WO2017014457A1 - 3d printer for metal alloy filament - Google Patents

3d printer for metal alloy filament Download PDF

Info

Publication number
WO2017014457A1
WO2017014457A1 PCT/KR2016/007350 KR2016007350W WO2017014457A1 WO 2017014457 A1 WO2017014457 A1 WO 2017014457A1 KR 2016007350 W KR2016007350 W KR 2016007350W WO 2017014457 A1 WO2017014457 A1 WO 2017014457A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal alloy
nozzle
printer
filament
alloy filament
Prior art date
Application number
PCT/KR2016/007350
Other languages
French (fr)
Korean (ko)
Inventor
조경일
Original Assignee
조경일
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150154359A external-priority patent/KR20170011951A/en
Priority claimed from KR1020160039234A external-priority patent/KR101764058B1/en
Application filed by 조경일 filed Critical 조경일
Priority to US15/746,793 priority Critical patent/US11014150B2/en
Priority to JP2018502778A priority patent/JP2018525522A/en
Priority to EP16827961.0A priority patent/EP3326789A4/en
Priority to CN201680041247.5A priority patent/CN107848033B/en
Publication of WO2017014457A1 publication Critical patent/WO2017014457A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the present invention relates to a 3D printer for dissolving and extruding the metal alloy filament 650 in the nozzle 600 to produce a three-dimensional stack 520 on the bottom plate 510,
  • the nozzles are heated with a high frequency induction heating coil 620, and the metal alloy filaments are melted and extruded to be laminated one by one on a bottom plate installed at a lower position inside the chamber 500 heated to a similar temperature.
  • thermoplastic filaments or metal alloy filaments supplied to heated nozzles using a heater or high frequency induction heating, and layer them one by one on a bottom plate to complete a three-dimensional sculpture.
  • the plastic filament or metal alloy filament melted from the nozzle is laminated one by one on the heated floor plate in the outside and in the open space. Therefore, due to the extreme temperature difference between the three-dimensional laminate and the filament, the adhesion between each other is weak. Due to the shrinkage action caused by the cooling of the three-dimensional sculptures, there was a serious disadvantage.
  • the present invention melts and extrudes metal alloy filaments in a nozzle heated by a high frequency induction heating coil in a bottom plate installed in a chamber heated to a temperature similar to that of a nozzle, thereby stacking layers one by one, thereby firmly attaching and contracting the three-dimensional laminates. It is to reduce the deformation caused by the action.
  • the present invention for achieving the above object is as shown in FIG.
  • the induction heating current generated by the high frequency generator 660 is supplied to the induction heating coil 620 wrapped around the outside of the nozzle to heat the nozzle.
  • the nozzle is installed under the pipe-shaped nozzle body 600 attached to the upper slider bed 300 that slides up and down.
  • the metal alloy filament melted and extruded at the nozzle is installed at a lower position inside the chamber, and is laminated one by one on the bottom plate 510 moving in three dimensions relatively to the nozzle to generate a three-dimensional laminate 520. It is done.
  • the present invention has the effect of forming a three-dimensional laminate with less firm adhesion and deformation between each other because it is laminated one by one inside the chamber heated to a temperature similar to the metal alloy filament melted and extruded from the nozzle.
  • FIG. 1 is a front perspective view of a three-dimensional printer for the present invention metal alloy filament.
  • Figure 2 is a rear perspective view of the three-dimensional printer for the metal alloy filament of the present invention.
  • Figure 3 is a positional movement of the chamber and the nozzle body of the present invention three-dimensional printer.
  • Figure 4 is a nozzle body configuration of the three-dimensional printer for the metal alloy filament of the present invention.
  • FIG. 5 is a detailed view of the nozzle of the three-dimensional printer for the metal alloy filament of the present invention.
  • Figure 6 is a detailed view of the slider bush of the three-dimensional printer for the metal alloy filament of the present invention.
  • main frame 200 lower sliding bed
  • chamber lid plate 560 slider bush 570: inlet
  • the front door Before and after the installation in the lower part of the main frame 100, the front door is installed at the upper position of the lower sliding bed 200 to move left and right, and the chamber 500 is provided with an outer wall incorporating the insulation.
  • a bottom plate 520 at a temperature similar to the metal alloy filament extruded from the nozzle is installed at a lower position inside the chamber to induce firm attachment with the three-dimensional stack 520.
  • a pipe-shaped nozzle body 600 is installed on the upper sliding bed 300 moving up and down at the center of the upper portion of the vertical frame 400.
  • the sliding bush 560 attached to the four pillars installed on the main frame 100 and having a moving passage of the pipe-shaped nozzle body 600 in the center at the upper center position of the lid plate 550 separated from the chamber is formed. Install to plan vertical movement.
  • the nozzle is heated by attaching a high frequency induction heating coil 620 formed in a spiral shape surrounding the outside of the nozzle located below the pipe-shaped nozzle body.
  • the metal alloy filaments starting from the circular reel 651 are melted and extruded at the nozzle to be laminated one by one on the bottom plate moving in three dimensions relatively to the nozzle to produce a three-dimensional laminate.
  • the high frequency power generated by the high frequency power generator 800 is supplied to the high frequency generator 660 through the connection line 350 and passes through the inner pipe formed in the nozzle body 600 to the induction heating coil located below.
  • the gas generated in the inert gas cylinder 700 is supplied into the chamber through a hose to prevent oxidation of the high temperature metal alloy filament melted and extruded from the nozzle, thereby providing a firm bond to each other when laminating. Induce.
  • Cooling water generated in the cooler 900 is supplied to the sliding bush 560 through the connecting hose to prevent overheating, and also through the inner pipe 640 formed in the vertical direction inside the nozzle body through the connecting line 350 Supply to the cooling barrel (630).
  • the bottom plate is installed on the lower sliding bed 200 moving forward and backward, left and right at the inner lower position of the chamber 500 in which a door is installed at the front surface and an outer wall in which insulation is built.
  • a passage for sliding the pipe-shaped nozzle body 600 attached to the upper slider bed 300 moving up and down is inserted into the sliding bush 560 formed at the center thereof.
  • a sliding bush is attached to the upper central position of the lid plate 550 which is mounted on the main frame and four pillars and has a heat insulating material separated from the outer wall of the chamber.
  • the three-dimensional laminate 520 by laminating the metal alloy filaments melted and extruded from the nozzle into the bottom plate 510 moving in three dimensions relatively to the nozzle installed in the lower portion of the pipe-shaped nozzle body with the above structure.
  • the metal alloy filament 650 starting from the circular reel 651 passes through the inside of the pipe-shaped nozzle body using a transfer gear 652 connected to a transfer motor located at the top of the nozzle body, and located at the bottom of the nozzle 610. Transfer to.
  • the high frequency current generated by the high frequency generator 660 installed at the top of the nozzle body is supplied to the induction heating coil 620 installed at the bottom through the fixed electrode 680.
  • Induction heating coil formed by connecting the coolant hose 670 starting at the connecting line 350 installed at the top of the nozzle body with the inner pipe 640 formed in the vertical direction to form a coolant passage located at the lower part of the nozzle body. Cooling water is supplied to the cooling chamber 630 and 620.
  • the cooling water generated by the cooling water generator 900 is supplied to the slide bush 560 attached to the upper center position of the lid plate 550 installed at the upper portion of the chamber.
  • a cooling cylinder 630 having a cooling water rotating passage therein and a through passage of the induction heating coil 620 and the thermocouple temperature sensor 690 formed vertically therein is formed at the bottom of the pipe-shaped nozzle body 600. do.
  • the cooling water passing through the inner pipe 640 formed in the nozzle body is introduced into the cooling cylinder, rotated, and discharged to the upper portion to prevent overheating of the lower end of the nozzle body.
  • the metal alloy filament 650 vertically penetrates the inside of the pipe-shaped nozzle body and passes through a passage formed in the center of the cooling barrel 630 to be injected into the nozzle 610.
  • the high frequency current generated by the high frequency generator 660 passes through the vertical passage 641 insulated from the outside formed in the cooling tube 630 connected to the fixed electrode 680 and is installed at the lower portion of the induction heating coil 620. To feed.
  • a hole formed in the center of the 'C' shaped clip 691 is inserted into the upper end of the nozzle and attached by bolt tightening.
  • thermocouple temperature sensor 690 is inserted and attached to a vertical hole formed inside the clip of the 'C' shape, and the signal wire passes through the vertical path formed in the cooling tube to the top.
  • a passage of a pipe-shaped nozzle body is formed at a central position of the slider bush 560 and a circular rim is formed at a lower position to connect the lid plate 550 and the bolt 590 having a heat insulating material therein.
  • a coolant circular path is formed on an outer vertical wall of the slider bush, and the coolant generated in the cooler is supplied to the hose connector for the coolant input 570 and the discharge 580 provided on both sides to prevent overheating of the nozzle body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)

Abstract

The present invention relates to a 3D printer using a metal alloy filament, wherein the 3D printer introduces a metal alloy filament (650) through a nozzle (610) formed inside an induction heating coil (620), melts and extrudes the filament, and laminates the filament three-dimensionally inside a chamber (500) heated to a similar temperature. The present invention forcibly introduces a metal alloy filament in a nozzle, heated by an induction heating coil which circularly encloses the exterior of the nozzle and forms a cooling passage therein, by means of a transfer gear connected to a transfer motor. A 3D printer for a metal alloy filament is provided in which, in order to prevent the oxidation of a metal alloy laminate (520), an inert gas is introduced, the outside and heat and air are blocked, and a metal alloy filament (650) that is melted in a nozzle and extruded is laminated one layer at a time on a floor plate (510) installed inside a heated chamber (500) and moving three-dimensionally with respect to the nozzle, in order to firmly attach the filament having little deformation.

Description

[규칙 제26조에 의한 보정 22.07.2016] 금속합금 필라멘트용 3D 프린터 [Correction 22.07.2016 by Rule 26] D 3D Printer for Metal Alloy Filaments
본 발명은 금속합금 필라멘트(650)를 노즐(600)에서 용해하고 압출하여 바닥 판(510)에 3차원 적층 물(520)을 생성하는 3D 프린터에 관한 것으로,The present invention relates to a 3D printer for dissolving and extruding the metal alloy filament 650 in the nozzle 600 to produce a three-dimensional stack 520 on the bottom plate 510,
보다 상세하게는 고주파 유도 가열코일(620)로 노즐을 가열하고 금속합금 필라멘트를 용해하고 압출하여 유사한 온도로 가열된 챔버(500) 내부의 하부 위치에 설치한 바닥 판에 한 층씩 적층 하므로 상호 간의 견고한 부착과 변형을 최소한 하는 금속합금 필라멘트용 3D 프린터에 관한 것이다.More specifically, the nozzles are heated with a high frequency induction heating coil 620, and the metal alloy filaments are melted and extruded to be laminated one by one on a bottom plate installed at a lower position inside the chamber 500 heated to a similar temperature. A 3D printer for metal alloy filaments with minimal adhesion and deformation.
종래의 3D 프린터는 히터 또는 고주파 유도가열을 이용하여 가열된 노즐에 공급된 열가소성 플라스틱 필라멘트 또는 금속합금 필라멘트를 녹여서 압출하고 바닥 판에 한 층씩 적층하여 3차원 조형물이 완성된다.Conventional 3D printers melt and extrude thermoplastic filaments or metal alloy filaments supplied to heated nozzles using a heater or high frequency induction heating, and layer them one by one on a bottom plate to complete a three-dimensional sculpture.
(참고특허문헌 1) 특허 CN 201510790500 (Reference Patent Document 1) Patent CN 201510790500
(참고특허문헌 2) 특허 CN 103786344 A (Reference Patent Document 2) Patent CN 103786344 A
일반 3D 프린터는 노즐에서 용해된 플라스틱 필라멘트 또는 금속합금 필라멘트를 외부와 열린 공간에서 가열된 바닥 판에 한 층씩 적층 하므로 3차원 적층 물과 필라멘트의 상호 간의 격심한 온도차이에 의하여 상호 간의 부착이 취약하고 3차원 조형물의 냉각으로 인한 수축작용으로 변형이 심한 단점이 있었다.In general 3D printers, the plastic filament or metal alloy filament melted from the nozzle is laminated one by one on the heated floor plate in the outside and in the open space. Therefore, due to the extreme temperature difference between the three-dimensional laminate and the filament, the adhesion between each other is weak. Due to the shrinkage action caused by the cooling of the three-dimensional sculptures, there was a serious disadvantage.
그러나 본 발명은 노즐과 유사한 온도로 가열된 챔버의 내부에 설치한 바닥 판에 금속합금 필라멘트를 고주파 유도 가열코일로 가열된 노즐에서 녹여서 압출하여 한 층씩 적층 하므로 3차원 적층 물의 상호 간의 견고한 부착과 수축작용으로 인한 변형을 작게 하는 것이다.However, the present invention melts and extrudes metal alloy filaments in a nozzle heated by a high frequency induction heating coil in a bottom plate installed in a chamber heated to a temperature similar to that of a nozzle, thereby stacking layers one by one, thereby firmly attaching and contracting the three-dimensional laminates. It is to reduce the deformation caused by the action.
상기의 목적을 달성하기 위한 본 발명은 도 1에 제시한 바와 같이 The present invention for achieving the above object is as shown in FIG.
노즐의 외부를 나선형으로 감싼 유도 가열코일(620)에 고주파 발생기(660)에서 발생한 유도 가열전류를 공급하여 노즐을 가열한다. The induction heating current generated by the high frequency generator 660 is supplied to the induction heating coil 620 wrapped around the outside of the nozzle to heat the nozzle.
전후, 좌우로 슬라이딩하는 하부 슬라이더 베드(200)의 상단위치에 외부와 열과 공기가 차단하고 히터로 가열된 챔버(500)를 설치한다.In the upper and lower positions of the lower slider bed 200 sliding back and forth, the outside and heat and air are blocked and the chamber 500 heated by the heater is installed.
상하로 슬라이딩하는 상부 슬라이더 베드(300)에 부착된 파이프 형상의 노즐 몸체(600)의 하부에 노즐을 설치한다.The nozzle is installed under the pipe-shaped nozzle body 600 attached to the upper slider bed 300 that slides up and down.
노즐에서 용해되어 압출되는 금속합금 필라멘트가 챔버의 내부의 하부 위치에 설치하여 노즐과 상대적으로 3차원으로 이동하는 바닥 판(510)에 한 층씩 적층 하여 3차원 적층 물(520)을 생성하는 것을 특징으로 한다.The metal alloy filament melted and extruded at the nozzle is installed at a lower position inside the chamber, and is laminated one by one on the bottom plate 510 moving in three dimensions relatively to the nozzle to generate a three-dimensional laminate 520. It is done.
외부공기와 열이 차단되고 가열된 챔버(500)의 내부에 불활성 가스통(700)에서 생성된 가스를 공급하여 금속합금 3차원 적층 물의 산화를 방지한다.External air and heat are blocked, and the gas generated in the inert gas cylinder 700 is supplied into the heated chamber 500 to prevent oxidation of the metal alloy 3D laminate.
본 발명은 용해되어 노즐에서 압출된 금속합금 필라멘트와 유사한 온도로 가열된 챔버의 내부에서 한 층씩 적층 하므로 상호 간의 견고한 부착과 변형이 적은 3차원 적층 물을 형성할 수 있는 효과가 있다.The present invention has the effect of forming a three-dimensional laminate with less firm adhesion and deformation between each other because it is laminated one by one inside the chamber heated to a temperature similar to the metal alloy filament melted and extruded from the nozzle.
도 1은 본 발명 금속합금 필라멘트용 3차원 프린터의 전면 사시도.1 is a front perspective view of a three-dimensional printer for the present invention metal alloy filament.
도 2는 본 발명 금속합금 필라멘트용 3차원 프린터의 후면 사시도.Figure 2 is a rear perspective view of the three-dimensional printer for the metal alloy filament of the present invention.
도 3은 본 발명 3차원 프린터의 챔버와 노즐 몸체의 위치 이동도.Figure 3 is a positional movement of the chamber and the nozzle body of the present invention three-dimensional printer.
도 4는 본 발명 금속합금 필라멘트용 3차원 프린터의 노즐 몸체 구성도.Figure 4 is a nozzle body configuration of the three-dimensional printer for the metal alloy filament of the present invention.
도 5는 본 발명 금속합금 필라멘트용 3차원 프린터의 노즐 상세도.5 is a detailed view of the nozzle of the three-dimensional printer for the metal alloy filament of the present invention.
도 6는 본 발명 금속합금 필라멘트용 3차원 프린터의 슬라이더 부쉬 상세도.Figure 6 is a detailed view of the slider bush of the three-dimensional printer for the metal alloy filament of the present invention.
*도면의 주요 부분에 대한 부호의 간단한 설명** Brief description of symbols for the main parts of the drawings *
100 : 메인 프레임 200 : 하부 슬라이딩 베드 100: main frame 200: lower sliding bed
300 : 상부 슬라이드 베드 350 : 연결선 400 : 수직 프레임300: upper slide bed 350: connecting line 400: vertical frame
500 : 챔버 510 : 바닥 판 520 : 3차원 적층 물 500 chamber 510 bottom plate 520 three-dimensional stack
550 : 챔버 뚜껑 판 560 : 슬라이더 부쉬 570 : 투입구550: chamber lid plate 560: slider bush 570: inlet
580 : 배출구 590 : 연결 볼트580: outlet 590: connecting bolt
이하 본 발명의 실시 예를 첨부된 도면에 의하여 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
도 1에 제시한 바와 같이,As shown in Figure 1,
메인프레임(100)의 하부에 설치한 전후, 좌우로 이동하는 하부 슬라이딩 베드(200)의 상단위치에 전면에 문짝을 설치하고 단열재를 내장한 외부 벽면을 구비한 챔버(500)를 설치한다.Before and after the installation in the lower part of the main frame 100, the front door is installed at the upper position of the lower sliding bed 200 to move left and right, and the chamber 500 is provided with an outer wall incorporating the insulation.
노즐에서 압출된 금속합금 필라멘트와 유사한 온도의 바닥 판(520)을 챔버의 내부의 하부위치에 설치하여 3차원 적층 물(520)과 견고한 부착을 유도한다.A bottom plate 520 at a temperature similar to the metal alloy filament extruded from the nozzle is installed at a lower position inside the chamber to induce firm attachment with the three-dimensional stack 520.
수직프레임(400)의 상부의 중앙위치에 상하로 이동하는 상부 슬라이딩 베드(300)에 파이프 형상의 노즐 몸체(600)를 설치한다. A pipe-shaped nozzle body 600 is installed on the upper sliding bed 300 moving up and down at the center of the upper portion of the vertical frame 400.
메인프레임(100)에 설치한 4개의 기둥 위에 부착되고 챔버와 분리된 뚜껑 판(550)의 상부 중앙위치에 파이프 형상의 노즐 몸체(600)의 이동통로를 중앙에 형성한 슬라이딩 부쉬(560)를 설치하여 상하 이동을 도모한다.The sliding bush 560 attached to the four pillars installed on the main frame 100 and having a moving passage of the pipe-shaped nozzle body 600 in the center at the upper center position of the lid plate 550 separated from the chamber is formed. Install to plan vertical movement.
파이프 형상의 노즐 몸체의 하부에 위치한 노즐의 외부를 감싸며 나선형으로 형성한 고주파 유도 가열코일(620)을 부착하여 노즐을 가열한다.The nozzle is heated by attaching a high frequency induction heating coil 620 formed in a spiral shape surrounding the outside of the nozzle located below the pipe-shaped nozzle body.
원형 릴(651)에서 출발한 금속합금 필라멘트를 노즐에서 용해하고 압출하여 노즐과 상대적으로 3차원으로 이동하는 바닥 판에 한 층씩 적층 하여 3차원 적층 물을 생성한다.The metal alloy filaments starting from the circular reel 651 are melted and extruded at the nozzle to be laminated one by one on the bottom plate moving in three dimensions relatively to the nozzle to produce a three-dimensional laminate.
도 2에 제시한 바와 같이,As shown in Figure 2,
고주파 전원발생기(800)에서 생성된 고주파 전력을 연결선(350)을 통하여 고주파 발생기(660)로 공급하고 노즐 몸체(600)에 형성한 내부 파이프를 관통하여 하부에 위치한 유도 가열코일에 공급한다. The high frequency power generated by the high frequency power generator 800 is supplied to the high frequency generator 660 through the connection line 350 and passes through the inner pipe formed in the nozzle body 600 to the induction heating coil located below.
금속합금 필라멘트의 산화의 방지를 위하여 불활성 가스통(700)에서 발생한 가스를 호스를 통하여 챔버의 내부로 공급하여 노즐에서 용해되어 압출된 고온의 금속합금 필라멘트의 산화 피박을 방지하여 적층 시 서로 견고한 결합을 유도한다.In order to prevent oxidation of the metal alloy filament, the gas generated in the inert gas cylinder 700 is supplied into the chamber through a hose to prevent oxidation of the high temperature metal alloy filament melted and extruded from the nozzle, thereby providing a firm bond to each other when laminating. Induce.
냉각기(900)에서 발생한 냉각수를 과열방지를 위하여 연결호스를 통하여 슬라이딩 부쉬(560)에 공급하고 또한, 연결선(350)을 통하여 노즐 몸체의 내부에 수직방향으로 형성한 내부 파이프(640)를 관통하여 냉각 통(630)에 공급한다.Cooling water generated in the cooler 900 is supplied to the sliding bush 560 through the connecting hose to prevent overheating, and also through the inner pipe 640 formed in the vertical direction inside the nozzle body through the connecting line 350 Supply to the cooling barrel (630).
도 3은 챔버와 노즐 몸체의 위치이동을 표현한 것으로,3 is a representation of the positional movement of the chamber and the nozzle body,
전후, 좌우로 이동하는 하부 슬라이딩 베드(200) 위에 전면에 문짝을 설치하고 단열재를 내장한 외부 벽면을 형성한 챔버(500)의 내부 하부위치에 바닥 판을 설치한다.The bottom plate is installed on the lower sliding bed 200 moving forward and backward, left and right at the inner lower position of the chamber 500 in which a door is installed at the front surface and an outer wall in which insulation is built.
상하로 이동하는 상부 슬라이더 베드(300)에 부착된 파이프 형상의 노즐 몸체(600)를 슬라이딩하는 통로를 중앙에 형성한 슬라이딩 부쉬(560)에 삽입한다.A passage for sliding the pipe-shaped nozzle body 600 attached to the upper slider bed 300 moving up and down is inserted into the sliding bush 560 formed at the center thereof.
메인프레임과 4개의 기둥 위에 부착되고 챔버의 외부 벽면과 분리된 단열재를 내장한 뚜껑 판(550)의 상부 중앙위치에 슬라이딩 부쉬를 부착한다. A sliding bush is attached to the upper central position of the lid plate 550 which is mounted on the main frame and four pillars and has a heat insulating material separated from the outer wall of the chamber.
위와 같은 구조로 파이프 형상의 노즐 몸체의 하부에 설치한 노즐과 상대적으로 3차원으로 이동하는 바닥 판(510)에 노즐에서 용해되어 압출된 금속합금 필라멘트를 한 층씩 적층 하여 3차원 적층 물(520)을 생성한다.The three-dimensional laminate 520 by laminating the metal alloy filaments melted and extruded from the nozzle into the bottom plate 510 moving in three dimensions relatively to the nozzle installed in the lower portion of the pipe-shaped nozzle body with the above structure. Create
도 4는 노즐 몸체(600)의 전체 구성을 표현한 것으로,4 shows the overall configuration of the nozzle body 600,
원형 릴(651)에서 출발한 금속합금 필라멘트(650)는 노즐 몸체의 상단에 위치한 이송모터와 연결된 이송기어(652)를 이용하여 파이프 형상의 노즐 몸체의 내부를 관통하여 하단에 위치한 노즐(610)로 이송한다.The metal alloy filament 650 starting from the circular reel 651 passes through the inside of the pipe-shaped nozzle body using a transfer gear 652 connected to a transfer motor located at the top of the nozzle body, and located at the bottom of the nozzle 610. Transfer to.
노즐 몸체의 상단에 설치한 고주파 발생기(660)에서 생성된 고주파 전류를 고정전극(680)을 통하여 하단에 설치한 유도가열 코일(620)에 공급한다.The high frequency current generated by the high frequency generator 660 installed at the top of the nozzle body is supplied to the induction heating coil 620 installed at the bottom through the fixed electrode 680.
노즐 몸체의 상단에 설치한 연결선(350)에 출발한 냉각수 호스(670)를 수직방향으로 형성한 내부 파이프(640)와 연결하여 노즐 몸체의 하부에 위치한 냉각수 통로를 내부에 형성한 유도가열 코일(620)과 냉각 통(630)에 냉각수를 공급한다.Induction heating coil formed by connecting the coolant hose 670 starting at the connecting line 350 installed at the top of the nozzle body with the inner pipe 640 formed in the vertical direction to form a coolant passage located at the lower part of the nozzle body. Cooling water is supplied to the cooling chamber 630 and 620.
챔버의 상부에 설치한 뚜껑 판(550)의 상부 중앙위치에 부착한 슬라이드 부쉬(560)에 냉각수 발생기(900)에서 생성한 냉각수를 공급한다.The cooling water generated by the cooling water generator 900 is supplied to the slide bush 560 attached to the upper center position of the lid plate 550 installed at the upper portion of the chamber.
도 5는 노즐의 구성을 표현한 것으로,5 is a representation of the configuration of the nozzle,
냉각수 회전통로를 내부에 구비하고 유도 가열 코일(620)과 열 전대 온도센서(690)의 관통통로를 내부에 수직으로 형성한 냉각 통(630)을 파이프 형상의 노즐 몸체(600)의 하단에 형성한다.A cooling cylinder 630 having a cooling water rotating passage therein and a through passage of the induction heating coil 620 and the thermocouple temperature sensor 690 formed vertically therein is formed at the bottom of the pipe-shaped nozzle body 600. do.
노즐 몸체의 내부에 형성한 내부 파이프(640)를 관통한 냉각수는 냉각 통의 내부에 투입되어 회전하고 상부로 배출되어 노즐 몸체 하단부의 과열을 방지한다.The cooling water passing through the inner pipe 640 formed in the nozzle body is introduced into the cooling cylinder, rotated, and discharged to the upper portion to prevent overheating of the lower end of the nozzle body.
금속합금 필라멘트(650)는 파이프 형상의 노즐 몸체의 내부를 수직으로 관통하고 냉각 통(630)의 중앙에 형성한 통로를 관통하여 노즐(610)에 투입된다.The metal alloy filament 650 vertically penetrates the inside of the pipe-shaped nozzle body and passes through a passage formed in the center of the cooling barrel 630 to be injected into the nozzle 610.
고주파발생기(660)에서 생성된 고주파 전류는 고정전극(680)과 연결된 냉각 통(630)의 내부에 형성한 외부와 절연된 수직통로(641)를 관통하여 하부에 설치한 유도 가열 코일(620)에 공급한다.The high frequency current generated by the high frequency generator 660 passes through the vertical passage 641 insulated from the outside formed in the cooling tube 630 connected to the fixed electrode 680 and is installed at the lower portion of the induction heating coil 620. To feed.
'C' 형상의 클립(691)의 중심부에 형성한 구멍을 노즐의 상단부에 삽입하여 볼트 조임으로 부착한다. A hole formed in the center of the 'C' shaped clip 691 is inserted into the upper end of the nozzle and attached by bolt tightening.
'C' 형상의 클립의 내부에 형성한 수직 구멍에 열 전대 온도센서(690)를 삽입, 부착하고 신호전선은 냉각 통의 내부에 형성한 수직통로를 관통하여 상단으로 연결한다.The thermocouple temperature sensor 690 is inserted and attached to a vertical hole formed inside the clip of the 'C' shape, and the signal wire passes through the vertical path formed in the cooling tube to the top.
도 6은 챔버의 뚜껑 판에 구비한 슬라이더 부쉬의 구성을 표현한 것으로,6 shows the configuration of the slider bush provided in the lid plate of the chamber,
슬라이더 부쉬(560)의 중앙 위치에 파이프 형상의 노즐 몸체의 통로를 형성하고 하단 위치에 원형 테두리를 형성하여 단열재를 내장한 뚜껑 판(550)과 볼트(590)로 연결한다.A passage of a pipe-shaped nozzle body is formed at a central position of the slider bush 560 and a circular rim is formed at a lower position to connect the lid plate 550 and the bolt 590 having a heat insulating material therein.
슬라이더 부쉬의 외부 수직 벽면에 냉각수 원형통로를 형성하고 양옆에 구비한 냉각수 투입(570)과 배출(580)용 호스 연결구에 냉각기에서 생성된 냉각수를 공급하여 노즐 몸체의 과열을 방지한다.A coolant circular path is formed on an outer vertical wall of the slider bush, and the coolant generated in the cooler is supplied to the hose connector for the coolant input 570 and the discharge 580 provided on both sides to prevent overheating of the nozzle body.
장비 제작업체에서 부품생산용으로 이용 가능합니다.Available for machine parts production.

Claims (5)

  1. 노즐의 외부를 나선형으로 감싼 고주파 유도 가열코일(620)로 가열된 노즐에 이송기어(652)를 이용하여 노즐(610)의 중심통로에 투입된 금속합금 필라멘트(650)를 녹이고 압출하여 노즐(610)과 상대적으로 3차원으로 이동하는 챔버의 내부에 위치한 바닥 판(510)에 한 층씩 적층 하여 3차원 적층 물(520)을 생성하는 3D 프린터에 있어서,Melting and extruding the metal alloy filament 650 injected into the central passage of the nozzle 610 using the transfer gear 652 to the nozzle heated by the high frequency induction heating coil 620 wrapped around the outside of the nozzle in a nozzle 610 In the 3D printer to produce a three-dimensional stack 520 by laminating one by one on the bottom plate 510 located inside the chamber moving relatively three-dimensionally,
    금속합금 필라멘트를 강제이송하는 이송모터와 연결된 이송기어 ;A transfer gear connected to a transfer motor for forcibly transferring the metal alloy filament;
    금속합금 필라멘트를 녹이고 압출하는 유도 가열코일로 가열된 노즐 :A nozzle heated with an induction heating coil for melting and extruding metal alloy filaments:
    챔버의 내부에 위치한 바닥 판에 3차원 적층 물이 쌓이는 것을 포함하는 것을 특징으로 하는 금속합금 필라멘트용 3D 프린터.3D printer for the metal alloy filament, characterized in that the three-dimensional stack is stacked on the bottom plate located inside the chamber.
  2. 청구항 1 에 있어서,The method according to claim 1,
    노즐과 연결된 상부를 냉각하기 위하여 상단에는 냉각수용 투입과 배출용 내부 파이프(640)를 구비하고 내부에는 수평방향으로 냉각수 회전통로와 수직방향으로 유도 가열코일과 열 전대 온도센서 통로용 파이프를 구비한 냉각 통(630)을 노즐 몸체(600)의 하단에 설치하는 것을 특징으로 하는 금속합금 필라멘트용 3D 프린터.In order to cool the upper part connected to the nozzle, the upper part is provided with an inner pipe 640 for inputting and discharging the cooling water, and an induction heating coil and a thermocouple temperature sensor passage pipe in the vertical direction and the cooling water rotation path in the horizontal direction. 3D printer for the metal alloy filament, characterized in that the cooling cylinder 630 is installed on the bottom of the nozzle body (600).
  3. 청구항 1 에 있어서,The method according to claim 1,
    바닥 판(510)은 3차원 적층 물과 견고하게 부착하기 위하여 사방으로 단열재를 내장한 외부 벽면을 형성하고 전면에 문짝을 구비하며 상부는 개방된 형상의 가열된 챔버의 하부에 설치하는 것을 특징으로 하는 금속합금 필라멘트용 3D 프린터.The bottom plate 510 is formed to form an outer wall incorporating insulation in all directions to firmly attach to the three-dimensional stack and has a door on the front side, and the upper part is installed at the lower part of the heated chamber of the open shape. 3D printer for metal alloy filament.
  4. 청구항 1 에 있어서,The method according to claim 1,
    챔버와 분리된 단열재를 내장한 뚜껑 판(550)을 챔버의 상부 위치에 설치하고 파이프 형상의 노즐 몸체(600)의 상하 이동을 위하여 슬라이딩통로를 수직방향으로 형성한 슬라이더 부쉬(560)을 뚜껑 판의 상단의 중앙위치에 부착하는 것을 특징으로 하는 금속합금 필라멘트용 3D 프린터. A lid plate 550 having a heat insulating material separated from the chamber is installed at an upper position of the chamber, and a slider bush 560 having a sliding passage formed in a vertical direction for vertical movement of the pipe-shaped nozzle body 600 is covered with a lid plate. 3D printer for the metal alloy filament, characterized in that attached to the center position of the top.
  5. 청구항 4 에 있어서,  The method according to claim 4,
    슬라이더 부쉬(560)는 노즐 몸체의 과열을 방지하기 위하여 냉각수의 내부통로를 수평방향으로 형성하고 벽면의 양옆에 냉각수 투입과 배출용 연결구(570,580)를 구비하고 하단 위치에 원형 테두리를 형성한 슬라이더 부쉬(560)를 설치한 것을 특징으로 하는 금속합금 필라멘트용 3D 프린터.     Slider bush 560 is a slider bush formed with an inner passage of the coolant in a horizontal direction to prevent overheating of the nozzle body, and provided with coolant input and discharge connectors 570 and 580 on both sides of the wall and a circular border at the bottom position. 3D printer for the metal alloy filament, characterized in that 560 is installed.
PCT/KR2016/007350 2015-07-23 2016-07-07 3d printer for metal alloy filament WO2017014457A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/746,793 US11014150B2 (en) 2015-07-23 2016-07-07 3D printer for metal alloy filament
JP2018502778A JP2018525522A (en) 2015-07-23 2016-07-07 3D printer for metal alloy filament
EP16827961.0A EP3326789A4 (en) 2015-07-23 2016-07-07 3d printer for metal alloy filament
CN201680041247.5A CN107848033B (en) 2015-07-23 2016-07-07 Three-dimensional printer for metal alloy metal wire

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20150104039 2015-07-23
KR10-2015-0104039 2015-07-23
KR20150132743 2015-09-20
KR10-2015-0132743 2015-09-20
KR1020150154359A KR20170011951A (en) 2015-07-23 2015-11-04 Metal alloy filament on printer
KR10-2015-0154359 2015-11-04
KR1020160039234A KR101764058B1 (en) 2015-07-23 2016-03-31 Metal filament for 3D printer
KR10-2016-0039234 2016-03-31

Publications (1)

Publication Number Publication Date
WO2017014457A1 true WO2017014457A1 (en) 2017-01-26

Family

ID=57835114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007350 WO2017014457A1 (en) 2015-07-23 2016-07-07 3d printer for metal alloy filament

Country Status (1)

Country Link
WO (1) WO2017014457A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3571937A1 (en) 2018-05-24 2019-11-27 BSH Hausgeräte GmbH Food printer
US11305489B2 (en) 2017-03-05 2022-04-19 D. Swarovski Kg 3D printing system for printing high melting temperature materials
TWI788427B (en) * 2017-10-03 2023-01-01 美商捷普股份有限公司 Heating element for a 3d printer nozzle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2359962A2 (en) * 2002-04-26 2011-08-24 Rolls-Royce Corporation Method and apparatus for production of a cast component
WO2014153535A2 (en) * 2013-03-22 2014-09-25 Gregory Thomas Mark Three dimensional printing
KR101479900B1 (en) * 2014-05-14 2015-01-08 김석문 3D printing apparatus and 3D printing method and manufacturing method for unit of breakwater structure
WO2015014421A1 (en) * 2013-08-01 2015-02-05 Sartorius Stedim Biotech Gmbh Single-use biological 3 dimensional printer
KR20150026760A (en) * 2013-08-30 2015-03-11 주승환 3d printer including z-axis interworking part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2359962A2 (en) * 2002-04-26 2011-08-24 Rolls-Royce Corporation Method and apparatus for production of a cast component
WO2014153535A2 (en) * 2013-03-22 2014-09-25 Gregory Thomas Mark Three dimensional printing
WO2015014421A1 (en) * 2013-08-01 2015-02-05 Sartorius Stedim Biotech Gmbh Single-use biological 3 dimensional printer
KR20150026760A (en) * 2013-08-30 2015-03-11 주승환 3d printer including z-axis interworking part
KR101479900B1 (en) * 2014-05-14 2015-01-08 김석문 3D printing apparatus and 3D printing method and manufacturing method for unit of breakwater structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11305489B2 (en) 2017-03-05 2022-04-19 D. Swarovski Kg 3D printing system for printing high melting temperature materials
TWI788427B (en) * 2017-10-03 2023-01-01 美商捷普股份有限公司 Heating element for a 3d printer nozzle
EP3571937A1 (en) 2018-05-24 2019-11-27 BSH Hausgeräte GmbH Food printer

Similar Documents

Publication Publication Date Title
KR101764058B1 (en) Metal filament for 3D printer
WO2017014457A1 (en) 3d printer for metal alloy filament
CN107848033B (en) Three-dimensional printer for metal alloy metal wire
KR20170011951A (en) Metal alloy filament on printer
SE0950863A1 (en) Vacuum-connectable base plate intended for cellulose mass molds
CN212472311U (en) Outer sheath cladding production device and production line of cable
CN205564388U (en) Device of outer protection sleeve surface tympanic bulla of high tension cable in solution
SE534305C2 (en) Molding for cellulose pulp comprising a partially machined smooth surface
SE534319C2 (en) Pulp shape with impermeable outer area
CN111055468A (en) Extrusion die with deflection shunting holes for plastic extruder
CN202088473U (en) Hot melting oven
CN212400310U (en) Disc cast aluminum heating ring
CN111890674A (en) Three-dimensional circuit printing device
CN219076473U (en) Mould is used in production of polypropylene cable protection tube
CN209851446U (en) Special equipment for producing built-in conical release film tube
CN213321744U (en) Graphene 3D printing wire extrusion forming device
CN206277634U (en) A kind of high speed extruder for producing BV cables
CN210651174U (en) Array type efficient clay 3D printing and forming device
CN218892226U (en) Nozzle structure of 3D printer
CN217574002U (en) Material extrusion pipe of reaction kettle
EP4282621A1 (en) Additive manufacturing device for printing of a thermoplastic filament with an embedded electrical cable
CN211542405U (en) Nozzle suitable for 3D printer
WO2022065803A1 (en) Air pressure extrusion nozzle for 3d printer
CN211566902U (en) Extruder barrel heating device for waterproofing membrane
CN211683402U (en) Extrusion device is used in production of resistant ABS macromolecular composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827961

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018502778

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016827961

Country of ref document: EP