable compound (F)>
F-1: Dipentaerythritol hexaacrylate F-2: 1,9-nonanediol diacrylate <Radiation sensitive polymerization initiator (G)>
G-1: 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (“IRGACURE® 907” from BASF)
G-2: 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) -butan-1-one (“IRGACURE® 379” manufactured by BASF) )
G-3: Etanone-1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-acetyloxime) (“IRGACURE® OXE02” manufactured by BASF) ")
[調製例1~9及び比較調製例1~2]
 表1に示す種類、含有量の各成分を混合し、固形分濃度が10質量%となるように、それぞれ溶媒(B)として、プロピレングリコールモノメチルエーテルアセテートを加えた。その後、孔径0.5μmのメンブレンフィルターでろ過することにより、各膜形成用組成物を調製した。なお、表1中の「-」は該当する成分を使用しなかったことを表す。
[Preparation Examples 1-9 and Comparative Preparation Examples 1-2]
Components of the types and contents shown in Table 1 were mixed, and propylene glycol monomethyl ether acetate was added as a solvent (B) so that the solid content concentration was 10% by mass. Then, each film forming composition was prepared by filtering with a membrane filter with a pore diameter of 0.5 μm. In Table 1, “-” indicates that the corresponding component was not used.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<積層配線の形成及び評価>
 調製例1~9及び比較調製例で調製した各膜形成用組成物を用い、積層配線の形成を行い、以下の評価を実施した。結果を表2に示す。調製例1~9の膜形成用組成物を用いたものがそれぞれ実施例1~9であり、比較調製例1~2の膜形成用組成物を用いたものがそれぞれ比較例1~2である。
<Formation and evaluation of laminated wiring>
Using each film forming composition prepared in Preparation Examples 1 to 9 and Comparative Preparation Example, a multilayer wiring was formed and the following evaluation was performed. The results are shown in Table 2. Examples using the film forming compositions of Preparation Examples 1 to 9 are Examples 1 to 9, respectively, and those using the film forming compositions of Comparative Preparation Examples 1 and 2 are Comparative Examples 1 to 2, respectively. .
[第1層目の配線(第1導電層)の形成]
 ガラス基板(コーニング社の「EAGLE-XG」)上に、調製例1~9又は比較調製例1~2で調製した膜形成用組成物をそれぞれスピンナーで塗布した後、90℃のクリーンオーブン上で5分間プレベークすることにより0.2μm厚の塗膜を形成した。次いで、得られた塗膜に、高圧水銀ランプ(大日本科研社の「MA-1400」)を用い、石英マスク(L/S=50μm/450μm、コンタクト)を介して、露光量を250mJ/cmとして放射線照射を行った。その後、ホットプレートを用い110℃で15分ベークすることにより、親撥パターニング基板(撥液性表面領域と親液性表面領域とを有する下地膜を有する基材)を形成した。
[Formation of first layer wiring (first conductive layer)]
The film-forming compositions prepared in Preparation Examples 1 to 9 or Comparative Preparation Examples 1 and 2 were applied on a glass substrate (Corning “EAGLE-XG”) with a spinner, respectively, in a clean oven at 90 ° C. A coating film having a thickness of 0.2 μm was formed by pre-baking for 5 minutes. Next, a high pressure mercury lamp (“MA-1400” manufactured by Dainippon Kaken Co., Ltd.) was used for the obtained coating film, and the exposure dose was 250 mJ / cm through a quartz mask (L / S = 50 μm / 450 μm, contact). 2 was irradiated. Thereafter, the substrate was baked at 110 ° C. for 15 minutes using a hot plate to form a lyophobic patterning substrate (base material having a base film having a lyophobic surface region and a lyophilic surface region).
 上記親撥パターニング基板のパターニング面を銀ナノインク(ハリマ化成社の「NPS-JL」)に浸漬し、すぐに引き上げて基板を45°以上に傾けた状態で1分間保持することにより、銀ナノインクがパターニングされた基板を得た。その後、銀ナノインクがパターニングされた基板全面に高圧水銀ランプ(大日本科研社の「MA-1400」)を用い、露光量を250mJ/cmとして放射線照射を行い、その後ホットプレートで120℃/30分ベークした。これにより撥液部が除去され、L/S=50μm/450μmで線状の第1導電層としての銀配線が形成された基板(第1導電層を最表面に有する基材)を得た。なお、実施例1の「第1導電層が形成された基材」の画像を図4に示す。 By immersing the patterning surface of the hydrophobic / repellent patterning substrate in silver nanoink (“NPS-JL” from Harima Chemicals Co., Ltd.) and immediately pulling it up and holding the substrate tilted at 45 ° or more for 1 minute, A patterned substrate was obtained. Thereafter, a high-pressure mercury lamp (“MA-1400” manufactured by Dainippon Kagaku Kenkyusha) is used to irradiate the entire surface of the substrate on which the silver nano-ink is patterned, and the exposure dose is 250 mJ / cm 2. Bake for minutes. As a result, the liquid repellent part was removed, and a substrate (base material having the first conductive layer on the outermost surface) on which the silver wiring as the linear first conductive layer was formed at L / S = 50 μm / 450 μm was obtained. In addition, the image of "the base material in which the 1st conductive layer was formed" of Example 1 is shown in FIG.
[第2層目の膜形成用組成物の塗布性]
 上記工程にて得られた第1導電層が形成された基板上に、調製例1~9又は比較調製例1~2で調製した膜形成用組成物をそれぞれスピンナーで塗布した後、90℃のホットプレート上で2分間プレベークすることにより、1.0μm厚の2層目塗膜を形成した。このときの塗膜に塗布ムラが無ければ良好(A)、顕著な塗布ムラがあれば不良(B)として目視にて確認した。
[Applicability of second layer film-forming composition]
The film-forming compositions prepared in Preparation Examples 1 to 9 or Comparative Preparation Examples 1 and 2 were each applied with a spinner on the substrate on which the first conductive layer obtained in the above step was formed, and then heated at 90 ° C. By prebaking on a hot plate for 2 minutes, a 1.0 μm thick second layer coating film was formed. The coating film at this time was visually confirmed as good (A) if there was no coating unevenness and defective (B) if there was significant coating unevenness.
[第2層目に形成された塗膜の接触角]
 上記「第2層目の膜形成用組成物の塗布性」で形成された塗膜に対して、高圧水銀ランプを用い(大日本科研社の「MA-1400」)、石英マスク(コンタクト)を介して露光量を250mJ/cmとして放射線照射を行った。その後、ホットプレートを用い110℃で15分ベークすることにより、親液性表面領部(露光部)と撥液性表面領域(非露光部)とを形成した。
[Contact angle of the coating film formed in the second layer]
A high-pressure mercury lamp (“MA-1400” from Dainippon Kaken Co., Ltd.) is used to apply a quartz mask (contact) to the coating film formed by the above-mentioned “coatability of the second layer film-forming composition”. The exposure dose was 250 mJ / cm 2 and the irradiation was performed. Thereafter, baking was performed at 110 ° C. for 15 minutes using a hot plate to form a lyophilic surface region (exposed portion) and a liquid repellent surface region (non-exposed portion).
 その後、接触角計(協和界面科学社の「CA-X」)を用い、露光部の塗膜表面、及び非露光部分の塗膜表面それぞれにおける、水及びテトラデカンの接触角を測定し、親撥性能を確認した。なお、表2中、露光部表面における水の接触角を「親液部 水」と示し、非露光部表面における水の接触角を「撥液部 水」と示している。テトラデカンの接触角についても同様である。 Thereafter, using a contact angle meter (“CA-X” manufactured by Kyowa Interface Science Co., Ltd.), the contact angles of water and tetradecane are measured on the coating surface of the exposed portion and the coating surface of the non-exposed portion, respectively. The performance was confirmed. In Table 2, the contact angle of water on the exposed part surface is indicated as “lyophilic part water”, and the contact angle of water on the non-exposed part surface is indicated as “liquid repellent part water”. The same applies to the contact angle of tetradecane.
[第2層目に形成された塗膜の凹パターニング性確認]
 上記「第2層目の膜形成用組成物の塗布性」で形成された塗膜において、高圧水銀ランプ(大日本科研社の「MA-1400」)を用い、石英マスク(L/S=50μm/450μm、コンタクト)を介して、露光量を250mJ/cmとして放射線照射を行った。その後、ホットプレートを用い110℃で15分ベークすることにより、第2層目に親撥パターンを有する基板を形成した。その後、親液性表面領域である露光部(凹部)及び撥液性表面領域である非露光部(凸部)の膜厚を接触式膜厚計(キーエンス社の「アルファステップIQ」)で測定し、凹部の深さを求めた。なお、実施例1の「第2層目に親撥パターンが形成された基板」の画像を図5に示す。図5においては、左右方向に第2層目の親撥パターンが形成されている。
[Confirmation of concave patterning property of coating film formed in second layer]
In the coating film formed by the above-mentioned “coatability of the second layer film-forming composition”, a quartz mask (L / S = 50 μm) was used using a high-pressure mercury lamp (“MA-1400” manufactured by Dainippon Kaken Co., Ltd.). / 450 μm, contact) was irradiated with radiation at an exposure dose of 250 mJ / cm 2 . Then, the board | substrate which has a hydrophobic / repellent pattern was formed in the 2nd layer by baking for 15 minutes at 110 degreeC using a hotplate. Then, the film thickness of the exposed part (concave part) which is a lyophilic surface area and the non-exposed part (convex part) which is a liquid repellent surface area is measured with a contact-type film thickness meter ("Alphastep IQ" by Keyence) And the depth of the recess was determined. FIG. 5 shows an image of “a substrate on which a repellent pattern is formed on the second layer” in Example 1. In FIG. 5, a second layer repellent pattern is formed in the left-right direction.
[積層配線形成性の確認]
 上記「第2層目に形成された塗膜の凹パターニング性確認」で得られた2層目に親撥パターンを有する基板のパターニング面を銀ナノインク(ハリマ化成社の「NPS-JL」に浸漬し、すぐに引き上げて基板を45°以上に傾けた状態で1分間保持することにより、第2層目の銀ナノインクがパターニングされた基板を形成した。その後、銀ナノインクがパターニングされた基板全面に高圧水銀ランプ(大日本科研社の「MA-1400」)を用い、露光量を250mJ/cmとして放射線照射を行った後にホットプレートで120℃/30分ベークした。これにより、2層目の撥液部が除去され、L/S=50μm/450μmの銀配線が形成された基板を得た。この時、L/S=50μm/450μmの銀配線がパターニング性よく形成されていれば良好(A)、パターニング不良があれば不良(B)として、目視及び光学顕微鏡(ニコン社の「エクリプスL200D」)で確認した。なお、実施例1の「第2層目の銀配線(第2導電層)が形成された基板」の画像を図6及び図7に示す。
[Confirmation of laminated wiring formability]
Immerse the patterned surface of the substrate that has a hydrophobic / repellent pattern on the second layer obtained in “Confirming the concave patterning property of the coating film formed on the second layer” in silver nanoink (“NPS-JL” from Harima Kasei Co., Ltd.) The substrate was then immediately pulled up and held for 1 minute with the substrate tilted at 45 ° or more to form a substrate patterned with the second layer of silver nanoink. Using a high-pressure mercury lamp (“MA-1400” manufactured by Dainippon Kaken Co., Ltd.), the exposure dose was 250 mJ / cm 2 , and then the substrate was baked on a hot plate at 120 ° C. for 30 minutes. The substrate having the L / S = 50 μm / 450 μm silver wiring formed was obtained by removing the liquid repellent portion, and at this time, the silver wiring of L / S = 50 μm / 450 μm was shaped with good patterning properties. It was confirmed by visual observation and an optical microscope (“Eclipse L200D” from Nikon Corporation) as good (A) if there was a patterning defect and (B) if there was a patterning defect. Images of “substrate on which wiring (second conductive layer) is formed” are shown in FIGS.
<レーザー加工による3次元導通評価>
 調製例1~9及び比較調製例1~2で調製した膜形成用組成物を用いて、ITO基板上での膜形成を行い、以下の評価を実施した。結果を表2に示す。
<Three-dimensional continuity evaluation by laser processing>
Using the film forming compositions prepared in Preparation Examples 1 to 9 and Comparative Preparation Examples 1 and 2, films were formed on an ITO substrate, and the following evaluations were performed. The results are shown in Table 2.
[ホール形成性]
 ITOが成膜されたガラス基板上に、調製例1~9又は比較調製例1~2で調製した膜形成用組成物をそれぞれスピンナーで塗布した後、90℃のクリーンオーブン上で5分間プレベークすることにより0.2μm厚の塗膜を形成した。次いで、得られた塗膜に高圧水銀ランプ(大日本科研社の「MA-1400」)を用い、石英マスク(L/S=50μm/450μm、コンタクト)を介して、露光量を250mJ/cmとして放射線照射を行った。その後、ホットプレートを用い110℃で15分ベークすることにより、親撥パターニング基板を形成した。
[Hole formation]
Each of the film forming compositions prepared in Preparation Examples 1 to 9 or Comparative Preparation Examples 1 and 2 is applied onto a glass substrate on which ITO is formed with a spinner, and then pre-baked in a clean oven at 90 ° C. for 5 minutes. As a result, a 0.2 μm thick coating film was formed. Next, a high-pressure mercury lamp ("MA-1400" manufactured by Dainippon Kaken Co., Ltd.) is used for the obtained coating film, and the exposure dose is 250 mJ / cm 2 through a quartz mask (L / S = 50 μm / 450 μm, contact). Irradiation was performed as follows. Thereafter, the substrate was baked at 110 ° C. for 15 minutes using a hot plate to form a hydrophilic / repellent patterning substrate.
 得られた親撥パターニング基板の親液部(親液性表面領域)にYAGレーザー薄膜加工装置(TNSシステムズ合同会社の「VL-C」、発振波長:266nm)にて20μm角のホールを形成した。こ光学顕微鏡(ニコン社の「エクリプスL200D」)で観察し、ホールが形成できていれば良好(A)、ホール内に残渣が残っていれば不良(B)として評価した。なお、比較例1、2においては、パターニングをすることができなかったため、ホールを形成していない。 A 20 μm square hole was formed in the lyophilic portion (lyophilic surface region) of the obtained lyophilic / repellent patterning substrate with a YAG laser thin film processing apparatus (“VL-C” of TNS Systems LLC, oscillation wavelength: 266 nm). . When observed with this optical microscope (Nikon Corporation Eclipse L200D), if a hole was formed, it was evaluated as good (A), and if a residue remained in the hole, it was evaluated as defective (B). In Comparative Examples 1 and 2, since the patterning could not be performed, no holes were formed.
[3次元導通確認]
 上記「ITO基板上への凹パターン形成及びレーザー加工によるホール形成」にて得られたホールを有する親撥パターン基板の親液部にインクジェット装置(富士フィルム社の「Dimatix DMP-2831」)を用いて銀ナノインク(ハリマ化成社の「NPS-JL」)を塗布し、親液部にのみ銀ナノインクのパターンを形成した。その後ホットプレートで120℃/30分ベークすることにより、50μm幅の銀配線が形成された基板を得た。レーザー加工により形成されたホールはSEM観察により銀ナノインクから生じた銀により埋められていることが確認された。なお、実施例1の「銀配線(第2導電層及びビア導体)が形成された基板」の画像を図8及び図9に示す。図8は平面視した画像であり、図9はSEM画像である。
[Three-dimensional continuity check]
An ink jet device (“Dimatrix DMP-2831” from Fuji Film) was used for the lyophilic part of the lyophobic pattern substrate having the holes obtained in the above-mentioned “formation of concave pattern on ITO substrate and hole formation by laser processing”. Then, silver nanoink (“NPS-JL” from Harima Kasei Co., Ltd.) was applied to form a silver nanoink pattern only in the lyophilic portion. Thereafter, the substrate was baked on a hot plate at 120 ° C. for 30 minutes to obtain a substrate on which a 50 μm-wide silver wiring was formed. It was confirmed by SEM observation that the holes formed by laser processing were filled with silver produced from the silver nano ink. 8 and 9 show images of “substrate on which silver wiring (second conductive layer and via conductor) is formed” in Example 1. FIG. FIG. 8 is a plan view image, and FIG. 9 is an SEM image.
 ケースレー社の2000型デジタルマルチメーターを用い、銀配線と基板表面のITOとの間の抵抗を測定した。導通が確認されれば、銀で埋められたホールを介して3次元導通したことを意味するため良好(A)とし、導通が得られなければ、3次元導通不良(B)として評価した。なお、比較例1、2においては、パターニングをすることができなかったため、ホールを形成していない。 Using a Keithley 2000 type digital multimeter, the resistance between the silver wiring and the ITO on the substrate surface was measured. If conduction was confirmed, it means that three-dimensional conduction was made through a hole filled with silver, so that it was evaluated as good (A), and if conduction was not obtained, it was evaluated as a three-dimensional conduction failure (B). In Comparative Examples 1 and 2, since the patterning could not be performed, no holes were formed.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表2に示されるように調製例1~9の膜形成用組成物を用いた実施例1~9によれば、良好な親撥パターン(濡れ性パターン)を形成することができ、導電層間の導通性も良好な積層配線を得ることができることがわかる。 As shown in Table 2, according to Examples 1 to 9 using the film forming compositions of Preparation Examples 1 to 9, a good repellency pattern (wetting pattern) can be formed. It can be seen that a laminated wiring with good conductivity can be obtained.
 本発明の積層配線の形成方法は、効率的に三次元の配線パターンを形成することができ、プリンテッドエレクトロニクス等に利用することができる。また、本発明の積層配線の形成方法により得られる積層配線は、液晶ディスプレイ、携帯情報機器、デジタルカメラ、有機ディスプレイ、有機EL照明、センサー、ウェアラブルデバイス等の電子デバイスに備わる電子回路等に好適に利用することができる。 The method for forming a laminated wiring according to the present invention can efficiently form a three-dimensional wiring pattern and can be used for printed electronics or the like. In addition, the multilayer wiring obtained by the method for forming a multilayer wiring according to the present invention is suitable for an electronic circuit provided in an electronic device such as a liquid crystal display, a portable information device, a digital camera, an organic display, an organic EL lighting, a sensor, and a wearable device. Can be used.
10 基板
11 下地塗膜
12 親液性表面領域
13 撥液性表面領域
14 第1導電層
15 下地膜
16 基材
17 絶縁塗膜
18 親液性表面領域
19 撥液性表面領域
20 ビア用孔
21 第2導電層
22 ビア導体
23 絶縁膜
24 積層配線
hν 放射線
DESCRIPTION OF SYMBOLS 10 Substrate 11 Base coat 12 Lipophilic surface region 13 Liquid repellent surface region 14 First conductive layer 15 Base film 16 Base material 17 Insulating coating 18 Lipophilic surface region 19 Liquid repellent surface region 20 Via hole 21 Second conductive layer 22 Via conductor 23 Insulating film 24 Multilayer wiring hν Radiation

Claims (14)

  1.  第1導電層を最表層に有する基材を用意する工程、
     上記基材の表面に、撥液性表面領域と親液性表面領域とを有する絶縁膜を形成する工程、及び
     上記絶縁膜の表面への第2導電層形成用材料の接触により、上記絶縁膜の親液性表面領域へ積層される第2導電層を形成する工程
     を備え、
     上記絶縁膜形成工程が、
     酸解離性基を有する第1重合体と第1酸発生体とを含む絶縁膜形成用組成物により、撥液性の表面を有する絶縁塗膜を形成する工程、及び
     上記絶縁塗膜の一部の表面領域に上記親液性表面領域を形成する工程
     を備える積層配線の形成方法。
    Preparing a substrate having a first conductive layer as an outermost layer;
    A step of forming an insulating film having a liquid-repellent surface region and a lyophilic surface region on the surface of the substrate; and the contact of the second conductive layer forming material to the surface of the insulating film, thereby Forming a second conductive layer laminated on the lyophilic surface region of
    The insulating film forming step includes
    A step of forming an insulating coating film having a liquid repellent surface with a composition for forming an insulating film comprising a first polymer having an acid dissociable group and a first acid generator; and a part of the insulating coating film Forming a lyophilic surface region on the surface region of the laminated wiring.
  2.  上記絶縁膜形成工程が、
     上記絶縁塗膜の上記親液性表面領域の一部の領域へのレーザーの照射により、ビア用孔を形成する工程
     をさらに備え、
     上記第2導電層形成工程において、上記第2導電層形成用材料により、上記第2導電層と共に、上記第1導電層と第2導電層とを接続するビア導体を形成する請求項1に記載の積層配線の形成方法。
    The insulating film forming step includes
    Further comprising a step of forming a via hole by laser irradiation to a part of the lyophilic surface region of the insulating coating,
    The via conductor which connects the said 1st conductive layer and a 2nd conductive layer is formed with the said 2nd conductive layer with the said 2nd conductive layer formation material in the said 2nd conductive layer formation process. Forming method of laminated wiring.
  3.  上記第1酸発生体が感放射線性酸発生体であり、
     上記親液性表面領域形成工程を上記絶縁塗膜の一部の表面領域への放射線の照射により行う請求項1又は請求項2に記載の積層配線の形成方法。
    The first acid generator is a radiation sensitive acid generator;
    The method for forming a laminated wiring according to claim 1 or 2, wherein the lyophilic surface region forming step is performed by irradiating a part of the surface region of the insulating coating with radiation.
  4.  上記放射線の照射を、フォトマスクを介した露光により行う請求項3に記載の積層配線の形成方法。 The method for forming a laminated wiring according to claim 3, wherein the radiation irradiation is performed by exposure through a photomask.
  5.  上記絶縁膜形成工程が、
     放射線が照射された上記絶縁塗膜を加熱する工程
     をさらに備える請求項3又は請求項4に記載の積層配線の形成方法。
    The insulating film forming step includes
    The method for forming a laminated wiring according to claim 3, further comprising a step of heating the insulating coating film irradiated with radiation.
  6.  上記絶縁膜に形成された親液性表面領域が凹部である請求項1から請求項5のいずれか1項に記載の積層配線の形成方法。 The method for forming a laminated wiring according to any one of claims 1 to 5, wherein the lyophilic surface region formed in the insulating film is a recess.
  7.  上記酸解離性基が、フッ素原子を含有する請求項1から請求項6のいずれか1項に記載の積層配線の形成方法。 The method for forming a laminated wiring according to any one of claims 1 to 6, wherein the acid-dissociable group contains a fluorine atom.
  8.  上記第1重合体が、下記式(1)から下記式(4)でそれぞれ表される構造単位の少なくとも一つを有する請求項1から請求項7のいずれか1項に記載の積層配線の形成方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)~(4)中、Rは、それぞれ独立して、水素原子又はメチル基である。Rは、それぞれ独立して、メチレン基、炭素数2~12のアルキレン基、炭素数2~12のアルケニレン基、炭素数6~12の2価の芳香族炭化水素基、炭素数4~12の2価の脂環式炭化水素基、又はこれらの基が有する1つ以上の水素原子が置換基で置換された基である。Rは、それぞれ独立して、1つ以上の水素原子がフッ素原子で置換された炭化水素基である。mは、それぞれ独立して、0又は1である。nは、それぞれ独立して、0~12の整数である。)
    The formation of the multilayer wiring according to any one of claims 1 to 7, wherein the first polymer has at least one of structural units each represented by the following formula (1) to the following formula (4). Method.
    Figure JPOXMLDOC01-appb-C000001
    (In formulas (1) to (4), each R 1 independently represents a hydrogen atom or a methyl group. Each R 2 independently represents a methylene group, an alkylene group having 2 to 12 carbon atoms, carbon An alkenylene group having 2 to 12 carbon atoms, a divalent aromatic hydrocarbon group having 6 to 12 carbon atoms, a divalent alicyclic hydrocarbon group having 4 to 12 carbon atoms, or one or more hydrogens of these groups Each of R 3 is independently a hydrocarbon group in which one or more hydrogen atoms are replaced by fluorine atoms, and m is each independently 0 or 1. Each n is independently an integer of 0 to 12.)
  9.  上記用意工程が、
     酸解離性基を有する第2重合体と第2酸発生体とを含む下地膜形成用組成物により、撥液性の表面を有する下地塗膜を形成する工程、
     上記下地塗膜の一部の表面領域に親液性表面領域を形成する工程、及び
     上記親液性表面領域が形成された上記下地塗膜の表面への第1導電層形成用材料の接触により、上記第1導電層を形成する工程
     を備える請求項1から請求項8のいずれか1項に記載の積層配線の形成方法。
    The above preparation process
    Forming a base coating film having a liquid repellent surface with a base film forming composition comprising a second polymer having an acid dissociable group and a second acid generator;
    A step of forming a lyophilic surface region on a part of the surface region of the undercoat, and contact of the first conductive layer forming material with the surface of the undercoat on which the lyophilic surface region is formed The method for forming a laminated wiring according to any one of claims 1 to 8, further comprising: forming the first conductive layer.
  10.  上記第2酸発生体が感放射線性酸発生体であり、
     上記下地塗膜への親液性表面領域形成工程を、上記下地塗膜の一部の表面領域への放射線の照射により行う請求項9に記載の積層配線の形成方法。
    The second acid generator is a radiation sensitive acid generator;
    The method for forming a laminated wiring according to claim 9, wherein the lyophilic surface region forming step on the base coating film is performed by irradiating a part of the surface region of the base coating film with radiation.
  11.  上記用意工程が、上記第1導電層形成工程の後に、
     上記第1導電層が形成された側の面の全面に放射線を照射する工程
     をさらに備える請求項10に記載の積層配線の形成方法。
    The preparing step is after the first conductive layer forming step,
    The method for forming a laminated wiring according to claim 10, further comprising: irradiating the entire surface on the side where the first conductive layer is formed with radiation.
  12.  上記用意工程が、上記第1導電層形成工程の前に、
     放射線が照射された上記下地塗膜を加熱する工程
     をさらに備える請求項10又は請求項11に記載の積層配線の形成方法。
    The preparation step is performed before the first conductive layer formation step.
    The method for forming a laminated wiring according to claim 10, further comprising a step of heating the base coating film irradiated with radiation.
  13.  上記下地塗膜に形成された親液性表面領域が凹部である請求項9から請求項12のいずれか1項に記載の積層配線の形成方法。 The method for forming a laminated wiring according to any one of claims 9 to 12, wherein the lyophilic surface region formed on the base coating film is a recess.
  14.  上記絶縁膜形成用組成物と上記下地膜形成用組成物とが同一の組成物である請求項9から請求項13のいずれか1項に記載の積層配線の形成方法。
     
     
    The method for forming a laminated wiring according to claim 9, wherein the composition for forming an insulating film and the composition for forming a base film are the same composition.

PCT/JP2016/069687 2015-07-28 2016-07-01 Layered wiring forming method WO2017018129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017531101A JP6799267B2 (en) 2015-07-28 2016-07-01 Method of forming laminated wiring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015149051 2015-07-28
JP2015-149051 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017018129A1 true WO2017018129A1 (en) 2017-02-02

Family

ID=57884455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069687 WO2017018129A1 (en) 2015-07-28 2016-07-01 Layered wiring forming method

Country Status (2)

Country Link
JP (1) JP6799267B2 (en)
WO (1) WO2017018129A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020012753A1 (en) * 2018-07-11 2020-01-16 Jsr株式会社 Curable composition, structure and method for forming same
US11604412B2 (en) * 2017-08-31 2023-03-14 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, and method for manufacturing electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091380A (en) * 2005-06-03 2011-05-06 Daikin Industries Ltd Method of manufacturing pattern substrate
JP2011221471A (en) * 2010-04-14 2011-11-04 Jsr Corp Positive radiation-sensitive composition, interlayer dielectric eilm and method for forming the same
JP2015015378A (en) * 2013-07-05 2015-01-22 株式会社リコー Method for forming layer wiring, layer wiring, and electronic element

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617629B (en) * 2013-05-01 2018-03-11 Jsr股份有限公司 Method of manufacturing substrate having concave pattern, composition, method of forming conductive film, electronic circuit and electronic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091380A (en) * 2005-06-03 2011-05-06 Daikin Industries Ltd Method of manufacturing pattern substrate
JP2011221471A (en) * 2010-04-14 2011-11-04 Jsr Corp Positive radiation-sensitive composition, interlayer dielectric eilm and method for forming the same
JP2015015378A (en) * 2013-07-05 2015-01-22 株式会社リコー Method for forming layer wiring, layer wiring, and electronic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11604412B2 (en) * 2017-08-31 2023-03-14 Fujifilm Corporation Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, and method for manufacturing electronic device
WO2020012753A1 (en) * 2018-07-11 2020-01-16 Jsr株式会社 Curable composition, structure and method for forming same

Also Published As

Publication number Publication date
JP6799267B2 (en) 2020-12-16
JPWO2017018129A1 (en) 2018-05-17

Similar Documents

Publication Publication Date Title
KR102126313B1 (en) Method for manufacturing base material having recessed pattern, composition, method for forming electrically conductive film, electronic circuit and electronic device
US9980392B2 (en) Process for producing substrate having wiring, radiation-sensitive composition, electronic circuit and electronic device
TW201624125A (en) Photopatternable compositions and methods of fabricating transistor devices using same
JP2009098681A (en) Photosensitive resin composition, polymer compound, method of manufacturing pattern, and electronic device
KR20160052385A (en) Manufacturing method for substrate having lyophilic portion and lyophobic portion, composition, forming method for conductive film, electronic circuit and electronic device
WO2017018129A1 (en) Layered wiring forming method
WO2016039327A1 (en) Method for manufacturing structure having recessed pattern, resin composition, method for forming electroconductive film, electronic circuit, and electronic device
JP2011102269A (en) Sulfonium salt, photo acid-generating agent, curable composition and positive photoresist composition
JP7161092B2 (en) Fluorine-containing monomer, fluorine-containing polymer, pattern-forming composition using the same, and pattern-forming method thereof
JP6455077B2 (en) Method for producing substrate having metal wire, polarizing element and electrode substrate
KR101960001B1 (en) Methods for manufacturing resin structure and micro-structure
TW201839039A (en) Method of pattern formation and method of producing polysilane resin precursor
JP2011013390A (en) Positive photosensitive resin composition for interlayer insulating film, interlayer insulating film, organic el display and liquid crystal display
KR102278837B1 (en) Method of forming pattern
JP2017220372A (en) Inspection method, composition, inspection substrate, manufacturing method for organic electro luminescence element, and inspection apparatus
KR102321688B1 (en) Photosensitive composition
JP6528384B2 (en) Method of manufacturing base material having lyophilic part and liquid repellent part, composition, method of forming conductive film, electronic circuit and electronic device
WO2020012753A1 (en) Curable composition, structure and method for forming same
TW202340301A (en) Curable resin composition, resin cured film, partition wall and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017531101

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830234

Country of ref document: EP

Kind code of ref document: A1